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Abstract

We consider the classical Besov and Triebel-Lizorkin spaces defined via differences and prove a
homogeneity property for functions with bounded support in the frame of these spaces. As the proof
is based on compact embeddings between the studied function spaces we present also some results
on the entropy numbers of these embeddings. Moreover, we derive some applications in terms of
pointwise multipliers.
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Introduction

The present note deals with classical Besov spaces Bs
p,q(R

n) and Triebel-Lizorkin spaces Fsp,q(R
n) defined

via differences, briefly denoted as B- and F-spaces in the sequel. We study the properties of the dilation
operator, which is defined for every λ > 0 as

Tλ : f → f(λ·).

The norms of these operators on Besov and Triebel-Lizorkin spaces were studied already in [Bo83] and
[ET96, Sections 2.3.1 and 2.3.2] with complements given in [Vyb08], [Sch09a], and [SV09].
We prove the so-called homogeneity property, showing that for s > 0 and 0 < p, q ≤ ∞,

‖f(λ·)|Bs
p,q(R

n)‖ ∼ λs−
n
p ‖f |Bs

p,q(R
n)‖, (0.1)

for all 0 < λ ≤ 1 and all

f ∈ Bs
p,q(R

n) with supp f ⊂ {x ∈ R
n : |x| ≤ λ}.

The same property holds true for the spaces Fsp,q(R
n). This extends and completes [CLT07], where

corresponding results for the spaces Bsp,q(R
n), defined via Fourier-analytic tools, were established, which

coincide with our spaces Bs
p,q(R

n) if s > max
(

0, n
(

1
p − 1

))

. Concerning the corresponding F-spaces

F sp,q(R
n), the same homogeneity property had already been established in [Tri01, Cor. 5.16, p. 66].

Our results yield immediate applications in terms of pointwise multipliers. Furthermore, we remark that
the homogeneity property is closely related with questions concerning refined localization, non-smooth
atoms, local polynomial approximation, and scaling properties. This is out of our scope for the time
being. But we use this property in the forthcoming paper [SV11] in connection with non-smooth atomic
decompositions in function spaces.
Our proof of (0.1) is based on compactness of embeddings between the function spaces under investigation.
Therefore we use this opportunity to present some closely related results on entropy numbers of such
embeddings.
This note is organized as follows. We start with the necessary definitions and the results about entropy
numbers in Section 1. Then we focus on equivalent quasi-norms for the elements of certain subspaces of
Bs
p,q(R

n) and Fsp,q(R
n), respectively, from which the homogeneity property will follow almost immediately

in Section 2. The last section states some applications in terms of pointwise multipliers.

0The second author acknowledges the financial support provided by the START-award “Sparse Approximation and
Optimization in High Dimensions” of the Fonds zur Förderung der wissenschaftlichen Forschung (FWF, Austrian Science
Foundation).
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1 Preliminaries

We use standard notation. Let N be the collection of all natural numbers and let N0 = N ∪ {0}. Let Rn

be Euclidean n-space, n ∈ N, C the complex plane. The set of multi-indices β = (β1, . . . , βn), βi ∈ N0,
i = 1, . . . , n, is denoted by Nn0 , with |β| = β1 + · · ·+ βn, as usual. We use the symbol ’.’ in

ak . bk or ϕ(x) . ψ(x)

always to mean that there is a positive number c1 such that

ak ≤ c1 bk or ϕ(x) ≤ c1 ψ(x)

for all admitted values of the discrete variable k or the continuous variable x, where (ak)k, (bk)k are
non-negative sequences and ϕ, ψ are non-negative functions. We use the equivalence ‘∼’ in

ak ∼ bk or ϕ(x) ∼ ψ(x)

for
ak . bk and bk . ak or ϕ(x) . ψ(x) and ψ(x) . ϕ(x).

If a ∈ R, then a+ := max(a, 0) and [a] denotes the integer part of a.
Given two (quasi-) Banach spaces X and Y , we write X →֒ Y if X ⊂ Y and the natural embedding
of X in Y is continuous. All unimportant positive constants will be denoted by c, occasionally with
subscripts. For convenience, let both dx and | · | stand for the (n-dimensional) Lebesgue measure in the
sequel. Lp(Rn), with 0 < p ≤ ∞, stands for the usual quasi-Banach space with respect to the Lebesgue
measure, quasi-normed by

‖f |Lp(Rn)‖ :=
(∫

Rn

|f(x)|pdx
)

1

p

with the appropriate modification if p =∞. Moreover, let Ω denote a domain in Rn. Then Lp(Ω) is the
collection of all complex-valued Lebesgue measurable functions in Ω such that

‖f |Lp(Ω)‖ :=
(∫

Ω

|f(x)|pdx
)

1

p

(with the usual modification if p =∞) is finite.
Furthermore, BR stands for an open ball with radius R > 0 around the origin,

BR = {x ∈ R
n : |x| < R}. (1.1)

Let Qj,m with j ∈ N0 and m ∈ Zn denote a cube in Rn with sides parallel to the axes of coordinates,
centered at 2−jm, and with side length 2−j+1. For a cube Q in R

n and r > 0, we denote by rQ the cube
in Rn concentric with Q and with side length r times the side length of Q. Furthermore, χj,m stands for
the characteristic function of Qj,m.

Function spaces defined via differences

If f is an arbitrary function on Rn, h ∈ Rn and r ∈ N, then

(∆1
hf)(x) = f(x+ h)− f(x) and (∆r+1

h f)(x) = ∆1
h(∆r

hf)(x)

are the usual iterated differences. Given a function f ∈ Lp(Rn) the r-th modulus of smoothness is defined
by

ωr(f, t)p = sup
|h|≤t

‖∆r
hf | Lp(R

n)‖, t > 0, 0 < p ≤ ∞, (1.2)

and

drt,pf(x) =

(

t−n
∫

|h|≤t

|(∆r
hf)(x)|pdh

)1/p

, t > 0, 0 < p <∞, (1.3)

denotes its ball means.
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Definition 1.1. (i) Let 0 < p, q ≤ ∞, s > 0, and r ∈ N such that r > s. Then the Besov space Bs
p,q(R

n)
contains all f ∈ Lp(Rn) such that

‖f |Bs
p,q(R

n)‖r = ‖f |Lp(Rn)‖ +
(∫ 1

0

t−sqωr(f, t)qp
dt
t

)1/q

(1.4)

(with the usual modification if q =∞) is finite.

(ii) Let 0 < p < ∞, 0 < q ≤ ∞, s > 0, and r ∈ N such that r > s. Then Fsp,q(R
n) is the collection of

all f ∈ Lp(Rn) such that

‖f |Fsp,q(R
n)‖r = ‖f |Lp(Rn)‖+

∥

∥

∥

∥

∥

(∫ 1

0

t−sqdrt,pf(·)q
dt
t

)1/q

|Lp(Rn)

∥

∥

∥

∥

∥

(1.5)

(with the usual modification if q =∞) is finite.

Remark 1.2. These are the classical Besov and Triebel-Lizorkin spaces, in particular, when 1 ≤ p, q ≤ ∞
(p < ∞ for the F-spaces) and s > 0. We shall sometimes write As

p,q(R
n) when both scales of spaces

Bs
p,q(R

n) and Fsp,q(R
n) are concerned simultaneously.

Concerning the spaces Bs
p,q(R

n), the study for all admitted s, p and q goes back to [SO78], we also refer
to [BS88, Ch. 5, Def. 4.3] and [DL93, Ch. 2, §10]. There are as well many older references in the
literature devoted to the cases p, q ≥ 1.
The approach by differences for the spaces Fsp,q(R

n) has been described in detail in [Tri83] for those
spaces which can also be considered as subspaces of S′(Rn). Otherwise one finds in [Tri06, Section 9.2.2,
pp. 386–390] the necessary explanations and references to the relevant literature.
Definition 1.1 is independent of r, meaning that different values of r > s result in norms which are
equivalent. This justifies our omission of r in the sequel. Moreover, the integrals

∫ 1

0
can be replaced by

∫∞

0
resulting again in equivalent quasi-norms, cf. [DP88, Sect. 2].

The spaces are quasi-Banach spaces (Banach spaces if p, q ≥ 1). Note that we deal with subspaces of
Lp(Rn), in particular, for s > 0 and 0 < q ≤ ∞, we have the embeddings

As
p,q(R

n) →֒ Lp(Rn),

where 0 < p ≤ ∞ (p < ∞ for F-spaces). Furthermore, the B-spaces are closely linked with the Triebel-
Lizorkin spaces via

Bs
p,min(p,q)(R

n) →֒ Fsp,q(R
n) →֒ Bs

p,max(p,q)(R
n), (1.6)

cf. [Sch09b, Prop. 1.19(i)]. The classical scale of Besov spaces contains many well-known function spaces.
For example, if p = q =∞, one recovers the Hölder-Zygmund spaces Cs(Rn), i.e.,

Bs
∞,∞(Rn) = Cs(Rn), s > 0. (1.7)

Recent results by Hedberg, Netrusov [HN07] on atomic decompositions and by Triebel [Tri06,
Sect. 9.2] on the reproducing formula provide an equivalent characterization of Besov spaces Bs

p,q(R
n)

using subatomic decompositions, which introduces Bs
p,q(R

n) as those f ∈ Lp(Rn) which can be represented
as

f(x) =
∑

β∈Nn
0

∞
∑

j=0

∑

m∈Zn

λ
β
j,mk

β
j,m(x), x ∈ R

n,

with coefficients λ = {λβj,m ∈ C : β ∈ Nn0 , j ∈ N0,m ∈ Zn} belonging to some appropriate sequence space
bs,̺p,q defined as

bs,̺p,q :=
{

λ : ‖λ|bs,̺p,q‖ <∞
}

(1.8)

where

‖λ|bs,̺p,q‖ = sup
β∈Nn

0

2̺|β|





∞
∑

j=0

2j(s−n/p)q

(

∑

m∈Zn

|λβj,m|
p

)q/p




1/q

, (1.9)

s > 0, 0 < p, q ≤ ∞ (with the usual modification if p =∞ and/or q =∞), ̺ ≥ 0, and kβj,m(x) are certain
standardized building blocks (which are universal). This subatomic characterization will turn out to be
quite useful when studying entropy numbers.

In terms of pointwise multipliers in Bs
p,q(R

n) the following is known.
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Proposition 1.3. Let 0 < p, q ≤ ∞, s > 0, k ∈ N with k > s, and let h ∈ Ck(Rn). Then

f −→ hf

is a linear and bounded operator from Bs
p,q(R

n) into itself.

The proof relies on atomic decompositions of the spaces Bs
p,q(R

n), cf. [Sch10a, Prop. 2.5]. We will
generalize this result in Section 3 as an application of our homogeneity property.

Function spaces on domains Ω

Let Ω be a domain in Rn. We define spaces As
p,q(Ω) by restriction of the corresponding spaces on Rn, i.e.

As
p,q(Ω) is the collection of all f ∈ Lp(Ω) such that there is a g ∈ As

p,q(R
n) with g

∣

∣

Ω
= f . Furthermore,

‖f |As
p,q(Ω)‖ = inf ‖g|As

p,q(R
n)‖,

where the infimum is taken over all g ∈ As
p,q(R

n) such that the restriction g
∣

∣

Ω
to Ω coincides in Lp(Ω)

with f .

In particular, the subatomic characterization for the spaces Bs
p,q(R

n) from Remark 1.2 carries over. For
further details on this subject we refer to [Sch11b, Sect 2.1].

Embeddings results between the spaces Bs
p,q(R

n) hold also for the spaces Bs
p,q(Ω), since they are defined

by restriction of the corresponding spaces on Rn. Furthermore, these results can be improved, if we
assume Ω ⊂ Rn to be bounded.

Proposition 1.4. Let 0 < s2 < s1 <∞, 0 < p1, p2, q1, q2 ≤ ∞, and Ω ⊂ Rn be bounded. If

δ+ = s1 − s2 − d

(

1
p1
−

1
p2

)

+

> 0, (1.10)

we have the embedding

Bs1

p1,q1
(Ω) →֒ Bs2

p2,q2
(Ω). (1.11)

P r o o f : If p1 ≤ p2 the embedding follows from [HS09, Th. 1.15], since the spaces on Ω are defined
by restriction of their counterparts on R

n. Therefore it remains to show that for p1 > p2 we have the
embedding

Bs2

p1,q2
(Ω) →֒ Bs2

p2,q2
(Ω). (1.12)

Let ψ ∈ D(Rn) with support in the compact set Ω1 and

ψ(x) = 1 if x ∈ Ω̄ ⊂ Ω1.

Then for f ∈ Bs2

p1,q2
(Ω), there exists g ∈ Bs2

p1,q2
(Rn) with

g
∣

∣

Ω
= f and ‖f |Bs2

p1,q2
(Ω)‖ ∼ ‖g|Bs2

p1,q2
(Rn)‖.

We calculate

‖f |Bs2

p2,q2
(Ω)‖ ≤ ‖ψg|Bs2

p2,q2
(Rn)‖

≤ ‖ψg|Bs2

p1,q2
(Rn)‖

≤ cψ‖g|B
s2

p1,q2
(Rn)‖ ∼ ‖f |Bs2

p1,q2
(Ω)‖. (1.13)

The last inequality in (1.13) follows from Proposition 1.3. In the 2nd step we used (1.4) together with
the fact that

‖∆r
h(ψg)|Lp2

(Rn)‖ ≤ cΩ1
‖∆r

h(ψg)|Lp1
(Rn)‖, p1 > p2,

which follows from Hölder’s inequality since suppψg ⊂ Ω1 is compact.
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Entropy numbers

In order to prove the homogeneity results later on we have to rely on the compactness of embeddings
between B-spaces, Bs

p,q(Ω), and F-spaces, Fsp,q(Ω), respectively. This will be established with the help
of entropy numbers. We briefly introduce the concept and collect some properties afterwards.

Let X and Y be quasi-Banach spaces and T : X → Y be a bounded linear operator. If additionally,
T is continuous we write T ∈ L(X,Y ). Let UX = {x ∈ X : ‖x|X‖ ≤ 1} denote the unit ball in the
quasi-Banach space X . An operator T is called compact if for any given ε > 0 we can cover the image of
the unit ball UX with finitely many balls in Y of radius ε.

Definition 1.5. Let X,Y be quasi-Banach spaces and let T ∈ L(X,Y ). Then for all k ∈ N, the kth dyadic
entropy number ek(T ) of T is defined by

ek(T ) = inf







ε > 0 : T (UX) ⊂
2k−1

⋃

j=1

(yj + εUY ) for some y1, . . . , y2k−1 ∈ Y







,

where UX and UY denote the unit balls in X and Y , respectively.

These numbers have various elementary properties which are summarized in the following lemma.

Lemma 1.6. Let X,Y and Z be quasi-Banach spaces, let S, T ∈ L(X,Y ) and R ∈ L(Y, Z).

(i) (Monotonicity) ‖T ‖ ≥ e1(T ) ≥ e2(T ) ≥ · · · ≥ 0. Moreover, ‖T ‖ = e1(T ), provided that Y is a
Banach space.

(ii) (Additivity) If Y is a p-Banach space (0 < p ≤ 1), then for all j, k ∈ N

e
p
j+k−1(S + T ) ≤ epj (S) + e

p
k(T ).

(iii) (Multiplicativity) For all j, k ∈ N

ej+k−1(RT ) ≤ ej(R)ek(T ).

(iv) (Compactness) T is compact if, and only if,

lim
k→∞

ek(T ) = 0.

Remark 1.7. As for the general theory we refer to [EE87], [Pie87] and [Kön86]. Further information on
the subject is also covered by the more recent books [ET96] and [CS90].
Some problems about entropy numbers of compact embeddings for function spaces can be transferred to
corresponding questions in related sequence spaces. Let n > 0 and {Mj}j∈N0

be a sequence of natural
numbers satisfying

Mj ∼ 2jn, j ∈ N0. (1.14)

Concerning entropy numbers for the respective sequence spaces bs,̺p,q(Mj), which are defined as the se-
quence spaces bs,̺p,q in (1.9) with the sum over m ∈ Zn replaced by a sum over m = 1, . . . ,Mj, the following
result was proved in [Sch11a, Prop. 3.4]

Proposition 1.8. Let d > 0, 0 < σ1, σ2 <∞, and 0 < q1, q2 ≤ ∞. Furthermore, let ̺1 > ̺2 ≥ 0,

0 < p1 ≤ p2 ≤ ∞ and δ = σ1 − σ2 − n

(

1
p1
−

1
p2

)

> 0. (1.15)

Then the identity map
id : bσ1,̺1

p1,q1
(Mj)→ bσ2,̺2

p2,q2
(Mj) (1.16)

is compact, where Mj is restricted by (1.14).

The next theorem provides a sharp result for entropy numbers of the identity operator related to the
sequence spaces bs,̺p,q(Mj).
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Theorem 1.9. Let n > 0, 0 < s1, s2 <∞, and 0 < q1, q2 ≤ ∞. Furthermore, let ̺1 > ̺2 ≥ 0,

0 < p1 ≤ p2 ≤ ∞ and δ = s1 − s2 − n

(

1
p1
−

1
p2

)

> 0. (1.17)

For the entropy numbers ek of the compact operator

id : bs1,̺1

p1,q1
(Mj)→ bs2,̺2

p2,q2
(Mj) (1.18)

we have
ek(id) ∼ k−

δ
n

+ 1

p2
− 1

p1 , k ∈ N.

Remark 1.10. The proof of Theorem 1.9 follows from [Tri97, Th. 9.2]. Using the notation from this book
we have

bsi,̺ipi,qi (Mj) = ℓ∞

[

2̺iℓqi
(

2j(si−
n
pi

)
ℓMjpi

)]

, i = 1, 2.

Recall the embedding assertions for Besov spaces Bs
p,q(Ω) from Proposition 1.4. We will give an upper

bound for the corresponding entropy numbers of these embeddings. For our purposes it will be sufficient
to assume Ω = BR.

Theorem 1.11. Let
0 < s2 < s1 <∞, 0 < p1, p2 ≤ ∞, 0 < q1, q2 ≤ ∞,

and

δ+ = s1 − s2 − n

(

1
p1
−

1
p2

)

+

> 0.

Then the embedding
id : Bs1

p1,q1
(Ω)→ Bs2

p2,q2
(Ω) (1.19)

is compact and for the related entropy numbers we compute

ek(id) . k−
s1−s2

n , k ∈ N. (1.20)

Proof. Step 1: Let p2 ≥ p1, δ+ = δ, and let f ∈ Bs1

p1,q1
(Ω), then by [DS93, Th. 6.1] there is a (nonlinear)

bounded extension operator

g = Ex f such that Re Ωg = g
∣

∣

∣

Ω
= f (1.21)

and
‖g|Bs1

p1,q1
(Rn)‖ ≤ c‖f |Bs1

p1,q1
(Ω)‖.

We may assume that g is zero outside a fixed neighbourhood Λ of Ω. Using the subatomic approach for
Bs1

p1,q1
(Rn), cf. Remark 1.2, we can find an optimal decomposition of g, i.e.,

g(x) =
∑

β∈Nn
0

∞
∑

j=0

∑

m∈Zn

λ
β
j,mk

β
j,m(x), ‖g|Bs1

p1,q1
(Rn)‖ ∼ ‖λ|bs1,̺1

p1,q1
‖ (1.22)

with ̺1 > 0 large.
Let Mj for fixed j ∈ N0 be the number of cubes Qj,m such that

rQj,m ∩ Ω 6= ∅.

Since Ω ⊂ Rn is bounded we have
Mj ∼ 2jn, j ∈ N0.

This coincides with (1.14). We introduce the (nonlinear) operator S,

S : Bs1

p1,q1
(Rn)→ bs1,̺1

p1,q1
(Mj)

by

Sg = λ, λ =
{

λ
β
j,m : β ∈ N

n
0 , j ∈ N0,m ∈ Z

n, rQj,m ∩ Ω 6= ∅
}

,
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where g is given by (1.22). Recall that the expansion is not unique but this does not matter. It follows
that S is a bounded map since

‖S‖ = sup
g 6=0

‖λ|bs1,̺1

p1,q1
(Mj)‖

‖g|Bs1

p1,q1
(Rn)‖

≤ c.

Next we construct the linear map T ,

T : bs2,̺2

p2,q2
(Mj)→ Bs2

p2,q2
(Rn),

given by

Tλ =
∑

β∈Nn
0

∞
∑

j=0

Mj
∑

m=1

λ
β
j,mk

β
j,m(x).

It follows that T is a linear (since the subatomic approach provides an expansion of functions via universal
building blocks) and bounded map,

‖T ‖ = sup
λ6=0

‖Tλ|Bs2

p2,q2
(Rn)‖

‖λ|bs2,̺2

p2,q2
(Mj)‖

≤ c.

We complement the three bounded maps Ex , S, T by the identity operator

id : bs1,̺1

p1,q1
(Mj)→ bs2,̺2

p2,q2
(Mj) with ̺1 > ̺2, (1.23)

which is compact by Proposition 1.8 and the restriction operator

Re Ω : Bs2

p2,q2
(Rn)→ Bs2

p2,q2
(Ω),

which is continuous. From the constructions it follows that

id
(

Bs1

p1,q1
(Ω)→ Bs2

p2,q2
(Ω)
)

= Re Ω ◦ T ◦ id ◦ S ◦ Ex . (1.24)

Hence, taking finally Re Ω we obtain f by (1.21), where we started from. In particular, due to the fact
that we used the subatomic approach, the final outcome is independent of ambiguities in the nonlinear
constructions Ex and S. The unit ball in Bs1

p1,q1
(Ω) is mapped by S ◦ Ex into a bounded set in

bs1,̺1

p1,q1
(Mj).

Since the identity operator id from (1.23) is compact, this bounded set is mapped into a pre-compact set
in

bs2,̺2

p2,q2
(Mj),

which can be covered by 2k balls of radius cek(id) with

ek(id) ≤ ck−
δ
n

+ 1

p2
− 1

p1 , k ∈ N.

This follows from Theorem 1.9, where we used p2 ≥ p1. Applying the two linear and bounded maps T and
Re Ω afterwards does not change this covering assertion – using Lemma 1.6(iii) and ignoring constants for
the time being. Hence, we arrive at a covering of the unit ball in Bs1

p1,q1
(Ω) by 2k balls of radius cek(id)

in Bs2

p2,q2
(Ω). Inserting

δ = s1 − s2 − n

(

1
p1
−

1
p2

)

in the exponent we finally obtain the desired estimate

ek(id) ≤ ck−
s1−s2

n , k ∈ N.

Step 2: Let p1 > p2. Since by Proposition 1.4,

Bs2

p1,q2
(Ω) ⊂ Bs2

p2,q2
(Ω),

we see that
Bs1

p1,q1
(Ω) ⊂ Bs2

p1,q2
(Ω) ⊂ Bs2

p2,q2
(Ω),

and therefore (1.20) is a consequence of Step 1 applied to p1 = p2. This completes the proof for the upper
bound.
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Remark 1.12. By (1.6) and the above definitions we have

Bs
p,min(p,q)(Ω) →֒ Fsp,q(Ω) →֒ Bs

p,max(p,q)(Ω). (1.25)

In other words, any assertion about entropy numbers for B-spaces where the parameter q does not play
any role applies also to the related F-spaces.

Therefore, using Lemma 1.6(iv) and Theorem 1.11 we deduce compactness of the corresponding embed-
dings related to B- and F-spaces under investigation.

2 Homogeneity

Our first aim is to prove the following characterization.

Proposition 2.1. Let 0 < p, q ≤ ∞, s > 0 and let R > 0 be a real number. Then

‖f |Bs
p,q(R

n)‖ ∼
(∫ ∞

0

t−sqωr(f, t)qp
dt

t

)1/q

for all f ∈ Bs
p,q(R

n) with supp f ⊂ BR.

Proof. We shall need, that Bs
p,q(BR) embeds compactly into Lp(BR). This follows at once from the

fact that Bs
p,q(BR) is compactly embedded into Bs−ε

p,q (BR), cf. Remark 1.12, and Bs−ε
p,q (BR) →֒ Lp(BR),

which is trivial.
We argue similarly to [CLT07]. We have to prove, that

‖f |Lp(Rn)‖ .

(∫ ∞

0

t−sqωr(f, t)qp
dt

t

)1/q

for every f ∈ Bs
p,q(R

n) with supp f ⊂ BR. Let us assume, that this is not true. Then we find a sequence
(fj)∞j=1 ⊂ Bs

p,q(R
n), such that

‖fj|Lp(Rn)‖ = 1 and
(∫ ∞

0

t−sqωr(fj , t)qp
dt

t

)1/q

≤
1
j
, (2.1)

i.e., we obtain that ‖fj|Bs
p,q(R

n)‖ is bounded. The trivial estimates

‖fj|Lp(Rn)‖ = ‖fj|Lp(BR)‖ and ‖fj|B
s
p,q(BR)‖ ≤ ‖fj|Bs

p,q(R
n)‖

imply that this is true also for ‖fj|Bs
p,q(BR)‖. Due to the compactness of Bs

p,q(BR) →֒ Lp(BR), we may
assume, that fj → f in Lp(BR) with ‖f |Lp(BR)‖ = 1. Using the subadditivity of ω(·, t)p, we obtain that

(
∫ ∞

0

t−sqωr(fj − fj′ , t)qp
dt

t

)1/q

≤
1
j

+
1
j′
.

Together with the estimate ‖fj − fj′ |Lp(Rn)‖ → 0, this implies that (fj)∞j=1 is a Cauchy sequence in
Bs
p,q(R

n), i.e. fj → g in Bs
p,q(R

n). Obviously, f = g follows.
The subadditivity of ω(·, t)p used to the sum (f − fj) + fj implies finally, that

(∫ ∞

0

t−sqωr(f, t)qp
dt

t

)1/q

= 0.

As ωr(f, t) is a non-decreasing function of t, this implies that ωr(f, t) = 0 for all 0 < t < ∞ and finally
‖∆r

hf |Lp(R
n)‖ = 0 for all h ∈ Rn. By standard arguments, this is satisfied only if f is a polynomial of

order at most r. Due to its bounded support, we conclude, that f = 0, which is a contradiction with
‖f |Lp(Rn)‖ = 1.

With the help of this proposition, the proof of homogeneity quickly follows.

Theorem 2.2. Let 0 < λ ≤ 1 and f ∈ Bs
p,q(R

n) with supp f ⊂ Bλ. Then

‖f(λ·)|Bs
p,q(R

n)‖ ∼ λs−n/p‖f |Bs
p,q(R

n)‖ (2.2)

with constants of equivalence independent of λ and f .
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Proof. We know from Proposition 2.1 that

‖f(λ·)|Bs
p,q(R

n)‖ ∼
(∫ ∞

0

t−sqωr(f(λ·), t)qp
dt

t

)1/q

,

as supp f(λ·) ⊂ B1. Using ∆r
h(f(λ·))(x) = (∆r

λhf)(λx), we get

ωr(f(λ·), t)p = sup
|h|≤t

‖∆r
h(f(λ·))‖p = sup

|h|≤t

‖(∆r
λhf)(λ·)‖p = λ−n/p sup

|h|≤t

‖(∆r
λhf)(·)‖p

= λ−n/p sup
|λh|≤λt

‖(∆r
λhf)(·)‖p = λ−n/pωr(f, λt)p,

which finally implies

(∫ ∞

0

t−sqωr(f(λ·), t)qp
dt

t

)1/q

= λ−n/p
(∫ ∞

0

t−sqωr(f, λt)qp
dt

t

)1/q

= λs−n/p
(∫ ∞

0

t−sqωr(f, t)qp
dt

t

)1/q

∼ λs−n/p‖f |Bs
p,q(R

n)‖.

The homogeneity property for Triebel-Lizorkin spaces Fsp,q(R
n) follows similarly.

Proposition 2.3. Let 0 < p <∞, 0 < q ≤ ∞, s > 0 and let R > 0 be a real number. Then

‖f |Fsp,q(R
n)‖ ∼

∥

∥

∥

∥

∥

(∫ ∞

0

t−sqdrt,pf(·)q
dt

t

)1/q

|Lp(Rn)

∥

∥

∥

∥

∥

for all f ∈ Fsp,q(R
n) with supp f ⊂ BR.

Proof. We have to prove that

‖f |Lp(Rn)‖ .

∥

∥

∥

∥

∥

(∫ ∞

0

t−sqdrt,pf(·)q
dt

t

)1/q

|Lp(Rn)

∥

∥

∥

∥

∥

for every f ∈ Fsp,q(R
n) with supp f ⊂ BR. Let us assume again, that this is not true. Then we find a

sequence (fj)∞j=1 ⊂ Fsp,q(R
n) such that

‖fj|Lp(Rn)‖ = 1 and

∥

∥

∥

∥

∥

(∫ ∞

0

t−sqdrt,pfj(·)
q dt

t

)1/q

|Lp(Rn)

∥

∥

∥

∥

∥

≤
1
j
,

which in turn implies, that ‖fj|Fsp,q(R
n)‖ is bounded. Again, the same is true also for ‖fj|Fsp,q(BR)‖. Due

to the compactness of Fsp,q(R
n) →֒ Lp(Rn) we may assume, that fj → f in Lp(BR) with ‖f |Lp(BR)‖ = 1.

A straightforward calculation shows again that (fj)∞j=1 is a Cauchy sequence in Fsp,q(R
n) and, therefore,

fj → f also in Fsp,q(R
n). Finally, we obtain

∥

∥

∥

∥

∥

(∫ ∞

0

t−sqdrt,pf(·)q
dt

t

)1/q

|Lp(Rn)

∥

∥

∥

∥

∥

= 0

or, equivalently,
∫ ∞

0

t−sqdrt,pf(x)q
dt

t
= 0

for almost every x ∈ Rn. Hence, drt,pf(x) = 0 for almost all x ∈ Rn and almost all t > 0. By standard
arguments it follows that f must be almost everywhere equal to a polynomial of order smaller then r.
Together with the bounded support of f , we obtain that f must be equal to zero almost everywhere.

Theorem 2.4. Let 0 < λ ≤ 1 and f ∈ Fsp,q(R
n) with supp f ⊂ Bλ. Then

‖f(λ·)|Fsp,q(R
n)‖ ∼ λs−n/p‖f |Fsp,q(R

n)‖ (2.3)

with constants of equivalence independent of λ and f .
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Proof. We know from Proposition 2.3 that

‖f(λ·)|Fsp,q(R
n)‖ ∼

∥

∥

∥

∥

∥

(∫ ∞

0

t−sqdrt,p(f(λ·))(·)q
dt

t

)1/q

|Lp(Rn)

∥

∥

∥

∥

∥

,

as supp f(λ·) ⊂ B1. Using ∆r
h(f(λ·))(x) = (∆r

λhf)(λx), we get using the substitution h̃ = λh

drt,p(f(λ·))(x) =

(

t−n
∫

|h|≤t

|∆r
hf(λ·)(x)|pdh

)1/p

=

(

t−n
∫

|h|≤t

|(∆r
λhf)(λx)|pdh

)1/p

=

(

(λt)−n
∫

|h̃|≤λt

|(∆r
h̃
f)(λx)|pdh̃

)1/p

= drλt,p(f)(λx),

which finally implies
∥

∥

∥

∥

∥

(∫ ∞

0

t−sqdrt,p(f(λ·))(·)q
dt

t

)1/q

|Lp(Rn)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

(∫ ∞

0

t−sqdrλt,pf(λ·)q
dt

t

)1/q

|Lp(Rn)

∥

∥

∥

∥

∥

= λs

∥

∥

∥

∥

∥

(∫ ∞

0

t−sqdrt,pf(λ·)q
dt

t

)1/q

|Lp(Rn)

∥

∥

∥

∥

∥

= λs−n/p

∥

∥

∥

∥

∥

(∫ ∞

0

t−sqdrt,pf(·)q
dt

t

)1/q

|Lp(Rn)

∥

∥

∥

∥

∥

∼ λs−n/p‖f |Fsp,q(R
n)‖.

3 Pointwise multipliers

We briefly sketch an application of the above homogeneity results in terms of pointwise multipliers. A
locally integrable function ϕ in Rn is called a pointwise multiplier in As

p,q(R
n) if

f 7→ ϕf

maps the considered space into itself. For further details on the subject we refer to [Tri92, pp. 201-206]
and [RS96, Ch. 4]. Our aim is to generalize Proposition 1.3 as a direct consequence of Theorems 2.2, 2.4.
Again let Bλ be the balls introduced in (1.1).

Corollary 3.1. Let s > 0, 0 < p, q ≤ ∞ and 0 < λ ≤ 1. Let ϕ be a function having classical derivatives
in B2λ up to order 1 + [s] with

|Dαϕ(x)| ≤ aλ−|γ|, |γ| ≤ 1 + [s], x ∈ B2λ,

for some constant a > 0. Then ϕ is a pointwise multiplier in Bs
p,q(Bλ),

‖ϕf |Bs
p,q(Bλ)‖ ≤ c‖f |Bs

p,q(Bλ)‖, (3.1)

where c is independent of f ∈ Bs
p,q(Bλ) and of λ (but depends on a).

Proof. By Proposition 1.3 the function ϕ(λ·) is a pointwise multiplier in Bs
p,q(B1). Then (3.1) is a

consequence of (2.2),

‖ϕf |Bs
p,q(Bλ)‖ ∼ λ−(s−n

p
)‖ϕf(λ·)|Bs

p,q(B1)‖ . λ−(s−n
p

)‖f(λ·)|Bs
p,q(B1)‖ ∼ ‖f |Bs

p,q(Bλ)‖.

Remark 3.2. In terms of Triebel-Lizorkin spaces Fsp,q(R
n) we obtain corresponding results (assuming

p <∞) with the additional restriction on the smoothness parameter s that

s > n

(

1
min(p, q)

−
1
p

)

. (3.2)

This follows from the fact that the analogue of Proposition 1.3 for F-spaces is established using an atomic
characterization of the spaces Fsp,q(R

n) which is only true if we impose (3.2), cf. [Tri06, Prop. 9.14].
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