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Abstract

We consider the Triebel-Lizorkin spaces F
s(·)
p(·),q(·)(R

n) of variable smoothness and integra-

bility as introduced recently by Diening, Hästö and Roudenko in [9]. Under certain regularity

conditions on the function parameters involved we show that

F
s0(·)
p0(·),q(·)(R

n) →֒ F
s1(·)
p1(·),q(·)(R

n)

if

s0(x) ≥ s1(x) and s0(x) −
n

p0(x)
= s1(x) −

n

p1(x)
for all x ∈ R

n

with embeddings of Sobolev and Bessel potential spaces included as special cases.

If inf
x∈Rn

(s0(x) − s1(x)) > 0 we recover also the analogue of the Jawerth embedding

F
s0(·)
p0(·),q0(·)(R

n) →֒ F
s1(·)
p1(·),q1(·)(R

n)

for any q0, q1.

The proofs are based on the decomposition techniques of [9] and work exclusively with the

associated sequence spaces f
s(·)
p(·),q(·).
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1 Introduction

The interplay between smoothness and integrability constitutes one of the corner stones of the

theory of function spaces. It can be traced back as far as to Hardy and Littlewood [13, 14], but

the decisive breakthrough was achieved by Sobolev [33], who proved the famous embedding

W m
p (Ω) →֒ Lq(Ω), (1.1)

where Ω ⊂ R
n is a bounded domain with Lipschitz boundary, Lq(Ω) stands for the usual Lebesgue

space and W m
p (Ω) denotes the Sobolev space of functions with all distributive derivatives of order

smaller or equal to m bounded in the Lp(Ω) norm. The crucial relation between the involved

parameters m ∈ N, 1 < p < n/m and 1 < q < ∞ is

1

q
=

1

p
−

m

n
. (1.2)

During the last seventy years, many scales of spaces of smooth functions were defined using various

techniques (e.g. derivatives, differences, Fourier coefficients or Fourier transform) with the corre-

sponding analogues of (1.1) and (1.2) playing usually an important role in most of the applications.

Actually, it seems that any new scale of spaces of smooth functions needs to exhibit some kind of

interaction between smoothness and integrability to be accepted by the mathematical audience.

In recent years there has been a growing interest in function spaces describing local regularity

properties of functions. The first spaces of this type are the spaces of variable integrability, which

were implicitly used by Orlicz [27] already in 1931 and studied in detail by Kováčik and Rákosńık

[24] in 1991 together with the corresponding Sobolev spaces of variable integrability. During 1990’s

these spaces found applications in the study of variational integrals with non-standard growth,

but it was probably the work of Růžička [29, 30, 31] on electrorheological fluids what promoted

an enormous interest in these spaces. Since then, more than one hundred papers on this topic

appeared. We refer to [8] for a brief overview and an extensive collection of references.

Another way how to describe the local properties of a function was outlined already by Peetre

in [28, page 266] in Chapter 12 named “Some strange new spaces” and resulted in the concept of

2-microlocal spaces, cf. [5] and [20]. Along a different line of study, Leopold [25] introduced spaces

of Besov-type with variable smoothness, but constant integrability. This approach was further

developed by Besov [3, 4].

The Sobolev embedding for the spaces with variable integrability was addressed already by

Kováčik and Rákosńık [24] and later on by Růžička [31]. But their results failed to cover the

optimal exponent according to (1.1). Edmunds and Rákosńık [10, 11] proved the optimal Sobolev

embedding theorem under Lipschitz and Hölder continuity of the exponents, cf. also [16]. Finally,

Diening [7] and Samko [32] showed, that log-Hölder continuity is sufficient.

The embeddings of Besov and Triebel-Lizorkin spaces of variable smoothness were obtained by

Besov [4] in a fairly general form. It seems that Leopold [26] was the only one up to now who

tried to connect the function spaces with variable smoothness with spaces of variable integrability.

Unfortunately, he also failed to recover the optimal exponent.
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The last step (up to now) was done by Diening, Hästö and Roudenko in [9]. These authors

combined the concept of spaces with variable integrability of Orlicz, Kováčik and Rákosńık with

the concept of variable smoothness of Leopold and Besov (which is in some sense very similar to

the ideas of Peetre, Bony and Jaffard) and proposed the function spaces of Triebel-Lizorkin type

of variable smoothness and integrability, cf. Definition 2.5. They proved (under some restrictions

on the function parameters involved), that these spaces include the Lebesgue and Sobolev spaces

of variable integrability and the spaces of variable smoothness as special cases. They proved also a

certain version of the atomic decomposition theorem, which is a well known tool in the theory of

function spaces of Besov and Triebel-Lizorkin type. Finally, they proved an analogue of the usual

trace theorem, which exhibits the interplay between smoothness and integrability. The reader may

consult also [17], [15] and references given there for other versions of the trace embedding theorem

for Sobolev spaces with varying integrability.

Although mentioned on several places in [9] (and even in the abstract), the authors have not

presented any version of Sobolev embedding, which would not only result in a generalization of

(1.1) with (1.2) holding pointwise, but would (in the sense described above) help to justify the

existence of this scale of function spaces - at least until this promising line of research finds any

applications.

Our aim is to fill this gap. In the frame of Triebel-Lizorkin spaces with constant parameters,

the following analogue of Sobolev embedding is true.

Theorem 1.1. (Jawerth, [21]). Let

−∞ < s1 < s0 < ∞, 0 < p0 < p1 < ∞, 0 < q ≤ ∞ (1.3)

with

s0 −
n

p0
= s1 −

n

p1
. (1.4)

Then

F s0
p0,∞(Rn) →֒ F s1

p1,q(R
n). (1.5)

The remarkable effect, which was first observed by Jawerth and which is in some sense unique

to the Triebel-Lizorkin spaces, is the improvement in the third fine parameter q > 0, which may be

chosen arbitrarily small. Of course, (1.5) holds only for q = ∞ if s0 = s1 (or, equivalently, p0 = p1).

If the smoothness and integrability parameters s and p become functions of x ∈ R
n, then it seems

to be appropriate to assume that (1.4) holds pointwise, i.e.

s0(x) −
n

p0(x)
= s1(x) −

n

p1(x)
, x ∈ R

n (1.6)

and if the improvement in the fine parameter is to be achieved, that also

inf
x∈Rn

(s0(x) − s1(x)) = n inf
x∈Rn

( 1

p0(x)
−

1

p1(x)

)
> 0. (1.7)
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We prove that these “natural” assumptions (combined with appropriate regularity conditions) are

really sufficient. We show, that if s1(x) ≤ s0(x) and p0(x) ≤ p1(x) with (1.6) and 0 < q(x) ≤ ∞

for all x ∈ R
n, then

F
s0(·)
p0(·),q(·)(R

n) →֒ F
s1(·)
p1(·),q(·)(R

n). (1.8)

If also (1.7) is satisfied, then even

F
s0(·)
p0(·),∞

(Rn) →֒ F
s1(·)
p1(·),q(·)(R

n)

holds.

2 Preliminaries

Let S(Rn) be the Schwartz space of all complex-valued rapidly decreasing, infinitely differentiable

functions on R
n and let S′(Rn) be its dual - the space of all tempered distributions. For f ∈ S′(Rn)

we denote by f̂ = Ff its Fourier transform and by f∨ or F−1f its inverse Fourier transform. We

give a Fourier-analytic definition of Triebel-Lizorkin spaces, which relies on the so-called dyadic

resolution of unity. Let ϕ ∈ S(Rn) with

ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥
3

2
. (2.1)

We put ϕ0 = ϕ and ϕj(x) = ϕ(2−jx)−ϕ(2−j+1x) for j ∈ N and x ∈ R
n. This leads to the identity

∞∑

j=0

ϕj(x) = 1, x ∈ R
n.

Definition 2.1. Let s ∈ R, 0 < p < ∞, 0 < q ≤ ∞. Then F s
pq(R

n) is the collection of all f ∈ S′(Rn)

such that

||f |F s
pq(R

n)|| =

∣∣∣∣

∣∣∣∣

( ∞∑

j=0

2jsq|(ϕj f̂)∨(·)|q
)1/q

|Lp(R
n)

∣∣∣∣

∣∣∣∣ < ∞ (2.2)

(with the usual modification for q = ∞).

Remark 2.2. (i) These spaces have a long history. In this context we recommend [28, 34, 35, 37]

as standard references. We point out that the spaces F s
pq(R

n) are independent of the choice of ϕ

in the sense of equivalent (quasi-)norms. Special cases of these two scales include Lebesgue spaces,

Sobolev spaces and inhomogeneous Hardy spaces.

(ii) Interchanging the order of Lp and ℓq norm in (2.2) would lead to the Fourier-analytic

definition of Besov spaces. Unfortunately, they seem to be less convenient for describing local

regularity properties of distributions, because they lack the so-called localization principle, cf. [35,

Theorem 2.4.7]. Hence (also in correspondence with [9]) we study only the F -scale.

Next, we introduce the Lebesgue spaces of variable integrability.
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Definition 2.3. Let p : R
n → (0,∞) be a measurable function. Then the space Lp(·)(R

n) consists

of all measurable functions f : R
n → [−∞,∞] such that ||f |Lp(·)(R

n)|| < ∞, where

||f |Lp(·)(R
n)|| = inf{λ > 0 :

∫

Rn

(
|f(x)|

λ

)p(x)

dx ≤ 1}

is the Minkowski functional of the absolutely convex set {f :
∫

Rn |f(x)|p(x)dx ≤ 1}.

Remark 2.4. (i) One could also consider (and it was done so already by Kováčik and Rákosńık in

[24]) that p(x) = ∞ on a set of a positive measure. But Definition 2.3 is already sufficient for our

purpose, cf. also Remark 2.6.

(ii) If p(x) ≥ 1 for all x ∈ R
n, then Lp(·)(R

n) are Banach spaces. To ensure, that Lp(·)(R
n) are

at least quasi-Banach spaces, we assume that

p− := inf
x∈Rn

p(x) > 0.

The generalization of Definition 2.1 to the setting of variable smoothness and integrability as it

was given by [9] is surprisingly simple.

Definition 2.5. Let −∞ < s(x) < +∞, 0 < p(x) < ∞, 0 < q(x) ≤ ∞. Then F
s(·)
p(·),q(·)(R

n) is the

collection of all f ∈ S′(Rn) such that

||f |F
s(·)
p(·),q(·)(R

n)|| =

∣∣∣∣

∣∣∣∣

( ∞∑

j=0

2js(·)q(·)|(ϕj f̂)∨(·)|q(·)
)1/q(·)

|Lp(·)(R
n)

∣∣∣∣

∣∣∣∣ < ∞ (2.3)

(with the usual modification for q(x) = ∞).

Remark 2.6. This definition introduces the Triebel-Lizorkin spaces of variable smoothness, inte-

grability and summability under almost no conditions on s(·), p(·) and q(·). Unfortunately, these

spaces may depend on the choice of the function ϕ as described in (2.1). This is the case already

when s and q < ∞ are constant and p = ∞. We refer to [34, Chapter 2.3.4] for a detailed discussion

of related aspects. So, a first natural restriction seems to be the condition

p+ = sup
x∈Rn

p(x) < ∞.

Together with Remark 2.4(ii) this leads to

0 < p− := inf
z∈Rn

p(z) ≤ p(x) ≤ sup
z∈Rn

p(z) =: p+ < ∞, x ∈ R
n. (2.4)

Next we present the regularity assumptions of [9].

Definition 2.7. Let g be a continuous function on Rn.

(i) We say, that g is 1-locally log-Hölder continuous, abbreviated g ∈ C log
1−loc(R

n), if there exists

c > 0 such that

|g(x) − g(y)| ≤
c

log(e + 1/||x − y||∞)
for all x, y ∈ R

n with ||x − y||∞ ≤ 1.
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Here, ||z||∞ = max{|z1|, . . . , |zn|} denotes the maximum norm of z ∈ R
n.

(ii) We say, that g is locally log-Hölder continuous, abbreviated g ∈ C log
loc (Rn), if there exists

c > 0 such that

|g(x) − g(y)| ≤
c

log(e + 1/|x − y|)
, x, y ∈ R

n.

(iii) We say, that g is globally log-Hölder continuous, abbreviated g ∈ C log(Rn), if it is locally

log-Hölder continuous and there exists c > 0 and g∞ ∈ R such that

|g(x) − g∞| ≤
c

log(e + |x|)
, x ∈ R

n.

Remark 2.8. (i) The conditions (ii) and (iii) are overtaken literally from [9] and we shall need

them only for the transference of our results from sequence spaces to function spaces. It is the less

restrictive condition (i), which we shall involve in our proofs.

(ii) The condition (i) is very similar to the original condition of Diening used in [6] to show the

boundedness of the maximal operator.

We shall use the property (i) in the form formulated in next Lemma. We leave out the trivial

proof.

Lemma 2.9. Let g ∈ C log
1−loc(R

n). Then there exists a constant c > 0 such that for every j ∈ N0

and every x, y ∈ R
n with ||x − y||∞ ≤ 2−j the following inequalities hold:

1

c
≤ 2−j|g(x)−g(y)| ≤ 2j(g(x)−g(y)) ≤ 2j|g(x)−g(y)| ≤ c.

Definition 2.10. (Standing assumptions of [9]). Let p and q be positive functions on R
n such

that 1
p , 1

q ∈ C log(Rn) and let s ∈ C log
loc (Rn) ∩ L∞(Rn) with s(x) ≥ 0 and let s(x) have a limit at

infinity.

Remark 2.11. (i) Let us note, that the Standing assumptions imply in particular (2.4) and a similar

chain of inequalities for q(x).

We introduce the sequence spaces associated with the Triebel-Lizorkin spaces of variable smooth-

ness and integrability. Let j ∈ N0 and m ∈ Z
n. Then Qjm denotes the closed cube in R

n with sides

parallel to the coordinate axes, centered at 2−jm, and with side length 2−j . By χjm = χQjm
we

denote the characteristic function of Qj m. If

γ = {γjm ∈ C : j ∈ N0,m ∈ Z
n},

−∞ < s(x) < ∞, 0 < p(x) < ∞ and 0 < q(x) ≤ ∞ for all x ∈ R
n, we define

||γ|f
s(·)
p(·),q(·)|| =

∣∣∣∣

∣∣∣∣

( ∞∑

j=0

∑

m∈Zn

2js(·)q(·)|γjm|q(·)χjm(·)

)1/q(·)

|Lp(·)(R
n)

∣∣∣∣

∣∣∣∣ (2.5)

=

∣∣∣∣

∣∣∣∣
∞∑

j=0

∑

m∈Zn

2js(·)|γjm|χjm(·)

∣∣∣∣Lp(·)(ℓq(·))

∣∣∣∣

∣∣∣∣.

The connection between the function spaces F
s(·)
p(·),q(·)(R

n) and the sequence spaces f
s(·)
p(·),q(·) was

one of the main aim of [9]. Following [18] and [19], these authors investigated the properties of the

so-called ϕ-transform (denoted by Sϕ) and obtained the following result.
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Theorem 2.12. Under the Standing assumptions of [9]

||f |F
s(·)
p(·),q(·)(R

n)|| ≈ ||Sϕf |f
s(·)
p(·),q(·)||

with constants independent of f ∈ F
s(·)
p(·),q(·)(R

n).

Remark 2.13. (i) The assumptions on s in the Theorem 2.12 seem to be too restrictive. It seems,

that several authors now try to prove similar results also for s(x), which are not necessarily positive

or convergent at infinity. We refer at least to [23] and [39].

From this reason we formulate the theorems of embeddings of sequence spaces under minimal

assumptions, which shall really be needed in the proof. If later on any improved version of Theorem

2.12 should appear, the results may then be easily overtaken.

(ii) We shall use only a simple corollary of Theorem 2.12, namely that (under the Standing

assumptions) the spaces F
s(·)
p(·),q(·)(R

n) and f
s(·)
p(·),q(·) are isomorphic.

3 Main results

First, we state the results in the form of embeddings of sequence spaces under those assumptions

really needed in the proof. Later on, we combine those with the Standing assumptions of [9] and

obtain similar results also for the embeddings of function spaces. Finally, we state separately the

embeddings of Sobolev and Bessel potential spaces.

Theorem 3.1. Let −∞ < s1(x) ≤ s0(x) < ∞, 0 < p0(x) ≤ p1(x) < ∞ for all x ∈ R
n with

0 < p−0 ≤ p−1 ≤ p+
1 < ∞ and

s0(x) −
n

p0(x)
= s1(x) −

n

p1(x)
, x ∈ R

n.

Let q(x) = ∞ for all x ∈ R
n or 0 < q− ≤ q(x) < ∞ for all x ∈ R

n and s0,
1
p0

∈ C log
1−loc(R

n). Then

f
s0(·)
p0(·),q(·)

→֒ f
s1(·)
p1(·),q(·)

.

Proof. Step 1. q(x) = ∞ for all x ∈ R
n.

We set

h(x) = sup
j,m

2js0(x)|γjm|χjm(x), x ∈ R
n. (3.1)

Here, and later on, the supremum is taken over all j ∈ N0 and m ∈ Z
n. Then by (2.5)

||γ|f
s0(·)
p0(·),∞|| = ||h|Lp0(·)(R

n)|| (3.2)

and trivially

2js0(x)|γjm| ≤ h(x), x ∈ Qjm, (3.3)

which leads to

|γjm| ≤ inf
x∈Qjm

2−js0(x)h(x), j ∈ N0, m ∈ Zn. (3.4)
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Using consequently (2.5), (3.4) and Lemma 2.9 for s0 we may estimate

||γ|f
s1(·)
p1(·),∞|| =

∣∣∣∣

∣∣∣∣sup
j,m

2js1(x)|γjm|χjm(x)|Lp1(·)(R
n)

∣∣∣∣

∣∣∣∣

≤

∣∣∣∣

∣∣∣∣sup
j,m

2js1(x)
(

inf
y∈Qjm

2−js0(y)h(y)
)
χjm(x)|Lp1(·)(R

n)

∣∣∣∣

∣∣∣∣

=

∣∣∣∣

∣∣∣∣sup
j,m

2j(s1(x)−s0(x))
(

inf
y∈Qjm

2j(s0(x)−s0(y))h(y)
)
χjm(x)|Lp1(·)(R

n)

∣∣∣∣

∣∣∣∣

≤ c

∣∣∣∣

∣∣∣∣sup
j,m

2
jn
(

1
p1(x)

− 1
p0(x)

)(
inf

y∈Qjm

h(y)
)
χjm(x)|Lp1(·)(R

n)

∣∣∣∣

∣∣∣∣.

Let A−1 ⊂ R
n stand for those x, where

sup
j,m

2
jn
(

1
p1(x)

− 1
p0(x)

)(
inf

y∈Qjm

h(y)
)
χjm(x) = 0. (3.5)

For each x ∈ Rn we denote by J = Jx ∈ N0 the smallest non-negative integer, such that

(3.5) ≤ 2 · 2
Jn
(

1
p1(x)

− 1
p0(x)

) ∑

m∈Zn

(
inf

y∈QJm

h(y)
)
χJm(x). (3.6)

We may assume, that for almost all x ∈ R
n (3.5) is finite. Otherwise h(x) = ∞ on a set of

positive measure and there is nothing to prove. Furthermore, we denote by AJ ⊂ R
n those x with

Jx = J ∈ N0.

Let λ > 0 be a positive real number such that

1 ≥

∫

Rn

(
h(x)

λ

)p0(x)

dx =
∞∑

J=−1

∫

AJ

(
h(x)

λ

)p0(x)

dx (3.7)

≥

∞∑

J=0

∑

m∈Zn

∫

AJ∩QJm

(
h(x)

λ

)p0(x)

dx.

We set

hjm :=

inf
y∈Qjm

h(y)

λ
, j ∈ N0, m ∈ Z

n

and show, that there is a constant C > 0 such that

∫

Rn

(

C−1 sup
j,m

2
jn
(

1
p1(x)

− 1
p0(x)

)
hjmχjm(x)

)p1(x)

dx ≤ 1.

We split the integration over R
n into integrals over AJ and use (3.6).

∫

Rn

(

C−1 sup
j,m

2
jn
(

1
p1(x)

− 1
p0(x)

)
hjmχjm(x)

)p1(x)

dx

≤
∞∑

J=0

∫

AJ

(
(C/2)−1

∑

m∈Zn

2
Jn
(

1
p1(x)

− 1
p0(x)

)
hJmχJm(x)

)p1(x)

dx

=

∞∑

J=0

∑

m∈Zn

∫

AJ

(
(C/2)−12

Jn
(

1
p1(x)

− 1
p0(x)

)
hJm

)p1(x)

χJm(x)dx

=

∞∑

J=0

∑

m∈Zn

∫

AJ∩QJm

(C/2)−p1(x)2
Jn
(
1−

p1(x)
p0(x)

)
h

p1(x)
Jm dx (3.8)
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I. Let us fix (J,m) ∈ N0 × Z
n such that

hJm ≤ 1.

Then (as p0(x) ≤ p1(x))

2
Jn
(
1−

p1(x)

p0(x)

)
≤ 1

and

h
p1(x)
Jm ≤ h

p0(x)
Jm .

Hence for C ≥ 2 we obtain

∫

AJ∩QJm

(C/2)−p1(x)2
Jn
(
1−

p1(x)
p0(x)

)
h

p1(x)
Jm dx ≤

∫

AJ∩QJm

h
p0(x)
Jm dx (3.9)

≤

∫

AJ∩QJm

(
h(x)

λ

)p0(x)

dx.

II. Let us consider (J,m) ∈ N0 × Z
n such that

hJm > 1.

Then

1 ≥

∫

QJm

(
h(x)

λ

)p0(x)

dx ≥

∫

QJm

h
p0(x)
Jm dx ≥ 2−Jnh

pJm
0

Jm ,

where pJm
0 = inf

x∈QJm

p0(x) > 0. Hence

1 < hJm ≤ 2Jn/pJm
0 . (3.10)

We rewrite the integrals in (3.8) as

∫

AJ∩QJm

(C/2)−p1(x)2
Jn
(
1−

p1(x)
p0(x)

)
h

p1(x)
Jm dx =

∫

AJ∩QJm

(C/2)−p1(x)2
Jn
(
1−

p1(x)
p0(x)

)
h

p1(x)−p0(x)
Jm︸ ︷︷ ︸

(⋆)

h
p0(x)
Jm dx

(3.11)

and show that the estimate (⋆) ≤ 1 for C ≥ 2 large enough and x ∈ QJm finishes immediately the

proof. By (3.9) and (3.11) combined with (⋆) ≤ 1 and (3.7)

∞∑

J=0

∑

m∈Zn

∫

AJ∩QJm

(C/2)−p1(x)2
Jn
(
1−

p1(x)
p0(x)

)
h

p1(x)
Jm dx =

∑

(J,m):hJm≤1

· · · +
∑

(J,m):hJm>1

. . .

≤
∑

(J,m):hJm≤1

∫

AJ∩QJm

(
h(x)

λ

)p0(x)

dx +
∑

(J,m):hJm>1

∫

AJ∩QJm

h
p0(x)
Jm dx

≤

∞∑

J=0

∑

m∈Zn

∫

AJ∩QJm

(
h(x)

λ

)p0(x)

dx ≤ 1.

Hence, it remains to prove that (⋆) ≤ 1 for all x ∈ QJm. By (3.10), it is enough to show that

(C/2)−p1(x)2
Jn
(
1−

p1(x)
p0(x)

)
· 2

Jn·
p1(x)−p0(x)

pJm
0 ≤ 1

9



or, equivalently,

2
Jn[p1(x)−p0(x)]·[ 1

pJm
0

− 1
p0(x)

]
≤ (C/2)p1(x).

Using Lemma 2.9 for 1
p0

(with constant 2clog), this follows from

2
n[1−

p0(x)
p1(x)

]·clog ≤ C/2.

As 0 ≤ 1 − p0(x)
p1(x) ≤ 1, we may choose C = 2nclog+1 ≥ 2.

Step 2. 0 < q(x) < ∞ for all x ∈ R
n.

Let λ > 0 be a positive real number with

∫

Rn

( ∞∑

j=0

∑

m∈Zn

2js0(x)q(x)|γjm|q(x)λ−q(x)χjm(x)
)p0(x)/q(x)

dx ≤ 1. (3.12)

We have to show that there is a constant C > 0 independent of {γjm}, such that

∫

Rn

( ∞∑

j=0

∑

m∈Zn

2js1(x)q(x)|γjm|q(x)(Cλ)−q(x)χjm(x)
)p1(x)/q(x)

dx ≤ 1. (3.13)

We show, that under (3.12) the following inequality holds for almost all x ∈ R
n

( ∞∑

j=0

∑

m∈Zn

2js1(x)q(x) |γjm|q(x)

(Cλ)q(x)
χjm(x)

)p1(x)
≤
( ∞∑

j=0

∑

m∈Zn

2js0(x)q(x) |γjm|q(x)

λq(x)
χjm(x)

)p0(x)
. (3.14)

Obviously, (3.14) implies (3.13).

For almost every x ∈ R
n and every j ∈ N0, there is exactly one m = m(j) ∈ Z

n such that

x ∈ Qj,m(j). We fix one such an x. Then (3.14) reads like

∞∑

j=0

2js1(x)q(x)|γj,m(j)|
q(x)(Cλ)−q(x) ≤

( ∞∑

j=0

2js0(x)q(x)|γj,m(j)|
q(x)λ−q(x)

)p0(x)/p1(x)
. (3.15)

We set

αj := 2js0(x) |γj,m(j)|

λ
, j ∈ N0

and rewrite (3.15) once again. It now becomes

∞∑

j=0

2
jn
(

1
p1(x)

− 1
p0(x)

)
q(x)

(αj/C)q(x) ≤
( ∞∑

j=0

α
q(x)
j

)p0(x)/p1(x)
. (3.16)

Using (3.12) and Lemma 2.9 for s0, we get

1 ≥

∫

Qj,m(j)

(
2js0(y)q(y)|γj,m(j)|

q(y)λ−q(y)
)p0(y)/q(y)

dy =

∫

Qj,m(j)

(
2js0(y)|γj,m(j)|λ

−1
)p0(y)

dy

=

∫

Qj,m(j)

(
2j(s0(y)−s0(x))2js0(x)|γj,m(j)|λ

−1
)p0(y)

dy ≥

∫

Qj,m(j)

(
c 2js0(x)|γj,m(j)|λ

−1
)p0(y)

dy

=

∫

Qj,m(j)

(
c αj

)p0(y)
dy.

10



If cαj > 1, we may further estimate

1 ≥ 2−jn
(
c αj

)infz∈Qj,m(j)
p0(z)

,

or, equivalently,

c αj ≤ 2

jn

infz∈Qj,m(j)
p0(z)

= 2
jn

p0(x) 2

jn

infz∈Qj,m(j)
p0(z)

− jn

p0(x)
≤ c′2

jn

p0(x) (3.17)

and this estimate holds true also if c αj ≤ 1.

If

∞∑

j=0

α
q(x)
j ≤ 1, then (3.16) follows by monotonicity and p0(x) ≤ p1(x) for any C ≥ 1. If

∞∑

j=0

α
q(x)
j = ∞, then there is nothing to prove. In the remaining case 1 <

∞∑

j=0

α
q(x)
j < ∞ we find a

non-negative integer J ∈ N0 such that

2
Jnq(x)
p0(x) <

∞∑

j=0

α
q(x)
j ≤ 2

(J+1)nq(x)
p0(x) . (3.18)

We split the sum over j ∈ N0 into two parts, apply (3.17) in the first part and use the inequality

p0(x) ≤ p1(x) together with (3.18) in the second part.

∞∑

j=0

2
jn
(

1
p1(x)

− 1
p0(x)

)
q(x)

α
q(x)
j =

J∑

j=0

2
jn
(

1
p1(x)

− 1
p0(x)

)
q(x)

α
q(x)
j +

∞∑

j=J+1

2
jn
(

1
p1(x)

− 1
p0(x)

)
q(x)

α
q(x)
j

≤ cq(x)
J∑

j=0

2
jn
(

1
p1(x)

− 1
p0(x)

)
q(x)

2
jnq(x)
p0(x) + 2

(J+1)n
(

1
p1(x)

− 1
p0(x)

)
q(x)

∞∑

j=J+1

α
q(x)
j

≤ cq(x)
J∑

j=0

2
jnq(x)
p1(x) + 2

(J+1)nq(x)
p1(x) ≤ c

q(x)
1 2

(J+1)nq(x)
p1(x)

≤ c
q(x)
1 2

nq(x)
p1(x)

( ∞∑

j=0

α
q(x)
j

) p0(x)
p1(x)

≤ Cq(x)
( ∞∑

j=0

α
q(x)
j

) p0(x)
p1(x)

.

In the last line, we used 0 < p−1 ≤ p+
1 < ∞ and again (3.18). This finishes the proof of (3.16) and

consequently of the whole Step 2.

Theorem 3.2. Let −∞ < s1(x) < s0(x) < ∞ and 0 < p0(x) < p1(x) < ∞ for all x ∈ R
n with

0 < p−0 < p+
1 < ∞,

s0(x) −
n

p0(x)
= s1(x) −

n

p1(x)
, x ∈ R

n

and

ε := inf
x∈Rn

(s0(x) − s1(x)) = n inf
x∈Rn

(
1

p0(x)
−

1

p1(x)

)
> 0. (3.19)

Let s0,
1
p0

∈ C log
1−loc(R

n). Then, for every 0 < q ≤ ∞,

f
s0(·)
p0(·),∞

→֒ f
s1(·)
p1(·),q

.

11



Proof. We use again the notation of (3.1)-(3.4).

||γ|f
s1(·)
p1(·),q

|| =

∣∣∣∣

∣∣∣∣

( ∞∑

j=0

∑

m∈Zn

2js1(x)q|γj m|qχj m(x)

)1/q

|Lp1(·)(R
n)

∣∣∣∣

∣∣∣∣

≤

∣∣∣∣

∣∣∣∣

( ∞∑

j=0

∑

m∈Zn

2js1(x)q
(

inf
y∈Qjm

2−js0(y)h(y)
)q

χjm(x)
)1/q

|Lp1(·)(R
n)

∣∣∣∣

∣∣∣∣ (3.20)

≤

∣∣∣∣

∣∣∣∣
( ∞∑

j=0

∑

m∈Zn

2j(s1(x)−s0(x))q
(

inf
y∈Qjm

2j(s0(x)−s0(y))h(y)
)q

χjm(x)
)1/q

|Lp1(·)(R
n)

∣∣∣∣

∣∣∣∣

≤ c

∣∣∣∣

∣∣∣∣
( ∞∑

j=0

∑

m∈Zn

2
jn
(

1
p1(x)

− 1
p0(x)

)
q
(

inf
y∈Qjm

h(y)
)q

χjm(x)
)1/q

|Lp1(·)(R
n)

∣∣∣∣

∣∣∣∣.

Let again λ > 0 be a positive real number, such that
∫

Rn

(h(x)

λ

)p0(x)
dx ≤ 1. (3.21)

For almost every x ∈ R
n and every j ∈ N0 there is exactly one m = m(j) such that x ∈ Qj,m(j).

Fix one such x ∈ R
n and set

αj :=

inf
y∈Qj,m(j)

h(y)

λ
.

Then {αj}
∞
j=0 is a non-decreasing sequence of non-negative real numbers with α := lim

j→∞
αj ≤

h(x)

λ
.

Let first α ≤ 1. Then we use the monotonicity of {αj}, (3.19) and obtain for Cq ≥ (1−2−nǫq)−1

(
∞∑

j=0

C−q2
jn
(

1
p1(x)

− 1
p0(x)

)
q
αq

j

)p1(x)/q

≤

(
∞∑

j=0

C−q2
jn
(

1
p1(x)

− 1
p0(x)

)
q
αq

)p1(x)/q

=

(
∞∑

j=0

C−q2
jn
(

1
p1(x)

− 1
p0(x)

)
q

)p1(x)/q

· αp1(x) ≤ αp0(x) ≤
(h(x)

λ

)p0(x)
. (3.22)

Let us now consider the case α > 1. By (3.21), we get

1 ≥

∫

Rn

(h(x)

λ

)p0(x)
dx ≥

∫

Qj,m(j)

α
p0(x)
j dx.

If αj > 1, we may further estimate

1 ≥ 2−jnα
infy∈Qj,m(j)

p0(y)

j .

We apply Lemma 2.9 for 1
p0

to obtain an analogue of (3.17)

αj ≤ 2

jn

infy∈Qj,m(j)
p0(y)

= 2
jn

p0(x) · 2

jn

infy∈Qj,m(j)

− jn

p0(x)
≤ clog 2

jn

p0(x) (3.23)

and this estimate holds true also for αj ≤ 1.

We show, that for C > 0 large enough (cf. (3.16))

∞∑

j=0

C−q2
jn
(

1
p1(x)

− 1
p0(x)

)
q
αq

j ≤ α
qp0(x)
p1(x) . (3.24)
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As α = ∞ implies h(x) = ∞ and this happens only for a set of x ∈ R
n with measure zero, we may

choose for almost every x ∈ R
n a non-negative integer J ∈ N0 such that

2
Jn

p0(x) < α ≤ 2
(J+1)n
p0(x) (3.25)

and split
∞∑

j=0

C−q2
jn
(

1
p1(x)

− 1
p0(x)

)
q
αq

j =

J∑

j=0

. . .

︸ ︷︷ ︸
I

+

∞∑

j=J+1

. . .

︸ ︷︷ ︸
II

.

By (3.23) and (3.25)

I =

J∑

j=0

C−q2
jnq

p1(x) · 2
− jnq

p0(x) · αq
j ≤

J∑

j=0

C−qclog2
jnq

p1(x) ≤ c−12
(J+1)nq

p1(x) ≤ 2
Jnq

p1(x) ≤ α
qp0(x)
p1(x) .

The monotonicity of {αj} and (3.25) lead to

II ≤

∞∑

j=J+1

2
jn
(

1
p1(x)

− 1
p0(x)

)
q
αq

jC
−q ≤ αqC−q

∞∑

j=J+1

2
jn
(

1
p1(x)

− 1
p0(x)

)
q
≤ αqC−q2

Jn
(

1
p1(x)

− 1
p0(x)

)
q

≤ αqC−q
(
αp0(x)2−n

)( 1
p1(x)

− 1
p0(x)

)
q

= α
qp0(x)
p1(x) C−q2

n
(

1
p0(x)

− 1
p1(x)

)
q
≤ α

qp0(x)
p1(x)

This finishes the proof of (3.24). Now (3.20), (3.22), (3.24) with (3.21) gives

||γ|f
s1(·)
p1(·),q

|| ≤ C||γ|f
s0(·)
p0(·),∞

||.

Remark 3.3. The original proof of Jawerth of Theorem 1.1 used the technique of a distribution

function, which fails for Lp(·)(R
n). Another proof was given by Johnsen and Sickel [22] and relied

on an inequality of Plancherel-Pólya-Nikol’skij type. Its classical proof [34, Chapter 1.3] is based

on dilation arguments and (at least to our knowledge) there is still no analogue of these inequalities

for Lp(·)(R
n) up to now.

Our proofs of Theorems 3.1 and 3.2 were motived by [38]. An essential technique used there

was the concept of non-increasing rearrangement. Unfortunately, it fails completely in the case

of variable integrability exponents p0(x) and p1(x). To avoid this obstacle, we had to employ the

somehow artificial inequality (3.24) - or its analogue (3.16). To motivate this step, let us consider

the interpolation inequality between Lorentz spaces

||f |Lp1,q(0, 1)|| ≤ c ||f |Lp0,∞(0, 1)||θ · ||f |L∞(0, 1)||1−θ (3.26)

with

0 < p0 < p1 < ∞,
1

p1
=

θ

p0
+

1 − θ

∞
, 0 < θ < 1

and its discrete version
(

∞∑

j=0

2
−jnq( 1

p0
− 1

p1
)
f∗(2−jn)q

)1/q

≤ c
(

sup
j∈N0

2−jn/p0f∗(2−jn)
)1−

p0
p1 ·

(
sup
j∈N0

f∗(2−jn)
) p0

p1 .

13



We refer to [2, Chapter 2] as a standard reference for non-increasing rearrangements and to [2,

Chapter 4.4] for the notation connected with Lorentz spaces. We leave the details to the reader.

The reader may also observe some similarities between (3.26) and the inequality (4) of [22].

Using Theorem 2.12, we obtain immediately following

Theorem 3.4. Let s0, s1, p0, p1 and q be continuous functions satisfying the Standing assumptions

of [9]. Let s0(x) ≥ s1(x) and p0(x) ≤ p1(x) for all x ∈ R
n with

s0(x) −
n

p0(x)
= s1(x) −

n

p1(x)
, x ∈ R

n.

Then

F
s0(·)
p0(·),q(·)(R

n) →֒ F
s1(·)
p1(·),q(·)(R

n).

We denote by W k
p(·)(R

n) the Sobolev space of functions form Lp(·)(R
n), such that all its distri-

butional derivatives of order smaller or equal to k exist and belong to Lp(·)(R
n). Furthermore, we

introduce the Bessel potential spaces of variable integrability introduced by Almeida and Samko

[1] and by Gurka, Harjulehto and Nekvinda [12]. Let σ ∈ R and let Bσ = F−1(1 + |ξ|2)−σ/2F be

the Bessel potential operator. We set

Lσ
p(·)(R

n) = {Bσf : f ∈ Lp(·)(R
n)}

and equip this space with norm ||f |Lσ
p(·)(R

n)|| = ||B−σf |Lp(·)(R
n)||.

Let p ∈ C log(Rn) with 1 < p− ≤ p+ < ∞ and σ ∈ [0,∞). It was shown in [9, Theorem

4.5] that F σ
p(·),2(R

n) ∼= Lσ
p(·)(R

n) in the sense of equivalent norms. If moreover σ ∈ N0, then

F σ
p(·),2(R

n) ∼= W σ
p(·)(R

n).

Hence setting q = 2 implies embeddings of Bessel potential spaces.

Theorem 3.5. Let 0 ≤ s1 ≤ s0 < ∞ and p0, p1 ∈ C log(Rn) with 1 < p−0 ≤ p0(x) ≤ p1(x) ≤ p+
1 < ∞

for all x ∈ R
n. If

s0 −
n

p0(x)
= s1 −

n

p1(x)
, x ∈ R

n,

then

Ls0

p0(·)
(Rn) →֒ Ls1

p1(·)
(Rn).

If s1 ∈ N0, then Ls1

p1(·)
(Rn) may be replaced by W s1

p1(·)
(Rn) and similarly for s0.

Remark 3.6. Let us only mention, that if 1 < p− ≤ p+ < ∞, then p ∈ C log(Rn) if, and only if,
1
p ∈ C log(Rn). So the Standing assumptions on p0 and p1 are satisfied and the proof becomes trivial.

Theorem 3.7. Let s0, s1, p0, p1, q0, q1 be continuous functions satisfying the Standing assumptions

of [9] with

s0(x) −
n

p0(x)
= s1(x) −

n

p1(x)
, x ∈ R

n

and

inf
x∈Rn

(s0(x) − s1(x)) = n inf
x∈Rn

( 1

p0(x)
−

1

p1(x)

)
> 0.

14



Then

F
s0(·)
p0(·),q0(·)

(Rn) →֒ F
s1(·)
p1(·),q1(·)

(Rn).

Proof. By monotonicity and using Theorem 3.2, we obtain

f
s0(·)
p0(·),q0(·)

→֒ f
s0(·)
p0(·),∞

→֒ f
s1(·)

p1(·),q
−

1

→֒ f
s1(·)
p1(·),q1(·)

and Theorem 2.12 finishes the proof.
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[10] D. E. Edmunds and J. Rákosńık, Sobolev embeddings with variable exponent, Studia Math. 143

(2000), no. 3, 267-293.
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