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Abstract

The volume of the unit ball of the Lebesgue sequence space `mp is very
well known since the times of Dirichlet. We calculate the volume of the
unit ball in the mixed norm `nq (`

m
p ), whose special cases are nowadays

popular in machine learning under the name of group lasso. We consider
the real as well as the complex case. The result is given by a closed formula
involving the gamma function, only slightly more complicated than the
one of Dirichlet. We close by an overview of open problems.

1 Introduction

Exact formulas and estimates of volumes of convex bodies play a central role in
functional analysis and geometry of Banach spaces with numerous connections
to probability theory, approximation theory and other areas of mathematics.
We refer to the classical book [17] for an extensive treatment.

Unfortunately, for most of the bodies it is out of reach to express their volume
by simple formulas. The most important exception from this rule is the volume
of the unit ball of the Lebesgue sequence space

Bmp (R) = {x = (x1, . . . , xm) ∈ Rm :

m∑
j=1

|xj |p ≤ 1}

for 0 < p <∞ (with Bm∞(R) being just the cube [−1, 1]m with volume 2m). The
volume of Bmp (R) is very well known since the time of Dirichlet, cf. [9, 13]. It
can be expressed directly with the help of the gamma function as

vol(Bmp (R)) = 2m
Γ
(

1
p + 1

)m
Γ
(
m
p + 1

) , (1)
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where 1/p is interpreted as zero for p =∞.
The approach of Dirichlet is based on inductive formula for evaluation of mul-

tivariate integrals. Alternatively, a noninductive way to calculate vol(Bmp (R)) is
based on Gaussian integrals. We review briefly this approach using the notation
of [19]. For 0 < p <∞ we define

∆m
p = {x ∈ Rm : xj ≥ 0 for all j = 1, . . . ,m and ‖x‖p = 1}

and the normalized cone measure

µp(A) =
λ([0, 1] ·A)

λ([0, 1] ·∆m
p )
, A ⊂ ∆m

p ,

where λ is the usual Lebesgue measure in Rm. Applying the polar decomposition
identity [2] ∫

Rm
+
f(x)dλ(x)

λ([0, 1] ·∆m
p )

= m

∞∫
0

rm−1

∫
∆m

p

f(rx)dµp(x)dr

to f(x) = e−x
p
1−···−x

p
m , one gets(∫∞

0
e−t

p

dt
)m

2−m vol(Bmp (R))
= m

∞∫
0

rm−1e−r
p

dr.

After the substitution s = tp and employing the definition of the gamma func-
tion, the formula (1) follows.

The results on volumes of unit balls of finite dimensional spaces can be
usually translated into the language of entropy numbers of their embeddings.
Furthermore, by the results of Carl and Triebel [3, 4], they have implications
on the decay of different approximation widths as well as on the decay of eigen-
values of compact operators. Finally, by the use of discretization techniques,
these results can be exploited to study these quantities also for embeddings
of function spaces, see [23] for an overview of this approach and many refer-
ences. When applying this approach to weighted function spaces or function
spaces with dominating mixed smoothness, entropy numbers of embeddings of
mixed Lebesgue spaces `nq (`mp ) start to play a role, cf. [21, 22]. We refer also to
[7, 12, 14, 15] for other results on finite dimensional sequence spaces with mixed
norm.

Since the advent of Lasso [20] in 1996 and its success in analysis of high
dimensional data, there was a new wave of interest in geometry of finite di-
mensional sequence spaces. Ten years later it was exhibited in the theory of
compressed sensing [5, 6, 10] that the minimization of the `1-norm can be used
for recovery of sparse data from a small amount of random linear measurements.
To recover data with more complex sparsity patterns, other `1-based norms were
also studied. The most important functional in this connection is given by

min
x∈Rn×m

n∑
j=1

( m∑
k=1

|xj,k|2
)1/2

,
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which will be denoted by ‖x‖2,1 later on. Minimization of this norm is usually
denoted by group lasso [1, 16] and is used to recover data with block sparsity,
i.e. double sequences (xj,k), for which the set

{j ∈ {1, . . . , n} : ∃ k ∈ {1, . . . ,m} such that xj,k 6= 0}

has cardinality much smaller than n, cf. [24]. The rest of the paper is structured
as follows. In Section 2 we evaluate an auxiliary multivariate integral, in Section
3 we prove our main result, Theorem 3, extend the result to the complex case
and discuss few special cases in detail. We close in Section 4 with a list of open
problems.

2 Auxiliary integrals

In this section we want to calculate the value of the integrals

Am(α, β) =

∫
a≥0

0≤a1+···+am≤1

(1− a1 − · · · − am)βaα1 . . . a
α
mda

for m ∈ N and α, β > −1. The integration in this notation is with respect to
the set

{a = (a1, . . . , am) ∈ Rm : aj ≥ 0 for all j = 1, . . . ,m and 0 ≤ a1+· · ·+am ≤ 1}.

For that reason we use for t > 0 the gamma function

Γ(t) =

∞∫
0

xt−1e−xdx

with the well known properties Γ(t + 1) = tΓ(t), Γ(1) = 1 and Γ(1/2) =
√
π.

Furthermore, we need the beta function and the following identity

B(α, β) =

1∫
0

tα−1(1− t)β−1dt =
Γ(α)Γ(β)

Γ(α+ β)
,

which holds for all α, β > 0, see [8]. Now, we are ready to prove the following
identity for Am(α, β).

Theorem 1. Let m ∈ N and α, β > −1 then

Am(α, β) =
Γ(α+ 1)mΓ(β + 1)

Γ(m(α+ 1) + β + 1)
.

By choosing α = β > −1 we especially have

Am(α, α) =
Γ(α+ 1)m+1

Γ((m+ 1)(α+ 1))
.
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Proof. First we can observe

A1(α, β) =

1∫
0

(1− a)βaαda = B(α+ 1, β + 1) =
Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
. (2)

The rest of the proof follows from a recursion formula. We use the substi-
tution (b1, b2, . . . , bm−1, bm) = (a1, a2, . . . , am−1, a1 + · · · + am) with Jacobian
equal to one. It follows

Am(α, β) =

∫
a≥0

0≤a1+···+am≤1

(1− a1 − · · · − am)βaα1 . . . a
α
mda

=

∫
b≥0

0≤b1+···+bm−1≤bm≤1

(1− bm)βbα1 . . . b
α
m−1(bm − b1 − · · · − bm−1)αdb

=

1∫
0

(1− bm)β
∫

b′≥0
0≤b1+···+bm−1≤bm

bα1 . . . b
α
m−1(bm − b1 − · · · − bm−1)αdb′dbm,

where b′ = (b1, . . . , bm−1). Then we substitute c1 = b1/bm, . . . , cm−1 = bm−1/bm

with
∣∣∣db′dc ∣∣∣ = bm−1

m , which gives

=

1∫
0

(1− bm)βbmα+m−1
m dbm

∫
c≥0

0≤c1+···+cm−1≤1

cα1 . . . c
α
m−1(1− c1 − · · · − cm−1)αdc

= B(m(α+ 1), β + 1)Am−1(α, α).

So we have the identity

Am(α, β) = Am−1(α, α)
Γ(m(α+ 1))Γ(β + 1)

Γ(m(α+ 1) + β + 1)
. (3)

The rest of the proof follows by induction from (2) and (3).

3 The volume of the unit ball in `nq (`
m
p )

We are interested in the volume of the unit ball of the mixed sequence space
`nq (`mp ). First of all we treat the real case.
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3.1 Unit ball in `nq (`mp (R))

If x = (xj,k)n,mj,k=1 are real numbers, then we define for all 0 < p, q ≤ ∞

‖x‖p,q =

(
n∑
j=1

( m∑
k=1

|xj,k|p
)q/p)1/q

and Bm,np,q (R) = {x ∈ Rn×m : ‖x‖p,q ≤ 1}

with appropriate modifications if p or q is equal to infinity.
In the non-mixed case of `mp (R) the following result is well known [17, (1.17)].

Proposition 2. Let m ∈ N and 0 < p ≤ ∞ then

vol(Bmp (R)) = 2m
Γ
(

1
p + 1

)m
Γ
(
m
p + 1

) . (4)

For the mixed spaces `nq (`mp (R)) the following theorem is our main result.

Theorem 3. Let m,n ∈ N and 0 < p, q ≤ ∞ then

vol(Bm,np,q (R)) = 2mn
Γ
(

1
p + 1

)mn
Γ
(
nm
q + 1

) Γ
(
m
q + 1

)n
Γ
(
m
p + 1

)n . (5)

Proof. We give the proof for max(p, q) < ∞. The modifications necessary in
case of p =∞ or q =∞ are described in the subsection on special cases below.
First of all we restrict the volume to positive x ≥ 0 (meaning xj,k ≥ 0 for all
j, k)

vol(Bm,np,q (R)) =

∫
Bm,n

p,q (R)

1dx = 2mn
∫

Bm,n
p,q (R),x≥0

1dx

and using the substitution sj,k = xpj,k we obtain

=
2mn

pmn

∫
s∈Am,n

p,q (1)

n∏
j=1

m∏
k=1

s
1/p−1
j,k ds, (6)

where the integral is overAm,np,q (t) =
{
s ∈ Rn×m : s ≥ 0 and

n∑
j=1

( m∑
k=1

sj,k

)q/p
≤ t
}

.

Now, we can rewrite

vol(Bm,np,q (R)) =
2mn

pmn

∫
s≥0

0≤sn,1+···+sn,m≤1

(sn,1 . . . sn,m)1/p−1

∫
s′∈Am,n−1

p,q (1−(sn,1+···+sn,m)q/p)

n−1∏
j=1

m∏
k=1

s
1/p−1
j,k ds′ dsn,
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where s′ = (sj,k : j = 1, . . . , n− 1 and k = 1, . . . ,m) and sn = (sn,1, . . . , sn,m).
We substitute for j < n with σj,k =

sj,k
[1−(sn,1+···+sn,m)q/p]p/q

and get

=
2mn

pmn

∫
s≥0

0≤sn,1+···+sn,m≤1

(sn,1 . . . sn,m)1/p−1
[
1− (sn,1 + · · ·+ sn,m)q/p

]m(n−1)
q

dsn×

×
∫

σ∈Am,n−1
p,q (1)

n−1∏
j=1

m∏
k=1

σ
1/p−1
j,k dσ

= vol(Bm,n−1
p,q (R))

2m

pm

∫
s≥0

0≤s1+···+sm≤1

(s1 . . . sm)1/p−1
[
1− (s1 + · · ·+ sm)q/p

]m(n−1)
q

ds,

(7)

where the last equality follows from comparison to (6). Now, we evaluate the
last integral in (7) putting λ1 = s1, . . . , λm−1 = sm−1 and λm = s1 + · · ·+ sm∫

s≥0
0≤s1+···+sm≤1

(s1 . . . sm)1/p−1
[
1− (s1 + · · ·+ sm)q/p

]m(n−1)
q

ds

=

∫
λ≥0

0≤λ1+···+λm−1≤λm≤1

(λ1 . . . λm−1)1/p−1(λm − (λ1 + · · ·λm−1))1/p−1(1− λq/pm )
m(n−1)

q dλ

=

1∫
0

(1− λq/pm )
m(n−1)

q

∫
λ′≥0

0≤λ1+···+λm−1≤λm

(λ1 . . . λm−1)1/p−1(λm − (λ1 + · · ·λm−1))1/p−1dλ′ dλm

and substituting µj =
λj

λm
for j ≤ m− 1 we obtain

=

1∫
0

(1− λq/pm )
m(n−1)

q λm/p−1
m dλm

∫
µ≥0

0≤µ1+···+µm−1≤1

(µ1 . . . µm−1)1/p−1(1− (µ1 + · · ·µm−1))1/p−1dµ

= Am−1(1/p− 1, 1/p− 1)

1∫
0

(1− λq/pm )
m(n−1)

q λm/p−1
m dλm. (8)

6



Finally, we use t = λ
q/p
m and see that the last integral equals

1∫
0

(1− λq/pm )
m(n−1)

q λm/p−1
m dλm =

p

q

1∫
0

(1− t)
m(n−1)

q t
m
q −1dt

=
p

q
B

(
m

q
,
m(n− 1)

q
+ 1

)
=
p

q

Γ(mq )Γ(m(n−1)
q + 1)

Γ(mnq + 1)
(9)

Using the recursive formula (7) with (8) and (9) and Theorem 1 we obtain

vol(Bm,np,q (R)) = vol(Bm,n−1
p,q (R))

2m

pm
Am−1

(
1

p
− 1,

1

p
− 1

)
p

q

Γ(mq )Γ(m(n−1)
q + 1)

Γ(mnq + 1)

= vol(Bm,n−1
p,q (R))

2m

pm
p

q

Γ( 1
p )m

Γ(mp )

Γ(mq )Γ(m(n−1)
q + 1)

Γ(mnq + 1)

= vol(Bm,n−1
p,q (R))2m

mp

mq

Γ(mq )

Γ(mp )
Γ

(
1

p
+ 1

)m Γ(m(n−1)
q + 1)

Γ(mnq + 1)

and using (7) n− 2 times we have

= vol(Bm,1p,q (R))

[
2m

Γ(mq + 1)

Γ(mp + 1)
Γ

(
1

p
+ 1

)m]n−1
Γ(mq + 1)

Γ(mnq + 1)
.

(10)

We observe that Bm,1p,q (R) = Bmp (R) and using Proposition 2 we finally get

vol(Bm,np,q (R)) = 2m(n−1)2m
Γ( 1

p + 1)m

Γ(mp + 1)

Γ(mq + 1)n−1

Γ(mp + 1)n−1
Γ

(
1

p
+ 1

)m(n−1) Γ(mq + 1)

Γ(mnq + 1)

= 2mn
Γ(mq + 1)n

Γ(mp + 1)n

Γ( 1
p + 1)mn

Γ(mnq + 1)
,

which finishes the proof.

3.2 Alternative proof

We present an alternative proof of (5), which was communicated to us by Prof.
Franck Barthe shortly after the first version of this paper was finished.

Let K ⊂ Rd be a symmetric convex body with non-empty interior and let
‖ · ‖K be the corresponding norm (i.e. its Minkowski functional).

Modifying the classical computation from convex geometry (cf. [17, page
11]) we get for smooth non-negative function f on [0,∞) with fast decay at
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infinity ∫
Rd

f(‖x‖K)dx = −
∫
Rd

∞∫
‖x‖K

f ′(t)dtdx = −
∞∫

0

∫
x:‖x‖K≤t

1 dxf ′(t)dt

= −
∞∫

0

vol(tK)f ′(t)dt = − vol(K)

∞∫
0

tdf ′(t)dt (11)

= vol(K) ·
∞∫

0

dtd−1f(t)dt.

Plugging f(t) = e−t
p

into (11), we obtain in particular

∫
Rd

e−‖x‖
p
Kdx = vol(K) ·

∞∫
0

dtd−1e−t
p

dt = vol(K) · d
p
·
∞∫

0

sd/p−1e−sds

=
d vol(K)Γ(d/p)

p
= vol(K)Γ(1 + d/p). (12)

This formula can already be used to give the volume of the `dp-unit ball. Indeed,

we get for K = Bdp

vol(Bdp)Γ(1 + d/p) =

∫
Rd

e−‖x‖
p
pdx =

(
2

∞∫
0

e−t
p

dt
)d

= 2d
(1

p

∞∫
0

s1/p−1e−sds
)d

= 2d
(Γ(1/p)

p

)d
= 2dΓ(1 + 1/p)d, (13)

giving (1) again. Choosing K to be the unit ball of `nq (`mp (R)), we get by (12)

Γ
(

1 +
mn

q

)
vol(Bm,np,q (R)) =

∫
Rn×m

e−‖x‖
q
p,qdx

=

∫
Rn×m

exp
(
−

n∑
j=1

( m∑
k=1

|xj,k|p
)q/p)

dx

=

n∏
j=1

∫
Rm

exp
(
−
( m∑
k=1

|xj,k|p
)q/p)

dxj,· (14)

=
(∫
Rm

exp
(
−
( m∑
k=1

|xk|p
)q/p)

dx
)n

=
(∫
Rm

e−‖x‖
q
pdx
)n

=
[
Γ
(
1 +

m

q

)
vol(Bmp )

]n
,
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where we have used Fubini’s theorem and (12) again in the last line. Plugging
(13) with m instead of d gives finally

vol(Bm,np,q (R)) =
1

Γ
(

1 + mn
q

)[Γ(1 +
m

q

)2mΓ(1 + 1/p)m

Γ(1 +m/p)

]n

= 2mn
Γ
(

1
p + 1

)mn
Γ
(
nm
q + 1

) Γ
(
m
q + 1

)n
Γ
(
m
p + 1

)n .
As pointed to us by Aicke Hinrichs, this approach can be easily generalized

to calculate the volume of the unit ball of the space `nq (Xj), where Xj are dj-

dimensional (quasi-)Banach spaces and ‖x‖`nq (Xj) =
(∑n

j=1 ‖xj‖
q
Xj

)1/q

giving

vol(B`nq (Xj)) =

∏n
j=1 Γ(1 +

dj
q ) vol(BXj

)

Γ
(

1 +
∑n

j=1 dj

q

) . (15)

Finally, we observe that (12) and (14) can be easily adapted to calculate the
volume of an anisotropic unit ball

Bp1,...,pn = {x ∈ Rn : ‖x‖p1,...,pn = |x1|p1 + · · ·+ |xn|pn ≤ 1}.

What we need is

vol({x ∈ Rn : ‖x‖p1,...,pn ≤ t}) = vol({x ∈ Rn : |x1|p1 + · · ·+ |xn|pn ≤ t})

= vol
({
x ∈ Rn :

∣∣∣ x1

t1/p1

∣∣∣p1 + · · ·+
∣∣∣ xn
t1/pn

∣∣∣pn ≤ 1
})

= vol(DτBp1,...,pn) (16)

= t1/p1+···+1/pn vol(Bp1,...,pn)

for every t > 0. Here, Dτ denotes a diagonal matrix with t1/p1 , . . . , t1/pn on the
diagonal. With the help of (16), we get the analogue of (11)∫
Rd

f(‖x‖p1,...,pn)dx = −
∫
Rd

∞∫
‖x‖p1,...,pn

f ′(t)dtdx = −
∞∫

0

∫
x:‖x‖p1,...,pn≤t

1 dxf ′(t)dt

= − vol(Bp1,...,pn)

∞∫
0

t1/p1+...1/pnf ′(t)dt (17)

= vol(Bp1,...,pn)

(
1

p1
+ · · ·+ 1

pn

)
·
∞∫

0

t1/p1+...1/pn−1f(t)dt,

where f is a smooth non-negative function on [0,∞) with fast decay at infinity.
Now, using f(t) = e−t gives us

vol(Bp1,...,pn) = 2n
Γ(1 + 1/p1) · . . . · Γ(1 + 1/pn)

Γ(1 + 1/p1 + · · ·+ 1/pn)
, (18)
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which coincides with the result obtained by Dirichlet in [9]. Although one could
easily combine for example (18) with (15) to give volumes of more and more
complicated bodies, we do not go into details and leave this to the interested
reader.

3.3 Unit ball in `nq (`mp (C))

If z = (zj,k)n,mj,k=1 are complex numbers, then we define for all 0 < p, q ≤ ∞

‖z‖p,q =

(
n∑
j=1

( m∑
k=1

|zj,k|p
)q/p)1/q

and Bm,np,q (C) = {z ∈ Cn×m : ‖z‖p,q ≤ 1}.

Since C maybe identified with R2 we can reformulate

Bm,np,q (C) =

u, v ∈ Rn×m :

n∑
j=1

( m∑
k=1

(u2
j,k + v2

j,k)p/2
)q/p

≤ 1

 .

In the non-mixed case the following result holds.

Proposition 4 (Proposition 3.2.1 in [11]). Let 0 < p ≤ ∞ then the volume of
the unit ball in `mp (C) equals

vol(Bmp (C)) = πm
Γ
(

2
p + 1

)m
Γ
(

2m
p + 1

) =
(π

2

)m
vol
(
Bmp

2
(R)
)
.

A similar result holds in the mixed case.

Theorem 5. Let m,n ∈ N and 0 < p, q ≤ ∞ then

vol(Bm,np,q (C)) =
(π

2

)mn
vol
(
Bm,np

2 ,
q
2

(R)
)

= πmn
Γ
(

2
p + 1

)mn
Γ
(

2nm
q + 1

) Γ
(

2m
q + 1

)n
Γ
(

2m
p + 1

)n .
Proof. We start by using the substitution uj,k = rj,k cosϕj,k and vj,k = rj,k sinϕj,k,
then

vol(Bm,np,q (C)) =

∫
Bm,n

p,q (C)

1d(u, v) = (2π)mn
∫

{
r ≥ 0 :

n∑
j=1

( m∑
k=1

rpj,k

)q/p
≤ 1
}

n∏
j=1

m∏
k=1

rj,kdr
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and using sj,k = rpj,k we obtain withAm,np,q (t) =
{
s ∈ Rn×m : s ≥ 0 and

n∑
j=1

( m∑
k=1

sj,k

)q/p
≤ t
}

= πmn
(

2

p

)mn ∫
s∈Am,n

p
2
,
q
2

(1)

n∏
j=1

m∏
k=1

s
2
p−1

j,k ds.

Now comparing the last integral to (6) immediately implies

vol(Bm,np,q (C)) =
(π

2

)mn
vol
(
Bm,np

2 ,
q
2

(R)
)
.

3.4 Special cases

In this section we present our main result Theorem 3 in special cases and com-
pare it with known results. First of all we give a table combining the cases
p, q ∈ {1, 2,∞}.

vol(Bm,np,q (R)) p = 1 p = 2 p =∞

q = 1 2mn

(mn)!
π

mn
2

(mn)!
(m!)n

Γ(m/2+1)n 2mn (m!)n

(mn)!

q = 2 2mn

(m!)n
Γ(m/2+1)n

Γ(mn/2+1)
π

mn
2

Γ(mn/2+1) 2mn Γ(m/2+1)n

Γ(mn/2+1)

q =∞ 2mn

(m!)n
π

mn
2

Γ(m/2+1)n 2mn

q =∞: Now, we consider the special case of q =∞, i.e.

Bm,np,∞(R) =

{
x ∈ Rn×m : max

1≤j≤n

m∑
k=1

|xj,k|p ≤ 1

}

which can be reformulated by

=

{
x ∈ Rn×m :

m∑
k=1

|xj,k|p ≤ 1 for all 1 ≤ j ≤ n

}
.

By using Proposition 2 we can easily calculate

vol(Bm,np,∞(R)) =

∫
x∈Bm,n

p,∞(R)

1dx =

 ∫
{x∈Rm:‖x‖p≤1}

1dx


n

=
(
vol(Bmp (R))

)n
= 2mn

Γ(1/p+ 1)mn

Γ(m/p+ 1)n
,
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which corresponds to (5) for q =∞.

p =∞: Considering the case p =∞ we can write the unit ball

Bm,n∞,q (R) =

x ∈ Rn×m :

n∑
j=1

max
1≤k≤m

|xj,k|q ≤ 1


and we get

vol(Bm,n∞,q (R)) = 2mn
∫

x≥0,x∈Bm,n
∞,q (R)

1dx = 2mn
∫
λ≥0

0≤λq
1+···+λq

n≤1

∫
x≥0

maxk=1,...,m xj,k=λj

1dx dλ

= 2mn
∫
λ≥0

0≤λq
1+···+λq

n≤1

n∏
j=1

(mλm−1
j )dλ = 2mnmn

∫
λ≥0

0≤λq
1+···+λq

n≤1

n∏
j=1

λm−1
j dλ,

where the last but one identity follows from the fact that the surface of the set
{y ∈ Rm : y ≥ 0 and maxk=1,...,m yk = λ} is equal to mλm−1.

We put τj = λqj and get

vol(Bm,n∞,q ) = 2mnmn

∫
τ≥0

0≤τ1+···+τn≤1

n∏
j=1

(
τ

(m−1)/q
j · 1

qτ
1−1/q
j

)
dτ

= 2mn
mn

qn

∫
τ∈A1,n

p
m

,
q
m

(1)

n∏
j=1

τ
m/q−1
j dτ.

Comparing the last integral to (6) we see the connection to vol(Bnq/m(R)) and
we obtain

vol(Bm,n∞,q ) = 2n(m−1) vol(Bnq/m(R)) = 2mn
Γ(m/q + 1)n

Γ(nm/q + 1)
,

i.e. (5) for p =∞.

p = q: In this case we can write

Bm,np,p (R) =

x ∈ Rn×m :

n∑
j=1

m∑
k=1

|xj,k|p ≤ 1


= Bmnp (R)

and we easily obtain from Proposition 2 the expected result

vol(Bm,np,p (R)) = 2mn
Γ(1/p+ 1)mn

Γ(mn/p+ 1)
.
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m = 1 or n = 1: In these cases we directly see

B1,n
p,q (R) = Bnq (R) as well as Bm,1p,q (R) = Bmp (R)

and Proposition 2 then coincides with (5) in Theorem 3.

4 Closing remarks

The elements of the space Rn×m are usually identified with n×m matrices. The
most important matrix norms (like the nuclear norm or the spectral norm) are,
however, not given by simple conditions on the entries of the matrix but rather
on its singular values. We refer to [18] for results on volumes of unit balls with
respect to these norms.

Theorem 3 gives the volume of the unit ball of `nq (`mp ). On the other hand,
it leaves a number of questions open. Let us briefly discuss the most important
ones.

• On many occurrences in mathematics it is more convenient to work with
Lorentz sequence spaces instead of Lebesgue sequence spaces. If 0 < p ≤
∞, the weak-`mp (quasi-)norm is defined as

‖x‖p,∞ = max
j=1,...,m

j1/px∗j ,

where (x∗j )
m
j=1 is the non-increasing rearrangement of x ∈ Rm. To our

best knowledge, no closed formula for the volume of the unit ball {x ∈
Rm : ‖x‖p,∞ ≤ 1} is available in the literature. The same holds true for
the general Lorentz sequence spaces `mp,q with 0 < q <∞ if q 6= p.

• Comparing (5) with (4), we observe that

vol(Bm,np,q (R)) = vol(Bn·mq (R)) ·
[vol(Bmp (R))]n

[vol(Bmq (R))]n
. (19)

This formula appeared implicitly already in (14). We leave it open if this
formula has some geometric or combinatoric interpretation, which would
allow for an non-analytical proof of Theorem 3.

Acknowledgment: We would like to thank Franck Barthe for careful read-
ing of a previous version of this manuscript, for communicating the alternative
proof given in Section 3.2 to us and for pointing us to the reference [18]. Fur-
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