
PARTICLE SYSTEMS AND KINETIC EQUATIONS MODELING
INTERACTING AGENTS IN HIGH DIMENSION

M. FORNASIER†‡ , J. HAŠKOVEC‡ , AND J. VYBÍRAL‡

Abstract. In this paper we explore how concepts of high-dimensional data compression via
random projections onto lower-dimensional spaces can be applied for tractable simulation of cer-
tain dynamical systems modeling complex interactions. In such systems, one has to deal with a
large number of agents (typically millions) in spaces of parameters describing each agent of high
dimension (thousands or more). Even with today’s powerful computers, numerical simulations of
such systems are prohibitively expensive. We propose an approach for the simulation of dynami-
cal systems governed by functions of adjacency matrices in high dimension, by random projections
via Johnson-Lindenstrauss embeddings, and recovery by compressed sensing techniques. We show
how these concepts can be generalized to work for associated kinetic equations, by addressing the
phenomenon of the delayed curse of dimension, known in information-based complexity for optimal
numerical integration problems in high dimensions.
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1. Introduction. The dimensionality scale of problems arising in our modern
information society has become very large and finding appropriate methods for deal-
ing with them is one of the great challenges of today’s numerical simulation. The most
notable recent advances in data analysis are based on the observation that in many
situations, even for very complex phenomena, the intrinsic dimensionality of the data
is significantly lower than the ambient dimension. Remarkable progresses have been
made in data compression, processing, and acquisition. We mention, for instance, the
use of diffusion maps for data clouds and graphs in high dimension [5, 6, 17, 18, 19]
in order to define low-dimensional local representations of data with small distance
distortion, and meaningful automatic clustering properties. In this setting the em-
bedding of data is performed by a highly nonlinear procedure, obtained by computing
the eigenfunctions of suitable normalized diffusion kernels, measuring the probability
of transition from one data point to another over the graph.
Quasi-isometrical linear embeddings of high-dimensional point clouds into low-dimensional
spaces of parameters are provided by the well-known Johnson-Lindenstrauss Lemma
[1, 22, 35]: any cloud of N points in R

d can be embedded by a random linear projec-
tion M nearly isometrically into R

k with k = O(ε−2 log(N )) (a precise statement will
be given below). This embedding strategy is simpler than the use of diffusion maps,
as it is linear, however it is “blind” to the specific geometry and local dimensionality
of the data, as the embedding dimension k depends exclusively on the number of
points in the cloud. In many applications, this is sufficient, as the number of points
N is supposed to be a power of the dimension d, and the embedding produces an
effective reduction to k = O(ε−2 log(N )) = O(ε−2 log(d)) dimensions. As clarified
in [3, 37], the Johnson-Lindenstrauss Lemma is also at the basis of the possibility
of performing optimal compressed and nonadaptive acquisition of high-dimensional
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data. In compressed sensing [12, 24, 28] a vector x ∈ R
d is encoded in a vector y ∈ R

k

by applying a random projection M , which is modeling a linear acquisition device
with random sensors, i.e., y = Mx. From y it is possible to decode x approximatively
(see Theorem 3.7 below) by solving the convex optimization problem

x# = arg min
Mz=y

(

‖z‖ℓd
1

:=
d∑

i=1

|zi|
)

,

with the error distortion

‖x# − x‖ℓd
1
≤ CσK(x)ℓd

1
,

where σK(x)ℓd
1

= infz:#supp (z)≤K ‖z − x‖ℓd
1

and K = O(k/(log(d/k) + 1)). We de-

note ΣK = {z ∈ R
d : #supp (z) ≤ K} the set of K-sparse vectors, i.e., the union of

K-dimensional coordinate subspaces in R
d. In particular, if x ∈ ΣK , then x# = x.

Hence, not only is M a Johnson-Lindenstrauss embedding, quasi-isometrical on point
clouds and K-dimensional coordinate subspaces, but also allows for the recovery of
the most relevant components of high-dimensional vectors, from low-dimensional en-
coded information. A recent work [4, 48] extends the quasi-isometrical properties of
the Johnson-Lindenstrauss embedding from point clouds and K-dimensional coordi-
nate subspaces to smooth compact Riemannian manifolds with bounded curvature.
Inspired by this work, in [34] the authors extend the principles of compressed sensing
in terms of point recovery on smooth compact Riemannian manifolds.

Besides these relevant results in compressing and coding-decoding high-dimensional
“stationary” data, dimensionality reduction of complex dynamical systems and high-
dimensional partial differential equations is a subject of recent intensive research.
Several tools have been employed, for instance, the use of diffusion maps for dynam-
ical systems [39], tensor product bases and sparse grids for the numerical solution of
linear high-dimensional PDEs [23, 10, 30, 31], the reduced basis method for solving
high-dimensional parametric PDEs [7, 9, 38, 43, 44, 46].
In this paper we shall further explore the connection between data compression and
tractable numerical simulation of dynamical systems, and solutions of associated high-
dimensional kinetic equations. We are specially interested in dynamical systems of
the type

ẋi(t) = fi(Dx(t)) +

N∑

j=1

fij(Dx(t))xj(t), (1.1)

where we use the following notation:
• N ∈ N - number of agents,
• x(t) = (x1(t), . . . , xN (t)) ∈ R

d×N , where xi : [0, T ] → R
d, i = 1, . . . , N ,

• fi : R
N×N → R

d, i = 1, . . . , N,
• fij : R

N×N → R, i, j = 1, . . . , N ,
• D : R

d×N → R
N×N , Dx := (‖xi − xj‖ℓd

2
)N
i,j=1 is the adjacency matrix of the

point cloud x.
We shall assume that the governing functions fi and fij are Lipschitz, but we shall
specify the details later on. The system (1.1) describes the dynamics of multiple com-
plex agents x(t) = (x1(t), . . . , xN (t)) ∈ R

d×N , interacting on the basis of their mutual
“social” distance Dx(t), and its general form includes several models for swarming and
collective motion of animals and micro-organisms, aggregation of cells, etc. Several
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relevant effects can be included in the model by means of the functions fi and fij ,
in particular, fundamental binary mechanisms of attraction, repulsion, aggregation
and alignment [13, 14, 20, 21, 41, 36]. Moreover, possibly adding stochastic terms
of random noise may also allow to consider diffusion effects [8, 14]. However, these
models and motion mechanisms are mostly derived borrowing a leaf from physics, by
assuming the agents (animals, micro-organisms, cells etc.) as pointlike and exclusively
determined by their spatial position and velocity in R

d for d = 3+3. In case we wished
to extend such models of social interaction to more “sophisticated” agents, described
by many parameters (d ≫ 3 + 3), the simulation may become computationally pro-
hibitive. Our motivation for considering high-dimensional situations stems from the
modern development of communication technology and Internet, for which we witness
the development of larger and larger communities accessing information (interactive
databases), services (financial market), social interactions (social networks) etc. For
instance, we might be interested to simulate the behavior of certain subsets of the
financial market where the agents are many investors, who are characterized by their
portfolios of several hundreds of investments. The behavior of each individual investor
depends on the dynamics of others according to a suitable social distance determined
by similar investments. Being able to produce meaningful simulations and learning
processes of such complex dynamics is an issue, which might be challenged by using
suitable compression/dimensionality reduction techniques.
The idea we develop in this paper is to project randomly the system and its initial
condition by Johnson-Lindenstrauss embeddings to a lower-dimensional space where
an independent simulation can be performed with significantly reduced complexity.
We shall show that the use of multiple projections and parallel computations allows
for an approximate reconstruction of the high-dimensional dynamics, by means of
compressed sensing techniques. After we explore the tractable simulation of the dy-
namical systems (1.1) when the dimension d of the parameter space is large, we also
address the issue of whether we can perform tractable simulations when also the num-
ber N of agents is getting very large. Unlike the control of a finite number of agents,
the numerical simulation of a rather large population of interacting agents (N ≫ 0)
can constitute a serious difficulty which stems from the accurate solution of a pos-
sibly very large system of ODEs. Borrowing the strategy from the kinetic theory of
gases [16], we want instead to consider a density distribution of agents, depending on
their d-parameters, which interact with stochastic influence (corresponding to classi-
cal collisional rules in kinetic theory of gases) – in this case the influence is “smeared”
since two individuals may interact also when they are far apart in terms of their
“social distance” Dx. Hence, instead of simulating the behavior of each individual
agent, we shall describe the collective behavior encoded by a density distribution µ,
whose evolution is governed by one sole mesoscopic partial differential equation. We
shall show that, under realistic assumptions on the concentration of the measure µ
on sets of lower dimension, we can also acquire information on the properties of the
high-dimensional measure solution µ of the corresponding kinetic equation, by con-
sidering random projections to lower dimension. Such approximation properties are
determined by means of the combination of optimal numerical integration principles
for the high-dimensional measure µ [29, 32] and the results previously achieved for
particle dynamical systems.
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1.1. Fundamental assumptions. We introduce the following notation for ℓp-
norms of vectors v ∈ R

d,

‖v‖ℓd
p

:=

(
d∑

i=1

|vi|p
)1/p

for 1 ≤ p < ∞,

and

‖v‖ℓd
∞

:= max
i=1,...,d

|vi|.

For matrices x ∈ R
n×m we consider the mixed norm

‖x‖ℓm
p (ℓn

q ) := ‖(‖xi‖ℓn
p
)m
i=1‖ℓm

q
,

where xi ∈ R
n is the ith-column of the matrix x.

For the rest of the paper we impose three fundamental assumptions about Lips-
chitz and boundedness properties of fi and fij ,

|fi(a) − fi(b)| ≤ L‖a − b‖ℓN
∞

(ℓN
∞

), i = 1, . . . , N (1.2)

max
i=1,...,N

N∑

j=1

|fij(a)| ≤ L′, (1.3)

max
i=1,...,N

N∑

j=1

|fij(a) − fij(b)| ≤ L′′‖a − b‖ℓN
∞

(ℓN
∞

), (1.4)

for every a, b ∈ R
N×N . Unfortunately, models of real-life phenomena would not

always satisfy these conditions, for instance models of financial markets or socio-
economic interactions can be expected to exhibit severely discontinuous behavior.
However, these assumptions are reasonable in certain regimes and allow us to prove
the concept we are going to convey in this paper, i.e., the possibility of simulating
high-dimensional dynamics by multiple independent simulations in low dimension.

1.2. Euler scheme, a classical result of stability and convergence, and
its complexity. We shall consider the system of ordinary differential equations of
the form (1.1) with the initial condition

xi(0) = x0
i , i = 1, . . . , N . (1.5)

The Euler method for this system is given by (1.5) and

xn+1
i := xn

i + h



fi(Dxn) +

N∑

j=1

fij(Dxn)xn
j



 , n = 0, . . . , n0 − 1. (1.6)

where h > 0 is the time step and n0 := T/h is the number of iterations. We consider
here the explicit Euler scheme exclusively for the sake of simplicity, for more sophisti-
cated integration methods might be used. We start with a classical result, which we
report in detail for the sake of the reader, and for simplicity we assume fij = 0 for all
i, j = 1, . . . N .
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Theorem 1.1 (Stability and convergence of the Euler scheme). Fix x0 ∈ R
d×N

and let x(t) be the unique solution of the ODE

ẋ(t) = f(Dx(t)) , x(0) = x0 , (1.7)

on the interval [0, T ], T > 0, for f = (fi)
N
i=1 satisfying (1.2). Moreover, fix h > 0

and let tn := nh and x̃n be the approximate solution obtained by the explicit Euler
method, i.e.,

x̃n+1 = x̃n + hf(Dx̃n) , x̃0 = x̃0 ,

for n = 0, . . . , n0 −1. Note that we allow different initial conditions x0 and x̃0 for the
continuous and, resp., discrete solutions. Then, we have the error estimate

En ≤ exp(2Ltn)

(

E0 + htn
‖f(Dx̃0)‖ℓN

∞
(ℓd

2
)

2

)

,

where En = ‖x(tn) − x̃n‖ℓN
∞

(ℓd
2
).

Proof. For the sake of the proof, we extend x̃ to the full interval [0, T ] by linear
interpolation between the grid points tn, i.e.,

x̃(tn + s) = x̃(tn) + sf(Dx̃(tn)) for s ∈ [0, h] ,

such that x̃ is a continuous, piecewise linear function on [0, T ].
For a fixed n and t := tn, let us consider the exact and approximate solutions in

the interval [t, t + τ ] with τ ∈ [0, h]:

x(t + τ) = x(t) +

∫ τ

0

f(Dx(t + s)) ds , (1.8)

x̃(t + τ) = x̃(t) +

∫ τ

0

f(Dx̃(t)) ds . (1.9)

Subtracting (1.9) from (1.8) and using (1.2), we obtain

‖x(t + τ) − x̃(t + τ)‖ℓN
∞

(ℓd
2
) ≤ ‖x(t) − x̃(t)‖ℓN

∞
(ℓd

2
) +

∫ τ

0

‖f(Dx(t + s)) − f(Dx̃(t))‖ℓN
∞

(ℓd
2
) ds

≤ ‖x(t) − x̃(t)‖ℓN
∞

(ℓd
2
) + L

∫ τ

0

‖Dx(t + s) −Dx̃(t)‖ℓN
∞

(ℓN
∞

) ds

≤ ‖x(t) − x̃(t)‖ℓN
∞

(ℓd
2
) + 2L

∫ τ

0

‖x(t + s) − x̃(t)‖ℓN
∞

(ℓd
2
) ds .

Moreover, for s ∈ [0, h],

‖x(t + s) − x̃(t)‖ℓN
∞

(ℓd
2
) ≤ ‖x(t + s) − x̃(t + s)‖ℓN

∞
(ℓd

2
) + ‖x̃(t + s) − x̃(t)‖ℓN

∞
(ℓd

2
)

= ‖x(t + s) − x̃(t + s)‖ℓN
∞

(ℓd
2
) + s‖f(Dx̃(t))‖ℓN

∞
(ℓd

2
) .

The term ‖f(Dx̃(t))‖ℓN
∞

(ℓd
2
) = ‖f(Dx̃n)‖ℓN

∞
(ℓd

2
) is bounded by (1+2Lh)n‖f(Dx̃0)‖ℓN

∞
(ℓd

2
),

which can be seen from the simple induction

‖f(Dx̃n)‖ℓN
∞

(ℓd
2
) ≤ ‖f(Dx̃n) − f(Dx̃n−1)‖ℓN

∞
(ℓd

2
) + ‖f(Dx̃n−1)‖ℓN

∞
(ℓd

2
)

≤ L‖Dx̃n −Dx̃n−1‖ℓN
∞

(ℓN
∞

) + ‖f(Dx̃n−1)‖ℓN
∞

(ℓd
2
)

≤ 2L‖x̃n − x̃n−1‖ℓN
∞

(ℓd
2
) + ‖f(Dx̃n−1)‖ℓN

∞
(ℓd

2
)

= (1 + 2Lh)‖f(Dx̃n−1)‖ℓN
∞

(ℓd
2
) ≤ (1 + 2Lh)n‖f(Dx̃0)‖ℓN

∞
(ℓd

2
) .
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Consequently, defining E(t + τ) := ‖x(t + τ) − x̃(t + τ)‖ℓN
∞

(ℓd
2
), we obtain

E(t + τ) ≤ E(t) + 2L

∫ τ

0

(

E(t + s) + s(1 + 2Lh)n‖f(Dx̃0)‖ℓN
∞

(ℓd
2
)

)

ds

≤ E(t) + 2L

∫ τ

0

E(t + s) ds +
h2

2
(1 + 2Lh)n‖f(Dx̃0)‖ℓN

∞
(ℓd

2
) .

An application of the Gronwall lemma yields

E(t + h) ≤
(

E(t) +
h2

2
(1 + 2Lh)n‖f(Dx̃0)‖ℓN

∞
(ℓd

2
)

)

exp(2Lh) .

By another simple induction we obtain

En ≤ exp(2Lnh)E0 +

(
n∑

k=1

exp(2Lkh)(1 + 2Lh)n−k

)

h2

2
‖f(Dx̃0)‖ℓN

∞
(ℓd

2
) ,

where we turned back to the notation En = E(tn). Using (1+2Lh)n−k ≤ exp(2Lh(n−
k)), we have

En ≤ exp(2Lnh)E0 + exp(2Lnh)n
h2

2
‖f(Dx̃0)‖ℓN

∞
(ℓd

2
) ,

and, finally, writing tn for nh, we conclude

En ≤ exp(2Ltn)

(

E0 + htn
‖f(Dx̃0)‖ℓN

∞
(ℓd

2
)

2

)

.

The simulation of the dynamical system (1.7) has a complexity which is at least
the one of computing the adjacency matrix Dx̃n at each discrete time tn, i.e., O(d ×
N2). The scope of the next sections is to show that, up to an ε-distortion, we can
approximate the dynamics of (1.1) by projecting the system into lower dimension and
by executing in parallel computations with reduced complexity. Computation of the
adjacency matrix in the new dimension requires only O(ε−2 log(N)×N2) operations.
Especially if the distortion parameter ε > 0 is not too small and the number of agents
is of a polynomial order in d, we reduce the complexity of computing the adjacency
matrix to O(log(d) × N2).

2. Projecting the Euler method: dimensionality reduction of discrete
dynamical systems.

2.1. Johnson-Lindenstrauss embedding. We wish to project the dynamics
of (1.1) into a lower-dimensional space by employing a well-known result of Johnson
and Lindenstrauss [35], which we informally rephrase for our purposes as follows.

Lemma 2.1 (Johnson and Lindenstrauss). Let P be an arbitrary set of N points
in R

d. Given a distortion parameter ε > 0, there exists a constant

k0 = O(ε−2 log(N )),

such that for all integers k ≥ k0, there exists a k × d matrix M for which

(1 − ε)‖x − x̃‖2
ℓd
2

≤ ‖Mx − Mx̃‖2
ℓk
2

≤ (1 + ε)‖x − x̃‖2
ℓd
2

, (2.1)
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for all x, x̃ ∈ P. It is easy to see that the condition

(1 − ε)‖p‖2
ℓd
2

≤ ‖Mp‖2
ℓk
2

≤ (1 + ε)‖p‖2
ℓd
2

, p ∈ R
d, (2.2)

implies

(1 − ε)‖p‖ℓd
2
≤ ‖Mp‖ℓk

2
≤ (1 + ε)‖p‖ℓd

2
, p ∈ R

d, (2.3)

for 0 < ε < 1, which will be used in the following sections. On the other hand, (2.3)
implies (2.2) with 3ε instead of ε.

Our aim is to apply this lemma to dynamical systems. As the mapping M from
Lemma 2.1 is linear and almost preserves distances between the points (up to the
ε > 0 distortion as described above), we restrict ourselves to dynamical systems
which are linear or whose non-linearity depends only on the mutual distances of the
points involved, as in (1.1).

Let us define the additional notation, which is going to be fixed throughout the
paper:

• d ∈ N - dimension (large),
• ε > 0 - the distortion parameter from Lemma 2.1,
• k ∈ N - new dimension (small),
• M ∈ R

k×d - randomly generated matrix as described below.
The only constructions of a matrix M as in Lemma 2.1 known up to now are

stochastic, i.e., the matrix is randomly generated and has the quasi-isometry property
(2.1) with high probability. We refer the reader to [22] and [1, Theorem 1.1] for two
typical versions of the Johnson-Lindenstrauss Lemma.

We briefly collect below some well-known instances of random matrices, which
satisfy the statement of Lemma 2.1 with high probability:

• k×d matrices M whose entries mi,j are independent realizations of Gaussian
random variables

mi,j ∼ N
(

0,
1

k

)

;

• k × d matrices M whose entries are independent realizations of ± Bernoulli
random variables

mi,j :=

{

+ 1√
k
, with probability 1

2

− 1√
k
, with probability 1

2

Several other random projections suitable for Johnson-Lindenstrauss embeddings
can be constructed following Theorem 3.6 recalled below, and we refer the reader to
[37] for more details.

2.2. Uniform estimate for a general model. If M ∈ R
k×d is a matrix, we

consider the projected Euler method in R
k associated to the high-dimensional system

(1.5)-(1.6), namely

y0
i := Mx0

i , (2.4)

yn+1
i := yn

i + h



Mfi(D′yn) +

N∑

j=1

fij(D′yn)yn
j



 , n = 0, . . . , n0 − 1. (2.5)
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We denote here D′ : R
k×N → R

N×N , D′y := (‖yi − yj‖ℓk
2
)N
i,j=1, the adjacency matrix

of the agents y = (y1, . . . , yN ) in R
k×N . The first result of this paper reads as follows.

Theorem 2.2. Let the sequences

{xn
i , i = 1, . . . , N and n = 0, . . . , n0} and {yn

i , i = 1, . . . , N and n = 0, . . . , n0}

be defined by (1.5)-(1.6) and (2.4)-(2.5) with fi and fij satisfying (1.2)–(1.4) and a
matrix M ∈ R

k×d with

‖Mfi(D′yn) − Mfi(Dxn)‖ℓk
2
≤ (1 + ε) ‖fi(D′yn) − fi(Dxn)‖ℓd

2
, (2.6)

‖Mxn
j ‖ℓk

2
≤ (1 + ε)‖xn

j ‖ℓd
2
, (2.7)

(1 − ε)‖xn
i − xn

j ‖ℓd
2
≤ ‖Mxn

i − Mxn
j ‖ℓk

2
≤ (1 + ε)‖xn

i − xn
j ‖ℓd

2
(2.8)

for all i, j = 1, . . . , N and all n = 0, . . . , n0. Moreover, let us assume that

α ≥ max
j

‖xn
j ‖ℓd

2
for all n = 0, . . . , n0, j = 1, . . . , N.

Let

en
i := ‖yn

i − Mxn
i ‖ℓk

2
, i = 1, . . . , N and n = 0, . . . , n0 (2.9)

and set En := maxi en
i . Then

En ≤ εhnB exp(hnA), (2.10)

where A := L′ + 2(1 + ε)(L + αL′′) and B := 2α(1 + ε)(L + αL′′).
We remark that conditions (2.6)-(2.8) are in fact satisfied as soon as M is a

suitable Johnson-Lindenstrauss embedding as in Lemma 2.1.
Proof. Using (2.9) and (1.5)-(1.6) and (2.4)-(2.5) combined with (2.6) and (2.7),

we obtain

en+1
i ≤ en

i + h ‖Mfi(D′yn) − Mfi(Dxn)‖ℓk
2

+ h

∥
∥
∥
∥
∥
∥

N∑

j=1

fij(D′yn)yn
j − fij(Dxn)Mxn

j

∥
∥
∥
∥
∥
∥

ℓk
2

≤ en
i + h(1 + ε) ‖fi(D′yn) − fi(Dxn)‖ℓd

2

+ h
N∑

j=1

(

‖fij(D′yn)yn
j − fij(D′yn)Mxn

j ‖ℓk
2

+ ‖fij(D′yn)Mxn
j − fij(Dxn)Mxn

j ‖ℓk
2

)

≤ en
i + h(1 + ε) ‖fi(D′yn) − fi(Dxn)‖ℓd

2

+ h
N∑

j=1

(

|fij(D′yn)|en
j + (1 + ε)‖xn

j ‖ℓd
2
· |fij(D′yn) − fij(Dxn)|

)

.

Taking the maximum on both sides, this becomes

En+1 ≤ En + h(1 + ε)max
i

‖fi(D′yn) − fi(Dxn)‖ℓd
2

+ hEn max
i

N∑

j=1

|fij(D′yn)| + h(1 + ε)α · max
i

N∑

j=1

|fij(D′yn) − fij(Dxn)|.



PARTICLE AND KINETIC MODELING IN HIGH DIMENSION 9

We use (1.2)–(1.4) for a = D′yn and b = Dxn to estimate all the terms on the
right-hand side. This gives

En+1 ≤ En + h(1 + ε)L‖D′yn −Dxn‖ℓN
∞

(ℓN
∞

) + hEnL′ + h(1 + ε)αL′′‖D′yn −Dxn‖ℓN
∞

(ℓN
∞

)

≤ En(1 + hL′) + h(1 + ε)(L + αL′′)
[
‖D′yn −D′Mxn‖ℓN

∞
(ℓN

∞
) + ‖D′Mxn −Dxn‖ℓN

∞
(ℓN

∞
)

]

≤ En(1 + hL′) + 2h(1 + ε)(L + αL′′)(En + αε),

where we used (2.8) in the last line. This, together with E0 = 0, leads to

En ≤ εhnB exp(hnA),

where A := L′ + 2(1 + ε)(L + αL′′) and B := 2α(1 + ε)(L + αL′′).

2.3. Uniform estimate for the Cucker-Smale model. As a relevant exam-
ple, let us now show that Theorem 2.2 can be applied to the well-known Cucker-Smale
model, introduced and analyzed in [20, 21], which is described by

ẋi = vi ∈ R
d, (2.11)

v̇i =
1

N

N∑

j=1

g(‖xi − xj‖ℓd
2
)(vj − vi), i = 1, . . . , N. (2.12)

The function g : [0,∞) → R is given by g(s) = G
(1+s2)β , for β > 0, and bounded by

g(0) = G > 0. This model describes the emerging of consensus in a group of interacting
agents, trying to align (also in terms of abstract consensus) with their neighbors. One
of the motivations of the model from Cucker and Smale was to describe the formation
and evolution of languages [21, Section 6], although, due to its simplicity, it has been
eventually related mainly to the description of the emergence of flocking in groups of
birds [20]. In the latter case, in fact, spatial and velocity coordinates are sufficient to
describe a pointlike agent (d = 3+3), while for the evolution of languages, one would
have to take into account a much broader dictionary of parameters, hence a higher
dimension d ≫ 3 + 3 of parameters, which is in fact the case of our interest in the
present paper.

Let us show that the model is indeed of the type (1.1). We interprete the system
as a group of 2N agents in R

d, whose dynamics is given by the following equations

ẋi =

N∑

j=1

fx
ijvj ∈ R

d,

v̇i =

N∑

j=1

fv
ij(Dx)vj , i = 1, . . . , N

with fx
ij := δij , fv

ii(Dx) := − 1

N

N∑

k=1

g(‖xi − xk‖ℓd
2
), and fv

ij(Dx) :=
1

N
g(‖xi − xj‖ℓd

2
),

for i 6= j. The condition (1.2) is empty, (1.3) reads

L′ ≥ max(1, 2G) ≥ max
i

{

1,
2

N

N∑

k=1

g(‖xn
i − xn

k‖ℓd
2
)

}

.
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Finally,

max
i

2

N

N∑

j=1

∣
∣
∣g(‖xn

i − xn
j ‖ℓd

2
) − g(‖yn

i − yn
j ‖ℓk

2
)
∣
∣
∣

≤ max
i

2‖g‖Lip

N
·

N∑

j=1

∣
∣
∣‖xn

i − xn
j ‖ℓd

2
− ‖yn

i − yn
j ‖ℓk

2

∣
∣
∣

≤ 2‖g‖Lip · ‖D′yn −Dxn‖ℓN
∞

(ℓN
∞

)

shows that L′′ ≤ 2‖g‖Lip.

2.4. Least-squares estimate of the error for the Cucker-Smale model.
The formula (2.10) provides the estimate of the maximum of the individual errors, i.e.,
En := ‖(yn

i −Mxn
i )N

i=1‖ℓN
∞

(ℓk
2
). In this section we address the stronger ℓN

2 (ℓk
2)-estimate

for the error. For generic dynamical systems (1.1) such estimate is not available in
general, and one has to perform a case-by-case analysis. As a typical example of
how to proceed, we restrict ourselves to the Cucker-Smale model, just recalled in the
previous section. The forward Euler discretization of (2.11)–(2.12) is given by

xn+1
i = xn

i + hvn
i , (2.13)

vn+1
i = vn

i +
h

N

N∑

j=1

g(‖xn
i − xn

j ‖ℓd
2
)(vn

j − vn
i )

with initial data x0
i and v0

i given. Let M be again a suitable random matrix in the
sense of Lemma 2.1. The Euler method of the projected system is given by the initial
conditions y0

i = Mx0
i and w0

i = Mv0
i and the formulas

yn+1
i = yn

i + hwi, (2.14)

wn+1
i = wn

i +
h

N

N∑

j=1

g(‖yn
i − yn

j ‖ℓk
2
)(wn

j − wn
i ).

We are interested in the estimates of the following quantities

en
x,i := ‖yn

i − Mxn
i ‖ℓk

2
, En

x :=

√
√
√
√ 1

N

N∑

i=1

(en
x,i)

2 =
‖(yn

i − Mxn
i )N

i=1‖ℓN
2

(ℓk
2
)√

N
,

en
v,i := ‖wn

i − Mvn
i ‖ℓk

2
, En

v :=

√
√
√
√ 1

N

N∑

i=1

(en
v,i)

2 =
‖(wn

i − Mvn
i )N

i=1‖ℓN
2

(ℓk
2
)√

N
.

Using (2.13) and (2.14), we obtain

en+1
x,i ≤ en

x,i + hen
v,i and En+1

x ≤ En
x + hEn

v .

To bound the quantity En
v we have to work more. Another application of (2.13) and
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(2.14) leads to

en+1
v,i ≤ en

v,i +
h

N

N∑

j=1

(

‖g(‖yn
i − yn

j ‖ℓk
2
)(wn

j − wn
i ) ± g(‖yn

i − yn
j ‖ℓk

2
)(Mvn

j − Mvn
i )

− g(‖xn
i − xn

j ‖ℓd
2
)(Mvn

j − Mvn
i )‖ℓk

2

)

≤ en
v,i +

h

N

N∑

j=1

g(‖yn
i − yn

j ‖ℓk
2
)(en

v,j + en
v,i) (2.15)

+
(1 + ε)h‖g‖Lip

N
·

N∑

j=1

‖vn
j − vn

i ‖ℓd
2
·
∣
∣‖xn

i − xn
j ‖ℓd

2
− ‖yn

i − yn
j ‖ℓk

2

∣
∣.

We estimate the first summand in (2.15)

h

N

N∑

j=1

g(‖yn
i − yn

j ‖ℓk
2
)(en

v,j + en
v,i) ≤

hG

N

[
Nen

v,i +
N∑

j=1

en
v,j

]
= hGen

v,i +
hG

N

N∑

j=1

en
v,j

and its ℓ2-norm with respect to i by Hölder’s inequality

h
√

NGEn
v +

hG

N

(
N∑

i=1

( N∑

j=1

en
v,j

)2
)1/2

≤ 2h
√

NGEn
v . (2.16)

To estimate the second summand in (2.15), let us set V := maxi,j,n ‖vn
i − vn

j ‖ℓd
2

and make use of
∣
∣‖xn

i − xn
j ‖ℓd

2
− ‖yn

i − yn
j ‖ℓk

2

∣
∣

≤
∣
∣‖xn

i − xn
j ‖ℓd

2
− ‖Mxn

i − Mxn
j ‖ℓk

2

∣
∣ +

∣
∣‖Mxn

i − Mxn
j ‖ℓk

2
− ‖yn

i − yn
j ‖ℓk

2

∣
∣

≤ ε‖xn
i − xn

j ‖ℓd
2

+ en
x,i + en

x,j .

We arrive at

(1 + ε)h‖g‖Lip

N

N∑

j=1

‖vn
j − vn

i ‖ℓd
2
(ε‖xn

i − xn
j ‖ℓd

2
+ en

x,i + en
x,j)

≤ (1 + ε)h‖g‖LipV

N

{

ε
N∑

j=1

‖xn
i − xn

j ‖ℓd
2

+ Nen
x,i +

N∑

j=1

en
x,j

}

.

The ℓ2-norm of this expression with respect to i is bounded by

(1 + ε)h‖g‖LipV

N






ε
( N∑

i=1

( N∑

j=1

‖xn
i − xn

j ‖ℓd
2

)2)1/2

+ N
( N∑

i=1

(en
x,i)

2
)1/2

+
√

N
N∑

j=1

en
x,j







≤ (1 + ε)h‖g‖LipV
√

N(εX + 2En
x ), (2.17)

where X := maxi,j,n ‖xn
i − xn

j ‖ℓd
2
. Combining (2.15) with (2.16) and (2.17) leads to

the recursive estimate

En+1
x ≤ En

x + hEn
v , (2.18)

En+1
v ≤ En

v + 2hGEn
v + h(1 + ε)‖g‖LipV {εX + 2En

x } ,



12 M. FORNASIER, J. HAŠKOVEC AND J. VYBÍRAL

which we put into the matrix form

(
En+1

x

En+1
v

)

= A
(
En

x

En
v

)

+

(
0

(1 + ε)εh‖g‖LipV X

)

, (2.19)

where A is a 2 × 2 matrix given by

A = A1 + hA2 :=

(
1 0
0 1

)

+ h

(
0 1

2(1 + ε)‖g‖LipV 2G

)

.

Taking the norms on both sides of (2.19) leads to

√

(En+1
x )2 + (En+1

v )2 ≤ (1 + h‖A2‖)
√

(En
x )2 + (En

v )2 + ε(1 + ε)h‖g‖LipV X

and the least-squares error estimate finally reads as follows.

√

(En
x )2 + (En

v )2 ≤ ε(1 + ε)hn‖g‖LipV X exp(hn‖A2‖).

3. Dimensionality reduction for continuous dynamical systems.

3.1. Uniform estimates for continuous dynamical systems. In this section
we shall establish the analogue of the above results for the continuous time setting of
dynamical systems of the type (1.1),

ẋi = fi(Dx) +

N∑

j=1

fij(Dx)xj , i = 1, . . . , N , (3.1)

xi(0) = x0
i , i = 1, . . . , N . (3.2)

We adopt again the assumptions about Lipschitz continuity and boundedness of the
right-hand side made in Section 2, namely (1.2), (1.3) and (1.4).

Theorem 3.1. Let x(t) ∈ R
d×N , t ∈ [0, T ], be the solution of the system (3.1)–

(3.2) with fi’s and fij’s satisfying (1.2)–(1.4), such that

max
t∈[0,T ]

max
i,j

‖xi(t) − xj(t)‖ℓd
2
≤ α . (3.3)

Let us fix k ∈ N, k ≤ d, and a matrix M ∈ R
k×d such that

(1 − ε)‖xi(t) − xj(t)‖ℓd
2
≤ ‖Mxi(t) − Mxj(t)‖ℓk

2
≤ (1 + ε)‖xi(t) − xj(t)‖ℓd

2
,(3.4)

for all t ∈ [0, T ] and i, j = 1, . . . , N . Let y(t) ∈ R
k×N , t ∈ [0, T ] be the solution of

the projected system

ẏi = Mfi(D′y) +
N∑

j=1

fij(D′y)yj , i = 1, . . . , N ,

yi(0) = Mx0
i , i = 1, . . . , N , (3.5)

such that for a suitable β > 0,

max
t∈[0,T ]

‖y(t)‖ℓN
∞

(ℓd
2
) ≤ β . (3.6)
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Let us define the column-wise ℓ2-error ei(t) := ‖yi −Mxi‖ℓk
2

for i = 1, . . . , N and

E(t) := max
i=1,...,N

ei(t) = ‖y − Mx‖ℓN
∞

(ℓk
2
) .

Then we have the estimate

E(t) ≤ εαt(L ‖M‖ + L′′β) exp [(2L ‖M‖ + 2βL′′ + L′)t] . (3.7)

Proof. Due to (1.2)–(1.4), we have for every i = 1, . . . , N the estimate

d

dt
ei =

〈yi − Mxi,
d
dt (yi − Mxi)〉

‖yi − Mxi‖ℓk
2

≤
∥
∥
∥
∥

d

dt
(yi − Mxi)

∥
∥
∥
∥

ℓk
2

≤ ‖Mfi(D′y) − Mfi(Dx)‖ℓk
2

+

N∑

j=1

‖fij(D′y)yj − fij(Dx)Mxj‖ℓk
2

≤ L ‖M‖ ‖D′y −Dx‖ℓN
∞

(ℓN
∞

) +
N∑

j=1

(

‖fij(Dx)(Mxj − yj)‖ℓk
2

+ ‖(fij(Dx) − fij(D′y))yj‖ℓk
2

)

≤ L ‖M‖ ‖D′y −Dx‖ℓN
∞

(ℓN
∞

) + L′ ‖Mx − y‖ℓN
∞

(ℓk
2
) + L′′ ‖Dx −D′y‖ℓN

∞
(ℓN

∞
) ‖y‖ℓN

∞
(ℓk

2
) .

The term ‖D′y −Dx‖ℓN
∞

(ℓN
∞

) ≤ ‖D′y −D′Mx‖ℓN
∞

(ℓN
∞

) + ‖D′Mx −Dx‖ℓN
∞

(ℓN
∞

) is esti-
mated by

‖D′y −DMx‖ℓN
∞

(ℓN
∞

) = max
i,j

∣
∣
∣
∣
‖yi − yj‖ℓk

2
− ‖Mxi − Mxj‖ℓk

2

∣
∣
∣
∣

≤ max
i,j

‖yi − Mxi‖ℓk
2

+ ‖yj − Mxj‖ℓk
2
≤ 2E(t) ,

and, using the assumption (3.4),

‖D′Mx −Dx‖ℓN
∞

(ℓN
∞

) = max
i,j

∣
∣
∣
∣
‖Mxi − Mxj‖ℓk

2
− ‖xi − xj‖ℓd

2

∣
∣
∣
∣
≤ εmax

i,j
‖xi − xj‖ℓk

2
= ε ‖Dx‖ℓN

∞
(ℓN

∞
) .

Finally, by the a priori estimate (3.3) for ‖Dx‖ℓN
∞

(ℓN
∞

) and (3.6) for ‖y‖ℓN
∞

(ℓd
2
), we

obtain

d

dt
ei ≤ L ‖M‖ (2E(t) + εα) + L′E(t) + L′′β(2E(t) + εα)

= (2L ‖M‖ + 2βL′′ + L′)E(t) + εα(L ‖M‖ + L′′β) .

Now, let us split the interval [0, T ) into a union of finite disjoint intervals Ij =
[tj−1, tj), j = 1, . . . ,K for a suitable K ∈ N, such that E(t) = ei(j)(t) for t ∈ Ij .
Consequently, on every Ij we have

d

dt
E(t) =

d

dt
ei(j)(t) ≤ (2L ‖M‖ + 2βL′′ + L′)E(t) + εα(L ‖M‖ + L′′β) ,

and the Gronwall lemma yields

E(t) ≤ [εα(L ‖M‖ + L′′β)(t − tj−1) + E(tj−1)] exp ((2L ‖M‖ + 2βL′′ + L′)(t − tj−1))

for t ∈ [tj−1, tj). A concatenation of these estimates over the intervals Ij leads finally
to the expected error estimate

E(t) ≤ εαt(L ‖M‖ + L′′β) exp [(2L ‖M‖ + 2βL′′ + L′)t] .
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3.2. A continuous Johnson-Lindenstrauss Lemma. Let us now go through
the assumptions we made in the formulation of Theorem 3.1 and discuss how they re-
strict the validity and applicability of the result. First of all, let us mention that (3.3)
and (3.6) can be easily proven to hold for locally Lipschitz right-hand sides fi and
fij on finite time intervals. Obviously, the critical point for the applicability of The-
orem 3.1 is the question how to find a matrix M satisfying the condition (3.4), i.e.,
being a quasi-isometry along the trajectory solution x(t) for every t ∈ [0, T ]. The an-
swer is provided by the following generalization of the Johnson-Lindenstrauss Lemma
(Lemma 2.1) for rectifiable C1-curves, by a suitable continuity argument. Let us
stress that our approach resembles the “sampling and ǫ-net” argument in [3, 4, 48] for
the extension of the quasi-isometry property of Johnson-Lindenstrauss embeddings to
smooth Riemmanian manifolds. From this point of view the following result can be
viewed as a specification of the work [4, 48].
We first prove an auxiliary technical result:

Lemma 3.2. Let 0 < ε < ε′ < 1, a ∈ R
d and let M : R

d → R
k be a linear

mapping such that

(1 − ε)‖a‖ℓd
2
≤ ‖Ma‖ℓk

2
≤ (1 + ε)‖a‖ℓd

2
.

Let x ∈ R
d satisfy

‖a − x‖ ≤
(ε′ − ε)‖a‖ℓd

2

‖M‖ + 1 + ε′
. (3.8)

Then

(1 − ε′)‖x‖ℓd
2
≤ ‖Mx‖ℓk

2
≤ (1 + ε′)‖x‖ℓd

2
. (3.9)

Proof. If a = 0, the statement is trivial. If a 6= 0, we denote the right-hand side
of (3.8) by τ > 0 and estimate by the triangle inequality

‖Mx‖ℓk
2

‖x‖ℓd
2

=
‖M(x − a) + Ma‖ℓk

2

‖x − a + a‖ℓd
2

≤
‖M‖ · ‖x − a‖ℓd

2
+ (1 + ε)‖a‖ℓd

2

‖a‖ℓd
2
− ‖x − a‖ℓd

2

≤
‖M‖ · τ + (1 + ε)‖a‖ℓd

2

‖a‖ℓd
2
− τ

≤ 1 + ε′ .

A similar chain of inequalities holds for the estimate from below.
Now we are ready to establish a continuous version of Lemma 2.1.
Theorem 3.3. Let ϕ : [0, 1] → R

d be a C1 curve. Let 0 < ε < ε′ < 1,

γ := max
ξ∈[0,1]

‖ϕ′(ξ)‖ℓd
2

‖ϕ(ξ)‖ℓd
2

< ∞ and N ≥ (
√

d + 2) · γ

ε′ − ε
.

Let k be such that a randomly chosen (and properly normalized) projector M satisfies
the statement of the Johnson-Lindenstrauss Lemma 2.1 with ε, d, k and N arbitrary
points with high probability. Without loss of generality we assume that ‖M‖ ≤

√

d/k
within the same probability (this is in fact the case, e.g., for the examples of Gaussian
and Bernoulli random matrices reported in Section 2).

Then

(1 − ε′)‖ϕ(t)‖ℓd
2
≤ ‖Mϕ(t)‖ℓk

2
≤ (1 + ε′)‖ϕ(t)‖ℓd

2
, for all t ∈ [0, 1] (3.10)



PARTICLE AND KINETIC MODELING IN HIGH DIMENSION 15

holds with the same probability.
Proof. Let ti = i/N , i = 0, . . . ,N and put

Ti := arg maxξ∈[ti,ti+1]‖ϕ′(ξ)‖ℓd
2
, i = 0, . . . ,N − 1.

Let M : R
d → R

k be the randomly chosen and normalized projector (see Lemma 2.1).
Hence ‖M‖ ≤

√

d/k and

(1 − ε′)‖ϕ(Ti)‖ℓd
2
≤ ‖M(ϕ(Ti))‖ℓk

2
≤ (1 + ε′)‖ϕ(Ti)‖ℓd

2
, i = 1, . . . ,N (3.11)

with high probability. We show that (3.10) holds with (at least) the same probability.
This follows easily from (3.11) and the following estimate, which holds for every

t ∈ [ti, ti+1],

‖ϕ(t) − ϕ(Ti)‖ℓd
2
≤

∫ Ti

t

‖ϕ′(s)‖ℓd
2
ds ≤

‖ϕ′(Ti)‖ℓd
2

N ≤
‖ϕ′(Ti)‖ℓd

2
(ε′ − ε)

γ(
√

d + 2)

≤
‖ϕ(Ti)‖ℓd

2
(ε′ − ε)

√
d + 2

≤
‖ϕ(Ti)‖ℓd

2
(ε′ − ε)

‖M‖ + 1 + ε′
.

The proof is then finished by a straightforward application of Lemma 3.2.
Remark 1. We show now that the condition

γ := max
ξ∈[0,1]

‖ϕ′(ξ)‖ℓd
2

‖ϕ(ξ)‖ℓd
2

< ∞

is necessary, hence it is a restriction to the type of curves one can quasi-isometrically
project. Let d ≥ 3. It is known that there is a continuous curve ϕ : [0, 1] → [0, 1]d−1,
such that ϕ([0, 1]) = [0, 1]d−1, i.e., ϕ goes onto [0, 1]d−1. The construction of such a
space-filling curve goes back to Peano and Hilbert. After a composition with suitable
dilations and d-dimensional spherical coordinates we observe that there is also a sur-
jective continuous curve ϕ : [0, 1] → S

d−1, where S
d−1 denotes the ℓd

2 unit sphere in
R

d.
As M was supposed to be a projection, (3.10) cannot hold for all t’s with ϕ(t) ∈

ker M 6= ∅.
Obviously, the key condition for applicability of Theorem 3.3 for finding a pro-

jection matrix M satisfying (3.4) is that

sup
t∈[0,T ]

max
i,j

‖ẋi − ẋj‖ℓd
2

‖xi − xj‖ℓd
2

≤ γ < ∞ . (3.12)

This condition is, for instance, trivially satisfied when the right-hand sides fi’s and
fij ’s have the following Lipschitz continuity:

‖fi(Dx) − fj(Dx)‖ℓd
2
≤ L′′′‖xi − xj‖ℓd

2
for all i, j = 1, . . . , N ,

|fi,k(Dx) − fj,k(Dx)| ≤ L′′′′‖xi − xj‖ℓd
2

for all i, j, k = 1, . . . , N.

We will show in the examples below how condition (3.12) is verified in cases of dynami-
cal systems modeling standard social mechanisms of attraction, repulsion, aggregation
and alignment.
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3.3. Applicability to fundamental examples of dynamical systems de-
scribing social dynamics. In this section we show the applicability of our dimen-
sionality reduction theory to well-known dynamical systems driven by “social forces”
of alignment, attraction, repulsion and aggregation. Although these models were pro-
posed as descriptions of group motion in physical space, the fundamental social effects
can be considered as building blocks in the more abstract context of many parameter
social dynamics. It has been shown [14, 41] that these models are able to produce
meaningful patterns, for instance mills in two spatial dimensions (see Figure 3.1), re-
producing the behavior of certain biological species. However, we should expect that

Fig. 3.1. Mills in nature and in models

in higher dimension the possible patterns produced by the combination of fundamental
effects can be much more complex.

3.3.1. The Cucker-Smale system (alignment effect). As shown in Sec-
tion 2, the Cucker and Smale flocking model (2.11)–(2.12) is of the type (1.1) and
satisfies the Lipschitz continuity assumptions (1.2)–(1.4). Therefore, to meet all the
assumptions of Theorem 3.1, we only need to check that it also satisfies the condi-
tion (3.12). However, for this we need to consider a slightly different framework than
in Section 2.3; instead of considering the 2N d-dimensional variables (N position vari-
ables and N velocity variables), we need to arrange the model as N variables in R

2d,
each variable consisting of the position part (first d entries) and of the velocity part
(the other d entries). We have then

‖ẋi − ẋj‖ℓd
2

+ ‖v̇i − v̇j‖ℓd
2
≤ ‖vi − vj‖ℓd

2
+

1

N

N∑

k=1

∣
∣g(‖xi − xk‖ℓd

2
) − g(‖xj − xk‖ℓd

2
)
∣
∣‖vk‖ℓd

2

≤ ‖vi − vj‖ℓd
2

+
‖g‖Lip

N

N∑

k=1

∣
∣‖xi − xk‖ℓd

2
− ‖xj − xk‖ℓd

2

∣
∣‖vk‖ℓd

2

≤ ‖vi − vj‖ℓd
2

+
‖g‖Lip

N

(
N∑

k=1

‖vk‖ℓd
2

)

‖xi − xj‖ℓd
2

≤ ‖vi − vj‖ℓd
2

+ c‖xi − xj‖ℓd
2
,

for a suitable constant c depending on the initial data. We used here the a-priori

boundedness of the term 1
N

(
∑N

k=1 ‖vk‖ℓd
2

)

, see [21] or [33] for details. Consequently,
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we can satisfy (3.12) with γ = max(1, c).

3.3.2. D’Orsogna model, gravitational and electrostatic interaction (at-
traction and repulsion effects). Another practically relevant model which fits into
the class given by (1.1) is the so-called D’Orsogna model of flocking, [41]:

ẋi = vi , (3.13)

v̇i = (a − b‖vi‖2
ℓd
2

)vi −
1

N

∑

j 6=i

∇xi
U(‖xi − xj‖ℓd

2
) , i = 1, . . . , N, (3.14)

where a and b are positive constants and U : [0,∞) → R is a smooth potential. We
denote u(s) = U ′(s)/s and assume that u is a bounded, Lipschitz continuous function.
We again arrange the model as a system of N variables in R

2d, each variable consisting
of the position part (first d entries) and of the velocity part (the other d entries).
Consequently, the model can be put into a form compliant with (1.1) as follows:

ẋi =
N∑

j=1

fxv
ij vj ,

v̇i =
N∑

j=1

fvv
ij (Dv)vj +

N∑

j=1

fvx
ij (Dx)xj ,

with fxv
ij = δij , fvx

ii (Dx) = − 1
N

∑

j 6=i u(‖xi − xj‖ℓd
2
) and fvx

ij (Dx) = 1
N u(‖xi − xj‖ℓd

2
)

for i 6= j. Moreover, we may set fvv
ij (Dv) = δij(a−b‖vi‖2

ℓd
2

) by introducing an auxiliary,

noninfluential constant zero particle (x0, v0) = (0, 0) with null dynamics, i.e., f∗⋆
0 = 0

and f∗⋆
0j = 0, where ∗, ⋆ ∈ {x, v}. Then, (1.2) is void, while (1.3) is satisfied by

max
i

∑

j

(|fxv
ij (Dx,Dv)| + |fvx

ij (Dx,Dv)| + |fvv
ij (Dx,Dv)|)

≤ 1 + a + bmax
i

‖vi‖2
ℓd
2

+ 2 ‖u‖L∞

≤ L′ ,

since the theory provides an apriori bound on βv := supt∈[0,T ] maxi ‖vi‖ℓd
2
, see [41].

Condition (1.4) for fxv
ij is void, while for fvv

ij it is satisfied by

max
i

∑

j

∣
∣fvv

ij (Dv) − fvv
ij (Dw)

∣
∣ ≤ bmax

i

∣
∣
∣‖vi‖2

ℓd
2

− ‖wi‖2
ℓd
2

∣
∣
∣

≤ bmax
i

(

‖vi‖ℓd
2

+ ‖wi‖ℓd
2

)

‖vi − wi‖ℓd
2

≤ L′′ ‖Dv −Dw‖ℓN
∞

(ℓN
∞

) ,

where we again use the apriori boundedness of βv. For fvx
ij is (1.4) satisfied by

max
i

∑

j

∣
∣fvx

ij (Dx) − fvx
ij (Dy)

∣
∣ ≤ max

i

2

N

∑

j 6=i

∣
∣
∣u(‖xi − xj‖ℓd

2
) − u(‖yi − yj‖ℓd

2
)
∣
∣
∣

≤ max
i

2

N
‖u‖Lip

∑

j 6=i

∣
∣
∣‖xi − xj‖ℓd

2
− ‖yi − yj‖ℓd

2

∣
∣
∣

≤ 2 ‖u‖Lip ‖Dx −Dy‖ℓN
∞

(ℓN
∞

) .
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Finally, it can be easily checked that condition (3.12) is satisfied by

‖ẋi − ẋj‖ℓd
2

+ ‖v̇i − v̇j‖ℓd
2
≤ (1 + a + 3bβ2

v)‖vi − vj‖ℓd
2

+
(

‖u‖L∞

+ 2βx ‖u‖Lip

)

‖xi − xj‖ℓd
2
,

where βx := supt∈[0,T ] maxi ‖xi‖ℓd
2
.

In fact, the D’Orsogna model is a generalization of the classical model of inter-
acting particles through a potential U ,

ẋi = vi , i = 1, . . . , N ,

v̇i = − 1

N

∑

j 6=i

∇U(‖xi − xj‖ℓd
2
) , i = 1, . . . , N ,

for instance, gravitational or electrostatic interaction. However, in these cases the
function u(s) = U ′(s)/s does not meet the assumptions of boundedness and Lipschitz
continuity that are needed for the applicability of our method. Consequently, we only
can consider models with regular enough potentials.

3.4. Recovery of the dynamics in high dimension from multiple simula-
tions in low dimension. The main message of Theorem 3.1 is that, under suitable
assumptions on the governing functions fi, fij , the trajectory of the solution y(t) of the
projected dynamical system (3.5) is at an ε error from the trajectory of the projection
of the solution x(t) of the dynamical system (3.1)-(3.2), i.e.,

yi(t) ≈ Mxi(t) or, more precisely, ‖Mxi(t) − yi(t)‖ℓk
2
≤ C(t)ε, t ∈ [0, T ]. (3.15)

We wonder whether this approximation property can allow us to “learn” proper-
ties of the original trajectory x(t) in high dimension.

3.4.1. Sparse recovery. To address this issue we recall first some relevant and
useful concepts from the field of compressed sensing [25, 28]. Again a central role here
is played by (random) matrices with the so-called Restricted Isometry Property RIP,
cf. [11].

Definition 3.4 (Restricted Isometry Property). A k × d matrix M is said to
have the Restricted Isometry Property of order K ≤ d and level δ ∈ (0, 1) if

(1 − δ)‖x‖2
ℓd
2

≤ ‖Mx‖2
ℓk
2

≤ (1 + δ)‖x‖2
ℓd
2

for all K-sparse x ∈ ΣK = {z ∈ R
d : #supp (z) ≤ K}.

Both the typical matrices used in Johnson-Lindenstrauss embeddings (cf. Lemma
2.1) and matrices with RIP used in compressed sensing are usually generated at
random. It was observed by [3] and [37], that there is an intimate connection between
these two notions. A simple reformulation of the arguments of [3] yields the following.

Theorem 3.5 (Baraniuk, Davenport, DeVore, and Wakin). Let M be a k × d
matrix drawn at random which satisfies

(1 − δ/2)‖x‖2
ℓd
2

≤ ‖Mx‖2
ℓk
2

≤ (1 + δ/2)‖x‖2
ℓd
2

, x ∈ P

for every set P ⊂ R
d with #P ≤

(
12ed
δK

)K
with probability 0 < ν < 1. Then M

satisfies the Restricted Isometry Property of order K and level δ/3 with probability at
least equal to ν.

Combined with several rather elementary constructions of Johnson-Lindenstrauss
embedding matrices available in literature, cf. [1] and [22], this result provides a simple
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construction of RIP matrices. The converse direction, namely the way from RIP
matrices to matrices suitable for Johnson-Lindenstrauss embedding was discovered
only recently in [37].

Theorem 3.6 (Krahmer and Ward). Fix η > 0 and ε > 0, and consider a finite
set P ⊂ R

d of cardinality |P| = N . Set K ≥ 40 log 4N
η , and suppose that the k × d

matrix M̃ satisfies the Restricted Isometry Property of order K and level δ ≤ ε/4.
Let ξ ∈ R

d be a Rademacher sequence, i.e., uniformly distributed on {−1, 1}d . Then
with probability exceeding 1 − η,

(1 − ε)‖x‖2
ℓd
2

≤ ‖Mx‖2
ℓk
2

≤ (1 + ε)‖x‖2
ℓd
2

.

uniformly for all x ∈ P, where M := M̃ diag(ξ), where diag(ξ) is a d × d diagonal
matrix with ξ on the diagonal.

We refer to [42] for additional details.
Remark 2. Notice that M as constructed in Theorem 3.6 is both a Johnson-

Lindenstrauss embedding and a matrix with RIP, because

(1 − δ)‖x‖2
ℓd
2

= (1 − δ)‖diag(ξ)x‖2
ℓd
2

≤ ‖ M̃ diag(ξ)
︸ ︷︷ ︸

:=M

x‖2
ℓk
2

≤ (1 + δ)‖diag(ξ)x‖2
ℓd
2

= (1 + δ)‖x‖2
ℓd
2

.

The matrices considered in Section 2 satisfy with high probability the RIP with

K = O
(

k

1 + log(d/k)

)

.

Equipped with the notion of RIP matrices we may state the main result of the
theory of compressed sensing, as appearing in [25], which we shall use for the recovery
of the dynamical system in R

d.
Theorem 3.7. Assume that the matrix M ∈ R

k×d has the RIP of order 2K and
level

δ2K <
2

3 +
√

7/4
≈ 0.4627.

Then the following holds for all x ∈ R
d. Let the low-dimensional approximation

y = Mx + η be given with ‖η‖ℓk
2
≤ Cε. Let x# be the solution of

min
z∈Rd

‖z‖ℓd
1

subject to ‖Mz − y‖ℓk
2
≤ ‖η‖ℓk

2
. (3.16)

Then

‖x − x#‖ℓd
2
≤ C1ε + C2

σK(x)ℓd
1√

K

for some constants C1, C2 > 0 that depend only on δ2K , and σK(x)ℓd
1

= infz:#supp (z)≤K ‖z−
x‖ℓd

1
is the best-K-term approximation error in ℓd

1.

This result says that provided the stability relationship (3.15), we can approximate

the individual trajectories xi(t), for each t ∈ [0, T ] fixed, by a vector x#
i (t) solution

of an optimization problem of the type (3.16), and the accuracy of the approximation
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depends on the best-K-term approximation error σK(xi(t))ℓd
1
. Actually, when xi(t)

is a vector in R
d with few large entries in absolute value, then x#

i (t) ≈ xi(t) is a
very good approximation, up to the ineliminable ε-distortion. However, if the vector
xi(t) has many relevant entries, then this approximation will be rather poor. One
possibility to improve the recovery error is to increase the dimension k (leading to a
smaller distortion parameter ε > 0 in the Johnson-Lindenstrauss embedding). But we
would like to explore another possibility, namely projecting and simulating in parallel
and independently the dynamical system L-times in the lower dimension k

ẏℓ
i = M ℓfi(D′yℓ) +

N∑

j=1

fij(D′yℓ)yℓ
j , yℓ

i (0) = M ℓx0
i , ℓ = 1, . . . , L. (3.17)

Let us give a brief overview of the corresponding error estimates. The number of
points needed in every of the cases is N ≈ N × n0, where N is the number of agents
and n0 = T/h is the number of iterations.

• We perform 1 projection and simulation in R
k: Then ε = O

(√
logN

k

)

, K =

O
(

k
1+log(d/k)

)

and an application of Theorem 3.7 leads to

‖xi(t) − x#
i (t)‖ℓd

2
≤ C ′(t)

(√

logN
k

+
σK(xi(t))ℓd

1√
K

)

. (3.18)

Here, C ′(t) combines both the constants from Theorem 3.7 and the time-
dependent C(t) from (3.15). So, to reach the precision of order C ′(t)ǫ > 0, we

have to choose k ∈ N large enough, such that
√

logN
k ≤ ǫ and

σK(xi(t))ℓd
1√

K
≤ ǫ.

We then need k × N2 operations to evaluate the adjacency matrix.

• We perform 1 projection and simulation in R
L×k: Then ε′ = O

(√
logN

Lk

)

and

K ′ = O
(

Lk
1+log(d/Lk)

)

and an application of Theorem 3.7 leads to

‖xi(t) − x#
i (t)‖ℓd

2
≤ C ′(t)

(√

logN
Lk

+
σK′(xi(t))ℓd

1√
K ′

)

. (3.19)

The given precision of order C ′(t)ǫ > 0, may be then reached by choosing

k, L ∈ N large enough, such that
√

logN
Lk ≤ ǫ and

σK′ (xi(t))ℓd
1√

K′
≤ ǫ. We then

need Lk × N2 operations to evaluate the adjacency matrix.
• We perform L independent and parallel projections and simulations in R

k:
Then we assemble the following system corresponding to (3.17)

Mx =









M1

M2

. . .

. . .
ML









xi =









y1
i

y2
i

. . .

. . .
yL

i









−









η1
i

η2
i

. . .

. . .
ηL

i









,

where for all ℓ = 1, . . . , L the matrices M ℓ ∈ R
k×d are (let us say) ran-

dom matrices with each entry generated independently with respect to the
properly normalized Gaussian distribution as described in Section 2. Then
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M/
√

L is a Lk × d matrix with Restricted Isometry Property of order K ′ =

O
(

Lk
1+log(d/Lk)

)

and level δ < 0.4627. The initial distortion of each of the

projections is still ε = O
(√

logN
k

)

. Therefore, by applying Theorem 3.7, we

can compute x#
i (t) such that

‖xi(t) − x#
i (t)‖ℓd

2
≤ C ′(t)

(√

logN
k

+
σK′(xi(t))ℓd

1√
K ′

)

. (3.20)

Notice that the computation of x#
i (t) can also be performed in parallel, see,

e.g., [26]. The larger is the number L of projections we perform, the larger
is K ′ and the smaller is the second summand in (3.20); actually σK′(xi(t))ℓd

1

vanishes for K ′ ≥ d. Unfortunately, the parallelization can not help to reduce
the initial distortion ε > 0. To reach again the precision of order C ′(t)ǫ > 0,

we have to choose k ∈ N large enough, such that
√

logN
k ≤ ǫ. Then we

chose L ≥ 1 large enough such that
σK′ (xi(t))ℓd

1√
K′

≤ ǫ. We again need k × N2

operations to evaluate the adjacency matrix.
In all three cases, we obtain the estimate

‖xi(t) − x#
i (t)‖ℓd

2
≤ C ′(t)

(

ε +
σK(xi(t))ℓd

1√
K

)

, (3.21)

where the corresponding values of ε > 0 and K together with the number of operations
needed to evaluate the adjacency matrix may be found in the following table.

ε K number of operations

1 projection into R
k O

(√
logN

k

)

O
(

k
1+log(d/k)

)

k × N2

1 projection into R
L×k O

(√
logN

Lk

)

O
(

Lk
1+log(d/Lk)

)

Lk × N2

L projections into R
k O

(√
logN

k

)

O
(

Lk
1+log(d/Lk)

)

k × N2

3.4.2. Manifold recovery. In recent papers [4, 48, 34], the concepts of com-
pressed sensing and sparse recovery were extended to vectors on smooth manifolds.
These methods could become very useful in our context if (for any reason) we would
have an apriori knowledge that the trajectories xi(t) keep staying on or near such a
smooth manifold. We leave this direction open for future research.

3.5. Numerical experiments. In this section we illustrate the practical use
and performances of our projection method for the Cucker-Smale system (2.11)–(2.12).
As already mentioned, this system models the emergence of consensus in a group of
interacting agents, trying to align with their neighbors. The qualitative behavior of
its solutions is formulated by this well known result [20, 21, 33]:

Theorem 3.8. Let (xi(t), vi(t)) be the solutions of (2.11)–(2.12). Let us define

the fluctuation of positions around the center of mass xc(t) = 1
N

∑N
i=1 xi(t), and,

resp., the fluctuation of the rate of change around its average vc(t) = 1
N

∑N
i=1 vi(t) as

Λ(t) =
1

N

N∑

i=1

‖xi(t) − xc(t)‖2
ℓd
2

, Γ(t) =
1

N

N∑

i=1

‖vi(t) − vc(t)‖2
ℓd
2

.
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Then if either β ≤ 1/2 or the initial fluctuations Λ(0) and Γ(0) are small enough
(see [20] for details), then Γ(t) → 0 as t → ∞.

The phenomenon of Γ(t) tending to zero as t → ∞ is called flocking or emergence
of consensus. If β > 1/2 and the initial fluctuations are not small, it is not known
whether a given initial configuration will actually lead to flocking or not, and the only
way to find out the possible formation of consensus patterns is to perform numerical
simulations. However, these can be especially costly if the number of agents N and
the dimension d are large; the algorithmic complexity of the calculation is O(d×N2).
Therefore, a significant reduction of the dimension d, which can be achieved by our
projection method, would lead to a corresponding reduction of the computational
cost.
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Fig. 3.2. Numerical results for β = 1.5: First row shows the evolution of Γ(t) of the system
projected to dimension k = 100 (left) and k = 10 (right) in the twenty realizations, compared to the
original system (bold dashed line). Second row shows the initial values Γ(t = 0) and final values
Γ(t = 30) in all the performed simulations.

We illustrate this fact by a numerical experiment, where we choose N = 1000
and d = 200, i.e., every agent i is determined by a 200-dimensional vector xi of its
state and a 200-dimensional vector vi giving the rate of change of its state. The
initial datum (x0, v0) is generated randomly, every component of x0 being drawn
independently from the uniform distribution on [0, 1] and every component of v0 being
drawn independently from the uniform distribution on [−1, 1]. We choose β = 1.5,
1.62 and 1.7, and for each of these values we perform the following set of simulations:

1. Simulation of the original system in 200 dimensions.
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Fig. 3.3. Numerical results for β = 1.62: First row shows the evolution of Γ(t) of the system
projected to dimension k = 100 (left) and k = 25 (right) in the twenty realizations, compared to the
original system (bold dashed line). Second row shows the initial values Γ(t = 0) and final values
Γ(t = 30) in all the performed simulations.

2. Simulations in lower dimensions k: the initial condition (x0, v0) is projected
into the k-dimensional space with a random Johnson-Lindenstrauss projection
matrix M with Gaussian entries. The dimension k takes the values 150, 100,
50, 25, 10, 5, and 2. For every k, we perform the simulation twenty times,
each time with a new random projection matrix M .

All the simulations were implemented in MATLAB, using 1500 steps of the forward
Euler method with time step size 0.02. The paths of Γ(t) from the twenty experiments
with k = 100 and k = 25 or k = 10 are shown in the first rows of Figs. 3.2, 3.3 and,
resp., 3.4 for β = 1.5, 1.62 and, resp., 1.7.

The information we are actually interested in is whether flocking takes place, in
other words, whether the fluctuations of velocities Γ(t) tend to zero. Typically, after an
initial phase, the graph of Γ(t) gives a clear indication either about exponentially fast
convergence to zero (due to rounding errors, “zero” actually means values of the order
10−30 in the simulations) or about convergence to a positive value. However, in certain
cases the decay may be very slow and a very long simulation of the system would be
needed to see if the limiting value is actually zero or not. Therefore, we propose the
following heuristic rules to decide about flocking from numerical simulations:

• If the value of Γ at the final time t = 30 is smaller than 10−10, we conclude
that flocking took place.
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Fig. 3.4. Numerical results for β = 1.7: First row shows the evolution of Γ(t) of the system
projected to dimension k = 100 (left) and k = 10 (right) in the twenty realizations, compared to the
original system (bold dashed line). Second row shows the initial values Γ(t = 0) and final values
Γ(t = 30) in all the performed simulations.

• If the value of Γ(30) is larger than 10−3, we conclude that flocking did not
take place.

• Otherwise, we do not make any conclusion.

In the second rows of Figs. 3.2, 3.3 and 3.4 we present the initial and final values of Γ of
the twenty simulations for all the dimensions k, together with the original dimension
d = 200. In accordance with the above rules, flocking takes place if the final value
of Γ lies below the lower dashed line, does not take place if it lies above the upper
dashed line, otherwise the situation is not conclusive. The results are summarized in
Table 3.1.

Experience gained with a large amount of numerical experiments shows the fol-
lowing interesting fact: The flocking behavior of the Cucker-Smale system is very
stable with respect to the Johnson-Lindenstrauss projections. Usually, the projected
systems show the same flocking behavior as the original one, even if the dimension is
reduced dramatically, for instance from d = 200 to k = 10 (see Figs 3.2 and 3.4). This
stability can be roughly explained as follows: Since the flocking behavior depends
mainly on the initial values of Γ and Λ, which are statistical properties of the random
distributions used for the generation of initial data, and since N is sufficiently large,
the concentration of measure phenomenon takes place. Its effect is that the initial
values of the fluctuations of the projected data are very close to the original ones, and
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β = 1.5 β = 1.62 β = 1.7
dim pos neg ??
200 1 0 0
150 20 0 0
100 20 0 0
50 20 0 0
25 20 0 0
10 14 0 6
5 4 4 12
2 3 8 9

dim pos neg ??
200 1 0 0
150 20 0 0
100 20 0 0
50 13 0 7
25 1 1 18
10 0 18 2
5 0 19 1
2 0 18 2

dim pos neg ??
200 0 1 0
150 0 20 0
100 0 20 0
50 0 20 0
25 0 20 0
10 0 20 0
5 0 20 0
2 0 20 0

Table 3.1
Statistics of the flocking behaviors of the systems in the original dimension d = 200 and in

the projected dimensions. With β = 1.5 and β = 1.62, the original system (d = 200) exhibited
flocking behavior. With β = 1.5, even after random projections into 25 dimensions, the system
exhibited flocking in all 20 repetitions of the experiment, and still in 14 cases in dimension 10. With
β = 1.62, the deterioration of the flocking behavior with decreasing dimension was much faster,
and already in dimension 25 the situation was not conclusive. This is related to the fact that the
value β = 1.62 was chosen to intentionally bring the system close to the borderline between flocking
and non-flocking. Finally, with β = 1.7, the original system did not flock, and, remarkably, all the
projected systems (even to two dimensions) exhibit the same behavior.

thus the flocking behavior is (typically) the same. There is only a narrow interval of
values of β (in our case this interval is located around the value β = 1.62), which is
a borderline region between flocking and non-flocking, and the projections to lower
dimensions spoil the flocking behavior, see Fig 3.3. Let us note that in our simulations
we were only able to detect cases when flocking took place in the original system, but
did not take place in some of the projected ones. Interestingly, we never observed the
inverse situation, a fact which we are not able to explain satisfactorily. In fact, one
can make other interesting observations, deserving further investigation. For instance,
Figs. 3.2 and 3.3 show that if the original system exhibits flocking, then the curves of
Γ(t) of the projected systems tend to lie above the curve of Γ(t) of the original one.
The situation is reversed if the original system does not flock, see Fig. 3.4.

From a practical point of view, we can make the following conclusion: To obtain an
indication about the flocking behavior of a highly dimensional Cucker-Smale system,
it is typically satisfactory to perform a limited number of simulations of the system
projected into a much lower dimension, and evaluate the statistics of their flocking
behavior. If the result is the same for the majority of simulations, one can conclude
that the original system very likely has the same flocking behavior as well.

4. Mean-field limit and kinetic equations in high dimension. In the pre-
vious sections we were concerned with tractable simulation of the dynamical systems
of the type (1.1) when the dimension d of the parameter space is large. Another source
of possible intractability in numerical simulations appears in the situation where the
number of agents N is very large. Therefore, in the next sections we consider the
so-called mean-field limit of (1.1) as N → ∞, where the evolution of the system is
described by time-dependent probability measures µ(t) on R

d, representing the den-
sity distribution of agents, and satisfying mesoscopic partial differential equations of
the type (4.1). This strategy originated from the kinetic theory of gases, see [16]
for classical references. We show how our projection method can be applied for di-
mensionality reduction of the corresponding kinetic equations and explain how the
probability measures can be approximated by atomic measures. Using the concepts
of delayed curse of dimension and measure quantization known from optimal integra-
tion problems in high dimension, we show that under the assumption that the measure
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concentrates along low-dimensional subspaces (and in general along low-dimensional
sets or manifolds), it can be approximated by atomic measures with sub-exponential
(with respect to d) number of atoms. Through such approximation, we shall show
that we can approximate suitable random averages of the solution of the original par-
tial differential equation in high dimension by tractable simulations of corresponding
solutions of lower-dimensional kinetic equations.

4.1. Formal derivation of mean-field equations. In this section we briefly
explain how the mean-field limit description corresponding to (1.1) can be derived.
This is given, under suitable assumptions on the family of the governing functions
FN = {fi, fij : i, j = 1, . . . N}, by the general formula

∂µ

∂t
+ ∇ · (HF [µ]µ) = 0, (4.1)

where HF [µ] is a field in R
d, determined by the sequence F = (FN )N∈N.

In order to provide an explicit example, we show how to formally derive the mean
field limit of systems of the type

ẋi = vi , (4.2)

v̇i =

N∑

j=1

fvv
ij (Dx,Dv)vj +

N∑

j=1

fvx
ij (Dx)xj , (4.3)

with

fvx
ij (Dx) = −δij

N

∑

k 6=i

u(‖xi − xk‖ℓd
2
) +

1 − δij

N
u(‖xi − xj‖ℓd

2
) ,

fvv
ij (Dx,Dv) = δij

(

h(‖vi‖2
ℓd
2

) − 1

N

N∑

k=1

g(‖xi − xk‖ℓd
2
)

)

+
1 − δij

N
g(‖xi − xj‖ℓd

2
) .

Note that for suitable choices of the functions h, g, u this formalism includes both the
Cucker-Smale model (2.11)–(2.12) and D’Orsogna model (3.13)–(3.14). We define the
empirical measure associated to the solutions xi(t), vi(t) of (4.2)–(4.3) as

µN (t) := µN (t, x, v) =
1

N

N∑

i=1

δxi(t)(x)δvi(t)(v) .

Taking a smooth, compactly supported test function ξ ∈ C∞
0 (R2d) and using (4.2)–

(4.3), one easily obtains by a standard formal calculation (see [14])

d

dt
〈µN (t), ξ〉 =

d

dt

(

1

N

N∑

i=1

ξ(xi(t), vi(t))

)

(4.4)

=

∫

R2d

∇xξ(x, v) · v dµN (t, x, v) +

∫

R2d

∇vξ(x, v) · H[µN (t)](x, v) dµN (t, x, v) ,

with

H[µ](x, v) = h(‖v‖ℓd
2
)v +

∫

R2d

g(‖x − y‖ℓd
2
)(w − v) dµ(y, w) +

∫

R2d

u(‖x − y‖ℓd
2
)(y − x) dµ(y, w) .
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We now assume weak convergence of a subsequence of (µN (t))N∈N to a time-dependent
measure µ(t) = µ(t, x, v) and boundedness of its first order moment, which indeed can
be established rigorously for the Cucker-Smale and D’Orsogna systems (see [33], [41]).
Then, passing to the limit N → ∞ in (4.4), one obtains in the strong formulation
that µ is governed by

∂µ

∂t
(t, x, v) + v · ∇xµ(t, x, v) + ∇v · (H[µ(t)](x, v)µ(t, x, v)) = 0 ,

which is an instance of the general prototype (4.1).
Using the same formal arguments as described above, one can easily derive mean

field limit equations corresponding to (1.1) with different choices of the family F .

4.2. Monge-Kantorovich-Rubinstein distance and stability. In several
relevant cases, including the Cucker-Smale and D’Orsogna systems [13], solutions
of equations of the type (4.1) are stable with respect to suitable distances. We con-
sider the space P1(R

d), consisting of all probability measures on R
d with finite first

moment. In P1(R
d) and for solutions of (4.1), a natural metric to work with is the

so-called Monge-Kantorovich-Rubinstein distance [47],

W1(µ, ν) := sup{|〈µ − ν, ξ〉| =

∣
∣
∣
∣

∫

Rd

ξ(x)d(µ − ν)(x)

∣
∣
∣
∣
, ξ ∈ Lip(Rd),Lip(ξ) ≤ 1}.

(4.5)
We further denote Pc(R

d) the space of compactly supported probability measures on
R

d. In particular, throughout the rest of this paper, we will assume that for any
compactly supported measure valued weak solutions µ(t), ν(t) ∈ C([0, T ],Pc(R

d)) of
(4.1) we have the following stability inequality

W1(µ(t), ν(t)) ≤ C(t)W1(µ(0), ν(0)), t ∈ [0, T ], (4.6)

where C(t) is a positive increasing function of t with C(0) > 0, independent of the
dimension d. We address the interested reader to [13, Section 4] for a sample of general
conditions on the vector field H[F ](µ) which guarantee stability (4.6) for solutions of
equations (4.1).

4.3. Dimensionality reduction of kinetic equations. Provided a high-dimensional
measure valued solution to the equation

∂µ

∂t
+ ∇ · (HF [µ]µ) = 0, µ(0) = µ0 ∈ Pc(R

d) , (4.7)

we will study the question whether its solution can be approximated by suitable
projections in lower dimension.

Given a probability measure µ ∈ P1(R
d), its projection into R

k by means of a
matrix M : R

d → R
k is given by the push-forward measure µM := M#µ,

〈µM , ϕ〉 := 〈µ, ϕ(M ·)〉 for all ϕ ∈ Lip(Rk). (4.8)

Let us mention two explicit and relevant examples:
• If µN = 1

N

∑N
i=1 δxi

is an atomic measure, we have 〈µN
M , ϕ〉 = 〈µN , ϕ(M ·)〉 =

1
N

∑N
i=1 ϕ(Mxi). Therefore,

µN
M =

1

N

N∑

i=1

δMxi
. (4.9)
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• If µ is absolutely continuous with respect to the Lebesgue measure, i.e., it is a
function in L1(Rd), the calculation requires a bit more effort: Let us consider
M† the pseudo-inverse matrix of M . Recall that M† = M∗(MM∗)−1 is a
right inverse of M , and M†M is the orthogonal projection onto the range of
M∗. Moreover, x = M†Mx+ ξx, where ξx ∈ ker M for all x ∈ R

d. According
to these observations, we write

∫

Rd

ϕ(Mx)µ(x)dx =

∫

Rd

ϕ(Mx)µ(M†Mx + ξx)dx

=

∫

ranM∗⊕ker M

ϕ(Mx)µ(M†Mx + ξx)dx

=

∫

ranM∗

∫

ker M

ϕ(Mv)µ(M†Mv + v⊥)dv⊥dv

Note now that M|ranM∗ : ranM∗ → ranM h R
k is an isomorphism, hence y =

Mv implies the change of variables dv = det(M|ranM∗)−1dy = det(MM∗)−1/2dy.
Consequently, we have
∫

Rd

ϕ(Mx)µ(x)dx =

∫

Rd

ϕ(Mx)µ(M†Mx + ξx)dx

=

∫

ranM∗

∫

ker M

ϕ(Mv)µ(M†Mv + v⊥)dv⊥dv

=

∫

Rk

(
1

det(MM∗)1/2

∫

ker M

µ(M†y + v⊥)dv⊥
)

ϕ(y)dy ,

and

µM (y) =
1

det(MM∗)1/2

∫

ker M

µ(M†y + v⊥)dv⊥.

According to the notion of push-forward, we can consider the measure valued function
ν ∈ C([0, T ],Pc(R

k)), solution of the equation

∂ν

∂t
+ ∇ · (HFM

[ν]ν) = 0, ν(0) = (µ0)M ∈ Pc(R
k), (4.10)

where (µ0)M = M#µ0 and FM = ({Mfi, fij , i, j = 1, . . . , N})N∈N. As for the
dynamical system (3.5), also equation (4.10) is fully defined on the lower-dimensional
space R

k and depends on the original high-dimensional problem exclusively by means
of the initial condition.

The natural question at this point is whether the solution ν of (4.10) provides
information about the solution µ of (4.7). In particular, similarly to the result of
Theorem 3.1, we will examine whether the approximation

ν(t) ≈ µM (t), t ∈ [0, T ],

in Monge-Kantorovich-Rubinstein distance is preserved in finite time. We depict the
expected result by the following diagram:

µ(0)
t−→ µ(t)

↓ M ↓ M

ν(0) = (µ0)M
t−→ ν(t) ≈ µM (t) .
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This question will be addressed by approximation of the problem by atomic measures
and by an application of Theorem 3.1 for the corresponding dynamical system, as
concisely described by

µ
W1(µ, µN ).ε−→ µN

↓ M ↓ M

ν ≈ µM
W1(ν, νN ).ε−→ νN ≈ µN

M

Let us now recall the framework and general assumptions for this analysis to be
performed. We assume again that for all N ∈ N the family FN = {fi, fij : i, j =
1, . . . N} is composed of functions satisfying (1.2)-(1.4). Moreover, we assume that
associated to F = (FN )N∈N and to

ẋi(t) = fi(Dx(t)) +

N∑

j=1

fij(Dx(t))xj(t), (4.11)

we can define a mean-field equation

∂µ

∂t
+ ∇ · (H[F ](µ)µ) = 0, µ(0) = µ0 ∈ Pc(R

d), (4.12)

such that for any compactly supported measure valued weak solutions µ(t), ν(t) ∈
C([0, T ],Pc(R

d)) of (4.1) we have the following stability

W1(µ(t), ν(t)) ≤ C(t)W1(µ(0), ν(0)), t ∈ [0, T ], (4.13)

where C(t) is a positive increasing function of t, independent of the dimension d.
We further require that corresponding assumptions, including stability, hold for the
projected system (2.5) and kinetic equation (4.10). Then we have the following ap-
proximation result:

Theorem 4.1. Let us assume that µ0 ∈ Pc(R
d) and there exist points {x0

1, . . . , x
0
N} ⊂

R
d, for which the atomic measure µN

0 = 1
N

∑N
i=1 δx0

i
approximates µ0 up to ε > 0 in

Monge-Kantorovich-Rubinstein distance, in the following sense

W1(µ0, µ
N
0 ) ≤ ε, N = N k(ε) for k(ε) ≤ d and k(ε) → d for ε → 0. (4.14)

Requirement (4.14) is in fact called the delayed curse of dimension as explained below
in detail in Section 4.5. Depending on ε > 0 we fix also

k = k(ε) = O(ε−2 log(N)) = O(ε−2 log(N )k(ε)).

Moreover, let M : R
d → R

k be a linear mapping which is a continuous Johnson-
Lindenstrauss embedding as in (3.4) for continuous in time trajectories xi(t) of (4.11)
with initial datum xi(0) = x0

i . Let ν ∈ C([0, T ],Pc(R
k)) be the weak solution of

∂ν

∂t
+ ∇ · (H[FM ](ν)ν) = 0, (4.15)

ν(0) = (µ0)M ∈ Pc(R
k), (4.16)

where (µ0)M = M#µ0. Then

W1(µM (t), ν(t)) ≤ C(t)‖M‖ε, t ∈ [0, T ], (4.17)
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where C(t) is an increasing function of t, with C(0) > 0, which is at most polynomially
growing with the dimension d.

Proof. Let us define νN (t) the solution to equation (4.15) with initial datum
νN (0) = (µN

0 )M , or, equivalently, thanks to (4.9)

νN (t) =
1

N

n∑

i=1

δyi(t),

where yi(t) is the solution of

ẏi = fi(D′y) +

N∑

j=1

fij(D′y)yj , i = 1, . . . , N ,

yi(0) = Mx0
i , i = 1, . . . , N .

We estimate

W1(µM (t), ν(t)) ≤ W1(µM (t), (µN (t))M ) + W1((µ
N (t))M , νN (t)) + W1(ν

N (t), ν(t)).

By using the definition of push-forward (4.8) and (4.14), the first term can be esti-
mated by

W1(µM (t), (µN (t))M ) = sup{〈µM (t) − (µN (t))M , ϕ〉 : Lip(ϕ) ≤ 1}
= sup{〈µ(t) − µN (t), ϕ(M ·)〉 : Lip(ϕ) ≤ 1}
≤ ‖M‖W1(µ(t), µN (t)) ≤ ‖M‖C(t)ε.

We estimate now the second term

W1((µ
N (t))M , νN (t)) = sup{〈(µN (t))M − νN (t), ϕ〉 : Lip(ϕ) ≤ 1}

= sup{ 1

N

N∑

i=1

(ϕ(Mxi(t)) − ϕ(yi(t))) : Lip(ϕ) ≤ 1}

≤ 1

N

N∑

i=1

‖Mxi(t) − yi(t)‖ℓk
2
.

We recall the uniform approximation of Theorem 3.1,

‖Mxi(t) − yi(t)‖ℓk
2
≤ D(t)ε , i = 1, . . . , N,

where D(t) is the time-dependent function on the right-hand-side of (3.7). Hence

W1(µM (t), (µN (t))M ) ≤ D(t)ε.

We address now the upper estimate of the third term, by the assumed stability of the
lower dimensional equation (4.10)

W1(ν
N (t), ν(t)) ≤ C(t)W1(ν

N (0), ν(0))

= C(t)W1((µ
N
0 )M , (µ0)M )

≤ C(t)‖M‖W (µN
0 , µ0) ≤ C(t)‖M‖ε.

We can fix C(t) = 2C(t)‖M‖+D(t), and, as observed in Theorem 3.3, we can assume

without loss of generality that ‖M‖ ≤
√

d
k . Hence, C(t) depends at most polynomially

with respect to the dimension d.
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4.4. Approximation of probability measures by atomic measures and
optimal integration. In view of the fundamental requirement (4.14) in Theorem
4.1, given µ0 ∈ Pc(R

d), we are interested to establish an upper bound to the best pos-
sible approximation in Monge-Kantorovich-Rubinstein distance by means of atomic
measures µN

0 = 1
N

∑N−1
i=0 δx0

i
with N atoms, i.e.,

EN (µ0) := inf
µN

0
= 1

N

PN−1

i=0
δ

x0
i

W1(µ0, µ
N
0 ) (4.18)

= inf
{x0

0
,...,x0

N−1
}⊂Rd

sup
{
|
∫

Rd

ξ(x)dµ0(x) − 1

N

N−1∑

i=0

ξ(x0
i )| : ξ ∈ Lip(Rd),Lip(ξ) ≤ 1

}
.

In fact, once we identify the optimal points {x0
0, . . . , x

0
N−1}, we can use them as initial

conditions xi(0) = x0
i for the dynamical system (4.11), and by using the stability

relationship (4.6), we obtain

W1(µ(t), µN (t)) ≤ C(T )W1(µ0, µ
N
0 ), t ∈ [0, T ] , (4.19)

where µN (t) = 1
N

∑N−1
i=0 δxi(t), meaning that the solution of the partial differential

equation (4.1) keeps optimally close to the particle solution of (4.11) also for suc-
cessive time t > 0. Note that estimating (4.18) as a function of N is in fact a very
classical problem in numerical analysis well-known as optimal integration with its
high-dimensional behaviour being a relevant subject of the field of Information Based
Complexity [40, 45].

The numerical integration of Lipschitz functions with respect to the Lebesgue
measure and the study of its high-dimensional behaviour goes back to Bakhvalov [2],
but much more is known nowadays. We refer to [29] and [32] for the state of the art
of quantization of probability distributions.

The scope of this section is to recall some facets of these estimates and to refor-
mulate them in terms of W1 and EN . We emphasize that here and in what follows,
we consider generic compactly supported probability measures µ, not necessarily ab-
solutely continuous with respect to the Lebesgue measure. We start first by assuming
d = 1, i.e., we work with a univariate measure µ ∈ Pc(R) with support suppµ ⊂ [a, b]
and σ := b − a > 0. We define the points x0, . . . , xN−1 as the quantiles of the proba-
bility measure µ, i.e., x0 := a and

i

N
=

∫ xi

−∞
dµ(x), i = 1, . . . , N − 1. (4.20)

This is notationally complemented by putting xN := b. Note that by definition
∫ xi+1

xi
dµ(x) = 1

N , i = 0, . . . , N − 1, and we have

∣
∣
∣
∣
∣

∫

R

ξ(x)dµ(x) − 1

N

N−1∑

i=0

ξ(xi)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

N−1∑

i=0

∫ xi+1

xi

(ξ(x) − ξ(xi))dµ(x)

∣
∣
∣
∣
∣

≤
N−1∑

i=0

∫ xi+1

xi

|ξ(x) − ξ(xi)| dµ(x) (4.21)

≤ Lip(ξ)

N

N−1∑

i=0

(xi+1 − xi) =
σLip(ξ)

N
.
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Hence it is immediate to see that

EN (µ) = inf
µN= 1

N

PN−1

i=0
δ

x0
i

W1(µ, µN ) ≤ σ

N
.

We would like to extend this estimate to higher dimension d > 1. However, for
multivariate measures µ there is no such an easy upper bound, see [29] and [32] for
very general statements, and for the sake of simplicity we restrict here the class of
measures µ to certain special cases. As a typical situation, we address tensor product
measures and sums of tensor products.

Lemma 4.2. Let µ1, . . . , µd ∈ P1(R) with W1(µ
j , µj,Nj ) ≤ εj , j = 1, . . . , d for

some N1, . . . , Nd ∈ N, ε1, . . . , εd > 0 and µj,Nj := 1
Nj

∑Nj−1
i=0 δxj

i
. Let N =

∏d
i=1 Ni.

Then

W1(µ
1 ⊗ · · · ⊗ µd, µN ) ≤

d∑

j=1

εj ,

where

µN :=
1

N

∑

x∈X

δx and X :=
d∏

j=1

{xj
0, . . . , x

j
Nj−1}.

Proof. The proof is based on a simple argument using a telescopic sum. For
j = 1, . . . , d + 1 we put

Vj :=
1

∏d
i=j Ni

Nj−1
∑

ij=0

· · ·
Nd−1∑

id=0

∫

Rj−1

ξ(x1, . . . , xj−1, x
j
ij

, . . . , xd
jd

)dµ1(x1) . . . dµj−1(xj−1).

Of course, if j = 1, then the integration over R
j−1 is missing and if j = d + 1 then

the summation becomes empty. Now

∫

Rd

ξ(x)dµ(x) − 1
∏d

i=1 Ni

N1−1∑

i1=0

· · ·
Nd−1∑

id=0

ξ(x1
i1 , . . . , x

d
id

) =

d∑

j=1

(Vj+1 − Vj)

together with the estimate |Vj+1 − Vj | ≤ εj finishes the proof.
Lemma 4.2 says, roughly speaking, that the tensor products of sampling points of

univariate measures are good sampling points for the tensor product of the univariate
measures. Next lemma deals with sums of measures.

Lemma 4.3. Let µ1, . . . , µL ∈ P1(R
d) with W1(µl, µ

N
l ) ≤ εl, l = 1, . . . , L for

some N ∈ N, ε1, . . . , εL > 0 and µN
l := 1

N

∑N−1
i=0 δxl,i

. Then

W1

(µ1 + · · · + µL

L
, µLN

)

≤ 1

L

L∑

l=1

εl,

where

µLN :=
1

LN

∑

x∈X

δx =
1

L

L∑

l=1

µN
l and X :=

L⋃

l=1

{xl,0, . . . , xl,N−1}.
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Proof. We use the homogeneity of the Monge-Kantorovich-Rubinstein distance
W1(aµ, aν) = aW1(µ, ν) for µ, ν ∈ P1(R

d) and a ≥ 0 combined with its subadditivity
W1(µ1 +µ2, ν1 + ν2) ≤ W1(µ1, ν1)+W1(µ2, ν2) for µ1, µ2, ν1, ν2 ∈ P1(R

d). We obtain

W1

(µ1 + · · · + µL

L
,
µN

1 + · · · + µN
L

L

)

≤ 1

L

L∑

l=1

W1(µl, µ
N
l ) ≤ 1

L

L∑

l=1

εl.

Next corollary follows directly from Lemma 4.2 and Lemma 4.3.
Corollary 4.4. (i) Let µ1, . . . , µd ∈ P1(R) and N1, . . . , Nd ∈ N. Then

EN (µ1 ⊗ · · · ⊗ µd) ≤
d∑

j=1

ENj
(µj), where N := N1 · · ·Nd.

(ii) Let µ1, . . . , µL ∈ P1(R
d) and N ∈ N. Then

ELN

(µ1 + · · · + µL

L

)

≤ 1

L

L∑

l=1

EN (µl).

4.5. Delayed curse of dimension. Although Lemma 4.2, Lemma 4.3 and
Corollary 4.4 give some estimates of the Monge-Kantorovich-Rubinstein distance be-
tween general and atomic measures, the number of atoms needed may still be too
large to allow the assumption (4.14) in Theorem 4.1 to be fulfilled. Let us for exam-
ple consider the case, where µ1 = · · · = µd in Lemma 4.2 and ε1 = · · · = εd =: ε.
Then, of course, N1 = · · · = Nd =: N and we observe, that the construction given in
Lemma 4.2 gives an atomic measure, which approximates µ up to the error dε using
N d atoms, hence with an exponential dependence on the dimension d. This effect is
another instance of the well-known phenomenon of the curse of dimension.

However, in many real-life high-dimensional applications the objects of study
(in our case the measure µ ∈ Pc(R

d)) concentrate along low-dimensional subspaces
(or, more general, along low-dimensional manifolds) [5, 6, 17, 18, 19]. The number
of atoms necessary to approximate these measures behaves in a much better way,
allowing the application of (4.14) and Theorem 4.1. To clarify this effect, let us
consider µ = µ1 ⊗ · · · ⊗ µd with suppµj ⊂ [aj , bj ] and define σj = bj − aj . Let us
assume, that σ1 ≥ σ2 ≥ · · · ≥ σd > 0 is a rapidly decreasing sequence. Furthermore,
let ε > 0. Then we define k := k(ε) to be the smallest natural number, such that

d∑

k=k(ε)+1

σk ≤ ε/2

and put Nk = 1 for k ∈ {k(ε) + 1, . . . , d}. The numbers N1 = · · · = Nk(ε) = N are
chosen large enough so that

1

N

k(ε)
∑

k=1

σk ≤ ε/2.
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Then Lemma 4.2 together with (4.20) state that there is an atomic measure µN with

N = N k(ε) atoms, such that

W1(µ, µN ) ≤
d∑

k=1

σk

Nk
≤ ε/2 + ε/2. (4.22)

Hence, at the cost of assuming that the tensor product measure µ is concentrated
along a k(ε)-dimensional coordinate subspace, we can always approximate the mea-
sure µ with accuracy ε by using an atomic measure supported on points whose number
depends exponentially on k = k(ε) ≪ d. However, if we liked to have ε → 0, then
k(ε) → d and again we are falling under the curse of dimension. This delayed kicking
in of the need of a large number of points for obtaining high accuracy in the ap-
proximation (4.22) is in fact the so-called delayed curse of dimension, expressed by
assumption (4.14), a concept introduced first by Curbera in [15], in the context of
optimal integration with respect to Gaussian measures in high dimension.

Let us only remark, that the discussion above may be easily extended (with help
of Lemma 4.3) to sums of tensor product measures. In that case we obtain as atoms
the so-called sparse grids, cf. [10]. Using suitable change of variables, one could also
consider measures concentrated around (smooth) low-dimensional manifolds, but this
goes beyond the scope of this work, see [29] for a broader discussion.
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