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Abstract

We introduce the concept of average best m-term approximation widths
with respect to a probability measure on the unit ball of ℓn

p
. We estimate

these quantities for the embedding id : ℓn

p
→ ℓn

q
with 0 < p ≤ q ≤ ∞ for the

normalized cone and surface measure. Furthermore, we consider certain tensor
product weights and show that a typical vector with respect to such a measure
exhibits a strong compressible (i.e. nearly sparse) structure. This measure may
be therefore used as a random model for sparse signals.
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1 Introduction

1.1 Best m-term approximation

Let m ∈ N0 and let Σm be the set of all sequences x = {xj}∞j=1 with

‖x‖0 := # supp x = #{n ∈ N : xn 6= 0} ≤ m.

Here stands #A for the number of elements of a set A. The elements of Σm are
said to be m-sparse. Observe, that Σm is a non-linear subset of every ℓq := {x =
{xj}∞j=1 : ‖x‖q < ∞}, where

‖x‖q :=







(

∑∞
j=1 |xj |q

)1/q
, 0 < q < ∞,

supj∈N |xj|, q = ∞.

For every x ∈ ℓq, we define its best m-term approximation error by

σm(x)q := inf
y∈Σm

‖x − y‖q.
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Moreover for 0 < p ≤ q ≤ ∞, we introduce the best m-term approximation widths

σp,q
m := sup

x:‖x‖p≤1
σm(x)q.

The use of this concept goes back to Schmidt [31] and after the work of Oskolkov
[27], it was widely used in the approximation theory, cf. [12, 14, 32]. In fact, it is
the main prototype of nonlinear approximation [13]. It is well known, that

2−1/p(m + 1)1/q−1/p ≤ σp,q
m ≤ (m + 1)1/q−1/p, m = 0, 1, 2, . . . . (1)

The proof of (1) is based on the simple fact, that (roughly speaking) the best m-term
approximation error of x ∈ ℓp is realized by subtracting the m largest coefficients
taken in absolute value. Hence,

σm(x)q =











(

∑∞
j=m+1(x

∗
j)

q

)1/q

, 0 < q < ∞,

x∗
m+1 = supj≥m+1 x∗

j , q = ∞,

where x∗ = (x∗
1, x

∗
2, . . . ) denotes the so-called non-increasing rearrangement [4] of

the vector (|x1|, |x2|, |x3|, . . . ).
Let us recall the proof of (1) in the simplest case, namely q = ∞. The estimate

from above then follows by

σm(x)∞ = sup
j≥m+1

x∗
j = x∗

m+1 ≤
(

(m + 1)−1
m+1
∑

j=1

(x∗
j )

p

)1/p

≤ (m + 1)−1/p‖x‖p. (2)

The lower estimate is supplied by taking

x = (m + 1)−1/p
m+1
∑

j=1

ej , (3)

where {ej}∞j=1 are the canonical unit vectors.
For general q, the estimate from above in (1) may be obtained from (2) and

Hölder’s inequality

‖x‖q ≤ ‖x‖θ
p · ‖x‖1−θ

∞ , where
1

q
=

θ

p
. (4)

The estimate from below follows for all q’s by simple modification of (3).
The discussion above exhibits two effects.

(i) Best m-term approximation works particularly well, when 1/p − 1/q is large,
i.e. if p < 1 and q = ∞.

(ii) The elements used in the estimate from below (and hence the elements, where
the best m-term approximation performs at worse) enjoy a very special struc-
ture.

Therefore, there is a reasonable hope, that the best m-term approximation could
behave better, when considered in a certain average case. But first we point out two
different interesting points of view on the subject.
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1.2 Connection to compressed sensing

The interest in ℓp spaces (and especially in their finite-dimensional counterparts ℓn
p )

with 0 < p < 1 was recently stimulated by the impressive success of the novel and
vastly growing area of compressed sensing as introduced by [6, 8, 9, 15]. Without
going much into the details, we only note, that the techniques of compressed sensing
allow to reconstruct a vector from an incomplete set of measurements utilizing the
prior knowledge, that it is sparse, i.e. ‖x‖0 is small. Furthermore, this approach
may be applied [11] also to vectors, which are compressible, i.e. ‖x‖p is small for
(preferably small) 0 < p < 1. Indeed, (1) tells us, that such a vector x may be very
well approximated by sparse vectors. We point to [7, 17, 18, 29] for the current state
of the art of this field and for further references.

This leads in a very natural way to a question, which stands in the background
of this paper, namely:

How does a typical vector of the ℓn
p unit ball look like?

or, posed in an exact way:

Let µ be a probability measure on the unit ball of ℓn
p . What is the mean value of

σm(x)q with respect to this measure?

Of course, the choice of µ plays a crucial role. There are several standard proba-
bility measures, which are connected to the unit ball of ℓn

p in a natural way, namely
(cf. Definitions 2 and 10)

(i) the normalized Lebesgue measure,

(ii) the n − 1 dimensional Hausdorff measure restricted to the surface of the unit
ball of ℓn

p and correspondingly normalized,

(iii) the so-called normalized cone measure.

Unfortunately, it turns out, that all these three measures are “bad” – a typical
vector with respect to any of them does not involve much structure and corresponds
rather to noise then signal (in the sense described in the next section). Therefore,
we are looking for a new type of measures (cf. Definition 14), which would behave
better from this point of view.

1.3 Random models of noise and signals

Random vectors play an important role in the area of signal processing. For example,
if n ∈ N is a natural number, ω = (ω1, . . . , ωn) is a vector of independent Gaussian
variables and ε > 0 is a real number, then εω is a classical model of noise, namely
the white noise. This model is used in the theory but also in the real life applications
of signal processing.

The random generation of a structured signal seems to be a more complicated
task. Probably the most common random model to generate sparse vectors, cf.
[5, 10, 20, 28], is the so-called Bernoulli-Gaussian model. Let again n ∈ N be a
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natural number and ε > 0 be a real number. Also ω = (ω1, . . . , ωn) stands for a
vector of independent Gaussian variables. Furthermore, let 0 < p < 1 be a real
number and let ̺ = (̺1, . . . , ̺n) be a vector of independent Bernoulli variables
defined as

̺i =

{

1, with probability p,

0, with probability 1 − p.

The random Bernoulli-Gaussian vector x is then defined through

xi = ε̺i · ωi, i = 1, . . . , n. (5)

Obviously, the average number of non-zero components of x is k := pn. Unfortu-
nately, if k is much smaller than n, then the concentration of the number of non-zero
components of x around k is not very strong. This becomes better, if k gets larger.
But in that case, the model (5) resembles more and more the model of white noise.
In some sense, (5) represents rather a randomly filtered white noise then a structured
signal. It is one of the main aims of this paper to find a new measure, such that a
random vector with respect to this measure would show a nearly sparse structure
without the need of random filtering.

1.4 Unit sphere

Let us describe the situation in the most prominent case, when p = 2, m = 0 and µ
is the normalized surface measure on the unit sphere S

n−1 of ℓn
2 . Furthermore, we

denote by γn the standard Gaussian measure on R
n with the density

1

(2π)n/2
e−‖x‖2

2/2, x ∈ R
n.

We use polar coordinates to calculate
∫

Rn

max
j=1,...,n

|xj| dγn(x) =
1

(2π)n/2

∫

Rn

max
j=1,...,n

|xj| · e−‖x‖2
2/2dx

=
Ωn

(2π)n/2

∫ ∞

0
rn−1

∫

Sn−1

max
j=1,...,n

|rxj|e−‖rx‖2
2/2dµ(x) dr

=
Ωn

(2π)n/2

∫ ∞

0
rne−r2/2dr ·

∫

Sn−1

max
j=1,...,n

|xj |dµ(x) (6)

=
Ωn

(2π)n/2

∫ ∞

0
rne−r2/2dr ·

∫

Sn−1

σ0(x)∞dµ(x),

where Ωn denotes the area of S
n−1. This formula connects the expected value of

σ0(x)∞ with the expected value of maximum of n independent Gaussian variables.
Using that this quantity is known to be equivalent to

√

log(n + 1), cf. [23, (3.14)],
∫ ∞

0
rne−r2/2dr = 2(n−1)/2Γ((n + 1)/2) and Ωn =

2πn/2

Γ(n/2)
,

one obtains
∫

Sn−1

σ0(x)∞dµ(x) ≈
√

log(n + 1)

n
, n ∈ N. (7)

Several comments on (6) and (7) are necessary.
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(i) There is a direct connection between the estimated value of a maximum of
independent Gaussian variables and the estimated value of the largest coordi-
nate of a random vector on S

n−1. Due to the result of [30], this holds true also
for other values of p, even for p < 1. We hope, that this comment justifies the
extensive use of (modified) Gaussian variables throughout the paper.

(ii) Obviously, the average size of the coordinate of any x ∈ S
n−1 is 1/

√
n. The

formula (7) says, that the average size of the largest coordinate is only slightly
larger, namely in the logarithmic order. Intuitively, this means that many
of the coordinates are typically of the same order, namely 1/

√
n. This (and

other similar aspects of the geometry of S
n−1) is well known under the name

concentration of measure phenomena [22].

(iii) The calculation (6) is based on the use of polar coordinates. For p 6= 2, the
normalized cone measure is exactly that measure, for which a similar formula
holds, cf. (12). The estimates for n − 1 dimensional surface measure are later
obtained using its density with respect to the cone measure, cf. Lemma 11.

(iv) As we want to keep the paper self-contained as much as possible and to make
it readable also for readers without (almost) any stochastic background, we
prefer to use simple and direct techniques. For example we use rather the
simple estimates in Lemma 5, than any of their sophisticated improvements
available in literature.

(v) The connection to random Gaussian variables explains, why a random point
of S

n−1 is sometimes referred to as white (or Gaussian) noise. It is usually not
associated with any reasonable (i.e. structured) signal, rather it represents a
good model for random noise.

Surprisingly enough, (7) has its direct counterpart for all 0 < p < ∞ if µ is the
normalized cone measure in ℓn

p , cf. Theorem 7. This means (as described above),
that the coordinates of a “typical” element of the surface of the ℓn

p unit ball are well

concentrated around the value n−1/p. So, roughly speaking, it is only ℓp-normalized
noise.

Therefore, we are looking for a new measure, which would “promote sparsity” in
the sense, that the mean value of σm(x)q decays rapidly with m. Intuitively, a good
candidate for this could be the normalized n− 1 dimensional Hausdorff measure on
the sphere of the unit ball of ℓn

p . It gives namely a bigger weight to those areas,
where one (or more) of the components of x are approaching zero. This effect is
mathematically described in Lemma 11. Unfortunately, it turns out (as shown in
Theorem 13), that this does not effect essentially the results.

The search for a measure promoting sparsity is then finished in Definition 14 by
introducing a new class of measures θp,β. We show, that for an appropriate choice of
β, namely β = p/n−1, the estimated value of the m-th largest coefficient of elements
of the ℓn

p -unit sphere decays exponentially with m. Furthermore, these results are
in a certain way independent of n. This gives a hope, that one could apply this
approach also to the infinite-dimensional spaces ℓp or, using a suitable discretization
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technique (like wavelet decomposition), also to some function spaces. This remains
a subject of our further research.

The paper is structured as follows. The rest of Section 1 contains the definition
of the concept of average best m-term width. Sections 2 and 3 provide estimates of
this quantity with respect to the cone and surface measure, respectively. In Section
4, we study a new type of measures on the unit ball of ℓn

p . We show, that the
typical element with respect to those measures behaves in a completely different
way compared to the situations discussed before. Those results are illustrated by
the numerical experiments described in Section 5.

1.5 Notation

We denote by R the set of real numbers, by R+ := [0,∞) the set of nonnegative
real numbers and by R

n and R
n
+ their n-fold tensor products. The components of

x ∈ R
n are denoted by x1, . . . , xn. The symbol λ stands for the Lebesgue measure

on R
n and H for the n − 1 dimensional Hausdorff measure in R

n. If A ⊂ R
n and

I ⊂ R is an interval, we write I · A := {tx : t ∈ I, x ∈ A}.
We shall use very often the Gamma function, defined by

Γ(s) :=

∫ ∞

0
ts−1e−tdt, s > 0. (8)

In one case, we shall use also the Beta function

B(p, q) :=

∫ 1

0
tp−1(1 − t)q−1dt =

Γ(p)Γ(q)

Γ(p + q)
, p, q > 0 (9)

and the digamma function

Ψ(s) :=
d

ds
log Γ(s) =

Γ′(s)

Γ(s)
, s > 0.

We recommend [1, Chapter 6] as a standard reference for both basic and more
advanced properties of these functions. We shall need the Stirling’s approximation
formula (which was implicitly used already in (7)) in its most simple form

Γ(x) =

√

2π

x

(x

e

)x
(

1 + O
(

1

x

))

, x > 0. (10)

If a = {aj}∞j=1 and b = {bj}∞j=1 are real sequences, then aj . bj means, that
there is a constant c > 0, such that aj ≤ c bj for all j = 1, 2, . . . . Similar convention
is used for aj & bj and aj ≈ bj.

We may easily observe, that

σm((x1, . . . , xn))q = σm((ε1x1, . . . , εnxn))q = σm((|x1|, . . . , |xn|))q
holds for every x ∈ R

n and ε ∈ {−1,+1}n. Also all the measures, which we shall
consider, are invariant under any of the mappings

(x1, . . . , xn) → (ε1x1, . . . , εnxn), ε ∈ {−1,+1}n.

This explains, why we restrict our attention only to R
n
+ in the following definition.
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Definition 1. Let 0 < p ≤ q ≤ ∞ and let n ≥ 2 and 0 ≤ m ≤ n − 1 be natural
numbers.

(i) We set

∆n
p =

{

{(t1, . . . , tn) ∈ R
n
+ :
∑n

j=1 tpj = 1}, p < ∞,

{(t1, . . . , tn) ∈ R
n
+ : maxj=1,...,n tj = 1}, p = ∞.

(ii) Let µ be a Borel probability measure on ∆n
p . Then

σp,q
m (µ) =

∫

∆n
p

σm(x)qdµ(x)

is called average surface best m-term width of id : ℓn
p → ℓn

q with respect to µ.

(iii) Let ν be a Borel probability measure on [0, 1] · ∆n
p . Then

σp,q
m (ν) =

∫

[0,1]·∆n
p

σm(x)qdν(x)

is called average volume best m-term width of id : ℓn
p → ℓn

q with respect to ν.

Remark 1. (i) Let us observe, that the estimates

σp,q
m (µ) ≤ σp,q

m and σp,q
m (ν) ≤ σp,q

m

follow trivially by Definition 1.

(ii) The mapping x → σm(x)q is continuous and, therefore, measurable with re-
spect to the Borel measure µ.

2 Normalized cone measure

In this section, we shall give estimates of average best m-term widths with respect
to the so-called cone measure, which is well studied in the literature within the
geometry of ℓn

p spaces, cf. [26, 2, 25, 3].

Definition 2. Let 0 < p ≤ ∞ and n ≥ 2. Then

µp(A) =
λ([0, 1] · A)

λ([0, 1] · ∆n
p)

, A ⊂ ∆n
p

is the normalized cone measure on ∆n
p .

If νp denotes the p-normalized Lebesgue measure, i.e.

νp(A) =
λ(A)

λ([0, 1] · ∆n
p )

, A ⊂ R
n
+,
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then the connection between νp and µp is given by

νp(A) = n

∫ ∞

0
rn−1µp

({x ∈ A : ‖x‖p = r}
r

)

dr. (11)

The proof of (11) follows directly for sets of the type [a, b]·A with 0 < a < b < ∞ and
A ⊂ ∆n

p and is then finished by standard approximation arguments. The formula
(11) may be generalized to the so-called polar decomposition identity, cf. [2],

∫

Rn
+

f(x)dλ(x)

λ([0, 1] · ∆n
p)

= n

∫ ∞

0
rn−1

∫

∆n
p

f(rx)dµp(x)dr, (12)

which holds for every f ∈ L1(R
n
+).

The formula (12) allows to transfer immediately the results for the average sur-
face best m-term approximation with respect to µp to the average volume approxi-
mation with respect to νp.

Proposition 3. The identity

σp,q
m (νp) = σp,q

m (µp) ·
n

n + 1

holds for all 0 < p ≤ q ≤ ∞, all n ≥ 2 and all 0 ≤ m ≤ n − 1.

Proof. We plug the function

f(x) = σm(x)q · χ[0,1]·∆n
p
(x)

into (12) and obtain

∫

[0,1]·∆n
p

σm(x)qdλ(x)

λ([0, 1] · ∆n
p )

=

∫

[0,1]·∆n
p

σm(x)qdνp(x)

= n

∫ 1

0
rn−1

∫

∆n
p

σm(rx)qdµp(x)dr = n

∫ 1

0
rndr · σp,q

m (µp),

which gives the result.

Remark 2. Proposition 3 shows, that the difference between approximation with
respect to µp and νp is immaterial - i.e. of the order 1/n. This justifies our interest
in measures on ∆n

p .

Let p = 2 and let ω1, . . . , ωn be independent normally distributed Gaussian
random variables. Then

̺p(A) = µp(A) = P

(

(|ω1|, . . . , |ωn|)
(
∑n

j=1 ω2
j

)1/2
∈ A

)

, A ⊂ ∆n
p .
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As noted in [30], this relation may be generalized to all values of p with 0 < p < ∞.
Let ω1, . . . , ωn be independent random variables on R+ each with density

cpe
−tp , t ≥ 0

with respect to the Lebesgue measure, where cp = p
Γ(1/p) = 1

Γ(1/p+1) .

Then, cf. [30, Lemma 1],

µp(A) = P

(

(ω1, . . . , ωn)
(
∑n

j=1 ωp
j

)1/p
∈ A

)

, A ⊂ ∆n
p . (13)

We shall fix ω1, . . . , ωn to the end of this paper. Also the symbols E and P are always
taken with respect to these variables.

2.1 The case q = ∞
In this section we deal with uniform approximation, i.e. with the case q = ∞.

Lemma 4. Let 0 < p < ∞ and let n ≥ 2 and 1 ≤ m ≤ n be natural numbers. Then

∫

∆n
p

x∗
mdµp(x) =

Γ(n/p)

Γ(n/p + 1/p)
· Ex∗

m ≈ E x∗
m

n1/p
,

with constants of equivalence independent of m and n.

Proof. We put f(x) = x∗
me−xp

1−···−xp
n and use the polar decomposition identity (12)

∫

Rn
+

x∗
me−xp

1
−···−xp

ndλ(x)

λ([0, 1] · ∆n
p )

= n

∫ ∞

0
rn−1

∫

∆n
p

(rx∗
m) · e−(rx1)p−···−(rxn)p

dµp(x)dr

= n

∫ ∞

0
rn−1 · re−rp

dr

∫

∆n
p

x∗
mdµp(x)

or, equivalently,

∫

∆n
p

x∗
mdµp(x) =

∫

Rn
+

x∗
me−xp

1−···−xp
ndλ(x)

λ([0, 1] · ∆n
p ) · n

∫∞
0 rne−rpdr

. (14)

The identity
∫ ∞

0
rne−rp

dr =
Γ(n/p + 1/p)

p
,

follows by a simple substitution. Furthermore, we shall need the classical formula
of Dirichlet for the volume of the unit ball Bℓn

p
of ℓn

p , cf. [16, p. 157],

λ([0, 1] · ∆n
p ) =

λ(Bℓn
p
)

2n
=

Γ(1/p + 1)n

Γ(n/p + 1)
.
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This allows us to reformulate (14) as

∫

∆n
p

x∗
mdµp(x) =

Γ(n/p + 1) E x∗
m

cn
p · n/p · Γ(n/p + 1/p)Γ(1/p + 1)n

=
Γ(n/p) E x∗

m

Γ(n/p + 1/p)
.

Finally, we use Stirling’s formula (10) to estimate

n1/p · Γ(n/p)

Γ(n/p + 1/p)
≈ n1/p(n/p)n/p−1/2

(n/p + 1/p)n/p+1/p−1/2
≈
(

n

n + 1

)n/p+1/p−1/2

≈ 1,

where the used constants of equivalence do not depend on n, but may depend on
p.

Lemma 5. Let α ∈ R and δ > 0. Then

∫ ∞

δ
uαe−udu ≤ δαe−δ ·















1, if α ≤ 0,
1

1−α/δ , if α > 0 and α
δ < 1,

(

α
δ

)α · α/δ
1−δ/α , if α > 0 and α

δ > 1.

Proof. If α ≤ 0, we may estimate

∫ ∞

δ
uαe−udu ≤ δα

∫ ∞

δ
e−udu = δαe−δ.

If 0 < α ≤ 1, we use partial integration and obtain

∫ ∞

δ
uαe−udu = δαe−δ + α

∫ ∞

δ
uα−1e−udu ≤ δαe−δ(1 + αδ−1).

This is smaller than

δαe−δ(1 +
α

δ
+

α2

δ2
+ . . . ) = δαe−δ · 1

1 − α/δ

if α/δ < 1 and smaller than

δαe−δ α

δ
(1 +

δ

α
+

δ2

α2
+ . . . ) = δαe−δ α

δ
· 1

1 − δ/α
.

if α/δ > 1.
If k − 1 < α ≤ k for some k ∈ N, we iterate the partial integration and arrive at

∫ ∞

δ
uαe−udu ≤ δαe−δ(1 + αδ−1 + α(α − 1)δ−2 + · · · + α(α − 1) . . . (α − k + 1)δ−k)

≤ δαe−δ(1 +
α

δ
+

α2

δ2
+ · · · + αk

δk
)

≤ δαe−δ

{

1
1−α/δ , if α/δ < 1,
(

α
δ

)α+1 1
1−δ/α , if α/δ > 1.
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Lemma 6. Let 0 < p < ∞ and let 1 ≤ m ≤ n. Then

E x∗
m . log1/p

(en

m

)

.

Proof. We estimate

E x∗
m =

∫ ∞

0
P(ω∗

m > t)dt = δ +

∫ ∞

δ
P(ω∗

m > t)dt

≤ δ +

(

n

m

)
∫ ∞

δ
P(ω1 > t, ω2 > t, . . . , ωm > t)dt (15)

= δ +

(

n

m

)
∫ ∞

δ
P(ω1 > t)mdt.

The parameter δ > max(1, 3(1/p − 1))1/p is to be chosen later on. We substitute
v = up and obtain

P(ω1 > t) = cp

∫ ∞

t
e−up

du =
cp

p

∫ ∞

tp
v1/p−1e−vdv.

Using the first two estimates of Lemma 5 (recall that tp ≥ δp > max(1, 3(1/p− 1))),
we arrive at

P(ω1 > t) ≤ Cpt
1−pe−tp ,

where Cp depends only on p. We plug this estimate into (15) and obtain

Ex∗
m ≤ δ +

(

n

m

)

Cm
p

∫ ∞

δ
tm(1−p)e−mtpdt. (16)

If p ≥ 1, then
∫ ∞

δ
tm(1−p)e−mtpdt ≤ δm(1−p)

∫ ∞

δ
e−mtpdt ≤ δm(1−p)

∫ ∞

mδp

e−uu1/p−1du ≤ e−mδp
.

Altogether, we obtain

Ex∗
m ≤ δ +

(

n

m

)

Cm
p e−mδp

.

Using
(n
m

)

≤ (en
m )m and choosing δ = c′ ln(en

m )1/p finishes the proof.
If p < 1, we use again the second estimate of Lemma 5

∫ ∞

δ
tm(1−p)e−mtpdt =

1

mp
· m(1/p−1)(m+1)

∫ ∞

mδp

u(1/p−1)(m+1)e−udu

≤ 1

mp
· δ(1−p)(m+1)e−mδp · 1

1 − 2(1/p−1)
δp

≤ c′pδ
(1−p)(m+1)e−mδp

.

Using (16) and
(n
m

)

≤ (en
m )m again, we get

E x∗
1 ≤ δ + exp(−mδp + m ln(en/m) + (1 − p)(m + 1) ln δ + m ln Cp + ln c′p)

≤ δ + exp[−m(δp + c ln(en/m) + 2(1 − p) ln δ)]

The choice δ = c′ ln(en
m )1/p with c′ large enough ensures, that

δp

2
≥ c ln(en/m) and

δp

2
≥ 2(1 − p) ln δ

and finishes the proof.
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Lemma 4 and Lemma 6 imply immediately the following theorem if p < ∞. If
p = ∞, the proof is trivial.

Theorem 7. Let 0 < p ≤ ∞ and let n ≥ 2 and 0 ≤ m ≤ n − 1 be natural numbers.
Then

σp,∞
m (µp) .

[

log
(

en
m+1

)

n

]1/p

.

Remark 3. (i) Theorem 7 may be interpreted in the sense of the discussion after
(7). Namely, the average coordinate of x ∈ ∆n

p is n−1/p. Theorem 7 shows,
that the average value of the largest coordinate is only slightly larger (namely
c[ln(en)]1/p times larger). In this sense, the average point of ∆n

p is only slightly
modified (and properly normalized) white noise.

(ii) Using the interpolation formula (4), one may immediately extend this result
to all 0 < p ≤ q < ∞. But we shall see later on, that in the case q < ∞, one
may prove slightly better estimates.

(iii) It is easy to see, that

σp,∞
0 (µp) ≥ inf

x∈∆n
p

x∗
1 = n−1/p.

We shall show (at least in the case m = 0), that the logarithmic factor is
indispensable in Theorem 7. As far as we can tell, the exact behavior for
m > 0 is left open even for p = 2.

Proposition 8. Let 0 < p ≤ ∞ and n ≥ 2. Then

σp,∞
0 (µp) &

[

log(n + 1)

n

]1/p

,

where the constant may depend on p but not on n.

Proof. If p = ∞, then x∗
1 = 1 for all x ∈ ∆n

p and the proof is trivial. Let us therefore
assume, that p < ∞. According to Lemma 4, we have to estimate E x∗

1 from below.
This was done in [30, Lemma 2]. We include a slightly different proof for readers
convenience. For every t0 > 0, it holds

E x∗
1 ≥ t0 P(x∗

1 > t0) = t0 P( max
1≤j≤n

xj > t0) ≥ t0[nP(x1 > t0) −
(

n

2

)

P(x1 > t0)
2].

We define t0 by P(x1 > t0) = 1
n and obtain E x∗

1 ≥ t0/2.
From the simple estimate

cp

p

∫ ∞

T p

u1/p−1e−udu ≥ Cpe
−2T p

, T > 1,

it follows, that there is an constant γp > 0, such that

P(x1 > γp(log(n + 1))1/p) ≥ 1/n.

This gives t0 ≥ γp(log(n + 1))1/p and E x∗
1 & (log(n + 1))1/p.

12



2.2 The case q < ∞
We discuss briefly also the case when q < ∞. It turns out, that in this case the
logarithmic term disappears.

Proposition 9. Let n ≥ 2 and 0 < p ≤ q < ∞. Then

(i) E ‖x‖q ≈ n1/q,

(ii)

σp,q
0 (µp) =

∫

∆n
p

‖x‖qdµp(x) ≈ E ‖x‖q

n1/p
,

(iii) σp,q
0 (µp) ≈ n1/q−1/p

and all three statements hold with constants of equivalence independent of n.

Proof. (i) The following two inequalities may be easily proved by Hölder’s and
Minkowski inequality.

( n
∑

j=1

(Exj)
q

)1/q

≤ E
(

n
∑

j=1

xq
j

)1/q ≤
(

n
∑

j=1

Exq
j

)1/q
, q ≥ 1,

(

n
∑

j=1

Exq
j

)1/q ≤ E
(

n
∑

j=1

xq
j

)1/q ≤
( n
∑

j=1

(Exj)
q

)1/q

, q ≤ 1.

This gives for q ≥ 1

E‖x‖q ≤ n1/q(Exq
j)

1/q and E‖x‖q ≥ n1/q
Exj

and for q ≤ 1
E‖x‖q ≤ n1/q

Exj and E‖x‖q ≥ n1/q(Exq
j)

1/q.

Let us note, that the value of Exj and (Exq
j)

1/q does not depend on n, only on p
and q.

(ii) The proof of the second part resembles very much the proof of Lemma 4 and
is left to the reader.

(iii) The last point follows immediately from (i) and (ii).

Remark 4. A similar statement to Proposition 9 is included in [30, Lemma 2, point
4].

3 Normalized surface measure

Definition 10. Let n ≥ 2 be a natural number. We denote by

̺p(A) =
H(A)

H(∆n
p )

, A ⊂ ∆n
p

the normalized n − 1 dimensional Hausdorff measure on ∆n
p .

13



Let us mention, that for p ∈ {1, 2,∞} the measure ̺p coincides with µp.

Lemma 11. Let 0 < p < ∞ and n ≥ 2. Then ̺p is an absolutely continuous measure
with respect to µp and for µp almost every x ∈ ∆n

p it holds

d̺p

dµp
(x) =

nλ([0, 1] · ∆n
p)

H(∆n
p )

∥

∥

∥
∇(‖ · ‖p)(x)

∥

∥

∥

2
= C−1

p,n

( n
∑

i=1

x2p−2
i

)1/2

,

where

Cp,n =

∫

∆n
p

( n
∑

i=1

x2p−2
i

)1/2

dµp(x)

is the normalizing constant.

Proof. The proof imitates the proof of [26, Lemma 1 and Lemma 2], where the
statement was proven for 1 ≤ p < ∞. Hence, we may assume, that 0 < p < 1. First,
we introduce some notation.

We fix x = (x1, . . . , xn) ∈ ∆n
p , such that

• the mapping y → ‖y‖p is differentiable at x,

• x is a density point of H, i.e.

lim
ε→0+

H(B(x, ε) ∩ ∆n
p)

εn−1Vn−1
= 1, (17)

where Vn−1 denotes the Lebesgue volume of the n − 1 dimensional Euclidean
unit ball.

• xi > 0 for all i = 1, . . . , n.

Obviously, ̺p-almost every x ∈ ∆n
p satisfies all the three properties (we refer for

example to [24, Theorem 16.2] for the second one).
Furthermore, we put z := ∇(‖ · ‖p)(x). This means, that

‖x + y‖p = 1 + 〈z, y〉 + r(y), (18)

where

θ(δ) := sup

{ |r(y)|
‖y‖2

: 0 < ‖y‖2 ≤ δ

}

, δ > 0

tends to zero if δ tends to zero. Using (18) for y = δx, one observes, that 〈z, x〉 = 1.
We denote by H = x + z⊥ the tangent hyperplane to ∆n

p at x. Let us note, that
for 0 < p < 1 the set R

n
+ \ [0, 1) · ∆n

p = [1,∞) · ∆n
p is convex. Next, we show, that

〈z, y〉 ≥ 1 for every y ∈ [1,∞) · ∆n
p . Indeed,

1 ≤ ‖x + λ(y − x)‖p = 1 + 〈z, λ(y − x)〉 + r(λ(y − x))

= 1 − λ + λ〈z, y〉 + r(λ(y − x))

Dividing by λ > 0 and letting λ → 0 gives the statement.
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The proof of the lemma is based on the following two inclusions, namely

[0, 1] ·
(

B(x, ε(1 − θ(ε))) ∩ H
)

⊂ [0, 1] ·
(

B(x, ε) ∩ ∆n
p

)

(19)

and

[0, 1] ·
(

B(x, ε) ∩ ∆n
p

)

⊂ [0, 1 + εθ(ε)] ·
(

B(x, ε(1 + θ(ε)‖x‖2)) ∩ H
)

, (20)

which hold for all ε > 0 small enough.
First, we prove (19). To given 0 ≤ s ≤ 1 and v ∈ B(x, ε(1 − θ(ε)) ∩ H we need

to find 0 ≤ t ≤ 1 and w ∈ B(x, ε) ∩ ∆n
p , such that sv = tw. To do this, we set

w :=
v

‖v‖p
∈ ∆n

p and t := s‖v‖p.

We need to show, that t ≤ 1 and ‖x − w‖2 ≤ ε.
We choose 0 < ε ≤ mini xi. Then

xi ≤ |xi − vi| + vi ≤ ‖x − v‖2 + vi ≤ ε + vi

for every i = 1, . . . , n, which implies, that vi ≥ 0 and v ∈ R
n
+. From v ∈ H and

v ∈ R
n
+ we deduce, that ‖v‖p ≤ 1. Hence t = s‖v‖p ≤ ‖v‖p ≤ 1.

Next, we write

‖x − w‖2 =
∥

∥

∥
x − v

‖v‖p

∥

∥

∥

2
≤ ‖x − v‖2 +

∥

∥

∥
v − v

‖v‖p

∥

∥

∥

2

≤ ε(1 − θ(ε)) + ‖v‖2 ·
1 − ‖v‖p

‖v‖p
≤ ε(1 − θ(ε)) + 1 − ‖v‖p

= ε(1 − θ(ε)) + 1 − {1 + 〈v − x, z〉 + r(v − x)}
= ε(1 − θ(ε)) + r(v − x) ≤ ε.

Next, we prove (20). We need to find to given 0 ≤ t ≤ 1 and w ∈ B(x, ε) ∩ ∆n
p

some 0 ≤ s ≤ 1 + εθ(ε) and v ∈ B(x, ε(1 + θ(ε)‖x‖2)) ∩ H, such that tw = sv. We
put

s := t〈w, z〉 and v :=
w

〈w, z〉 .

Let us recall, that we have shown above, that w ∈ ∆n
p implies that 〈w, z〉 ≥ 1.

Of course, tw = sv and v ∈ H (as 〈v, z〉 = 1). Hence, it remains to show, that
s ≤ 1 + εθ(ε) and ‖v − x‖2 ≤ ε(1 + θ(ε)‖x‖2).

The application of (18) gives

1 = ‖w‖p = ‖x + (w − x)‖p = 1 + 〈w − x, z〉 + r(w − x),

which again forces 〈w, z〉 ≤ 1 + εθ(ε). Then s = t〈w, z〉 ≤ 〈w, z〉 ≤ 1 + εθ(ε).
Finally, we write

‖v − x‖2 =
∣

∣

∣

∣

∣

∣

w

〈w, z〉 − x
∥

∥

∥

2
≤
∥

∥

∥

w

〈w, z〉 −
x

〈w, z〉
∥

∥

∥

2
+
∥

∥

∥

x

〈w, z〉 − x
∥

∥

∥

2

≤ ‖w − x‖2

〈w, z〉 + ‖x‖2
〈w, z〉 − 1

〈w, z〉 ≤ ε + εθ(ε)‖x‖2.
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Equipped with (19) and (20), we may finish the proof of the lemma. We write

lim
ε→0

̺p(B(x, ε) ∩ ∆n
p )

µp(B(x, ε) ∩ ∆n
p )

= lim
ε→0

H(B(x, ε) ∩ ∆n
p )

H(∆n
p )

· εn−1Vn−1

εn−1Vn−1
·

λ([0, 1] · ∆n
p )

λ([0, 1] · [B(x, ε) ∩ ∆n
p ])

=
λ([0, 1] · ∆n

p )

H(∆n
p )

· lim
ε→0

εn−1Vn−1

λ([0, 1] · [B(x, ε) ∩ ∆n
p ])

, (21)

where we have used (17). As the perpendicular distance between zero and H is equal
to 1/‖z‖2, we observe, that

vol(B(x, a) ∩ H) =
an−1Vn−1

n‖z‖2

holds for every a > 0. Using this, we get from (19) and (20)

λ
(

[0, 1] ·
(

B(x, ε(1 − θ(ε))) ∩ H
))

=
[ε(1 − θ(ε))]n−1Vn−1

n‖z‖2

≤ λ
(

[0, 1] ·
(

B(x, ε) ∩ ∆n
p

))

≤ λ
(

[0, 1 + εθ(ε)] ·
(

B(x, ε(1 + θ(ε)‖x‖2)) ∩ H
))

= [1 + εθ(ε)]n · [ε(1 + θ(ε)‖x‖2)]
n−1Vn−1

n‖z‖2
.

Combining these estimates with (21) gives the result.

Lemma 12. Let 0 < p < ∞ and n ≥ 2. Then

σp,∞
0 (̺p) =

∫

∆n
p

x∗
1d̺p =

∫

∆n
p

x∗
1

(

n
∑

i=1

x2p−2
i

)1/2
dµp(x)

∫

∆n
p

(

n
∑

i=1

x2p−2
i

)1/2
dµp(x)

≈
E x∗

1

(

n
∑

i=1

x2p−2
i

)1/2

E

(

n
∑

i=1

x2p−2
i

)1/2
· n−1/p.

(22)

Proof. Only the last equivalence needs a proof. It resembles the proof of Lemma 4
and is again based on the polar decomposition formula (12).

We plug the functions

f1(x) = x∗
1

(

n
∑

i=1

x2p−2
i

)1/2
e−xp

1−···−xp
n and f2(x) =

(

n
∑

i=1

x2p−2
i

)1/2
e−xp

1−···−xp
n
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into (12) and obtain

σp,∞
0 (̺p) =

∫

Rn
+

f1(x)dx ·
∫ ∞

0
rn+p−2e−rp

dr

∫

Rn
+

f2(x)dx ·
∫ ∞

0
rn+p−1e−rp

dr

=

E x∗
1

(

n
∑

i=1

x2p−2
i

)1/2

E

(

n
∑

i=1

x2p−2
i

)1/2
· Γ(n/p + 1 − 1/p)

Γ(n/p + 1)
.

By Stirling’s formula, the last expression is equivalent to n−1/p.

Theorem 13. Let 0 < p < ∞ and n ≥ 2. Then

σp,∞
0 (̺p) .

[

log(n + 1)

n

]1/p

. (23)

Proof. We define a probability measure αp,n on R
+
n by the density

C̃−1
p,n ·

(

n
∑

i=1

x2p−2
i

)1/2

e−xp
1−···−xp

n , C̃p,n :=

∫

Rn
+

(

n
∑

i=1

x2p−2
i

)1/2

e−xp
1−···−xp

ndx

with respect to the Lebesgue measure. Let us note, that due to the inequality

(

n
∑

i=1

x2p−2
i

)1/2

≤
n
∑

i=1

xp−1
i

the integral in the definition of C̃p,n really converges and αp,n is well defined.
According to Lemma 12, we need to estimate

∫

Rn
+

x∗
1dαp,n(x).

We calculate for δ > 1, which is to be chosen later on,

∫

Rn
+

x∗
1dαp,n(x) =

∫ ∞

0
αp,n(x∗

1 > t)dt ≤ δ +

∫ ∞

δ
αp,n(x∗

1 > t)dt

≤ δ + n

∫ ∞

δ
αp,n(x1 > t)dt.

17



We write x′ = (x2, . . . , xn) ∈ R
n−1
+ . Then

αp,n(x1 > t) = C̃−1
p,n

∫ ∞

t
e−xp

1

∫

R
n−1
+

(

n
∑

i=1

x2p−2
i

)1/2

e−xp
2−···−xp

ndx′dx1

≤ C̃−1
p,n

∫ ∞

t
e−xp

1

∫

R
n−1
+



xp−1
1 +

(

n
∑

i=2

x2p−2
i

)1/2


 e−xp
2−···−xp

ndx′dx1

= C̃−1
p,n

∫ ∞

t
e−xp

1xp−1
1 dx1 ·

∫

R
n−1
+

e−xp
2−···−xp

ndx′

+ C̃−1
p,n

∫ ∞

t
e−xp

1dx1 ·
∫

R
n−1
+

(

n
∑

i=2

x2p−2
i

)1/2

e−xp
2−···−xp

ndx′

:= I1 + I2.

The inequality

cn
p C̃p,n = cn

p

∫

Rn
+

(

n
∑

i=1

x2p−2
i

)1/2

e−xp
1
−···−xp

ndx

≥ cn
p

∫

Rn
+

(

n
∑

i=2

x2p−2
i

)1/2

e−xp
1
−···−xp

ndx (24)

= cn
p

∫ ∞

0
e−xp

1dx1

∫

R
n−1
+

(

n
∑

i=2

x2p−2
i

)1/2

e−xp
2
−···−xp

ndx′ = cn−1
p C̃p,n−1

shows, that

I1 =
cp

∫∞
t xp−1

1 e−xp
1dx1

cn
p C̃p,n

≤ cp

∫∞
t xp−1

1 e−xp
1dx1

cpC̃p,1

= C̃−1
p,1 · e−tp

p
.

Using (24) again, we get also

I2 = C̃−1
p,n · C̃p,n−1

∫ ∞

t
e−xp

1dx1 ≤ cp

∫ ∞

t
e−xp

1dx1 =
cp

p
·
∫ ∞

tp
s1/p−1e−sds.

If p ≥ 1, we get
I1 + I2 ≤ ce−tp , t > 1 (25)

and
∫

Rn
+

x∗
1dαp,n(x) ≤ δ + cn

∫ ∞

δ
e−tpdt ≤ δ + c′ne−δp

.

By choosing δ ≈ log(n + 1)1/p, we get the result.
If p < 1, we use the second estimate of Lemma 5 and replace (25) with

I1 + I2 ≤ ct1−pe−tp , t > t0

for t0 > 1 large enough and the result again follows by the choice of δ.
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Remark 5. (i) Theorem 13 shows, that the average size of the largest coordinate
of x ∈ ∆n

p taken with respect to the normalized Hausdorff measure is again

only slightly larger than n−1/p. Hence, also in this case, the typical element of
∆n

p seems to be far from being sparse and resembles rather properly normalized
white noise in the sense described in Introduction.

(ii) Using interpolation inequality (4), one may again obtain a similar estimate
also for 0 < p ≤ q < ∞, namely

σp,q
0 (̺p) .

[

log(n + 1)

n

]1/p−1/q

.

It would be probably possible to avoid the logarithmic terms and provide
improved estimates also for m > 0, but we shall not go into this direction. Our
main aim of this section was to show, that normalized Hausdorff measure does
not prefer sparse (or nearly sparse) vectors, and this was clearly demonstrated
by Theorem 13.

4 Tensor product measures

As discussed already in the Introduction and proved in Theorem 7 and Theorem
13, the average vector of ∆n

p with respect to the cone measure µp and with respect
to surface measure ̺p behaves “badly” meaning that (roughly speaking) many of
its coordinates are approximately of the same size. As promised before, we shall
now introduced a new class of measures, for which the random vector behaves in
a completely different way. This measures are defined through their density with
respect to the cone measure µp. This density has a strong singularity near the points
with vanishing coordinates.

Definition 14. Let 0 < p < ∞, β > −1 and n ≥ 2. Then we define the probability
measure θp,β on ∆n

p by

dθp,β

dµp
(x) = C−1

p,β ·
n
∏

i=1

xβ
i , x ∈ ∆n

p , (26)

where

Cp,β =

∫

∆n
p

n
∏

i=1

xβ
i dµp(x). (27)

Remark 6. (i) If 0 > β > −1, then (26) defines the density of θp,β with respect
to µp only for points, where xi 6= 0 for all i = 1, . . . , n. That means, that this
density is defined µp-almost everywhere. The definition is then complemented by
the statement, that θp,β is absolutely continuous with respect to µp.

(ii) We shall see later on, that the condition β > −1 ensures, that (27) is finite.

Lemma 15. Let 0 < p < ∞, β > −1 and n ≥ 2.

19



(i) Let 1 ≤ m ≤ n. Then

σp,∞
m−1(θp,β) =

∫

∆n
p

x∗
mdθp,β =

E x∗
m

n
∏

i=1

xβ
i

E

n
∏

i=1

xβ
i

· Γ(n(β + 1)/p)

Γ(n(β + 1)/p + 1/p)
.

(ii)

E

n
∏

i=1

xβ
i =

[

cp

p
· Γ((β + 1)/p)

]n

.

Proof. The proof of the first part follows again by (12), this time used for the
functions

f1(x) = x∗
m

(

n
∏

i=1

xβ
i

)

e−xp
1−···−xp

n and f2(x) =
(

n
∏

i=1

xβ
i

)

e−xp
1−···−xp

n .

The proof of the second part is straightforward.

It follows directly from (8), that Γ(s) tends to infinity, when s tends to zero. The
following lemma quantifies this phenomenon. Although the statement seems to be
well known, we were not able to find a reference and we therefore provide at least a
sketch of the proof.

Lemma 16. Let C ≃ 0.577 . . . denote the Euler constant. Then

lim
n→∞

(

Γ(1/n)

n

)n

= e−C .

Proof. It is enough to show, that

lim
n→∞

n · log(Γ(1 + 1/n)) = −C,

which (by using the l’Hospital rule) follows from

lim
n→∞

∫∞
0 s1/ne−s log s ds
∫∞
0 s1/ne−sds

= −C.

But the numerator of this fraction is equal to Γ′(1 + 1/n) and its denominator to
Γ(1 + 1/n). The whole fraction is therefore equal to Ψ(1 + 1/n) and Ψ(1 + 1/n) →
Ψ(1) = −C as n tends to infinity, cf. [1, Section 6.3.2, p. 258].

Next theorem shows, that if β = p/n−1, then the measure θp,β promotes sparsity
and one may even consider limiting behavior of n growing to infinity.

Theorem 17. Let 0 < p < ∞ and let n ≥ 2 and 1 ≤ m ≤ n be integers. Then

σp,∞
m−1(θp,p/n−1) &

Γ(n + 1)

Γ(n − m + 1)
· Γ(n/p + n − m + 1)

Γ(n/p + n + 1)
, (28)
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and

σp,∞
m−1(θp,p/n−1) .

Γ(n + 1)

Γ(n − m + 1)

{

Γ(n/p + n − m + 1)

Γ(n/p + n + 1)
+

1

m!
·
(

e−1

Γ(1/n)

)m}

(29)

where the constants do not depend on n and m, but may depend on p.
Furthermore, for every fixed m ∈ N,

1
(

1
p + 1

)m . lim inf
n→∞

σp,∞
m−1(θp,p/n−1) (30)

≤ lim sup
n→∞

σp,∞
m−1(θp,p/n−1) .

1
(

1
p + 1

)m +
e−m

m!
,

where the constants do not depend on m, but may depend on p.

Proof. First observe, that n(β + 1)/p = 1 for β = p/n − 1 and therefore

Γ(n(β + 1)/p)

Γ(n(β + 1)/p + 1/p)
=

1

Γ(1 + 1/p)

depends only on p. Due to Lemma 15, we have to estimate

E x∗
m

( n
∏

i=1

x
p/n−1
i

)

= cn
p

∫

Rd
+

x∗
m

n
∏

i=1

x
p/n−1
i e−xp

1
−···−xp

ndx. (31)

Let t = x∗
m and let us assume, that there is only one coordinate j = 1, . . . , n, such

that xj = t. Obviously, this assumption holds almost everywhere. Of course, we
have n possibilities for j. Furthermore, m− 1 from the remaining n− 1 components
of x are bigger than t and the remaining n−m components are smaller. This allows
to rewrite (31) as

cn
p n

(

n − 1

m − 1

)
∫ ∞

0
tp/ne−tp

(
∫ t

0
up/n−1e−up

du

)n−m

×

×
(
∫ ∞

t
up/n−1e−up

du

)m−1

dt

=
cn
pn

pn

(

n − 1

m − 1

)
∫ ∞

0
ω1/p+1/n−1e−ω

(
∫ ω

0
s1/n−1e−sds

)n−m

×

×
(
∫ ∞

ω
s1/n−1e−sds

)m−1

dω.

Let us denote

γ = Γ(1/n) =

∫ ∞

0
s1/n−1e−sds and y(ω) = γ−1 ·

∫ ω

0
s1/n−1e−sds. (32)

Then y(ω) is a monotone function of y, y(0) = 0 and limω→∞ y(ω) = 1. We denote
by ω(y) its inverse function, i.e.

y = γ−1 ·
∫ ω(y)

0
s1/n−1e−sds, 0 ≤ y ≤ 1. (33)
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Using this notation, we obtain

E x∗
m

( n
∏

i=1

x
p/n−1
i

)

=
cn
p γn

pn
n

(

n − 1

m − 1

)
∫ 1

0
ω(y)1/pyn−m(1 − y)m−1dy

and

σp,∞
m−1(θp,p/n−1) =

Γ(n + 1)

Γ(m)Γ(n − m + 1)

∫ 1

0
ω(y)1/pyn−m(1 − y)m−1dy, (34)

where ω(y) is given by (33).
Step 1. Estimate from below
The estimate

γy =

∫ ω(y)

0
s1/n−1e−sds ≤

∫ ω(y)

0
s1/n−1ds = nω(y)1/n

implies together with Lemma 16

ω(y) ≥
(γy

n

)n
≥ cyn

with c independent of n. This gives finally

σp,∞
m−1(θp,p/n−1) ≥ c1/p · Γ(n + 1)

Γ(m)Γ(n − m + 1)
·
∫ 1

0
yn/p+n−m(1 − y)m−1dy

= c1/p · Γ(n + 1)

Γ(m)Γ(n − m + 1)
· B(n/p + n − m + 1,m)

= c1/p · Γ(n + 1)

Γ(n − m + 1)
· Γ(n/p + n − m + 1)

Γ(n/p + n + 1)
,

where we used the Beta function (9) and the proof of (28) is complete.
Step 2. Estimate from above

Let us first take y, such that 1 − e−1/γ ≤ y ≤ 1. Then − ln(γ(1 − y)) ≥ 1 and
∫ ∞

− ln(γ(1−y))
s1/n−1e−sds ≤

∫ ∞

− ln(γ(1−y))
e−sds = γ(1 − y).

Hence,
ω(y) ≤ − ln(γ(1 − y)), 1 − e−1/γ ≤ y ≤ 1. (35)

Finally, we observe, that

f : y →
∫ ∞

Cyn

s1/n−1e−sds

is a convex function on R+, f(0) = γ and

f(1 − e−1/γ) =

∫ ∞

C(1−e−1/γ)n

s1/n−1e−sds

≤
∫ ∞

1
s1/n−1e−sds ≤ e−1,
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if we choose C so large, that C(1 − e−1/γ)n ≥ 1 for all n ∈ N. This is indeed
possible, while a byproduct of Lemma 16 is also a relation limn→∞ γ/n = 1. Using
the convexity of f , we obtain

f(y) ≤ γ(1 − y), 0 ≤ y ≤ 1 − e−1/γ,

which further leads to

ω(y) ≤ Cyn, 0 ≤ y ≤ 1 − e−1/γ. (36)

We insert (35) and (36) into (34) and obtain

σp,∞
m−1(θp,p/n−1) ≤

Γ(n + 1)

Γ(m)Γ(n − m + 1)

{

C1/pI1 + I2

}

, (37)

where

I1 :=

∫ 1−e−1/γ

0
yn/p+n−m(1 − y)m−1dy

and

I2 :=

∫ 1

1−e−1/γ
| ln(γ(1 − y))|1/pyn−m(1 − y)m−1dy.

The first integral may be estimated again using the Beta function, which gives

I1 ≤ B(n/p + n − m + 1,m). (38)

We denote by k the uniquely defined integer, such that 1/p ≤ k < 1/p + 1 holds,
and estimate

I2 ≤
∫ 1

1−e−1/γ
| ln(γ(1 − y))|1/p(1 − y)m−1dy ≤ Ik,m :=

∫ e−1/γ

0
| ln(γy)|kym−1dy.

Next, we use partial integration to estimate Ik,m. We obtain

Ik,m =
1

m

(

e−1

γ

)m

+
k

m
· Ik−1,m.

Together with I0,m = 1/m · (e−1/γ)m, this leads finally to

Ik,m ≤ (k + 1)!

m

(

e−1

γ

)m

.

This, together with (37) and (38) finishes the proof of (29).
The proof of (30) then follows directly by Stirling’s formula (10).

Remark 7. (i) Let us take m = 0. Then the formula (30) describes an essen-
tially different behavior compared to the normalized cone and surface mea-
sure. Namely, the expected value of the largest coordinate of x ∈ ∆n

p with
respect to θp,p/n−1 does not decay to zero with n growing to infinity. We shall
demonstrate this effect also numerically in next section.
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(ii) If m > 0, then (30) shows, that σp,∞
m (θp,p/n−1) decays exponentially fast with

m, as soon as n is large enough. That means, that for n large enough, the
average vector of ∆n

p exhibits a strong sparsity-like structure. Namely, its m-th
largest component decays exponentially with m.

(iii) We have chosen in (26) a different β for each n, namely βn = p/n − 1 > −1.
This was of course a crucial ingredient in the proof of Theorem 17. It is not
difficult to modify the analysis of the proof of Theorem 17 to the situation,
when β > −1 is fixed for all n ∈ N. In this case we obtain again, that
(up to logarithmic factors) σp,∞

0 (θp,β) is equivalent to n−1/p with constants of
equivalence depending on p > 0 and β > −1.

(iv) Last, but not least, we observe, that one may choose p = 1 or even p = 2 in
Theorem 17 and still obtains the exponential decay of coordinates as described
by (30). It seems, that there is no significant connection between sparsity of
an average vector of x ∈ ∆n

p and the size of p > 0.

5 Numerical experiments

5.1 Cone measure

We would like to demonstrate the most significant effects of the theory also by
numerical experiments. We start with the case of the cone measure. The key role is
played by (13). It may be interpreted in the following way. To generate a random
point on ∆n

p with respect to the normalized cone measure, it is enough to generate

ω1, . . . , ωn with respect to the density cpe
−tp , t > 0 and then calculate

(ω1, . . . , ωn)
(
∑n

j=1 ωp
j

)1/p
∈ ∆n

p .

This method is very practical, as the running time of this algorithm depends only
linearly on n.

Let us note, that the values of ωi may be generated very easily. For example the
package GNU Scientific Library [19] implements a random number generator with
respect to the gamma distribution using the method described in the classical work of
Knuth [21]. Using this package, we generated 108 random points x ∈ ∆n

p for n = 100

and p ∈ {1/2, 1, 2} to approximate numerically the value of n1/p ·
∫

∆n
p

x∗
mdµp(x). The

result may be found in the Figure 1.

5.2 Tensor measures

It was observed already in [2], that the measures θp,β allow a formula similar to

(13). We plug the function f(x) = χ[0,∞)·A

∏n
i=1 xβ

i e−‖x‖p
p into (12), where A is any

µp-measurable subset of ∆n
p , and obtain

∫

[0,∞)·A

n
∏

i=1

xβ
i e−‖x‖p

pdλ(x) = λ([0, 1] · ∆n
p ) · n ·

∫ ∞

0
rn−1+nβe−rp

dr ·
∫

A

n
∏

i=1

xβ
i dµp(x).
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We use a similar formula also for A = ∆n
p , which leads to

∫

A
1d θp,β =

∫

A

n
∏

i=1

xβ
i dµp(x)

∫

∆n
p

n
∏

i=1

xβ
i dµp(x)

=

∫

[0,∞)·A

n
∏

i=1

xβ
i e−‖x‖p

pdx

∫

Rn
+

n
∏

i=1

xβ
i e−‖x‖p

pdx

.

A random point on ∆n
p with respect to θp,β may therefore be generated in the

following way. We generate ω′
1, . . . , ω

′
n with respect to the density cp,βtβe−tp , t > 0,

where c−1
p,β =

∫∞
0 tβe−tpdt is a normalizing constant and we consider the vector

(ω′
1, . . . , ω

′
n)

(
∑n

j=1(ω
′
j)

p
)1/p

∈ ∆n
p .

Also this may be easily done with the help of [19]. We generated again 108 ran-
dom points x ∈ ∆n

p with respect to θp,p/n−1 for n = 100 and p ∈ {1/2, 1, 2}. Then we
used those points to numerically approximate the expression log10(

∫

∆n
p

x∗
mdθp,p/n−1).
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Figure 1: Approximations of n1/p ·
∫

∆n
p

x∗
mdµp(x) (left) and log10(

∫

∆n
p

x∗
mdθp,p/n−1)

(right) for n = 100, p = 1/2(◦), p = 1(•) and p = 2(×) based on sampling of 108

random points.
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