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Abstract

We consider the dilation operators Tk : f → f(2k·) in the frame of Besov spaces Bs
pq(R

d)

with 1 ≤ p, q ≤ ∞. If s > 0, Tk is a bounded linear operator from Bs
pq(R

d) into itself and there
are optimal bounds for its norm, see [4, 2.3.1]. We study the situation in the case s = 0, an
open problem mentioned also in [4]. It turns out, that new effects based on Littlewood-Paley
theory appear.

In the second part of the paper, we apply these results to the study of the so-called sampling
numbers of the embedding

id : Bs1

pq1
(Ω) → B0

pq2
(Ω),

where Ω = (0, 1)d. It was observed already in [13] that the estimates from above for the norm
of the dilation operator have their immediate counterpart in the estimates from above for the
sampling numbers. In this paper we show that even in the limiting case s2 = 0 (left open so
far), this general method supplies optimal results.
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1 Introduction

This paper is divided into two parts. In the first part, we consider the dilation operators

Tk : f → f(2k·), k ∈ N,

in the framework of Besov spaces Bs
pq(R

d). Their behaviour is well known if 1 ≤ p, q ≤ ∞ and
s > 0, cf. [4, 2.3.1]. As mentioned there, the case s = 0 remained open. Some partial results can
be found in [1]. For 1 ≤ p, q ≤ ∞ we supply the final answer to this problem showing that

||Tk|L(B0
pq(R

d))|| ≈ 2
−k d

p ·






k
1
q
− 1

p , if 1 < p <∞ and p ≥ max(q, 2),

k
1
q
− 1

2 , if 1 < p <∞ and 2 ≥ max(p, q),

1, if 1 < p <∞ and q ≥ max(p, 2),

k
1
q , if p = 1 or p = ∞,

(1.1)

where ||Tk|L(B0
pq(R

d))|| denotes the norm of the operator Tk from B0
pq(R

d) into itself. One observes,
that for 1 < p < ∞ the number 2 plays an exceptional role. This effect has its origin in the
Littlewood-Paley decomposition theorem.

The second part of the paper deals with applications to estimates of sampling numbers. Let us
briefly sketch this approach.

Let Ω = (0, 1)d and let Bs
pq(Ω) denote the Besov spaces on Ω, see Definition 2.7 for details. We

try to approximate f ∈ Bs1
p1q1

(Ω) in the norm of another Besov space, say Bs2
p2q2

(Ω), by a linear
sampling method

Snf =

n∑

j=1

f(xj)hj , (1.2)

where hj ∈ Bs2
p2q2

(Ω) and xj ∈ Ω. To give a meaning to the pointwise evaluation in (1.2), we suppose
that

s1 >
d

p1
.

Then the embedding Bs1
p1q1

(Ω) ↪→ C(Ω̄) holds true and the pointwise evaluation represents a
bounded operator. Second, we always assume that the embeddingBs1

p1q1
(Ω) ↪→ Bs2

p2q2
(Ω) is compact.

This is true if, and only if,

s1 − s2 > d

(
1

p1
−

1

p2

)

+

.

Concerning the parameters p1, p2, q1, q2 we always assume that they belong to [1,∞].

We measure the worst case error of Snf on the unit ball of Bs1
p1q1

(Ω), given by

sup{||f − Snf |B
s2
p2q2

(Ω)|| : ||f |Bs1
p1q1

(Ω)|| ≤ 1}. (1.3)

The same worst case error may be considered also for nonlinear sampling methods

Snf = ϕ(f(x1), . . . , f(xn)), (1.4)

where ϕ : C
n → Bs2

p2q2
(Ω) is an arbitrary mapping. We shall discuss the decay of (1.3) for linear

(1.2) and nonlinear (1.4) sampling methods.

The case s2 6= 0 was considered in [13], but the interesting limiting case s2 = 0 was left open so
far. It is the aim of this paper to close this gap. It was already pointed out in [13], see especially
(2.6) in [13] for details, that the estimates from above for the dilation operators Tk on the target
space Bs2

p2q2
(Rd) have their direct counterparts in estimates from above for the decay of sampling
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numbers. Using this method, which will not be repeated here, a direct application of (1.1) supplies
the estimates

glin
n (id) . n−

s
d ·






(log n)
1
q2

− 1
p , if 1 < p <∞ and p ≥ max(q2, 2),

(log n)
1
q2

− 1
2 , if 1 < p <∞ and 2 ≥ max(p, q2),

1, if 1 < p <∞ and q2 ≥ max(p, 2),

(log n)
1
q2 , if p = 1 or p = ∞,

(1.5)

where glin
n (id) with 2 ≤ n ∈ N are the linear sampling numbers of the embedding

id : Bs
pq1

(Ω) → B0
pq2

(Ω), s >
d

p
.

Surprisingly, all estimates in (1.5) are sharp.

All the unimportant constants are denoted by the letter c, whose meaning may differ from one
occurrence to another. If {an}

∞
n=1 and {bn}

∞
n=1 are two sequences of positive real numbers, we

write an . bn if, and only if, there is a positive real number c > 0 such that an ≤ c bn, n ∈ N.
Furthermore, an ≈ bn means that an . bn and simultaneously bn . an.

We also discuss the case when p1 6= p2 and state some open problems connected to this question.

I would like to thank Winfried Sickel and Hans Triebel for many valuable discussions and comments
on the topic.

2 Notation and definitions

2.1 Besov spaces on Rd

We use standard notation: N denotes the collection of all natural numbers, Z is the set of all integer
numbers, R

d is Euclidean d-dimensional space, where d ∈ N, and C stands for the complex plane.
Let S(Rd) be the Schwartz space of all complex-valued rapidly decreasing, infinitely differentiable
functions on R

d and let S′(Rd) be its dual - the space of all tempered distributions.

Furthermore, Lp(R
d) with 1 ≤ p ≤ ∞, are the standard Lebesgue spaces endowed with the norm

||f |Lp(R
d)|| =






(∫

Rd

|f(x)|pdx

)1/p

, 1 ≤ p <∞,

ess sup
x∈Rd

|f(x)|, p = ∞.

For ψ ∈ S(Rd) we denote by

ψ̂(ξ) = (Fψ)(ξ) = (2π)−d/2

∫

Rd

e−i<x,ξ>ψ(x)dx, x ∈ R
d, (2.1)

its Fourier transform and by ψ∨ or F−1ψ its inverse Fourier transform. With the aid of duality,
they are extended to S′(Rd).

We give a Fourier-analytic definition of the Besov spaces, which relies on the so-called dyadic
resolution of unity. Let ϕ ∈ S(Rd) with

ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥
3

2
. (2.2)

We put ϕ0 = ϕ and ϕj(x) = ϕ(2−jx)−ϕ(2−j+1x) for j ∈ N and x ∈ R
d. This leads to the identity

∞∑

j=0

ϕj(x) = 1, x ∈ R
d.
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Definition 2.1. Let s ∈ R, 1 ≤ p, q ≤ ∞. Then Bs
pq(R

d) is the collection of all f ∈ S′(Rd) such
that

||f |Bs
pq(R

d)|| =

( ∞∑

j=0

2jsq||(ϕj f̂)∨|Lp(R
d)||q

)1/q

<∞ (2.3)

(with the usual modification for q = ∞).

Remark 2.2. These spaces have a long history. In this context we recommend [7], [10], [11] and
[12] as standard references. Let us mention that the spaces Bs

pq(R
d) are independent of the choice

of ϕ in the sense of equivalent norms.

2.2 Local means and atomic decompositions

We use the characterisation of Besov spaces by local means. We refer to [2], [3] and [12] for further
details. Let us sketch this approach.

Let B = {y ∈ R
d : |y| < 1} be the unit ball in R

d and let κ be a C∞ function in R
d with suppκ ⊂ B,

κ∨(ξ) 6= 0 if 0 < |ξ| < ε and (Dακ∨)(0) = 0 if |α| ≤ s.

for some ε > 0. Furthermore, let κ0 be a second C∞ function with suppκ0 ⊂ B and κ∨0 (0) 6= 0.

Then

∣∣∣∣f |Bs
pq(R

d)
∣∣∣∣ ≈ ||K0(1, f)|Lp(R

n)|| +




∞∑

j=1

2jsq
∣∣∣∣K(2−j , f)|Lp(R

d)
∣∣∣∣q



1/q

, f ∈ S′(Rd), (2.4)

where

K(t, f)(x) =

∫

Rd

κ(y)f(x+ ty)dy = t−d

∫

Rd

κ

(
y − x

t

)
f(y)dy, x ∈ R

d,

appropriately interpreted for f ∈ S′(Rd). The meaning of K0(1, f) is defined in the same way with
κ0 instead of κ.

We shall need only one part of (2.4), namely the estimates from below of ||f |Bs
pq(R

d)||. In that case
some of the assumptions may be omitted. The inspection of the proof of (2.4), see [8], shows that
if κ is a C∞ function in R

d with suppκ ⊂ B and κ∨(0) = 0, then

∣∣∣∣f |B0
pq(R

d)
∣∣∣∣ &




∞∑

j=1

∣∣∣∣K(2−j , f)|Lp(R
d)
∣∣∣∣q



1/q

, (2.5)

Secondly we rely on atomic decompositions. We refer again to [12] for details.

Recall that Z
d stands for the lattice of all points in R

d with integer-valued components. Further-
more, Qν m denotes the closed cube in R

d with sides parallel to the axes of coordinates, centred at
2−νm, and with side length 2−ν where m ∈ Z

d and ν ∈ N0. If Q is a cube in R
d and c > 0 then cQ

is a cube in R
d concentric with Q and with side length c times of the side length of Q.

Definition 2.3. Let K ∈ N0, L ∈ N0, ν ∈ N0, m ∈ Z
d and c ≥ 1. A K-times differentiable function

a(x) is called an (K,L) atom centred on Qν m if

suppa ⊂ cQν m, (2.6)

|Dαa(x)| ≤ 2|α|ν , for |α| ≤ K (2.7)

and ∫

Rd

xβa(x)dx = 0, for |β| < L and ν ≥ 1. (2.8)
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Remark 2.4. We add a few comments on Definition 2.3. The number K denotes the smoothness
of the atom (see (2.7)), L gives the number of vanishing moments, see (2.8), and the pair (ν,m)
denotes the location of suppa (see (2.6)). Let us note that if ν = 0 or L = 0, the condition (2.8) is
empty and no moment conditions are required.

Theorem 2.5. Let 1 ≤ p, q ≤ ∞ and s ∈ R. Let K ∈ N0, L ∈ N0 with

K > s and L > −s (2.9)

be fixed. Let aν m be (K,L) atoms centred on Qν m and let

λ = {λν m : ν ∈ N0,m ∈ Z
d}

be a sequence of complex numbers with

||λ|bspq|| =

( ∞∑

ν=0

2
ν(s− d

p
)q
( ∑

m∈Zd

|λν m|p
) q

p

) 1
q

<∞ (2.10)

(appropriately modified if p = ∞ and/or q = ∞).

Then the series
∞∑

ν=0

∑

m∈Zd

λν maν m,

converges in S′(Rd) to a distribution f ∈ Bs
pq(R

d) and

||f |Bs
pq(R

d)|| . ||λ|bspq||. (2.11)

Remark 2.6. We denote by χν m the characteristic function of Qν m. Then

||λ|bspq|| =

( ∞∑

ν=0

2sq
∣∣∣
∣∣∣
∑

m∈Zd

λν mχν m|Lp(R
d)
∣∣∣
∣∣∣
q
) 1

q

,

again appropriately modified if q = ∞.

2.3 Besov spaces on domains

Let Ω be a bounded domain. Let D(Ω) = C∞
0 (Ω) be the collection of all complex-valued infinitely-

differentiable functions with compact support in Ω and let D′(Ω) be its dual - the space of all
complex-valued distributions on Ω.

Let g ∈ S′(Rd). Then we denote by g|Ω its restriction to Ω:

(g|Ω) ∈ D′(Ω), (g|Ω)(ψ) = g(ψ) for ψ ∈ D(Ω).

Definition 2.7. Let Ω be a bounded domain in R
d. Let s ∈ R, 1 ≤ p, q ≤ ∞. Then

Bs
pq(Ω) = {f ∈ D′(Ω) : ∃g ∈ Bs

pq(R
d) : g|Ω = f}

and
||f |Bs

pq(Ω)|| = inf ||g|Bs
pq(R

d)||,

where the infimum is taken over all g ∈ Bs
pq(R

d) such that g|Ω = f.
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3 Dilation operators

Let s ∈ R, 1 ≤ p, q ≤ ∞ and k ∈ N. Then the dyadic dilation operator

(Tkf)(x) = f(2kx), x ∈ R
d, (3.1)

is a bounded operator from Bs
p,q(R

d) into itself. Let us mention, that (3.1) has to be understood
in the distributional sense. In this section we study the dependence of the norm of Tk on k.

First, we recall known results.

Lemma 3.1. Let s ≥ 0, 1 ≤ p, q ≤ ∞ and k ∈ N. Then the operator Tk is bounded on Bs
p,q(R

d)

and its norm is bounded by c 2
k(s− d

p
)

if s > 0 and by c 2
−k d

pk1/q if s = 0. The constant c does not
depend on k ∈ N.

For the proof, we refer to [1, 1.7] and [4, 2.3.1]. If s > 0, the estimate given by Lemma 3.1 is sharp
(cf. [4]). But if s = 0, the result can be improved.

Proposition 3.2. Let 1 < p <∞, 1 ≤ q ≤ ∞, k ∈ N and let Tk be defined by (3.1). Then

||Tk|L(B0
pq(R

d))|| ≤ c 2
−k d

p ·






k
1
q
− 1

p , if p ≥ max(q, 2),

k
1
q
− 1

2 , if 2 ≥ max(p, q),

1, if q ≥ max(p, 2),

(3.2)

for some c which is independent of k.

Remark 3.3. The estimates covered by (3.2) may be summarised to

||Tk|L(B0
pq(R

d))|| ≤ c 2−k d
p · k

1
q
− 1

max(p,q,2) .

Proof. Elementary calculation involving only (2.1) shows that

(ϕj(ξ)f(2k·)̂ (ξ))∨(x) = 2−kd(ϕj(ξ)f̂(2−kξ))∨(x) = (ϕj(2
kξ)f̂(ξ))∨(2kx). (3.3)

From (2.3) with f(2kx) in place of f(x) we obtain

||f(2k·)|B0
p,q(R

d)|| =




∞∑

j=0

||(ϕj(2
k·)f̂)∨(2kx)|Lp(R

d)||q




1/q

= 2−k d
p




∞∑

j=0

||(ϕj(2
k·)f̂)∨|Lp(R

d)||q




1/q

. (3.4)

If j ≥ k + 1, then ϕj(2
kx) = ϕj−k(x). This gives

2−k d
p




∞∑

j=k+1

||(ϕj(2
k·)f̂)∨|Lp(R

d)||q




1/q

= 2−k d
p




∞∑

j=1

||(ϕj f̂)∨|Lp(R
d)||q




1/q

≤ 2
−k d

p ||f |B0
p,q(R

d)||. (3.5)

If j = 0, we use (2.2) and Hausdorff-Young inequality

||(ϕ0(2
k·)f̂)∨|Lp(R

d)|| = ||(ϕ0(2
k·)ϕ0f̂)∨|Lp(R

d)||

≈ ||ϕ0(2
k·)∨ ∗ (ϕ0f̂)∨|Lp(R

d)|| (3.6)

≤ ||ϕ0(2
k·)∨|L1(R

d)|| · ||(ϕ0f̂)∨|Lp(R
d)||

≤ c ||f |B0
p,q(R

d)||.
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In view of (3.4), (3.5) and (3.6), we have to prove that




k∑

j=1

||(ϕj(2
k·)f̂)∨|Lp(R

d)||q




1/q

≤ c k
1
q
− 1

max(p,q,2) ||f |B0
p,q(R

d)|| (3.7)

with the constant c independent of k and f .

To prove (3.7), denote α = max(p, q, 2). Using the Minkowski inequality and the Littlewood-Paley
theorem one gets




k∑

j=1

||(ϕj(2
k·)f̂)∨|Lp(R

d)||q




1/q

≤ k
1
q
− 1

α




k∑

j=1

||(ϕj(2
k·)f̂)∨|Lp(R

d)||α




1/α

≤ k
1
q
− 1

α




∫

Rd




k∑

j=1

|(ϕj(2
k·)f̂)∨(ξ)|α




p/α

dξ





1/p

≤ k
1
q
− 1

α




∫

Rd




k∑

j=1

|(ϕj(2
k·)f̂)∨(ξ)|2




p/2

dξ





1/p

≤ c k
1
q
− 1

α ||(ϕ0f̂)∨|Lp(R
d)|| ≤ c k

1
q
− 1

α ||f |B0
p,q(R

d)||.

Next, we prove that the estimates are sharp.

Theorem 3.4. Let 1 ≤ p, q ≤ ∞, k ∈ N and let Tk be defined by (3.1). Then

||Tk|L(B0
pq(R

d))|| ≈ 2−k d
p ·






k
1
q
− 1

p , if 1 < p <∞ and p ≥ max(q, 2),

k
1
q
− 1

2 , if 1 < p <∞ and 2 ≥ max(p, q),

1, if 1 < p <∞ and q ≥ max(p, 2),

k
1
q , if p = 1 or p = ∞,

(3.8)

where the constants of equivalence do not depend on k.

Remark 3.5. Let us mention, that at p = 1, there is a jump in the exponent of k caused by the
absence of the Littlewood-Paley assertion for p = 1. At p = ∞, no such a jump appears.

Proof. In view of Lemma 3.1 and Proposition 3.2, we have to prove the estimates from below.

Step 1: p = 1.

Let ψ ∈ S(Rd) be a non-negative function with support in {x ∈ R
d : |x| ≤ 1/8} and

∫

Rd

ψ(x)dx = 1.

We show, that

||ψ(2k·)|B0
1,q(R

d)|| & 2−kd · k
1
q , k ∈ N, (3.9)

for 1 ≤ q ≤ ∞.

We take a function κ ∈ C∞(R) with

suppκ ⊂ B = {y ∈ R
d : |y| < 1}, κ∨(0) = 0,

κ(x) = 1 if x ∈M = {z ∈ R
d : |z − (1/2, 0, . . . , 0)| < 1/4}
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and
κ(x) ≥ 0 if x1 ≥ 0.

Simple calculation shows that if j = 1, 2, . . . , k and |x− (1
2 · 1

2j , 0, . . . , 0)| <
1
2j · 1

8 then

suppy ψ(2kx+ 2k−jy) ⊂M.

For these x we get

K(2−j , ψ(2k·))(x) =

∫

Rd

κ(y)ψ(2kx+ 2k−jy)dy =

∫

Rd

ψ(2kx+ 2k−jy)dy = 2(j−k)d.

Hence, ∣∣∣∣K(2−j , ψ(2k·))|L1(R
d)
∣∣∣∣ & 2−jd · 2(j−k)d = 2−kd. (3.10)

We insert (3.10) for j = 1, 2, . . . , k into (2.5). This completes the proof of (3.9).

Step 2: p = ∞.

We consider again a non-negative function ψ ∈ S(Rd) with suppψ ⊂ {x ∈ R
d : |x| ≤ 1/8} and∫

Rd

ψ(x)dx = 1. Let

ψj(x) =
∑

0≤li≤2j−γ

i=1,2,...,d

ψ(x− (22j + l1, l2, . . . , ld)), j ≥ γ (3.11)

and

f(x) =

∞∑

j=γ

ψj(x), x ∈ R
d, (3.12)

where the constant γ ∈ N will be chosen later on depending only on d.

We observe, that (3.11) inserted into (3.12) represents an atomic decomposition of f (see Theorem
2.5 for details) and, consequently, f belongs to every space B0

∞,q(R
d), 1 ≤ q ≤ ∞. We use again

the local means to show that
||f(2k·)|B0

∞,q(R
d)|| ≥ c k

1
q , (3.13)

with the constant c independent of k.

Namely, we choose κ as in Step 1, points

xj = (2k−2j − 2−j−1, 0, . . . , 0), j = γ, . . . , k − γ,

and show, that
K(2−j , ψk−j(2

k·))(xj) ≥ 2−γd, j = γ, . . . , k − γ, (3.14)

as well as
K(2−j , ψm(2k·))(xj) = 0, m 6= k − j. (3.15)

From (3.14) and (3.15) it follows, that ||K(2−j , f(2k·))|L∞(Rd)|| ≥ 2−γd, for all j = γ, . . . , k − γ.
Taking q−th power and summing up, we prove (3.13).

Let us first comment on (3.14).

K(2−j , ψk−j(2
k·))(xj) =

∑

0≤li≤2k−j−γ

i=1,2,...,d

∫

Rd

κ(y)ψ(2kxj + 2k−jy − (22(k−j) + l1, l2, . . . , ld))dy. (3.16)

It is a matter of simple calculation and triangle inequality that, if 2−γd1/2 ≤ 1
8 , the following

statement holds true: If the argument of ψ in (3.16) lies in the support of ψ, then κ(y) = 1.
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Hence (3.16) is equal to

2(k−j−γ)d

∫

Rd

ψ(2k−jy)dy = 2(k−j−γ)d · 2(j−k)d = 2−γd.

To prove (3.15) we use an analog of (3.16)

K(2−j , ψm(2k·))(xj) =
∑

0≤li≤2m−γ

i=1,2,...,d

∫

Rd

κ(y)ψ(2kxj + 2k−jy − (22m + l1, l2, . . . , ld))dy.

It turns out that, for m 6= k − j and any admissible l, there is no y ∈ R
d such that

|2kxj,1 + 2k−jy1 − 22m + l1| ≤
1

8
and |y1| ≤ 1.

Step 3. In this step, we shall prove the estimate

||Tk|L(B0
pq(R

d))|| & 2−
kd
p , k ∈ N, (3.17)

for 1 < p <∞ and 1 ≤ q ≤ ∞. Take any f ∈ B0
pq(R

d) such that

α :=




∞∑

j=1

∣∣∣∣K(2−j , f)|Lp(R
d)
∣∣∣∣q



1/q

> 0.

We use (2.5) and the simple formula

K(2−j , f(2k·))(x) = K(2k−j , f)(2kx), x ∈ R
d, j ≥ k + 1,

and obtain

∣∣∣∣f(2k·)|B0
pq(R

d)
∣∣∣∣ &




∞∑

j=k+1

∣∣∣∣K(2−j , f(2k·))|Lp(R
d)
∣∣∣∣q



1/q

=




∞∑

j=k+1

∣∣∣∣K(2k−j , f)(2k·)|Lp(R
d)
∣∣∣∣q



1/q

= 2
− kd

p α,

which concludes the proof of (3.17).

Step 4.

Now we prove

||Tk|L(B0
pq(R

d))|| & k
1
q
− 1

2 2
− kd

p , k ∈ N, (3.18)

again for all 1 < p <∞ and 1 ≤ q ≤ ∞.

First, we take a special decomposition of unity, see Definition 2.1. Namely, we suppose, that the
function ϕ satisfies

ϕ(x) = 1 if |x| ≤
5

4
and ϕ(x) = 0 if |x| ≥

3

2
. (3.19)

It is easy to see, that

ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x) = 1, if
3

4
· 2j ≤ |x| ≤

5

4
· 2j , j ∈ N.

9



Finally, we again take ψ ∈ S(Rd) with suppψ ⊂ {x ∈ R
d : |x| ≤ 1/8}. We define the functions fk

through their Fourier transforms:

f̂k(ξ) =
k∑

j=1

ψ(2k(ξ − ξj)), ξ ∈ R
d, k ∈ N, (3.20)

where ξj = (2−j , 0, . . . , 0). We shall show that

||fk|B
0
pq(R

d)|| . k
1
2 2kd( 1

p
−1), k ∈ N (3.21)

and
||fk(2

k·)|B0
pq(R

d)|| & k
1
q 2−kd, k ∈ N. (3.22)

First, we deal with (3.21). As the support of f̂k lies in the unit ball of R
d, we may omit the terms

with j ≥ 1 in (2.3). Furthermore, since 1 < p <∞ we may use the Littlewood-Paley decomposition
theorem to estimate

||fk|B
0
pq(R

d)|| = ||(ϕ0f̂k)
∨|Lp(R

d)|| ≈

∣∣∣∣

∣∣∣∣




∞∑

j=1

|(ϕ1(2
j ·)ϕ0f̂k)

∨(x)|2




1/2

|Lp(R
d)

∣∣∣∣

∣∣∣∣

=

∣∣∣∣

∣∣∣∣




k∑

j=1

|ψ(2k(ξ − ξj))
∨(x)|2




1/2

|Lp(R
d)

∣∣∣∣

∣∣∣∣

=

∣∣∣∣

∣∣∣∣




k∑

j=1

|2−kdψ∨(2−kx)eix·ξj |2




1/2

|Lp(R
d)

∣∣∣∣

∣∣∣∣

= k
1
2 2−kd||ψ∨(2−kx)|Lp(R

d)|| = k
1
2 2

kd( 1
p
−1)||ψ∨|Lp(R

d)||.

To prove (3.22), observe that

fk(2
k·)b(ξ) = 2−kd

k∑

j=1

ψ(ξ − 2kξj), ξ ∈ R
d, k ∈ N.

Using again the support properties of ψ and ϕj , we arrive at

||fk(2
k·)|B0

pq(R
d)|| ≈ 2−kd




k∑

j=1

||ψ(· − 2kξj)
∨|Lp(R

d)||q




1/q

= k
1
q 2−kd||ψ∨|Lp(R

d)||.

Step 5.

In this last step we prove the estimate

||Tk|L(B0
pq(R

d))|| & k
1
q
− 1

p 2−
kd
p , k ∈ N, (3.23)

again for all 1 < p <∞ and 1 ≤ q ≤ ∞.

Let ψ ∈ S(Rd) be a non-negative bump function with

suppψ ⊂ [0, 1]d and

∫

Rd

ψ(x)dx = 1. (3.24)

For a fixed k ∈ N we set

ψj(x) =
∑

l∈Nk
j

ψ(x− l), x ∈ R
d, j = 1, 2, . . . , k − 1,

10



where

Nk
j = {l ∈ N

d
0 : 2j−1 ≤ l1 − 2j ≤ 2j − 1 and 0 ≤ li ≤ 2k − 1 for i = 2, . . . , d},

so that the set Nk
j contains 2j−1+k(d−1) vectors and ψj consists of 2j−1+k(d−1) copies of ψ.

Furthermore, we define

fk(x) =

k−1∑

j=1

2
k−j

p ψj(x), x ∈ R
d. (3.25)

The proof of (3.23) is finished as soon as we prove that

||fk|B
0
pq(R

d)|| . k
1
p 2

kd
p , k ∈ N, (3.26)

as well as
||fk(2

k·)|B0
pq(R

d)|| & k
1
q , k ∈ N. (3.27)

The proof of (3.26) is a rather straightforward application of Theorem 2.5. We observe, that (3.25)
represents an atomic decomposition of f . This gives

||fk|B
0
pq(R

d)|| .




k−1∑

j=1

2j−1+k(d−1)2
k−j

p
·p




1/p

≈ k
1
p 2

kd
p .

In the proof of (3.27), we use again the characterisation by local means.

We choose a special kernel κ ∈ C∞(Rd) with

suppκ ⊂ [−1, 1] × [−3, 3]d−1

and

κ(x) ≥ 0 if x1 ≤ 0 and κ(x) = 1 if x ∈ [−
3

4
, 0] × [−2, 2]d−1.

We show, that for every j = 1, . . . , k − 1 and every x ∈ R
d with

2−j+1 ≤ x1 ≤ 2−j+1 +
2−j

4
, 0 ≤ xi ≤ 1, i = 2, . . . , d, (3.28)

it holds
K(2−j , f(2k·))(x) ≥ c 2

j

p . (3.29)

Let us point out, that this estimate is already sufficient for (3.27) since

||fk(2
k·)|B0

pq(R
d)|| &




k−1∑

j=1

∣∣∣∣K(2−j , f(2k·))|Lp(R
d)
∣∣∣∣q



1/q

& c




k−1∑

j=1

(
2−j2

j

p
·p
)p/q




1/q

≈ k
1
q .

We therefore concentrate on (3.29) under the condition (3.28).

The support properties of ψj and κ ensure, that

K(2−j , f(2k·))(x) = 2
j

pK(2−j , ψk−j(2
k·))(x) = 2

j

p

∑

l∈Nk
k−j

∫

Rd

κ(y)ψ(2kx+ 2k−jy − l)dy

11



for every x with (3.28). It is not difficult to verify, that (for every x) there are always at least
2(k−j)d vectors l ∈ Nk

k−j such that κ(y) = 1 on the support of ψ(2kx+ 2k−jy − l). Hence the last
expression may be estimated from below by

2
j

p · 2(k−j)d

∫

Rd

ψ(2k−jy)dy = 2
j

p .

Remark 3.6. Let us observe, that Theorem 3.4 may be easily extended to 0 < q < 1 :

||Tk|L(B0
pq(R

d))|| ≈ 2
−k d

p ·






k
1
q
− 1

p , if 1 < p <∞ and p ≥ max(q, 2),

k
1
q
− 1

2 , if 1 < p <∞ and 2 ≥ max(p, q),

k
1
q , if p = 1 or p = ∞,

(3.30)

The proof of the estimates from above may be done exactly as in the proof of Theorem 3.2. We
use the Gagliardo-Nirenberg inequality, cf. [7, Chapter 5],

||f |B0
p, 1(R

d)|| ≤ ||f |B0
pq(R

d)||1−θ · ||f |B0
p,max(p,2)(R

d)||θ (3.31)

with

1 =
1 − θ

q
+

θ

max(p, 2)
,

and the construction from the proof of Theorem 3.4 to prove the estimates from below.

Remark 3.7. Theorem 3.4 may also be used to give a following comment on the atomic decompo-
sition Theorem 2.5. If s = 0, we required in Theorem 2.5 that the atoms aνm satisfy the moment
condition (2.8) at least for β = 0 and ν > 0.

It seems to be an open question, if this restriction is really necessary. In other words, if Theorem
2.5 holds, if s = 0 as well as L = −s = 0. We show, that this is never true and that the moment
conditions are indispensable.

Let 1 < q ≤ ∞ and 1 ≤ p ≤ ∞ and let us suppose, that Theorem 2.5 is true with L = 0. Hence no
moment condition on aνm are needed. Let ψ ∈ S(Rd) be a non-negative function with

suppψ ⊂ {x ∈ R
d : |xi| ≤ 1, i = 1, . . . , d},

∫

Rd

ψ(x)dx = 1, (3.32)

and ∑

m∈Zd

ψ(x−m) = 1, x ∈ R
d. (3.33)

We put

fJ(x) =

J∑

ν=0

∑

m∈Z
d

|mi|≤2ν ,i=1,...,d

ψ(2νx−m), x ∈ R
d, J ∈ N. (3.34)

It follows by (3.32) that
||fJ |B

0
pq(R

d)|| & J, J ∈ N.

But if Theorem 2.5 would be true for s = 0 and L = 0, (3.34) would represent an atomic decom-
position of fJ and therefore

||fJ |B
0
pq(R

d)|| .

(
J∑

ν=0

2−ν d
p
q · (2ν+1 + 1)

d
p
q

)1/q

. J
1
q
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would hold for every J ∈ N. This leads to contradiction.

Let 0 < q ≤ 1 and 1 ≤ p ≤ ∞. Then every f ∈ B0
pq(R

d) may be rewritten into the optimal atomic
decomposition

f(x) =

∞∑

ν=0

∑

m∈Zd

λνmaνm(x), x ∈ R
d,

with
||λ|b0pq|| . ||f |B0

pq(R
d)||, f ∈ B0

pq(R
d),

see [12, Chapter 1.5] for details. If Theorem 2.5 would be true for s = 0 and L = 0,

f(2kx) =
∞∑

ν=0

∑

m∈Zd

λνmaνm(2kx), x ∈ R
d,

would represent an atomic decomposition of f(2kx) and therefore

||f(2k·)|B0
pq(R

d)|| . 2
k d

p ||λ|b0pq|| . 2
k d

p ||f |B0
pq(R

d)||.

But we know by Theorem 3.4 and Remark 3.6 that this is not true.

For the sake of completeness, we consider also the dilation operator

(T̃kf)(x) = f(2−kx), k ∈ N, x ∈ R
d. (3.35)

Its behaviour is well known if s < 0, see [4, p. 34] for further details:

Lemma 3.8. Let s < 0, 1 ≤ p, q ≤ ∞ and k ∈ N. Then the operator T̃k is bounded on Bs
p,q(R

d)

and its norm is bounded by c 2
−k(s− d

p
)
.

If s = 0, we can also characterise the norm T̃k.

Theorem 3.9. Let 1 ≤ p, q ≤ ∞, k ∈ N and let T̃k be defined by (3.35). Then

||T̃k|L(B0
pq(R

d))|| ≈ 2
k d

p ·






k
1
p
− 1

q , if 1 < p <∞ and p ≤ min(q, 2),

k
1
2
− 1

q , if 1 < p <∞ and 2 ≤ min(p, q),

1, if 1 < p <∞ and q ≤ min(p, 2),

k1− 1
q , if p = 1 or p = ∞,

(3.36)

where the constants of equivalence do not depend on k.

Remark 3.10. If 1 < p <∞, the estimates in (3.36) may be abbreviated to

||T̃k|L(B0
pq(R

d))|| ≈ 2k d
p · k

1
min(p,q,2)

− 1
q .

In this case, the jump in the exponent of k occurs by p = ∞.

Proof. Let B̊0
pq(R

d) with 1 ≤ p, q ≤ ∞ be the completion of S(Rd) in B0
pq(R

d). It follows immedi-
ately from Theorem 3.4 that

||Tk|L(B0
pq(R

d))|| = ||Tk|L(B̊0
pq(R

d))||. (3.37)

One has by [10, p. 180, (12)]

B̊0
pq(R

d)′ = B0
p′q′(R

d), 1 ≤ p, q ≤ ∞ and
1

p
+

1

p′
=

1

q
+

1

q′
= 1. (3.38)
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Furthermore
||Tk|L(B̊0

pq(R
d))|| = ||T ′

k|L(B0
p′q′(R

d))||,

where
T ′

k = 2−kdT̃k

is the dual operator to Tk. Hence

||T̃k|L(B0
pq(R

d))|| = 2kd||Tk|L(B̊0
p′q′(R

d))||. (3.39)

Now the proof follows by (3.37) and Theorem 3.4.

It is not difficult to extend Theorems 3.4 and 3.9 also to the operator

(Tλf)(x) = f(λx), λ > 0, x ∈ R
d. (3.40)

Theorem 3.11. Let 1 ≤ p, q ≤ ∞.

(i) Then

||Tλ|L(B0
pq(R

d))|| ≈ λ
− d

p ·






(1 + log λ)
1
q
− 1

p , if 1 < p <∞ and p ≥ max(q, 2),

(1 + log λ)
1
q
− 1

2 , if 1 < p <∞ and 2 ≥ max(p, q),

1, if 1 < p <∞ and q ≥ max(p, 2),

(1 + log λ)
1
q , if p = 1 or p = ∞,

(3.41)

holds for every λ > 1.

(ii) Then

||Tλ|L(B0
pq(R

d))|| ≈ λ
− d

p ·






(1 + | log λ|)
1
p
− 1

q , if 1 < p <∞ and p ≤ min(q, 2),

(1 + | log λ|)
1
2
− 1

q , if 1 < p <∞ and 2 ≤ min(p, q),

1, if 1 < p <∞ and q ≤ min(p, 2),

(1 + | log λ|)1−
1
q , if p = 1 or p = ∞,

(3.42)

holds for every 0 < λ < 1.

Proof. The result follows directly from the Theorems 3.4 and 3.9 and the well-known assertion

sup
1
2
<λ<2

||f(λ·)|B0
pq(R

d)|| ≈ ||f |B0
pq(R

d)||.

4 Sampling numbers

In this section we apply the estimates of the norm of the dilation operator to derive optimal
estimates for the decay of sampling numbers of the identity operator between two Besov spaces.
Let us first present the basic definitions and notation.

Definition 4.1. Let Ω be the unit cube (0, 1)d. Let G1(Ω) be a space of continuous functions on
Ω and G2(Ω) ⊂ D′(Ω) be a space of distributions on Ω. Suppose, that the embedding

id : G1(Ω) ↪→ G2(Ω)

14



is compact.

For {xj}n
j=1 ⊂ Ω we define the information map

Nn : G1(Ω) → C
n, Nnf = (f(x1), . . . , f(xn)), f ∈ G1(Ω).

For any (linear or nonlinear) mapping ϕn : C
n → G2(Ω) we consider

Sn : G1(Ω) → G2(Ω), Sn = ϕn ◦Nn.

(i) Then for all n ∈ N, the n−th sampling number gn(id) is defined by

gn(id) = inf
Sn

sup{||f − Snf |G2(Ω)|| : ||f |G1(Ω)|| ≤ 1}, (4.1)

where the infimum is taken over all n-tuples {xj}n
j=1 ⊂ Ω and all (linear or nonlinear) ϕn.

(ii) For all n ∈ N the n−th linear sampling number glin
n (id) is defined by (4.1), where now only

linear mappings ϕn are admitted.

In the following, we restrict ourselves to the scale of Besov spaces - hence G1(Ω) = Bs1
p1q1

(Ω) with

s1 >
d

p1
.

Then the space Bs
p1q1

(Ω) is continuously embedded into the space of functions continuous on Ω̄ and
the information map Nn is well defined. Second, we suppose that G2 = B0

p2q2
(Ω).

The case p1 < p2 was already fully discussed in [13]. It was shown there, that both, the linear and

nonlinear sampling numbers, decay asymptotically like n
− s

d
+ 1

p1
− 1

p2 .

We concentrate on the case p1 = p2 and give a full characterisation of the decay of gn as well as
of glin

n . This result closes some of the gaps left open in [13], which were the actual motivation for
this paper. In the very end, we discuss the remaining case p1 > p2 and state several open problems
connected to this question.

Theorem 4.2. Let Ω = (0, 1)d. Let G1(Ω) = Bs
pq1

(Ω) and G2(Ω) = B0
pq2

(Ω) with 1 ≤ p, q1, q2 ≤ ∞

and s > d
p . Then for 2 ≤ n ∈ N

gn(id) ≈ glin
n (id) ≈ n−

s
d ·






(log n)
1
q2

− 1
p , if 1 < p <∞ and p ≥ max(q2, 2),

(log n)
1
q2

− 1
2 , if 1 < p <∞ and 2 ≥ max(p, q2),

1, if 1 < p <∞ and q2 ≥ max(p, 2),

(log n)
1
q2 , if p = 1 or p = ∞,

(4.2)

Proof. Step 1: Estimates from above

It follows directly from Definition 4.1 that gn(id) ≤ glin
n (id). The estimates from above for glin

n

are a consequence of the estimates from above obtained in Lemma 3.1 and Proposition 3.2 and
summarised in Theorem 3.4 and the method presented in [13]. By this we mean especially the
inequality (2.6) in [13] where now the estimate of the norm of the dilation operator has to be
applied with s2 = 0.

Hence, it is enough to prove the estimates from below for gn(id).

Step 2. - Estimates from below

We use the following simple observation, (c.f. [6, Proposition 20]). For Γ = {xj}n
j=1 ⊂ Ω we denote

GΓ
1 (Ω) = {f ∈ G1(Ω) : f(xj) = 0 for all j = 1, . . . , n}.
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Then

gn(id) ≈ inf
Γ

sup{||f |G2(Ω)|| : f ∈ GΓ
1 (Ω), ||f |G1(Ω)|| = 1}

= inf
Γ

||id : GΓ
1 (Ω) ↪→ G2(Ω)||,

where both the infima are taken over all sets Γ = {xj}n
j=1 ⊂ Ω.

So, to prove the estimates from below included in (4.2), we construct for every set Γ = {xj}2kd

j=1 ⊂

Ω, k ∈ N a function fk ∈ GΓ
1 such that

||fk|G2(Ω)||

||fk|G1(Ω)||
& 2−kskα, (4.3)

where the power α represents the power of the logarithmic factor in each of the four cases contained
in (4.2).

1. case: gn(id) & n−
s
d .

In this (most simple) case, we rely on the wavelet characterisation of the spaces Bs
pq(R

d), as de-
scribed in [12, Section 3.1]. Let

ψF ∈ CK(R) and ψM ∈ CK(R), K ∈ N,

be the Daubechies compactly supported K-wavelets on R with K large enough. Then we define

Ψ(x) =
d∏

i=1

ψM (xi), x = (x1, . . . , xd) ∈ R
d

and
Ψj

m(x) = Ψ(2jx−m), j ∈ N0, m ∈ Z
n.

The functions
ψj(x) =

∑

m

λjmΨj
m(x), j ∈ N, x ∈ R

d (4.4)

satisfy

||ψj |B
s
pq(R

d)|| ≈ 2
j(s− d

p
)
(∑

m

|λjm|p
)1/p

(4.5)

with constants independent on j ∈ N and on the sequence λ = {λjm}. The summation in (4.4) and

(4.5) runs over those m ∈ Z
d for which the support of Ψj

m is included in Ω. Let us comment briefly
on the relationship between ||ψj |B

s
pq(Ω)|| and ||ψj |B

s
pq(R

d)||. Clearly, ψj as a function on R
d is an

extension of ψj|Ω, the inequality

||ψj |B
s
pq(Ω)|| ≤ ||ψj |B

s
pq(R

d)||

follows trivially from Definition 2.7. On the other hand, any other extension of ψj |Ω to R
d possesses

an unique wavelet decomposition. The uniqueness shows, that this decomposition contains (4.4) as
a proper part and has therefore a larger norm. Hence, the relation (4.5) holds also for ||ψj |B

s
pq(Ω)||.

There is a number l ∈ N0 such that for any k ∈ N and any Γ = {xj}2kd

j=1 there is an element m ∈ Z
d

such that
suppΨk+l

m ⊂ Ω and suppΨk+l
m ∩ Γ = ∅.

Taking fk = Ψk+l
m we obtain the estimate gn(id) & n−

s
d for every 1 ≤ p, q1, q2 ≤ ∞.

2. case: gn(id) & n−
s
d (log n)

1
q2 for p = 1.
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We consider the function ψk(x) = ψ(2kx−m), where m ∈ Z
d and ψ was defined and discussed in

the Step 1. of the proof of Theorem 3.4. It is possible to choose m ∈ Z
d such that

suppψk ⊂
(1

4
,
3

4

)d
and suppψk ∩ Γ = ∅.

To show, that this function satisfies (4.3), we argue as follows. First, we use Theorem 2.5 to get

||ψk|B
s
1q1

(Ω)|| ≤ ||ψk|B
s
1q1

(Rd)|| . 2k(s−d).

On the other hand, if ψ̃k is any extension of ψk and ω ∈ S(Rd) satisfies

suppω ⊂ (0, 1)d and ω(x) = 1 for x ∈
(1

4
,
3

4

)d
,

we arrive at

k
1
q2 2−kd . ||ψk|B

0
1q2

(Rd)|| = ||ωψ̃k|B
0
1q2

(Rd)|| . ||ψ̃k|B
0
1q2

(Rd)||,

hence
k

1
q2 2−kd . ||ψk|B

0
1q2

(Ω)||

and (4.3) follows.

3. case: gn(id) & n−
s
d (log n)

1
q2

− 1
p .

Let 1 ≤ p ≤ ∞. In Step 5. of the proof of Theorem 3.4 we constructed a function fk(2
k·) (see

(3.25) for details). Let us point out, that this function has its support in (0, 1)d and avoids the set

Γ if the sampling points are uniformly distributed, hence Γ = {0, 1
2k , . . . ,

2k−1
2k , 1}d. Using (3.26)

and (3.27), we obtain

||f(2k·)|Bs
pq1

(Rd)|| . 2k(s− d
p
)||f |Bs

pq1
(Rd)|| . 2k(s− d

p
)2

kd
p k

1
p = k

1
p 2ks

and
||f(2k·)|B0

pq2
(Rd)|| & k

1
q2 .

Using again the cut-off function ω, we get similar estimates also for the norms on Ω. In view of
(4.3), this finishes the proof for this specially chosen set Γ.

If Γ is taken arbitrary, |Γ| = 2kd, we modify fk using the Dirichlet principle. Let us sketch this
modification.

First, we construct a sequence of disjoint cubes

{Ωj,l}, j = 1, . . . , k, l = 1, . . . , 2(d−1)(j−1),

where each Ωj,l is a cube with side length 1/2j+1 and contains in its interior at most 2(k−j)d points
from Γ.

We proceed by induction. Let j = 1. We divide Ω = (0, 1)d into 4d cubes with side length 1/4 and
disjoint interiors. According to the Dirichlet principle, one of this cubes has in its interior at most
2kd

4d
= 2(k−2)d ≤ 2(k−1)d points from Γ. We denote this cube Ω1,1.

Let j = 2. We divide each of the remaining 4d − 1 cubes (it means the set Ω \ Ω1,1) into 2d cubes
with side length 1/8 and disjoint interiors. We choose from these 23d − 2d cubes 2d−1 cubes with
the smallest number of points of Γ. The Dirichlet principle gives the estimate from above for this
number by 2kd

23d−2d−2d−1+1
≤ 2(k−2)d.
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In next steps we always divide all remaining cubes into 2d cubes with disjoint interiors and half
the side length and choose those 2(j−1)(d−1) of them which contain the smallest number of points
of Γ. The Dirichlet principle then provides the estimate for this number.

Next, we divide each of the cubes Ωj, l into 3d cubes with disjoint interior and denote ’the middle
cube’ of this decomposition by Ω̃j, l.

As each of the cubes Ω̃j, l contains at most 2(k−j)d, there is a number m > 0 such that we may
place into each Ωj, l 2jd copies (i.e. dilations) of ψ(2m+k·) with disjoint supports. We denote their
sum as ψj, l. The number m may be chosen independent of k and Γ.

Finally, we introduce

gk(x) =

k∑

j=1

2(d−1)(j−1)∑

l=1

2
j

pψj l(x). (4.6)

The functions gk play the role of a substitute of fk(2
k·) adapted to the general sampling sets Γ.

To finish the proof, we have to show that

||gk|B
0
pq2

(Rd)|| & k
1
q2 (4.7)

and
||gk|B

s
pq1

(Rd)|| . k
1
p 2ks. (4.8)

The proof of (4.7) is similar to Step 5. of Theorem 3.4 and uses the characterisation by local mean.
The proof of (4.8) is based on the atomic decomposition of the spaces Bs

pq1
(Rd). Let us mention,

that s > 0 and hence no moment conditions are needed in (2.8).

4. case gn(id) & n−
s
d (log n)

1
q2

− 1
2 .

We first present a construction which proves the result for d = 1, Ω = (−2, 2) and the uniform
distribution of sampling points, i. e. Γ = { n

2k , n = −2k+1 + 1, . . . 2k+1 − 1}.

We proceed as follows. First, we define a sequence of sets. Let (see Figure 1)

I1 =
(
−

1

2
,
1

2

)
,

I2 =
(
−

5

4
,−

3

4

)
∪
(
−

1

4
,
1

4

)
∪
(3

4
,
5

4

)
,

I3 =
(
−

13

8
,−

11

8

)
∪
(
−

9

8
,−

7

8

)
∪
(
−

5

8
,−

3

8

)
∪
(
−

1

8
,
1

8

)
∪

∪
(3

8
,
5

8

)
∪
(7

8
,
9

8

)
∪
(
+

11

8
,+

13

8

)
,

...

In =
⋃{(4k − 1

2n
,
4k + 1

2n

)
; |k| < 2n

}
,

...

and

Ic
n =

(
−2 +

3

2n
, 2 −

3

2n

)
\ In.

Let
ηi = χIi

− χIc
i
.

Observe that

< ηi; ηj >=

{
0, i 6= j,

2 − 1
2i−1 , i = j.
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The functions ηi are modified Rademacher functions. Slight modification of Theorem 2.b.3 in
Volume I of [5] shows that Khintchin inequalities apply to these functions. Especially, for every
p <∞ there is a constant Bp such that

∣∣∣
∣∣∣

k∑

i=1

ηi|Lp(R)
∣∣∣
∣∣∣ ≤ Bpk

1
2 (4.9)

for every k ∈ N.

Now, take a non-negative non-trivial function κ ∈ S(R) with suppκ ⊂ (0, 1). As Ii contains 2i − 1
intervals of the length 2

2i , we may define the functions gk,i, i = 1, . . . , k, as the sum of 2k(2−2−(i−1))

copies of the function κ(2k·) with disjoint supports all contained in Ii. Similarly, gc
k,i, i = 1, . . . , k,

is the sum of 2k(2 − 2−(i−2)) copies of κ(2k·) with disjoint supports all contained in Ic
i . We define

gk =

k∑

i=1

(gk,i − gc
k,i).

The atomic decomposition theorem (cf. Theorem 2.5) together with (4.9) yields

||gk|B
s
p,q1

(R)|| . ||2ks
k∑

i=1

ηi|Lp(R)|| . k
1
2 2ks, k ∈ N.

To estimate the norm of gk in B0
p,q2

(R) from below, we use duality.

Set
κ̃i(x) = κ(2ix) − κ(2ix− 1), x ∈ R, i ∈ N. (4.10)

We define the functions g̃i as the sum of 2i − 2 copies of κ̃i with disjoint supports all contained in
Ii ∪ I

c
i , non-negative on Ii, non-positive on Ic

i . Finally, we write

g̃k =

k∑

i=2

g̃i, k ≥ 2.

An application of the atomic decomposition theorem 2.5 leads to

||g̃k|B0
p′,q′2

(R)|| . k
1

q′
2 = k

1− 1
q2 .

Let us mention, that the first moment condition
∫

R
κ(x)dx = 0 is satisfied trivially by (4.10). Now

we apply the functional represented by gk to g̃k. Then

k ≈

∫ 2

−2
gk(t)g̃

k(t)dt = gk(g̃
k) . ||gk|B

0
p,q2

(R)|| · ||g̃k|B0
p′,q′2

(R)|| . k
1− 1

q2 ||gk|B
0
p,q2

(R)||, (4.11)

which implies

k
1
q2 . ||gk|B

0
p,q2

(R)||, k ∈ N.

Let us point out, that the function gk vanishes on Γ. In view of (4.3), this finishes the proof for
d = 1 and uniform distribution of the sampling points.
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If the sampling points are not uniformly distributed, the construction has to be slightly modified.
Let Ω = (0, 1), k ∈ N and let Γ ⊂ (0, 1) be an arbitrary set with #Γ ≤ 2k. We denote by Ik

j the

dyadic decomposition of (0, 1) into 2k disjoint intervals of length 2−k, hence

Ik
j =

(
j

2k
,
j + 1

2k

)
, j = 0, . . . , 2k − 1.

Furthermore, Γ̃k stands for the union of intervals Ik
j , which intersect Γ

Γ̃k =
{⋃

j

Ik
j : Ik

j ∩ Γ 6= ∅
}
.

Let rj, j = 1, 2, . . . be the usual Rademacher functions

r1(t) =






1, if 0 < t < 1
2 ,

−1, if 1
2 < t < 1,

0 otherwise

and rj+1(t) = rj(2t) + rj(2t− 1), j = 1, 2, . . .

We set

Rk(t) =
k∑

j=1

rj(t), k ∈ N

and

gk,i(t) = ri(t) ·
2k−1∑

j=0

κ(2kt− j), i = 1, 2, . . . , k,

where κ ∈ C∞(R) is a non-trivial non-negative function with suppκ ⊂ (0, 1). Finally, for a ∈ N we
define

ga
k(t) =

( k∑

i=1

gk+a,i(t)
)
·
(
1 − χΓ̃k+a

(t)
)
.

We prove that, if a is chosen sufficiently large and 1 < p ≤ 2,

||ga
k |B

s
p,q1

(Ω)|| . k
1
2 2ks, k ∈ N (4.12)

and
||ga

k |B
0
p,q2

(Ω)|| & k
1
q2 , k ∈ N. (4.13)
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To prove (4.12), we use Theorem 2.5

||ga
k |B

s
p,q1

(Ω)||2 ≤ ||ga
k |B

s
p,q1

(R)||2 . 22(k+a)s
∣∣∣
∣∣∣Rk(t) ·

(
1 − χΓ̃k+a

)
|Lp(R)

∣∣∣
∣∣∣
2

. 22ks
∣∣∣
∣∣∣Rk(t) ·

(
1 − χΓ̃k+a

)
|L2(R)

∣∣∣
∣∣∣
2

= 22ks
k∑

i,j=1

(ri, rj) − 22ks
k∑

i,j=1

(ri, rjχΓ̃k+a
).

The first sum is obviously equal to k · 22ks. We rewrite the second sum

k∑

i,j=1

(ri, rjχΓ̃k+a
) =

∑

l:Ik+a
l

⊂Γ̃k+a

∫

Ik+a
l

k∑

i,j=1

ri(t)rj(t)dt (4.14)

We fix an interval Ik+a
l ⊂ Γ̃k+a an observe that the Rademacher functions ri, i = 1, . . . , k, are

identically +1 or −1 on Ik+a
l . We denote by β+

l the number of those functions, which are identically

+1 on Ik+a
l , and similarly for β−l = k − β+

l . Then

k∑

i,j=1

ri(t)rj(t) = β+
l · β+

l + β−l · β−l − 2β+
l · β−l = (β+

l − β−l )2 ≥ 0, t ∈ Ik+a
l .

Hence, the last sum in (4.14) is always non-negative. This finishes the proof of (4.12).

To prove (4.13), we use duality. We prove that (for 1 < p ≤ 2 and 1 < q2 ≤ 2)

||Rk|B
0
p′q′2

(Ω)|| . k
1

q′
2 , k ∈ N (4.15)

and

k .

∫ 1

0
ga
k(t)Rk(t)dt, k ∈ N. (4.16)

From (4.15) and (4.16), the result follows similarly to (4.11). For 1 < p ≤ 2 and q2 = 1, we use the
Gagliardo-Nirenberg inequality

k
1
q̃ . ||ga

k |B
0
p̃,q̃(Ω)|| . ||ga

k |B
0
p,1(Ω)||1−θ · ||ga

k |B
0
2,2(Ω)||θ

with

0 < θ < 1,
1

p̃
=

1 − θ

p
+
θ

2
,

1

q̃
=

1 − θ

1
+
θ

2

and the estimate ||ga
k |B

0
2,2(Ω)|| ≈ ||ga

k |L2(Ω)|| . k
1
2 .

Let us comment on (4.15) and (4.16). The proof of (4.15) may be based on local means, or the
reader may consult [9]. To prove (4.16) we write

∫ 1

0
ga
k(t)Rk(t)dt =

∫ 1

0

( k∑

i=1

gk+a,i(t)
)
·
(
1 − χΓ̃k+a

(t)
)
·
( k∑

j=1

rj(t)
)
dt

=

k∑

i,j=1

∫ 1

0
gk+a,i(t)rj(t)dt −

k∑

i,j=1

∫

Γ̃k+a

gk+a,i(t)rj(t)dt

= k||κ|L1(R)|| − ||κ|L1(R)||
k∑

i,j=1

∫

Γ̃k+a

ri(t)rj(t)dt.

21



Using (4.14) one may show that

k∑

i,j=1

∫

Γ̃k+a

ri(t)rj(t)dt ≤ c k, k ∈ N

with c < 1. This calculation gives also the only restriction on a and it turns out, that a = 2 will
do the job. This finishes the proof in d = 1.

If d > 1, only minor modifications using tensor products are needed. We leave out the details.

Remark 4.3. This result describes the decay of (linear and nonlinear) sampling numbers of the
embedding

id : Bs
p1q1

(Ω) → B0
p2q2

(Ω)

if p1 = p2. The results for p1 < p2 may be easily derived from [13], the sampling numbers decay

like n
−

s1
d

+
“

1
p1

− 1
p2

”

. If p1 > p2, we may use one of the embeddings

Bs
p1q1

(Ω) ↪→ B0
p1q2

(Ω) ↪→ B0
p2q2

(Ω), Bs
p1q1

(Ω) ↪→ Bs
p2q1

(Ω) ↪→ B0
p2q2

(Ω)

and obtain (some) estimates from above. Using some of the ”test functions” mentioned above, we
may also provide certain estimates from below. But it should be pointed out, that in several cases,
there is a logarithmic gap between the estimates from above and the estimates from below. We
leave the detailed discussion opened and do not state the partial results.
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