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Abstract

We study algorithms for the approximation of functions, the error is measured in an L2

norm. We consider the worst case setting for a general reproducing kernel Hilbert space of
functions. We analyze algorithms that use standard information consisting in n function values
and we are interested in the optimal order of convergence. This is the maximal exponent b for
which the worst case error of such an algorithm is of order n−b.

Let p be the optimal order of convergence of all algorithms that may use arbitrary linear
functionals, in contrast to function values only. So far it was not known whether p > b is
possible, i.e., whether the approximation numbers or linear widths can be essentially smaller
than the sampling numbers. This is (implicitly) posed as an open problem in the recent paper
Kuo, Wasilkowski, Woźniakowski (2007) where the authors prove that p > 1/2 implies b ≥
2p2/(2p+1) > p−1/2. Here we prove that the case p = 1/2 and b = 0 is possible, hence general
linear information can be exponentially better than function evaluation. Since the case p > 1/2
is quite different, it is still open whether b = p always holds in that case.
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1 Introduction

We assume that µ is a measure on a set D and consider the space L2 = L2(D,µ). This is our target
space. We also have a Hilbert space H of functions defined on D such that

• function values f 7→ f(x) are continuous (with respect to the H-norm);

• the identity (embedding)
I : H → L2 (1)

is a well defined compact operator.

Hence H is a reproducing kernel Hilbert space imbedded in L2. The approximation problem

APP : H → L2, APP(f) = f (2)

is a well defined continuous linear operator. Let F be the unit ball of H. Then the approximation
numbers or linear widths an(F ) are defined as follows. For a continuous linear algorithm

Sn(f) =

n
∑

i=1

Li(f)gi (3)

the (worst case) error is defined by

e(Sn) = sup
f∈F

‖f − Sn(f)‖2.

Then an(F ) is given by
an(F ) = inf

Sn

e(Sn).

The class of all continuous linear functionals is called Λall and hence the approximation numbers
correspond to using information from Λall. In many applications not all algorithms (3) are feasible
and algorithms

Sn(f) =

n
∑

i=1

f(xi)gi (4)

based on function values (standard information, denoted by Λstd) are preferred. The sampling
numbers gn(F ) are defined by

gn(F ) = inf
Sn

e(Sn),

where now the infimum runs only over all Sn of the form (4).
Often the gn(F ) are only “slightly” larger than the an(F ). To have precisely posed questions

and, in some cases, answers, we consider the concept of “order of convergence” and define

pall(F ) = sup
{

α ≥ 0 : lim
n→∞

an(F ) · nα = 0
}
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as well as
pstd(F ) = sup

{

α ≥ 0 : lim
n→∞

gn(F ) · nα = 0
}

.

We know no example from the literature with pall(F ) > pstd(F ). It is known from Kuo, Wasilkowski,
Woźniakowski (2007) that the gap cannot be too large. One of the results of these authors is that
pall(F ) > 1/2 implies

pstd(F ) ≥ pall(F ) − 1

2 + 1/pall
. (5)

The main result of this paper is the construction of an example F with

pall(F ) = 1/2 and pstd(F ) = 0. (6)

Together with (5) this implies that the gap 1/2 between pstd(F ) and pall(F ) is maximal.

Remark 1. One could think of replacing (1) by an arbitrary compact operator

S : H → L2, (7)

also the target space L2 could be replaced by another Hilbert space. Then, however, the results are
completely different. Linear information now can be much better than function values. Examples
and an explanation of this will follow in Remark 3.

Remark 2. Here we discuss a related problem and another interpretation of our example with (6).
For the approximation numbers of APP : H → L2 we consider arbitrary linear mappings of the

form

Sn(f) =

n
∑

i=1

〈f, vi〉wi (8)

with vi, wi ∈ L2. Information about f is given by the functionals f 7→ 〈f, vi〉. Assume now that
only mappings

Sn(f) =

n
∑

i=1

〈f, bki
〉wi (9)

are allowed, where the bi form a given and fixed complete orthonormal system of L2. This means
that the class Λall of all functionals is restricted to another class Λrestr, but the wi in (9) are still
arbitrary. We ask whether approximations (8) are “much” better than those of the form (9).

It turns out that the inequality of Kuo, Wasilkowski, Woźniakowski (2007) is still true, hence
pall(F ) > 1/2 implies

prestr(F ) ≥ pall(F ) − 1

2 + 1/pall
. (10)

Moreover, our example also covers this case since we have

pall(F ) = 1/2 and prestr(F ) = 0. (11)
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A somehow dual problem was studied by Donoho [2], Temlyakov [4] and others: these authors
assume that the “approximation space” can be chosen only in a restricted way. Hence the wi form
an orthonormal system and Sn(f) is of the form

∑n
i=1 ciwki

, where the ci and the ki may depend
in an arbitrary way on f .

With (9) we still study linear algorithms since the ki are chosen for the whole space H, not
individually for a given f .

2 The finite dimensional case

We start with the finite dimensional case. Some technical problems disappear, now function values
are defined and continuous even on L2 = R

N = ℓN
2 . Observe also that function evaluations

correspond to scalar products with respect to a particular orthonormal system. Hence it is clear
that in this case our main problem coincides with the problem mentioned in Remark 2.

We assume that D has N elements and consider the mapping

APP : R
N → R

N = ℓN
2 (12)

on an ellipsoid F ⊂ R
N of the form

F = {f ∈ R
N | f =

N
∑

i=1

xiei,

N
∑

i=1

x2
i

σ2
i

≤ 1}. (13)

Here we assume that the ei form a complete ON-system and the singular values are ordered,

σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0. (14)

Of course we have xi = 〈f, ei〉, with the scalar product in ℓN
2 . The xi are the coordinates of f with

respect to the complete ON-system {ei}. Observe that F is the unit ball of a reproducing kernel
Hilbert space H = R

N , the kernel is given by

K(x, y) =

N
∑

i=1

σ2
i ei(x)ei(y).

Each f is a mapping from D = {1, 2, . . . ,N} to R and the function evaluations are the mappings

f 7→ fi = 〈f, bi〉 . (15)

Here the {bi} form the standard basis of R
N = ℓN

2 , of course this is another complete ON-system
of the target space ℓN

2 . The approximation numbers are given by

an(F ) = σn+1 (16)
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and it is clear what to do: the optimal approximation is

S∗
n(f) =

n
∑

i=1

〈f, ei〉 ei. (17)

The optimal information f 7→ 〈f, ei〉 (for i = 1, 2, . . . n) clearly depends on the set F since we
use the “eigenvectors” ei. In the case of standard information we have to use approximations of
the form

Sn(f) = φ(fi1 , fi2 , . . . , fin), (18)

i.e., information of the form f 7→ 〈f, bi〉. Since F is a Hilbert space, the optimal φ can always be
chosen linear, see, e.g., [5, Chapter 4].

Remark 3. The difference between (1) and the more general case (7) is easy to see in this finite
dimensional case: In the first case the allowed information functionals are of the form

f 7→ Li(S(f)) = Li(f)

that are orthogonal with respect to the target space L2, i.e., we can compute the projection of S(f)
onto vectors in L2 that are orthogonal.

This is not the case in the more general case (7), examples are known where approximation
numbers are much smaller than sampling numbers (see [1, 6, 9]) . One example is given by the
Sobolev spaces Hs(Ω), where Ω ⊂ R

d is a bounded Lipschitz domain. Consider the embedding
I : Hs(Ω) → H−t(Ω) where s, t > 0 and s > d/2. Then an ≍ n−(s+t)/d while gn ≍ n−s/d.

It seems that the numbers gn are “large” if the bi are “almost orthogonal” to the ek. Hence we
consider the following example.

We assume that the matrix which transforms b1, b2, . . . , bN into e1, e2, . . . , eN is a Hadamard
matrix. Then we have formulas of the form

bk = N−1/2 · (±e1 ± e2 · · · ± eN ) (19)

and also
ek = N−1/2 · (±b1 ± b2 · · · ± bN ). (20)

We want to be more specific: We assume that N is of the form N = 2m and that the transfor-
mation {ek}k → {bk}k (and vice versa) is given by a Walsh-Hadamard matrix. Let

H0 = (1), H1 =

(

1 1
1 −1

)

, Hk+1 =

(

Hk Hk

Hk −Hk

)

. (21)

Then we have

N−1/2 Hm ek = bk and N−1/2 Hm bk = ek, k = 1, 2, . . . ,N. (22)
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Consider first the simplest case, n = 1. Since the signs (plus or minus) do not matter, we may
assume

b1 = N−1/2 · (e1 + e2 + · · · + eN ). (23)

To compute the radius of information or, equivalently, the first sampling number g1, we have to
maximize

∑N
k=1 x2

k under the conditions

N
∑

k=1

x2
k

σ2
k

= 1 and

N
∑

k=1

xk = 0. (24)

The result of this extremal problem is g2
1 .

Define

c∗ =

(

N
∑

k=1

σ2
k

)−1

. (25)

Then there exists an f∗ of the form

f∗ = e1 − c∗
N
∑

k=1

±σ2
kek (26)

with information 0. If c∗ is small then f∗ is close to e1 and the error is large. If c∗ tends to 0 then
g1(F ) tends to the initial error σ1.

Now we deal with a general (fixed) number n of information functionals. We assume that a
whole sequence

σ1 ≥ σ2 ≥ . . .

is given with
∞
∑

k=1

σ2
k = ∞

but we still are in the (finite) Hadamard case: N = 2m is large but finite and we also consider the
case N → ∞. But formally N = 2m is finite and then of course we only have the finite sub-sequence

σ1 ≥ σ2 ≥ · · · ≥ σN > 0.

Assume that
k1, k2, . . . , kn

(between 1 and N) are given. To estimate the radius of information and gn(F ) we are looking for
an f of the form

f = e1 − c
∑

k∈I

±σ2
kek (27)
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such that the information for f is zero, that is

〈f, gki
〉 = 0, i = 1, 2, . . . , n,

and f is “close to e1”, hence gn(F ) is “almost equal” to the initial error σ1. To define I and to
obtain results, we need the following on the matrices Hm.

The matrix H2 has the following property: Pick any two different rows k1, k2 ∈ {1, 2, 3, 4}.
Then the 8 pairs

±(H2
k1,1,H

2
k2,1), . . . ,±(H2

k1,4,H
2
k2,4)

yield the whole set {−1, 1}2 and each z ∈ {−1, 1}2 has (exactly) two such representations.
To formalize this for larger n, it is convenient to use a different form of the Walsh-Hadamard

matrices with columns and rows permuted which is borrowed from Walsh analysis. Let G =
{+1,−1}m be the group of m-tuples of signs equipped with coordinatewise multiplication. The
Rademacher functions r1, . . . , rm on G are just the coordinate functionals given by rh(s) = sh for
s = (s1, . . . , sm) ∈ G. For a subset A ⊂ {1, . . . ,m}, the Walsh function wA is defined as

wA(s) =
∏

h∈A

rh(s) =
∏

h∈A

sh.

Let N = 2m. Then the N × N -matrix
(

wA(s)
)

A⊂{1,...,m},s∈G

is just the Walsh-Hadamard matrix Hm up to the order of the rows and columns. To pick a specific
order, we map the row and column indices to the set {1, . . . ,N} via the maps

s 7→ 1 +

m
∑

h=1

1 − sh

2
2m−h (28)

A 7→ 1 +
∑

h∈A

2h−1. (29)

By slight abuse of notation, we again denote the resulting matrix with Hm.
The structural result needed for our purposes is contained in the following Lemma.

Lemma 1. For k=0,. . . ,m, define

Mk = {s ∈ G : sh = 1 for h = 1, . . . , k}.

For A1, . . . , An ⊂ {1, . . . ,m}, let

M =
{

s ∈ G : wAi
(s) =

∏

h∈Ai

sh = 1 for i = 1, . . . , n
}

.

Then
# M ∩ Mk ≥ 2m−n−k. (30)
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For the proof of this lemma, we need the following

Lemma 2. Let M ⊂ G be a subgroup of G and let A ⊂ {1, . . . ,m}. Then

MA =
{

s ∈ M : wA(s) =
∏

h∈A

sh = 1
}

satisfies either M = MA or #MA = #M/2.

Proof. Obviously, MA is a subgroup of M . Assume that M 6= MA and choose so ∈ M \MA. Then,
for any s ∈ M \MA, we have sos ∈ MA. Hence #M \MA ≤ #MA. Moreover, for any s ∈ MA, we
have sos ∈ M \ MA. Hence also #M \ MA ≥ #MA. This shows that

#M = #MA + #M \ MA = 2#MA.

Proof of Lemma 1. Define An+i = {i} for i = 1, . . . , k. Then

M ∩ Mk =
{

s ∈ G :
∏

h∈Ai

sh = 1 for i = 1, . . . , n + k
}

.

Since #G = 2m, successive application of Lemma 2 to the chain of subgroups starting with M = G

{

s ∈ G :
∏

h∈Ai

sh = 1 for i = 1, . . . , ℓ
}

for ℓ = 1, . . . , n + k gives

# M ∩ Mk ≥ 2m

2n+k
= 2m−n−k.

Using the identifications (28) and (29), the subsets A1, . . . , An are mapped to row indices
k1, . . . , kn ∈ {1, . . . , N} and the elements s ∈ M are mapped to column indices ℓj such that Hm

ki,ℓj
=

1. Moreover, s ∈ Mk translates into ℓ ≤ 2m−k for the corresponding column index. Ordering the
column indices 1 = ℓ1 < ℓ2 < . . . < ℓr ≤ N which correspond to the elements s ∈ M ∩ Mk, the
inequalities (30) for k = 0, . . . ,m − n are equivalent to ℓ2k ≤ 2k+n for k = 0, . . . ,m − n. Hence we
obtain

Lemma 3. Let 1 ≤ k1 < k2 < . . . < kn ≤ N = 2m. Let 1 = ℓ1 < ℓ2 < . . . < ℓr ≤ N be the indices
of the columns of Hm for which

Hm
ki,ℓj

= 1 for i = 1, . . . , n.

Then r ≥ 2m−n and ℓ2k ≤ 2k+n for k = 0, 1, . . . ,m − n.
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Using this with N = 2m = 2n+t, we obtain

Lemma 4. Assume that the information consists in the function values with the numbers

k1, k2, . . . , kn

(between 1 and N). Then there exist 2t−1 numbers ℓ1, ℓ2, . . . , ℓ2t−1 (different from 1) such that the
information evaluated for e1 coincides with the information evaluated for eℓi

for each i. In addition
we can arrange that

ℓ1 ≤ 2n+1, ℓ2, ℓ3 ≤ 2n+2, ℓ4, ℓ5, ℓ6, ℓ7 ≤ 2n+3 (31)

and so on.

Hence we get the zero information for a vector of the form

f = e1 − c

2t−1
∑

i=1

σ2
ℓi
eℓi

. (32)

The number c is chosen in such a way that

c

2t−1
∑

i=1

σ2
ℓi

= 1.

Because of our assumption that
∑

k σ2
k = ∞, the number c tends (for given n and t → ∞) to

zero, the vector f tends to e1 and the gn(F ) tend to the initial error σ1. Hence we obtain the
following result.

Theorem 1. Assume that a sequence

1 = σ1 ≥ σ2 ≥ . . .

is given with
∞
∑

k=1

σ2
k = ∞. (33)

Assume further that a number n0 and ε0 > 0 are given. Then there exists an example with

an0
(F ) = σn0+1

and
gn0

(F ) ≥ 1 − ε0.

In this sense there does not exist any reasonable upper bound for the gn(F ) if (33) holds.
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3 Main result

Our main result is the following infinite dimensional example with similar properties.

Theorem 2. Let σn = n−1/2 and τn = (1 + log2 n)−1/2 for n ∈ N. Then there exists a sequence
space H such that for its unit ball F the following holds

• an(F ) = σn+1 for all natural numbers n,

• gn(F ) ≥
√

2
2 · τn for infinitely many natural numbers n.

We start the construction with the following Lemma.

Lemma 5. Let K ∈ N and n ∈ N be arbitrary natural numbers. Set ̺k = σk+K = (k + K)−1/2

and t = 2(K+2n)
K . If F is the N = 2n+t-dimensional Hadamard example with respect to ̺1, . . . , ̺N ,

n and t as described above, then

gn(F ) ≥
√

2

2
· ̺1.

Proof. Let k1, k2, · · · , kn be the sampling points of the information and let ℓ1, ℓ2, . . . , ℓ2t−1 be the
corresponding natural numbers (different from 1) as constructed in Lemma 4. We set

f = e1 − c

2t−1
∑

i=1

̺2
ℓi
eℓi

, where c =





2t−1
∑

i=1

̺2
ℓi





−1

.

Then f is a vector with zero information and

||f ||22
||f ||2H

=

1 + c2
2t−1
∑

i=1

̺4
ℓi

1

̺2
1

+ c2
2t−1
∑

i=1

̺4
ℓi

̺2
ℓi

≥ ̺2
1 ·

2t−1
∑

i=1

̺2
ℓi

2t−1
∑

i=1

̺2
ℓi

+ ̺2
1

. (34)

This estimate, combined with

2t−1
∑

i=1

̺2
ℓi

=
t
∑

j=1

2j−1
∑

i=2j−1

̺2
ℓi
≥

t
∑

j=1

2j−1 · 1

K + 2n+j
≥ t

2
· 1

K + 2n
≥ 1

K
> ̺2

1 (35)

gives

g2
n(F ) ≥ 1

2
· ̺2

1.
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The infinite-dimensional example will now be constructed inductively. In the first step, we set
N1 = 1 and consider the 1-dimensional Hadamard example (which is of course trivial).

Now, let us assume, that the first j building blocks with dimensions N1,N2, . . . ,Nj have already
been constructed. We denote by Hj the corresponding sequence spaces and by Fj their unit balls.
We set Dj = N1 + N2 + · · · + Nj, K = Dj and n = 2Dj and apply Lemma 5.

It follows that if t = 2(K+2n)
K and Nj+1 = 2t+n, then

gn(Fj+1) ≥
√

2

2
· σDj+1 =

√
2

2
· 1
√

Dj + 1
.

The infinite-dimensional sequence space H is then defined as a direct sum of all the Hilbert spaces
Hj:

H =

∞
⊕

j=1

Hj

and F is its unit ball. We observe, that

aDj
(F ) = gDj

(F ) =
1

√

Dj + 1
, j ∈ N

and

an(F ) =
1√

n + 1
=

1√
2Dj + 1

, gn(F ) ≥ gn(Fj+1) ≥
√

2

2
· 1
√

Dj + 1
, j ∈ N, n = 2Dj .

Hence, for each n = Dj , we get an(F ) = gn(F ) = σn+1 and for each n = 2Dj , we obtain

gn(F ) ≥
√

2
2 · τn.

Observe that, very roughly,

Dj+1 ≈ 222
Dj

,

hence the Dj increase very rapidly.

Remark 4. This example may be easily generalized in the following way. To every sequence
1 = σ1 ≥ σ2 ≥ · · · ≥ 0 with

∑

n σ2
n = ∞ and every sequence τ1 ≥ τ2 ≥ · · · ≥ 0 with limn→∞ τn = 0,

there is a sequence space H such that for its unit ball F the following holds:

• an(F ) = σn+1 for all natural numbers n,

• gn(F ) ≥ τn for infinitely many natural numbers n.

Remark 5. We end this paper with two additional remarks.
a) The construction in this section can also be done in the case

∑

n σ2
n < ∞. If e.g. σn = n−α

with α > 1/2 then it only follows that gn(F ) is larger than an(F ) by a constant factor cα > 1 for
infinitely many n with cα → ∞ for α → 1/2.
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b) In our example with pall(F ) = 1/2 and pstd(F ) = 0 we used the sequence space ℓ2 instead
of, say, L2([0, 1]). This is not essential, however, since we could easily translate our example using
piecewise constant functions in L2([0, 1]).

c) In this paper we only consider deterministic algorithms. The randomized setting is studied
in [8].
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