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Abstract

The classical Jawerth and Franke embeddings

F s0
p0,q(Rn) ↪→ Bs1

p1,p0
(Rn) and Bs0

p0,p1
(Rn) ↪→ F s1

p1,q(Rn)

are versions of Sobolev embedding between the scales of Besov and Triebel-

Lizorkin function spaces for s0 > s1 and s0 −
n

p0
= s1 −

n

p1
. We prove Jawerth

and Franke embeddings for the scales of Besov and Triebel-Lizorkin spaces with
all exponents variable

F
s0(·)
p0(·),q(·) ↪→ B

s1(·)
p1(·),p0(·) and B

s0(·)
p0(·),p1(·) ↪→ F

s1(·)
p1(·),q(·),

respectively, if infx∈Rn(s0(x)− s1(x)) > 0 and

s0(x)− n

p0(x)
= s1(x)− n

p1(x)
, x ∈ Rn.

We work exclusively with the associated sequence spaces b
s(·)
p(·),q(·)(R

n) and

f
s(·)
p(·),q(·)(R

n), which is justified by well known decomposition techniques. We

give also a different proof of the Franke embedding in the constant exponent
case which avoids duality arguments and interpolation.

Our results hold also for 2-microlocal function spaces Bw
p(·),q(·)(R

n) and

Fw
p(·),q(·)(R

n) which unify the smoothness scales of spaces of variable smoothness
and generalized smoothness spaces.
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1 Introduction

Spaces of variable integrability, also known as variable exponent function spaces
Lp(·)(Rn), can be traced back to Orlicz [36] 1931, but the modern development
started with the papers [30] of Kováčik and Rákosńık as well as [13] of Edmunds
and Rákosńık and [8] of Diening. The spaces Lp(·)(Rn) have interesting applications
in fluid dynamics, namely in the theory of electrorheological fluids [38], where p(·) is
a function of the electric field. Further, these variable function spaces were used in
image processing, PDEs and variational calculus, see the introduction of [11]. For
an overview we refer to [10].

Sobolev and Besov spaces with variable smoothness but fixed integrability have
been introduced in the late 60’s and early 70’s in the works of Unterberger [42],
Vǐsik and Eskin [43], Unterberger and Bokobza [41] and in the work of Beauzamy
[4]. Leopold studied in [31] Besov spaces where the smoothness is determined by a
symbol a(x, ξ) of a certain class of hypoelliptic pseudodifferential operators. In the
special case a(x, ξ) = (1 + |ξ|2)σ(x)/2 these spaces coincide with spaces of variable

smoothness B
σ(x)
p,p (Rn).

A more general approach to spaces of variable smoothness are the so-called 2-
microlocal function spaces Bw

p,q(Rn) and Fw
p,q(Rn). The smoothness in these scales

gets measured by a weight sequence w = (wj)j∈N0 . Besov spaces with such weight
sequences appeared first in the works of Peetre [37] and Bony [7]. Establishing a
wavelet characterization for 2-microlocal Hölder-Zygmund spaces in [22] it turned
out that 2-microlocal spaces are well adapted in connection to regularity properties
of functions ([23],[34],[33]). Spaces of variable smoothness are a special case of 2-
microlocal function spaces and in [32] and [6] characterizations by differences have
been given for certain classes of them.

Even in the case of constant exponents the integrability exponents p, q ∈ (0,∞]
and the smoothness parameter s inherit a quite interesting interplay regarding em-
beddings and special cases, see [39] and [40].

If one considers at first Triebel-Lizorkin spaces F sp(·),q(R
n) where only the inte-

grability parameter p(·) is chosen to be variable, then the other exponents must be
chosen variable as well. This can already be seen by the Sobolev embedding from
[45]

F
s0(·)
p0(·),q(R

n) ↪→ F
s1(·)
p1(·),q(R

n)

under the usual condition, but now pointwise,

s0(x)− n

p0(x)
= s1(x)− n

p1(x)
, x ∈ Rn.

Now also the smoothness parameter s(·) should be chosen variable. That also the
third index q(·) should be variable can be seen by the following trace theorem. It was
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obtained by Diening, Hästö and Roudenko in [11] where variable smoothness and
integrability were for the first time combined in one approach. They defined Triebel-

Lizorkin spaces F
s(·)
p(·),q(·)(R

n) and considered the trace theorem on Rn−1. Here the
usual result holds in a variable analogue

Tr F
s(·)
p(·),q(·)(R

n) = F
s(·)− 1

p(·)
p(·),p(·) (Rn−1), with s(·)− 1

p(·)
> (n− 1) max

(
1

p(·)
− 1, 0

)
,

(Theorem 3.13 in [11]) and we see the necessity of taking s and q variable if p is not
constant.

For the Besov spaces it is non-trivial to have also the parameter q as a variable

one. Almeida and Hästö were able to introduce in [3] Besov spaces B
s(·)
p(·),q(·)(R

n) with
all three indices variable and proved the Sobolev and other usual embeddings in this
scale. These spaces need to be defined by using another modular which already uses
the variable structure on q(·), see Section 2.
Interestingly, these variable Besov spaces fit very well to the constant exponent case
theory which can be seen by the embedding

B
s(·)
p(·),min(p(·),q(·))(R

n) ↪→ F
s(·)
p(·),q(·)(R

n) ↪→ B
s(·)
p(·),max(p(·),q(·))(R

n).

On the other hand, in [29] it has been shown that the triangle inequality inB
s(·)
p(·),q(·)(R

n)

is in general not true for exponents with min(p(·), q(·)) ≥ 1. This in sharp contrast

to the case of Triebel-Lizorkin spaces F
s(·)
p(·),q(·)(R

n) and to the constant exponent

spaces Bs
p,q(Rn) and F sp,q(Rn), which are always normed spaces if min(p(·), q(·)) ≥ 1,

or min(p, q) ≥ 1, respectively.

For the full variable spaces B
s(·)
p(·),q(·)(R

n) and F
s(·)
p(·),q(·)(R

n) different characteri-
zations of the spaces as decompositions via atoms, molecules, local means and ball
means of differences (see [11], [12], [28]) have been shown. Further, there also exist
results on the extension operator from halfspaces in [35].

Furthermore, also for the more general scale of 2-microlocal function spaces
Bw
p(·),q(·)(R

n) and Fw
p(·),q(·)(R

n) (see Section 5 for details) all the above mentioned

characterizations have been obtained and there exist results on traces [17], pointwise
multipliers [18] and Fourier multipliers [2].

Regarding Franke-Jawerth embeddings, they go back to Jawerth in [24] and
Franke in [14]. Using interpolation techniques and duality, the authors proved the
following.

Theorem 1.1. Let −∞ < s1 < s0 <∞, 0 < p0 < p1 ≤ ∞ and 0 < q ≤ ∞ with

s0 −
n

p0
= s1 −

n

p1
.

(i) Then
F s0p0,q(R

n) ↪→ Bs1
p1,p0(Rn). (1.1)
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(ii) If p1 <∞, then
Bs0
p0,p1(Rn) ↪→ F s1p1,q(R

n). (1.2)

The surprising effect in (1.1) and (1.2) is that (unlike in the case of Sobolev
embeddings) no conditions on q are necessary. This shows that Jawerth and Franke
embeddings exploit the fine properties of Besov and Triebel-Lizorkin spaces and
exhibit an interesting interplay between these two scales of function spaces.

Later Vyb́ıral in [44] gave a new proof of Theorem 1.1. The author transferred
the problem to the corresponding sequence spaces and, instead of interpolation,
he used the technique of non-increasing rearrangements as well as duality. The
developed technique via sequence spaces was also used in [21] to obtain the Franke-
Jawerth embeddings in the Morrey space versions of Besov and Triebel-Lizorkin
spaces and in [19] to get these embeddings for spaces with dominating mixed smooth-
ness.

Our aim is to extend these results to the scale of Besov and Triebel-Lizorkin
spaces with variable smoothness and integrability B

s(·)
p(·),q(·)(R

n) and F
s(·)
p(·),q(·)(R

n),
obtaining in this way a fine connection between those scales of function spaces. One

can observe then that the somehow artificial definition of B
s(·)
p(·),q(·)(R

n) seems to be
well chosen.

The paper is organized as follows. We introduce in Section 2 the necessary
notation and definitions which are needed afterwards. Furthermore, we also state
same known theorems for the spaces with variable exponents. In Section 3 we present
another proof for the Franke embedding in the constant exponent case. The novelty
of the technique here is that we totally avoid the use of interpolation and duality
arguments. With the help of this result in the constant exponent case we state and

prove the Jawerth and Franke embeddings in the scales of Besov B
s(·)
p(·),q(·)(R

n) and

Triebel-Lizorkin spaces F
s(·)
p(·),q(·)(R

n) with variable exponents in Section 4. In Section
5 we transfer our results to 2-microlocal function spaces with variable exponents.
Finally, in the last section we pose some open problems.

2 Notation and definitions

We shall adopt the following general notation: N denotes the set of all natural
numbers, N0 = N ∪ {0}, Z denotes the set of integers, Rn for n ∈ N denotes the
n-dimensional real Euclidean space with |x|, for x ∈ Rn, denoting the Euclidean
norm of x.

For q ∈ (0,∞], `q stands for the linear space of all complex sequences a =
(aj)j∈N0 endowed with the quasi-norm

‖a | `q‖ =
( ∞∑
j=0

|aj |q
)1/q

,
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with the usual modification if q = ∞. By c, C, etc. we denote positive constants
independent of appropriate quantities. For two non-negative expressions (i.e., func-
tions or functionals) A, B, the symbol A . B (or A & B) means that A ≤ cB (or
cA ≥ B), for some c > 0. If A . B and A & B, we write A ∼ B and say that A and
B are equivalent.

Before introducing the function spaces under consideration we still need to re-
call some notation. By S(Rn) we denote the Schwartz space of all complex-valued
rapidly decreasing infinitely differentiable functions on Rn and by S ′(Rn) its dual
space of all tempered distributions on Rn. For f ∈ S ′(Rn) we denote by f̂ the
Fourier transform of f and by f∨ the inverse Fourier transform of f .

Let ϕ0 ∈ S(Rn) be such that

ϕ0(x) = 1 if |x| ≤ 1 and supp ϕ0 ⊂ {x ∈ Rn : |x| ≤ 2}. (2.3)

Now define ϕ(x) := ϕ0(x) − ϕ0(2x) and set ϕj(x) := ϕ(2−jx) for all j ∈ N. Then
the sequence (ϕj)j∈N0 forms a smooth dyadic partition of unity.

By P(Rn) we denote the class of exponents, which are measurable functions
p : Rn → (c,∞] for some c > 0. Let p ∈ P(Rn). Then, p+ := ess-supx∈Rnp(x),
p− := ess-infx∈Rnp(x) and Lp(·)(Rn) is the variable exponent Lebesgue space, which
consists of all measurable functions f such that for some λ > 0 the modular
%Lp(·)(Rn)(f/λ) is finite, where

%Lp(·)(Rn)(f) :=

∫
Rn0
|f(x)|p(x) dx+ ess-supx∈Rn∞ |f(x)|.

Here Rn∞ denotes the subset of Rn where p(x) = ∞ and Rn0 = Rn \ Rn∞. The
Luxemburg norm of a function f ∈ Lp(·)(Rn) is given by

‖f | Lp(·)(Rn)‖ := inf

{
λ > 0 : %Lp(·)(Rn)

(
f

λ

)
≤ 1

}
.

In order to define the mixed spaces `q(·)(Lp(·)), we need to define another modu-
lar. For p, q ∈ P(Rn) and a sequence (fν)ν∈N0 of complex-valued Lebesgue measur-
able functions on Rn, we define

%`q(·)(Lp(·))(fν) =
∞∑
ν=0

inf

{
λν > 0 : %p(·)

(
fν

λ
1/q(·)
ν

)
≤ 1

}
. (2.4)

If q+ <∞, then we can replace (2.4) by the simpler expression

%`q(·)(Lp(·))(fν) =

∞∑
ν=0

∥∥∥|fν |q(·) | L p(·)
q(·)

(Rn)
∥∥∥. (2.5)
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The (quasi-)norm in the `q(·)(Lp(·)) spaces is defined as usual by

‖fν | `q(·)(Lp(·)(Rn))‖ = inf

{
µ > 0 : %`q(·)(Lp(·))

(
fν
µ

)
≤ 1

}
. (2.6)

For the sake of completeness, we state also the definition of the space Lp(·)(`q(·)).
At first, one just takes the norm `q(·) of (fν(x))ν∈N0 for every x ∈ Rn and then the
Lp(·)-norm with respect to x ∈ Rn, i.e.

‖fν | Lp(·)(`q(·)(Rn))‖ =

∥∥∥∥∥∥
( ∞∑
ν=0

|fν(x)|q(x)
)1/q(x)

| Lp(·)(Rn)

∥∥∥∥∥∥ .

The following regularity classes for the exponents are necessary to make the
definition of the spaces independent on the chosen decomposition of unity.

Definition 2.1. Let g ∈ C(Rn). We say that g is locally log-Hölder continuous,

abbreviated g ∈ C log
loc (Rn), if there exists clog(g) > 0 such that

|g(x)− g(y)| ≤
clog(g)

log(e+ 1/|x− y|)
for all x, y ∈ Rn. (2.7)

We say that g is globally log-Hölder continuous, abbreviated g ∈ C log(Rn), if g is
locally log-Hölder continuous and there exists g∞ ∈ R such that

|g(x)− g∞| ≤
clog

log(e+ |x|)
for all x ∈ Rn. (2.8)

We use the notation p ∈ P log(Rn) if p ∈ P(Rn) and 1/p ∈ C log(Rn). It was
proved in [9] that the maximal operator M is bounded in Lp(·)(Rn) provided that

p ∈ P log(Rn) and 1 < p− ≤ p+ ≤ ∞.

We recall the definition of the spaces B
s(·)
p(·),q(·)(R

n) and F
s(·)
p(·),q(·)(R

n), as given in

[11] and [3].

Definition 2.2. Let p, q ∈ P log(Rn) and s ∈ C log
loc (Rn).

(i) If p+, q+ < ∞, then the space F
s(·)
p(·),q(·)(R

n) is the collection of all f ∈ S ′(Rn)
such that

‖f | F s(·)p(·),q(·)(R
n)‖ :=

∥∥∥(2js(·)(ϕj f̂)∨
)
j∈N0

| Lp(·)(`q(·)(Rn))
∥∥∥

is finite.
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(ii) The space B
s(·)
p(·),q(·)(R

n) is the collection of all f ∈ S ′(Rn) such that

‖f | Bs(·)
p(·),q(·)(R

n)‖ :=
∥∥∥(2js(·)(ϕj f̂)∨

)
j∈N0

| `q(·)(Lp(·)(Rn))
∥∥∥

is finite.

Remark 2.3. The independence of the resolution of unity in the definition of the

spaces F
s(·)
p(·),q(·)(R

n) and B
s(·)
p(·),q(·)(R

n) can be justified by characterizations of the

spaces, for example by local means (see [26] for Triebel-Lizorkin and [28] for Besov

spaces), if p, q ∈ P log(Rn) and s ∈ C log
loc (Rn).

Remark 2.4. These spaces include very well known spaces. In particular, if p(·) =
p, q(·) = q and s(·) = s are constants, we get back to the classical Besov and
Triebel-Lizorkin spaces Bs

p,q(Rn) and F sp,q(Rn).

The spacesB
s(·)
p(·),q(·)(R

n) and F
s(·)
p(·),q(·)(R

n) are isomorphic to sequence spaces. The
underlying theorems are characterizations of the spaces above by atoms, wavelets
and the ϕ-transform. The assertions can be found in [11], [27] and [12].
We do not repeat these characterizations here but we shall introduce some notation
in order to state the sequence space characterizations. Let Zn stand for the lattice
of all points in Rn with integer-valued components, Qj,m denotes a cube in Rn with
sides parallel to the axes of coordinates, centered at 2−jm = (2−jm1, . . . , 2

−jmn)
and with side length 2−j , where m = (m1, . . . ,mn) ∈ Zn and j ∈ N0. If Q is a cube
in Rn and r > 0 then rQ is the cube in Rn concentric with Q and with side length
r times the side length of Q. By χE we denote the characteristic function of the
measurable set E. However, when E is the cube Qj,m, the characteristic function of
Qj,m is simply denoted by χj,m.

Definition 2.5. Let p, q ∈ P log(Rn) and s ∈ C log
loc (Rn).

(i) If p+ <∞, then the sequence space f
s(·)
p(·),q(·)(R

n) consists of those complex-valued

sequences λ = (λj,m)j∈N0,m∈Zn such that

‖λ | fs(·)p(·),q(·)(R
n)‖ :=

∥∥∥( ∑
m∈Zn

|λj,m| 2js(·) χj,m
)
j∈N0

| Lp(·)(`q(·)(Rn))
∥∥∥

is finite.

(ii) The sequence space b
s(·)
p(·),q(·)(R

n) consists of those complex-valued sequences λ =

(λj,m)j∈N0,m∈Zn such that

‖λ | bs(·)p(·),q(·)(R
n)‖ :=

∥∥∥( ∑
m∈Zn

|λj,m| 2js(·) χj,m
)
j∈N0

| `q(·)(Lp(·)(Rn))
∥∥∥

is finite.
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Now, we can state the connection between the function spaces and the corre-
sponding sequence spaces. If we have a distribution f ∈ S ′(Rn) then we can identify
it with the corresponding sequence λ(f) = (λν,m(f))ν∈N0,m∈Zn and vice versa. It
depends on the underlying characterization (atoms, wavelets, ϕ-transform) how this
connection is made, c.f. [11], [12] and [27].

Theorem 2.6. Let p, q ∈ P log(Rn) and s ∈ C log
loc (Rn).

1. We have ∥∥∥f |Bs(·)
p(·),q(·)(R

n)
∥∥∥ ∼ ∥∥∥λ(f)| bs(·)p(·),q(·)(R

n)
∥∥∥ .

2. If p+, q+ <∞, then we have∥∥∥f |F s(·)p(·),q(·)(R
n)
∥∥∥ ∼ ∥∥∥λ(f)| fs(·)p(·),q(·)(R

n)
∥∥∥ .

The constants in both assertions are independent on f ∈ S ′(Rn).

To prove our main results, we will make use of the Sobolev embedding for

b
s(·)
p(·),q(·)(R

n), proved in [3]. The counterpart for f
s(·)
p(·),q(·)(R

n) was proved by Vyb́ıral

in [45].

Theorem 2.7. Let p0, p1, q ∈ P log(Rn) and s0, s1 ∈ C log
loc (Rn). Let s0(x) ≥ s1(x)

and p0(x) ≤ p1(x) for all x ∈ Rn with

s0(x)− n

p0(x)
= s1(x)− n

p1(x)
, x ∈ Rn.

Then we have
b
s0(·)
p0(·),q(·)(R

n) ↪→ b
s1(·)
p1(·),q(·)(R

n).

3 Franke embedding - constant exponents case

The Franke embedding (1.2) was shown in [14] using duality and interpolation. An
alternative proof avoiding interpolation was given in [44]. The main tools used were
the technique of non-increasing rearrangements and duality. Here, we give a new
proof of the Franke embedding for the scale of spaces with constant exponents,
which still relies on non-increasing rearrangements, but we avoid using duality.

We start by introducing the concept of non-increasing rearrangement and some
of its important properties. We refer to [5] to an extensive treatment of this subject
and also to the proofs of the lemmas given below.

Definition 3.1. Let µ be the Lebesgue measure in Rn. If h is a measurable function
on Rn, we define the non-increasing rearrangement of h through

h∗(t) = sup {λ > 0 : µ{x ∈ Rn : |h(x)| > λ} > t} , t ∈ (0,∞).
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Lemma 3.2. If 0 < p ≤ ∞, then

‖h | Lp(Rn)‖ = ‖h∗ | Lp(0,∞)‖

for every measurable function h.

Lemma 3.3. Let h1 and h2 be two non-negative measurable functions on Rn. If
1 ≤ p ≤ ∞, then

‖h1 + h2 | Lp(Rn)‖ ≤ ‖h∗1 + h∗2 | Lp(0,∞)‖.

The main result of this section is an alternative proof of (1.2) for the sequence
spaces of Besov and Triebel-Lizorkin type with constant exponents.

Theorem 3.4. Let −∞ < s1 < s0 <∞, 0 < p0 < p1 <∞ and 0 < q ≤ ∞ with

s0 −
n

p0
= s1 −

n

p1
.

Then
bs0p0,p1(Rn) ↪→ fs1p1,q(R

n).

Proof. By lifting properties it is enough to show the Franke embedding with s1 =
0, i.e.

b
n
(

1
p0
− 1
p1

)
p0,p1 (Rn) ↪→ f0p1,q(R

n). (3.9)

Plugging in Definition 2.5, we get

‖γ|f0p1,q(R
n)‖ =

∥∥∥( ∞∑
j=0

∑
m∈Zn

|γj,m|qχj,m(·)
) 1
q |Lp1(Rn)

∥∥∥ (3.10)

and

‖γ|b
n
(

1
p0
− 1
p1

)
p0,p1 (Rn)‖ =

( ∞∑
j=0

2−jn
( ∑
m∈Zn

|γj,m|p0
) p1
p0

) 1
p1 . (3.11)

To prove (3.9), we will use 0 < p0 < p1 < ∞ and also 0 < q ≤ min(1, p0), since
it follows by elementary embeddings that we can take q arbitrarily small.

We write

‖γ|f0p1,q(R
n)‖ =

∥∥∥( ∞∑
j=0

∑
m∈Zn

|γj,m|qχj,m(·)
) 1
q |Lp1(Rn)

∥∥∥
=
∥∥∥ ∞∑
j=0

∑
m∈Zn

|γj,m|qχj,m(·)|L p1
q

(Rn)
∥∥∥1/q

≤
∥∥∥ ∞∑
j=0

( ∑
m∈Zn

|γj,m|qχj,m
)∗

(·)|L p1
q

(0,∞)
∥∥∥1/q

=
∥∥∥ ∞∑
j=0

∞∑
l=0

(γ∗j,l)
qχ∗j,l(·)|L p1

q
(0,∞)

∥∥∥1/q.
9



Here, we have used Lemma 3.3 due to p1
q ≥ 1, (γ∗j,l)

∞
l=0 is a non-increasing rearrange-

ment of (|γj,m|)m∈Zn and χ∗j,l is the characteristic function of [2−jnl, 2−jn(l + 1)).

Discretizing the last norm, we get by using the properties of χ∗j,l(2
−kn)

‖γ|f0p1,q(R
n)‖ .

( ∞∑
k=−∞

2−kn
( ∞∑
j=0

∞∑
l=0

(γ∗j,l)
qχ∗j,l(2

−kn)
) p1

q
) 1
p1

=
( ∞∑
k=−∞

2−kn
( ∞∑
j=0

(γ∗
j,max(0,2(j−k)n))

q
) p1

q
) 1
p1

.
[ 0∑
k=−∞

2−kn
( ∞∑
j=0

(γ∗
j,2(j−k)n)q

) p1
q
] 1
p1

+
[ ∞∑
k=1

2−kn
(k−1∑
j=0

(γ∗j,0)
q
) p1

q
] 1
p1

+
[ ∞∑
k=1

2−kn
( ∞∑
j=k

(γ∗
j,2(j−k)n)q

) p1
q
] 1
p1 = I + II + III.

We estimate all the three terms separately.
The first term can be estimated in the following way. Starting with Hölder’s

inequality with β > 0, we get

I =
[ 0∑
k=−∞

2−kn
( ∞∑
j=0

(γ∗
j,2(j−k)n)q

) p1
q
] 1
p1

.
[ 0∑
k=−∞

( ∞∑
j=0

2
−kn p0

p1 2
jnβ

p0
q (γ∗

j,2(j−k)n)p0
) p1
p0

] p0
p1

1
p0 .

Now, after using the triangle inequality with p1
p0
> 1 and the embedding ` p0

p1

↪→ `1

in the sum over k, we substitute l = j − k and get

I .
[ ∞∑
j=0

( 0∑
k=−∞

2−kn2
jnβ

p1
q (γ∗

j,2(j−k)n)p1
) p0
p1

] 1
p0

≤
[ ∞∑
j=0

0∑
k=−∞

2
−kn p0

p1 2
jnβ

p0
q (γ∗

j,2(j−k)n)p0
] 1
p0

=
[ ∞∑
j=0

2
jnβ

p0
q

∞∑
l=j

2
(l−j)n p0

p1 (γ∗j,2ln)p0
] 1
p0

=
[ ∞∑
j=0

2
jn(β

p0
q
− p0
p1

)
∞∑
l=j

2ln2
ln(

p0
p1
−1)

(γ∗j,2ln)p0
] 1
p0 .
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Since p0
p1
− 1 < 0, we have

I .
[ ∞∑
j=0

2
jn(β

p0
q
− p0
p1

)
2
jn(

p0
p1
−1)

∞∑
l=j

2ln(γ∗j,2ln)p0
] 1
p0

=
[ ∞∑
j=0

2
−jn p0

p1 2
jn(β

p0
q
+
p0
p1
−1)

∞∑
l=j

2ln(γ∗j,2ln)p0
] 1
p0 .

We finish this estimate choosing β with β p0q + p0
p1
− 1 < 0, i.e., 0 < β < q( 1

p0
− 1

p1
)

and get with (3.11)

I .
[ ∞∑
j=0

2−jn
( ∞∑
l=j

2ln(γ∗j,2ln)p0
) p1
p0

] 1
p1 . ‖γ|b

n
(

1
p0
− 1
p1

)
p0,p1 (Rn)‖.

To estimate the second term, we start by using Hölder’s inequality with p1/q > 1

IIp1 .
∞∑
k=1

2−kn2
knβ

p1
q

k−1∑
j=0

2
−jnβ p1

q (γ∗j,0)
p1

=
∞∑
j=0

2
−jnβ p1

q (γ∗j,0)
p1

∞∑
k=j+1

2
kn(β

p1
q
−1)

.

Now, choosing β > 0 with β p1q − 1 < 0, i.e., 0 < β < q
p1

, we get again by (3.11)

IIp1 .
∞∑
j=0

2
−jnβ p1

q (γ∗j,0)
p12

jnβ
p1
q 2−jn

=

∞∑
j=0

(γ∗j,0)
p12−jn . ‖γ|b

n
(

1
p0
− 1
p1

)
p0,p1 (Rn)‖p1 .

Finally, we estimate the third term starting again by using a parameter δ > 0
and Hölder’s inequality

IIIp1 =
∞∑
k=1

2−kn
( ∞∑
j=k

2jnδ2−jnδ(γ∗
j,2(j−k)n)q

) p1
q

.
∞∑
k=1

2−kn2
−knδ p1

q

∞∑
j=k

2
jnδ

p1
q (γ∗

j,2(j−k)n)p1

=

∞∑
j=1

2
jnδ

p1
q

j∑
k=1

2
−kn(1+δ p1

q
)
(γ∗
j,2(j−k)n)p1 .

11



We substitute l = k − j and obtain

IIIp1 .
∞∑
j=1

2
jnδ

p1
q

j−1∑
l=0

2
(l−j)n(1+δ p1

q
)
(γ∗j,2ln)p1

=

∞∑
j=1

2−jn
[j−1∑
l=0

2
ln( q

p1
+δ)

p1
q (γ∗j,2ln)p1

]

≤
∞∑
j=1

2−jn
[j−1∑
l=0

2
ln( q

p1
+δ)

p0
q (γ∗j,2ln)p0

] p1
p0 ,

where the last step comes from the elementary embedding `p0 ↪→ `p1 . Choosing now
δ > 0 such that ( qp1 + δ)p0q = 1, i.e. δ = q

p0
− q

p1
> 0, we get

IIIp1 .
∞∑
j=1

2−jn
[j−1∑
l=0

2ln(γ∗j,2ln)p0
] p1
p0 . ‖γ|b

n
(

1
p0
− 1
p1

)
p0,p1 (Rn)‖p1 ,

which concludes the proof. �

4 Franke-Jawerth embeddings - variable exponent case

We now return to the scale of Besov and Triebel-Lizorkin spaces with variable ex-
ponents. First, we state the result in the form of embeddings of sequence spaces
under the assumptions we really need in the proof. After that, we combine those
with the conditions required in Theorem 2.6, and we present the results on function
spaces in the form of a corollary.

4.1 Jawerth embedding

Theorem 4.1. Let p0, p1, q ∈ P log(Rn) with p+0 < ∞ and s0, s1 ∈ C log
loc (Rn). Let

inf
x∈Rn

(s0(x)− s1(x)) > 0 with

s0(x)− n

p0(x)
= s1(x)− n

p1(x)
, x ∈ Rn. (4.12)

Then
f
s0(·)
p0(·),q(·)(R

n) ↪→ b
s1(·)
p1(·),p0(·)(R

n). (4.13)

Proof. Let us put

ε′ = inf
x∈Rn

(s0(x)− s1(x)) = inf
x∈Rn

( n

p0(x)
− n

p1(x)

)
> 0.

12



Then

p1(x)

p0(x)
− 1 = p1(x)

( 1

p0(x)
− 1

p1(x)

)
≥ p1(x)

ε′

n
≥ p−1 ε

′

n
.

Putting ε =
p−1 ε
′

2n > 0 we get for every x ∈ Rn

p0(x) < (1 + ε)p0(x) < p1(x). (4.14)

The proof of (4.13) will be the result of the following chain of embeddings

f
s0(·)
p0(·),q(·)(R

n) ↪→ f
s0(·)
p0(·),∞(Rn) ↪→ b

s0(·)− n
p0(·)

+ n
(1+ε)p0(·)

(1+ε)p0(·),p0(·) (Rn)

= b
s1(·)− n

p1(·)
+ n

(1+ε)p0(·)
(1+ε)p0(·),p0(·) (Rn) ↪→ b

s1(·)
p1(·),p0(·)(R

n). (4.15)

The first embedding in (4.15) is an elementary statement about the monotonicity of
f -spaces in the summability index q and the last embedding follows from Theorem
2.7 and (4.14). The identity in (4.15) is a simple consequence of (4.12). Hence, it
remains to prove the second embedding in (4.15), which is actually a special case
of (4.13) with q = ∞ and p1(x) = (1 + ε)p0(x). Finally, by the lifting property of
Besov and Triebel-Lizorkin spaces with variable exponents, we may consider only
the case when the smoothness exponent of the target space is zero.

The proof of (4.13) will therefore follow from

f
n

p0(·)
· ε
1+ε

p0(·),∞ (Rn) ↪→ b0(1+ε)p0(·),p0(·)(R
n) (4.16)

or, equivalently,

‖γ | b0(1+ε)p0(·),p0(·)(R
n)‖ ≤ C ‖γ | f

n
p0(·)

· ε
1+ε

p0(·),∞ (Rn)‖, (4.17)

for some constant C > 0 and γ = (γj,m)j,m, for j ∈ N0,m ∈ Zn.
Let us put

h(x) = sup
j,m

2
jn

p0(x)
· ε
1+ε |γj,m|χj,m(x), x ∈ Rn.

Then for every x ∈ Qj,m we have 2
jn

p0(x)
· ε
1+ε |γj,m| ≤ h(x) and

|γj,m| ≤ inf
y∈Qj,m

2
−jn
p0(y)

· ε
1+εh(y).

Using this notation,

‖γ|f
n

p0(x)
· ε
1+ε

p0(·),∞ (Rn)‖ = ‖h | Lp0(·)(R
n)‖

13



and (4.17) reads as

‖γ | b0(1+ε)p0(·),p0(·)(R
n)‖ ≤ C ‖h | Lp0(·)(R

n)‖.

We assume that ‖h | Lp0(·)‖ ≤ 1, i.e.∫
Rn
h(x)p0(x) dx ≤ 1, (4.18)

and need to prove that

‖γ | b0(1+ε)p0(·),p0(·)(R
n)‖ ≤ C,

which we will show by

%`p0(·)(L(1+ε)p0(·))

( ∑
m∈Zn

|γj,m|χj,m

)
≤ C.

We have

%`p0(·)(L(1+ε)p0(·))

( ∑
m∈Zn

|γj,m|χj,m

)
=

∞∑
j=0

∥∥∥ ∑
m∈Zn

|γj,m|p0(·)χj,m | L (1+ε)p0(·)
p0(·)

(Rn)
∥∥∥

≤
∞∑
j=0

∥∥∥ ∑
m∈Zn

(
inf

y∈Qj,m
2
−jn
p0(y)

· ε
1+εh(y)

)p0(·)
χj,m | L1+ε(Rn)

∥∥∥
=
∞∑
j=0

{ ∑
m∈Zn

∫
Qj,m

(
inf

y∈Qj,m
2
−jn
p0(y)

· ε
1+εh(y)

)(1+ε)p0(x)
dx
} 1

1+ε

=
∞∑
j=0

2−jn
ε

1+ε

{ ∑
m∈Zn

∫
Qj,m

(
inf

y∈Qj,m
2
−jnε

(
p0(x)
p0(y)

−1
)
h(y)(1+ε)p0(x)

)
dx
} 1

1+ε
.

We use the regularity of p0 to obtain for x, y ∈ Qj,m

2
−jn
(
p0(x)
p0(y)

−1
)

=
[
2
j
(

1
p0(x)

− 1
p0(y)

)]np0(x)
≤ 2np0(x)clog(1/p0) ≤ c′.

So, it is enough to prove

∞∑
j=0

2−jn
ε

1+ε

{ ∑
m∈Zn

∫
Qj,m

h
(1+ε)p0(x)
j,m dx

} 1
1+ε ≤ C, (4.19)

where we denoted
hj,m = inf

y∈Qj,m
h(y).
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We split the left-hand side of (4.19) into

∞∑
j=0

2−jn
ε

1+ε

{ ∑
m∈Zn

∫
Qj,m

h
(1+ε)p0(x)
j,m dx

} 1
1+ε

≤
∞∑
j=0

2−jn
ε

1+ε

{ ∑
{m:hj,m≤1}

∫
Qj,m

h
(1+ε)p0(x)
j,m dx

} 1
1+ε

+
∞∑
j=0

2−jn
ε

1+ε

{ ∑
{m:hj,m>1}

∫
Qj,m

h
(1+ε)p0(x)
j,m dx

} 1
1+ε

= I + II.

The first term can be estimated by (4.18)

I ≤
∞∑
j=0

2−jn
ε

1+ε

{ ∑
{m:hj,m≤1}

∫
Qj,m

h
p0(x)
j,m dx

} 1
1+ε

≤
∞∑
j=0

2−jn
ε

1+ε

{∫
Rn
h(x)p0(x)dx

} 1
1+ε ≤ c.

To estimate II, we make first a couple of observations. Let hj,m ≥ 1. Then

1 ≥
∫
Rn
h(x)p0(x)dx ≥

∫
Qj,m

h(x)p0(x)dx ≥
∫
Qj,m

h
p0(x)
j,m dx ≥ |Qj,m|h

p−0
j,m = 2−jnh

p−0
j,m

and we get

1 ≤ hj,m ≤ 2jn/p
−
0 .

Hence there is an 0 ≤ α ≤ 1 such that hj,m = 2αjn/p
−
0 . Since p+0 <∞, we have that

1/p0 ∈ C log
loc (Rn) implies p0 ∈ C log

loc (Rn) and we can use its regularity. Hence, there
is a constant c > 1 such that for any x, y ∈ Qj,m it holds c−1 ≤ 2j(p0(x)−p0(y)) ≤ c
and therefore

c−αn/p
−
0 ≤ 2

αjn

p−0
(p0(x)−p0(y))

= h
(p0(x)−p0(y))
j,m ≤ cαn/p

−
0 ≤ cn/p

−
0 . (4.20)

If we also denote pj,m = infy∈Qj,m p0(y), we obtain

h
p0(x)
j,m = h

p0(x)−pj,m
j,m · hpj,mj,m ≤ Ch

pj,m
j,m ≤ C inf

y∈Qj,m

(
h(y)p0(y)

)
.

The last fact we shall use is that

∞∑
j=0

2−jn
ε

1+ε

{ ∑
m∈Zn

∫
Qj,m

( inf
y∈Qj,m

ϕ(y))1+εdx
} 1

1+ε ≤ c‖ϕ | L1(Rn)‖ (4.21)
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for each ϕ ∈ L1(Rn). The proof follows easily using the technique of non-increasing
rearrangement.

∞∑
j=0

2−jn
ε

1+ε

{ ∑
m∈Zn

∫
Qj,m

( inf
y∈Qj,m

ϕ(y))1+εdx
} 1

1+ε

≤
∞∑
j=0

2−jn
ε

1+ε

{ ∞∑
l=1

2−jnϕ∗(l2−jn)1+ε
} 1

1+ε

.
∞∑
j=0

2−jn
ε

1+ε

{ ∞∑
k=0

2(k−j)nϕ∗(2(k−j)n)1+ε
} 1

1+ε

≤
∞∑
j=0

2−jn
ε

1+ε

∞∑
k=0

2(k−j)
n

1+εϕ∗(2(k−j)n)

=

∞∑
l=−∞

ϕ∗(2−ln)2−
ln
1+ε

∞∑
j=l

2−jn
ε

1+ε .
∞∑

l=−∞
ϕ∗(2−ln)2−ln ∼ ‖ϕ | L1(Rn)‖.

We apply (4.21) with ϕ(y) = h(y)p0(y) to estimate II

II =
∞∑
j=0

2−jn
ε

1+ε

{ ∑
{m:hj,m>1}

∫
Qj,m

h
(1+ε)p0(x)
j,m dx

} 1
1+ε

.
∞∑
j=0

2−jn
ε

1+ε

{ ∑
{m:hj,m>1}

∫
Qj,m

( inf
y∈Qj,m

h(y)p0(y))1+εdx
} 1

1+ε

.
∞∑
j=0

2−jn
ε

1+ε

{ ∑
m∈Zn

∫
Qj,m

( inf
y∈Qj,m

h(y)p0(y))1+εdx
} 1

1+ε

.
∫
Rn
h(y)p0(y)dy ≤ C

and finish the proof. �

Using the correspondence of sequence and function spaces from Theorem 2.6 we
obtain the Jawerth embedding for the variable function spaces.

Corollary 4.2. Let p0, p1, q ∈ P log(Rn) with p+0 , q
+ < ∞ and s0, s1 ∈ C log

loc (Rn).
Let infx∈Rn(s0(x)− s1(x)) > 0 with

s0(x)− n

p0(x)
= s1(x)− n

p1(x)
, x ∈ Rn.

Then
F
s0(·)
p0(·),q(·)(R

n) ↪→ B
s1(·)
p1(·),p0(·)(R

n).
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4.2 Franke embedding

In this section we prove the Franke embedding for function spaces with variable
exponents. We have to avoid duality arguments in the variable exponent setting
and therefore reduce the proof to the constant exponent case and apply Theorem
3.4, which we have shown in the previous section.

Theorem 4.3. Let p0, p1, q ∈ P log(Rn) with p+1 < ∞ and s0, s1 ∈ C log
loc (Rn). Let

infx∈Rn(s0(x)− s1(x)) > 0 with

s0(x)− n

p0(x)
= s1(x)− n

p1(x)
, x ∈ Rn.

Then
b
s0(·)
p0(·),p1(·)(R

n) ↪→ f
s1(·)
p1(·),q(·)(R

n).

Proof. By the lifting property we may suppose again s1 = 0, and the elementary
embeddings between f -spaces allow one to set

q(x) =
1

r
p1(x), with r > 1 chosen big enough.

So it suffices to prove the embedding

b
n( 1
p0(·)

− 1
p1(·)

)

p0(·),p1(·) (Rn) ↪→ f0
p1(·), 1r p1(·)

(Rn). (4.22)

Similarly to (4.14), p0(x) < p1(x) are again well separated and we may find ε > 0
with

p1(x) > (1− ε)p1(x) > p0(x).

By the Sobolev embedding from Theorem 2.7 we obtain

b
n( 1
p0(·)

− 1
p1(·)

)

p0(·),p1(·) (Rn) ↪→ b
n

p1(·)
ε

1−ε
(1−ε)p1(·),p1(·)(R

n).

Hence, instead of (4.22) we show

b
n

p1(·)
ε

1−ε
(1−ε)p1(·),p1(·)(R

n) ↪→ f0
p1(·), 1r p1(·)

(Rn). (4.23)

We assume that ‖γ | b
n

p1(·)
ε

1−ε
(1−ε)p1(·),p1(·)(R

n)‖ ≤ 1, which is equivalent to

∞∑
j=0

∥∥∥ ∑
m∈Zn

|γj,m|p1(·)2jn
ε

1−εχj,m | L1−ε(Rn)
∥∥∥ ≤ 1

or even
∞∑
j=0

2jn
ε

1−ε

(∫
Rn

∑
m∈Zn

|γj,m|(1−ε)p1(x)χj,m(x)dx

) 1
1−ε

≤ 1. (4.24)
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This implies that, for every j ∈ N0, we have the inequality∑
m∈Zn

∫
Qj,m

|γj,m|(1−ε)p1(x)dx ≤ 2−jnε. (4.25)

Our aim is to prove that ‖γ | f0
p1(·), 1r p1(·)

(Rn)‖ ≤ C, which is equivalent to prove

the following ∥∥∥ ∞∑
j=0

∑
m∈Zn

|γj,m|
p1(·)
r χj,m | Lr(Rn)

∥∥∥ ≤ C. (4.26)

We have∥∥∥ ∞∑
j=0

∑
m∈Zn

|γj,m|
p1(·)
r χj,m | Lr(Rn)

∥∥∥
≤
∥∥∥ ∞∑
j=0

∑
{m:|γj,m|≤1}

|γj,m|
p1(·)
r χj,m | Lr(Rn)

∥∥∥+
∥∥∥ ∞∑
j=0

∑
{m:|γj,m|>1}

|γj,m|
p1(·)
r χj,m | Lr(Rn)

∥∥∥
= I + II.

The estimate of I follows by (4.25)

I ≤
∞∑
j=0

( ∑
{m:|γj,m|≤1}

∫
Qj,m

|γj,m|p1(x)dx
) 1
r ≤

∞∑
j=0

( ∑
{m:|γj,m|≤1}

∫
Qj,m

|γj,m|(1−ε)p1(x)dx
) 1
r

≤
∞∑
j=0

2−jnε
1
r ≤ c.

To estimate II, we observe that (4.25) implies for every j ∈ N0 and m ∈ Zn with
|γj,m| > 1

2−jnε ≥
∫
Qj,m

|γj,m|(1−ε)p1(x)dx ≥ 2−jn|γj,m|(1−ε)p
−
1

and therefore

1 ≤ |γj,m| ≤ 2
jn 1

p−1 .

Similarly to (4.20), for every x ∈ Qj,m we have |γj,m|p1(x) ∼ |γj,m|pj,m , where pj,m is
the value of p1 in the middle of Qj,m. Denoting αj,m = |γj,m|pj,m , we get that (4.24)
implies

∞∑
j=0

2jn
ε

1−ε
(

2−jn
∑

{m:|γj,m|>1}

|γj,m|(1−ε)pj,m
) 1

1−ε ≤ c, (4.27)

or, equivalently,
∞∑
j=0

2−jn
( ∑
{m:|αj,m|>1}

|αj,m|1−ε
) 1

1−ε ≤ c. (4.28)
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To estimate the second term II it is therefore sufficient to show that∥∥∥ ∞∑
j=0

∑
{m:|γj,m|>1}

|γj,m|pj,m/rχj,m|Lr(Rn)
∥∥∥ ≤ C, (4.29)

which in turn is equivalent to∥∥∥ ∞∑
j=0

∑
{m:|αj,m|>1}

|αj,m|1/rχj,m|Lr(Rn)
∥∥∥ ≤ C. (4.30)

To obtain (4.30) from (4.28), we employ the constant-index case, i.e. Theorem 3.4.
Indeed, we put βj,m = |αj,m|1/r if |αj,m| > 1 and zero otherwise and get

∥∥∥ ∞∑
j=0

∑
{m:|αj,m|>1}

|αj,m|1/rχj,m|Lr(Rn)
∥∥∥ =

∥∥∥ ∞∑
j=0

∑
m∈Zn

|βj,m|χj,m|Lr(Rn)
∥∥∥

= ‖β | f0r,1‖ . ‖β | b
nε

r(1−ε)
(1−ε)r,r‖ =

{ ∞∑
j=0

2
jnε

(1−ε)r r
( ∑
m∈Zn

2−jnβ
(1−ε)r
j,m

) r
(1−ε)r

}1/r

=
{ ∞∑
j=0

2−jn
( ∑
m:|αj,m|>1

|αj,m|1−ε
) 1

1−ε
}1/r

≤ c1/r.

�

Corollary 4.4. Let p0, p1, q ∈ P log(Rn) with p+1 , q
+ < ∞ and s0, s1 ∈ C log

loc (Rn).
Let infx∈Rn(s0(x)− s1(x)) > 0 with

s0(x)− n

p0(x)
= s1(x)− n

p1(x)
, x ∈ Rn.

Then
B
s0(·)
p0(·),p1(·)(R

n) ↪→ F
s1(·)
p1(·),q(·)(R

n).

5 Jawerth and Franke embedding in 2-microlocal spaces

The definition of Besov and Triebel-Lizorkin spaces of variable smoothness and inte-
grability is a special case of the so-called 2-microlocal spaces of variable integrability.
As all the proofs for spaces of variable smoothness do also serve for 2-microlocal
spaces, we devote this chapter to present these results. We start by the definition of
the spaces, which is based on the dyadic decomposition of unity as presented before
combined with the concept of admissible weight sequences.
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Definition 5.1. Let α ≥ 0 and α1, α2 ∈ R with α1 ≤ α2. A sequence of non-
negative measurable functions in Rn w = (wj)j∈N0 belongs to the class Wα

α1,α2
(Rn)

if the following conditions are satisfied:

(i) There exists a constant c > 0 such that

0 < wj(x) ≤ cwj(y) (1 + 2j |x− y|)α for all j ∈ N0 and all x, y ∈ Rn.

(ii) For all j ∈ N0 it holds

2α1 wj(x) ≤ wj+1(x) ≤ 2α2 wj(x) for all x ∈ Rn.

Such a system (wj)j∈N0 ∈ Wα
α1,α2

(Rn) is called admissible weight sequence.

Properties of admissible weights may be found in [25, Remark 2.4]. Finally, here
is the definition of the spaces under consideration.

Definition 5.2. Let (ϕj)j∈N0 be a partition of unity as above, w = (wj)j∈N0 ∈
Wα
α1,α2

(Rn) and p, q ∈ P log(Rn).

(i) The space Bw
p(·),q(·)(R

n) is defined as the collection of all f ∈ S ′(Rn) such that

‖f | Bw
p(·),q(·)(R

n)‖ := ‖(wj (ϕj f̂)∨)j∈N0 | `q(·)(Lp(·)(Rn))‖

is finite.

(ii) If p+, q+ < ∞, then the space Bw
p(·),q(·)(R

n) is defined as the collection of all

f ∈ S ′(Rn) such that

‖f | Fw
p(·),q(·)(R

n)‖ := ‖(wj (ϕj f̂)∨)j∈N0 | Lp(·)(`q(·)(Rn))‖

is finite.

As before, the independence of the decomposition of unity for the 2-microlocal
spaces follows from the local means characterization (see [26] for Triebel-Lizorkin
and [28] for Besov spaces).

Remark 5.3. These 2-microlocal weight sequences are directly connected to variable
smoothness functions s : Rn → R if we set

wj(x) = 2js(x). (5.31)

If s ∈ C log
loc (Rn), then w = (wj(x))j∈N0 = (2js(x))j∈N0 belongs to Wα

α1,α2
(Rn) with

α1 = s− and α2 = s+ and α = clog(s), where clog(s) is the constant for s(·) from

20



(2.7). That means that spaces of variable smoothness from Definition 2.2 are a spe-
cial case of 2-microlocal function spaces from Definition 5.2. Both types of function
spaces are very closely connected and the properties used in the proofs are either

2j|s(x)−s(y)| ≤ c or
wj(x)

wj(y)
≤ c (5.32)

for |x− y| ≤ c 2−j and j ∈ N0. This property follows directly either from the defini-

tion of s ∈ C log
loc (Rn) or from Definition 5.1.

Theorem 5.4. Let w0,w1 ∈ Wα
α1,α2

(Rn) and p0, p1, q ∈ P log(Rn) with q+ < ∞.
Let p0(x) < p1(x) with infx∈Rn(p1(x)− p0(x)) > 0 and

1 <
w0
j (x)

w1
j (x)

= 2
j
(

n
p0(x)

− n
p1(x)

)
for all x ∈ Rn and j ∈ N0.

(i) If p+0 <∞, then

F
w0(·)
p0(·),q(·) ↪→ B

w1(·)
p1(·),p0(·).

(ii) If p+1 <∞, then

B
w0(·)
p0(·),p1(·) ↪→ F

w1(·)
p1(·),q(·).

Regarding the proof, one just needs to use the corresponding Sobolev embeddings
for 2-microlocal spaces (see [17] and [1]) and follow exactly the same steps as before
using always property (5.32) for the weight sequences.

6 Open Problems

We close by listing several open problems, which are connected to the study of
function spaces with variable exponents and their embeddings.

1. Give an example that infx∈Rn(s0(x)− s1(x)) > 0 is really needed and can not
be replaced by s0(x) > s1(x) for all x ∈ Rn. This seems to be feasible when
working with function space on the whole Rn, but it might get more tricky,
when considering only functions with support in, say, the unit cube [0, 1]n.

2. It is well known, that the Triebel-Lizorkin spaces F sp,q(Rn) with constant in-
dices might depend on the chosen decomposition of unity if p =∞. Therefore,
the restriction p+ < ∞ seems to be quite natural in Definition 2.2 (i). On
the other hand, there is no such trouble for spaces F sp,q(Rn) with p < ∞ and
q =∞. It would be therefore highly interesting if the Triebel Lizorkin spaces

F
s(·)
p(·),q(·)(R

n) can also be defined with q+ = ∞ but with still variable q. To

that end one needs to show that the spaces F
s(·)
p(·),q(·)(R

n) are independent on
the resolution of unity.
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3. Function spaces of Morrey type attracted recently a lot of attention in con-
nection with the analysis of Navier-Stokes equations [16] and function spaces
of Morrey type with variable exponents were introduced and studied already
[15]. Is there a version of the Franke and Jawerth embedding for this scale of
function spaces?

4. The Franke and Jawerth embeddings were used in [20] to describe the fine prop-
erties of Besov and Triebel-Lizorkin spaces in term of the so-called envelopes.
They determine the kind and size of singularities, which the functions from
these spaces might posses. On the other hand, function spaces of variable ex-
ponents capture very well the local properties of functions and distributions.
The interplay of the theory of envelopes and the function spaces with variable
exponents would be therefore interesting.
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SOC. Math. France, 325–341 (1973).
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