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ABSTRACT
This paper presents a simple randomised algorithm for re-
covering high-dimensional sparse functions, i.e. functions
f : [0, 1]d → R which depend effectively only on k out of d
variables, meaning f(x1, . . . , xd) = g(xi1 , . . . , xik), where
the indices 1 ≤ i1 < i2 < · · · < ik ≤ d are unknown. It
is shown that (under certain conditions on g) this algorithm
recovers the k unknown coordinates with probability at least
1−6 exp(−L) using onlyO(k(L+log k)(L+log d)) samples
of f .

Index Terms— High dimensional function approxima-
tion, random algorithm, Hoeffding’s inequality, concentration
of measure

1. INTRODUCTION

Assume, that we want to approximate a function f : [0, 1]d →
R using only a small number of its function values. This is
for instance the case when the function describes a physical
process and every evaluation corresponds to running a large
scale experiment. Of course, the more precisely we want to
recover f , the more samples of f we have to take. It is a well
known fact [1, 2], that the number of samples needed to reach
a given precision ε > 0 grows exponentially with d even for
C∞ functions.
Therefore, to reach a better result, we have to restrict our-
selves to the cases, where f enjoys some special structure.
In this short note we study the case when f : [0, 1]d → R
depends effectively only on k � d variables, i.e.

f(x) = f(x1, . . . , xd) = g(xi1 , . . . , xik) = g(xI). (1)

Here the set I = {i1, . . . , ik} ⊆ {1, . . . , d} collects the k
(unknown) active coordinates i` and g is a twice continuously
differentiable function.
Obviously, the problem consists of two parts. First, one has
to locate the effective coordinates, i ∈ I . Then one has to
approximate the function g : [0, 1]k → R. This paper gives
a probabilistic algorithm which, under certain conditions on
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g, answers the first part of this problem with high probabil-
ity and using only a relatively small number of samples. The
second part may then be handled by standard techniques of
approximation theory and we will not go into much detail on
that.
First, let us give a brief overview of known results. Func-
tions of type (1) were recently studied using deterministic al-
gorithms in [3]. In particular, the authors of [3] describe, how
to approximate f uniformly to accuracy ‖g‖Liph by evaluat-
ing the function on 2(k+1)ek+1h−k log2 d adaptively chosen
points. Here, h > 0 is the chosen precision and g is assumed
to be Lipschitz with its Lipschitz norm denoted by ‖g‖Lip.
Furthermore, (1) is a special case of

f(x) = g(Ax),

where A is a fixed (unknown) k × d matrix. This case was
studied in [4] for k = 1 and in [5] for arbitrary k < d. The
methods used there rely essentially on techniques from Com-
pressed Sensing. Here we give an alternative approach based
on several (rather elementary) concentration inequalities for
random variables.

2. ALGORITHM

Let us first give a short sketch of the idea and outline the nec-
essary ingredients for the main result. Similarly to the ap-
proach described in [4, 5], we rely on numerical approxima-
tions of directional derivatives ∂f

∂ϕ (x). For this reason, we
assume, that f is actually defined on a small neighbourhood
of [0, 1]d, namely on D = (−ε̄, 1 + ε̄)d. Let A denote the
k × d matrix

A =

e
T
i1
...
eTik

 ,

where eij are the canonical vectors1 in Rd. For x ∈ [0, 1]d,
ϕ ∈ Rd with ‖ϕ‖∞ := maxi |ϕi| ≤ r and ε, r ∈ R+, with

1Here and in the remainder of the paper all vectors will be considered
column vectors.



rε < ε̄, we get by Taylor expansion the identity

∇g(Ax)TAϕ =
∂f

∂ϕ
(x)

=
f(x+ εϕ)− f(x)

ε
− ε

2
[ϕT∇2f(ζ)ϕ] (2)

for a suitable ζ(x, ϕ) ∈ D. We apply (2) to the set of points
X = {xj ∈ [0, 1]d : j = 1, . . . ,mX} drawn uniformly at
random with respect to the Lebesgue measure and the set of
directions Φ = {ϕj ∈ Rd, j = 1, . . . ,mΦ}, where

ϕj` =

{
1/
√
mΦ with prob. 1/2

−1/
√
mΦ with prob. 1/2

,

for every j ∈ {1, . . . ,mΦ} and every ` ∈ {1, . . . , d}. Actu-
ally we identify Φ with themΦ×dmatrix whose rows are the
vectors (ϕi)T . We rewrite the mX ×mΦ instances of (2) in
matrix notation as

ΦX = Y + E , (3)

where Y and E are themΦ×mX matrices defined entry-wise
by

yij =
f(xj + εϕi)− f(xj)

ε
, (4)

εij = − ε
2

[(ϕi)T∇2f(ζij)ϕ
i], (5)

and X is the d×mX matrix with i-th row

Xi :=

(
∂g

∂zi
(Ax1), . . . ,

∂g

∂zi
(AxmX )

)
,

for i ∈ I and all other rows equal to zero. In the remainder
we will also write shortly ∂ig for ∂g

∂zi
.

Now we can already describe the idea, how to recover the
(unknown) indices i ∈ I . The discussion above shows, that it
is enough to identify the non zero rows of X . Multiplying (3)
with ΦT from the left-hand side, we get

ΦTΦX = ΦTY + ΦTE . (6)

This identity is crucial for our algorithm. Observe, that Y is
obtained by sampling f as described by (4), using 2mXmΦ

function evaluations, and ΦTY can be calculated by a matrix
product. Looking at the random construction of ΦTΦ we see
that in expectation it is identical to the d × d identity matrix.
Thus we can expect it to behave essentially like that when
applied to the rank k matrix X , i.e. ΦTΦX ≈ X . Finally,
ΦTE should be small as long as ε was chosen small enough,
leading to ΦTY ≈ ΦTΦX . Putting these pieces together we
get that

ΦTY ≈ X,

meaning that to identify the active components of f , we just
need to select the k largest rows of ΦTY in the maximum

norm.2 To turn the sketch above into a mathematically sound
statement we need to keep track of the following probabilities,

1. the probability that for every active coordinate the cor-
responding row in X has a certain size,

2. the probability that the indices of the k largest rows of
ΦTΦX in the maximum norm are the same as those of
X ,

3. the probability that the indices of the k largest rows
of ΦTY = ΦTΦX − ΦTE are the same as those of
ΦTΦX .

The estimates of these three probabilities make heavy use of
concentration properties of the random variables involved so
far and form the heart of the proof of the following Theorem.

Theorem 1 Let f : Rd → R be a sparse function as de-
scribed in (1), that is defined and twice continuously differ-
entiable on a small neighbourhood of [0, 1]d. For L ≤ d,
a positive real number, the randomised algorithm described
above recovers the k unknown active coordinates of f with
probability at least 1− 6 exp(−L) using only

O(k(L+ log k)(L+ log d)) (7)

samples of f .

Note, that the constants involved in the O notation in (7) de-
pend on smoothness properties of g, namely on the ratio of
C1/α, where

α := min
i∈I
‖∂ig‖1 and C1 := max

i∈I
‖∂ig‖∞.

We postpone a detailed discussion of the result to Section 4
and now give the quite simple and intuitive proof.

3. PROOF

We start by estimating the first probability that for every active
coordinate the maximum norm of the corresponding row Xi

is of a certain size. To do this for i ∈ I we will bound the max-
imum entry of the i-th row

(
∂g
∂zi

(Ax1), . . . , ∂g∂zi (AxmX )
)

by
its average and use Hoeffding’s inequality, which we recall
briefly below.

Proposition 1 (Hoeffding’s inequality) Let Z1, . . . , Zm be
independent random variables. Assume that the Zi are al-
most surely bounded, i.e., there exist finite scalars aj , bj such
that

P(Zj ∈ [aj , bj ]) = 1,

for j = 1, . . . ,m. Then we have

P
(∣∣ m∑

j=1

(Zj − EZj)
∣∣ ≥ t) ≤ 2 exp

(
− 2t2∑m

j=1(bj − aj)2

)
.

2We expect the Euclidean norm to give even better results. However,
here we selected the maximum norm, which allows for a short proof due to
Lemma 1.



If we set Zj = | ∂g∂zi (Axj)|, we have

EZj =

∫
[0,1]d

| ∂g
∂zi

(Ax)|dx

=

∫
[0,1]k

| ∂g
∂zi

(x)|dx := ‖∂ig‖1,

and

0 ≤ Zj ≤ sup
x∈[0,1]k

| ∂g
∂zi

(x)| := ‖∂ig‖∞.

This leads to

P
(∣∣mX∑

j=1

| ∂g
∂zi

(Axj)| −mX‖∂ig‖1
∣∣ ≥ t)

≤ 2 exp

(
− 2t2

mX‖∂ig‖2∞

)
,

and after setting t = s1mX‖∂ig‖1 for s1 ∈ (0, 1) to

P
( 1

mX

mX∑
j=1

| ∂g
∂zi

(Axj)
∣∣ ≤ (1− s1)‖∂ig‖1

)
≤ 2 exp

(
−2mXs

2
1‖∂ig‖21

‖∂ig‖2∞

)
.

Since ‖Xi‖∞ = maxj |Xij | ≥ 1
mX

∑mX

j=1 |Xij | we get the
following estimate for the maximum norm of the row Xi cor-
responding to the active coordinate i ∈ I .

P(‖Xi‖∞ ≤ (1− s1)‖∂ig‖1)

≤ 2 exp

(
−2mXs

2
1‖∂ig‖21

‖∂ig‖2∞

)
.

Defining α = mini∈I ‖∂ig‖1 and C1 = maxi∈I ‖∂ig‖∞ this
finally leads to

P(min
i∈I
‖Xi‖∞ ≤ (1− s1)α)

≤ 2k exp

(
−2mXs

2
1α

2

C2
1

)
:= p1. (8)

Next we investigate the probability that the k largest rows of
ΦTΦX in the maximum norm are the same as those of X . To
do this we will show that the magnitude of the entries remains
roughly the same, using the following result from [6]3.

Lemma 1 ([6], Lemma III.1) Let x, y ∈ Rd with x, y 6= 0.
Assume that Φ is an mΦ×d random matrix with independent
±1/
√
mΦ Bernoulli entries. Then for all t > 0

P
(
|〈Φx,Φy〉−〈x, y〉| ≥ t‖x‖2‖y‖2

)
≤ 2 exp

(
−mΦt

2

3 + 4t

)
.

3We corrected and simplified the constants found therein.

From the observation that (ΦTΦX)ij = 〈Φei,ΦXj〉, where
Xj denotes the j-th column of X , and Xij = 〈ei, Xj〉 we get

P
(
|(ΦTΦX)ij −Xij | ≥ t

)
= P

(
|〈Φei,ΦXj〉 − 〈ei, Xj〉| ≥ t

)
≤ 2 exp

(
− mΦt

2

3‖Xj‖22 + 4t‖Xj‖2

)
≤ 2 exp

(
− mΦt

2

3kC2
1 + 4t

√
kC1

)
,

where for the last bound we used that

‖Xj‖22 =
∑
i∈I
| ∂g
∂zi

(Axj)|2 ≤
∑
i∈I
‖∂ig‖2∞ ≤ kC2

1 .

Setting t = s2α leads to

P
(

max
i,j
|(ΦTΦX)ij −Xij | ≥ s2α

)
≤ 2dmX exp

(
− mΦs

2
2α

2

3kC2
1 + 4s2α

√
kC1

)
,

which can be further simplified to

P
(

max
i,j
|(ΦTΦX)ij −Xij | ≥ s2α

)
≤ 2dmX exp

(
−mΦs

2
2α

2

6kC2
1

)
:= p2, (9)

as long as s2 is chosen smaller than 3/4.
Finally we estimate the third probability that the k largest
rows of ΦTY = ΦTΦX − ΦTE are the same as those of
ΦTΦX by showing that the entries of ΦTE are very likely to
be small. The ij-th entry of the matrix ΦTE can be written as

(ΦTE)ij =

mΦ∑
`=1

ϕ`iε`j .

Thus setting Z` = ϕ`iε`j and observing that Z` takes only the
values ±ε`j/

√
mφ, we can use again Hoeffding’s inequality

to get

P(|(ΦTE)ij | ≥ t) ≤ 2 exp

(
− mΦt

2

2
∑mΦ

`=1 ε
2
`j

)
.

From Equation (5) we can bound the entries of E by

|εij | =
ε

2
|(ϕi)T∇2f(ζij)ϕ

i|

=
ε

2

∣∣∣ d∑
`,`′=1

ϕi`[∂`∂`′f(ζij)]ϕ
i
`′

∣∣∣
=
ε

2

∣∣∣ ∑
`,`′∈I

ϕi`[∂`∂`′g(Aζij)]ϕ
i
`′

∣∣∣
≤ εk2

2mφ
max
`,`′∈I

‖∂`∂`′g‖∞ :=
εk2

2mφ
C2.



Using this estimate to bound
∑mΦ

`=1 ε
2
`j we arrive at

P(|(ΦTE)ij | ≥ t) ≤ 2 exp

(
− 2m2

Φt
2

ε2k4C2
2

)
,

and setting t = s3α at

P(max
ij
|(ΦTE)ij | ≥ s3α)

≤ 2dmX exp

(
−2m2

Φs
2
3α

2

ε2k4C2
2

)
:= p3. (10)

Combining the estimates in (8-10) we see that with high prob-
ability the rows of ΦTY corresponding to the active coordi-
nates have maximum norm of at least α(1 − s1 − s2 − s3),
while the rows of ΦTY corresponding to the inactive coordi-
nates have maximum norm of at most α(s2 + s3). Thus as
long as

α(1− s1 − s2 − s3) > α(s2 + s3)

or
s1 + 2s2 + 2s3 < 1

our strategy will work with high probability, namely at least
with probability

1− p1 − p2 − p3,

with pi as defined in (8-10). We want to minimise p1+p2+p3

and the product mΦ × mX while keeping ε > 0 as large as
possible. Setting s1 = s2 = s3 = 1/6 and p1 = p2 = p3 =
2 exp(−L) for 0 < L ≤ d, we obtain

mX =
18C2

1 (L+ log k)

α2
,

using (8) and

mΦ = (L+ log(dmX))
216kC2

1

α2
,

using (9). Finally, to get p3 ≤ p2, we set in (10)

ε2 := min

(
12mΦC

2
1

k3C2
2

,mΦε̄
2

)
. (11)

Thus, to reach the probability of success 1 − 6 exp(−L), we
need

mΦ ×mX ≈ k(L+ log k)(L+ log[d(L+ log k)])

samples. As L+ log k . d, this can be simplified to

mΦ ×mX ≈ k(L+ log k)(L+ log d).

4. CONCLUSION

We have presented a very simply algorithm which allows to
identify the k-active coordinates of a d-dimensional func-
tion using approximately k log k log d function evaluations.

To compare our result to [3], we need to take into account
that once those coordinates are identified, we need another
O(h−k) samples to identify g with precision ‖g‖Liph, where
‖g‖Lip is again the Lipschitz constant of g. Therefore, the
actual number of samples needed to approximate f is given
as the sum of (7) and O(h−k). This may be compared with
the bound of [3], which involves the product of log2 d and
h−k. Also, we avoid the pessimistic factor ek+1. On the other
hand, the constants implicitly involved in (7) are rather large,
the conditions on g stronger and more complicated and the
result holds only with high probability.
Our method is based on the numerical evaluation of the di-
rectional derivatives of f , as described in (2), which becomes
unstable if the effective step size ε/

√
mΦ is chosen too small.

However from (11) we see that we only require this effective
size to be of the order of k−3/2. In particular it does not
depend on the dimension d.
Finally we want to mention that we expect the scheme to work
even better, i.e. with significantly better constants, when mea-
suring the size of the rows of ΦTY with the Euclidean instead
of the maximum norm. This is work in progress to be found
in the forthcoming paper [7].
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[2] E. Novak and H. Woźniakowski, Tractability of Multi-
variate Problems, Volume I: Linear Information, EMS
Tracts in Mathematics, Vol. 6. Eur. Math. Soc., Zürich,
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