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Abstract

We recall an open problem on the error of quadrature formulas for the integration of functions
from some finite dimensional spaces of trigonometric functions posed by Erich Novak in [8] ten
years ago and summarised recently in [9]. It is relatively easy to prove an error formula for
the best quadrature rules with positive weights which shows intractability of the tensor product
problem for such rules. In contrast to that, the conjecture that also quadrature formulas with
arbitrary weights can not decrease the error is still open.

We generalise Novak’s conjecture to a statement about positive positive-definite functions
and provide several equivalent reformulations, which show the connections to Bochner’s Theorem
and Toeplitz matrices.

1 Integration of trigonometric polynomials

In his work [8], E. Novak used quadrature formulas

Qn(f) =

n∑
i=1

cif(xi), ci ∈ ℝ, xi ∈ [0, 1]d (1)

to approximate the integral

INTd(f) =

∫
[0,1]d

f(x) dx.

Here f belongs to a unit ball of a Hilbert space Fd, which is defined inductively as follows.
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The space F1 is linear and generated by three functions:

e1(x) = 1, e2(x) = cos(2�x), e3(x) = sin(2�x)

for x ∈ [0, 1]. The scalar product ⟨⋅, ⋅⟩F1 on F1 is defined by the statement, that {ei}3i=1 is an
orthonormal basis of F1.

For d > 1, Fd is defined as the d-fold tensor product of F1 with the tensor scalar product

⟨f1 ⊗ f2 ⊗ ⋅ ⋅ ⋅ ⊗ fd, g1 ⊗ g2 ⊗ ⋅ ⋅ ⋅ ⊗ gd⟩Fd
=

d∏
j=1

⟨fj , gj⟩F1 ,

where fj , gj ∈ F1 and

(f1 ⊗ f2 ⊗ ⋅ ⋅ ⋅ ⊗ fd)(x) = f1(x1)f2(x2) . . . fd(xd), x = (x1, x2, . . . , xd) ∈ [0, 1]d.

Then Fd is a 3d-dimensional Hilbert space with a reproducing kernel Kd(x, y) given by

Kd(x, y) = ⟨�x, �y⟩Fd
,

where �x is the function

�x(z) =

d∏
j=1

[1 + cos(2�(xj − zj))]

so that the point evaluation of f ∈ Fd at x is given as

f(x) = ⟨f, �x⟩Fd
.

Altogether, we obtain

Kd(x, y) =
d∏
j=1

[1 + cos(2�(xj − yj))], x, y ∈ [0, 1]d.

The worst-case error of Qn as introduced by (1) is then given by

ewor(Qn)2 = sup
∣∣f ∣∣Fd

≤1
∣INTd(f)−Qn(f)∣2 =

∥∥∥∥1−
n∑
j=1

cj�xj

∥∥∥∥2
Fd

= 1− 2

n∑
j=1

cj +

n∑
j,k=1

cjckKd(xj , xk).

It turned out, that the analysis of this error is much simpler, if we assume, that all the coefficients
are positive. In that case, we have the estimate

ewor(Qn)2 ≥ 1− 2
n∑
j=1

cj +
n∑
j=1

c2j2
d
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and a simple calculation shows that the right hand side is minimal for cj = 2−d which gives

ewor(Qn)2 ≥ max(1− n2−d, 0). (2)

It was also observed in [8] that this estimate is optimal in the case positive coefficients, i.e. there
exists a quadrature rule Qn as defined in (1) with positive coefficients ci such that equality holds
in (2). In particular, this estimate shows that the problem is intractable with quadrature formulas
with positive weights since for fixed error the number n of sample points needs to grow exponentially
with the dimension d.

If the coefficients are allowed to change the signs, we use the simple fact, that the projection of

any y ∈ Fd onto the ray generated by x ∈ Fd is given by
⟨y, x⟩x
⟨x, x⟩

and obtain

inf
cj ,xj

∥∥∥∥1−
n∑
j=1

cj�xj

∥∥∥∥2
Fd

= 1− sup
cj ,xj

〈
1,

n∑
j=1

cj�xj

〉2

Fd〈 n∑
j=1

cj�xj ,
n∑
j=1

cj�xj

〉
Fd

= 1− sup
cj ,xj

( n∑
j=1

cj

)2

n∑
j,k=1

cjckKd(xj , xk)

, (3)

see [8].
Erich Novak conjectured, that the estimate (2) applies also for quadrature formulas (1) with

(possibly) negative coefficients. In view of (3), this is equivalent to

Conjecture 1. (E. Novak) Let n, d ≥ 2 be natural numbers and let x1, . . . , xn ∈ ℝd. Then the
n× n matrix { d∏

i=1

1 + cos(xj,i − xk,i)
2

− 1

n

}n
j,k=1

is positive semi-definite.

Choosing x1, . . . , xn such that for each pair j, k = 1, . . . , n with j ∕= k there is some i = 1, . . . , d
with cos(xj,i − xk,i) = −1 produces the n× n-matrix with diagonal entries 1− 1/n and offdiagonal
entries −1/n and shows that the constant 1/n is optimal in Conjecture 1, i.e. it obviously does not
hold, if 1/n is replaced by any bigger quantity independent of d. This choice of x1, . . . , xn is only
possible if n ≤ 2d, but this is also the only interesting case in Conjecture 1.

Although the conjecture may be easily formulated and tested by computer (at least for small
dimensions n and d), it is not clear, which property (or properties) of the function 1+cosx

2 are
the most important in this context. Hence, it is natural to try to generalise the conjecture to a
wider class of functions, where only really significant properties would play a role. For example, it
was conjectured already in [8], that this problem may be connected to the Hadamard product of
matrices (cf. [6] or [7]) or to positive-definite functions (cf. [11]).
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1.1 Hadamard product

We first introduce some notation. If A,B ∈ ℝn×n are two symmetric n × n matrices, we write
A ર B if A − B is positive semi-definite, i.e. if xT (A − B)x ≥ 0 for all x ∈ ℝn. It is easy to see,
that this relation represents a partial ordering on the set of all n × n matrices. Furthermore, we
denote by En the n× n matrix with all components equal to one.

Using this notation, we may rewrite the Conjecture 1 as{ d∏
i=1

1 + cos(xj,i − xk,i)
2

}n
j,k=1

ર En
n

for all x1, . . . , xn ∈ ℝd.

Definition 1. If A = (ai,j)
n
i,j=1, B = (bi,j)

n
i,j=1 ∈ ℝn×n are two n × n matrices, we define their

Hadamard product as their component-wise product, i.e.

A ∘B = {ai,jbi,j}ni,j=1.

We remark, that the Hadamard product is sometimes also referred to as the Schur product,
cf. [6, Chapter 7.5]. Obviously, the matrix En is a unit element with respect to the Hadamard
multiplication. The celebrated Schur product theorem states that the Hadamard product of two
positive semi-definite matrices is also positive semi-definite, see [6, Theorem 7.5.3].

It is easy to see that the following Statement holds for n = 2 and that it would provide a direct
proof of Conjecture 1.

Statement. Let A = (ai,j)
n
i,j=1 and B = (bi,j)

n
i,j=1 be two symmetric n× n matrices with

0 ≤ ai,j , bi,j ≤ 1 for 1 ≤ i, j ≤ n and ai,i = bi,i = 1, for all i = 1, 2, . . . , n.

Furthermore, let

A ર En
n

and B ર En
n
.

Then A ∘B ર En
n .

Unfortunately, in dimensions n ≥ 4, the Statement fails. A counterexample for n = 4, which
we obtained by computer calculations, may be found after the next statement.

One might think that the reason for this failure is that we considered only the complete n× n
matrix from Conjecture 1. Obviously, any square submatrix obtained from it by deleting the rows
and columns in a certain subset of the indices 1, 2, . . . , n is again a matrix of the same type. For a
given n×n matrix A and a subset I ⊆ {1, 2, . . . , n}, the matrix A(I) is the ∣I∣×∣I∣-matrix obtained
from A by deleting all columns and rows with indices not in I. Again, the following Statement
would easily give a proof of Conjecture 1.
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Statement. Let A = (ai,j)
n
i,j=1 and B = (bi,j)

n
i,j=1 be two symmetric n× n matrices with

0 ≤ ai,j , bi,j ≤ 1 for 1 ≤ i, j ≤ n and ai,i = bi,i = 1, for all i = 1, 2, . . . , n. (4)

Furthermore, let

A(I) ર
E∣I∣

∣I∣
and B(I) ર

E∣I∣

∣I∣
for all I ⊆ {1, 2, . . . , n}. (5)

Then A ∘B ર En
n .

Again, there is a counterexample for n = 4, namely

A =

⎛⎜⎜⎝
1 0.88 0.05 0.82

0.88 1 0.04 0.89
0.05 0.04 1 0.41
0.82 0.89 0.41 1

⎞⎟⎟⎠ , B =

⎛⎜⎜⎝
1 0 0.4 0.5
0 1 0.87 0.8

0.4 0.87 1 0.97
0.5 0.8 0.97 1

⎞⎟⎟⎠ .

Let us mention, that we needed to generate about 108 random matrices A and B with (4) and (5)
to find a counterexample and that the smallest eigenvalue of A ∘ B − E4

4 is just -0.00169. We did
compute the eigenvalues of the computer generated matrices to an accuracy which shows that the
signs of the eigenvalues are indeed as claimed in the statements here. So these are statements are
mathematical facts.

2 Positive positive-definite functions

2.1 Euclidean spaces

Conjecture 1 may be interpreted as a search for a class of functions f : ℝd → ℂ, such that f(0) = 1
and for every n ∈ ℕ and every x1, . . . , xn ∈ ℝd,

{f(xj − xk)}nj,k=1 ર
En
n
. (6)

In Section 1 we only considered real valued functions f . Now it is more convenient to treat complex
valued functions. Since our main focus is on functions which are positive (and, therefore, real), this
difference is merely cosmetic. If En is replaced by the zero matrix in (6), then the question is the
subject of the celebrated Bochner Theorem, see [10].

Theorem 1. (Bochner) Let f be a bounded continuous function on ℝd. Then

{f(xj − xk)}nj,k=1 ર 0 (7)
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for any choice of n ∈ ℕ and any x1, . . . , xn ∈ ℝd if, and only if, there is a positive finite Borel
measure � on ℝd, such that

f(x) = (ℱ�)(x) =

∫
ℝd

e2�i⟨x,�⟩ d�(�), x ∈ ℝd. (8)

Obviously, (6) is stronger than (7). When trying to characterise functions, which satisfy (6), we
are actually seeking for a subclass of functions described in Bochner’s Theorem. Based on several
numerical experiments, we were lead to the class of positive positive-definite functions.

Definition 2. Let f : ℝd → ℂ be a bounded continuous function. We say, that f is positive
positive-definite, if f is real-valued, f(x) ≥ 0 for all x ∈ ℝd and there is a positive Radon measure
�, such that (8) holds for all x ∈ ℝd. We denote by P+(ℝd) ⊂ C(ℝd) the set of all positive
positive-definite functions.

Some of the properties of P+(ℝd) are easy to see. They include

∙ P+(ℝd) is a convex cone,

∙ if f, g ∈ P+(ℝd), then f ⋅ g ∈ P+(ℝd),

∙ if f, g ∈ P+(ℝd) and the convolution f ∗g is a well-defined bounded continuous function, then
also f ∗ g ∈ P+(ℝd),

∙ if f ∈ P+(ℝd1) and g ∈ P+(ℝd2), then f ⊗ g ∈ P+(ℝd1+d2).

The properties of P+(ℝd) were already studied in literature (cf. [1],[3] and [4]) but, as stated in
[1], “the structure of the cone of such functions is not clear”. A similar comment made in [4] reads:
“...a full classification of extremals is probably impossible”. Here the term extremals refers to the
extremal rays of the convex cone P+(ℝd).

Based on our numerical experiments, we formulate the following

Conjecture 2. If f : ℝd → ℝ is a bounded positive positive-definite continuous function with
f(0) = 1, then (6) holds for every n ∈ ℕ and every x1, . . . , xn ∈ ℝd.

Of course, Conjecture 2 generalises Conjecture 1, as the function 1+cosx
2 is easily seen to be

positive positive-definite. Moreover, by convexity it is enough to verify the conjecture for functions
f on extremal rays of the convex cone P+(ℝd). Also the converse of Conjecture 2 is of interest
(and would actually lead to an interesting variant of Bochner’s Theorem). Namely, is it true, that
if a bounded continuous function f : ℝd → ℂ satisfies (6) with f(0) = 1 for every n ∈ ℕ and every
x1, . . . , xn ∈ ℝd, then f is necessarily positive positive-definite?

If we assume in advance that f is real-valued, then the answer is positive.
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Proposition 1. Let f : ℝd → ℝ be a continuous bounded function with f(0) = 1 which satisfies
(6) for every n ∈ ℕ and every x1, . . . , xn ∈ ℝd, then f is positive positive-definite.

The proof follows immediately from Bochner’s Theorem and by considering the 2× 2 matrices(
f(0) f(x− y)

f(y − x) f(0)

)
together with the observation that (8) and f(x) ∈ ℝ for all x ∈ ℝd implies f(−x) = f(x) for all
x ∈ ℝd.

2.2 The torus

Since the function 1+cosx
2 is 2�-periodic, the considerations of the previous section can also be

formulated in terms of functions on the d-dimensional torus Td = [−�, �]d were we, as usual,
identify the points −� and � so that a function on T may be also interpreted as a 2�-periodic
function on ℝ.

For a continuous (or just integrable) function f on Td, let f̂ be the Fourier series of f . Now the
analogue of Bochner’s Theorem tells us that, for a continuous function f on Td, the matrix

{f(xj − xk)}nj,k=1 ર 0

for any choice of n ∈ ℕ and any x1, . . . , xn ∈ ℝd if, and only if, the Fourier series of f is nonnegative,
i.e. f̂ ≥ 0. So the class of continuous nonnegative positive-definite functions on Td is just the class
of all continuous nonnegative functions with nonnegative Fourier series. We are lead to the following
conjecture.

Conjecture 3. If f : Td → ℂ is a continuous positive function with nonnegative Fourier series
and f(0) = 1, then (6) holds for every n ∈ ℕ and every x1, . . . , xn ∈ Td.

2.3 Locally compact abelian groups

Conjectures 1, 2 and 3 may be seen as special cases of a general conjecture for functions on locally
compact abelian groups. We use the notation of [2]. We denote by G a locally compact abelian
group and by Ĝ its dual group. Let dx denote a Haar measure on G. Such a Haar measure is
unique up to a positive multiplicative constant. If f ∈ L1(G), we define its Fourier transform by

f̂(�) =

∫
G
f(x)�(x) dx, � ∈ Ĝ. (9)

The inverse Fourier transform formula takes the form

f(x) =

∫
Ĝ
f̂(�)�(x) d�, x ∈ G. (10)
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Here we have to normalize the Haar measure on Ĝ by d�, otherwise a multiplicative constant occurs
in (10).

In this context, Bochner’s Theorem tells us that, for a bounded continuous function f on G,
the matrix

{f(xj − xk)}nj,k=1 ર 0

for any choice of n ∈ ℕ and any x1, . . . , xn ∈ G if, and only if, the Fourier transform of f is a
positive Radon measure on Ĝ, cf. [2, p. 95]. In analogy to Definition 2 we define the convex cone
P+(G) of positive positive definite functions on G. The general conjecture may be stated as

Conjecture 4. Let G be a locally compact abelian group. If f : G → ℝ is a bounded positive
positive-definite continuous function with f(0) = 1, then (6) holds for every n ∈ ℕ and every
x1, . . . , xn ∈ G.

The condition (6) can be rewritten as

n∑
j,k=1

f(xj − xk)cjck ≥ f(0) ⋅
∣
∑n

j=1 cj ∣2

n
, c1, . . . , cn ∈ ℂ,

or, equivalently,∫
G×G

f(x− y) d�(x) d�(y) ≥ f(0) ⋅
∣
∫
G 1 d�(x)∣2

∣supp �∣
= f(0) ⋅ ∣�̂(1)∣2

∣supp �∣

where � is a complex atomic measure on G with finite support and ∣supp �∣ denotes the cardinality
of the support of �.

Since f and f̂ are real valued, we can use

f(y − x) =

∫
Ĝ
f̂(�)�(y − x) d� =

∫
Ĝ
f̂(�)�(x− y) d� = f(x− y)

to get the equivalent inequality∫
Ĝ
f̂(�)∣�̂(�)∣2 d� ≥ f(0) ⋅ ∣�̂(1)∣2

∣supp �∣
.

If G is a compact group (e.g. G = Td), then Ĝ is a discrete group (Ĝ = ℤd if G = Td), and after
appropriate normalisation of the Haar measures on G and Ĝ this inequality may be reformulated
using sums as ∑

�∈Ĝ

f̂(�)∣�̂(�)∣2 ≥ f(0) ⋅ ∣�̂(1)∣2

∣supp �∣
. (11)

Since any matrix as in (6) involves only finitely many elements in G, the structure theorem
for compactly generated abelian groups, see [5], and approximation of functions on the torus by
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functions on finite cyclic groups can be used to reduce Conjecture 4 to the case of finite groups G.
We finally reformulate the conjecture in these terms using (11). We assume that the Haar measure
on G is chosen as the counting measure. Then the proper normalisation of the Haar measure on Ĝ
is the normalised counting measure and Conjecture 4 is equivalent to

Conjecture 5. Let G be any finite abelian group. If f is a nonnegative function on G whose
Fourier transform is nonnegative, then

1

∣G∣
∑
�∈Ĝ

f̂(�)∣�̂(�)∣2 ≥ 1

∣supp �∣
f(0)∣�̂(1)∣2

for every complex valued function � on G.

One appealing feature of this formulation is that for any given finite abelian group G the truth
of the conjecture can, in principle, be checked with a finite algorithm as follows. We identify the real
valued functions on G with ℝd where d = ∣G∣. Then the conditions f(x) ≥ 0 for x ∈ G and f̂(�) ≥ 0
for � ∈ Ĝ give 2d linear conditions which determine the cone of positive positive-definite functions.
We may assume also that f(0) = 1. Then we obtain a convex (d − 1)-dimensional polytope P
with at most 2d faces. We need to check the conjecture only for functions f corresponding to the
vertices of P . For each of these finitely many functions we can check the conjecture by verifying
for any subset of I of G that

{f(x− y)}x,y∈I ર
E∣I∣

∣I∣
.

Conjecture 5 is easily seen to be true if � is restricted to satisfy ∣supp �∣ ≤ 2. In the case
∣supp �∣ = 1 it is just the equation

f(0) =
1

∣G∣
∑
�∈Ĝ

f̂(�)∣, (12)

in the case ∣supp �∣ = 2 it can be translated back to the positive semi-definiteness of the matrix(
f(0)− 1/2 f(x− y)− 1/2

f(y − x)− 1/2 f(0)− 1/2

)
.

The following two results provide further special cases.

Proposition 2. Let G be any finite abelian group. If f is a nonnegative function on G whose
Fourier transform is nonnegative, then∑

�∈Ĝ

f̂(�)∣�̂(�)∣2 ≥ f(0)∣�̂(1)∣2

for every complex valued function � on G.
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Proof. Since f̂(�) ≥ 0 for all � ∈ Ĝ it is enough to check that f̂(1) ≥ f(0). Moreover, f̂(�) ≤ f̂(0)
for all � ∈ Ĝ follows from the positive definiteness of f̂ . Now f̂(1) ≥ f(0) is immediate from
(12).

In particular, Conjecture 5 also holds if � has full support. Analogously, the original Conjecture
1 is true for n = 2d.

Theorem 2. Let G = ℤd2 be the d-th power of the cyclic group of order 2. If f : G → {0, 1} is
a function which has tensor product structure f(x) = f1(x1) . . . fd(xd) where fi : ℤ2 → {0, 1} is
positive definite, then

1

∣G∣
∑
�∈Ĝ

f̂(�)∣�̂(�)∣2 ≥ 1

∣supp �∣
f(0)∣�̂(1)∣2

for every complex valued function � on G.

This implies that Conjecture 4 is true for the Cantor group G = ℤ∞2 at least for functions with
tensor product structure taking values in {0, 1} and that Conjecture 1 is true if the angles xi,j are
restricted to the set {0,±�}. Of course, this implies that it is also true for any convex combination
of such functions.

Proof. We prove the equivalent statement from Conjecture 4, i.e

n∑
j,k=1

f(xj − xk)cjck ≥
f(0)

n

( n∑
j=1

cj

)2
(13)

whenever x1, . . . , xn ∈ G and c1, . . . , cn ∈ ℝ. Observe that each fi in the tensor product decom-
position of f is either the constant function 0, the constant function 1 or the function given by
g(0) = 1 and g(1) = 0. If one of the functions is the zero function the inequality (13) is trivial. Any
factor fi which is the constant 1 function can be omitted, so we may as well assume that fi = g for
i = 1, . . . , d.

Then f(x) = 1 for x = (x1, ⋅ ⋅ ⋅ , xd) ∈ G if and only if x1 = ⋅ ⋅ ⋅ = xd = 0. Let A = {x1, . . . , xn} ⊂
G and define for x ∈ G the set Ax = {j = 1, . . . , n : xj = x}. We conclude that

n∑
j,k=1

f(xj − xk)cjck =
∑
x∈G

∑
j,k∈Ax

cjck =
∑
x∈A

( ∑
j∈Ax

cj

)2
≥ 1

∣A∣

(∑
x∈A

∑
j∈Ax

cj

)2
≥ 1

n

( n∑
j=1

cj

)2
.

Finally, we reformulate (11) using Plancherel’s identity for f of type f = g ∗ g, where g is a
non-negative even function. Then (11) reads∑

x∈G
∣(g ∗ �)(x)∣2 ≥

∑
x∈G

g(x)2 ⋅
∣
∑

x∈G �(x)∣2

∣supp �∣
.

For G = ℤ, this leads to
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Conjecture 6. Let {gm}m∈ℤ be a nonnegative sequence and let {�n}n∈ℤ be an arbitrary sequence
with finite support. Then

∑
m∈ℤ

∣∣∣∣∣∑
n∈ℤ

gm−n�n

∣∣∣∣∣
2

≥
(
∑

m∈ℤ g
2
m)∣
∑

n∈ℤ �n∣2

∣supp �∣
. (14)

For a nonnegative sequence g = {gm}m∈ℤ let G be the infinite-dimensional Toeplitz matrix
generated by g, i.e the entry in row m and column n of G is gm−n for all m,n ∈ ℤ. Furthermore,
let � = {�n}n∈ℤ be an arbitrary sequence with finite support. Then (14) means

∣∣G�∣∣22 ≥
∣∣g∣∣22∣

∑
n∈ℤ �n∣2

∣supp �∣

so this conjecture would provide a lower bound of the norm of the image of such a Toeplitz matrix
with positive entries on sequences with finite support.

2.4 Computer experiments

Let us briefly describe the computer experiments, which motivated the conjectures above.
We tested Conjecture 2 for tensor products of the following functions

1 + cos t

2
,

(
sin t

t

)2

, e−t
2/2,

t4 + 6

6
e−t

2/2,
1

3
+

4

9
cos t+

2

9
cos 2t, max(1− ∣t∣, 0)

and the function e−∣x∣ for x ∈ ℝd with

(n, d) ∈ {(3, 2), (4, 3), (4, 4), (6, 4)}.

The nonnegativity of these functions is easily checked, positive definiteness follows from Bochner’s
Theorem by computing the Fourier transform (or the Fourier series of the periodic functions) and
checking its nonnegativity. For each case, we made about 108 numerical experiments - of course,
without finding a single counterexample. Also Conjecture 6 was tested extensively.
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