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Abstract

We give a proof of the Jawerth and Franke embedding for function spaces with dominating
mixed smoothness of Besov and Triebel-Lizorkin type

Sr0

p0,q0
F (Rd1 × · · · × R

dN ) →֒ Sr1

p1,p0
B(Rd1 × · · · × R

dN )

and
Sr0

p0,p1
B(Rd1 × · · · × R

dN ) →֒ Sr1

p1,q1
F (Rd1 × · · · × R

dN )

where
0 < p0 < p1 ≤ ∞ and 0 < q0, q1 ≤ ∞

and
d = (d1, . . . , dN ) ∈ N

N , ri = (ri
1
, . . . , ri

N ) ∈ R
N , i = 0, 1

with

r0i −
di

p0

= r1i −
di

p1

, i = 1, . . . , N.

Our main tools are discretization by a wavelet isomorphism and multivariate rearrangements.
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1 Introduction and main results

1.1 Introduction

Our aim is to study function spaces with dominating mixed smoothness properties. These spaces
were first defined by S. M. Nikol’skij in [18] and [19]. He introduced the spaces of Sobolev type

Sr
pW (R2) =

{
f ∈ Lp(R2) : ||f |Sr

pW (R2)|| = ||f |Lp(R2)|| +
∣∣∣
∣∣∣
∂r1f

∂xr1
1

| Lp(R2)
∣∣∣
∣∣∣+

+
∣∣∣
∣∣∣
∂r2f

∂xr2
2

| Lp(R2)
∣∣∣
∣∣∣+
∣∣∣
∣∣∣
∂r1+r2f

∂xr1
1 ∂x

r2
2

| Lp(R2)
∣∣∣
∣∣∣ <∞

}
,

where 1 < p < ∞, r = (r1, r2) ∈ N
2
0. The mixed derivative ∂r1+r2f

∂x
r1
1 ∂x

r2
2

plays the dominant part here

and gave the name to this class of spaces.

We prefer to work with the following more general version. Namely, let N ≥ 2 be a natural number
and let d1, . . . , dN be natural numbers. We set d = (d1, . . . , dN ) and d = d1 + · · · + dN . Let further
r = (r1, . . . , rN ) ∈ N

N
0 and 1 < p <∞. Then

Sr
pW (Rd) = Sr

pW (Rd1 × · · · × R
dN ) =

{
f ∈ Lp(Rd) : ||Dαf |Lp(Rd)|| <∞ for all

α = (α1, . . . , αN ), αi ∈ N
di

0 and |αi| ≤ ri for i = 1, . . . , N
}
.

The spaces of this type found many applications in connection with partial differential equations
([18], [19], [37], [17], [38]), approximation theory ([28], [29], [33], [27]), information based complexity
([36], [20]) and other areas of mathematics. The reader may consult the survey [22] for more
references.

The Fourier-analytic approach to these function spaces is based on the so-called decomposition of
unity.

Let ϕ ∈ S(Rn) be from the Schwartz-space of smooth rapidly decreasing functions with

ϕ(x) = 1 if |x| ≤ 4/3 and ϕ(x) = 0 if |x| ≥ 3/2.

We put ϕ0 = ϕ, ϕ1 = ϕ(·/2) − ϕ and

ϕj(x) = ϕ1(2−j+1x), x ∈ R
n, j ∈ N.

We observe, that the system {ϕj}
∞
j=0 satisfies

∞∑

j=0

ϕj(t) = 1 for all t ∈ R
n. (1.1)

Let N ≥ 2 be again a natural number and let d1, . . . dN be natural numbers. We define d and
d as above. For i = 1, . . . , N we define

{
ϕi

j

}∞
j=0

⊂ S(Rdi) as described above and put for k =

(k1, . . . , kN ) ∈ N
N
0 and x = (x1, . . . , xN ) ∈ R

d

ϕk(x) := ϕ1
k1

(x1) · · ·ϕN
kN

(xN ). (1.2)

As
∑

k∈NN
0

ϕk(x) =

(
∞∑

k1=0

ϕk1(x1)

)
· · ·

(
∞∑

kN=0

ϕkN
(xN )

)
= 1

for all x = (x1, . . . , xN ) ∈ R
d, we see that

{
ϕk

}
k∈NN

0
forms also a decomposition of unity on R

d

with the tensor product structure.

We denote by f̂ the Fourier transform of a distribution f ∈ S′(Rd) and by f∨ its inverse transform.

2



M. Hansen and J. Vyb́ıral On the Jawerth-Franke embedding . . .

Definition 1.1. Let r ∈ R
N , 0 < q ≤ ∞ and ϕ =

{
ϕk

}
k∈NN

0
be as above.

1. Let 0 < p ≤ ∞. Then Sr
p,qB(Rd1 × · · · × R

dN ) is the set of all f ∈ S′(Rd), such that

∥∥f
∣∣Sr

p,qB(Rd1 × · · · × R
dN )
∥∥

ϕ
:=

(
∑

k∈NN
0

2k·rq
∥∥(ϕkf̂

)∨∣∣Lp(Rd)
∥∥q

)1/q

(1.3)

is finite.

2. Let 0 < p <∞. Then Sr
p,qF (Rd1 × · · · × R

dN ) is the set of all f ∈ S′(Rd), such that

∥∥f
∣∣Sr

p,qF (Rd1 × · · · × R
dN )
∥∥

ϕ
:=

∥∥∥∥∥

(
∑

k∈NN
0

2k·rq
∣∣(ϕkf̂

)∨
(·)
∣∣q
)1/q∣∣∣∣∣Lp(Rd)

∥∥∥∥∥ (1.4)

is finite.

Let us mention, that (1.3) and (1.4) lead to equivalent quasi-norms for different choices of {ϕk}.
If d1 = d2 = · · · = dN , then this and other basic aspects of the theory of function spaces with
dominating mixed smoothness may be found in [1], [24], [2] or [34]. We refer to [10] for the general

case. To shorten the notation, we write sometimes Sr
p,qB(Rd) instead of Sr

p,qB(Rd1 × · · · × R
dN )

and similar in the F−case.

One of the main features of the classes Sr
p,qB(Rd) and Sr

p,qF (Rd) consists in the fact, that their
quasi-norms are cross-quasi-norms, i.e. if

f = (f1 ⊗ · · · ⊗ fN )

where fi ∈ S′(Rdi), i = 1, . . . , N and f is a tensor product of tempered distributions in the sense
of [25, Chapters IV and VII] or [12, Chapter X], then

||f1 ⊗ · · · ⊗ fN |Sr
p,qB(Rd1 × · · · × R

dN )|| =
N∏

i=1

||fi|B
ri
p,q(Rdi)|| (1.5)

and

||f1 ⊗ · · · ⊗ fN |Sr
p,qF (Rd1 × · · · × R

dN )|| =

N∏

i=1

||fi|F
ri
p,q(Rdi)|| (1.6)

where Bs
p,q(R

n) and F s
p,q(Rn) are the Fourier-analytic Besov spaces and Triebel-Lizorkin spaces,

respectively.

1.2 Main result

Our main result is the following theorem:

Theorem 1.2. Let r0, r1 ∈ R
N , 0 < p0 < p1 ≤ ∞ and 0 < q0, q1 ≤ ∞ with

r0j −
dj

p0
= r1j −

dj

p1
, j = 1, . . . , N. (1.7)

1. Then
Sr0

p0,q0
F (Rd1 × · · · × R

dN ) →֒ Sr1

p1,q1
B(Rd1 × · · · × R

dN ) (1.8)

if, and only if, p0 ≤ q1.
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2. If p1 <∞, then

Sr0

p0,q0
B(Rd1 × · · · × R

dN ) →֒ Sr1

p1,q1
F (Rd1 × · · · × R

dN ) (1.9)

if, and only if, q0 ≤ p1.

Remark 1.3. (i) The original proofs in the isotropic case, cf. [13] and [9], use interpolation tech-
niques. This approach was applied in [23] also to function spaces with dominating mixed smoothness
but (although these authors succeeded to overcome numerous obstacles) led only to partial results.

Here, we shall use a different method of proof, originally introduced in [35] to prove Theorem 1.2
in the isotropic situation.

(ii) Embeddings of Jawerth-Franke type have been proved already for several other scales of function
spaces of Besov and Triebel-Lizorkin type. We refer to [8, Appendix C.3] for anisotropic case, to [6]
and [11] for weighted function spaces and to [5] and [7] for spaces with generalised smoothness. In
general, all these authors used the method of Jawerth and Franke and we believe that in all these
cases one could apply our approach as well.

(iii) Embedding (1.8) was already obtained by Krbec and Schmeisser (cf. [15, Lemma 4.7]) in the
special case N = 2 and p1 = ∞. Furthermore, Schmeisser and Sickel (cf. [23, Theorem 3]) proved
(1.9) in the Banach space setting, i.e. 1 ≤ p0 < p1 < ∞ and 1 ≤ q0, q1 ≤ ∞. The use of duality
arguments allowed to prove also (1.8) but only for 1 < p0 < ∞. Our approach yields the proof of
Theorem 1.2 without any further restrictions on the parameters.

1.3 Further consequences

Let C(Rd) be the space of all complex-valued bounded and uniformly continuous functions on Rd.
One of the well studied problems in the isotropic case is the embedding of Besov and Triebel-
Lizorkin spaces into C(Rd) or Lr(Rd) with 1 ≤ r ≤ ∞. This problem is connected with the works
of Grisvard, Peetre, Golovkin, Stein, Zygmund, Besov or Iljin. We refer to [4] for details.

We use (1.8) to characterize those spaces Sr
p,qB(Rd) and Sr

p,qF (Rd) which are embedded in C(Rd)

and Lu(Rd), 1 < u ≤ ∞. This approach was applied already in [16], cf. also [22]. Unfortunately,
there was a flaw in the arguments used in [16].

Theorem 1.4. (i) Let r ∈ R
N , 0 < p ≤ ∞ and 0 < q ≤ ∞. Then the following three assertions

are equivalent.

(a) Sr
p,qB(Rd1 × · · · × R

dN ) →֒ C(Rd),

(b) Sr
p,qB(Rd1 × · · · × R

dN ) →֒ L∞(Rd),

(c)





ri −
di

p
> 0 for all i = 1, . . . , N or

ri −
di

p
≥ 0 for all i = 1, . . . , N and 0 < q ≤ 1.

(ii) Let r ∈ R
N , 0 < p <∞ and 0 < q ≤ ∞. Then the following three assertions are equivalent.

(a′) Sr
p,qF (Rd1 × · · · × R

dN ) →֒ C(Rd),

(b′) Sr
p,qF (Rd1 × · · · × R

dN ) →֒ L∞(Rd),

(c′)





ri −
di

p
> 0 for all i = 1, . . . , N or

ri −
di

p
≥ 0 for all i = 1, . . . , N and 0 < p ≤ 1.

We consider a similar problem also for Lu, 1 < u < ∞. Due to the Littlewood-Paley theory the
number 2 plays an exceptional role if 1 < u <∞.
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Theorem 1.5. (i) Let r ∈ R
N , 1 < u < ∞, 0 < p ≤ ∞ and 0 < q ≤ ∞. Then Sr

p,qB(Rd1 × · · · ×

R
dN ) →֒ Lu(Rd) if, and only if, p ≤ u and



ri >
di

p
−
di

u
for all i = 1, . . . , N or

ri ≥
di

p
−
di

u
for all i = 1, . . . , N, 0 < p < u and 0 < q ≤ u or

ri ≥ 0 for all i = 1, . . . , N, p = u and 0 < q ≤ min(u, 2).

(ii) Let r ∈ R
N , 1 < u < ∞, 0 < p < ∞ and 0 < q ≤ ∞. Then Sr

p,qF (Rd1 × · · · × R
dN ) →֒ Lu(Rd)

if, and only if, p ≤ u and



ri >
di

p
−
di

u
for all i = 1, . . . , N or

ri ≥
di

p
−
di

u
for all i = 1, . . . , N and 0 < p < u or

ri ≥ 0 for all i = 1, . . . , N, p = u and 0 < q ≤ 2.

Remark 1.6. Let 1 < u ≤ ∞. Direct comparison of Theorems 1.4-1.5 with similar assertions for
isotropic Besov and Triebel-Lizorkin spaces (cf. [26]) shows, that Sr

p,qB(Rd1 ×· · ·×R
dN ) →֒ Lu(Rd)

if, and only if, Bri
p,q(Rdi) →֒ Lu(Rdi) for all i = 1, . . . , N. The same statement holds true, if L∞(Rd)

is replaced by C(Rd) and also for the Triebel-Lizorkin spaces.

Remark 1.7. Also the optimal embeddings into L1(Rn) and Lloc
1 (Rn) - the space of locally integrable

functions - are very well known in the isotropic case. To extend these results to function spaces
with dominating mixed smoothness, it would be probably necessary to consider the analog of the
Hardy space H1 and of the space of bounded mean oscilation BMO in the framework of dominating
mixed smoothness. But this goes beyond the scope of this work.

2 Proofs

2.1 Preliminaries

Our approach is based on two classical techniques - decomposition theorems and multivariate
rearrangements.

First, we describe the sequence spaces associated to Sr
p,qB(Rd) and Sr

p,qF (Rd).

Let m ∈ Z
d, m = (m1, . . . ,mN ) with mi ∈ Z

di , and ν ∈ N
N
0 . Then Qν,m denotes the closed cube in

R
d with sides parallel to the coordinate axes, centred at the point 2−νm = (2−ν1m1, . . . , 2−νNmN ),

and with sides of the lengths 2−ν1, . . . , 2−νN . Explicitly,

Qν,m = {x ∈ R
d : |xi − 2−νimi|∞ ≤ 2−νi−1, i = 1, . . . , N}, (2.1)

where x = (x1, . . . , xN ), xi ∈ R
di , and |t|∞ = max

i=1,...,n
|ti|, t ∈ R

n. By χν,m = χQν,m
we denote the

characteristic function of Qν,m. If

λ = {λν,m ∈ C : ν ∈ N
N
0 ,m ∈ Z

d},

r ∈ R
N and 0 < p, q ≤ ∞, we set

∥∥λ
∣∣sr

p,qb
∥∥ =

(
∑

ν∈NN
0

2ν·(r−d/p)q

(
∑

m∈Zd

|λν,m|p

)q/p)1/q

, (2.2)

appropriately modified if p = ∞ and/or q = ∞. If p <∞, we define also

∥∥λ
∣∣sr

p,qf
∥∥ =

∥∥∥∥∥

(
∑

ν∈NN
0

∑

m∈Zd

|2ν·rλν,m|qχν,m(·)

)1/q∣∣∣∣∣Lp(Rd)

∥∥∥∥∥. (2.3)

5
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Using the wavelet decomposition techniques, one may give linear isomorphisms between function
spaces with dominating mixed smoothness properties and corresponding sequence spaces. We refer
to [35] if d1 = d2 = · · · = dN = 1 and to [10] in the general case.

This allows to reduce the proof of Theorem 1.2 to the embeddings of sequence spaces. Hence, it is
enough to prove that under condition (1.7)

sr0
p0,q0

f →֒ sr1
p1,q1

b (2.4)

if, and only if, p0 ≤ q1 and
sr0
p0,q0

b →֒ sr1
p1,q1

f, (2.5)

if, and only if, q0 ≤ p1.

Now, we present briefly the concept of non-increasing rearrangement. We refer to [3, Chapter 2]
for details.

Definition 2.1. Let µ be the Lebesgue measure in R
n. If h is a measurable function on R

n, we
define the non-increasing rearrangement of h through

h∗(t) = sup{λ > 0 : µ{x ∈ R
n : |h(x)| > λ} > t}, t ∈ (0,∞). (2.6)

We shall need also the so-called multivariate rearrangements.

Let f : (0,∞)k−1 × R
dk × · · · × R

dN → C, k ≤ N , be a measurable function. We set

(Rkf)(t1, . . . , tk−1, s, y
k+1, . . . , yN ) = [f(t1, . . . , tk−1, ·, y

k+1, . . . , yN )]∗(s),

s > 0, t1, . . . , tk−1 ∈ (0,∞), yi ∈ R
di , i = k + 1, . . . , N.

We define the multivariate non-increasing rearrangement of f : R
d → C by

(Rf)(s) = (RN ◦ · · · ◦R1f)(s), s = (s1, . . . , sN ) ∈ (0,∞)N .

The utility of multivariate rearrangements in connection with embeddings of Sobolev type has been
discovered by Kolyada [14]. Later on, it was used by Krbec and Schmeisser [16] in connection with
function spaces with dominating mixed smoothness.

We shall use the following two properties. They are well known in the scalar case N = 1 (cf. [3])
and may be easily generalised to N > 1.

Lemma 2.2. If 0 < p ≤ ∞, then

||h|Lp(Rd)|| = ||Rh|Lp((0,∞)N )||

for every measurable function h.

Lemma 2.3. Let h1 and h2 be two non-negative measurable functions on R
d. If 1 ≤ p ≤ ∞, then

||h1 + h2|Lp(Rd)|| ≤ ||Rh1 +Rh2|Lp((0,∞)N )||.

If g : (0,∞)N → R is measurable, we define the average operator Ag by

(Ag)(t) :=

( N∏

i=1

ti

)−1 ∫

[0,t]
|g(x)|dx for t ∈ (0,∞)N .

The following property is also well known if N = 1, the generalisation to N > 1 follows by iteration.

Lemma 2.4. If 1 < p ≤ ∞, then there is a constant cp such that

||Ah|Lp((0,∞)N )|| ≤ cp||h|Lp((0,∞)N )||

for every measurable function h defined on (0,∞)N .

6
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2.2 Proof of Theorem 1.2

Step 1. Proof of (2.4)

We observe, that the operator

Ir : λν,m → λ̃ν,m = 2ν·rλν,m, ν ∈ N
N
0 , m ∈ Z

d

forms a linear isomorphism from sr0

p,qb onto sr0−r
p,q b, where r, r0 ∈ R

N are arbitrary. The same
statement holds for the f -spaces as well.

We combine this with the simple embedding

sr
p,q0

f →֒ sr
p,q1

f if 0 < q0 ≤ q1 ≤ ∞,

and hence it is enough to prove that

sr
p0,∞f →֒ s0p1,p0

b, (2.7)

where

ri = di

(
1

p0
−

1

p1

)
, i = 1, . . . , N. (2.8)

Let λ ∈ sr
p0,∞f . We set

h(x) = sup
ν∈NN

0

2ν·r
∑

m∈Zd

|λν,m|χν,m(x), x ∈ R
d. (2.9)

Using this notation, we get

|λν,m| ≤ 2−ν·r inf
x∈Qν,m

h(x), ν ∈ N
N
0 , m ∈ Z

d

and ∥∥h
∣∣Lp0(Rd)

∥∥ =
∥∥λ
∣∣sr

p0,∞f
∥∥ <∞. (2.10)

The main step of our calculation is the following estimate:

(
∑

m∈Zd

inf
x∈Qν,m

h(x)p1

)1/p1

≤

(
∑

k∈NN

(Rh)(2−(ν1+1)d1k1, . . . , 2
−(νN +1)dNkN )p1

)1/p1

, ν ∈ N
N
0 ,

(2.11)
for 0 < p1 <∞ and

sup
m∈Zd

inf
x∈Qν,m

h(x) ≤ (Rh)(2−(ν1+1)d1 , . . . , 2−(νN +1)dN ) (2.12)

for p1 = ∞ and all ν ∈ N
N
0 .

We start with the case p1 = ∞. To prove (2.12) we fix some ν ∈ N
N
0 . Then we make use of the

fact, that the sets Qν,m have a product structure. Hence, they may be rewritten as

Qν,m = Qν1,m1 × · · · ×QνN ,mN .

Let ε > 0, and fix x2 ∈ R
d2 , . . . , xN ∈ R

dN . Then there is some m1
0 ∈ Z

d1, such that

sup
m1∈Zd1

inf
y∈Q

ν1,m1

h(y, x2, . . . , xN ) < inf
y∈Q

ν1,m1
0

h(y, x2, . . . , xN ) + ε. (2.13)

7
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Let us point out, that (2.10) implies that the supremum on the left-hand side of (2.13) is finite for
almost every (x2, . . . , xN ) ∈ R

d2+···+dN .

Obviously,
h(x1, x2, . . . , xN ) > inf

y∈Q
ν1,m1

0

h(y, x2, . . . , xN ) − ε

holds for all x1 ∈ Qν1,m1
0
. This is a set of Lebesgue-measure 2−ν1d1 > 2−(ν1+1)d1 . From this, it

follows

(R1h)(2−(ν1+1)d1 , x2, . . . , xN ) ≥ inf
y∈Q

ν1,m1
0

h(y, x2, . . . , xN ) − ε

≥ sup
m1∈Zd1

inf
y∈Q

ν1,m1

h(y, x2, . . . , xN ) − 2ε.

With ε→ 0 we get

sup
k1∈N

(R1h)(2−(ν1+1)d1k1, x
2, . . . , xN ) = (R1h)(2−(ν1+1)d1 , x2, . . . , xN )

≥ sup
m1∈Zd1

inf
y∈Q

ν1,m1

h(y, x2, . . . , xN ).

If we use the same argument for the function (R1h)(2−(ν1+1)d1 , ·, x3, . . . , xN ), we get

sup
k1,k2∈N

(R2 ◦R1h)(2−(ν1+1)d1k1, 2
−(ν2+1)d2k2, x

3, . . . , xN )

≥ sup
m2∈Zd2

inf
y2∈Q

ν2,m2

(R1h)(2−(ν1+1)d1 , y2, x3, . . . , xN )

≥ sup
m2∈Zd2

inf
y2∈Q

ν2,m2

sup
m1∈Zd1

inf
y1∈Q

ν1,m1

h(y1, y2, x3, . . . , xN )

≥ sup
m2∈Zd2 ,m1∈Zd1

inf
y2∈Q

ν2,m2 ,y1∈Q
ν1,m1

h(y1, y2, x3, . . . , xN ).

Further iteration yields

sup
k∈NN

(Rh)(2−(ν1+1)d1k1, . . . , 2
−(νN+1)dN kN )

≥ sup
mN∈Z

dN ,...,m1∈Zd1

inf
yN∈Q

νN ,mN ,...,y1∈Q
ν1,m1

h(y1, . . . , yN ) = sup
m∈Zd

inf
y∈Qν,m

h(y),

and (2.12) is proven.

If 0 < p1 < ∞ then (2.11) may be proved by similar arguments, but we prefer to present an
alternative way. We shall use the abbreviation ηm := inf

x∈Qν,m

h(x). By (2.9) and (2.10) we have

0 ≤ ηm <∞, m ∈ Z
d.

As the interiors of Qν,m are mutually disjoint, we may define a new function h̃ by

h̃(y) = ηm, y ∈ interior(Qν,m) and h̃(y) = 0 if y ∈ boundary(Qν,m).

One observes immediately, that 0 ≤ h̃(x) ≤ h(x) for x ∈ R
d and therefore (Rh̃)(t) ≤ (Rh)(t) for

t ∈ (0,∞)N .

It follows, that



∑

m∈Zd

inf
x∈Qν,m

h(x)p1




1/p1

= 2ν·d/p1||h̃|Lp1(Rd)|| = 2ν·d/p1 ||Rh̃|Lp1((0,∞)N )||.

8
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As h̃ is constant on the cubesQν,m, Rh̃ is constant on the cubesQ′
ν,m with vertices in (2−ν1d1m1, . . . ,

2−νN dNmN ) and (2−ν1d1(m1 + 1), . . . , 2−νN dN (mN + 1)) and sides parallel to the coordinate axes.
Here, m = (m1, . . . ,mN ) ∈ N

N
0 .

Hence

2ν·d/p1||Rh̃|Lp1((0,∞)N )|| ≤



∑

k∈NN

(Rh̃)(2−(ν1+1)d1k1, . . . , 2
−(νN +1)dN kN )p1




1/p1

≤



∑

k∈NN

(Rh)(2−(ν1+1)d1k1, . . . , 2
−(νN +1)dN kN )p1




1/p1

and (2.11) follows.

Now we are ready to give the proof of (2.4). Using condition (1.7) we obtain rp0 + dp0/p1 = d and
hence

∥∥λ
∣∣s0p1,p0

b
∥∥p0 ≤

∑

ν∈NN
0

2−ν·d



∑

m∈Zd

inf
x∈Qν m

h(x)p1




p0/p1

≤
∑

ν∈NN
0

2−ν·d



∑

k∈NN

(Rh)(2−(ν1+1)d1k1, . . . , 2
−(νN +1)dN kN )p1




p0/p1

≤
∑

ν∈NN
0

2−ν·d



∑

l∈NN
0

∑

k∈NN :
∀i:2lidi≤ki<2(li+1)di

(Rh)(2−(ν1+1)d1k1, . . . , 2
−(νN+1)dN kN )p1




p0/p1

.
∑

ν∈NN
0

2−ν·d



∑

l∈NN
0

2l·d(Rh)(2(l1−ν1−1)d1 , . . . , 2(lN−νN−1)dN )p1




p0/p1

≤
∑

ν∈NN
0

2−ν·d
∑

l∈NN
0

2
l·d

p0
p1 (Rh)(2(l1−ν1−1)d1 , . . . , 2(lN−νN−1)dN )p0 .

We substitute n = l − ν − 1 and find

∥∥λ
∣∣s0p1,p0

b
∥∥p0 ≤

∑

ν∈NN
0

2−ν·d
∑

n∈ZN :n+ν+1∈NN
0

2
(n+ν+1)·d

p0
p1 (Rh)(2n1d1 , . . . , 2nN dN )p0

≤ 2
d

p0
p1

∑

n∈ZN

2
n·d

p0
p1 (Rh)(2n1d1 , . . . , 2nN dN )p0

∑

ν∈ZN :ν+1≥−n

2
ν·d(

p0
p1

−1)

.
∑

n∈ZN

2
n·d

p0
p1 (Rh)(2n1d1 , . . . , 2nN dN )p02

−n·d(
p0
p1

−1)

=
∑

n∈ZN

2n·d(Rh)(2n1d1 , . . . , 2nN dN )p0 ∼
∥∥Rh

∣∣Lp0((0,∞)N )
∥∥p0 =

∥∥h
∣∣Lp0(Rd)

∥∥p0 .

This finishes the proof of (2.4) under the condition (1.7) and p1 < ∞. In case p1 = ∞ one can
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estimate more directly

∥∥λ
∣∣s0∞,p0

b
∥∥p0 ≤

∑

ν∈NN
0

2−ν·d sup
m∈Zd

inf
x∈Qν m

h(x)p0

≤
∑

ν∈NN
0

2−ν·d(Rh)(2−(ν1+1)d1 , . . . , 2−(νN +1)dN )p0

≤ 2d
∑

ν∈ZN

2−(ν+1)·d(Rh)(2−(ν1+1)d1 , . . . , 2−(νN+1)dN )p0

∼
∥∥Rh

∣∣Lp0((0,∞)N )
∥∥p0 =

∥∥h
∣∣Lp0(Rd)

∥∥p0.

Step 2. Proof of (2.5)

We use similar arguments as in Step 1, this time combined with duality.

Using lifting properties and trivial embeddings, we may again restrict the proof to

sr
p0,p1

b →֒ s0p1,qf,

where

ri = di

(
1

p0
−

1

p1

)
, i = 1, . . . , N

and 0 < q < p0.

Let λ = {λν}ν∈NN
0

= {λν,m}ν∈NN
0 ,m∈Zd be in sr

p0,p1
b. The multivariate non-increasing rearrangement

of λν = {λν,m}m∈Zd is defined similar to Definition 2.1 and denoted by λ̃ν = {λ̃ν,m}m∈NN
0

. As

λν ∈ ℓp0(Zd), this rearrangement is also a rearrangement of a sequence in the classical sense.
Furthermore, we write χ̃ν m for characteristic functions of cubes Q′

ν,m ⊂ (0,∞)N , which were used
already in the Step 1.

Then, using q < p1 and Lemma 2.3,

∥∥λ
∣∣s0p1qf

∥∥ =

∥∥∥∥∥

(
∑

ν∈NN
0

∑

m∈Zd

|λν m|qχν,m(x)

)1/q∣∣∣∣∣Lp1(Rd)

∥∥∥∥∥

≤

∥∥∥∥∥
∑

ν∈NN
0

∑

m∈NN
0

λ̃q
ν mχ̃ν m(x)

∣∣∣∣∣L
p1
q

((0,∞)N )

∥∥∥∥∥

1/q

. (2.14)

Let α and β be the conjugate exponents of p0

q and of p1

q , respectively. Using duality, (2.14) may be
rewritten as

∥∥λ
∣∣s0p1qf

∥∥ ≤ sup
g




∫

(0,∞)N

g(x)



∑

ν∈NN
0

∑

m∈NN
0

λ̃q
ν,mχ̃ν,m(x)


 dx




1/q

= sup
g



∑

ν∈NN
0

∑

m∈NN
0

2−ν·dλ̃q
ν,mgν,m




1/q

, (2.15)

where the supremum is taken over all non-negative functions g : (0,∞)N → [0,∞], which are

non-increasing in each variable, ‖g|Lβ((0,∞)N )‖ ≤ 1 and gν,m = 2ν·d
∫
g(x)χ̃ν,m(x)dx.
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We use twice Hölder’s inequality and estimate (2.15) from above by



∑

ν∈NN
0

2−ν·d



∑

m∈NN
0

λ̃p0
ν,m




p1
p0




1/p1

· sup
g



∑

ν∈NN
0

2−ν·d



∑

m∈NN
0

gα
ν m




β/α



1
βq

. (2.16)

The first factor in (2.16) is equal to ‖λ|sr
p0,p1

b‖ due to condition (1.7). Hence it is enough to prove
that there is a constant c > 0, such that



∑

ν∈NN
0

2−ν·d



∑

m∈NN
0

gα
ν,m




β/α



1
βq

≤ c

for every non-negative measurable function g, which is non-increasing in each component and with
‖g|Lβ((0,∞)N )‖ ≤ 1.

First, we use the monotonicity of g and obtain

∑

m∈NN
0

gα
ν m =

∑

l∈NN
0

∑

m∈N
N
0 :

∀i:2lidi−1≤mi<2(li+1)di−1

gα
ν,m .

∑

l∈NN
0

2l·d


2ν·d

∫

W
ν,(2l1d1 ,...,2lN dN )

g(x)dx




α

.
∑

l∈NN
0

2l·d(Ag)(2(l1−ν1)d1 , . . . , 2(lN−νN )dN )α,

where Wν,k = [2−ν1d1(k1 − 1), 2−ν1d1k1] × · · · × [2−νN dN (kN − 1), 2−νN dNkN ].

Using 1 < β < α <∞, this leads to



∑

ν∈NN
0

2−ν·d



∑

m∈NN
0

gα
ν m




β/α



1
β

≤



∑

ν∈NN
0

2−ν·d



∑

l∈NN
0

2l·d(Ag)(2(l1−ν1)d1 , . . . , 2(lN−νN )dN )α




β

α




1/β

≤



∑

ν∈NN
0

2−ν·d
∑

l∈NN
0

2l·d β
α (Ag)(2(l1−ν1)d1 , . . . , 2(lN−νN )dN )β




1/β

=



∑

k∈ZN

2k·d β

α

∑

ν∈NN
0 :ν≥−k

2−ν·d2ν·d β

α (Ag)(2k1d1 , . . . , 2kN dN )β




1/β

≤



∑

k∈ZN

2k·d β

α (Ag)(2k1d1 , . . . , 2kN dN )β
∑

ν∈ZN :ν≥−k

2ν·d( β

α
−1)




1/β

.



∑

k∈ZN

2k·d β

α (Ag)(2k1d1 , . . . , 2kN dN )β2−k·d( β

α
−1)




1/β

∼
∥∥Ag

∣∣Lβ((0,∞)N )
∥∥ ∼

∥∥g
∣∣Lβ((0,∞)N )

∥∥ ≤ 1.

This finishes the proof of (2.5).

Step 3.
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We show, that if (1.7) and (2.4) hold, then p0 ≤ q1. Suppose, that 0 < q1 < p0 <∞ and set

λν,m =

{
ν
−1/q1

1 2ν1(d1/p1−r1
1) if ν = (ν1, 0, . . . , 0), ν1 ∈ N and m = (0, . . . , 0) ∈ Z

d,

0, otherwise.

Direct calculations show that ||λ|sr1
p1q1

b|| = ∞ and ||λ|sr0
p0q0

f || <∞. Hence (2.4) does not hold.

Step 4.

We show, that (2.5) implies q0 ≤ p1. To this end we assume that 0 < p1 < q0 ≤ ∞ and set

λν,m =

{
ν
−1/p1

1 2ν1(d1/p1−r1
1) if ν = (ν1, 0, . . . , 0), ν1 ∈ N and m = (0, . . . , 0) ∈ Z

d,

0, otherwise.

This leads to ||λ|sr1
p1q1

f || = ∞ and ||λ|sr0
p0q0

b|| <∞. Hence (2.5) does not hold.

2.3 Proof of Theorem 1.4

If (c) is satisfied, then we use the embedding

S0
∞,1B(Rd) →֒ C(Rd), (2.17)

which follows directly from Definition 1.1, and the Sobolev embedding (cf. [24, Theorem 2.4.1])

Sr0

p0,q0
B(Rd) →֒ Sr1

p1,q1
B(Rd)

if

r0j −
dj

p0
= r1j −

dj

p1
, j = 1, . . . , N, 0 < p0 < p1 ≤ ∞ and 0 < q0 ≤ q1 ≤ ∞.

Hence, Sr
p,qB(Rd) →֒ C(Rd) →֒ L∞(Rd). This proves (c) =⇒ (a) =⇒ (b).

If (c) is not satisfied, we look for a distribution f ∈ Sr
pqB(Rd), which may not be represented by a

bounded measurable function in the usual sense. The counterexamples may be given directly using
the wavelet expansions as presented in [10]. But one may proceed also indirectly:

Let us assume that rj −
dj

p
< 0 for some 1 ≤ j ≤ N or rj −

dj

p
≤ 0 for some 1 ≤ j ≤ N and q > 1.

In both cases, it is known that there is a distribution ψj ∈ B
rj
pq(Rdj ), such that ψj 6∈ L∞(Rdj ), cf.

[26, Theorem 3.3.1]. Now it is enough to consider

f = ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψN ,

where ψi ∈ S(Rdi), i 6= j, are suitably chosen smooth functions. The proof of (ii) uses similar
arguments, this time combined with (1.8).

2.4 Proof of Theorem 1.5

The proof of Theorem 1.5 follows by similarly with (2.17) replaced by

S0
u,2F (Rd) = Lu(Rd), 1 < u <∞.
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