On dilation operators in Triebel-Lizorkin spaces

Cornelia Schneider Jan Vybíral

Abstract

We consider dilation operators $T_{k}: f \rightarrow f\left(2^{k}.\right)$ in the framework of Triebel-Lizorkin spaces $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$. If $s>n \max \left(\frac{1}{p}-1,0\right), T_{k}$ is a bounded linear operator from $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ into itself and there are optimal bounds for its norm. We study the situation on the line $s=n \max \left(\frac{1}{p}-1,0\right)$, an open problem mentioned in [ET96, 2.3.1]. It turns out that the results shed new light upon the diversity of different approaches to Triebel-Lizorkin spaces on this line, associated to definitions by differences, Fourier-analytical methods and subatomic decompositions.

MSC (2000): 46E35
Key words: Triebel-Lizorkin spaces, Besov spaces, dilation operators, moment conditions

Introduction

In this article dilation operators acting on Triebel-Lizorkin spaces $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ are investigated. The idea for this paper originates from its forerunners [Vyb08] and [SchXX], where the authors studied corresponding problems for Besov spaces. Since the substantial theory of the Triebel-Lizorkin spaces is strongly linked with the theory of Besov spaces - in the sequel briefly denoted as F-spaces and B-spaces, respectively - the question came up whether those previous results could be carried over to the F -space setting. This paper aims at providing a rather final answer to this question.
We consider dilation operators of the form

$$
\begin{equation*}
T_{k} f(x)=f\left(2^{k} x\right), \quad x \in \mathbb{R}^{n}, \quad k \in \mathbb{N} \tag{0.1}
\end{equation*}
$$

which represent bounded operators from $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ into itself. Their behaviour is well known when $s>\sigma_{p}=n \max \left(\frac{1}{p}-1,0\right)$. Then we have for $0<p<\infty, 0<q \leq \infty$,

$$
\left\|T_{k} \mid \mathcal{L}\left(F_{p, q}^{s}\left(\mathbb{R}^{n}\right)\right)\right\| \sim 2^{k\left(s-\frac{n}{p}\right)}, \quad s>\sigma_{p}
$$

cf. [ET96, 2.3.1, 2.3.2]. Here we investigate the situation on the line $s=\sigma_{p}$. For $1<p<\infty$ and $0<p \leq 1$ with $p \leq q$ we obtain sharp estimates for the norms of the operators T_{k}, i.e.,

$$
\left\|T_{k} \mid \mathcal{L}\left(F_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right)\right)\right\| \sim 2^{k\left(\sigma_{p}-\frac{n}{p}\right)} \cdot \begin{cases}k^{\frac{1}{q}-\frac{1}{\max (q, 2)}} & \text { if } 1<p<\infty, \\ k^{1 / p} & \text { if } 0<p \leq 1, \quad p \leq q\end{cases}
$$

whereas, for $0<q<p<1$, we only have

$$
2^{k\left(\sigma_{p}-\frac{n}{p}\right)} k^{1 / p} \lesssim\left\|T_{k} \mid \mathcal{L}\left(F_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right)\right)\right\| \lesssim 2^{k\left(\sigma_{p}-\frac{n}{p}\right)} k^{1 / q}
$$

or, when $0<q<p=1$,

$$
2^{-k n} k^{\max (1,1 / q-1 / 2)} \lesssim\left\|T_{k} \mid \mathcal{L}\left(F_{1, q}^{0}\left(\mathbb{R}^{n}\right)\right)\right\| \lesssim 2^{-k n} k^{1 / q}
$$

As a by-product, the results for the dilation operators lead to new insights concerning the nature of the different approaches to F -spaces with positive smoothness - namely the classical $\left(\mathbf{F}_{p, q}^{s}\right)$, the Fourier-analytical $\left(F_{p, q}^{s}\right)$ and the subatomic approach $\left(\mathfrak{F}_{p, q}^{s}\right)$ - on the line $s=\sigma_{p}$. Recent results by Hedberg, Netrusov [HNO7] on atomic decompositions and by Triebel [Tri06, Sect. 9.2] on the reproducing formula prove coincidences

$$
\mathbf{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)=\mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right), \quad s>n\left(\frac{1}{\min (p, q)}-\frac{1}{p}\right), \quad 0<p<\infty, \quad 0<q \leq \infty
$$

and

$$
F_{p, q}^{s}\left(\mathbb{R}^{n}\right)=\mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right), \quad s>n\left(\frac{1}{\min (p, q, 1)}-1\right), \quad 0<p<\infty, \quad 0<q \leq \infty
$$

resulting in

$$
F_{p, q}^{s}\left(\mathbb{R}^{n}\right)=\mathbf{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)=\mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right),
$$

whenever

$$
0<p<\infty, \quad 0<q \leq \infty, \quad s>n\left(\frac{1}{\min (p, q)}-\frac{1}{\max (1, p)}\right)
$$

(in terms of equivalent quasi-norms).
Furthermore, since for $s<n\left(\frac{1}{p}-1\right)$ the δ-distribution belongs to $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ - which is a singular distribution and cannot be interpreted as a function - the spaces

$$
F_{p, q}^{s}\left(\mathbb{R}^{n}\right) \quad \text { and } \quad \mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right), \quad 0<s<\sigma_{p}
$$

cannot be compared. The situation on the line $s=\sigma_{p}, 0<p<1$, so far remained an open problem. In this case $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ is a subspace of $L_{1}^{\text {loc }}\left(\mathbb{R}^{n}\right)$ and the two spaces $F_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right)$ and $\mathfrak{F}_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right)$ can be compared. But our results yield, that they do not coincide, i.e.,

$$
F_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right) \neq \mathfrak{F}_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right), \quad 0<q \leq \infty
$$

1 Triebel-Lizorkin spaces $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$

We use standard notation. Let \mathbb{N} be the collection of all natural numbers and let $\mathbb{N}_{0}=\mathbb{N} \cup$ $\{0\}$. Let \mathbb{R}^{n} be euclidean n-space, $n \in \mathbb{N}, \mathbb{C}$ the complex plane. The set of multi-indices $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$, $\beta_{i} \in \mathbb{N}_{0}, i=1, \ldots, n$, is denoted by \mathbb{N}_{0}^{n}, with $|\beta|=\beta_{1}+\cdots+\beta_{n}$, as usual. Moreover, if $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{N}_{0}^{n}$ we put $x^{\beta}=x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}}$.
We use the equivalence ' \sim ' in

$$
a_{k} \sim b_{k} \quad \text { or } \quad \varphi(x) \sim \psi(x)
$$

always to mean that there are two positive numbers c_{1} and c_{2} such that

$$
c_{1} a_{k} \leq b_{k} \leq c_{2} a_{k} \quad \text { or } \quad c_{1} \varphi(x) \leq \psi(x) \leq c_{2} \varphi(x)
$$

for all admitted values of the discrete variable k or the continuous variable x, where $\left\{a_{k}\right\}_{k}$, $\left\{b_{k}\right\}_{k}$ are non-negative sequences and φ, ψ are non-negative functions. If $a \in \mathbb{R}$, then $a_{+}:=\max (a, 0)$ and $[a]$ denotes the integer part of a.
All unimportant positive constants will be denoted by c, occasionally with subscripts. For convenience, let both $\mathrm{d} x$ and $|\cdot|$ stand for the (n-dimensional) Lebesgue measure in the sequel. As we shall always deal with function spaces on \mathbb{R}^{n}, we may usually omit the ' \mathbb{R}^{n} ' from their notation for convenience.

Let for $0<p, q \leq \infty$ the numbers σ_{p} and $\sigma_{p q}$ be given by

$$
\begin{equation*}
\sigma_{p}=n\left(\frac{1}{p}-1\right)_{+} \quad \text { and } \quad \sigma_{p q}=n\left(\frac{1}{\min (p, q)}-1\right)_{+} \tag{1.1}
\end{equation*}
$$

Furthermore, let $Q_{\nu, m}$ with $\nu \in \mathbb{N}_{0}$ and $m \in \mathbb{Z}^{n}$ denote a cube in \mathbb{R}^{n} with sides parallel to the axes of coordinates, centered at $2^{-\nu} m$, and with side length $2^{-\nu}$. For a cube Q in \mathbb{R}^{n} and $r>0$, we denote by $r Q$ the cube in \mathbb{R}^{n} concentric with Q and with side length r times the side length of Q. Moreover, $\chi_{\nu, m}^{(p)}$ stands for the p-normalized characteristic function of $Q_{\nu, m}$, i.e.,

$$
\chi_{\nu, m}^{(p)}(x)=2^{\frac{\nu n}{p}} \quad \text { if } \quad x \in Q_{\nu, m} \quad \text { and } \quad \chi_{\nu, m}^{(p)}(x)=0 \quad \text { if } \quad x \notin Q_{\nu, m} .
$$

Of course

$$
\left\|\chi_{\nu, m}^{(p)} \mid L_{p}\left(\mathbb{R}^{n}\right)\right\|=1
$$

The Fourier-analytical approach

The Schwartz space $\mathcal{S}\left(\mathbb{R}^{n}\right)$ and its dual $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ of all complex-valued tempered distributions have their usual meaning here. Let $\varphi_{0}=\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ be such that

$$
\begin{equation*}
\operatorname{supp} \varphi \subset\left\{y \in \mathbb{R}^{n}:|y|<2\right\} \quad \text { and } \quad \varphi(x)=1 \quad \text { if } \quad|x| \leq 1 \tag{1.2}
\end{equation*}
$$

and for each $j \in \mathbb{N}$ let $\varphi_{j}(x)=\varphi\left(2^{-j} x\right)-\varphi\left(2^{-j+1} x\right)$. Then $\left\{\varphi_{j}\right\}_{j=0}^{\infty}$ forms a smooth dyadic resolution of unity. Given any $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, we denote by $\mathcal{F} f$ and $\mathcal{F}^{-1} f$ its Fourier transform and its inverse Fourier transform, respectively. Let $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, then the compact support of $\varphi_{j} \mathcal{F} f$ implies by the Paley-Wiener-Schwartz theorem that $\mathcal{F}^{-1}\left(\varphi_{j} \mathcal{F} f\right)$ is an entire analytic function on \mathbb{R}^{n}.

Definition 1.1 Let $s \in \mathbb{R}, 0<p<\infty, 0<q \leq \infty$, and $\left\{\varphi_{j}\right\}_{j}$ a smooth dyadic resolution of unity. The space $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ is the set of all distributions $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
\left\|f \left|F _ { p , q } ^ { s } (\mathbb { R } ^ { n }) \| = \| \left\|\{ 2 ^ { j s } \mathcal { F } ^ { - 1 } (\varphi _ { j } \mathcal { F } f) (\cdot) \} _ { j \in \mathbb { N } _ { 0 } } \left|\ell_{q}\left\|\mid L_{p}\left(\mathbb{R}^{n}\right)\right\|\right.\right.\right.\right. \tag{1.3}
\end{equation*}
$$

is finite.
Remark 1.2 The spaces $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ are independent of the particular choice of the smooth dyadic resolution of unity $\left\{\varphi_{j}\right\}_{j}$ appearing in their definition. They are quasi-Banach spaces (Banach spaces for $p, q \geq 1$), and $\mathcal{S}\left(\mathbb{R}^{n}\right) \hookrightarrow F_{p, q}^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, where the first embedding is dense if $q<\infty$. An extension of Definition 1.1 to $p=\infty$ does not make sense if $0<q<\infty$ (in particular, a corresponding space is not independent of the choice $\left\{\varphi_{j}\right\}_{j}$). The case $p=q=\infty$ yields the Besov spaces $B_{\infty, \infty}^{s}\left(\mathbb{R}^{n}\right)$.
In general, the Fourier-analytical Besov spaces $B_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ are defined correspondingly to the spaces $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ by interchanging the order in which the quasi-norms are taken, i.e., first using the L_{p}-norm and afterwards applying the ℓ_{q}-norm - in view of (1.3). These B-spaces are closely linked with the Triebel-Lizorkin spaces $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ via

$$
\begin{equation*}
B_{p, \min (p, q)}^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow F_{p, q}^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow B_{p, \max (p, q)}^{s}\left(\mathbb{R}^{n}\right) \tag{1.4}
\end{equation*}
$$

The theory of the spaces $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ (and $B_{p, q}^{s}\left(\mathbb{R}^{n}\right)$) has been developed in detail in [Tri83] and [Tri92] (and continued and extended in the more recent monographs [Tri01], [Tri06]), but has a longer history already including many contributors; we do not further want to discuss this here.
Note that the spaces $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ contain tempered distributions which can only be interpreted as regular distributions (functions) for sufficiently high smoothness. More precisely, we have

$$
F_{p, q}^{s}\left(\mathbb{R}^{n}\right) \subset L_{1}^{\text {loc }}\left(\mathbb{R}^{n}\right) \quad \text { if, and only if, } \quad \begin{cases}s \geq \sigma_{p}, & \text { for } 0<p<1,0<q \leq \infty \tag{1.5}\\ s>\sigma_{p}, & \text { for } 1 \leq p<\infty, 0<q \leq \infty \\ s=\sigma_{p}, & \text { for } 1 \leq p<\infty, 0<q \leq 2\end{cases}
$$

cf. [ST95, Thm. 3.3.2]. In particular, for $s<\sigma_{p}$ one cannot interpret $f \in F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ as a regular distribution in general.
The scale $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ contains many well-known function spaces. We list a few special cases.
Let $1<p<\infty$, then

$$
F_{p, 2}^{s}\left(\mathbb{R}^{n}\right)=H_{p}^{s}\left(\mathbb{R}^{n}\right), \quad s \in \mathbb{R}
$$

are the (fractional) Sobolev spaces containing all $f \in S^{\prime}\left(\mathbb{R}^{n}\right)$ with

$$
\mathcal{F}^{-1}\left(1+|\xi|^{2}\right)^{s / 2} \mathcal{F} f \in L_{p}\left(\mathbb{R}^{n}\right)
$$

In particular, for $k \in \mathbb{N}_{0}$, we obtain the classical Sobolev spaces

$$
F_{p, 2}^{k}\left(\mathbb{R}^{n}\right)=W_{p}^{k}\left(\mathbb{R}^{n}\right), \quad \text { i.e., } \quad F_{p, 2}^{0}\left(\mathbb{R}^{n}\right)=L_{p}\left(\mathbb{R}^{n}\right)
$$

usually normed by

$$
\left\|f \mid W_{p}^{k}\left(\mathbb{R}^{n}\right)\right\|=\left(\sum_{|\alpha| \leq k}\left\|\mathrm{D}^{\alpha} f \mid L_{p}\left(\mathbb{R}^{n}\right)\right\|^{p}\right)^{1 / p}
$$

Furthermore,

$$
F_{p, 2}^{0}\left(\mathbb{R}^{n}\right)=h_{p}\left(\mathbb{R}^{n}\right), \quad 0<p<\infty
$$

the latter being the inhomogenoues Hardy spaces.

Local means and atomic decompositions

There are equivalent characterizations for the F-spaces $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ in terms of local means and atomic decompositions. We first sketch the approach via local means. For further details we refer to [BPT96], [BPT97], and [Tri06] with forerunners in [Tri92, Sect. 2.5.3].
Let $B=\left\{y \in \mathbb{R}^{n}:|y|<1\right\}$ be the unit ball in \mathbb{R}^{n} and let κ be a C^{∞} function in \mathbb{R}^{n} with supp $\kappa \subset B$. Then

$$
\begin{equation*}
k(t, f)(x)=\int_{\mathbb{R}^{n}} \kappa(y) f(x+t y) \mathrm{d} y=t^{-n} \int_{\mathbb{R}^{n}} \kappa\left(\frac{y-x}{t}\right) f(y) \mathrm{d} y \tag{1.6}
\end{equation*}
$$

with $x \in \mathbb{R}^{n}$, and $t>0$ are local means (appropriately interpreted for $f \in S^{\prime}\left(\mathbb{R}^{n}\right)$). For given $s \in \mathbb{R}$ it is assumed that the kernel κ satisfies in addition for some $\varepsilon>0$,

$$
\begin{equation*}
\kappa^{\vee}(\xi) \neq 0 \text { if } 0<|\xi|<\varepsilon \quad \text { and } \quad\left(\mathrm{D}^{\alpha} \kappa^{\vee}\right)(0)=0 \text { if }|\alpha| \leq s \tag{1.7}
\end{equation*}
$$

The second condition is empty if $s<0$. Furthermore, let κ_{0} be a second C^{∞} function in \mathbb{R}^{n} with supp $\kappa_{0} \subset B$ and $\kappa_{0}^{\vee}(0) \neq 0$. The meaning of $k_{0}(f, t)$ is defined in the same way as (1.6) with κ_{0} instead of κ.
We have the following characterization in terms of local means, cf. [Tri06, Th. 1.10] and [Ryc99].
Theorem 1.3 Let $0<p<\infty, 0<q \leq \infty$ and $s \in \mathbb{R}$. Let κ_{0} and κ be the above kernels of local means. Then for $f \in S^{\prime}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\left\|k_{0}(1, f)\left|L_{p}\left(\mathbb{R}^{n}\right)\|+\|\left(\sum_{j=1}^{\infty} 2^{j s q}\left|k\left(2^{-j}, f\right)(\cdot)\right|^{q}\right)^{1 / q}\right| L_{p}\left(\mathbb{R}^{n}\right)\right\| \tag{1.8}
\end{equation*}
$$

is an equivalent quasi-norm in $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$.
Remark 1.4 We shall only need one part of Theorem 1.3 , namely that $\left\|f \mid F_{p, q}^{s}\left(\mathbb{R}^{n}\right)\right\|$ can be estimated from below by (1.8). In that case some of the asumptions in (1.7) may be omitted. The inspection of the proof, cf. [Ryc99, Rem. 3], shows that if κ is a C^{∞} function in \mathbb{R}^{n} with

$$
\operatorname{supp} \kappa \subset B \quad \text { and } \quad \mathrm{D}^{\alpha} \kappa^{\vee}(0)=0, \quad|\alpha| \leq N
$$

where $N>s-1$, then

$$
\left\|f\left|F_{p, q}^{s}\left(\mathbb{R}^{n}\right)\|\geq c\|\left(\sum_{j=1}^{\infty} 2^{j s q}\left|k\left(2^{-j}, f\right)(\cdot)\right|^{q}\right)^{1 / q}\right| L_{p}\left(\mathbb{R}^{n}\right)\right\|
$$

for some $c>0$.
The following atomic characterization of function spaces of type $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ is sometimes preferred (compared with the above Fourier-analytical approach), e.g. when establishing the lower bound for the dilation operators later on; we closely follow the presentation in [Tri97, Sect. 13].

Definition 1.5 Let $0<p<\infty, 0<q \leq \infty$, and $\lambda=\left\{\lambda_{\nu, m} \in \mathbb{C}: \nu \in \mathbb{N}_{0}, m \in \mathbb{Z}^{n}\right\}$. Then

$$
f_{p, q}=\left\{\lambda:\left\|\lambda\left|f_{p, q}\|=\|\left(\sum_{\nu=0}^{\infty} \sum_{m \in \mathbb{Z}^{n}}\left|\lambda_{\nu, m} \chi_{\nu, m}^{(p)}(\cdot)\right|^{q}\right)^{1 / q}\right| L_{p}\left(\mathbb{R}^{n}\right)\right\|<\infty\right\}
$$

(with the usual modification if $p=\infty$ and/or $q=\infty$).

Definition 1.6

(i) Let $K \in \mathbb{N}_{0}$ and $d>1$. A K-times differentiable complex-valued function a on \mathbb{R}^{n} (continuous if $K=0$) is called a $1_{K^{-}}$-atom if

$$
\begin{equation*}
\operatorname{supp} a \subset d Q_{0, m} \quad \text { for some } \quad m \in \mathbb{Z}^{n} \tag{1.9}
\end{equation*}
$$

and

$$
\left|\mathrm{D}^{\alpha} a(x)\right| \leq 1 \quad \text { for } \quad|\alpha| \leq K
$$

(ii) Let $s \in \mathbb{R}, 0<p \leq \infty, K \in \mathbb{N}_{0}, L+1 \in \mathbb{N}_{0}$, and $d>1$. A K-times differentiable complex-valued function a on \mathbb{R}^{n} (continuous if $K=0$) is called an $(s, p)_{K, L}$-atom if for some $\nu \in \mathbb{N}_{0}$

$$
\begin{gather*}
\operatorname{supp} a \subset d Q_{\nu, m} \quad \text { for some } \quad m \in \mathbb{Z}^{n} \tag{1.10}\\
\left|\mathrm{D}^{\alpha} a(x)\right| \leq 2^{-\nu\left(s-\frac{n}{p}\right)+|\alpha| \nu} \quad \text { for }|\alpha| \leq K \tag{1.11}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} x^{\beta} a(x) \mathrm{d} x=0 \quad \text { if }|\beta| \leq L \tag{1.12}
\end{equation*}
$$

It is convenient to write $a_{\nu, m}(x)$ instead of $a(x)$ if this atom is located at $Q_{\nu, m}$ according to (1.9) and (1.10). Assumption (1.12) is called a moment condition, where $L=-1$ means that there are no moment conditions. Furthermore, K denotes the smoothness of the atom, cf. (1.11). The atomic characterization of function spaces of type $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ is given by the following result, cf. [Tri97, Thm. 13.8].

Theorem 1.7 Let $0<p<\infty, 0<q \leq \infty$, and $s \in \mathbb{R}$. Let $K \in \mathbb{N}_{0}$ and $L+1 \in \mathbb{N}_{0}$ with

$$
K \geq(1+[s])_{+} \quad \text { and } \quad L \geq \max \left(-1,\left[\sigma_{p q}-s\right]\right)
$$

be fixed. Then $f \in S^{\prime}\left(\mathbb{R}^{n}\right)$ belongs to $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ if, and only if, it can be represented as

$$
\begin{equation*}
f=\sum_{\nu=0}^{\infty} \sum_{m \in \mathbb{Z}^{n}} \lambda_{\nu, m} a_{\nu, m}(x), \quad \text { convergence being in } \quad S^{\prime}\left(\mathbb{R}^{n}\right) \tag{1.13}
\end{equation*}
$$

where the $a_{\nu, m}$ are 1_{K}-atoms $(\nu=0)$ or $(s, p)_{K, L}$-atoms $(\nu \in \mathbb{N})$ with

$$
\operatorname{supp} a_{\nu, m} \subset d Q_{\nu, m}, \quad \nu \in \mathbb{N}_{0}, \quad m \in \mathbb{Z}^{n}, \quad d>1
$$

and $\lambda \in f_{p, q}$. Furthermore,

$$
\inf \left\|\lambda \mid f_{p, q}\right\|,
$$

where the infimum is taken over all admissible representations (1.13), is an equivalent quasi-norm in $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$.

2 Dilation Operators

In this section we present our main results concerning dilation operators T_{k} in F -spaces when $s=\sigma_{p}$. We distinguish between the cases $1<p<\infty$ and $0<p \leq 1$, when $\sigma_{p}=0$ and $\sigma_{p}=n(1 / p-1)$, respectively.

Theorem 2.1 Let $1<p<\infty$ and $0<q \leq \infty$. Then

$$
\left\|T_{k} \mid \mathcal{L}\left(F_{p, q}^{0}\left(\mathbb{R}^{n}\right)\right)\right\| \sim 2^{-k \frac{n}{p}} \cdot k^{\frac{1}{q}-\frac{1}{\max (q, 2)}}, \quad k \in \mathbb{N} .
$$

Proof : Step 1. Recall Definition 1.1, where in particular the dyadic resolution of unity was constructed such that

$$
\varphi_{j}(x)=\varphi\left(2^{-j} x\right)-\varphi\left(2^{-j+1} x\right), \quad j \in \mathbb{N}
$$

Elementary calculation yields

$$
\begin{equation*}
\left(\varphi_{j}(\xi) \widehat{f\left(2^{k \cdot} \cdot\right)}(\xi)\right)^{\vee}(x)=2^{-k n}\left(\varphi_{j}(\xi) \widehat{f}\left(2^{-k} \xi\right)\right)^{\vee}(x)=\left(\varphi_{j}\left(2^{k} \xi\right) \widehat{f}(\xi)\right)^{\vee}\left(2^{k} x\right) \tag{2.1}
\end{equation*}
$$

For convenience we assume $q<\infty$ in the sequel, but the counterpart for $q=\infty$ is obvious. From the definition of F -spaces with $f\left(2^{k} x\right)$ in place of $f(x)$ we obtain

$$
\left.\begin{array}{l}
\left\|f\left(2^{k} \cdot\right) \mid F_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right)\right\| \\
=\left\|\left(\sum_{j=0}^{\infty} 2^{j \sigma_{p} q}\left|\left(\varphi_{j}\left(2^{k} \cdot\right) \widehat{f}\right)^{\vee}\left(2^{k} \cdot\right)\right|^{q}\right)^{1 / q} \mid L_{p}\left(\mathbb{R}^{n}\right)\right\| \\
=2^{-k \frac{n}{p}}\left\|\left(\sum_{j=0}^{\infty} 2^{j \sigma_{p} q}\left|\left(\varphi_{j}\left(2^{k} \cdot\right) \widehat{f}\right)^{\vee}(\cdot)\right|^{q}\right)^{1 / q} \mid L_{p}\left(\mathbb{R}^{n}\right)\right\| \\
\sim 2^{-k \frac{n}{p}}\left\{\left\|\left(\varphi_{0}\left(2^{k} \cdot\right) \widehat{f}(\cdot)\right)^{\vee}(\cdot)\left|L_{p}\left(\mathbb{R}^{n}\right)\|+\|\left(\sum_{j=1}^{k} 2^{j \sigma_{p} q}\left|\left(\varphi_{j}\left(2^{k} \cdot\right) \widehat{f}\right)^{\vee}(\cdot)\right|^{q}\right)^{1 / q}\right| L_{p}\left(\mathbb{R}^{n}\right)\right\|\right.
\end{array}\right]\left\{\begin{array}{l}
1 / q
\end{array}\right]
$$

If $j \geq k+1$, then $\varphi_{j}\left(2^{k} x\right)=\varphi_{j-k}(x)$. This yields for the last term

$$
\begin{align*}
& 2^{-k \frac{n}{p}}\left\|\left(\sum_{j=k+1}^{\infty} 2^{j \sigma_{p} q}\left|\left(\varphi_{j}\left(2^{k} \cdot\right) \widehat{f}\right)^{\vee}(\cdot)\right|^{q}\right)^{1 / q} \mid L_{p}\left(\mathbb{R}^{n}\right)\right\| \\
= & 2^{-k \frac{n}{p}}\left\|\left(\sum_{j=k+1}^{\infty} 2^{(j-k) \sigma_{p} q} 2^{k \sigma_{p} q}\left|\left(\varphi_{j-k}(\cdot) \widehat{f}\right)^{\vee}(\cdot)\right|^{q}\right)^{1 / q} \mid L_{p}\left(\mathbb{R}^{n}\right)\right\| \\
= & 2^{k\left(\sigma_{p}-\frac{n}{p}\right)}\left\|\left(\sum_{l=1}^{\infty} 2^{l \sigma_{p} q}\left|\left(\varphi_{l}(\cdot) \widehat{f}\right)^{\vee}(\cdot)\right|^{q}\right)^{1 / q} \mid L_{p}\left(\mathbb{R}^{n}\right)\right\| \\
\leq & \left.\left.2^{-\frac{k n}{p}} \| f \right\rvert\, F_{p, q}^{\sigma_{p}} \mathbb{R}^{n}\right) \| . \tag{2.3}
\end{align*}
$$

If $j=0$, we use the Hausdorff-Young inequality and obtain

$$
\begin{aligned}
\left\|\left(\varphi_{0}\left(2^{k} \cdot\right) \widehat{f}\right)^{\vee} \mid L_{p}\right\| & =\left\|\left(\varphi_{0}\left(2^{k} \cdot\right) \varphi_{0} \widehat{f}\right)^{\vee} \mid L_{p}\right\| \\
& =\|\left(\varphi_{0}\left(2^{k} \cdot\right)^{\vee} *\left(\varphi_{0} \widehat{f}\right)^{\vee} \mid L_{p} \|\right. \\
& \leq \|\left(\varphi_{0}\left(2^{k} \cdot\right)^{\vee}\left|L_{1}\|\cdot\|\left(\varphi_{0} \widehat{f}\right)^{\vee}\right| L_{p} \|\right. \\
& \leq c\left\|f \mid F_{p, q}^{0}\right\| .
\end{aligned}
$$

$$
\frac{1}{u}=\frac{q}{2} \quad \text { and } \quad \frac{1}{u^{\prime}}=1-\frac{q}{2} \quad \text { if } \quad q<2
$$

or

$$
\left\|i d: \ell_{2}^{k} \hookrightarrow \ell_{q}^{k}\right\|=1 \quad \text { when } \quad q \geq 2 \quad \text { and } \quad k \in \mathbb{N}
$$

together with the Littlewood-Paley theorem, we see that

$$
\begin{aligned}
& \left\|\left(\sum_{j=1}^{k}\left|\left(\varphi_{j}\left(2^{k} \cdot\right) \widehat{f}\right)^{\vee}(\cdot)\right|^{q}\right)^{1 / q} \mid L_{p}\right\| \\
& \leq k^{\frac{1}{q}-\frac{1}{\max (q, 2)}}\left\|\left(\sum_{j=1}^{k}\left|\left(\varphi_{j}\left(2^{k} \cdot\right) \widehat{f}\right)^{\vee}(\cdot)\right|^{2}\right)^{1 / 2} \mid L_{p}\right\| \\
& \leq k^{\frac{1}{q}-\frac{1}{\max (q, 2)}}\left\|\left(\varphi_{0} \widehat{f}\right)^{\vee} \mid L_{p}\right\| \\
& \leq k^{\frac{1}{q}-\frac{1}{\max (q, 2)}}\left\|f \mid F_{p, q}^{0}\right\|
\end{aligned}
$$

giving the desired upper bound.
Step 3. In order to establish the lower bound we take $\psi \in S\left(\mathbb{R}^{n}\right)$ with

$$
\operatorname{supp} \psi \subset\left\{x \in \mathbb{R}^{n}:|x| \leq 1 / 8\right\}
$$

We define the functions f_{k} through their Fourier transforms

$$
\widehat{f}_{k}(\xi)=\sum_{j=1}^{k} \psi\left(2^{k}\left(\xi-\xi_{j}\right)\right), \quad \xi \in \mathbb{R}^{n}, \quad k \in \mathbb{N}
$$

where $\xi_{j}=\left(2^{-j}, 0, \ldots, 0\right)$. We shall show that

$$
\begin{equation*}
\left\|f_{k} \mid F_{p, q}^{0}\right\| \lesssim k^{1 / 2} 2^{k n(1 / p-1)} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f_{k}\left(2^{k} \cdot\right) \mid F_{p, q}^{0}\right\| \gtrsim k^{1 / q} 2^{-k n} \tag{2.5}
\end{equation*}
$$

We deal with (2.4) first. As the support of $\widehat{f_{k}}$ lies in the unit ball of \mathbb{R}^{n}, we may omit the terms with $j \geq 1$ in (1.3). Furthermore, since $1<p<\infty$ we may use the Littlewood-Paley decomposition theorem to estimate

$$
\begin{align*}
\left\|f_{k} \mid F_{p, q}^{0}\right\| & =\left\|\left(\varphi_{0} \widehat{f}_{k}\right)^{\vee} \mid L_{p}\right\| \\
& \lesssim\left\|\left(\sum_{j=1}^{\infty}\left|\left(\varphi_{1}\left(2^{j} \cdot\right) \cdot \varphi_{0} \widehat{f_{k}}\right)^{\vee}(x)\right|^{2}\right)^{1 / 2} \mid L_{p}\right\| \tag{2.6}\\
& =\left\|\left(\sum_{j=1}^{k}\left|\psi\left(2^{k}\left(\xi-\xi_{j}\right)\right)^{\vee}(x)\right|^{2}\right)^{1 / 2} \mid L_{p}\right\| \\
& =\left\|\left(\sum_{j=1}^{k}\left|2^{-k n} \psi^{\vee}\left(2^{-k} x\right) e^{i x \xi_{j}}\right|^{2}\right)^{1 / 2} \mid L_{p}\right\| \\
& =k^{1 / 2} 2^{-k n}\left\|\psi^{\vee}\left(2^{-k} x\right)\left|L_{p}\left\|=k^{1 / 2} 2^{k n(1 / p-1)}\right\| \psi^{\vee}\right| L_{p}\right\|
\end{align*}
$$

Let us mention, that (2.4) holds also for $p=1$. In this case, the inequality on the second line of (2.6) follows (roughly speaking) by the embedding

$$
F_{1,2}^{0}\left(\mathbb{R}^{n}\right) \hookrightarrow L_{1}\left(\mathbb{R}^{n}\right)
$$

cf. [ST95, Th. 3.1.1]. To prove (2.5), observe that

$$
\left.\widehat{f_{k}\left(2^{k} \cdot\right.}\right)(\xi)=2^{-k n} \widehat{f_{k}}\left(2^{-k} \xi\right)=2^{-k n} \sum_{j=1}^{k} \psi\left(\xi-2^{k} \xi_{j}\right), \quad \xi \in \mathbb{R}^{n}
$$

Using again the support properties of ψ and φ_{j}, we arrive at

$$
\begin{aligned}
\left\|f_{k}\left(2^{k} \cdot\right) \mid F_{p, q}^{0}\right\| & \left.=\|\left.\left(\sum_{j=1}^{k} \mid\left(\varphi_{j} \widehat{f_{k}\left(2^{k} \cdot\right.}\right)(\xi)\right)^{\vee}(x)\right|^{q}\right)^{1 / q} \mid L_{p} \| \\
& =2^{-k n} \|\left(\sum_{j=1}^{k}\left|\left(\left.\psi\left(\xi-2^{k} \xi_{j}\right)^{\vee}(x)\right|^{q}\right)^{1 / q}\right| L_{p} \|\right. \\
& =2^{-k n} \|\left(\sum_{j=1}^{k}\left|\left(\left.\psi^{\vee}(x) e^{i x 2^{k} \xi_{j}}\right|^{q}\right)^{1 / q}\right| L_{p} \|\right. \\
& =2^{-k n} k^{1 / q}\left\|\psi^{\vee} \mid L_{p}\right\| .
\end{aligned}
$$

Observe, that also (2.5) holds even for $p=1$.
This finally leads to

$$
\left\|T_{k} \mid \mathcal{L}\left(F_{p, q}^{0}\right)\right\| \geq \frac{\left\|f_{k}\left(2^{k} \cdot\right) \mid F_{p, q}^{0}\right\|}{\left\|f_{k} \mid F_{p, q}^{0}\right\|} \geq k^{1 / q-1 / 2} 2^{-\frac{k n}{p}}
$$

Step 4. Let $1<p<\infty$ and $q \geq 2$. Chose an arbitrary non-vanishing $\psi \in S\left(\mathbb{R}^{n}\right)$. Using the trivial embedding $F_{p, 2}^{0} \hookrightarrow F_{p, q}^{0}$, we obtain

$$
\left\|T_{k} \mid \mathcal{L}\left(F_{p, q}^{0}\right)\right\| \geq \frac{\left\|\psi \mid F_{p, q}^{0}\right\|}{\left\|\psi\left(2^{-k}\right) \mid F_{p, q}^{0}\right\|} \geq \frac{\left\|\psi \mid F_{p, q}^{0}\right\|}{\left\|\psi\left(2^{-k}\right) \mid F_{p, 2}^{0}\right\|} \sim 2^{-k \frac{n}{p}}
$$

Theorem 2.2 Let $0<p \leq 1,0<p \leq q \leq \infty$. Then

$$
\left\|T_{k} \mid \mathcal{L}\left(F_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right)\right)\right\| \sim 2^{k\left(\sigma_{p}-\frac{n}{p}\right)} k^{1 / p}, \quad k \in \mathbb{N} .
$$

Proof:
Step 1. We give an estimate for the upper bounds of the dilation operators T_{k} similar to Theorem 2.1. We need to find suitable substitutes when $0<p \leq 1$.

For the further calculations we make use of the following Fourier multiplier theorem, cf. [Tri83, Prop. 1.5.1],

$$
\begin{equation*}
\left\|(M \widehat{h})^{\vee}\left|L_{p}\|\leq c\| M^{\vee}\right| L_{p}\right\| \cdot\left\|h \mid L_{p}\right\|, \quad \text { if } 0<p \leq 1, \tag{2.7}
\end{equation*}
$$

with $M^{\vee} \in S^{\prime} \cap L_{p}$, and $\operatorname{supp} \widehat{h} \subset \Omega$, supp $M \subset \Gamma$, where Ω and Γ are compact subsets of \mathbb{R}^{n} (c does not depend on M and h, but may depend on Ω and Γ). Of course for $p=1$ this is just the Hausdorff-Young inequality (which was also used in Theorem 2.1). We put $h=\left(\varphi_{0} \widehat{f}\right)^{\vee}$, where $\operatorname{supp} \widehat{h} \subset \operatorname{supp} \varphi_{0}=\Omega$.
If $j=0$, we take $M_{0}=\varphi_{0}\left(2^{k}.\right)$ where $\operatorname{supp} M_{0} \subset \operatorname{supp} \varphi_{0}=\Gamma$ and calculate

$$
\begin{align*}
2^{-k \frac{n}{p}}\left\|\left(\varphi_{0}\left(2^{k} \cdot\right) \widehat{f}\right)^{\vee} \mid L_{p}\right\| & \leq c 2^{-k \frac{n}{p}}\left\|\varphi_{0}\left(2^{k} \cdot\right)^{\vee}\left|L_{p}\|\cdot\|\left(\varphi_{0} \widehat{f}\right)^{\vee}\right| L_{p}\right\|, \\
& =c 2^{-k \frac{n}{p}} 2^{k \sigma_{p}}\left\|\varphi_{0} \vee\left|L_{p}\|\cdot\|\left(\varphi_{0} \widehat{f}\right)^{\vee}\right| L_{p}\right\| \\
& =c^{\prime} 2^{k\left(\sigma_{p}-\frac{n}{p}\right)}\left\|\left(\varphi_{0} \widehat{f}\right)^{\vee} \mid L_{p}\right\| \\
& =c 2^{-k n}\left\|f \mid F_{p, q}^{\sigma_{p}}\right\| . \tag{2.8}
\end{align*}
$$

According to the observations in Step 1 of Theorem 2.1 it remains to consider $1 \leq j \leq k$. This is the crucial step, leading to $k^{1 / p}$. In this case $\varphi_{j}(x)=\bar{\varphi}\left(2^{-j} x\right)$, where $\bar{\varphi}=\varphi_{0}(x)-\varphi_{0}(2 x)$. Hence

$$
\begin{align*}
& \left\|\left(\sum_{j=1}^{k} 2^{j \sigma_{p} q}\left|\left(\varphi_{j}\left(2^{k} \cdot\right) \widehat{f}\right)^{\vee}(\cdot)\right|^{q}\right)^{1 / q} \mid L_{p}\left(\mathbb{R}^{n}\right)\right\| \\
= & \left(\int_{\mathbb{R}^{n}}\left(\sum_{j=1}^{k} 2^{j \sigma_{p} q}\left|\left(\varphi_{j}\left(2^{k} \cdot\right) \widehat{f}\right)^{\vee}(x)\right|^{q}\right)^{p / q} \mathrm{~d} x\right)^{1 / p} \\
\leq & \left(\sum_{j=1}^{k} \int_{\mathbb{R}^{n}} 2^{j \sigma_{p} p}\left|\left(\varphi_{j}\left(2^{k} \cdot\right) \widehat{f}\right)^{\vee}(x)\right|^{p} \mathrm{~d} x\right)^{1 / p} \\
= & \left(\sum_{j=1}^{k} 2^{j \sigma_{p} p}\left\|\left(\varphi_{j}\left(2^{k} \cdot\right) \widehat{f}\right)^{\vee} \mid L_{p}\right\|^{p}\right)^{1 / p} \\
= & \left(\sum_{j=1}^{k-1} 2^{j \sigma_{p} p}\left\|\left(\bar{\varphi}\left(2^{k-j} \cdot\right) \widehat{f}\right)^{\vee}\left|L_{p}\left\|^{p}+2^{k \sigma_{p} p}\right\|(\bar{\varphi} \widehat{f})^{\vee}\right| L_{p}\right\|^{p}\right)^{1 / p} \tag{2.9}
\end{align*}
$$

where the inequality follows from $\ell \frac{p}{q} \hookrightarrow \ell_{1}$ since $p<q$.
The term for $j=k$ in (2.9) needs some extra care. Using (2.7) where we set $M_{k}=\varphi_{0}(2 \cdot)$, $\operatorname{supp} M_{k} \subset \operatorname{supp} \varphi_{0}=\Gamma$ we obtain

$$
\begin{align*}
2^{k \sigma_{p} p}\left\|(\bar{\varphi} \widehat{f})^{\vee} \mid L_{p}\right\|^{p} & =2^{k \sigma_{p} p}\left\|\left(\varphi_{0} \widehat{f}\right)^{\vee}-\left(\varphi_{0}(2 \cdot) \widehat{f}\right)^{\vee} \mid L_{p}\right\|^{p} \\
& \leq c 2^{k \sigma_{p} p}\left(\left\|\left(\varphi_{0} \widehat{f}\right)^{\vee}\left|L_{p}\|+\|\left(\varphi_{0}(2 \cdot) \varphi_{0} \widehat{f}\right)^{\vee}\right| L_{p}\right\|\right)^{p} \\
& \leq c^{\prime} 2^{k \sigma_{p} p} \|\left(\varphi_{0} \widehat{)^{\vee}} \mid L_{p} \|^{p}\left(1+\left\|\varphi_{0}^{\vee}(2 \cdot) \mid L_{p}\right\|\right)^{p}\right. \\
& =c_{1} 2^{k \sigma_{p} p}\left\|\left(\varphi_{0} \widehat{f}\right)^{\vee} \mid L_{p}\right\|^{p} . \tag{2.10}
\end{align*}
$$

This estimate can be incorporated into our further calculations. Now for $1 \leq j \leq k-1$ we use the multiplier theorem with $M_{j}=\bar{\varphi}\left(2^{k-j}.\right)$, and observe that

$$
\operatorname{supp} M_{j} \subset\left\{x:\left|2^{k-j} x\right| \leq 2\right\} \subset\{x:|x| \leq 2\}=\Gamma .
$$

Now inserting (2.10) into (2.9) yields

$$
\begin{align*}
& \left(\sum_{j=1}^{k-1} 2^{j \sigma_{p} p}\left\|\left(\bar{\varphi}\left(2^{k-j} \cdot\right) \varphi_{0} \widehat{f}\right)^{\vee}\left|L_{p}\left\|^{p}+c_{1} 2^{k \sigma_{p} p}\right\|\left(\varphi_{0} \widehat{f}\right)^{\vee}\right| L_{p}\right\|^{p}\right)^{1 / p} \\
\leq & c\left(\sum_{j=1}^{k-1} 2^{j \sigma_{p} p}\left\|\left(\bar{\varphi}\left(2^{k-j} \cdot\right)\right)^{\vee}(\cdot)\left|L_{p}\left\|^{p}\right\|\left(\varphi_{0} \widehat{f}\right)^{\vee}\right| L_{p}\right\|^{p}+2^{k \sigma_{p} p}\left\|\left(\varphi_{0} \widehat{f}\right)^{\vee} \mid L_{p}\right\|^{p}\right)^{1 / p} \\
\leq & c\left\|\left(\varphi_{0} \widehat{f}\right)^{\vee} \mid L_{p}\right\|\left(\sum_{j=1}^{k-1} 2^{j \sigma_{p} p}\left\|2^{(j-k) n} \bar{\varphi}^{\vee}\left(2^{j-k} \cdot\right) \mid L_{p}\right\|^{p}+2^{k \sigma_{p} p}\right)^{1 / p} \\
= & c\left\|\left(\varphi_{0} \hat{f}\right)^{\vee} \mid L_{p}\right\|\left(\sum_{j=1}^{k-1} 2^{j \sigma_{p} p} 2^{(j-k) n p} 2^{-(j-k) \frac{n}{p} p}\left\|\bar{\varphi}^{\vee} \mid L_{p}\right\|^{p}+2^{k \sigma_{p} p}\right)^{1 / p} \\
\leq & c 2^{k \sigma_{p} p} k^{1 / p}\left\|F_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right)\right\| . \tag{2.11}
\end{align*}
$$

Now (2.2) together with (2.3), (2.8), and (2.11) give the upper estimate.
Step 2. We construct a function that gives the lower bound. Let $\psi \in S(\mathbb{R})$ be a non-negative function with $\operatorname{supp} \psi \subset\left\{x \in \mathbb{R}^{n}:|x| \leq 1 / 8\right\}$ and $\int_{\mathbb{R}^{n}} \psi(x) \mathrm{d} x=1$. We show that

$$
\left\|\psi\left(2^{k} \cdot\right) \mid F_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right)\right\| \geq c 2^{-k n} k^{1 / p}, \quad k \in \mathbb{N}, \quad 0<q \leq \infty
$$

Let us take a function $\kappa \in S\left(\mathbb{R}^{n}\right)$ with

$$
\begin{equation*}
\left(\mathrm{D}^{\alpha} \kappa^{\vee}\right)(0)=0, \quad|\alpha| \leq r, \tag{2.12}
\end{equation*}
$$

where $r>\sigma_{p}-1$, according to [Ryc99, Th. BPT]. In particular, by [Ryc99, Rem. 3] these conditions on κ are sufficient for our purposes. Furthermore, we require

$$
\begin{equation*}
\kappa(x)=1 \quad \text { if } \quad x \in M=\left\{z \in \mathbb{R}^{n}:\left|z-\left(\frac{1}{2}, 0 \ldots, 0\right)\right|<1 / 4\right\} . \tag{2.13}
\end{equation*}
$$

Such a function κ was constructed in [SchXX, Th. 2.1].
Simple calculation shows that if $j=1,2, \ldots, k$ and $\left|x-\left(-\frac{1}{2} \cdot \frac{1}{2 j}, 0 \ldots, 0\right)\right|<\frac{1}{2 j} \frac{1}{8}$, which is equivalent to writing

$$
x \in B_{2^{-(j+3)}}\left(x_{j}\right), \quad x_{j}=\left(-2^{-(j+1)}, 0, \ldots, 0\right),
$$

then

$$
\operatorname{supp}_{y} \psi\left(2^{k} x+2^{k-j} y\right) \subset M
$$

For these x we get

$$
\mathcal{K}\left(2^{-j}, \psi\left(2^{k} \cdot\right)\right)(x)=\int_{\mathbb{R}^{n}} \kappa(y) \psi\left(2^{k} x+2^{k-j} y\right) \mathrm{d} y=\int_{\mathbb{R}^{n}} \psi\left(2^{k} x+2^{k-j} y\right) \mathrm{d} y=2^{(j-k) n}
$$

Note that the for different values of j, the balls $B_{2-(j+3)}\left(x_{j}\right)$ are pairwise disjoint. Hence we calculate

$$
\begin{aligned}
\left\|\psi\left(2^{k} \cdot\right) \mid F_{p, q}^{\sigma_{p}}\right\| & \geq\left\|\left(\sum_{j=1}^{k} 2^{j \sigma_{p} q}\left|\mathcal{K}\left(2^{-j}, \psi\left(2^{k} \cdot\right)\right)(\cdot)\right|^{q}\right)^{1 / q} \mid L_{p}\right\| \\
& =\left(\int_{\mathbb{R}^{n}}\left(\sum_{j=1}^{k} 2^{j \sigma_{p} q}\left|\mathcal{K}\left(2^{-j}, \psi\left(2^{k} \cdot\right)\right)(x)\right|^{q}\right)^{p / q} \mathrm{~d} x\right)^{1 / p} \\
& \geq\left(\sum_{l=1}^{k} \int_{B_{2}-(l+3)\left(x_{l}\right)}\left(\sum_{j=1}^{k} \delta_{l j} 2^{j \sigma_{p} q}\left|\mathcal{K}\left(2^{-j}, \psi\left(2^{k} \cdot\right)\right)(x)\right|^{q}\right)^{p / q} \mathrm{~d} x\right)^{1 / p} \\
& \geq\left(\sum_{j=1}^{k} 2^{j \sigma_{p} p} 2^{(j-k) n p} 2^{-j n}\right)^{1 / p} \\
& =2^{-k n}\left(\sum_{j=1}^{k} 2^{j n\left(\frac{1}{p}-1\right) p} 2^{j n p} 2^{-j n}\right)^{1 / p} \\
& =2^{-k n} k^{1 / p}
\end{aligned}
$$

which gives the desired result. Our estimate holds as well in the case $p=1$.
Refining the methods used in Theorem 2.2 we obtain the following generalization. However, our estimates are not sharp and might still be improved.

Theorem 2.3 Let $0<q<p<1$. Then

$$
2^{k\left(\sigma_{p}-\frac{n}{p}\right)} k^{1 / p} \lesssim\left\|T_{k} \mid \mathcal{L}\left(F_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right)\right)\right\| \lesssim 2^{k\left(\sigma_{p}-\frac{n}{p}\right)} k^{1 / q} .
$$

Furthermore, if $0<q<p=1$ we have

$$
2^{-k n} k^{\max (1,1 / q-1 / 2)} \lesssim\left\|T_{k} \mid \mathcal{L}\left(F_{1, q}^{0}\left(\mathbb{R}^{n}\right)\right)\right\| \lesssim 2^{-k n} k^{1 / q}
$$

Proof :
Step 1. Refining the estimates for the upper bound used in Step 1 of Theorem 2.2 we see that we only need to consider the 'critical terms' when $j=1, \ldots, k$. In this case we now calculate

$$
\begin{aligned}
& \left.\left\|\left(\sum_{j=1}^{k} 2^{j \sigma_{p} q}\left|\left(\varphi_{j}\left(2^{k} \cdot\right) \widehat{f}\right)^{\vee}(\cdot)\right|^{q}\right)^{1 / q} \mid L_{p}\left(\mathbb{R}^{n}\right)\right\|^{p / q}\right)^{1 / p} \\
= & \left.\left(\int_{\mathbb{R}^{n}}\left(\sum_{j=1}^{k} 2^{j \sigma_{p} q}\left|\left(\varphi_{j}\left(2^{k} \cdot\right) \widehat{f}\right)^{\vee}(x)\right|^{q}\right)^{p / p} \mathrm{~d} x\right)^{p / q}\right)^{\frac{q}{p} \cdot \frac{1}{q}} \\
= & \left.\left(\int_{\mathbb{R}^{n}}\left(\sum_{j=1}^{k} 2^{j \sigma_{p} q}\left|\left(\varphi_{j}\left(2^{k} \cdot\right) \widehat{f}\right)^{\vee}(x)\right|^{q}\right)^{\mathrm{d} x}\right)^{1 / p}\right)^{1 / q} \\
\leq & \left(\sum_{j=1}^{k}\left(\int_{\mathbb{R}^{n}} 2^{j \sigma_{p} p}\left|\left(\varphi_{j}\left(2^{k} \cdot\right) \widehat{f}\right)^{\vee}(x)\right|^{p} \mathrm{~d} x\right)^{q / p}\right)^{1 / q} \\
= & \left(\sum_{j=1}^{k} 2^{j \sigma_{p} q}\left\|\left(\varphi_{j}\left(2^{k} \cdot\right) \widehat{f}\right)^{\vee} \mid L_{p}\right\|^{q}\right)^{1 / q}
\end{aligned}
$$

$$
\begin{aligned}
& \leq c\left(\sum_{j=1}^{k} 2^{j \sigma_{p} q}\left\|\bar{\varphi}\left(2^{k-j} \cdot\right)^{\vee}\left|L_{p}\left\|^{q} \cdot\right\|\left(\varphi_{0} \widehat{f}\right)^{\vee}\right| L_{p}\right\|^{q}\right)^{1 / q} \\
& \leq c\left\|\left(\varphi_{0} \widehat{f}\right)^{\vee} \mid L_{p}\right\|\left(\sum_{j=1}^{k} 2^{j \sigma_{p} q}\left\|\bar{\varphi}\left(2^{k-j} \cdot\right)^{\vee} \mid L_{p}\right\|^{q}\right)^{1 / q} \\
& \leq c\left\|\left(\varphi_{0} \widehat{f}\right)^{\vee} \mid L_{p}\right\|\left(\sum_{j=1}^{k} 2^{j \sigma_{p} q} 2^{(j-k) n q} 2^{-(j-k) \frac{n}{p} q}\left\|\bar{\varphi}(\cdot)^{\vee} \mid L_{p}\right\|^{q}\right)^{1 / q} \\
& \leq c^{\prime}\left\|\left(\varphi_{0} \widehat{f}\right)^{\vee} \mid L_{p}\right\| 2^{k \sigma_{p} n} k^{1 / q} \\
& \leq c^{\prime \prime} 2^{k \sigma_{p} n} k^{1 / q}\left\|f \mid F_{p, q}^{\sigma_{p}}\right\|
\end{aligned}
$$

where in the third step we used the generalized triangle inequality, cf. [HLP52, p. 148], since $\frac{p}{q}>1$, before applying the Fourier Multiplier theorem (2.7).

Step 2. The proof of the lower bound

$$
\left\|T_{k} \mid \mathcal{L}\left(F_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right)\right)\right\| \gtrsim k^{1 / p} 2^{k\left(\sigma_{p}-\frac{n}{p}\right)}, \quad k \in \mathbb{N}
$$

is the same as in Step 2 of Theorem 2.2.
Step 3. Finally, the estimate

$$
\left\|T_{k} \mid \mathcal{L}\left(F_{1, q}^{0}\left(\mathbb{R}^{n}\right)\right)\right\| \gtrsim k^{1 / q-1 / 2} 2^{-k n}, \quad k \in \mathbb{N}
$$

for $0<q<p=1$ follows from the Step 3 of Theorem 2.1.

Remark 2.4 The picture aside summarizes our results and illustrates the dependency of the additional factors k^{α} on p and q that were obtained for upper bounds of the dilation operators when $s=\sigma_{p}$, i.e.

$$
T_{k} \sim 2^{k\left(\sigma_{p}-n / p\right)} \cdot k^{\alpha}
$$

There is a jump at $p=1$ in the exponent of k caused by the absence of the LittlewoodPaley assertion in this case. Furthermore, our estimates when $0<q<p<1$ and $0<q<p=1$ are not sharp and might be improved.

3 Applications

3.1 F-spaces with positive smoothness on \mathbb{R}^{n}

In this section we want to discuss the connection and diversity of three different approaches to F -spaces with positive smoothness, using the previous results on dilation operators.
In addition to the Fourier-analytical approach, cf. Definition 1.1, we now present two further characterizations - associated to definitions by differences and subatomic decompositions before we come to some comparisions.

The classical approach: Triebel-Lizorkin spaces $\mathbf{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$

If f is an arbitrary function on $\mathbb{R}^{n}, h \in \mathbb{R}^{n}$ and $r \in \mathbb{N}$, then

$$
\left(\Delta_{h}^{1} f\right)(x)=f(x+h)-f(x) \quad \text { and } \quad\left(\Delta_{h}^{r+1} f\right)(x)=\Delta_{h}^{1}\left(\Delta_{h}^{r} f\right)(x), \quad x \in \mathbb{R}^{n}
$$

For convenience we may write Δ_{h} instead of Δ_{h}^{1}. Furthermore, for a function $f \in L_{p}\left(\mathbb{R}^{n}\right)$, $0<p<\infty, r \in \mathbb{N}$, the ball means are denoted by

$$
\begin{equation*}
d_{t, p}^{r} f(x)=\left(t^{-n} \int_{|h| \leq t}\left|\left(\Delta_{h}^{r} f\right)(x)\right|^{p} \mathrm{~d} h\right)^{1 / p}, \quad x \in \mathbb{R}^{n}, \quad t>0 . \tag{3.1}
\end{equation*}
$$

Definition 3.1 Let $0<p<\infty, 0<q \leq \infty, s>0$, and $r \in \mathbb{N}$ such that $r>s$. Then $\mathbf{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ is the collection of all $f \in L_{p}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
\left\|f\left|\mathbf{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)\left\|_{r}=\right\| f\right| L_{p}\left(\mathbb{R}^{n}\right)\right\|+\left\|\left.\left(\int_{0}^{1} t^{-s q} d_{t, p}^{r} f(\cdot)^{q} \frac{\mathrm{~d} t}{t}\right)^{1 / q} \right\rvert\, L_{p}\left(\mathbb{R}^{n}\right)\right\| \tag{3.2}
\end{equation*}
$$

(with the usual modification if $q=\infty$) is finite.
Remark 3.2 The approach by differences for the spaces $\mathbf{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ has been described in detail in [Tri83, 2.5.10] for those spaces which can also be considered as subspaces of $S^{\prime}\left(\mathbb{R}^{n}\right)$. Otherwise one finds in [Tri06, 9.2.2] the necessary explanations and references to the relevant literature. In particular, the spaces in Definition 3.1 are independent of r, meaning that different values of $r>s$ result in quasi-norms which are equivalent. Furthermore, the spaces are quasi-Banach spaces (Banach spaces, if $1 \leq p<\infty, 1 \leq q \leq \infty$). Recall that we deal with subspaces of $L_{p}\left(\mathbb{R}^{n}\right)$, in particular, we have the embedding

$$
\mathbf{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow L_{p}\left(\mathbb{R}^{n}\right), \quad s>0, \quad 0<q \leq \infty, \quad 0<p<\infty .
$$

Further information on the classical approach to F-spaces - treated in a more general context - may be found in [HNO7].

We add the following homogeneity estimate, which will serve us later on. Let $s>0,0<p<\infty$, $0<q \leq \infty$, and $k \in \mathbb{N}_{0}$. Then for all $f \in \mathbf{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\left\|f\left(2^{k} \cdot\right)\left|\mathbf{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)\left\|\leq 2^{k\left(s-\frac{n}{p}\right)}\right\| f\right| \mathbf{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)\right\| \tag{3.3}
\end{equation*}
$$

Let $f \in \mathbf{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$. For the proof we observe that

$$
\left\|f\left|\mathbf{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)\|=\| f\right| L_{p}\left(\mathbb{R}^{n}\right)\right\|+\left(\int_{\mathbb{R}^{n}}\left(\int_{0}^{1} t^{-\left(s+\frac{n}{p}\right) q}\left(\int_{|h| \leq t}\left|\Delta_{h}^{r} f(x)\right|^{p} \mathrm{~d} h\right)^{q / p} \frac{\mathrm{~d} t}{t}\right)^{p / q} \mathrm{~d} x\right)^{1 / p}
$$

where $\int_{0}^{1} \ldots \frac{\mathrm{~d} t}{t}$ can be replaced by $\int_{0}^{\lambda} \ldots \frac{\mathrm{d} t}{t}$ with arbitrary $0<\lambda \leq \infty$ in the sense of equivalent quasi-norms.

Now straightforward calculation yields

$$
\begin{aligned}
& \left.\| f\left(2^{k}\right)\right)\left|\mathbf{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)\|=\| f\left(2^{k} \cdot\right)\right| L_{p}\left(\mathbb{R}^{n}\right) \|+\left(\int_{\mathbb{R}^{n}}\left(\int_{0}^{1} t^{-\left(s+\frac{n}{p}\right) q}\left(\int_{|h| \leq t}\left|\Delta_{h}^{r} f\left(2^{k} x\right)\right|^{p} \mathrm{~d} h\right)^{q / p} \frac{\mathrm{~d} t}{t}\right)^{p / q} \mathrm{~d} x\right)^{1 / p} \\
& \quad \leq 2^{-k \frac{n}{p}}\left\|f \mid L_{p}\left(\mathbb{R}^{n}\right)\right\|+2^{k\left(s-\frac{n}{p}\right)}\left(\int_{\mathbb{R}^{n}}\left(\int_{0}^{\infty} t^{\prime-\left(s+\frac{n}{p}\right) q}\left(\int_{\left|h^{\prime}\right| \leq t^{\prime}}\left|\Delta_{h^{\prime}}^{r} f\left(x^{\prime}\right)\right|^{p} \mathrm{~d} h^{\prime}\right)^{q / p} \frac{\mathrm{~d} t^{\prime}}{t^{\prime}}\right)^{p / q} \mathrm{~d} x\right)^{1 / p} \\
& \left.\left.\quad \leq \max \left(2^{-k \frac{n}{p}}, 2^{k\left(s-\frac{n}{p}\right)}\right) \| f \right\rvert\, \mathbf{F}_{p, q}^{s}, \mathbb{R}^{n}\right) \| \\
& \quad=2^{k\left(s-\frac{n}{p}\right)}\left\|f \mid \mathbf{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)\right\|,
\end{aligned}
$$

where we used in the second step that

$$
\Delta_{h}^{r} f\left(2^{k} x\right)=\sum_{l=0}^{r}\binom{r}{l}(-1)^{r-l} f\left(2^{k} x+l 2^{k} h\right)=: \Delta_{h^{\prime}}^{r} f\left(x^{\prime}\right),
$$

by substituting $x^{\prime}=2^{k} x, h^{\prime}=2^{k} h$, and $t^{\prime}=2^{k} t$.

The subatomic approach: Triebel-Lizorkin spaces $\mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$

We complement our notation. Let

$$
\mathbb{R}_{++}^{n}:=\left\{y \in \mathbb{R}^{n}: y=\left(y_{1}, \ldots, y_{n}\right), y_{j}>0\right\} .
$$

Moreover, $\chi_{\nu, m}$ denotes the characteristic function of the cube $Q_{\nu, m}$. The subatomic approach provides a constructive definition for Triebel-Lizorkin spaces, expanding functions f via building blocks and suitable coefficients, where the latter belong to certain sequence spaces $f_{p, q}^{s, \varrho}$.
Definition 3.3 Let k be a non-negative C^{∞}-function in \mathbb{R}^{n} with

$$
\begin{equation*}
\operatorname{supp} k \subset\left\{y \in \mathbb{R}^{n}:|y|<2^{J-\varepsilon}\right\} \cap \mathbb{R}_{++}^{n} \tag{3.4}
\end{equation*}
$$

for some fixed $\varepsilon>0$ and some fixed $J \in \mathbb{N}$, satisfying

$$
\begin{equation*}
\sum_{m \in \mathbb{Z}^{n}} k(x-m)=1, x \in \mathbb{R}^{n} . \tag{3.5}
\end{equation*}
$$

Let $\beta \in \mathbb{N}_{0}^{n}, \nu \in \mathbb{N}_{0}, m \in \mathbb{Z}^{n}$, and set $k^{\beta}(x)=\left(2^{-J} x\right)^{\beta} k(x)$. Then

$$
\begin{equation*}
k_{\nu, m}^{\beta}(x)=k^{\beta}\left(2^{\nu} x-m\right) \tag{3.6}
\end{equation*}
$$

denote the building blocks related to $Q_{\nu, m}$.
Remark 3.4 The above definition implies that the building blocks are bounded by

$$
\begin{equation*}
0 \leq k_{\nu, m}^{\beta}(x) \leq 2^{-\varepsilon|\beta|}, \quad x \in \mathbb{R}^{n}, \tag{3.7}
\end{equation*}
$$

uniformly in $\nu \in \mathbb{N}_{0}, m \in \mathbb{Z}^{n}$, and for their supports we observe that

$$
\begin{equation*}
\operatorname{supp} k_{\nu, m}^{\beta} \subset 2^{J-\varepsilon} Q_{\nu, m} \tag{3.8}
\end{equation*}
$$

uniformly in $\beta \in \mathbb{N}_{0}^{n}$.
Definition 3.5 Let $\varrho \geq 0, s \in \mathbb{R}, 0<p, q \leq \infty$ and

$$
\lambda=\left\{\lambda_{\nu, m}^{\beta} \in \mathbb{C}: \beta \in \mathbb{N}_{0}^{n}, m \in \mathbb{Z}^{n}, \nu \in \mathbb{N}_{0}\right\} .
$$

Then the sequence space $f_{p, q}^{s, \varrho}$ is defined as

$$
\begin{equation*}
f_{p, q}^{s, \varrho}:=\left\{\lambda:\left\|\lambda \mid f_{p, q}^{s, \varrho}\right\|<\infty\right\}, \tag{3.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\|\lambda\left|f_{p, q}^{s, Q}\left\|=\sup _{\beta \in \mathbb{N}_{0}^{n}} 2^{\rho|\beta|}\right\|\left(\sum_{\nu=0}^{\infty} \sum_{m \in \mathbb{Z}^{n}} 2^{\nu s q}\left|\lambda_{\nu, m}^{\beta}\right|^{q} \chi_{\nu, m}(\cdot)\right)^{1 / q}\right| L_{p}\left(\mathbb{R}^{n}\right)\right\| \tag{3.10}
\end{equation*}
$$

(with the usual modification if $p=\infty$ and/or $q=\infty$).

We now define the related function spaces.
Definition 3.6 Let $s>0,0<p<\infty, 0<q \leq \infty$, and $\varrho \geq 0$. Then $\mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ contains all $f \in L_{p}\left(\mathbb{R}^{n}\right)$ which can be represented as

$$
\begin{equation*}
f(x)=\sum_{\beta \in \mathbb{N}_{0}^{n}} \sum_{\nu=0}^{\infty} \sum_{m \in \mathbb{Z}^{n}} \lambda_{\nu, m}^{\beta} k_{\nu, m}^{\beta}(x), \quad x \in \mathbb{R}^{n} \tag{3.11}
\end{equation*}
$$

with coefficients $\lambda=\left\{\lambda_{\nu, m}^{\beta}\right\}_{\beta \in \mathbb{N}_{0}^{n}, \nu \in \mathbb{N}_{0}, m \in \mathbb{Z}^{n}} \in f_{p, q}^{s, \varrho}$. Then

$$
\begin{equation*}
\left\|f\left|\mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)\|=\inf \| \lambda\right| f_{p, q}^{s, \varrho}\right\| \tag{3.12}
\end{equation*}
$$

where the infimum is taken over all possible representations (3.11).
Remark 3.7 The definitions given above follow closely [Tri06, Sect. 9.2]. The spaces $\mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ are quasi-Banach spaces (Banach spaces for $p, q \geq 1$) and independent of k and ϱ (in terms of equivalent quasi-norms). Furthermore, for all admitted parameters p, q, s, we have

$$
\mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow L_{p}\left(\mathbb{R}^{n}\right)
$$

see [Tri06, Th. 9.8]. Concerning the convergence of (3.11) one obtains as a consequence of $\lambda \in f_{p, q}^{s, \varrho}$, that the series on the right-hand sides converge absolutely in $L_{p}\left(\mathbb{R}^{n}\right)$ if $p<\infty$. Since this implies unconditional convergence we may simplify (3.11) and write in the sequel

$$
f=\sum_{\beta, \nu, m} \lambda_{\nu, m}^{\beta} k_{\nu, m}^{\beta} .
$$

Remark 3.8 Considering the spaces $\mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ we obtain the following upper bounds for the dilation operators T_{k}. Let $s>0,0<p<\infty, 0<q \leq \infty$, and $k \in \mathbb{N}_{0}$. Then for all $f \in \mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\left\|f\left(2^{k} \cdot\right)\left|\mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)\left\|\leq 2^{k\left(s-\frac{n}{p}\right)}\right\| f\right| \mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)\right\| \tag{3.13}
\end{equation*}
$$

The proof is fairly simple. We take $f \in \mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ with optimal representation

$$
f(x)=\sum_{\beta, \nu, m} \lambda_{\nu, m}^{\beta} k_{\nu, m}^{\beta}(x),
$$

i.e.,

$$
\left\|f\left|\mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)\|\sim\| \lambda\right| f_{p, q}^{s, \varrho}\right\|=\sup _{\beta} 2^{\varrho|\beta|}\left\|\left(\sum_{\nu} \sum_{m} 2^{\nu s q}\left|\lambda_{\nu, m}^{\beta}\right|^{q} \chi_{\nu, m}(\cdot)\right)^{1 / q} \mid L_{p}\right\|
$$

where $\chi_{\nu, m}(\cdot)$ is the characteristic function of $Q_{\nu, m}$. Put

$$
g(x):=f\left(2^{k} \cdot\right)=\sum_{\beta, \nu, m} \lambda_{\nu, m}^{\beta} k_{\nu, m}^{\beta}\left(2^{k} x\right)=\sum_{\beta, m} \sum_{l=k}^{\infty} \lambda_{l-k, m}^{\beta} k_{l, m}^{\beta}(x),
$$

where $l:=\nu+k$, since $k_{\nu, m}^{\beta}\left(2^{k} x\right)=\left(2^{\nu+k} x-m\right)^{\beta} k\left(2^{\nu+k} x-m\right)=k_{l, m}^{\beta}(x)$. This yields

$$
\begin{aligned}
\left\|f\left(2^{k} \cdot\right) \mid \mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)\right\| & \leq \sup _{\beta} 2^{\rho|\beta|}\left\|\left(\sum_{l=k}^{\infty} \sum_{m} 2^{l s q}\left|\lambda_{l-k, m}^{\beta}\right|^{q} \chi_{l, m}(\cdot)\right)^{1 / q} \mid L_{p}\right\| \\
& =\sup _{\beta} 2^{\rho|\beta|}\left\|\left(\sum_{l=k}^{\infty} \sum_{m} 2^{k s q} 2^{(l-k) s q}\left|\lambda_{l-k, m}^{\beta}\right|^{\mid} \chi_{l-k, m}\left(2^{k} \cdot\right)\right)^{1 / q} \mid L_{p}\right\| \\
& =2^{k\left(s-\frac{n}{p}\right)} \sup _{\beta} 2^{\rho|\beta|}\left\|\left(\sum_{\nu} \sum_{m} 2^{\nu s q}\left|\lambda_{\nu, m}^{\beta}\right|^{\mid{ }^{q}} \chi_{\nu, m}(\cdot)\right)^{1 / q} \mid L_{p}\right\| \\
& =2^{k\left(s-\frac{n}{p}\right)}\left\|f \mid \mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)\right\| .
\end{aligned}
$$

Connections and diversity

We now discuss the coincidence and diversity of the above presented concepts of F -spaces and may restrict ourselves to positive smoothness $s>0$. In view of our Remarks 1.2, 3.2 and 3.7 concerning the different nature of these spaces, it is obvious that there cannot be established a complete coincidence of all approaches when $s<\sigma_{p}$.
In particular, no equivalent quasi-norms of type (3.2) can be expected for the spaces $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ if $s<\sigma_{p}$. It seems to be clear that such a characterization is also impossible if $\sigma_{p}<s<\sigma_{p q}$ (in particular, when $0<q<p$), i.e.

$$
\mathbf{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right) \neq F_{p, q}^{s}\left(\mathbb{R}^{n}\right), \quad 0<p<\infty, \quad 0<q \leq \infty, \quad 0<s<\sigma_{p q},
$$

cf. [Tri06, Rem. 9.15], based on [CS06] - so the situation is even more complicated. Nevertheless, under certain restrictions on the smoothness parameter s, the above approaches result in the same F -space.

Theorem 3.9 Let $s>0,0<p<\infty, 0<q \leq \infty$.
(i) Then

$$
\begin{equation*}
\mathbf{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)=\mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right), \quad s>n\left(\frac{1}{\min (p, q)}-\frac{1}{p}\right) \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{p, q}^{s}\left(\mathbb{R}^{n}\right)=\mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right), \quad s>\sigma_{p q} \tag{3.15}
\end{equation*}
$$

(in the sense of equivalent quasi-norms).
(ii) Furthermore,

$$
\begin{equation*}
F_{p, q}^{s}\left(\mathbb{R}^{n}\right)=\mathbf{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)=\mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right), \quad s>n\left(\frac{1}{\min (p, q)}-\frac{1}{\max (1, p)}\right) \tag{3.16}
\end{equation*}
$$

(in the sense of equivalent quasi-norms).

Remark 3.10 The first equality in (3.16) is longer known, see [Tri83, Section 2.5.11], [Tri92, Thm. 3.5.3], whereas the second equality in (3.16) is a consequence of the recently proved coincidence (3.14), see [Tri06, Prop. 9.14] (with forerunners in [Tri97, Sect. 13.8], [Tri01, Thm. 2.9]). In the figures aside and below we have indicated the situation in the usual $\left(\frac{1}{p}, s\right)$-diagram for different values of q.

Figure 2: Parameter $q=1$

Figure 1: Parameter $q=\infty$

Figure 3: Parameter $q=\frac{1}{2}$

Our new results concerning the norms of the dilation operators T_{k} established in Section 2 now lead to new insights when dealing with different approaches for F -spaces in the limiting case $s=\sigma_{p}$. We obtain the following assertions which are especially interesting when $p<q$.

Corollary 3.11 Let $0<p<1$ and $0<q \leq \infty$. Then

$$
F_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right) \neq \mathbf{F}_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right)
$$

and

$$
F_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right) \neq \mathfrak{F}_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right)
$$

(in terms of equivalent quasi-norms) as sets of measurable functions.
Proof : We use the homogeneity estimate (3.3),

$$
\left\|f\left(2^{k} \cdot\right)\left|\mathbf{F}_{p, q}^{s}\left\|\leq 2^{k\left(s-\frac{n}{p}\right)}\right\| f\right| \mathbf{F}_{p, q}^{s}\right\|,
$$

where $s>0,0<p<\infty$, and $0<q \leq \infty$. We proceed indirectly, assuming that $F_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right)=\mathbf{F}_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right)$ for $0<q \leq \infty$. But then using Theorem 2.2 when $p \leq q$ or Theorem 2.3 for $q<p$, together with (3.3) we could find a function $\psi \in F_{p, q}^{\sigma_{p}}$ such that

$$
2^{k\left(\sigma_{p}-\frac{n}{p}\right)} k^{1 / p}\left\|\psi\left|F_{p, q}^{\sigma_{p}}\|\leq c\| \psi\left(2^{k} \cdot\right)\right| F_{p, q}^{\sigma_{p}}\right\| \sim\left\|\psi\left(2^{k} \cdot\right)\left|\mathbf{F}_{p, q}^{\sigma_{p}}\left\|\leq 2^{k\left(\sigma_{p}-\frac{n}{p}\right)}\right\| \psi\right| \mathbf{F}_{p, q}^{\sigma_{p}}\right\| \sim 2^{k\left(\sigma_{p}-\frac{n}{p}\right)}\left\|\psi \mid F_{p, q}^{\sigma_{p}}\right\|,
$$

which leads to

$$
k^{1 / p} \leq c, \quad k \in \mathbb{N}
$$

This gives the desired contradiction.
The proof for the spaces $\mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ is the same; we only need to use the estimate (3.13) instead of (3.3). We give an alternative proof of this result in the next subsection.

Remark 3.12 We know that $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)=\mathfrak{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ if $s>\sigma_{p q}$. Corollary 3.11 yields $F_{p, q}^{\sigma_{p q}}\left(\mathbb{R}^{n}\right) \neq \mathfrak{F}_{p, q}^{\sigma_{p q}}\left(\mathbb{R}^{n}\right)$ if $p \leq q$ since in this case $\sigma_{p q}=\sigma_{p}$. If $p>q$, then $\sigma_{p q}>\sigma_{p}$ and the sharp estimates for the norms of the dilation operators T_{k} in $F_{p, q}^{\sigma_{p q}}\left(\mathbb{R}^{n}\right)$, cf. [ET96, 2.3.1], coincide with the bounds for spaces $\mathfrak{F}_{p, q}^{\sigma_{p q}}\left(\mathbb{R}^{n}\right)$ as given in (3.13). So in this case studying dilation operators will not help solving the problem. It does not seem unlikely that the approaches coincide in this case.

3.2 A comment on atomic expansion

It might not be obvious immediately, but the building blocks $k_{\nu, m}^{\beta}$ in our subatomic approach differ from the atoms $a_{\nu, m}$ - used to characterize the spaces $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ in Theorem 1.7 - mainly by the imposed moment conditions on the latter and some unimportant technicalities. In particular, the normalizing factors $2^{\nu\left(s-\frac{n}{p}\right)}$ are incorporated in the sequence spaces $f_{p, q}^{s, \varrho}$ in the subatomic approach; recall Definition 1.5. We refer as well to [Tri01, Th. 3.6]. Now following [SchXX, Sect. 3.2] one can show that first moment conditions on the line $s=\sigma_{p q}$ are necessary. This immediately leads to

$$
F_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right) \neq \mathfrak{F}_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right)
$$

yielding an alternative proof of Corollary 3.11. We present the main ideas. Every $f \in F_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right)$ may be represented by optimal atomic decompositions

$$
f(x)=\sum_{\nu, m} \lambda_{\nu, m} a_{\nu, m}(x), \quad x \in \mathbb{R}^{n}
$$

with

$$
\left\|\lambda\left|f_{p, q}\|\leq c\| f\right| F_{p, q}^{\sigma_{p}}\right\|, \quad f \in F_{p, q}^{\sigma_{p}}\left(\mathbb{R}^{n}\right)
$$

see [Tri06, Ch. 1.5] for details. If no moment conditions were required here, then

$$
g_{k}(x)=f\left(2^{k} x\right)=\sum_{\nu, m} \lambda_{\nu, m} a_{\nu, m}\left(2^{k} x\right), \quad x \in \mathbb{R}^{n}
$$

would represent an atomic decomposition of $f\left(2^{k} x\right)$. This can be seen by setting

$$
g_{k}(x)=\sum_{\nu, m} \lambda_{\nu, m} 2^{k\left(\sigma_{p}-\frac{n}{p}\right)} 2^{-k\left(\sigma_{p}-\frac{n}{p}\right)} a_{\nu, m}\left(2^{k} x\right)=\sum_{\nu, m} \lambda_{\nu, m}^{k} a_{\nu, m}^{k}(x),
$$

where $a_{\nu, m}^{k}(x)=2^{-k\left(\sigma_{p}-\frac{n}{p}\right)} a_{\nu, m}\left(2^{k} x\right) \sim \tilde{a}_{\nu+k, m}(x)$, since

$$
\begin{gathered}
\operatorname{supp} a_{\nu, m}^{k} \subset Q_{\nu+k, m}, \\
\left|\mathrm{D}^{\alpha} a_{\nu, m}^{k}(x)\right|=2^{-k\left(\sigma_{p}-\frac{n}{p}\right)+k|\alpha|}\left|\mathrm{D}^{\alpha} a_{\nu, m}(x)\right| \leq 2^{-(\nu+k)\left(\sigma_{p}-\frac{n}{p}\right)+(\nu+k)|\alpha|} .
\end{gathered}
$$

Therefore we obtain

$$
\left\|g_{k}\left|F_{p, q}^{\sigma_{p}}\|\leq\| \lambda^{k}\right| f_{p, q}\right\|=2^{k\left(\sigma_{p}-\frac{n}{p}\right)}\left\|\lambda\left|f_{p, q}\left\|=2^{-n k}\right\| \lambda\right| f_{p, q}\right\|,
$$

resulting in

$$
\left\|f\left(2^{k} \cdot\right)\left|F_{p, q}^{\sigma_{p}}\left\|\leq c 2^{-n k}\right\| f\right| F_{p, q}^{\sigma_{p}}\right\| .
$$

But we know by Theorem 2.2 and Theorem 2.3 that this is not true in general when $0<p<\infty$.

References

[BPT96] H.-Q. Bui, M. Paluszyński, and M. H. Taibleson. A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces. Studia Math., 119(3):219246, 1996.
[BPT97] H.-Q. Bui, M. Paluszyński, and M. H. Taibleson. Characterization of the BesovLipschitz and Triebel-Lizorkin spaces. The case $q<1$. In Proceedings of the conference dedicated to Professor Miguel de Guzmán (El Escorial, 1996), volume 3, pages 837846, 1997.
[CS06] M. Christ and A. Seeger. Necessary conditions for vector-valued operator inequalities in harmonic analysis. Proc. London Math. Soc. (3), 93(2):447-473, 2006.
[ET96] D. E. Edmunds and H. Triebel. Function spaces, entropy numbers, differential operators, volume 120 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1996.
[HLP52] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge Univ. Press, 2nd edition, 1952.
[HNO7] L. I. Hedberg and Y. Netrusov. An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation. Mem. Amer. Math. Soc., 188(882):97p., 2007.
[Ryc99] V. S. Rychkov. On a theorem of Bui, Paluszyński, and Taibleson. Trudy Mat. Institut Steklov, 227:286-298, 1999 [Proc. Steklov Inst. Math. 227:280-292, 1999].
[SchXX] C. Schneider. On dilation operators in Besov spaces. Rev. Mat. Complut. (to appear).
[ST95] W. Sickel and H. Triebel. Hölder inequalities and sharp embeddings in function spaces of $B_{p q}^{s}$ and $F_{p q}^{s}$ type. Z. Anal. Anwendungen, 14(1):105-140, 1995.
[Tri83] H. Triebel. Theory of function spaces, volume 78 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 1983.
[Tri92] H. Triebel. Theory of function spaces II, volume 84 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 1992.
[Tri97] H. Triebel. Fractals and spectra, volume 91 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 1997.
[Tri01] H. Triebel. The structure of functions, volume 97 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 2001.
[Tri06] H. Triebel. Theory of function spaces III, volume 100 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 2006.
[Vyb08] J. Vybíral. Dilation operators and samping numbers. J. Funct. Spaces Appl., 6:17-46, 2008.

Cornelia Schneider
Universität Leipzig
PF 100920
D-04009 Leipzig
Germany
schneider@math.uni-leipzig.de

Jan Vybíral
Mathematisches Institut
Friedrich-Schiller-Universität Jena
D-07737 Jena
Germany
vybiral@minet.uni-jena.de

