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Abstract

We want to recover a continuous function f : (0, 1)d → C using only its function
values. Let us assume, that f is from the unit ball of some function space (for example
a fractional Sobolev space or a Besov space) and the precision of the reconstruction
is measured in the norm of another function space of this type. We describe the rate
of convergence of the optimal sampling method (linear as well as nonlinear) in this
setting.

AMS Classification: 41A25, 41A46, 46E35

Keywords and phrases: Linear and nonlinear approximation methods; Besov and Triebel-
Lizorkin spaces; Sampling operators

1



1 Introduction

We study the following question. Let Ω ⊂ Rd be a bounded Lipschitz domain and let Bs
pq(Ω)

denote the scale of Besov spaces on Ω, see Definition A.1 and Definition A.3 for details. We
try to approximate f ∈ Bs1

p1q1
(Ω) in the norm of another Besov space, say Bs2

p2q2
(Ω), by a

linear sampling method

Snf =
n∑

j=1

f(xj)hj , (1.1)

where hj ∈ Bs2

p2q2
(Ω) and xj ∈ Ω. First of all, we have to give a meaning to the pointwise

evaluation in (1.1). For this reason, we shall restrict ourselves to the case

s1 >
d

p1

,

which guarantees the continuous embedding Bs1

p1q1
(Ω) ↪→ C(Ω̄). Second, we always assume

that the embedding Bs1

p1q1
(Ω) ↪→ Bs2

p2q2
(Ω) is compact, which holds if and only if

s1 − s2 > d

(
1

p1
−

1

p2

)

+

.

We measure the worst case error of Snf by

sup{||f − Snf |B
s2

p2q2
(Ω)|| : ||f |Bs1

p1q1
(Ω)|| ≤ 1}. (1.2)

The same worst case error may also be considered for nonlinear sampling methods

Snf = ϕ(f(x1), . . . , f(xn)), (1.3)

where ϕ : Cn → Bs2

p2q2
(Ω) is an arbitrary mapping. In this paper, we discuss the decay of

(1.2) for linear (1.1) and nonlinear (1.3) sampling methods.

In some cases we restrict ourselves to the case Ω = Id = (0, 1)d. This allows to describe
the optimal sampling operator more explicitly. However, we conjecture, that many of these
results can be generalised to general bounded Lipschitz domains.

Let Lp(Ω) stand for the usual Lebesgue space and W k
p (Ω), k ∈ N, denotes the classical

Sobolev space over Ω. Then it is well known that

inf
Sn

sup{||f − Snf |Lp2
(Ω)|| : ||f |W k

p1
(Ω)|| ≤ 1} ≈ n

−
k
d
+( 1

p1
−

1

p2
)+ , (1.4)

where the infimum in (1.4) runs over all linear sampling operators Sn, see (1.1) (cf. [5] or
[10]). The result remains true if we switch to the general situation where nonlinear methods
Sn are allowed. In [12], this statement has been proved for arbitrary bounded Lipschitz
domain, but with the Sobolev spaces replaced by the more general scales of Besov and
Triebel-Lizorkin spaces. The target space was always given by Lp2

(Ω). The proof given
there uses the simple structure of the Lebesgue space. It is the main aim of this paper to
generalise (1.4) and to investigate also other “target” spaces.

Let us present our main results. If s2 > 0, then the quantity

inf
Sn

sup{||f − Snf |B
s2

p2q2
(Ω)|| : ||f |Bs1

p1q1
(Ω)|| ≤ 1} (1.5)
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behaves like
n
−

s1−s2
d

+( 1

p1
−

1

p2
)+

in both, the linear as well as the nonlinear setting. We prove this result only for the special
case of Ω = (0, 1)d. However in this situation we are able to give an explicit description of
in order optimal operator which we are going to introduce now. Namely, if n ≈ 2kd, where
k ∈ N is fixed, we use a smooth decomposition of unity {ψk,ν} such that

∑
ν ψk,ν(x) = 1 for

x ∈ (0, 1)d where the support of ψk,ν is concentrated around 2−kν. Then we approximate f
locally on suppψk,ν by a polynomial gk,ν and define

Snf =
∑

ν

gk,νψk,ν .

To calculate each of the 2(k+2)d functions gk,ν we need to combine
(

M+d−1
d

)
function values

of f in a linear way. Altogether, we need 2(k+2)d
(

M+d−1
d

)
≈ 2kd ≈ n function values of f to

obtain Snf . Here, M > s1 is a fixed natural number. The generalisation of this construction
to bounded Lipschitz domains remains a subject of further study.

If s2 < 0, we give the following characterisation of (1.5). If p1 ≥ p2 or p1 < p2 and
d

p2
−

d

p1
> s2, then (1.5) decays like

n−
s1
d

and if p1 < p2 and 0 > s2 >
d

p2

−
d

p1

, then (1.5) behaves like

n
−

s1
d

+
s2
d

+ 1

p1
−

1

p2 .

All these results hold for linear as well as nonlinear methods Sn.

These estimates can be applied in connection with elliptic differential operators, which was
the actual motivation for this research, c.f. [6] and [7]. Let us briefly introduce this setting.
Let

A : H → G

be a bounded linear operator from a Hilbert space H to another Hilbert space G. We assume
that A is boundedly invertible, hence

A(u) = f

has a unique solution for every f ∈ G. A typical application is an operator equation, where
A is an elliptic differential operator, and we assume that

A : Hs
0(Ω) → H−s(Ω),

where Ω is a bounded Lipschitz domain, Hs
0(Ω) is a function space of Sobolev type with

fractional order of smoothness s > 0 of functions vanishing on the boundary and H−s is a
function space of Sobolev type with negative smoothness −s < 0. The classical example is
the Poisson equation

−∆u = f in Ω and u = 0 on ∂Ω.

Here, s = 1 and
A = −∆ : H1

0 (Ω) → H−1(Ω)
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is bounded and boundedly invertible. We want to approximate the solution operator u =
S(f) using only function values of f.

We define the n-th linear sampling number of the identity id : H−1+t(Ω) → H−1(Ω) by

glin
n (id : H−1+t(Ω) → H−1(Ω)) = inf

Sn

||id− Sn|L(H−1+t(Ω), H−1(Ω))||, (1.6)

where t is a positive real number with −1 + t > d
2
, and the n-th linear sampling number of

S : H−1+t(Ω) → H1(Ω) by

glin
n (S : H−1+t(Ω) → H1(Ω)) = inf

Sn

||S − Sn|L(H−1+t(Ω), H1(Ω))||. (1.7)

The infimum in (1.6) and (1.7) runs over all linear operators Sn of the form (1.1) and
L(X, Y ) stands for the space of bounded linear operators between two Banach spaces X and
Y , equipped with the classical operator norm.

It turns out that these quantities are equivalent (up to multiplicative constants which do
not depend neither on f nor on n) and are of the asymptotic order

glin
n (S : H−1+t(Ω) → H1(Ω)) ≈ glin

n (id : H−1+t(Ω) → H−1(Ω)) ≈ n−
−1+t

d .

We refer to [6] and [7] for a detailed discussion of this approach. The estimates of sampling
numbers of embedding between two function spaces translates therefor into estimates of
sampling numbers of the solution operator S. We observe that the more regular f , the
faster is the decay of the linear sampling numbers of the solution operator S. Let us also
point out that optimal linear methods (not restricted to use only the function values of
f) achieve asymptotically a better rate of convergence, namely n−

t
d . Hence, the limitation

to the sampling operators results in a serious restriction. One has to pay at least n1/d in
comparison with optimal linear methods.

Using our estimates of sampling numbers of identities between Besov and Triebel-Lizorkin
spaces, this result may be generalised as follows.1 If p ≥ 2, 1 ≤ q ≤ ∞ and −1 + t > d

p
then

glin
n (S : B−1+t

pq (Ω) → H1(Ω)) ≈ glin
n (id : B−1+t

pq (Ω) → H−1(Ω)) ≈ n−
−1+t

d .

If p < 2 with
1

p
>

1

d
+

1

2
, 1 ≤ q ≤ ∞ and −1 + t > d

p
then

glin
n (S : B−1+t

pq (Ω) → H1(Ω)) ≈ glin
n (id : B−1+t

pq (Ω) → H−1(Ω)) ≈ n
−

t
d
+ 1

p
−

1

2 .

Finally, if p < 2 with
1

p
<

1

d
+

1

2
, 1 ≤ q ≤ ∞ and −1 + t > d

p
then

glin
n (S : B−1+t

pq (Ω) → H1(Ω)) ≈ glin
n (id : B−1+t

pq (Ω) → H−1(Ω)) ≈ n−
−1+t

d .

We prove the same results also for the nonlinear sampling numbers gn(S). Altogether, the
regularity information of f may now be described by an essentially broader scale of function
spaces.

1Although the results are stated only for Besov spaces, they are proved also for Triebel-Lizorkin spaces,
which include also fractional Sobolev spaces as a special case.
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All the unimportant constants are denoted by the letter c, whose meaning may differ from one
occurrence to another. If {an}

∞
n=1 and {bn}

∞
n=1 are two sequences of positive real numbers, we

write an . bn if, and only if, there is a positive real number c > 0 such that an ≤ c bn, n ∈ N.

Furthermore, an ≈ bn means that an . bn and simultaneously bn . an.

I would like to thank to Erich Novak, Winfried Sickel, Hans Triebel and to the anonymous
referee for many valuable discussions and comments on the topic.

2 Sampling numbers

The notation and basic facts about function spaces, which we shall need later on, are included
in the Appendix.

We now introduce the concept of sampling numbers.

Definition 2.1. Let Ω be a bounded Lipschitz domain. Let G1(Ω) be a space of continuous
functions on Ω and G2(Ω) ⊂ D′(Ω) be a space of distributions on Ω. Suppose, that the
embedding

id : G1(Ω) ↪→ G2(Ω)

is compact.

For {xj}
n
j=1 ⊂ Ω we define the information map

Nn : G1(Ω) → C
n, Nnf = (f(x1), . . . , f(xn)), f ∈ G1(Ω).

For any (linear or nonlinear) mapping ϕn : Cn → G2(Ω) we consider

Sn : G1(Ω) → G2(Ω), Sn = ϕn ◦Nn.

(i) Then, for all n ∈ N, the n−th sampling number gn(id) is defined by

gn(id) = inf
Sn

sup{||f − Snf |G2(Ω)|| : ||f |G1(Ω)|| ≤ 1}, (2.1)

where the infimum is taken over all n-tuples {xj}
n
j=1 ⊂ Ω and all (linear or nonlinear) ϕn.

(ii) For all n ∈ N the n−th linear sampling number glin
n (id) is defined by (2.1), where now

only linear mappings ϕn are admitted.

2.1 The case s2 > 0

In this subsection, we discuss the case where Ω = Id = (0, 1)d is the unit cube, G1(Ω) =

As1

p1q1
(Ω) and G2(Ω) = As2

p2q2
(Ω) with s1 >

d

p1
and s1 − d

( 1

p1
−

1

p2

)

+
> s2 > 0. Here, As

pq(Ω)

stands either for a Besov space Bs
pq(Ω) or a Triebel-Lizorkin space F s

pq(Ω), see Definition
A.3 for details. We start with the most simple and most important case, namely when
p1 = p2 = q1 = q2.

Proposition 2.2. Let Ω = Id = (0, 1)d. Let G1(Ω) = Bs1

pp(Ω) and G2(Ω) = Bs2

pp(Ω) with
1 ≤ p ≤ ∞,

s1 >
d

p
, and s1 > s2 > 0.

Then
glin

n (id) . n−
s1−s2

d .
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Proof. First, we introduce necessary notation. Let a > 0, z ∈ R
d and U ⊂ R

d. Then

aU = {ax : x ∈ U} and z + aU = {z + ax : x ∈ U}. (2.2)

Furthermore, if k ∈ N0 and ν ∈ Zd, we set

Qk,ν = {x ∈ R
d : 2−kνi < xi < 2−k(νi + 1)},

Qk,ν = {x ∈ Id : 2−k
(
νi −

1

2

)
< xi < 2−k

(
νi +

3

2

)
}.

We point out, that (up to a set of measure zero)

Id =
⋃

{Qk,ν : 0 ≤ νi ≤ 2k − 1, i = 1, 2, . . . , d}.

Next, we introduce smooth decomposition of unity, first on Rd and then its restriction to Id.

Let ψ̃ ∈ S(Rd) with

supp ψ̃ ⊂
(
−

1

2
,
3

2

)d

and
∑

ν∈Zd

ψ̃(x− ν) = 1, x ∈ R
d.

Then we define

ψk,ν(x) =

{
ψ̃(2kx− ν), if x ∈ Id,

0 otherwise.
(2.3)

Let us denote Ak = {−1, 0, . . . , 2k}d. By (2.3), the following identities are true for every
k ∈ N:

∑

ν∈Zd

ψk,ν(x) =
∑

ν∈Ak

ψk,ν(x) = χId
(x) =

{
1, if x ∈ Id,

0 otherwise,

suppψk,ν ⊂ Qk,ν, ν ∈ Ak.

Now we define linear approximation operators S̃k. Take f ∈ G1(I
d) and consider the decom-

position

f =
∑

ν∈Ak

fψk,ν.

To each Qk,ν we associate gk,ν ∈ PM(Qk,ν) such that gk,ν(2
−k·) approximates f(2−k·) on

2kQk,ν according to Corollary A.6, see the Appendix,

||(f − gk,ν)(2
−k·)|Bs1

pp(2
kQk,ν)|| .

(∫ 1

0

t−s1p||dM,2kQk,ν

t (f(2−k·))(x)|Lp(2
kQk,ν)||p

dt

t

)1/p

.

(2.4)
The operators S̃k : G1(I

d) → G2(I
d) are defined by

S̃kf =
∑

ν∈Ak

gk,νψk,ν , k ∈ N. (2.5)

Trivially, the right-hand side of (2.5) belongs to G1(I
d) and hence also to G2(I

d). The

operators S̃k use

(
M + d− 1

d

)
· (2k + 2)d ≈ 2kd points. So, it is enough to prove the

estimate
||

∑

ν∈Ak

(f − gk,ν)ψk,ν|B
s2

pp(I
d)|| . 2−k(s1−s2)||f |Bs1

pp(I
d)||.
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We use the dilation property (cf. [9, Prop. 2.2.1]) as well as the embedding Bs1

pp(R
d) ↪→

Bs2

pp(R
d) and obtain

∣∣∣
∣∣∣
∑

ν∈Ak

(f − gk,ν)ψk,ν |B
s2

pp(I
d)

∣∣∣
∣∣∣

. 2k
(

s2−
d
p

)∣∣∣
∣∣∣
∑

ν∈Ak

(f − gk,ν)(2
−k·)ψk,ν(2

−k·)|Bs2

pp(2
kId)

∣∣∣
∣∣∣ (2.6)

. 2k
(

s2−
d
p

)∣∣∣
∣∣∣
∑

ν∈Ak

(f − gk,ν)(2
−k·)ψk,ν(2

−k·)|Bs1

pp(2
kId)

∣∣∣
∣∣∣.

We claim that

∣∣∣
∣∣∣
∑

ν∈Ak

(f − gk,ν)(2
−k·)ψk,ν(2

−k·)|Bs1

pp(2
kId)

∣∣∣
∣∣∣ .

( ∑

ν∈Ak

∣∣∣∣(f − gk,ν)(2
−k·)|Bs1

pp(2
kQk,ν)

∣∣∣∣p
)1/p

.

(2.7)

To prove (2.7), we first decompose
∑

ν∈Ak

into

K∑

α=1

∑

ν∈Aα
k

with the number K ∈ N (independent

of k ∈ N) so that
dist(suppψk,ν1

(2−k·), suppψk,ν2
(2−k·)) > 1 (2.8)

for every ν1, ν2 ∈ Aα
k and every α = 1, . . . , K.

To every ν ∈ Aα
k we associate Eν((f − gk,ν)(2

−k·)) defined on Rd such that

Eν((f − gk,ν)(2
−kx)) = (f − gk,ν)(2

−kx), x ∈ 2kQk,ν, (2.9)

Eν((f − gk,ν)(2
−kx)) = 0 if x ∈ suppψk,ν′(2−k·) (2.10)

if ν ′ ∈ Aα
k , ν

′ 6= ν and

||Eν((f − gk,ν)(2
−kx))|Bs1

pp(R
d)|| ≤ c ||(f − gk,ν)(2

−kx)|Bs1

pp(2
kQk,ν)||. (2.11)

The existence of Eν((f−gk,ν)(2
−k·)) satisfying (2.9)-(2.11) follows directly from the Definition

A.3, possibly combined with some smooth cut-off function and the pointwise multiplier
assertion, cf. [15, Theorem 2.8.2].

Denoting
ψ̃k,ν(x) = ψ̃(2kx− ν), x ∈ R

d, k ∈ N, ν ∈ Z
d, (2.12)

we get
∣∣∣
∣∣∣
∑

ν∈Ak

(f − gk,ν)(2
−k·)ψk,ν(2

−k·)|Bs1

pp(2
kId)

∣∣∣
∣∣∣

.

K∑

α=1

∣∣∣
∣∣∣
∑

ν∈Aα
k

(f − gk,ν)(2
−k·)ψk,ν(2

−k·)|Bs1

pp(2
kId)

∣∣∣
∣∣∣

.

K∑

α=1

∣∣∣
∣∣∣
∑

ν∈Aα
k

Eν((f − gk,ν)(2
−k·))ψk,ν(2

−k·)|Bs1

pp(R
d)

∣∣∣
∣∣∣.
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By (2.8) and the so called localisation property, c.f. [16, Chapter 2.4.7], we may estimate the
last expression from above by

K∑

α=1

( ∑

ν∈Aα
k

∣∣∣
∣∣∣Eν((f − gk,ν)(2

−k·))ψk,ν(2
−k·)|Bs1

pp(R
d)

∣∣∣
∣∣∣
p
)1/p

.

( K∑

α=1

∑

ν∈Aα
k

∣∣∣
∣∣∣Eν((f − gk,ν)(2

−k·))ψk,ν(2
−k·)|Bs1

pp(R
d)

∣∣∣
∣∣∣
p
)1/p

=

( ∑

ν∈Ak

∣∣∣
∣∣∣Eν((f − gk,ν)(2

−k·))ψk,ν(2
−k·)|Bs1

pp(R
d)

∣∣∣
∣∣∣
p
)1/p

.

Together with Lemma A.7 and (2.11) this finally leads to
∣∣∣
∣∣∣
∑

ν∈Ak

(f − gk,ν)(2
−k·)ψk,ν(2

−k·)|Bs1

pp(2
kId)

∣∣∣
∣∣∣

.

( ∑

ν∈Ak

∣∣∣
∣∣∣Eν((f − gk,ν)(2

−k·))|Bs1

pp(R
d)

∣∣∣
∣∣∣
p

·
∣∣∣
∣∣∣ψk,ν(2

−k·)|Bs1

pp(R
d)

∣∣∣
∣∣∣
p
)1/p

.

( ∑

ν∈Ak

∣∣∣
∣∣∣Eν((f − gk,ν)(2

−k·))|Bs1

pp(R
d)

∣∣∣
∣∣∣
p
)1/p

.

( ∑

ν∈Ak

∣∣∣
∣∣∣(f − gk,ν)(2

−k·)|Bs1

pp(2
kQk,ν)

∣∣∣
∣∣∣
p
)1/p

,

which finishes (2.7).

We insert (2.7) into (2.6) and use (2.4) together with (A.4)
∣∣∣
∣∣∣
∑

ν∈Ak

(f − gk,ν)ψk,ν|B
s2

pp(I
d)

∣∣∣
∣∣∣

. 2k
(

s2−
d
p

)( ∑

ν∈Ak

∫ 1

0

t−s1p
∣∣∣∣(dM,2kQk,ν

t f(2−k·))(x)|Lp(2
kQk,ν)

∣∣∣∣p dt

t

)1/p

. 2k
(

s2−
d
p

)( ∑

ν∈Ak

∫ 1

0

t−s1p
∣∣∣∣(dM,Qk,ν

2−kt
f)(2−kx)|Lp(2

kQk,ν)
∣∣∣∣p dt

t

)1/p

.

The rest is done by direct substitutions and Theorem A.4
∣∣∣
∣∣∣
∑

ν∈Ak

(f − gk,ν)ψk,ν|B
s2

pp(I
d)

∣∣∣
∣∣∣

. 2k
(

s2−s1−
d
p

)( ∑

ν∈Ak

∫ 2−k

0

ξ−s1p
∣∣∣∣(dM,Qk,ν

ξ f)(2−kx)|Lp(2
kQk,ν)

∣∣∣∣p dξ

ξ

)1/p

. 2k(s2−s1)

( ∑

ν∈Ak

∫ 2−k

0

ξ−s1p
∣∣∣∣(dM,Qk,ν

ξ f)(x)|Lp(Q
k,ν)

∣∣∣∣pdξ

ξ

)1/p

. 2−k(s1−s2)

(∫ 2−k

0

ξ−s1p
∣∣∣∣(dM,Id

ξ f)(x)|Lp(I
d)

∣∣∣∣p dξ

ξ

)1/p

. 2−k(s1−s2)||f |Bs1

pp(I
d)||.
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Next we consider the case of general integrability and summability parameters.

Proposition 2.3. Let Ω = Id = (0, 1)d. Let G1(Ω) = As1

p1q1
(Ω) and G2(Ω) = As2

p2q2
(Ω) with

1 ≤ p1, p2, q1, q2 ≤ ∞ (p1, p2 <∞ in the F -case),

s1 >
d

p1

, and s1 − d
( 1

p1

−
1

p2

)

+
> s2 > 0. (2.13)

Then

glin
n (id) . n

−
s1−s2

d
+
(

1

p1
−

1

p2

)
+ . (2.14)

Proof. First, we deal with the case p1 = p2 = p and p 6= q1 and/or p 6= q2. We use the
well-known real interpolation formula, c.f. [13], [1], [15] and [17]

Br
pq(R

d) =
(
Br0

pp(R
d), Br1

pp(R
d)

)
θ,q

and its counterpart
Br

pq(I
d) =

(
Br0

pp(I
d), Br1

pp(I
d)

)
θ,q

for
1 ≤ p, q ≤ ∞, 0 < θ < 1, r0 < r1, r = (1 − θ)r0 + θr1.

If, for example, p 6= q2, we find two different real numbers s′2 and s′′2 such that

s1 > s′2, s
′′

2 > 0, s2 = (1 − θ)s′2 + θs′′2

and apply Proposition 2.2 to embeddings id′ and id′′ in the following diagram

B
s′2
pp(Id)

Bs1

pp(I
d) id

//

id′
99ttttttttt

id′′ %%JJJJJJJJJ

Bs2

pq2
(Id)

B
s′′2
pp(Id)

Using the same approximation operator S̃k, we may interpolate the estimates for

||f − S̃kf |B
s′2
pp(Id)|| and ||f − S̃kf |B

s′′2
pp(Id)|| and obtain (2.14).

If also p 6= q1, we proceed in the same way.

If p1 ≤ p2 we define s0 by

s1 > s0 := s2 + d
( 1

p1

−
1

p2

)
> s2 > 0

and use the chain of embeddings

Bs1

p1q1
(Id) ↪→ Bs0

p1q2
(Id) ↪→ Bs2

p2q2
(Id).

The first embedding provides the estimate

glin
n (id) . n−

s1−s0
d = n

−
s1−s2

d
+ 1

p1
−

1

p2 ,

9



the second one is bounded.

If p1 ≥ p2, we use the embedding

Bs1

p1q1
(Id) ↪→ Bs2

p1q2
(Id) ↪→ Bs2

p2q2
(Id).

The second embedding is bounded, the first one together with Proposition 2.2 gives the
result.

This finishes the proof in the B-case. The F -case then follows through trivial embeddings,
c.f. [15, 2.3.2]

F s1

p1q1
(Id) ↪→ Bs1

p1,∞(Id) ↪→ Bs2

p2,1(I
d) ↪→ F s2

p2q2
(Id).

Theorem 2.4. Let Ω = Id = (0, 1)d. Let G1(Ω) = As1

p1q1
(Ω) and G2(Ω) = As2

p2q2
(Ω) with

1 ≤ p1, p2, q1, q2 ≤ ∞ (p1, p2 <∞ in the F -case) and (2.13) Then

gn(id) ≈ glin
n (id) ≈ n

−
s1−s2

d
+
(

1

p1
−

1

p2

)
+ . (2.15)

Proof. According to the Proposition 2.3, it is enough to prove that

gn(id) & n
−

s1−s2
d

+
(

1

p1
−

1

p2

)
+ . (2.16)

We use the following simple observation, (c.f. [12, Proposition 20]). For Γ = {xj}
n
j=1 ⊂ Ω

we denote
GΓ

1 (Ω) = {f ∈ G1(Ω) : f(xj) = 0 for all j = 1, . . . , n}.

Then

gn(id) ≈ inf
Γ

sup{||f |G2(Ω)|| : f ∈ GΓ
1 (Ω), ||f |G1(Ω)|| = 1} (2.17)

= inf
Γ
||id : GΓ

1 (Ω) ↪→ G2(Ω)||, (2.18)

where both the infima extend over all sets Γ = {xj}
n
j=1 ⊂ Ω.

To prove (2.16), we construct for every Γ = {xj}
2ld

j=1, l ∈ N, a function ψl ∈ GΓ
1 (Ω) with

||ψl|G1(Ω)|| . 1 and ||ψl|G2(Ω)|| & 2
l
(

s2−s1+d
(

1

p1
−

1

p2

)
+

)
, (2.19)

where the constants of equivalence do not depend on l ∈ N.

We rely on the wavelet characterisation of the spaces As
pq(R

n), as described in [18, Section
3.1]. Let

ψF ∈ CK(R) and ψM ∈ CK(R), K ∈ N,

be the Daubechies compactly supported K-wavelets on R with K large enough. Then we
define

Ψ(x) =
d∏

i=1

ψM(xi), x = (x1, . . . , xd) ∈ R
d

and
Ψj

m(x) = Ψ(2jx−m), j ∈ N0, m ∈ Z
n.

10



Then the function
ψj(x) =

∑

m

λjmΨj
m(x), j ∈ N (2.20)

satisfies

||ψj|A
s
pq(Ω)|| ≈ 2j(s− d

p
)

(∑

m

|λjm|
p

)1/p

(2.21)

with constants independent on j ∈ N and on the sequence λ = {λjm}. The summation in
(2.20) and (2.21) runs over those m ∈ Zn for which the support of Ψj

m is included in Ω. The
proof of (2.21) is based on [18, Theorem 3.5]. First, this theorem tells us that the As

pq(Ω)-
norm of (2.20) may be estimated from above by the right-hand side of (2.21). On the other
hand, considering another extension of ψj to Rd and its (unique) wavelet decomposition, we
get the opposite inequality.

There is a number k ∈ N with the following property. For any l ∈ N and any Γ = {xj}
2ld

j=1,
there are mj ∈ Zd, j = 1, . . . , 2ld such that

supp Ψk+l
mj

⊂ Ω and supp Ψk+l
mj

∩ Γ = ∅, for j = 1, . . . , 2ld.

Step 1: p1 ≤ p2. In this case, we take in (2.20) λk+l,m1
= 2−j(s− d

p
) and λk+l,mn

= 0, n =
2, . . . , 2ld and apply (2.21) twice to verify (2.19).

Step 2: p1 > p2. In this case, we take λk+l,mn
= 2−js, n = 1, . . . , 2ld in (2.20) and apply

again (2.21) twice to prove (2.19).

2.2 The case s2 = 0

In the case s2 = 0, new phenomena come into play. First we point out that Lemma A.8 for
s = 0 gives an immediate counterpart of (2.6) and this leads to the following result.

Theorem 2.5. Let Ω = Id = (0, 1)d. Let

id : G1(Ω) ↪→ G2(Ω)

with
G1(Ω) = Bs

p1q1
, G2(Ω) = B0

p2q2

and

1 ≤ p1, q1, p2, q2 ≤ ∞, s >
d

p1

.

Then

n
−

s
d
+( 1

p1
−

1

p2
)+ . gn(id) . glin

n (id) . n
−

s
d
+( 1

p1
−

1

p2
)+(1 + log n)1/q2 , n ∈ N. (2.22)

If the target space is a Lebesgue space, this can be improved, cf. [12].

Theorem 2.6. Let Ω be a bounded Lipschitz domain in Rd. Let

id : G1(Ω) = As
pq(Ω) ↪→ Lr(Ω) = G2(Ω)

with

1 ≤ p, q ≤ ∞, s >
d

p
and 1 ≤ r ≤ ∞

11



(p <∞ in the F -case). Then

gn(id) ≈ glin
n (id) ≈ n−

s
d
+( 1

p
−

1

r
)+ , n ∈ N.

Remark 2.7. We show in one example, that the logarithmic factor cannot be removed in
general. Let Ω = Id = (0, 1)d and consider the embedding

id : Bs
1,1(Ω) → B0

1,1(Ω).

Finally, take ψ ∈ S(Rd) with suppψ ⊂ Ω and ψ̂(0) 6= 0. For every k ∈ N and every
Γ = {xj}

n
j=1 ⊂ Ω, n = 2kd, we set fΓ

k (x) = ψ(2k+1(x − xΓ)), where xΓ is chosen such that
supp fΓ

k ∩ Γ = ∅ and supp fΓ
k ⊂ Ω. We claim that

||fΓ
k |B

s
1,1(I

d)|| ≤ c 2k(s−d) (2.23)

and
||fΓ

k |B
0
1,1(I

d)|| ≥ c k 2−kd. (2.24)

Combining (2.23) with (2.24), it follows that

gn(id) ≈ glin
n (id) ≈ n−

s
d (1 + logn), n ∈ N.

The proof of (2.23) follows directly from Lemma A.8. To prove (2.24), let l ∈ N be the
smallest natural number such that

ψ̂(ξ) 6= 0 for |ξ| ≤ 2−l

and write for k ≥ 2l

||fΓ
k |B

0
1,1(I

d)|| ≥ c ||fΓ
k |B

0
1,1(R

d)|| = c

∞∑

j=0

||(ϕj f̂
Γ
k )∨|L1(R

d)||

≥ c

k−l−1∑

j=0

||(ϕ1(2
−jξ)2(−k−1)dψ̂(2−k−1ξ)e−iξ·xΓ

)∨|L1(R
d)||

= c 2(−k−1)d

k−l−1∑

j=0

||(ϕ1(2
−jξ)ψ̂(2−k−1ξ))∨|L1(R

d)|| (2.25)

= c

k−l−1∑

j=0

||(ϕ1(2
−j+k+1ξ)ψ̂(ξ))∨(2k+1x)|L1(R

d)||

= 2(−k−1)d

k−l−1∑

j=0

||(ϕ1(2
−j+k+1ξ)ψ̂(ξ))∨(x)|L1(R

d)||.

To estimate each of the summands from below, we consider the function

(ϕ1(2
−j+k+1·))∨ = (ϕ1(2

−j+k+1·) · ψ̂ ·
1

ψ̂
· ϕ0(2

l·))∨

and use Young’s inequality to estimate its L1−norm.

||ϕ∨

1 |L1(R
d)|| = ||(ϕ1(2

−j+k+1·))∨|L1(R
d)|| (2.26)

≤ ||(ϕ1(2
−j+k+1·) · ψ̂)∨|L1(R

d)|| · ||(
ϕ0(2

l·)

ψ̂
)∨|L1(R

d)||.

Now, (2.24) is a combination of (2.25) and (2.26).

12



2.3 The case s2 < 0

As the last case, we consider the situation s2 < 0.

Theorem 2.8. Let Ω be a bounded Lipschitz domain in Rd. Let

id : G1(Ω) = As1

p1q1
(Ω) ↪→ G2(Ω) = As2

p2q2
(Ω)

with 1 ≤ p1, p2, q1, q2 ≤ ∞ (with p1, p2 <∞ in the F -case) and

s1 >
d

p1

, s2 < 0.

If p1 ≥ p2, then
gn(id) ≈ glin

n (id) ≈ n−
s1
d . (2.27)

If p1 < p2 and s2 >
d

p2
−

d

p1
, then

gn(id) ≈ glin
n (id) ≈ n

−
s1
d

+
s2
d

+ 1

p1
−

1

p2 . (2.28)

If p1 < p2 and
d

p2
−

d

p1
> s2, then

gn(id) ≈ glin
n (id) ≈ n−

s1
d . (2.29)

Proof. Step 1. In this step, we prove two estimates from below. First, using the method
from the proof of Theorem 2.4, we obtain

glin
n (id) & gn(id) & n

−
s1−s2

d
+
(

1

p1
−

1

p2

)

exactly as in the case s2 > 0. To prove the second estimate from below, namely

glin
n (id) & gn(id) & n−

s1
d , (2.30)

we proceed as follows. We rely on atomic decomposition of As1

p1q1
(Rd) spaces as described in

[18, Chapter 1.5]. For every set Γ ⊂ Ω with |Γ| = 2jd we construct a function

ψj(x) =

Mj∑

m=1

λjmajm(x), x ∈ R
d,

where Mj ≈ 2jd, λjm = 2
−j d

p1 for m = 1, . . . ,Mj and ajm are positive atoms in the sense
of [18, Definition 1.15]. As s1 > 0, no moment conditions are needed. We suppose that
supp ajm ∩ Γ = ∅ and supp ajm ⊂ Ω. Altogether, we get

||ψj|A
s1

p1q1
(Ω)|| ≤ ||ψj|A

s1

p1q1
(Rd)|| . 1

and

||ψj|L1(Ω)|| =

∫

Id

ψj(x)dx ≈

Mj∑

m=1

λjm||ajm(x)|L1(R
d)|| ≈ 2jd · 2

−j d
p1 · 2−jd · 2

−j(s− d
p1

)
= 2−js1.

13



Finally, we choose a non-negative function % ∈ S(Rd) such that the mapping

f →

∫

Ω

%(x)f(x)dx

yields a linear bounded functional on As2

p2q2
(Ω), supp % ⊂ Ω and

∫
%(x)ψj(x)dx &

∫
ψj(x)dx.

This leads to

2−js1 ≈ ||ψj|L1(Ω)|| .

∫

Ω

%(x)ψj(x)dx . ||ψj|A
s2

p2q2
(Ω)||.

Hence, (2.30) is proved and it implies all estimates from below included in the theorem.

Step 2.

If p1 ≥ p2 we use the following chain of embeddings

As1

p1q1
(Ω) ↪→ Lp1

(Ω) ↪→ As2

p2q2
(Ω) (2.31)

and obtain

glin
n (id) ≤ glin

n (id′ : As1

p1q1
(Ω) ↪→ Lp1

(Ω)) · ||id′′ : Lp1
(Ω) ↪→ As2

p2q2
(Ω)|| . n−

s1
d . (2.32)

If p1 < p2 and 0 >
d

p2

−
d

p1

> s2, then (2.31) holds true as well and, consequently, also (2.32)

remains true.

If p1 < p2 and 0 > s2 >
d

p2

−
d

p1

, we define r > 0 by 1
r

:= −s2

d
+ 1

p2
. It follows that

p1 < r < p2. Using the embeddings

As1

p1q1
(Ω) ↪→ Lr(Ω) ↪→ As2

p2p2
(Ω) (2.33)

we get

glin
n (id) ≤ glin

n (id′ : As1

p1q1
(Ω) ↪→ Lr(Ω)) · ||id′′ : Lr(Ω) ↪→ As2

p2p2
(Ω)||

. n
−

s1
d

+ 1

p1
−

1

r = n
−

s1−s2
d

+ 1

p1
−

1

p2 .

This proves the upper estimate in (2.28) if p2 = q2. The general case follows then by inter-
polation, similar to the proof of Proposition 2.3.

2.4 Comparison with approximation numbers

In this closing part we wish to compare the sampling numbers of

id : Bs1

p1q1
(Ω) → Bs2

p2q2
(Ω) (2.34)

for Ω = (0, 1)d with corresponding approximation numbers. Let us first recall their definition.

Definition 2.9. Let A,B be Banach spaces and let T be a compact linear operator from A

to B. Then for all n ∈ N the kth approximation number an(T ) of T is defined by

an(T ) = inf{||T − L|| : L ∈ L(A,B), rank L ≤ n}, (2.35)

where rank L is the dimension of the range of L.
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Obviously, an(id) represents the approximation of id by linear operators with the dimension
of the range smaller or equal to n, in general not restricted to involve only function values.
Hence

an(id) ≤ glin
n (id), n ∈ N.

We again assume that

s1 >
d

p1

, s1 − s2 > d

(
1

p1

−
1

p2

)

+

, (2.36)

which ensures that (2.34) is compact and its sampling numbers are well defined. The ap-
proximation numbers of (2.34) are well known, we refer to [2], [14], [4] and [18] for details.
We wish to discuss, when the equivalence an(id) ≈ glin

n (id) holds true. The comparison of
our results with the known results for an(id) shows, that this is the case if either

1. s2 > 0 and 1 ≤ p2 ≤ p1 ≤ ∞ or

2. s2 > 0 and 1 ≤ p1 ≤ p2 ≤ 2 or 2 ≤ p1 ≤ p2 ≤ ∞ or

3. 0 > s2 > d
(

1
p2

− 1
p1

)
and 1 ≤ p1 ≤ p2 ≤ 2 or 2 ≤ p1 ≤ p2 ≤ ∞.

A Function spaces on domains

A.1 Function spaces on Rd

We use standard notation: N denotes the collection of all natural numbers, Rd is the Eu-
clidean d-dimensional space, where d ∈ N, and C stands for the complex plane. Let S(Rd) be
the Schwartz space of all complex-valued rapidly decreasing, infinitely differentiable functions
on Rd and let S ′(Rd) be its dual - the space of all tempered distributions.

Furthermore, Lp(R
d) with 1 ≤ p ≤ ∞, are the Lebesgue spaces endowed with the norm

||f |Lp(R
d)|| =






(∫

Rd

|f(x)|pdx

)1/p

, 1 ≤ p <∞,

ess sup
x∈Rd

|f(x)|, p = ∞.

For ψ ∈ S(Rd) we denote by

ψ̂(ξ) = (Fψ)(ξ) = (2π)−d/2

∫

Rd

e−i<x,ξ>ψ(x)dx, x ∈ R
d,

its Fourier transform and by ψ∨ or F−1ψ its inverse Fourier transform.

We give a Fourier-analytic definition of Besov and Triebel-Lizorkin spaces, which relies on
the so-called dyadic resolution of unity. Let ϕ ∈ S(Rd) with

ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥
3

2
. (A.1)

We put ϕ0 = ϕ and ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x) for j ∈ N and x ∈ Rd. This leads to
identity

∞∑

j=0

ϕj(x) = 1, x ∈ R
d.
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Definition A.1. (i) Let s ∈ R, 1 ≤ p, q ≤ ∞. Then Bs
pq(R

d) is the collection of all f ∈ S ′(Rd)
such that

||f |Bs
pq(R

d)|| =

( ∞∑

j=0

2jsq||(ϕj f̂)∨|Lp(R
d)||q

)1/q

<∞ (A.2)

(with the usual modification for q = ∞).

(ii) Let s ∈ R, 1 ≤ p <∞, 1 ≤ q ≤ ∞. Then F s
pq(R

d) is the collection of all f ∈ S ′(Rd) such
that

||f |F s
pq(R

d)|| =

∣∣∣∣

∣∣∣∣
( ∞∑

j=0

2jsq|(ϕj f̂)∨(·)|q
)1/q

|Lp(R
d)

∣∣∣∣

∣∣∣∣ <∞ (A.3)

(with the usual modification for q = ∞).

Remark A.2. These spaces have a long history. In this context we recommend [13], [15],
[16] and [18] as standard references. We point out that the spaces Bs

pq(R
d) and F s

pq(R
d)

are independent of the choice of ψ in the sense of equivalent norms. Special cases of these
two scales include Lebesgue spaces, Sobolev spaces, Hölder-Zygmund spaces and many other
important function spaces. We omit any detailed discussion.

A.2 Function spaces on domains

Let Ω be a bounded domain. Let D(Ω) = C∞
0 (Ω) be the collection of all complex-valued

infinitely-differentiable functions with compact support in Ω and let D′(Ω) be its dual - the
space of all complex-valued distributions on Ω.

Let g ∈ S ′(Rd). Then we denote by g|Ω its restriction to Ω:

(g|Ω) ∈ D′(Ω), (g|Ω)(ψ) = g(ψ) for ψ ∈ D(Ω).

Definition A.3. Let Ω be a bounded domain in Rd. Let s ∈ R, 1 ≤ p, q ≤ ∞ with p < ∞
in the F-case. Let As

pq stand either for Bs
pq or F s

pq. Then

As
pq(Ω) = {f ∈ D′(Ω) : ∃g ∈ As

pq(R
d) : g|Ω = f}

and
||f |As

pq(Ω)|| = inf ||g|As
pq(R

d)||,

where the infimum is taken over all g ∈ As
pq(R

d) such that g|Ω = f.

We collect some important properties of spaces As
pq(Ω) which will be useful later on. For

this reason, we have to restrict to bounded Lipschitz domains. We use a standard definition
of the notion of Lipschitz domain, the reader may consult for example [18, Chapter 1.11.4].

Let x ∈ R
d, h ∈ R

d and M ∈ N. Then

(∆M+1
h f)(x) = (∆1

h∆
M
h f)(x) with (∆1

hf)(x) = f(x+ h) − f(x),

are the usual differences in R
d. For x ∈ Ω we consider the differences with respect to Ω:

(∆M
h,Ωf)(x) =

{
(∆M

h f)(x) if x+ lh ∈ Ω for l = 0, . . . ,M,

0 otherwise.
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We also need to adapt the classical ball means of differences to bounded domains. Let
M ∈ N, t > 0, x ∈ Ω. Then we define

V M(x, t) = {h ∈ R
d : |h| < t, x+ τh ∈ Ω for 0 < τ ≤M}

and

d
M,Ω
t f(x) = t−d

∫

V M (x,t)

|(∆M
h f)(x)|dh.

We shall also use the simple relation (cf. [12, (4.10)])

(dM,Ω
t f(τ ·))(x) = (dM,τΩ

τt f)(τx), x ∈ Ω, 0 < τ, t <∞. (A.4)

The following theorem connects the classical definition of Besov and Triebel-Lizorkin spaces
using differences with Definition A.3. We refer to [8] and [18, 1.11.9] for details and references
to this topic.

Theorem A.4. Let Ω be a bounded Lipschitz domain in Rd. Let 1 ≤ p, q ≤ ∞ and

0 < s < M ∈ N.

Then Bs
pq(Ω) is the collection of all f ∈ Lp(Ω) such that

||f |Lp(Ω)|| +

(∫ 1

0

t−sq||dM,Ω
t f |Lp(Ω)||q

dt

t

)1/q

<∞ (A.5)

in the sense of equivalent norms (usual modification if q = ∞).

We present a modification of the preceding theorem, which suits better for our needs.

Let M ∈ N. Let PM(Rd) be the space of all complex-valued polynomials of degree smaller
than M and let PM(Ω) be its restriction to Ω. We denote

DM = dimPM(Rd) = dimPM (Ω) =

(
M + d− 1

d

)
.

We say, that {xj}
DM

j=1 ⊂ R
d is a M−regular set if for every {yj}

DM

j=1 ∈ R
DM there exists

(unique) p ∈ PM(Rd) such that p(xj) = yj, j = 1, . . . , DM . In particular, if p(xj) = 0 for
p ∈ PM (Rd) and all j = 1, 2, . . . , DM then p ≡ 0. One may observe directly (or consult [11])
that the set

{m ∈ Z
d : 0 ≤ mi ≤ M for i = 1, 2, . . . , d and

d∑

i=1

mi ≤M}

and all its translations, dilations and rotations are M−regular.

Theorem A.5. Let Ω be a bounded Lipschitz domain in R
d, M ∈ N and let {xj}

DM

j=1 be a
M−regular set in Ω.

Let 1 ≤ p, q ≤ ∞ and
d

p
< s < M ∈ N. (A.6)
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Then Bs
pq(Ω) is the collection of all f ∈ Lp(Ω) such that

DM∑

j=1

|f(xj)| +

(∫ 1

0

t−sq||dM,Ω
t f |Lp(Ω)||q

dt

t

)1/q

<∞ (A.7)

in the sense of equivalent norms (usual modification if q = ∞).

Proof. According to (A.6), the following embedding is true:

Bs
pq(Ω) ↪→ C(Ω̄)

and for every x ∈ Ω
|f(x)| ≤ ||f |C(Ω̄)|| . ||f |Bs

pq(Ω)||.

This shows that the left-hand side of (A.7) is (up to some constant) smaller than the left-hand
side of (A.5).

We prove the reverse inequality be contradiction. We denote the left side of (A.7) by
||f |Bs

pq(Ω)||′. We suppose, that there is no c > 0 such that

||f |Lp(Ω)|| ≤ c ||f |Bs
pq(Ω)||′ for all f ∈ Bs

pq(Ω).

Then there is a sequence {fn}
∞

n=1 ⊂ Bs
pq(Ω) such that

||fn|Lp(Ω)|| = 1 and ||fn|B
s
pq(Ω)||′ <

1

n
, n ∈ N. (A.8)

This shows, that {fn}
∞
n=1 is bounded in Bs

pq(Ω) and hence precompact in C(Ω̄). We may
therefore assume that

fn → f in C(Ω̄).

From (A.8) it follows that

DM∑

j=1

|f(xj)| = 0 and (dM,Ω
t f)(x) = 0, for a. e. x ∈ Ω. (A.9)

The second part of (A.9) gives that f ∈ PM (Ω). Furthermore, the definition of M−regular
sets and the first part of (A.9) implies that f = 0. This contradicts (A.8).

This characterisation has a direct corollary.

Corollary A.6. Under the assumptions of Theorem A.5,

inf
g∈PM (Ω)

||f − g|Bs
pq(Ω)|| ≈

(∫ 1

0

t−sq||dM,Ω
t f |Lp(Ω)||q

dt

t

)1/q

.

Proof. Consider some M-regular set {xj}
DM

j=1 and g ∈ PM(Ω) such that

g(xj) = f(xj), j = 1, . . . , DM .

Let us mention, that the polynomial g is uniquely determined and its definition combines
the function values f(x1), . . . , f(xDM

) in a linear way. The rest of the proof follows directly
from Theorem A.5.
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We also recall the fact that the spaces Bs
pq(R

d) are multiplication algebras if s > d
p
, c.f. [15,

2.8.3].

Lemma A.7. Let 1 ≤ p, q ≤ ∞ and s > d
p
. Then

||h1 · h2|B
s
pq(R

d)|| ≤ c ||h1|B
s
pq(R

d)|| · ||h2|B
s
pq(R

d)||,

where the constant c does not depend on h1 and h2.

Finally, we consider the dilation operator Tk : f → f(2k·), k ∈ N, and its behaviour on the
scale of Besov spaces. For the proof, we refer to [3, 1.7] and [9, 2.3.1].

Lemma A.8. Let s ≥ 0, 1 ≤ p, q ≤ ∞ and k ∈ N. Then the operator Tk is bounded on

Bs
p,q(R

d) and its norm is bounded by c 2k(s− d
p
) if s > 0 and by c 2−k d

p (1 + k)1/q if s = 0. The
constant c does not depend on k ∈ N.
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