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Abstract

We provide non-smooth atomic decompositions for Besov spaces B
s

p,q(R
n), s > 0, 0 < p, q ≤ ∞,

defined via differences. The results are used to compute the trace of Besov spaces on the boundary Γ
of bounded Lipschitz domains Ω with smoothness s restricted to 0 < s < 1 and no further restrictions
on the parameters p, q. We conclude with some more applications in terms of pointwise multipliers.
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Introduction

Besov spaces – sometimes briefly denoted as B-spaces in the sequel – of positive smoothness, have been
investigated for many decades already, resulting, for instance, from the study of partial differential equa-
tions, interpolation theory, approximation theory, harmonic analysis.
There are several definitions of Besov spaces Bsp,q(R

n) to be found in the literature. Two of the most
prominent approaches are the Fourier-analytic approach using Fourier transforms on the one hand and
the classical approach via higher order differences involving the modulus of smoothness on the other.
These two definitions are equivalent only with certain restrictions on the parameters, in particular, they
differ for 0 < p < 1 and 0 < s ≤ n( 1

p − 1), but may otherwise share similar properties.

In the present paper we focus on the classical approach, which introduces Bsp,q(R
n) as those subspaces of

Lp(R
n) such that

‖f |Bsp,q(Rn)‖r = ‖f |Lp(Rn)‖+

(∫ 1

0

t−sqωr(f, t)
q
p

dt

t

)1/q

is finite, where 0 < p, q ≤ ∞, s > 0, r ∈ N with r > s, and ωr(f, t)p is the usual r-th modulus of
smoothness of f ∈ Lp(Rn).
These spaces occur naturally in nonlinear approximation theory. Especially important is the case p < 1,
which is needed for the description of approximation classes of classical methods such as rational ap-
proximation and approximation by splines with free knots. For more details we refer to the introduction
of [7].
For our purposes it will be convenient to use an equivalent characterization for the classical Besov spaces,
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cf. [17], [45, Sect. 9.2], and also [34, Th. 2.11], relying on smooth atomic decompositions. They which
allow us to characterize Bsp,q(R

n) as the space of those f ∈ Lp(Rn) which can be represented as

f(x) =

∞
∑

j=0

∑

m∈Zn

λj,maj,m(x), x ∈ R
n, (0.1)

with the sequence of coefficients λ = {λj,m ∈ C : j ∈ N0,m ∈ Zn} belonging to some appropriate
sequence space bsp,q, where s > 0, 0 < p, q ≤ ∞, and with smooth atoms aj,m(x).

It is one of the aims of the present paper to develop non-smooth atomic decompositions for Besov spaces
Bsp,q(R

n), cf. Theorem 2.6 and Corollary 2.8. We will show that one can relax the assumptions on
the smoothness of the atoms aj,m used in the representation (0.1) and, thus, replace these atoms with
more general ones without loosing any crucial information compared smooth atomic decompositions for
functions f ∈ Bsp,q(R

n).
There are only few forerunners dealing with non-smooth atomic decompositions in function spaces so far.
We refer to the papers [44], [26], and [4], all mainly considering the different Fourier-analytic approach
for Besov spaces and having in common that they restrict themselves to the technically simpler case
when p = q. Our approach generalizes and extends these results and seems to be the first one covering
the full range of indices 0 < p, q ≤ ∞. The reader may also consult [31] for another generalization of the
classical atomic decomposition technique using building blocks of limited smoothness.

The additional freedom we gain in the choice of suitable non-smooth atoms aj,m for the atomic
decompositions of f ∈ Bsp,q(R

n) makes this approach well suited to further investigate Besov spaces
Bsp,q(Ω) on non-smooth domains Ω and their boundaries Γ. In particular, we shall focus on bounded
Lipschitz domains and start by obtaining some interesting new properties concerning interpolation and
equivalent quasi-norms for these spaces as well as an atomic decomposition for Besov spaces Bsp,q(Γ),
defined on the boundary Γ = ∂Ω of a Lipschitz domain.

But the main goal of this article is to demonstrate the strength of the newly developed non-smooth atomic
decompositions in view of trace results. The trace is taken with respect to the boundary Γ of bounded
Lipschitz domains Ω. Our main result reads as

Tr B
s+ 1

p
p,q (Ω) = Bsp,q(Γ),

where n ≥ 2, 0 < s < 1, and 0 < p, q ≤ ∞, cf. Theorem 4.11. Its proof reveals how well suited non-
smooth atoms are in order to tackle this problem. The limiting case s = 0 is also considered in Corollary
4.13.
In the range 0 < s < 1, our results are optimal in the sense that there are no further restrictions on the
parameters p, q. The fact that we now also cover traces in Besov spaces Bsp,q(R

n) with p < 1 could be of
particular interest in nonlinear approximation theory.
Moreover, as a by-product we obtain corresponding trace results on Lipschitz domains for Triebel-Lizorkin
spaces, defined via atomic decompositions.
The papers [33] and [34], dealing with traces on hyperplanes and smooth domains, respectively, might
be considered as forerunners of the trace results established in this paper. Nevertheless, the methods we
use now are completely different.
The same question for s ≥ 1 was studied in [20]. It turns out that in this case the function spaces on
the boundary look very different and also the extension operator must be changed. Moreover, based on
the seminal work [19], traces on Lipschitz domains were studied in [22, Th. 1.1.3] for the Fourier-analytic
Besov spaces with the natural restrictions

(n− 1) max

(

1

p
− 1, 0

)

< s < 1 and
n− 1

n
< p. (0.2)
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Our Theorem 4.11 actually covers and extends [22, Th. 1.1.3], as for the parameters restricted by (0.2)
the Besov spaces defined by differences coincide with the Fourier-analytic Besov spaces.
In contrast to Mayboroda we make use of the classical Whitney extension operator and the cone
property of Lipschitz domains in order to establish our results instead of potential layers and interpolation.
Moreover, the extension operator we construct is not linear – and in fact cannot be whenever s <
(n − 1) max( 1

p − 1, 0) – compared to the extension operator in [22, Th. 1.1.3]. Let us recall that the
importance of non-linear extension operators is known in the theory of differentiable spaces since the
pioneering work of Gagliardo [14], cf. also [2, Chapter 5].
Finally, we shall use the non-smooth atomic decompositions again to deal with pointwise multipliers in
the respective function spaces. Let Bsp,q,selfs(R

n) denote the self-similar spaces introduced in Definition
5.1 and M(Bsp,q(R

n)) the set of all pointwise multipliers of Bsp,q(R
n). We prove for s > 0, 0 < p, q ≤ ∞

in Theorem 5.4 the relationship
⋃

σ>s

Bsp,q,selfs(R
n) ⊂M(Bsp,q(R

n)) →֒ Bsp,q,selfs(R
n). (0.3)

Additionally, if 0 < p ≤ 1, one even has a coincidence in terms of M(Bsp,p(R
n)) = Bsp,p,selfs(R

n).
Our results generalize the multiplier assertions from [44] to the case when p 6= q. Moreover, they
extend previous results to classical Besov spaces with small parameters s and p. In this context we refer
to [23], [24], and [25], where pointwise multipliers in Besov spaces with p, q ≥ 1 and p = q were studied
in detail.
We conclude using (0.3) in order to discuss under which circumstances the characteristic function χΩ of
a bounded domain Ω in R

n is a pointwise multiplier in Bsp,q(R
n) – establishing a connection between

pointwise multipliers and certain fundamental notion of fractal geometry, so-called h-sets, cf. Definition
5.6. In particular, if a boundary Γ = ∂Ω is an h-set satisfying

sup
j∈N0

∞
∑

k=0

2kσq
(

h(2−j)

h(2−j−k)
2−kn

)q/p

<∞,

where σ > 0, 0 < p <∞, and 0 < q ≤ ∞, then Theorem 5.8 shows that

χΩ ∈ Bσp,q,selfs(R
n).

The present paper is organized as follows: Section 1 contains notation, definitions, and preliminary
assertions on smooth atomic decompositions. The main investigation starts in Section 2, where we
construct non-smooth atomic decompositions for the spaces under focus. Afterwards Section 3 provides
new insights (and helpful results) concerning function spaces on Lipschitz domains and their boundaries.
These powerful techniques are then used in Section 4 in order to compute traces on Lipschitz domains
– the heart of this article. Finally, we conclude with some further applications of non-smooth atomic
decompositions in terms of pointwise multipliers in Section 5.

1 Preliminaries

We use standard notation. Let N be the collection of all natural numbers and let N0 = N ∪ {0}. Let Rn

be euclidean n-space, n ∈ N, C the complex plane. The set of multi-indices β = (β1, . . . , βn), βi ∈ N0,
i = 1, . . . , n, is denoted by Nn0 , with |β| = β1 + · · ·+βn, as usual. Moreover, if x = (x1, . . . , xn) ∈ Rn and

β = (β1, . . . , βn) ∈ Nn0 we put xβ = xβ1

1 · · ·xβnn .
We use the symbol ’.’ in

ak . bk or ϕ(x) . ψ(x)

always to mean that there is a positive number c1 such that

ak ≤ c1 bk or ϕ(x) ≤ c1 ψ(x)
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for all admitted values of the discrete variable k or the continuous variable x, where {ak}k, {bk}k are
non-negative sequences and ϕ, ψ are non-negative functions. We use the equivalence ‘∼’ in

ak ∼ bk or ϕ(x) ∼ ψ(x)

for

ak . bk and bk . ak or ϕ(x) . ψ(x) and ψ(x) . ϕ(x).

If a ∈ R, then a+ := max(a, 0) and [a] denotes the integer part of a.
Given two (quasi-) Banach spaces X and Y , we write X →֒ Y if X ⊂ Y and the natural embedding
of X into Y is continuous. All unimportant positive constants will be denoted by c, occasionally with
subscripts. For convenience, let both dx and | · | stand for the (n-dimensional) Lebesgue measure in the
sequel. Lp(R

n), with 0 < p ≤ ∞, stands for the usual quasi-Banach space with respect to the Lebesgue
measure, quasi-normed by

‖f |Lp(Rn)‖ :=

(∫

Rn

|f(x)|pdx
)

1

p

with the appropriate modification if p = ∞. Throughout the paper Ω will denote a domain in Rn and
the Lebesgue space Lp(Ω) is defined in the usual way.

We denote by CK(Rn) the space of all K-times continuously differentiable functions f : Rn → R equipped
with the norm

‖f |CK(Rn)‖ = max
|α|≤K

sup
x∈Rn

|Dαf(x)|.

Additionally, C∞(Rn) contains the set of smooth and bounded functions on Rn, i.e.,

C∞(Rn) :=
⋂

K∈N

CK(Rn),

whereas C∞0 (Rn) denotes the space of smooth functions with compact support.

Furthermore, B(x0, R) stands for an open ball with radius R > 0 around x0 ∈ Rn,

B(x0, R) = {x ∈ R
n : |x− x0| < R}. (1.1)

Let Qj,m with j ∈ N0 and m ∈ Zn denote a cube in Rn with sides parallel to the axes of coordinates,
centered at 2−jm, and with side length 2−j+1. For a cube Q in Rn and r > 0, we denote by rQ the cube
in R

n concentric with Q and with side length r times the side length of Q. Furthermore, χj,m stands for
the characteristic function of Qj,m.

Let G ⊂ Rn and j ∈ N0. We use the abbreviation

∑

m∈Zn

G,j
=

∑

m∈Zn,Qj,m∩G 6=∅

, (1.2)

where G will usually denote either a domain Ω in Rn or its boundary Γ.

1.1 Smooth atomic decompositions in function spaces

We introduce the Besov spaces Bsp,q(Ω) through their decomposition properties. This provides a construc-
tive definition expanding functions f via smooth atoms (excluding any moment conditions) and suitable
coefficients, where the latter belong to certain sequence spaces denoted by bsp,q(Ω) defined below.
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Definition 1.1 Let 0 < p, q ≤ ∞, s ∈ R. Furthermore, let Ω ⊂ Rn and λ = {λj,m ∈ C : j ∈ N0,m ∈
Zn}. Then

bsp,q(Ω) =











λ : ‖λ|bsp,q(Ω)‖ =





∞
∑

j=0

2j(s−
n
p

)q

(

∑

m∈Zn

Ω,j
|λj,m|p

)q/p




1/q

<∞











(with the usual modification if p =∞ and/or q =∞).

Remark 1.2 If Ω = Rn, we simply write bsp,q and
∑

m instead of bsp,q(Ω) and
∑

m
Ω,j

, respectively.

Now we define the smooth atoms.

Definition 1.3 Let K ∈ N0 and d > 1. A K-times continuously differentiable complex-valued function
a on Rn (continuous if K = 0) is called a K-atom if for some j ∈ N0

supp a ⊂ dQj,m for some m ∈ Z
n, (1.3)

and
|Dαa(x)| ≤ 2|α|j for |α| ≤ K. (1.4)

It is convenient to write aj,m(x) instead of a(x) if this atom is located at Qj,m according to (1.3).
Furthermore, K denotes the smoothness of the atom, cf. (1.4).

We define Besov spaces Bsp,q(Ω) using the atomic approach.

Definition 1.4 Let s > 0 and 0 < p, q ≤ ∞. Let d > 1 and K ∈ N0 with

K ≥ (1 + [s])

be fixed. Then f ∈ Lp(Ω) belongs to Bsp,q(Ω) if, and only if, it can be represented as

f(x) =

∞
∑

j=0

∑

m∈Zn

Ω,j
λj,maj,m(x), (1.5)

where the aj,m are K-atoms (j ∈ N0) with

supp aj,m ⊂ dQj,m, j ∈ N0, m ∈ Z
n,

and λ ∈ bsp,q(Ω), convergence being in Lp(Ω). Furthermore,

‖f |Bsp,q(Ω)‖ := inf ‖λ|bsp,q(Ω)‖, (1.6)

where the infimum is taken over all admissible representations (1.5).

Remark 1.5 According to [45], based on [17], the above defined spaces are independent of d and K.
This may justify our omission of K and d in (1.6).
Since the atoms aj,m used in Definition 1.4 are defined also outside of Ω, the spaces Bsp,q(Ω) can as well
be regarded as restrictions of the corresponding spaces on Rn in the usual interpretation, i.e.,

Bsp,q(Ω) = {f ∈ Lp(Ω) : there exists g ∈ Bsp,q(R
n) with g

∣

∣

Ω
= f},

furnished with the norm

‖f |Bsp,q(Ω)‖ = inf
{

‖g|Bsp,q(Rn)‖ with g
∣

∣

Ω
= f

}

,

where g
∣

∣

Ω
= f denotes the restriction of g to Ω. Therefore, well-known embedding results for B-spaces

defined on Rn carry over to those defined on domains Ω. Let s > 0, ε > 0, 0 < q, u ≤ ∞, and q ≤ v ≤ ∞.
Then we have

Bs+εp,u (Ω) →֒ Bsp,q(Ω) and Bsp,q(Ω) →֒ Bsp,u(Ω),

cf. [18, Th. 1.15], where also further embeddings for Besov spaces may be found.
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Classical approach Originally Besov spaces were defined merely using higher order differences instead
of atomic decompositions. The question arises whether this classical approach coincides with our atomic
approach. This might not always be the case but is true for spaces defined on Rn and on so-called
(ε, δ)-domains which we introduce next.

Recall that domain always stands for open set. The boundary of Ω is denoted by Γ = ∂Ω.

Definition 1.6 Let Ω be a domain in Rn with Ω 6= Rn. Then Ω is said to be an (ε, δ)-domain, where
0 < ε < ∞ and 0 < δ < ∞, if it is connected and if for any x ∈ Ω, y ∈ Ω with |x − y| < δ there is a
curve L ⊂ Ω, connecting x and y such that |L| ≤ ε−1|x− y| and

dist(z,Γ) ≥ εmin(|x− z|, |y − z|), z ∈ L. (1.7)

Remark 1.7 All domains we will be concerned with in the sequel are (ε, δ)-domains. In particular, the
definition includes minimally smooth domains in the sense of Stein, cf. [37, p. 189], and therefore bounded
Lipschitz domains (as will be considered in Section 3).
Furthermore, the half space Rn+ := {x : x = (x′, xn) ∈ Rn, x′ ∈ Rn−1, xn > 0} is another example.

It is well-known that (ε, δ)-domains play a crucial role concerning questions of extendability. It is precisely
this property which was used in [34, Th. 2.10] to show that for (ε, δ)-domains the atomic approach for
B-spaces is equivalent to the classical approach (in terms of equivalent quasi-norms), which introduces
Bsp,q(Ω) as the subspace of Lp(Ω) such that

‖f |Bsp,q(Ω)‖r = ‖f |Lp(Ω)‖+

(∫ 1

0

t−sqωr(f, t,Ω)qp
dt

t

)1/q

(1.8)

is finite, where 0 < p, q ≤ ∞ (with the usual modification if q = ∞), s > 0, r ∈ N with r > s. Here
ωr(f, t,Ω)p stands for the usual r-th modulus of smoothness of a function f ∈ Lp(Ω),

ωr(f, t,Ω)p = sup
|h|≤t
‖∆rhf(·,Ω) | Lp(Ω)‖, t > 0, (1.9)

where

∆rhf(x,Ω) :=

{

∆rhf(x), x, x+ h, . . . , x+ rh ∈ Ω,

0, otherwise,
(1.10)

This approach for the spaces Bsp,q(Ω) was used in [8]. The proof of the coincidence uses the fact that
the classical and atomic approach can be identified for spaces defined on Rn, which follows from results
by Hedberg, Netrusov [17] on atomic decompositions and by Triebel [45, Section 9.2] on the reproducing
formula.

The classical scale of Besov spaces contains many well-known function spaces. For example, if p = q =∞,
one recovers the Hölder-Zygmund spaces Cs(Rn), i.e.,

Bs∞,∞(Rn) = Cs(Rn), s > 0. (1.11)

Later on we will need the following homogeneity estimate proved recently in [39, Th. 2] based on [3].

Theorem 1.8 Let 0 < λ ≤ 1 and f ∈ Bsp,q(R
n) with supp f ⊂ B(0, λ). Then

‖f(λ·)|Bsp,q(Rn)‖ ∼ λs−n/p‖f |Bsp,q(Rn)‖. (1.12)
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2 Non-smooth atomic decompositions

Our aim is to provide a non-smooth atomic characterization of Besov spaces Bsp,q(R
n), i.e., relaxing the

assumptions about the smoothness of the atoms aj,m in Definition 1.3. Note that condition (1.4) is
equivalent to

‖a(2−j·)|CK(Rn)‖ ≤ 1. (2.1)

We replace the CK -norm with K > s by a Besov quasi-norm Bσp,p(R
n) with σ > s or in case of 0 < s < 1

by a norm in the space of Lipschitz functions Lip(Rn).
The following non-smooth atoms were introduced in [43]. They will be very adequate when considering
(non-smooth) atomic decompositions of spaces defined on Lipschitz domains (or on the boundary of a
Lipschitz domain, respectively).

Definition 2.1 (i) The space of Lipschitz functions Lip(Rn) is defined as the collection of all real-
valued functions f : R

n → R such that

‖f |Lip(Rn)‖ = max

{

sup
x
|f(x)|, sup

x 6=y

|f(x)− f(y)|
|x− y|

}

<∞.

(ii) We say that a ∈ Lip(Rn) is a Lip-atom, if for some j ∈ N0

supp a ⊂ dQj,m, m ∈ Z
n, d > 1, (2.2)

and
|a(x)| ≤ 1, |a(x)− a(y)| ≤ 2j|x− y|. (2.3)

Remark 2.2 One might use alternatively in (2.3) that

‖a(2−j·)|Lip(Rn)‖ ≤ 1. (2.4)

We use the abbreviation

Bsp(R
n) = Bsp,p(R

n) with 0 < p ≤ ∞, s > 0.

In particular, in view of (1.11),
Cs(Rn) = Bs∞(Rn), s > 0,

are the Hölder-Zygmund spaces.

Definition 2.3 Let 0 < p ≤ ∞, σ > 0 and d > 1. Then a ∈ Bσp (R
n) is called a (σ, p)-atom if for some

j ∈ N0

supp a ⊂ dQj,m for some m ∈ Z
n, (2.5)

and
‖a(2−j·)|Bσp (Rn)‖ ≤ 1. (2.6)

Remark 2.4 Note that if σ < n
p then (σ, p)-atoms might be unbounded. Roughly speaking, they arise

by dilating Bσp -normalized functions. Obviously, the condition (2.6) is a straightforward modification of
(2.1) and (2.4).

In general, it is convenient to write aj,m(x) instead of a(x) if the atoms are located at Qj,m according to
(2.2) and (2.5), respectively. Furthermore, σ denotes the ’non-smoothness’ of the atom, cf. (1.4).

The non-smooth atoms we consider in Definition 2.3, are renormalized versions of the non-smooth (s, p)σ-
atoms considered in [44] and [48], where (2.6) is replaced by

a ∈ Bσp (Rn) with ‖a(2−j·)|Bσp (Rn)‖ ≤ 2j(σ−s),
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resulting in corresponding changes concerning the definition of the sequence spaces bsp,q used for the
atomic decomposition.
However, the function spaces we consider are different from the ones considered there. Furthermore, for
our purposes (studying traces later on) it is convenient to shift the factors 2j(s−

n
p

) to the sequence spaces.

We wish to compare these atoms with the smooth atoms in Definition 1.3.

Proposition 2.5 Let 0 < p ≤ ∞ and 0 < σ < K. Furthermore, let d > 1, j ∈ N0, and m ∈ Zn. Then
any K-atom aj,m is a (σ, p)-atom.

P r o o f : Since the functions aj,m(2−j ·) have compact support, we obtain

‖aj,m(2−j·)|Bσp (Rn)‖ . ‖aj,m(2−j·)|CK(Rn)‖ ≤ 1,

with constants independent of j, giving the desired result for non-smooth atoms from Definition 2.3.

The use of atoms with limited smoothness (i.e. finite element functions or splines) was studied already
in [27], where the author deals with spline approximation (and traces) in Besov spaces.

The following theorem contains the main result of this section. It gives the counterpart of Definition 1.4
and provides a non-smooth atomic decomposition of the spaces Bsp,q(R

n).

Theorem 2.6 Let 0 < p, q ≤ ∞, 0 < s < σ, and d > 1. Then f ∈ Lp(Rn) belongs to Bsp,q(R
n) if, and

only if, it can be represented as

f =

∞
∑

j=0

∑

m∈Zn

λj,maj,m, (2.7)

where the aj,m are (σ, p)-atoms (j ∈ N0) with supp aj,m ⊂ dQj,m, j ∈ N0, m ∈ Zn, and λ ∈ bsp,q,
convergence being in Lp(R

n). Furthermore,

‖f |Bsp,q(Rn)‖ = inf ‖λ|bsp,q‖, (2.8)

where the infimum is taken over all admissible representations (2.7).

P r o o f : We have the atomic decomposition based on smooth K-atoms according to Definition 1.4. By
Proposition 2.5 classical K-atoms are special (σ, p)-atoms. Hence, it is enough to prove that

‖f |Bsp,q(Rn)‖ .





∞
∑

k=0

2k(s−
n
p

)q

(

∑

l∈Zn

|λk,l|p
)q/p





1/q

(2.9)

for any atomic decomposition

f =

∞
∑

k=0

∑

l∈Zn

λk,la
k,l, (2.10)

where ak,l are (σ, p)-atoms according to Definition 2.3.
For this purpose we expand each function ak,l(2−k·) optimally in Bσp (R

n) with respect to classical K-

atoms bj,wk,l where σ < K,

ak,l(2−kx) =
∞
∑

j=0

∑

w∈Zn

ηk,lj,wb
j,w
k,l (x), x ∈ R

n, (2.11)

with
supp bj,wk,l ⊂ Qj,w,

∣

∣

∣Dαb
j,w
k,l (x)

∣

∣

∣ ≤ 2|α|j, |α| ≤ K, (2.12)
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and




∞
∑

j=0

2j(σ−
n
p

)p
∑

w∈Zn

|ηk,lj,w|p




1

p

= ‖ηk,l|bσp,p‖ ∼ ‖ak,l(2−k·)|Bσp (Rn)‖ . 1. (2.13)

Hence,

ak,l(x) =
∞
∑

j=0

∑

w∈Zn

ηk,lj,wb
j,w
k,l (2

kx),

where the functions bj,wk,l (2
k·) are supported by cubes with side lengths ∼ 2−k−j . By (2.12) we have

∣

∣

∣Dαb
j,w
k,l (2

kx)
∣

∣

∣ = 2k|α|
∣

∣

∣(Dαb
j,w
k,l )(2

kx)
∣

∣

∣ ≤ 2(j+k)|α|.

Replacing j + k by j and putting dj,wk,l (x) := bj−k,wk,l (2kx), we obtain that

ak,l(x) =

∞
∑

j=k

∑

w∈Zn

ηk,lj−k,wd
j,w
k,l (x), (2.14)

where dj,wk,l are classical K-atoms supported by cubes with side lengths ∼ 2−j. We insert (2.14) into the

expansion (2.10). We fix j ∈ N0 and w ∈ Zn, and collect all non-vanishing terms dj,wk,l in the expansions
(2.14). We have k ≤ j. Furthermore, multiplying (2.11) if necessary with suitable cut-off functions it
follows that there is a natural number N such that for fixed k only at most N points l ∈ Zn contribute
to dj,wk,l . We denote this set by (j, w, k). Hence its cardinality is at most N , where N is independent of
j, w, k. Then

dj,w(x) =

∑

k≤j

∑

l∈(j,w,k) η
k,l
j−k,w · λk,l · d

j,w
k,l (x)

∑

k≤j

∑

l∈(j,w,k) |η
k,l
j−k,w | · |λk,l|

are correctly normalized smooth K-atoms located in cubes with side lengths ∼ 2−j and centered at 2−jw.
Let

νj,w =
∑

k≤j

∑

l∈(j,w,k)

|ηk,lj−k,w | · |λk,l|. (2.15)

Then we obtain a classical atomic decomposition in the sense of Definition 1.4

f =
∑

j

∑

w

νj,wd
j,w(x),

where dj,w are K-atoms and
‖f |Bsp,q(Rn)‖ . ‖ν|bsp,q‖.

Therefore, in order to prove (2.9), it is enough to show, that

‖ν|bsp,q‖ . ‖λ|bsp,q‖ (2.16)

if (2.13) holds.
Let 0 < ε < σ − s. Then we obtain by (2.15) that (assuming p <∞)

|νj,w|p .
∑

k≤j

∑

l∈(j,w,k)

2(j−k)pε|ηk,lj−k,w |p|λk,l|p, (2.17)

where we used the bounded cardinality of the sets (j, w, k).
This gives for q/p ≤ 1

‖ν|bsp,q‖q =

∞
∑

j=0

2j(s−n/p)q

(

∑

w∈Zn

|νj,w|p
)q/p
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.

∞
∑

j=0

2j(s−n/p)q





∑

w∈Zn

j
∑

k=0

∑

l∈(j,w,k)

2(j−k)pε|ηk,lj−k,w |p|λk,l|p




q/p

≤
∞
∑

j=0

2j(s−n/p)q
j
∑

k=0





∑

w∈Zn

∑

l∈(j,w,k)

2(j−k)pε|ηk,lj−k,w |p|λk,l|p




q/p

=
∞
∑

k=0

∞
∑

j=k

2j(s−n/p)q





∑

w∈Zn

∑

l∈(j,w,k)

2(j−k)pε|ηk,lj−k,w |p|λk,l|p




q/p

=
∞
∑

k=0

∞
∑

j=0

2(j+k)(s−n/p)q





∑

w∈Zn

∑

l∈(j+k,w,k)

2jpε|ηk,lj,w|p|λk,l|p




q/p

=

∞
∑

k=0

2k(s−n/p)q
∞
∑

j=0

2j(s−σ+ε)q





∑

w∈Zn

∑

l∈(j+k,w,k)

2j(σ−n/p)p|ηk,lj,w|p|λk,l|p




q/p

.

∞
∑

k=0

2k(s−n/p)q





∞
∑

j=0

∑

w∈Zn

∑

l∈(j+k,w,k)

2j(σ−n/p)p|ηk,lj,w|p|λk,l|p




q/p

≤
∞
∑

k=0

2k(s−n/p)q





∞
∑

j=0

∑

w∈Zn

∑

l∈Zn

2j(σ−n/p)p|ηk,lj,w|p|λk,l|p




q/p

=

∞
∑

k=0

2k(s−n/p)q





∑

l∈Zn

|λk,l|p
∞
∑

j=0

∑

w∈Zn

2j(σ−n/p)p|ηk,lj,w|p




q/p

.

∞
∑

k=0

2k(s−n/p)q

(

∑

l∈Zn

|λk,l|p
)q/p

= ‖λ|bsp,q‖q.

We have used (2.13) in the last inequality.
If q/p > 1, we shall use the following inequality, which holds for every non-negative sequence
{γj,k}0≤k≤j<∞, every α ≥ 1 and every ε > 0.

∞
∑

j=0

(

j
∑

k=0

2−(j−k)εγj,k

)α

≤ cα,ε
∞
∑

k=0





∞
∑

j=k

γj,k





α

. (2.18)

If α =∞, (2.18) has to be modified appropriately. To prove (2.18) for α <∞, we use Hölder’s inequality
and the embedding ℓ1 →֒ ℓα

∞
∑

j=0

(

j
∑

k=0

2−(j−k)εγj,k

)α

≤
∞
∑

j=0

(

j
∑

k=0

2−(j−k)εα′

)α/α′ ( j
∑

k=0

γαj,k

)α/α

.

∞
∑

j=0

j
∑

k=0

γαj,k =

∞
∑

k=0

∞
∑

j=k

γαj,k ≤
∞
∑

k=0





∞
∑

j=k

γj,k





α

.

We use (2.17) and (2.18) with p(σ − s− ε) instead of ε and α = q/p > 1,

‖ν|bsp,q‖q .

∞
∑

j=0

2j(σ−
n
p

)q





∑

w∈Zn

j
∑

k=0

∑

l∈(j,w,k)

2(j−k)pε|ηk,lj−k,w |p|λk,l|p




q/p
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=

∞
∑

j=0





j
∑

k=0

2−(j−k)p(σ−s−ε)
∑

w∈Zn

∑

l∈(j,w,k)

2k(s−n/p)p2(j−k)(σ− n
p

)p|ηk,lj−k,w |p|λk,l|p




q/p

.

∞
∑

k=0





∞
∑

j=k

∑

w∈Zn

∑

l∈(j,w,k)

2k(s−n/p)p2(j−k)(σ− n
p

)p|ηk,lj−k,w |p|λk,l|p




q/p

=
∞
∑

k=0

2k(s−n/p)q





∞
∑

j=0

∑

w∈Zn

∑

l∈(j+k,w,k)

2j(σ−
n
p

)p|ηk,lj,w|p|λk,l|p




q/p

=
∞
∑

k=0

2k(s−n/p)q





∑

l∈Zn

∞
∑

j=0

∑

w∈Zn:l∈(j+k,w,k)

2j(σ−
n
p

)p|ηk,lj,w|p|λk,l|p




q/p

.

∞
∑

k=0

2k(s−n/p)q





∑

l∈Zn

|λk,l|p
∞
∑

j=0

∑

w∈Zn

2j(σ−
n
p

)p|ηk,lj,w|p




q/p

≤
∞
∑

k=0

2k(s−n/p)q

(

∑

l∈Zn

|λk,l|p
)q/p

= ‖λ|bsp,q‖q.

The proof of (2.16) is finished. We again used (2.13) in the last inequality. If p and/or q are equal to
infinity, only notational changes are necessary.

Remark 2.7 Our results generalize [44, Th. 2] and [48, Th. 2.3], where non-smooth atomic decomposi-
tions for spaces Bsp,p(R

n) with s > max (n(1/p− 1), 0) can be found, to Bsp,q(R
n) with no restrictions on

the parameters. In particular, the case when p 6= q is completely new.

Using the Lip-atoms from Definition 2.1 and the embedding

Lip(Rn) →֒ B1
∞(Rn),

cf. [41, p.89/90], as a Corollary we now obtain the following non-smooth atomic decomposition for Besov
spaces with smoothness 0 < s < 1.

Corollary 2.8 Let 0 < p, q ≤ ∞, 0 < s < 1, and d > 1. Then f ∈ Lp(Rn) belongs to Bsp,q(R
n) if, and

only if, it can be represented as

f =

∞
∑

j=0

∑

m∈Zn

λj,maj,m, (2.19)

where the aj,m are Lip-atoms (j ∈ N0) with supp aj,m ⊂ dQj,m, j ∈ N0, m ∈ Zn, and λ ∈ bsp,q, convergence
being in Lp(R

n). Furthermore,
‖f |Bsp,q(Rn)‖ = inf ‖λ|bsp,q‖, (2.20)

where the infimum is taken over all admissible representations (2.19).

3 Spaces on Lipschitz domains and their boundaries

We call a one-to-one mapping Φ : Rn 7→ Rn, a Lipschitz diffeomorphism, if the components Φk(x) of
Φ(x) = (Φ1(x), . . . ,Φn(x)) are Lipschitz functions on Rn and

|Φ(x)− Φ(y)| ∼ |x− y|, x, y ∈ R
n, |x− y| ≤ 1,

where the equivalence constants are independent of x and y. Of course the inverse of Φ−1 is also a
Lipschitz diffeomorphism on R

n.
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Definition 3.1 Let Ω be a bounded domain in Rn. Then Ω is said to be a Lipschitz domain, if there

exist N open balls K1, . . . ,KN such that

N
⋃

j=1

Kj ⊃ Γ and Kj ∩ Γ 6= ∅ if j = 1, . . . , N, with the

following property: for every ball Kj there are Lipschitz diffeomorphisms ψ(j) such that

ψ(j) : Kj −→ Vj , j = 1, . . . , N,

where Vj := ψ(j)(Kj) and

ψ(j)(Kj ∩ Ω) ⊂ R
n
+, ψ(j)(Kj ∩ Γ) ⊂ R

n−1.

Kj

Ω

Γ = ∂Ω

ψ(j)

(

ψ(j)
)−1

y

y′

Vj

Rn−1

ψ(j)(Ω ∩Kj)

ψ(j)(Γ ∩Kj)

Remark 3.2 The maps ψ(j) can be extended outsideKj in such a way that the extended vector functions
(denoted by ψ(j) as well) yield diffeomorphic mappings from Rn onto itself (Lipschitz diffeomorphisms).
There are several equivalent definitions of Lipschitz domains in the literature. Our approach follows [5].
Another version as can be found in [37], which defines first a special (unbounded) Lipschitz domain Ω in
Rn as simply the domain above the graph of a Lipschitz function h : Rn−1 −→ R, i.e.,

Ω = {(x′, xn) : h(x′) < xn}.
Then a bounded Lipschitz domain Ω in Rn is defined as a bounded domain where the boundary Γ = ∂Ω
can be covered by finitely many open balls Bj in Rn with j = 1, . . . , J , centered at Γ such that

Bj ∩ Ω = Bj ∩ Ωj for j = 1, . . . , J,

where Ωj are rotations of suitable special Lipschitz domains in Rn.
We shall occasionally use this alternative definition, in particular, since it usually suffices to consider
special Lipschitz domains in our proofs (the related covering involves only finitely many balls), simplifying
the notation considerably.

Consider a covering Ω ⊂ K0∪
(

⋃N
j=1 Kj

)

, where K0 is an inner domain with K0 ⊂ Ω. Let {ϕj}Nj=0 be a

related resolution of unity of Ω, i.e., ϕj are smooth nonnegative functions with support in Kj additionally
satisfying

N
∑

j=0

ϕj(x) = 1 if x ∈ Ω. (3.1)

Obviously, the restriction of ϕj to Γ is a resolution of unity with respect to Γ.

3.1 Atomic decompositions for Besov spaces on boundaries

The boundary ∂Ω = Γ of a bounded Lipschitz domain Ω will be furnished in the usual way with a surface
measure dσ. The corresponding complex-valued Lebesgue spaces Lp(Γ), 0 < p ≤ ∞, are normed by

‖g|Lp(Γ)‖ =

(∫

Γ

|g(γ)|pdσ(γ)

)1/p

(with obvious modifications if p =∞). We require the introduction of Besov spaces on Γ. We rely on the
resolution of unity according to (3.1) and the local Lipschitz diffeomorphisms ψ(j) mapping Γj = Γ∩Kj
onto Wj = ψ(j)(Γj), recall Definition 3.1. We define

gj(y) := (ϕjf) ◦ (ψ(j))−1(y), j = 1, . . . , N,
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which restricted to y = (y′, 0) ∈ Wj ,

gj(y
′) = (ϕjf) ◦ (ψ(j))−1(y′), j = 1, . . . , N, f ∈ Lp(Γ),

makes sense. This results in functions gj ∈ Lp(Wj) with compact supports in the (n − 1)-dimensional
Lipschitz domain Wj . We do not distinguish notationally between gj and (ψ(j))−1 as functions of (y′, 0)
and of y′.

Our constructions enable us to transport Besov spaces naturally from Rn−1 to the boundary Γ of a
(bounded) Lipschitz domain via pull-back and a partition of unity.

Definition 3.3 Let n ≥ 2, and let Ω be a bounded Lipschitz domain in Rn with boundary Γ, and ϕj,
ψ(j), Wj be as above. Assume 0 < s < 1 and 0 < p, q ≤ ∞. Then we introduce

Bsp,q(Γ) = {f ∈ Lp(Γ) : gj ∈ Bsp,q(Wj), j = 1, . . . , N},

equipped with the quasi-norm ‖f |Bsp,q(Γ)‖ :=

N
∑

j=1

‖gj|Bsp,q(Wj)‖.

Remark 3.4 The spaces Bsp,q(Γ) turn out to be independent of the particular choice of the resolution of

unity {ϕj}Nj=1 and the local diffeomorphisms ψ(j) (the proof is similar to the proof of [41, Prop. 3.2.3(ii)],
making use of Propositions 3.11 and 3.12 below). We furnish Bsp,q(Wj) with the intrinsic (n − 1)-
dimensional norms according to Definition 1.4. Note that we could furthermore replace Wj in the defini-
tion of the norm above by Rn−1 if we extend gj outside Wj with zero, i.e.,

‖f |Bsp,q(Γ)‖ ∼
N
∑

j=1

‖gj|Bsp,q(Rn−1)‖. (3.2)

In particular, the equivalence (3.2) yields that characterizations for B-spaces defined on Rn−1 can be
generalized to B-spaces defined on Γ. This will be done in Theorem 3.8 for non-smooth atomic decom-
positions and is very likely to work as well for characterizations in terms of differences.

Atomic decompositions for Bsp,q(Γ) Similar to the non-smooth atomic decompositions con-
structed in Section 2 we now establish corresponding atomic decompositions for Besov spaces defined on
Lipschitz boundaries. They will be very useful when investigating traces on Lipschitz domains in Section 3

The relevant sequence spaces and Lipschitz-atoms on the boundary Γ we shall define next are closely
related to the sequence spaces bsp,q(Ω) and Lip-atoms used for the non-smooth atomic decompositions as
used in Corollary 2.8.

Definition 3.5 Let 0 < p, q ≤ ∞, s ∈ R. Furthermore, let Γ be the boundary of a bounded Lipschitz
domain Ω ⊂ Rn, and λ = {λj,m ∈ C : j ∈ N0,m ∈ Zn}. Then

bsp,q(Γ) =











λ : ‖λ|bsp,q(Γ)‖ =





∞
∑

j=0

2j(s−
n−1

p
)q

(

∑

m∈Zn

Γ,j
|λj,m|p

)q/p




1/q

<∞











(with the usual modification if p =∞ and/or q =∞).
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Definition 3.6 Let j ∈ N0, m ∈ Zn, d > 1, and let Γ be the boundary of a bounded Lipschitz domain
Ω ⊂ Rn. Put QΓ

j,m := dQj,m ∩ Γ 6= ∅. A function a ∈ Lip(Γ) is a LipΓ-atom, if

supp a ⊂ QΓ
j,m, d > 1,

‖a|L∞(Γ)‖ ≤ 1 and sup
x,y∈Γ,

x 6=y

|a(x)− a(y)|
|x− y| ≤ 2j . (3.3)

Remark 3.7 Note that if we put 2jΓ := {2jx : x ∈ Γ}, we can state (3.3) like ‖a(2−j·)|Lip(2jΓ)‖ ≤ 1.

The theorem below provides atomic decompositions for the spaces Bsp,q(Γ).

Theorem 3.8 Let Ω ⊂ Rn be a bounded Lipschitz domain and let 0 < s < 1, 0 < p, q ≤ ∞. Then
f ∈ Lp(Γ) belongs to Bsp,q(Γ) if, and only if,

f =
∑

j,m

λj,maj,m,

where aj,m are LipΓ-atoms with supp aj,m ⊂ QΓ
j,m and λ ∈ bsp,q(Γ), convergence being in Lp(Γ). Further-

more,
‖f |Bsp,q(Γ)‖ = inf ‖λ|bsp,q(Γ)‖,

where the infimum is taken over all possible representations.

P r o o f :
Step 1: Fix f ∈ Bsp,q(Γ). For simplicity, we suppose that supp f ⊂ {x ∈ Γ : ϕl(x) = 1} for some
l ∈ {1, 2, . . . , N}. If this is not the case the arguments have to be slightly modified to incorporate the
decomposition of unity (3.1). To simplify the notation we write ϕ instead of ϕl and ψ instead of ψ(l).
Then we obtain

‖f |Bsp,q(Γ)‖ = ‖f ◦ ψ−1|Bsp,q(Rn−1)‖.
We use Corollary 2.8 with n replaced by n− 1 to obtain an optimal atomic decomposition

f ◦ ψ−1 =
∑

j,m

λj,maj,m where ‖f ◦ ψ−1|Bsp,q(Rn−1)‖ ∼ ‖λ|bsp,q(Rn−1)‖. (3.4)

For j ∈ N0 and m ∈ Zn−1 fixed, we consider the function aj,m(ψ(x)). Due to the Lipschitz properties of
ψ, this function is supported in QΓ

j,l for some l ∈ Zn and we denote it by aΓ
j,l(x). Furthermore, we set

λ′j,l = λj,m. This leads to the decomposition

f =
∑

j,l

λ′j,la
Γ
j,l. (3.5)

It is straightforward to verify that aΓ
j,l are LipΓ-atoms since ‖aΓ

j,l|L∞(Γ)‖ . ‖aj,m|L∞(Wl)‖ . 1 and

|aΓ
j,l(x)− aΓ

j,l(y)|
|x− y| =

|aj,m(x′)− aj,m(y′)|
|ψ−1(x′)− ψ−1(y′)| ∼

|aj,m(x′)− aj,m(y′)|
|x′ − y′| . 2j , x, y ∈ Γ.

Furthermore, we have the estimate

‖f |Bsp,q(Γ)‖ = ‖f ◦ ψ−1|Bsp,q(Rn−1)‖ ∼ ‖λ|bsp,q(Rn−1)‖ = ‖λ′|bsp,q(Γ)‖.

Step 2:
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The proof of the opposite direction follows along the same lines. If f on Γ is given by

f =
∑

j,l

λ′j,la
Γ
j,l,

then f ◦ ψ−1 =
∑

j,m

λj,maj,m, where aj,m(x) = aΓ
j,l(ψ

−1(x)) and λj,m = λ′j,l for suitable m ∈ Zn−1.

Again it follows that aj,m are Lip-atoms on Rn−1 and

‖f |Bsp,q(Γ)‖ = ‖f ◦ ψ−1|Bsp,q(Rn−1)‖ . ‖λ|bsp,q(Rn−1)‖ = ‖λ′|bsp,q(Γ)‖.

Step 3: The convergence in Lp(Γ) of the representation f =
∑

j,m

j,Γ
λj,ma

Γ
j,m, follows for p ≤ 1 by

∥

∥

∥

∥

∥

∥

∑

j,m

j,Γ
λj,ma

Γ
j,m|Lp(Γ)

∥

∥

∥

∥

∥

∥

p

≤
∑

j,m

j,Γ
|λj,m|p‖aΓ

j,m|Lp(Γ)‖p

.
∑

j

2−j(n−1)
∑

m

j,Γ
|λj,m|p = ‖λ|b0

p,p(Γ)‖p . ‖λ|bsp,q(Γ)‖p (3.6)

and using

∥

∥

∥

∥

∥

∥

∑

j,m

j,Γ
λj,ma

Γ
j,m|Lp(Γ)

∥

∥

∥

∥

∥

∥

≤
∑

j

∥

∥

∥

∥

∥

∑

m

j,Γ
λj,ma

Γ
j,m|Lp(Γ)

∥

∥

∥

∥

∥

.
∑

j

2−j(n−1)/p

(

∑

m

j,Γ
|λj,m|p

)1/p

= ‖λ|b0
p,1(Γ)‖ . ‖λ|bsp,q(Γ)‖ (3.7)

for p > 1.

3.2 Interpolation results

Interpolation results for Bsp,q(R
n) as obtained in [7, Cor. 6.2, 6.3] carry over to the spaces Bsp,q(Γ), which

follows immediately from their definition and properties of real interpolation.

Theorem 3.9 Let Ω be a bounded Lipschitz domain with boundary Γ.

(i) Let 0 < p, q, q0, q1 ≤ ∞, s0 6= s1, and 0 < si < 1. Then

(

Bs0

p,q0(Γ),Bs1

p,q1 (Γ)
)

θ,q
= Bsp,q(Γ),

where 0 < θ < 1 and s = (1− θ)s0 + θs1.

(ii) Let 0 < pi, qi ≤ ∞, s0 6= s1 and 0 < si < 1. Then for each 0 < θ < 1, s = (1 − θ)s0 + θs1,
1
p = 1−θ

p0
+ θ
p1
, and for 1

q = 1−θ
q0

+ θ
q1

we have

(

Bs0

p0,q0(Γ),Bs1

p1,q1 (Γ)
)

θ,q
= Bsp,q(Γ),

provided p = q.

P r o o f : By definition of the spaces Bsp,q(Γ) we can construct a well-defined and bounded linear operator

E : Bsp,q(Γ) −→ ⊕1≤j≤NBsp,q(R
n−1),
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(Ef)j := (ϕjf) ◦ ψ(j)−1
on R

n−1, 1 ≤ j ≤ N,
which has a bounded and linear left inverse given by

R : ⊕1≤j≤NBsp,q(R
n−1) −→ Bsp,q(Γ)

R ((gj)1≤j≤N ) :=

N
∑

j=1

Ψj (gj ◦ ψj) on Γ,

where Ψj ∈ C∞0 (Rn), supp Ψj ⊆ Kj , Ψ ≡ 1 in a neighborhood of suppϕj .

Straightforward calculation shows for f ∈ Bsp,q(Γ)

(R ◦ E)f = R(Ef) = R

(

(

(ϕjf) ◦ ψ(j)−1
)

1≤j≤N

)

=

N
∑

j=1

Ψjϕjf =

N
∑

j=1

ϕjf = f,

i.e.,
R ◦ E = I, the identity operator on Bsp,q(Γ).

One arrives at a standard situation in interpolation theory. Hence, by the method of retraction-
coretraction, cf. [40, Sect. 1.2.4, 1.17.1], the results for Bsp,q(R

n−1) carry over to the spaces Bsp,q(Γ).
Therefore, (i) and (ii) are a consequence of [7, Cor. 6.2, 6.3].

Furthermore, we briefly show that the interpolation results for Besov spaces Bsp,q(R
n) also hold for spaces

on domains Bsp,q(Ω). This is not automatically clear in our context since the extension operator

Ex : Bsp,q(Ω) −→ Bsp,q(R
n)

constructed in [8] is not linear. The situation is different for spaces Bsp,q(Ω). Here Rychkov’s (linear)
extension operator, cf. [30], automatically yields interpolation results for B-spaces on domains.

Theorem 3.10 Let Ω be a bounded Lipschitz domain.

(i) Let 0 < p, q, q0, q1 ≤ ∞, s0 6= s1, and 0 < si < 1. Then

(

Bs0

p,q0 (Ω),Bs1

p,q1 (Ω)
)

θ,q
= Bsp,q(Ω),

where 0 < θ < 1 and s = (1− θ)s0 + θs1.

(ii) Let 0 < pi, qi ≤ ∞, s0 6= s1 and 0 < si < 1. Then for each 0 < θ < 1, s = (1 − θ)s0 + θs1,
1
p = 1−θ

p0

+ θ
p1

, and for 1
q = 1−θ

q0
+ θ
q1

we have

(

Bs0

p0,q0(Ω),Bs1

p1,q1 (Ω)
)

θ,q
= Bsp,q(Ω),

provided p = q.

P r o o f : In spite of our remarks before the theorem, we can nevertheless use the extension operator

Ex : Bsp,q(Ω) −→ Bsp,q(R
n)

constructed in [8] to show that interpolation results for spaces Bsp,q(R
n) carry over to spaces Bsp,q(Ω).

Let Xi(Ω) := Bsipi,qi(Ω). By the explanations given in [8, p. 859] we have the estimate

K(f, t,X0(Ω), X1(Ω)) ∼ K(Ex f, t,X0(Rn), X1(Rn)) (3.8)
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although the operator Ex is not linear. Let Bθ(Ω) :=
(

Bs0

p0,q0 (Ω),Bs1

p1,q1 (Ω)
)

θ,q
with the given restrictions

on the parameters given in (i) and (ii), respectively. We have to prove that

Bθ(Ω) = Bsp,q(Ω),

but this follows immediately from [7, Cor. 6.2,6.3] using (3.8), since

‖f |Bθ(Ω)‖ ∼ ‖Ex f |Bθ(Rn)‖ ∼ ‖Ex f |Bsp,q(Rn)‖ ∼ ‖f |Bsp,q(Ω)‖.

3.3 Properties of Besov spaces on Lipschitz domains

The non-smooth atomic decomposition enables us to generalize [33, Prop. 2.5] and obtain new results
concerning diffeomorphisms and pointwise multipliers in Bsp,q(R

n) in the following way. For related
matters we also refer to [22, Th. 3.3.3].

Proposition 3.11 Let 0 < p, q ≤ ∞, 0 < s < 1 and σ > s.

(i) (Diffeomorphisms)
Let ψ be a Lipschitz diffeomorphism. Then f −→ f ◦ ψ is a linear and bounded operator from
Bsp,q(R

n) onto itself.

(ii) (Pointwise multipliers)
Let h ∈ Cσ(Rn). Then f −→ hf is a linear and bounded operator from Bsp,q(R

n) into itself.

P r o o f : Concerning (i), we make use of the atomic decomposition as in (2.19) with the Lip-atoms from
Definition 2.1. Then we have

f ◦ ψ =

∞
∑

j=0

∑

m∈Zn

λj,maj,m ◦ ψ

and a ◦ ψ is a Lip-atom based on a new cube, and multiplied with a constant depending on ψ, since

|(aj,m ◦ ψ)(x) − (aj,m ◦ ψ)(y)| ≤ 2j|ψ(x) − ψ(y)| . 2j|x− y|

To prove (ii) we argue as follows. First, we may suppose that 0 < s < σ < 1. Furthermore, we choose
a real parameter σ′ with s < σ′ < σ. We take the smooth atomic decomposition (1.5) with K-atoms
aj,m, where K = 1. Multiplied with h ∈ Cσ, it gives a new (non-smooth) atomic decomposition of hf .
Its convergence in Lp(R

n) follows from the convergence of (1.5) in Lp(R
n) and the boundedness of h.

It remains to verify, that haj,m are non-smooth (σ′, p)-atoms. The support property follows immediately
from the support property of aj,m. We use the bounded support of (haj,m)(2−j ·) and the multiplier
assertion for Bσ∞(Rn) as presented in [29, Section 4.6.1,Theorem 2] to get

‖(haj,m)(2−j ·)|Bσ′p (Rn)‖ ≤ ‖(haj,m)(2−j ·)|Bσ∞(Rn)‖
= ‖h(2−j·) · aj,m(2−j·)|Bσ∞(Rn)‖
. ‖h(2−j·)|Bσ∞(Rn)‖ · ‖aj,m(2−j·)|Bσ∞(Rn)‖.

The last product is bounded by a constant due to the inequality

‖h(2−j·)|Bσ∞(Rn)‖ . ‖h|Bσ∞(Rn)‖, j ∈ N0,

which may be verified directly (or found in [1, Section 1.7] or [10, Section 2.3.1]), combined with the fact
that aj,m are K-atoms for K = 1.

Furthermore, we establish an equivalent quasi-norm for Bsp,q(Ω).
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Proposition 3.12 Let 0 < p, q ≤ ∞, 0 < s < 1, and Ω be a bounded Lipschitz domain. Then

‖ϕ0f |Bsp,q(Rn)‖+
N
∑

j=1

‖(ϕjf)(ψ(j)(·))−1|Bsp,q(Rn+)‖ (3.9)

is an equivalent quasi-norm in Bsp,q(Ω).

P r o o f : Let Ω1 be a bounded domain with

Ω1 ⊂







x ∈ R
n :

N
∑

j=0

ϕj(x) = 1







and Ω ⊂ Ω1. Let f ∈ Bsp,q(Ω). If we restrict the infimum in (1.5) to g ∈ Bsp,q(R
n) with

g
∣

∣

Ω
= f and supp g ⊂ Ω1, (3.10)

then we obtain a new equivalent quasi-norm in Bsp,q(Ω). This follows from Proposition 3.11(ii) if one
multiplies an arbitrary element g ∈ Bsp,q(R

n) with a fixed infinitely differentiable function κ(x) with

κ(x) = 1 if x ∈ Ω and supp κ ⊂ Ω1.

For elements g ∈ Bsp,q(R
n) with (3.10),

N
∑

k=0

‖ϕkg|Bsp,q(Rn)‖

is an equivalent quasi-norm. This is also a consequence of Proposition 3.11(ii). Applying part (i) of that
proposition to g(x)→ g(ψ(j)(x)), we see that

‖ϕ0g|Bsp,q(Rn)‖ +

N
∑

k=1

‖(ϕkg)(ψ(k)(·))−1|Bsp,q(Rn)‖

is an equivalent quasi-norm for all g ∈ Bsp,q(R
n) with (3.10). But the infimum over all admissible g with

(3.10) yields (3.9).

4 Trace results on Lipschitz domains

Now we can look for traces of f ∈ Bsp,q(Ω) on the boundary Γ. We briefly explain our understanding of
the trace operator since when dealing with Lp(R

n) functions the pointwise trace has no obvious meaning.
Let Y (Γ) denote one of the spaces Bσu,v(Γ) or Lu(Γ). Since S(Ω) is dense in Bsp,q(Ω) for 0 < p, q < ∞
(both spaces can be interpreted as restrictions of their counterparts defined on Rn), one asks first whether
there is a constant c > 0 such that

‖Trϕ|Y (Γ)‖ ≤ c‖ϕ|Bsp,q(Ω)‖ for all ϕ ∈ S(Ω), (4.1)

where S(Ω) stands for the restriction of the Schwartz space S(Rn) to a domain Ω. If this is the case,
then one defines Tr f ∈ Y (Γ) for f ∈ Bsp,q(Ω) by completion and obtains

‖Tr f |Y (Γ)‖ ≤ c‖f |Bsp,q(Ω)‖, f ∈ Bsp,q(Ω),

for the linear and bounded trace operator

Tr : Bsp,q(Ω) →֒ Y (Γ).
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Remark 4.1 We can extend (4.1) to spaces Bsp,q(Ω) with p = ∞ and/or q = ∞ by using embeddings
for B- and F-spaces from [18, 32]. The results stated there can be generalized to domains Ω, since the
spaces Bsp,q(Ω) are defined by restriction of the corresponding spaces on Rn, cf. Remark 1.5.
If p = ∞, we have that Bs∞,q(Ω) with s > 0 is embedded in the space of continuous functions and Tr
makes sense pointwise. If q =∞,

Bsp,∞(Ω) →֒ Bs−εp,1 (Ω) for any ε > 0.

Let s > 1
p and ε > 0 be small enough such that one has

s > s− ε > 1

p
.

Since by [46, Rem. 13] traces are independent of the source spaces and of the target spaces one can now
define Tr for Bsp,∞(Ω) by restriction of Tr for Bs−εp,1 (Ω) to Bsp,∞(Ω). Hence (4.1) is always meaningful.

4.1 Boundedness of the trace operator

Now we are able to state and prove our first main theorem concerning traces of Besov spaces on Lipschitz
domains.

Theorem 4.2 Let n ≥ 2, 0 < p, q ≤ ∞, 0 < s < 1, and let Ω be a bounded Lipschitz domain in Rn with
boundary Γ. Then the operator

Tr : B
s+ 1

p
p,q (Ω) −→ Bsp,q(Γ) (4.2)

is linear and bounded.

P r o o f : The linearity of the operator follows directly from its definition as discussed above. To prove

the boundedness, we take an optimal representation of a smooth function f ∈ B
s+ 1

p
p,q (Ω) as described in

(1.5), i.e.,

f =

∞
∑

j=0

∑

m∈Zn

j,Ω
λj,maj,m with ‖f |Bs+

1

p
p,q (Ω)‖ ∼ ‖λ|bs+

1

p
p,q (Ω)‖. (4.3)

We put

Tr f :=





∑

j,m

j,Ω
λj,maj,m





∣

∣

∣

∣

∣

Γ

=
∑

j,m

j,Γ
λj,maj,m

∣

∣

∣

Γ
=
∑

j,m

j,Γ
λj,ma

Γ
j,m. (4.4)

The proof follows by Theorem 3.8 and the following four facts:

(i) aΓ
j,m are LipΓ-atoms,

(ii) ‖λ|bsp,q(Γ)‖ . ‖λ|bs+
1

p
p,q (Ω)‖,

(iii) the decomposition (4.4) converges in Lp(Γ),

(iv) the trace operator Tr coincides with the trace operator discussed above.

To prove the first point, we observe that

supp aΓ
j,m ⊆ supp aj,m ∩ Γ ⊆ QΓ

j,m.

Furthermore, we have ‖aΓ
j,m|L∞(Γ)‖ ≤ ‖aj,m|L∞(dQj,m)‖ ≤ c and

sup
x,y∈QΓ

j,m
x 6=y

aΓ
j,m(x) − aΓ

j,m(y)

|x− y| ≤ sup
x,y∈dQj,m

x 6=y

aj,m(x)− aj,m(y)

|x− y| . 2j .
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The proof of the second point follows directly by

‖λ|bsp,q(Γ)‖ =





∑

j

2j(s−
n−1

p
)q

(

∑

m

j,Γ
|λj,m|p

)q/p




1/p

≤





∑

j

2j[(s+
1

p
)−n
p ]q

(

∑

m

j,Ω
|λj,m|p

)q/p




1/p

= ‖λ|bs+
1

p
p,q (Ω)‖.

The proof of the third point follows in the same way as the proof in Step 3 of Theorem 3.8.
The proof of (iv) is based on the fact that for f ∈ S(Ω) there is an optimal atomic decomposition (4.3)
which converges also pointwise. This may be observed by a detailed inspection of [17]. Therefore also
the series (4.4) converges pointwise and the trace operator Tr may be understood in the pointwise sense
for smooth f .

4.2 Extension of atoms

In order to compute the exact trace space we still need to construct an extension operator

Ext : Bsp,q(Γ) −→ B
s+ 1

p
p,q (Ω)

and show its boundedness. The main problem will be to show that we can extend the LipΓ-atoms from
the source spaces in a nice way to obtain suitable atoms for the target spaces. We start with a simple
variant of the Gagliardo-Nirenberg inequality, cf. [28, Chapter 5].

Lemma 4.3 Let 0 < s0, s1 <∞, 0 < p0, p1, q0, q1 ≤ ∞ and 0 < θ < 1. Put

s = (1− θ)s0 + θs1,
1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
. (4.5)

Then
‖f |Bsp,q(Ω)‖ . ‖f |Bs0

p0,q0(Ω)‖1−θ · ‖f |Bs1

p1,q1(Ω)‖θ (4.6)

for all f ∈ Bs0

p0,q0 (Ω) ∩Bs1

p1,q1 (Ω).

P r o o f : The straightforward proof uses the characterization of B-spaces through differences and
Hölder’s inequality.

Our approach is based on the classical Whitney decomposition of Rn \ Γ and the corresponding decom-
position of unity. We summarize the most important properties of this method in the next Lemma and
refer to [37, pp.167-170] and [20, pp.21-26] for details and proofs.

Lemma 4.4 1. Let Γ ⊂ Rn be a closed set. Then there exists a collection of cubes {Qi}i∈N, such that

(i) Rn \ Γ =
⋃

iQi.

(ii) The interiors of the cubes are mutually disjoint.

(iii) The inequality
diam Qi ≤ dist (Qi,Γ) ≤ 4 diam Qi

holds for every cube Qi. Here diam Qi is the diameter of Qi and dist (Qi,Γ) is its distance from Γ.

(iv) Each point of R
n \ Γ is contained in at most N0 cubes 6/5 ·Qi, where N0 depends only on n.
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(v) If Γ is the boundary of a Lipschitz domain then there is a number γ > 0, which depends only on n,
such that σ(γQi ∩ Γ) > 0 for all i ∈ N.

2. The are C∞-functions {ψi}i∈N such that

(i)
∑

i ψi(x) = 1 for every x ∈ R
n \ Γ.

(ii) suppψi ⊂ 6/5 ·Qi.

(iii) For every α ∈ Nn0 there is a constant Aα such that |Dαψi(x)| ≤ Aα(diamQi)
−|α| holds for all i ∈ N

and all x ∈ Rn.

If a is a Lipschitz function on the Lipschitz boundary Γ of Ω, then the Whitney extension operator Ext
is defined by

Exta(x) =

{

a(x), x ∈ Γ,
∑

i µiψi(x), x ∈ Ω,
(4.7)

where we use the notation of Lemma 4.4 and µi := 1
σ(γQi∩Γ)

∫

γQi∩Γ a(y)dσ(y) with the number γ > 0 as

described in Lemma 4.4. It satisfies Tr ◦Ext a = a for a Lipschitz continuous on Γ. This follows directly
from the celebrated Whitney’s extension theorem (cf. [20, p. 23]) as Γ is a closed set if Ω is a bounded
Lipschitz domain.

Lemma 4.5 Let a be a Lipschitz function on the Lipschitz boundary Γ of Ω. Then Exta ∈ C∞(Ω) and

max
|α|=k
|DαExta(x)| ≤ ckδ(x)1−k · ‖a|Lip(Γ)‖, k ∈ N, x ∈ Ω. (4.8)

Here, δ(x) is the distance of x to Γ and ck depends only on k and Ω.

P r o o f : First, let us note that

DαExt a(x) =
∑

i

µiD
αψi(x), x ∈ Ω, α ∈ N

n
0 , |α| = k.

By Lemma 4.4 we have for every x ∈ Ω

|Dαψi(x)| ≤ ckδ(x)−k, |α| = k,

and
∑

i

Dαψi(x) = Dα
∑

i

ψi(x) = 0.

Furthermore, the Lipschitz continuity of a implies

|µi − µj | . δ(x) · ‖a|Lip(Γ)‖ (4.9)

for x ∈ suppψi∩suppψj . To justify (4.9), we consider natural numbers i and j with x ∈ suppψi∩suppψj ,
chose any xi ∈ γQi ∩ Γ and xj ∈ γQj ∩ Γ and calculate

|µi − µj | ≤
∣

∣

∣

∣

1

σ(γQi ∩ Γ)

∫

γQi∩Γ

a(x)dσ(x) − a(xi)

∣

∣

∣

∣

+ |a(xi)− a(xj)|+
∣

∣

∣

∣

∣

a(xj)−
1

σ(γQj ∩ Γ)

∫

γQj∩Γ

a(x)dσ(x)

∣

∣

∣

∣

∣

≤ ‖a|Lip(Γ)‖ · {diam(γQi ∩ Γ) + |xi − xj |+ diam(γQj ∩ Γ)}
. ‖a|Lip(Γ)‖ · {diam(Qi) + |xi − x|+ |x− xj |+ diam(Qj)} . δ(x) · ‖a|Lip(Γ)‖.
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Let us now fix x ∈ Ω and let us denote by {i1, . . . , iN}, N ≤ N0, the indices for which x lies in the
support of ψi. Then we write

∣

∣

∣

∣

∣

∣

N
∑

j=1

µijD
αψij (x)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

N
∑

j=1

(µij − µi1 )Dαψij (x)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

N
∑

j=1

µi1D
αψij (x)

∣

∣

∣

∣

∣

∣

≤
N
∑

j=1

|µij − µi1 | · |Dαψij (x)| . δ(x)1−k · ‖a|Lip(Γ)‖.

Remark 4.6 Let a be a function defined on Γ as in Lemma 4.5 with diam (supp a) ≤ 1. Then the ex-
tension operator from Lemma 4.5 may be combined with a multiplication with a smooth cut-off function.
This ensures, that (4.8) still holds and, in addition, diam (supp Exta) . 1.

The following lemma describes a certain geometrical property of Lipschitz domains, which shall be useful
later on. It resembles very much the notion of Minkowski content, cf. [11].

Lemma 4.7 Let Ω be a bounded Lipschitz domain and let k ∈ N. Let h ∈ Rn with 0 < |h| ≤ 1 and
put Ωh = {x ∈ Ω : [x, x + kh] ⊂ Ω}. Furthermore, for j ∈ N0 we define Ωhj = {x ∈ Ωh : 2−j ≤
miny∈[x,x+kh] δ(y) ≤ 2−j+1}, where δ(y) = dist(y,Γ). Then

|Ωhj | . 2−j (4.10)

with a constant independent of j and h.

P r o o f : To simplify the notation, we shall assume that Ω is a simple Lipschitz domain of the type
Ω = {(x′, xn) = (x1, . . . , xn−1, xn) ∈ Rn : xn > ψ(x′), |x′| < 1}, where ψ is a Lipschitz function, and we
identify Γ with {(x′, xn) : xn = ψ(x′), |x′| < 1}.

Step 1: First, let us observe that

dist (x,Γ) ≈ (xn − ψ(x′)) for x = (x′, xn) ∈ Ω (4.11)

and the constants in this equivalence depend only on the Lipschitz constant of ψ. The simple proof of
this fact is based on the inner cone property of Lipschitz domains. We refer to [37, Chapter VI, Section
3.2, Lemma 2] for details.

Step 2:

Let j ∈ N0 and 0 < |h| ≤ 1 be fixed
and let

y = (y′, yn) ∈ Ωhj

and let also

ỹ = (y′, ỹn) ∈ Ωhj

with ỹn > yn.
As ỹ ∈ Ωhj , there is a t0 ∈ [0, k] such

that dist(ỹ + t0h,Γ) ≤ 2−j+1.

Rn−1

R

hΩ

Γ

ỹ = (y′, ỹn)

y = (y′, yn)

ỹ + kh

y + kh
y + t0h

ỹ + t0h

y′

2−j
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Then we use ψ(y′ + t0h) < t0hn + yn (which follows from y ∈ Ωh and y + t0h ∈ Ω) and (4.11) to get

ỹn − yn = [ỹn + t0hn − ψ(y′ + t0h
′)] + [ψ(y′ + t0h

′)− t0hn − yn]
. dist(ỹ + t0h,Γ) . 2−j . (4.12)

Step 3: Using (4.12), we observe that the set Ω(x′) = {xn ∈ R : (x′, xn) ∈ Ωhj } has for every |x′| < 1

length smaller then c 2−j . From this, the inequality (4.10) quickly follows.

We shall use this geometrical observation together with the extension operator (4.7) to prove the following.

Lemma 4.8 Let Ω be a bounded Lipschitz domain and let Γ be its boundary. Let a be a Lipschitz function
on Γ. Let 0 < p ≤ ∞, 0 < s < ∞ and k ∈ N with 0 < s < k < 1/p + 1. Then the extension operator
defined by (4.7) satisfies

‖Exta|Bsp,p(Ω)‖ . ‖a|Lip(Γ)‖ (4.13)

with the constant independent of a ∈ Lip(Γ).

P r o o f : Using the characterization by differences, we obtain

‖Exta|Bsp,p(Ω)‖ . ‖Exta|Bs′p,∞(Ω)‖
. ‖Exta|Lp(Ω)‖ + sup

0<|h|≤1

|h|−s′‖∆khExt a(·,Ω)|Lp(Ω)‖,

for s′ > 0 with s < s′ < k. Furthermore, we observe that one may modify the definition of ∆rhf(x,Ω)
given in (1.10) to be zero also if the whole segment [x, x + kh] is not a subset of Ω. This follows by a
detailed inspection of [41, Section 2.5.12] as well as [9] and [8], which are all based on the integration in
cones.

Using the definition of µi, the first term may be estimated easily as

‖Exta|Lp(Ω)‖ . ‖Exta|L∞(Ω)‖ ≤ ‖a|L∞(Γ)‖.

To estimate the second term, we shall need the following relationship between differences and derivatives.
If f ∈ Ck(Rn) and x, h ∈ Rn, we put g(t) = f(x+ th) for t ∈ R and obtain

∆khf(x) = ∆k1g(0) =

∫ k

0

g(k)(t)Bk(t)dt, (4.14)

where Bk is the standard B spline of order k, i.e. the k-fold convolution of χ[0,1] given by
Bk = χ[0,1] ∗ · · · ∗ χ[0,1]. Although (4.14) is a classical result of approximation theory (c.f. [6, Section
4.7]), let us give a short proof using Fubini’s Theorem and induction over k:

∆k+1
1 g(0) = ∆k1g(1)−∆k1g(0) =

∫ k

0

(g(k)(t+ 1)− g(k)(t))Bk(t)dt

=

∫ k

0

Bk(t)

∫ t+1

t

g(k+1)(u)du dt =

∫ k+1

0

g(k+1)(u)

∫ u

u−1

Bk(t)dtdu =

∫ k+1

0

g(k+1)(u)Bk+1(u)du.

Hence if [x, x + kh] ⊂ Ω for some x ∈ Ω, we obtain

|∆khExt a(x,Ω)| . |h|k
∫ k

0

max
|α|=k
|DαExt a(x+ th)| ·Bk(t)dt . |h|k · ‖a|Lip(Γ)‖ ·

∫ k

0

δ(x+ th)1−k ·Bk(t)dt.
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Let us fix h ∈ Rn with 0 < |h| ≤ 1 and let us denote Ωh = {x ∈ Ω : [x, x + kh] ⊂ Ω} as in Lemma 4.7.
We obtain

|h|−s′‖∆khExta(·,Ω)|Lp(Ω)‖ . |h|k−s′‖a|Lip(Γ)‖
(

∫

Ωh

(

∫ k

0

δ(x+ th)1−k · Bk(t)dt
)p

dx

)1/p

. ‖a|Lip(Γ)‖
(∫

Ωh
max

y∈[x,x+kh]
δ(y)(1−k)pdx

)1/p

. ‖a|Lip(Γ)‖





∞
∑

j=0

2−j(1−k)p|Ωhj |





1/p

.

This, together with Lemma 4.7 and with k < 1/p+ 1 finishes the proof.

Lemma 4.9 Let 0 < s′ < 1 be fixed. There is a non-linear extension operator (denoted by Ext), which
extends LipΓ-atoms aj,m to (s′ + 1/p, p)-atoms on Rn.

P r o o f : As the definition of LipΓ-atoms as well as the definition of (s′ + 1/p, p)-atoms works with
aj(2

−j ·), by homogeneity arguments it is enough to prove

‖Exta0,m|Bs
′+1/p
p,p (Rn)‖ . ‖a0,m|Lip(Γ)‖ (4.15)

for LipΓ-atoms aj,m with j = 0. First we show that

‖Exta0,m|Bs
′+1/p
p,p (Ω)‖ . ‖a0,m|Lip(Γ)‖ (4.16)

for the extension operator constructed in (4.7). Let 0 < s′ < 1 and 0 < p ≤ ∞. We observe, that Lemma
4.8 implies (4.16) for all 0 < s′ < 1 for which there is a k ∈ N0 with

s′ + 1/p < k < 1 + 1/p.

In the diagram aside these points correspond to
all (s′, 1

p ) in the gray-shaded triangles.

Then Lemma 4.3 yields (4.16) for all 0 < s′ < 1
and 0 < p ≤ ∞ with s0 = s1 = s′ and p0 <
p < p1 chosen in an appropriate way, see the
attached diagram.

0

1

1

(

s, 1

p0

)

(

s, 1

p1

)

(

s, 1

p

)

s+ 1

p
= 1 s+ 1

p
= 2 s+ 1

p
= 3

s

1
p

Finally, by Remark 1.5, we know that there is a function (denoted by Ext a0,m), such that

‖Ext a0,m|Bs
′+1/p
p,p (Rn)‖ . ‖Exta0,m|Bs

′+1/p
p,p (Ω)‖.

This together with (4.16) finishes the proof of (4.15).

We are now able to complete the proof of the missing part of the trace theorem.

Theorem 4.10 Let n ≥ 2 and Ω be a bounded Lipschitz domain with boundary Γ. Then for 0 < s < 1
and 0 < p, q ≤ ∞ there is a bounded non-linear extension operator

Ext : Bsp,q(Γ) −→ B
s+ 1

p
p,q (Ω). (4.17)
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P r o o f : Let f ∈ Bsp,q(Γ) with optimal decomposition in the sense of Theorem 3.8

f(x) =

∞
∑

j=0

∑

m∈Zn

λj,ma
Γ
j,m(x), (4.18)

where aΓ
j,m are LipΓ-atoms, (4.18) converges in Lp(Γ), and ‖f |Bsp,q(Γ)‖ ∼ ‖λ|bsp,q(Γ)‖.

We use the extension operator constructed in Lemma 4.9 and define by

Ext f :=

∞
∑

j=0

∑

m∈Zn

λj,m(Ext aΓ
j,m)|Ω (4.19)

an atomic decomposition of f in the space B
s+1/p
p,q (Ω) with non-smooth (s′ + 1/p, p)-atoms Ext aΓ

j,m,
where s < s′ < 1. The convergence of (4.19) in Lp(Ω) follows in the same way as in the proof of Step 3
of Theorem 3.8.

Together with ‖λ|bsp,q(Γ)‖ ∼ ‖λ|bs+1/p
p,q (Ω)‖, this shows that

‖Ext f |Bs+1/p
p,q (Ω)‖ . ‖λ|bs+1/p

p,q (Ω)‖ ∼ ‖λ|bsp,q(Γ)‖ <∞

is bounded.

Theorems 4.2 and 4.10 together now allow us to state the general result for traces on Lipschitz domains
without any restrictions on the parameters s, p and q.

Theorem 4.11 Let n ≥ 2 and Ω be a bounded Lipschitz domain with boundary Γ. Then for 0 < s < 1
and 0 < p, q ≤ ∞,

Tr B
s+ 1

p
p,q (Ω) = Bsp,q(Γ). (4.20)

The above Theorem extends the trace results obtained in [34, Th. 2.4] from Ck domains with k > s to
Lipschitz domains.
Furthermore, the trace results for spaces of Triebel-Lizorkin type carry over as well to the case of Lipschitz
domains. The proof follows [34, Th. 2.6] where the independence of the trace on q was established for
F-spaces. Let us mention that the sequence spaces fsp,q(Ω) are defined similarly as bsp,q(Ω), cf. Definition
1.1, with ℓp and ℓq summation interchanged. The corresponding function spaces (denoted by Fsp,q(Ω))
are then defined as in Definition 1.4.

The main ingredient in the study of traces for Triebel-Lizorkin spaces Fsp,q(Ω) is then the fact that the
corresponding sequence spaces fsp,q(Γ) are independent of q,

fsp,q(Γ) = bsp,p(Γ). (4.21)

A proof may be found in [45, Prop. 9.22, p. 394] for Γ being a compact porous set in Rn with [13] as an
important forerunner. In [47, Prop. 3.6] it is shown that the boundaries ∂Ω = Γ of (ε, δ)-domains Ω are
porous. Therefore, this result is also true for boundaries of Lipschitz domains.

For completeness we state the trace results for F-spaces below.

Corollary 4.12 Let 0 < p <∞, 0 < q ≤ ∞, 0 < s < 1, and let Ω ⊂ Rn be a bounded Lipschitz domain
with boundary Γ. Then

Tr F
s+ 1

p
p,q (Ω) = Bsp,p(Γ). (4.22)
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4.3 The limiting case

We briefly discuss what happens in the limiting case s = 0. In [35, Th. 2.7] traces for Besov and Triebel-
Lizorkin spaces on d-sets Γ, 0 < d < n, were studied. In particular, it was shown that for 0 < p <∞ and
0 < q ≤ ∞,

Tr B
n−d
p
p,q (Rn) = Lp(Γ), 0 < q ≤ min(1, p), (4.23)

and

Tr F
n−d
p
p,q (Rn) = Lp(Γ), 0 < p ≤ 1. (4.24)

Since the boundary Γ of a Lipschitz domain Ω is a d-set with d = n − 1 the results follow almost
immediately from these previous results, using the fact that the B- and F-spaces on domains Ω are
defined as restrictions of the corresponding spaces on Rn, cf. Remark 1.5.

Corollary 4.13 Let Ω be a bounded Lipschitz domain with boundary Γ. Furthermore, let 0 < p < ∞
and 0 < q ≤ ∞.

(i) Then

Tr B
1

p
p,q(Ω) = Lp(Γ), 0 < q ≤ min(1, p). (4.25)

(ii) Furthermore,

Tr F
1

p
p,q(Ω) = Lp(Γ), 0 < p ≤ 1. (4.26)

5 Pointwise multipliers in function spaces

As an application we now use our results on non-smooth atomic decompositions to deal with pointwise
multipliers in the respective function spaces.

A function m in Llocmin(1,p)(R
n) is called a pointwise multiplier for Bsp,q(R

n) if

f 7→ mf

generates a bounded map in Bsp,q(R
n). The collection of all multipliers for Bsp,q(R

n) is denoted by
M(Bsp,q(R

n)). In the following, let ψ stand for a non-negative C∞ function with

suppψ ⊂ {y ∈ R
n : |y| ≤ √n} (5.1)

and
∑

l∈Zn

ψ(x− l) = 1, x ∈ R
n. (5.2)

Definition 5.1 Let s > 0 and 0 < p, q ≤ ∞. We define the space Bsp,q,selfs(R
n) to be the set of all

f ∈ Llocmin(1,p)(R
n) such that

‖f |Bsp,q,selfs(R
n)‖ := sup

j∈N0,l∈Zn

‖ψ(· − l)f(2−j·)|Bsp,q(Rn)‖ (5.3)

is finite.

Remark 5.2 The study of pointwise multipliers is one of the key problems of the theory of function
spaces. As far as classical Besov spaces and (fractional) Sobolev spaces with p > 1 are concerned we refer
to [23], [24], and [25]. Pointwise multipliers in general spaces Bsp,q(R

n) and F sp,q(R
n) have been studied

in great detail in [29, Ch. 4].
Selfsimilar spaces were first introduced in [44] and then considered in [45, Sect. 2.3]. Corresponding
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results for anisotropic function spaces may be found in [26]. We also mention their forerunners, the
uniform spaces Bsp,q,unif(R

n), studied in detail in [29, Sect. 4.9]. As stated in [21], for these spaces it is
known that

M(Bsp,q(R
n)) = Bsp,q,unif(R

n), 1 ≤ p ≤ q ≤ ∞, s >
n

p
,

cf. [36] concerning the proof. Selfsimilar spaces are also closely connected with pointwise multipliers. We
shall use the abbreviation

Bsp,selfs(R
n) := Bsp,p,selfs(R

n).

One can easily show
Bsp,q,selfs(R

n) →֒ L∞(Rn). (5.4)

To see this applying homogeneity gives

‖ψ(· − l)f(2−j·)|Bsp,q(Rn)‖ ∼ 2j
n
p ‖ψ(2j · −l)f |Lp(Rn)‖+ 2−j(s−

n
p

)

(∫ 1

0

t−sqωr(ψ(2j · −l)f, t)pq
dt

t

)1/q

uniformly for all j ∈ N0 and l ∈ Zn. Consequently,

2jn
∫

Rn

|ψ(2jy − l)|p|f(y)|pdy ≤ c‖f |Bsp,q,selfs(R
n)‖p. (5.5)

Thus, the right-hand side of (5.5) is just a uniform bound for |f(·)|p at its Lebesgue points, cf. [38, Cor.
p.13], which proves the desired embedding (5.4).

Definition 5.3 Let s > 0 and 0 < p, q ≤ ∞. We define

Bs+p,q,selfs(R
n) :=

⋃

σ>s

Bσp,q,selfs(R
n).

We have the following relation between pointwise multipliers and self-similar spaces.

Theorem 5.4 Let s > 0 and 0 < p, q ≤ ∞. Then

(i) Bs+p,q,selfs(R
n) ⊂M(Bsp,q(R

n)) →֒ Bsp,q,selfs(R
n)

(ii) Additionally, if 0 < p ≤ 1,
M(Bsp(R

n)) = Bsp,selfs(R
n).

P r o o f : We first prove the right-hand side embedding in (i). Let m ∈ M(Bsp,q(R
n)). An application

of the homogeneity property from Theorem 1.8 yields

‖ψ(· − l)m(2−j ·)|Bsp,q(Rn)‖ ∼ 2−j(s−
n
p

)‖ψ(2j · −l)m|Bsp,q(Rn)‖
. 2−j(s−

n
p

)‖m|M(Bsp,q(R
n))‖ · ‖ψ(2j · −l)|Bsp,q(Rn)‖

= 2−j(s−
n
p

)‖m|M(Bsp,q(R
n))‖ · ‖ψ(2j·)|Bsp,q(Rn)‖

∼ ‖m|M(Bsp,q(R
n))‖‖ψ|Bsp,q(Rn)‖ . ‖m|M(Bsp,q(R

n))‖

for all l ∈ Zn, j ∈ N0, and hence,

‖m|Bsp,q,selfs(R
n)‖ = sup

j∈N0,l∈Zn

‖ψ(· − l)m(2−j)|Bsp,q(Rn)‖

. ‖m|M(Bsp,q(R
n))‖.

We make use of the non-smooth atomic decompositions for Bsp,q(R
n) from Theorem 2.6 in order to prove

the first inclusion in (i). Let m ∈ Bσp,q,selfs with σ > s. Let f ∈ Bsp,q(R
n) with optimal smooth atomic

decomposition

f =

∞
∑

j=0

∑

l∈Zn

λj,laj,l with ‖f |Bsp,q(Rn)‖ ∼ ‖λ|bsp,q‖, (5.6)
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where aj,m are K-atoms with K > σ. Then

mf =

∞
∑

j=0

∑

l∈Zn

λj,l (maj,l) , (5.7)

and we wish to prove that, up to normalizing constants, the maj,l are (σ, p)-atoms. The support
condition is obvious:

suppmaj,l ⊂ supp aj,l ⊂ dQj,l, j ∈ N0, l ∈ Z
n.

If l = 0 we put aj = aj,l. Note that

supp aj(2
−j) ⊂ {y : |yi| ≤

d

2
}

and we can assume that
ψ(y) > 0 if y ∈ {x : |xi| ≤ d}.

Then – using multiplier assertions from [34, Prop. 2.15(ii)] – we have for any g ∈ Bσp,q(R
n),

‖aj(2−j)ψ−1g|Bσp,q(Rn)‖ . ‖aj(2−j)ψ−1|CK(Rn)‖‖g|Bσp,q(Rn)‖
. ‖g|Bσp,q(Rn)‖

and hence
‖aj(2−j)ψ−1|M(Bσp,q(R

n))‖ . 1, j ∈ N0. (5.8)

By (5.8) and the homogeneity property we then get, for any σ > σ′ > s and j ∈ N0,

‖(maj)(2−j ·)|Bσ
′

p (Rn)‖ . ‖m(2−j·)aj(2−j ·)|Bσp,q(Rn)‖
. ‖aj(2−j ·)ψ−1|M(Bσp,q(R

n))‖‖m(2−j·)ψ|Bσp,q(Rn)‖
. ‖m(2−j·)ψ|Bσp,q(Rn)‖. (5.9)

In the case of aj,l with l ∈ Z
n one arrives at (5.9) with aj,l and ψ(·− l) in place of aj and ψ, respectively.

Hence

‖maj,l(2−j ·)|Bσ
′

p (Rn)‖ . sup
j,l
‖m(2−j·)ψ(· − l)|Bσp,q(Rn)‖

= ‖m|Bσp,q,selfs(R
n)‖, j ∈ N0, l ∈ Z

n, (5.10)

and therefore, maj,l is a (σ′, p)-atom where σ′ > s. By Theorem 2.6, in view of (5.7), mf ∈ Bsp,q(R
n)

and

‖mf |Bsp,q(Rn)‖ ≤ ‖λ|bsp,q‖‖m|Bσp,q,selfs(R
n)‖ ∼ ‖f |Bsp,q‖‖m|Bσp,q,selfs(R

n)‖,

which completes the proof of (i).

We now prove (ii). Restricting ourselves to p = q, let now m ∈ Bsp,selfs(R
n). We can modify (5.9) by

choosing σ′ = σ = s,

‖(maj)(2−j ·)|Bsp(Rn)‖ = ‖m(2−j·)aj(2−j ·)|Bsp(Rn)‖
. ‖aj(2−j ·)ψ−1|M(Bsp(R

n))‖‖m(2−j·)ψ|Bsp(Rn)‖
. ‖m(2−j·)ψ|Bsp(Rn)‖, (5.11)

yielding for general atoms aj,l,

‖maj,l(2−j ·)|Bsp,(Rn)‖ . sup
j,l
‖m(2−j·)ψ(· − l)|Bsp(Rn)‖

= ‖m|Bsp,selfs(R
n)‖, j ∈ N0, l ∈ Z

n. (5.12)
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Since p ≤ 1, we have that Bsp(R
n) is a p-Banach space. From (5.6), using (5.7) and (5.12), we obtain

‖mf |Bsp(Rn)‖p ≤
∞
∑

j=0

∑

l∈Zn

|λj,l|p2j(s−
n
p

)p2−j(s−
n
p

)p‖maj,l|Bsp(Rn)‖p

∼ ‖λ|bsp,p‖p‖(maj,l)(2−j ·)|Bsp(Rn)‖p
. ‖λ|bsp,p‖p‖m|Bsp,selfs(R

n)‖p. (5.13)

Hence m ∈ M(Bsp(R
n)) and, moreover, Bsp,selfs(R

n) →֒ M(Bsp(R
n)). The other embedding follows from

part (i).

Remark 5.5 It remains open whether it is possible or not to generalize Theorem 5.4(ii) to the case when
p 6= q. The problem in the proof given above is the estimate (5.13), which only holds if p = q.

Characteristic functions as multipliers The final part of this work is devoted to the question in
which function spaces the characteristic function χΩ of a domain Ω ⊂ Rn is a pointwise multiplier. We
contribute to this question mainly as an application of Theorem 5.4. The results shed some light on a
relationship between some fundamental notion of fractal geometry and pointwise multipliers in function
spaces. For complementary remarks and studies in this direction we refer to [44].
There are further considerations of a similar kind in the literature, asking for geometric conditions on
the domain Ω such that the corresponding characteristic function χΩ provides multiplier properties,
cf. [15, 16], [13], and [29, Sect. 4.6.3].

Definition 5.6 Let Γ be a non-empty compact set in Rn. Let h be a positive non-decreasing function on
the interval (0, 1]. Then Γ is called a h-set, if there is a finite Radon measure µ ∈ Rn with

suppµ = Γ and µ(B(γ, r)) ∼ h(r), γ ∈ Γ, 0 < r ≤ 1. (5.14)

Remark 5.7 A measure µ with (5.14) satisfies the so-called doubling condition, meaning there is a
constant c > 0 such that

µ(B(γ, 2r)) ≤ cµ(B(γ, r)), γ ∈ Γ, 0 < r < 1. (5.15)

We refer to [44, p. 476] for further explanations.

Theorem 5.8 Let Ω be a bounded domain in Rn. Moreover, let σ > 0, 0 < p <∞, 0 < q ≤ ∞, and let
Γ = ∂Ω be an h-set with

sup
j∈N0

∞
∑

k=0

2kσq
(

h(2−j)

h(2−j−k)
2−kn

)q/p

<∞, (5.16)

(with the usual modifications if q =∞). Let Bσp,q,selfs(R
n) be the spaces defined in (5.3). Then

χΩ ∈ Bσp,q,selfs(R
n).

P r o o f : It simplifies the argument, and causes no loss of generality, to assume diam Ω < 1. We define

Ωk = {x ∈ Ω : 2−k−2 ≤ dist(x,Γ) ≤ 2−k}, k ∈ N0.

Moreover, let
{ϕkl : k ∈ N0, l = 1, . . . ,Mk} ⊂ C∞0 (Ω)

be a resolution of unity,
∑

k∈N0

Mk
∑

l=1

ϕkl (x) = 1 if x ∈ Ω, (5.17)
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with

suppϕkl ⊂ {x : |x− xkl | ≤ 2−k} ⊂ Ωk

and

|Dαϕkl (x)| . 2|α|k, |α| ≤ K,
where K ∈ N with K > σ. It is well known that resolutions of unity with the required properties exist.
We now estimate the number Mk in (5.17). Combining the fact that the measure µ satisfies the doubling
condition (5.15) together with (5.14) we arrive at

Mkh(2−k) . 1, k ∈ N0. (5.18)

Since the ϕkl in (5.17) are K-atoms according to Definition 1.3, we obtain

‖χΩ|Bσp,q(Rn)‖q ≤
∞
∑

k=0

2k(σ−n/p)qM
q/p
k .

∞
∑

k=0

2kσq
(

2−kn

h(2−k)

)q/p

<∞. (5.19)

This shows that χΩ ∈ Bσp,q(R
n). We now prove that χΩ ∈ Bσp,q,selfs(R

n). We consider the non-negative
function ψ ∈ C∞(Rn) satisfying (5.1) and (5.2). By the definition of self-similar spaces, it suffices to
consider

χΩ(2−j ·)ψ,
assuming in addition that 0 ∈ 2jΓ = {2jγ = (2jγ1, . . . , 2

jγn) : γ ∈ Γ}, j ∈ N. Let µj be the image
measure of µ with respect to the dilations y 7→ 2jy. Then we obtain

µj(B(0,
√
n) ∩ 2jΓ) ∼ h(2−j), j ∈ N0.

We apply the same argument as above to B(0,
√
n) ∩ 2jΩ and B(0,

√
n) ∩ 2jΓ in place of Ω and Γ,

respectively. Let M jk be the counterpart of the above number Mk. Then

M jkh(2−j−k) . h(2−j), j ∈ N0, k ∈ N0,

is the generalization of (5.18) we are looking for, which completes the proof.

In view of Theorem 5.4 we have the following result.

Corollary 5.9 Let Ω be a bounded domain in Rn. Moreover, let σ > 0, 0 < p <∞, 0 < q ≤ ∞, and let
Γ = ∂Ω be a h-set satisfying (5.16). Then

χΩ ∈M(Bsp,q(R
n)) for 1 < p <∞, 0 < s < σ,

and

χΩ ∈M(Bσp (R
n)) for 0 < p ≤ 1.

Remark 5.10 As for the assertion (5.16) we mention that

sup
j∈N0,k∈N0

2kσ
(

h(2−j)

h(2−j−k)
2−kn

)1/p

<∞

is the adequate counterpart for Bσp,∞(Rn). In the special case of d-sets, which corresponds to h(t) ∼ td,
the condition (5.16) therefore corresponds to

σ <
n− d
p

or σ =
n− d
p

and q =∞.
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For bounded Lipschitz domains Ω, i.e., d = n− 1, Theorem 5.8 therefore yields χΩ ∈ Bσp,q,selfs(R
n) if

σ <
1

p
or σ =

1

p
and q =∞. (5.20)

These results are sharp since there exists a Lipschitz domain Ω in R
n such that

χΩ ∈ B
1

p

p,∞,selfs(R
n) and χΩ 6∈ B

1

p
p,q(R

n) if 0 < q <∞.

In order to see this let Ω =
[

− 1
2 ,

1
2

]n
. Observing that

ωr(χΩ, t)p . t
1

p

one calculates
(∫ 1

0

t−σqωr(χΩ, t)
q
p

dt

t

)1/q

.

(∫ 1

0

t(
1

p
−σ)q dt

t

)1/q

which is finite if, and only if, σ satisfies (5.20). Therefore, in view of Theorem 5.4, concerning Lipschitz
domains there is an

alternative s.t. either the trace of Bσp,q(R
n) on Γ exists or χΩ is a pointwise multiplier for Bσp,q(R

n),

as was conjectured for F-spaces in [43, p.36]: For smoothness σ > 1
p we have traces according to Theorem

4.11 whereas for σ < 1
p we know that χΩ is a pointwise multiplier for Bσp,q(R

n). The limiting case

σ = 1
p needs to be discussed separately: according to Corollary 4.13 we have traces for B-spaces with

q ≤ min(1, p), but χΩ is (possibly) only a multiplier for B
1/p
p,∞(Rn). There remains a ’gap’ for spaces

B1/p
p,q (Rn) when min(1, p) < q <∞.
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