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Abstract

We prove that for any two quasi-Banach spaces X and Y and any α > 0 there
exists a constant cα > 0 such that

sup
1≤k≤n

kαek(T ) ≤ cα sup
1≤k≤n

kαck(T )

holds for all linear and bounded operators T : X → Y . Here ek(T ) is the k-th
entropy number of T and ck(T ) is the k-th Gelfand number of T . For Banach spaces
X and Y this inequality is widely used and well-known as Carl’s inequality. For
general quasi-Banach spaces it is a new result, which closes a gap in the argument
of Donoho in his seminal paper on compressed sensing.

1 Introduction

The theory of s-numbers [7, 27, 29] (sometimes also called n-widths) emerged from the
studies of geometry of Banach spaces and of operators between them but found many
applications in numerical analysis as well as linear and non-linear approximation theory
[9, 10, 11, 26, 24]. It turned out to be also useful in estimates of eigenvalues of operators
[5, 8, 22, 28].

Recently, the s-numbers were used in the area of compressed sensing [4, 12], cf. also
[3, 15], to provide general lower bounds for the performance of sparse recovery methods.
In its basic setting, compressed sensing studies pairs (A,∆) of linear measurement maps
A ∈ Rn×N and (non-linear) recovery maps ∆ : Rn → RN , such that the recovery error
x−∆(Ax) is small for k-sparse vectors x ∈ Σk = {x ∈ RN : #{i : xi 6= 0} ≤ k}. To allow
for stability needed in applications, it is also necessary that the methods of compressed
sensing are extendable to compressible vectors, i.e. to vectors which can be very well
approximated by sparse vectors. The performance of a pair (A,∆) in recovery of vectors
from some set K ⊂ RN is measured in the worst case by

ε(A,∆,K, Y ) = sup
x∈K
‖x−∆(Ax)‖Y ,
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where Y is a (quasi-)norm on RN . The search for the optimal recovery pair is then
expressed in the so-called compressive n-widths

En(K,Y ) = inf
{
ε(A,∆,K, Y ) : A ∈ Rn×N ,∆ : Rn → RN

}
.

Based on previous work in approximation theory and information based complexity [25,
26, 30] it was observed in [9, 12, 21] that the compressive n-widths of a symmetric and
subadditive set K (i.e. a set K with K = −K and K + K ⊂ aK for some a > 0) are
equivalent to Gelfand numbers of K, which are defined as

cn(K) = inf
M⊂⊂RN

codimM<n

sup
x∈K∩M

‖x‖Y .

Here, the infimum is taken over all linear subspaces M of RN with codimension smaller
than n. Any lower bound on Gelfand numbers of K therefore immediately translates
into lower bounds on recovery errors of vectors from K. Especially, if an algorithm
achieves the same recovery rate as the corresponding lower bound obtained by estimates
of Gelfand numbers, we know that this algorithm is asymptotically optimal.

In the frame of compressed sensing, the unit balls of `Np for 0 < p ≤ 1 are typically
used as a good model for compressible vectors and the error of recovery is mostly mea-
sured in the Euclidean norm of `N2 . Consequently, Donoho [12] investigated the decay of
En(BN

p , `
N
2 ) and, consequently, the decay of Gelfand numbers of BN

p in `N2 , which will

be denoted by cn(id : `Np → `N2 ) later on. The first estimates of these quantities for p = 1
were obtained by Garnaev, Gluskin, and Kashin [16, 18, 20]. For p < 1, the estimate
from above appeared first in [12] and using the approach of [24] it was proved also in
[34].

One of the most useful tools in the study of s-numbers is Carl’s inequality [5], which
relates the behavior of several of the most important scales of s-numbers to their entropy
numbers (see below for the exact definitions). If X and Y are Banach spaces and if
T : X → Y is a bounded linear operator between them, then Carl’s inequality states
that for every natural number n ∈ N

sup
1≤k≤n

kαek(T ) ≤ cα sup
1≤k≤n

kαsk(T ). (1.1)

Here, ek(T ) denotes the entropy numbers of T and sk(T ) stands for approximation,
Gelfand, or Kolmogorov numbers, respectively. For the definition of these quantities,
let T : X → Y be a bounded linear operator between quasi-Banach spaces X and
Y . Then we define the Gelfand numbers cn(T ), the Kolmogorov numbers dn(T ), the
approximation numbers an(T ) and the entropy numbers en(T ), respectively, by

cn(T ) = inf
M⊂⊂X

codimM<n

sup
x∈M
‖x‖X≤1

‖Tx‖Y

dn(T ) = inf
N⊂⊂Y
dimN<n

sup
‖x‖X≤1

inf
z∈N
‖Tx− z‖Y

an(T ) = inf{‖T − L‖ : L : X → Y, rank(L) < n}

en(T ) = inf
{
ε > 0 : T (BX) ⊂

2n−1⋃
j=1

(yj + εBY )
}
.
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In the last definition, BX can denote either the open or the closed unit ball in X. While
usually the closed unit ball is used, for technical reasons we prefer to work with the open
unit ball BX = {x ∈ X : ‖x‖X < 1}.

By applying (1.1) to T = id : `Np → `N2 and using the known results [23, 33] on

entropy numbers en(id : `Np → `N2 ), Donoho obtained a lower bound for cn(id : `Np → `N2 )

and, consequently, also for En(BN
p , `

N
2 ). The results obtained can be summarized as

cp min
{

1,
1 + log(N/n)

n

}1/p−1/2
≤ cn(id : `Np → `N2 ) ≤ Cp min

{
1,

1 + log(N/n)

n

}1/p−1/2
,

(1.2)
where 1 ≤ n ≤ N are natural numbers and the positive numbers cp, Cp do not depend on
n and N . The use of (1.1) in the proof of the lower estimate of (1.2) appeared for the first
time in [6] and we give a sketch of this argument in Section 4 for readers convenience.

Unfortunately, the argument just presented contains one crucial flaw, which was
overlooked by Donoho. Carl’s inequality (1.1) is proven in [5] only when X and Y
are Banach spaces. This gap was observed by S. Foucart and H. Rauhut during the
preparation of [15]. Furthermore, the arguments of Carl use implicitly the Hahn-Banach
theorem (which is of course not available for general quasi-Banach spaces) and it was
not clear if this approach can be somehow adapted to quasi-Banach spaces. The solution
was found in [14], where the authors used a completely different approach to prove the
lower bound in (1.2) for all 0 < p < 2. They avoided the use of Carl’s inequality
and proved (1.2) directly, using techniques from compressed sensing. The question if
Carl’s inequality allows for an extension to quasi-Banach spaces and Gelfand numbers
remained open. Indeed, the authors of [14] expressed their belief that “Carl’s theorem
actually fails for Gelfand widths of general quasi-norm balls”. Let us also mention,
that Carl’s inequality extends easily to quasi-Banach spaces and Kolmogorov numbers
or approximation numbers with only minor modifications necessary, cf. [2, 17] or [13,
Section 1.3.3].

The main result of this note is that Carl’s inequality also holds for quasi-Banach
spaces and Gelfand numbers. Consequently, (1.1) is true also for quasi-Banach spaces
with sk(T ) standing again for any of the scales of approximation, Gelfand, or Kolmogorov
numbers, respectively. As an application, this also provides an alternative proof for the
lower bound in (1.2).

Theorem 1.1. Let X and Y be quasi-Banach spaces. Then for any α > 0 there exists
a constant cα > 0 such that

sup
1≤k≤n

kαek(T ) ≤ cα sup
1≤k≤n

kαck(T ) (1.3)

holds for all linear and bounded operators T : X → Y .

We now explain the original proof of Carl’s inequality (1.3) for Gelfand numbers in
the case that X and Y are Banach spaces (cf. [5], [7, Theorem 3.1.1], or [31, Theorem
5.2]) and show why this somehow indirect approach completely fails in the quasi-Banach
case. The proof proceeds in the following way.

First, (1.3) is shown for approximation numbers ak(T ) instead of Gelfand numbers.
As noted before, this is easily extended to the quasi-Banach case. Afterwards, an iso-
metric embedding j : Y → `∞(S) for some set S is used. Such an embedding exists for
any Banach space Y and can be constructed with the Hahn-Banach theorem, e.g. with
S being the unit sphere or the unit ball in the dual space Y ∗. Already such an isometric
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embedding obviously does not exist if Y is not a Banach space. Now, making use of the
isometric embedding j, the following two properties of entropy and Gelfand numbers,
namely

(i) en(T ) ≤ 2en(j ◦ T ) for every n ∈ N, and

(ii) cn(T ) = an(j ◦ T ) for every n ∈ N

are essential. Equipped with these tools, (1.3) then follows simply by

sup
1≤k≤n

kαek(T ) ≤ 2 sup
1≤k≤n

kαek(j ◦ T ) ≤ 2cα sup
1≤k≤n

ak(j ◦ T ) ≤ 2cα sup
1≤k≤n

ck(T ). (1.4)

Let us comment on (i) and (ii) - and point out, why (ii) fails completely in the quasi-
Banach case.

The proof of (i) is easy. Let (j◦T )(BX) be covered by 2n−1 balls of radius ε in `∞(S).
Then (by just the triangle inequality) it can be covered by 2n−1 balls of radius 2ε in the
same space with centers in (j ◦ T )(X). Finally, as j is isometric, this can be translated
into a covering of T (BX) by 2n−1 balls of radius 2ε in Y .

The proof of (ii) is more involved - and makes heavy use of the Hahn-Banach theorem.
We will only comment on the more difficult inequality an(j ◦T ) ≤ cn(T ), which was used
in (1.4). The essential property of the space `∞(S) here is the extension property: any
linear bounded operator U : M → `∞(S) from a closed linear subspace M of a Banach
space X can be extended to an operator Ũ : X → `∞(S) with ‖Ũ‖ = ‖U‖. Again, the
proof of this extension property needs the Hahn-Banach Theorem now for the Banach
space X. So, this step is in general not possible if X is not a Banach space.

With the extension property the proof of (ii) is finished as follows. Given a subspace
M of X with codimM < n, we can extend U = j ◦ T |M to an operator Ũ : X → `∞(S)
with ‖Ũ‖ = ‖U‖ = ‖T |M‖ and, letting L = j ◦ T − Ũ we conclude that rank(L) < n and
an(j ◦T ) ≤ ‖j ◦T −L‖ = ‖Ũ‖ = ‖T |M‖. Finally, (ii) follows by taking the infimum over
all such M .

This discussion makes clear, that in this approach to Carl’s inequality via the approx-
imation numbers, the property that both X and Y are Banach spaces (and not merely
quasi-Banach spaces) is essential.

The structure of the paper is as follows. In Section 2 we collect some notation and
basic facts about quasi-Banach spaces. Section 3 gives the proof of our main result,
Theorem 1.1. With standard arguments, we derive the version of Carl’s inequality for
Lorentz norms, Theorem 3.4. Finally, in Section 4 we show how to use this new result
and the upper bound of (1.2) to show the lower bound in (1.2).

2 Quasi-Banach spaces

This section collects some basic facts about quasi-Banach spaces. We restrict ourselves to
the minimum needed later on and refer to [19] and the references therein for an extensive
overview. If X is a (real) vector space, we say that ‖ · ‖X : X → [0,∞) is a quasi-norm if

(i) ‖x‖X = 0 if, and only if x = 0,

(ii) ‖αx‖X = |α| · ‖x‖X for all α ∈ R and x ∈ X,

(iii) there is a constant C ≥ 1, such that ‖x+ y‖X ≤ C(‖x‖X + ‖y‖X) for all x, y ∈ X.
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If X is complete with respect to the metric induced by ‖ · ‖X , it is called a quasi-Banach
space. By the fundamental Aoki-Rolewicz theorem [1, 32], every quasi-norm is equivalent
to some p-norm, i.e. there exists a mapping |||·|||X : X → [0,∞) and 0 < p ≤ 1, such that
|||·|||X satisfies (i) and (ii) as above, (iii) gets replaced by |||x+ y|||pX ≤ |||x|||

p
X + |||y|||pX and

|||·|||X is equivalent to ‖ · ‖X on X. The expression |||·|||X is then called a p-norm and X
is a p-Banach space. As the validity of Carl’s inequality does not change if we replace
the quasi-norms on X and Y by equivalent quasi-norms, we shall always assume that X
and Y are equipped with a p-norm and a q-norm, respectively.

2.1 Quotients of quasi-Banach spaces

If X and Y are quasi-Banach spaces and T is a bounded linear operator between them,
we can still define Gelfand numbers cn(T ) as before, as the notion of codimension is
algebraic. Furthermore, if X is a p-Banach space and M ⊂⊂ X is a subspace, we can
also define the quotient space X/M and the usual definition makes it again a p-Banach
space. Indeed, let [x], [y] ∈ X/M . Then there are (for every ε > 0) zx, zy ∈M , such that

‖x− zx‖X ≤ (1 + ε)‖[x]‖X/M and ‖y − zy‖X ≤ (1 + ε)‖[y]‖X/M .

We then obtain

‖[x+ y]‖pX/M ≤ ‖x+ y − zx − zy‖pX ≤ ‖x− z
x‖pX + ‖y − zy‖pX

≤ (1 + ε)p(‖[x]‖pX/M + ‖[y]‖pX/M )

and the statement follows by letting ε→ 0.

2.2 Entropy numbers of identity mappings

We give an analogue of [27, (12.1.13)] for quasi-Banach spaces.

Lemma 2.1. Let X be a real m-dimensional p-Banach space, where m ∈ N and 0 < p ≤
1. Then

en(id : X → X) ≤ 41/p2−
n−1
m (2.1)

for all n ∈ N.

Proof. The inequality e1(id : X → X) ≤ 1 holds also for quasi-Banach spaces. If

(n− 1) ≤ 2m/p, then 2
n−1
m ≤ 41/p and (2.1) follows.

We assume therefore that (n− 1) > 2m/p. We choose ε > 0 by[
(1 + εp/2)1/p

ε/21/p

]m
= 2n−1, i.e. ε =

[
2

2
p(n−1)
m − 1

]1/p
< 1.

Let now x1, . . . , xN ∈ BX be a maximal subset of BX with mutual distances ‖xi −
xj‖X ≥ ε. Then BX can be covered by the balls xi + εBX and the balls xi + ε

21/p
BX

are mutually disjoint. Indeed, if there would be a z ∈ X with ‖xi − z‖X < ε/21/p and
‖xj − z‖X < ε/21/p, then ‖xi − xj‖pX ≤ ‖xi − z‖

p
X + ‖xj − z‖pX < εp. Furthermore, if

y ∈ xi + ε
21/p

BX , then y = xi + z with ‖z‖X < ε
21/p

and

‖y‖pX ≤ ‖xi‖
p
X + ‖z‖pX < 1 + εp/2.
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Hence, xi + ε
21/p

BX are mutually disjoint, all included in (1 + εp/2)1/pBX . Comparing
the volumes (with respect to any translation invariant normalized measure on X), we
get

N ·
( ε

21/p

)m
≤ (1 + εp/2)m/p, i.e. N ≤

[
(1 + εp/2)1/p

ε/21/p

]m
= 2n−1.

We therefore obtain that

en(id : X → X) ≤ ε =

[
2

2
p(n−1)
m − 1

]1/p
≤
[
4 · 2−

p(n−1)
m

]1/p
and (2.1) follows again.

3 Proof of Carl’s inequality

In this section we prove our main result, Theorem 1.1, as well as its Lorentz space
counterpart, Theorem 3.4.

3.1 Proof of Theorem 1.1

Let X be a p-Banach space and let Y be a q-Banach space. We fix a sequence (Mn)n∈N
of finite codimensional subspaces of X and let γn =

∥∥T |Mn

∥∥. We also fix a sequence
(εn)n∈N of positive numbers with εn ≤ 1. LetMn ⊂ BX/Mn

be an εn-net of the unit ball
of X/Mn, i.e. for any [x] ∈ BX/Mn

there exist [xn] ∈Mn such that∥∥[x]− [xn]
∥∥
X/Mn

= inf
z∈Mn

‖x− xn − z‖X < εn.

Let Nn ⊂ 21/pBX be a lifting ofMn, so for any x ∈ BX there exist xn ∈ Nn and zn ∈Mn

with
‖x− (xn + zn)‖X < εn.

Finally, let δ0 = 1 and

δn =
n∏
j=1

εj for n ∈ N.

The proof of Theorem 1.1 relies on an iterative construction. The single steps are
based on the lifting just described and the details are given in Lemma 3.1. Its inductive
use is then the subject of Lemma 3.2.

Lemma 3.1. For any x ∈ X with ‖x‖X < δ for some 0 < δ ≤ 1 there exist xn ∈ Nn
and zn ∈Mn such that

‖zn‖X < 41/p and ‖x− δ(xn + zn)‖X < δ · εn.

Proof. Since ‖x/δ‖X < 1, we find xn ∈ Nn and zn ∈Mn such that

‖x/δ − (xn + zn)‖X < εn.

This shows the second inequality. The bound on zn follows from the p-triangle inequality

‖zn‖pX ≤ ‖x/δ − (xn + zn)‖pX + ‖x/δ‖pX + ‖xn‖pX < 4.
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Lemma 3.2. For any x ∈ BX , there exist sequences (xn)n∈N, (zn)n∈N with xn ∈ Nn and
zn ∈Mn such that

(i) ‖zn‖X < 41/p for n ∈ N,

(ii) ‖x−
∑n

k=1 δk−1(xk + zk)‖X < δn for n ∈ N,

(iii) ‖Tx−
∑n

k=1 δk−1Txk‖
q
Y ≤ (‖T‖δn)q + 4q/p

∑n
k=1 δ

q
k−1γ

q
k for n ∈ N.

Proof. The existence of sequences (xn)n∈N, (zn)n∈N with xn ∈ Nn and zn ∈Mn satisfying
(i) and (ii) follows inductively from Lemma 3.1. It remains to prove (iii). We use the
q-triangle inequality, (i),(ii) and γn =

∥∥T |Mn

∥∥ to conclude that∥∥∥∥∥Tx−
n∑
k=1

δk−1Txk

∥∥∥∥∥
q

Y

≤

∥∥∥∥∥Tx−
n∑
k=1

δk−1T (xk + zk)

∥∥∥∥∥
q

Y

+
n∑
k=1

δqk−1‖Tzk‖
q
Y

≤
(
‖T‖δn

)q
+ 4q/p

n∑
k=1

δqk−1γ
q
k.

The next theorem now follows using the optimal subspaces Mn and the inequality
(2.1) for entropy numbers for the mn-dimensional p-Banach space X/Mn.

Theorem 3.3. Let T : X → Y be a bounded linear operator from the p-Banach space X
to the q-Banach space Y , where 0 < p, q ≤ 1. Let (kn)n∈N and (mn)n∈N be sequences of
positive integers. Then

ek1+···+kn+1−n(T )q ≤ 2
2nq/p−

∑n
j=1

kj−1

mj
·q‖T‖q + 4q/p

n∑
`=1

2
2(`−1)q/p−

∑`−1
j=1

kj−1

mj
·q
cm`+1(T )q.

Proof. Using the inequality for entropy numbers for themj-dimensional subspacesX/Mmj

with

εj = 41/p2
−
kj−1

mj , δk =

k∏
j=1

εj = 2
2k/p−

k∑
j=1

kj−1

mj
, j, k ∈ N,

Lemma 3.2 yields

ek1+···+kn+1−n(T )q ≤ 2
2nq/p−

∑n
j=1

kj−1

mj
·q‖T‖q + 4q/p

n∑
`=1

2
2(`−1)q/p−

∑`−1
j=1

kj−1

mj
·q
γm`(T )q

and the claim follows by taking the infimum over all subspaces (Mmj )
n
j=1 with codimMmj ≤

mj .

We are now ready to prove Theorem 1.1. It is enough to show

nαen(T ) ≤ γα sup
1≤k≤n

kαck(T )

for every n ∈ N. By homogeneity, we may assume that ck(T ) ≤ k−α for 1 ≤ k ≤ n, in
particular c1(T ) = ‖T‖ ≤ 1. By monotonicity, it is also enough to prove the statement
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for n = C 2N , where N ∈ N and C is a universal natural number. Choose β > α > 0,
mj = 2N−j , j = 1, . . . , N , and

kj = d2N−j(2/p+ β) + 1e, j = 1, . . . , N.

Then (kj − 1)/mj ≥ 2/p+ β and εj := 41/p2
−
kj−1

mj ≤ 2−β. By Theorem 3.3 we get

ek1+···+kN+1−N (T )q ≤ 2−βNq + 4q/p
N∑
l=1

2−β(l−1)q(2N−l + 1)−αq

≤ 2−βNq + 4q/p2−αNq2βq
N∑
l=1

2l(α−β)q ≤ cα,β2−Nαq.

Furthermore, let C ≥ 1 be a natural number with C ≥ 2/p+ β + 1. Then

1−N +
N∑
j=1

kj ≤ 1−N +
N∑
j=1

[2N−j(2/p+ β) + 2] = 1 +N + (2/p+ β)
N∑
j=1

2N−j

≤ 1 +N + (2/p+ β)2N ≤ C2N .

Putting these estimates together, we obtain

eC2N (T )q ≤ cα,β2−Nαq ≤ c′(C2N )−αq,

which gives the desired statement.

3.2 Lorentz space version

Using standard techniques, cf. [7, Theorem 3.1.2], Carl’s inequality can be easily ex-
tended to compare the Lorentz quasi-norms of (ek(T ))k∈N and (ck(T ))k∈N.

Theorem 3.4. Let X and Y be quasi-Banach spaces and let T : X → Y be a bounded
linear operator. Then for every 0 < s ≤ ∞ and every 0 < t <∞ there exists a constant
cs,t such that for every m ∈ N(

m∑
k=1

kt/s−1ek(T )t

)1/t

≤ cs,t

(
m∑
k=1

kt/s−1ck(T )t

)1/t

. (3.1)

Proof. Let α > max(1/s, 1/t) be fixed. By Theorem 1.1 and Hardy’s inequality [7,
Lemma 1.5.3] we get

m∑
k=1

kt/s−1ek(T )t =
m∑
k=1

kt/s−1−αt(kαek(T ))t ≤
m∑
k=1

kt/s−1−αt( sup
1≤l≤k

lαel(T ))t

≤ cα
m∑
k=1

kt/s−1−αt( sup
1≤l≤k

lαcl(T ))t

≤ cα
m∑
k=1

kt/s−1−αt
(

sup
1≤l≤k

( l∑
j=1

cj(T )1/α
)α)t

= cα

m∑
k=1

kt/s−1−αt
( k∑
j=1

cj(T )1/α
)αt

= cα

m∑
k=1

kt/s−1
(1

k

k∑
j=1

cj(T )1/α
)αt

≤ cα,s,t
m∑
k=1

kt/s−1ck(T )t.
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4 Lower bound on Gelfand numbers from Carl’s inequality

In this section, we sketch the use of Carl’s inequality (1.3) in the proof of the lower
bound in (1.2). This argument appeared first in [6] and we reproduce it (with only
minor modifications) here for reader’s convenience.

Theorem 4.1. For N ∈ N, 1 ≤ n ≤ N and 0 < p ≤ 2 it holds

cp min

{
1,

1 + log(N/n)

n

} 1
p
− 1

2

≤ cn(id : `Np → `N2 ) ≤ Cp min

{
1,

1 + log(N/n)

n

} 1
p
− 1

2

(4.1)
for some constants cp, Cp not depending on n and N .

Proof. The upper bound of this inequality was already provided in [34], so it only remains
to prove the lower bound. We follow the ideas of [6, Corollary 2.6]. By [23, 33], it is
known that for 0 < p ≤ q ≤ ∞

en(id : `Np → `Nq ) ≈


1 1 ≤ n ≤ logN(
1+log(N/n)

n

)1/p−1/q
logN ≤ n ≤ N

2−n/NN1/q−1/p N ≤ n,

(4.2)

where the constants of equivalence do not depend on the natural numbers n and N .
Using Carl’s inequality (1.3), the results on entropy numbers (4.2) and the upper bound
in (1.2), we deduce the lower bound in (1.2).

For p = 2, (4.1) is very well known and follows by basic properties of s-numbers. We
shall therefore assume that p < 2 and for brevity let us set α = 1/p − 1/2 > 0. Using
Carl’s inequality we obtain for any natural number n with logN ≤ n ≤ N

C1(n(1 + log(N/n)))α ≤ n2αen(id : `Np → `N2 ) ≤ sup
1≤j≤n

j2αej(id : `Np → `N2 )

≤ c2α sup
1≤j≤n

j2αcj(id : `Np → `N2 ).

For some λ > 1, which we shall fix later on, let us split up this supremum into two parts
to get

sup
1≤j≤n

j2αcj(id : `Np → `N2 ) ≤ sup
1≤j≤bn

λ
c
j2αcj(id : `Np → `N2 ) + sup

dn
λ
e≤j≤n

j2αcj(id : `Np → `N2 ).

(4.3)

We estimate the first summand on the right hand side by the upper bound in (4.1)

sup
1≤j≤bn

λ
c
j2αcj(id : `Np → `N2 ) ≤ Cp sup

1≤j≤bn
λ
c
j2α
(

1 + log(N/j)

j

)α
≤ Cp

(
n(1 + log(λN/n))

λ

)α
,

where we used that the function x → x · (1 + log(N/x)) is increasing for 1 ≤ x ≤ N .
Using λ > 1 we end up with

sup
1≤j≤bn

λ
c
j2αcj(id : `Np → `N2 ) ≤ Cp

(
n(1 + log λ+ log(N/n))

λ

)α
≤ Cp

(
1 + log λ

λ
· n(1 + log(N/n))

)α
.
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The second summand in (4.3) can easily be estimated by monotonicity of Gelfand num-
bers

sup
dn
λ
e≤j≤n

j2αcj(id : `Np → `N2 ) ≤ n2αcdn
λ
e(id : `Np → `N2 ).

Putting both estimates together we arrive at

c2αcdn
λ
e(id : `Np → `N2 ) ≥

(
C1 − c2αCp

(
1 + log λ

λ

)α)(1 + log(N/n)

n

)α
.

Observing that (1 + log λ)/λ→ 0 for λ→∞, there exists some λ0 > 1 such that

cd n
λ0
e(id : `Np → `N2 ) ≥ C2

(
1 + log(N/n)

n

)α
holds for all n ∈ N with logN ≤ n ≤ N and some constant C2 > 0 independent of n and
N .

Let now k be a natural number with logN ≤ k ≤ N/λ0 and put n = bλ0(k− 1) + 1c.
Then n ≤ λ0k ≤ N and dn/λ0e = k. By monotonicity of the function x → (1 +
log(N/x))/x we therefore obtain

ck(id : `Np → `N2 ) ≥ C2

(
1 + log(N/n)

n

)α
≥ C2

(
1 + log(N/(λ0k))

λ0k

)α
≥ C2

λα0 (1 + log λ0)α

(
1 + log(N/k)

k

)α
= C3

(
1 + log(N/k)

k

)α
.

This proves the lower bound in (4.1) for all k ∈ N with logN ≤ k ≤ N/λ0.
It remains to prove (4.1) for n < logN and for N/λ0 ≤ n ≤ N . If n < logN , then the

claim follows from cn(id : `Np → `N2 ) ≥ cdlogNe(id : `Np → `N2 ). Finally, for N/λ0 ≤ n ≤ N
we use

cn(id : `Np → `N2 ) ≥ cN (id : `Np → `N2 ) = inf
M⊂⊂`Np

codimM<N

sup
x∈M
‖x‖p≤1

‖x‖2 = inf
M ′⊂⊂`Np
dimM ′=1

sup
x∈M ′
‖x‖p≤1

‖x‖2

= inf
x∈`Np ,x 6=0

‖x‖2
‖x‖p

= ‖id : `N2 → `Np ‖−1 =
( 1

N

) 1
p
− 1

2
.
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[33] C. Schütt, Entropy numbers of diagonal operators between symmetric Banach
spaces, J. Approx. Theory 40 (2) (1984), 121–128

[34] J. Vyb́ıral, Widths of embeddings in function spaces, J. Compl. 24 (4) (2008), 545–
570

12


