Research papers/preprints
-
M. Holzmann, V. Růžek, M. Tušek. Non-self-adjoint Dirac operators on graphs. to appear in J. Phys. A arXiv:2502.00480
-
L. Heriban, M. Holzmann, C. Stelzer-Landauer, G. Stenzel, M. Tušek. Two-dimensional Schrödinger operators with non-local singular potentials. J. Math. Anal. Appl., vol 549, iss 2, 2025. open access
-
J. Behrndt, P. Exner, M. Holzmann, and M. Tušek. On two-dimensional Dirac operators with δ-shell interactions supported on unbounded curves with straight ends. arXiv:2312.00181
-
L. Heriban and M. Tušek. Non-local relativistic δ-shell interactions. Lett. Math. Phys. 114, 2024. open access
-
J. Behrndt, M. Holzmann, and M. Tušek. Two-dimensional Dirac operators with general δ-shell interactions supported on a straight line. J. Phys. A, vol 56, 2023. arXiv:2208.12761
-
L. Heriban and M. Tušek. Non-self-adjoint relativistic point interaction in one dimension. J. Math. Anal. Appl., vol 516, 2022. arXiv:2205.05005
-
J. Behrndt, M. Holzmann, and M. Tušek. Spectral transition for Dirac operators with electrostatic δ-shell potentials supported on the straight line. Integral Equ. Oper. Theory, vol 94, 2022. arXiv:2107.01156
-
B. Cassano, V. Lotoreichik, A. Mas, and M. Tušek. General δ-shell interactions for the two-dimensional Dirac operator: self-adjointness and approximation. Rev. Mat.Iberoam., vol 39, p 1443–1492, 2023. arXiv:2102.09988
-
D. Krejčiřík, V. Lotoreichik, K. Pankrashkin, and M. Tušek. Spectral analysis of the multi-dimensional diffusion operator with random jumps from the boundary. Journal of Evolution Equations, vol 21, p 1651-1675, 2021. arXiv:2006.14392
-
M. Tušek. Approximation of one-dimensional relativistic point interactions by regular potentials revised. Lett. Math. Phys., vol 110, p 2585-2601, 2020. arXiv:1904.01061
-
D. Krejčiřík and M. Tušek. Location of hot spots in thin curved strips. J. Diff. Eq., vol 266, p 2953-2977, 2019. arXiv:1709.01279v2
-
M. Fialová, V. Jakubský, and M. Tušek. Qualitative analysis of magnetic waveguides for two-dimensional Dirac fermions. Annals of Physics, vol 395, p 219-237, 2018. arXiv:1801.08785
-
P. Exner, T. Kalvoda, and M. Tušek. A geometric Iwatsuka type effect in quantum layers. J. Math. Phys., vol 59, 2018. arXiv:1701.057140
-
V. Jakubský, M. Tušek. Dispersionless wave packets in graphene and other Dirac materials. Annals of Physics, vol 378, p 171-182, 2017. arXiv:1604.00157
-
M. Tušek. On an extension of the Iwatsuka model. J. Phys. A, vol 49, no 36, 2016. arXiv:1601.02670
-
D. Krejčiřík and M. Tušek. Nodal sets of thin curved layers. J. Diff. Eq., vol 258, p 281-301, 2015.
arXiv:1406.4103
-
D. Krejčiřík, N. Raymond, and M. Tušek. The magnetic Laplacian in shrinking tubular neighbourhoods of hypersurfaces.
J. Geom. Anal., vol 25, p 2543-2564, 2015. arXiv:1303.4753
-
M. Tušek. Atoms confined by very thin layers. J. Math. Phys., vol 55, 2014. arXiv:1205.2260
-
R.D. Benguria and M. Tušek Indirect Coulomb Energy for Two-Dimensional Atoms. J. Math. Phys., vol 53, 2012. arXiv:1205.6926
-
R.D. Benguria, P. Gallegos, and M. Tušek. New Estimate on the Two-Dimensional Indirect Coulomb Energy.
Annales Henri Poincaré, vol. 13, 2012. arXiv:1106.5772
-
P. Duclos, P. Šťovíček, and M. Tušek.On the two-dimensional Coulomb-like potential with a central point interaction.
J. Phys. A, vol 43, 2010. arXiv:1006.5952
-
P. Šťovíček and M. Tušek.On the spectrum of the quantum dot in the Lobachevsky plane.
Operator Theory: Advances and Applications, vol 198, p 291-304, 2009. arXiv:0811.3825
-
V. Geyler, P. Šťovíček, M. Tušek.A Quantum Dot with Impurity in the Lobachevsky Plane.
Operator Theory: Advances and Applications, vol 188, p 143-156, 2008. arXiv:0709.2790
-
P. Šťovíček and M. Tušek.On the harmonic Oscillator on the Lobachevsky Plane.
Russian J. of Mat. Phys., vol 14, no 4, p 493-497, 2007. arXiv:0709.3697
If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is.
John von Neumann