A new proof of the Jawerth-Franke embedding

Jan Vybíral

Abstract

We present an alternative proof of the Jawerth embedding $$
F_{p_{0} q}^{s_{0}}\left(\mathbb{R}^{n}\right) \hookrightarrow B_{p_{1} p_{0}}^{s_{1}}\left(\mathbb{R}^{n}\right)
$$ where $$
-\infty<s_{1}<s_{0}<\infty, \quad 0<p_{0}<p_{1} \leq \infty, \quad 0<q \leq \infty
$$ and $$
s_{0}-\frac{n}{p_{0}}=s_{1}-\frac{n}{p_{1}} .
$$

The original proof given in [3] uses interpolation theory. Our proof relies on wavelet decompositions and transfers the problem from function spaces to sequence spaces. Using similar techniques, we also recover the embedding of Franke, [2].

AMS Classification: 46E35
Keywords and phrases: Besov spaces, Triebel-Lizorkin spaces, Sobolev embedding, JawerthFranke embedding

1 Introduction

Let $B_{p q}^{s}\left(\mathbb{R}^{n}\right)$ and $F_{p q}^{s}\left(\mathbb{R}^{n}\right)$ denote the Besov and Triebel-Lizorkin function spaces, respectively. The classical Sobolev embedding theorem may be rewritten also for these two scales.

Theorem 1.1. Let $-\infty<s_{1}<s_{0}<\infty$ and $0<p_{0}<p_{1} \leq \infty$ with

$$
\begin{equation*}
s_{0}-\frac{n}{p_{0}}=s_{1}-\frac{n}{p_{1}} . \tag{1.1}
\end{equation*}
$$

(i) If $0<q_{0} \leq q_{1} \leq \infty$, then

$$
\begin{equation*}
B_{p_{0} q_{0}}^{s_{0}}\left(\mathbb{R}^{n}\right) \hookrightarrow B_{p_{1} q_{1}}^{s_{1}}\left(\mathbb{R}^{n}\right) . \tag{1.2}
\end{equation*}
$$

(ii) If $0<q_{0}, q_{1} \leq \infty$ and $p_{1}<\infty$, then

$$
\begin{equation*}
F_{p_{0} q_{0}}^{s_{0}}\left(\mathbb{R}^{n}\right) \hookrightarrow F_{p_{1} q_{1}}^{s_{1}}\left(\mathbb{R}^{n}\right) . \tag{1.3}
\end{equation*}
$$

We observe, that there is no condition on the fine paramters q_{0}, q_{1} in (1.3). This surprising effect was first observed in full generality by Jawerth, [3]. Using (1.3), we may prove

$$
F_{p_{0} q}^{s_{0}}\left(\mathbb{R}^{n}\right) \hookrightarrow F_{p_{1} p_{1}}^{s_{1}}\left(\mathbb{R}^{n}\right)=B_{p_{1} p_{1}}^{s_{1}}\left(\mathbb{R}^{n}\right) \quad \text { and } \quad B_{p_{0} p_{0}}^{s_{0}}\left(\mathbb{R}^{n}\right)=F_{p_{0} p_{0}}^{s_{0}}\left(\mathbb{R}^{n}\right) \hookrightarrow F_{p_{1 q}}^{s_{1}}\left(\mathbb{R}^{n}\right)
$$

for every $0<q \leq \infty$. But Jawerth ([3]) and Franke ([2]) showed, that these embeddings are not optimal and may be improved.

Theorem 1.2. Let $-\infty<s_{1}<s_{0}<\infty, 0<p_{0}<p_{1} \leq \infty$ and $0<q \leq \infty$ with (1.1).
(i) Then

$$
\begin{equation*}
F_{p_{0} q}^{s_{0}}\left(\mathbb{R}^{n}\right) \hookrightarrow B_{p_{1} p_{0}}^{s_{1}}\left(\mathbb{R}^{n}\right) . \tag{1.4}
\end{equation*}
$$

(ii) If $p_{1}<\infty$, then

$$
\begin{equation*}
B_{p_{0} p_{1}}^{s_{0}}\left(\mathbb{R}^{n}\right) \hookrightarrow F_{p_{1 q} q}^{s_{1}}\left(\mathbb{R}^{n}\right) . \tag{1.5}
\end{equation*}
$$

The original proofs (see [3] and [2]) use interpolation techniques. We use a different method. First, we observe that using (for example) the wavelet decomposition method, (1.4) and (1.5) is equivalent to

$$
\begin{equation*}
f_{p_{0} q}^{s_{0}} \hookrightarrow b_{p_{1} p_{0}}^{s_{1}} \quad \text { and } \quad b_{p_{0} p_{1}}^{s_{0}} \hookrightarrow f_{p_{1 q} q}^{s_{1}} \tag{1.6}
\end{equation*}
$$

under the same restrisctions on parameters $s_{0}, s_{1}, p_{0}, p_{1}, q$ as in Theorem 1.2. Here, $b_{p q}^{s}$ and $f_{p q}^{s}$ stands for the sequence spaces of Besov and Triebel-Lizorkin type. We prove (1.6) directly using the technique of non-increasing rearrangement on a rather elementary level.
All the unimportant constants are denoted by the letter c, whose meaning may differ from one occurrence to another. If $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ are two sequences of positive real numbers, we write $a_{n} \lesssim b_{n}$ if, and only if, there is a positive real number $c>0$ such that $a_{n} \leq c b_{n}, n \in \mathbb{N}$. Furthermore, $a_{n} \approx b_{n}$ means that $a_{n} \lesssim b_{n}$ and simultaneously $b_{n} \lesssim a_{n}$.

2 Notation and definitions

We introduce the sequence spaces associated with the Besov and Triebel-Lizrokin spaces. Let $m \in \mathbb{Z}^{n}$ and $\nu \in \mathbb{N}_{0}$. Then $Q_{\nu m}$ denotes the closed cube in \mathbb{R}^{n} with sides parallel to the coordinate axes, centred at $2^{-\nu} m$, and with side length $2^{-\nu}$. By $\chi_{\nu m}=\chi_{Q_{\nu m}}$ we denote the characteristic function of $Q_{\nu m}$. If

$$
\lambda=\left\{\lambda_{\nu m}: \nu \in \mathbb{N}_{0}, m \in \mathbb{Z}^{n}\right\},
$$

$-\infty<s<\infty$ and $0<p, q \leq \infty$, we set

$$
\begin{equation*}
\left\|\lambda \mid b_{p q}^{s}\right\|=\left(\sum_{\nu=0}^{\infty} 2^{\nu\left(s-\frac{n}{p}\right) q}\left(\sum_{m \in \mathbb{Z}^{n}}\left|\lambda_{\nu m}\right|^{p}\right)^{\frac{q}{p}}\right)^{\frac{1}{q}} \tag{2.1}
\end{equation*}
$$

appropriately modified if $p=\infty$ and/or $q=\infty$. If $p<\infty$, we define also

$$
\begin{equation*}
\left\|\lambda\left|f_{p q}^{s}\|=\|\left(\sum_{\nu=0}^{\infty} \sum_{m \in \mathbb{Z}^{n}}\left|2^{\nu s} \lambda_{\nu m} \chi_{\nu m}(\cdot)\right|^{q}\right)^{1 / q}\right| L_{p}\left(\mathbb{R}^{n}\right)\right\| \tag{2.2}
\end{equation*}
$$

The connection between the function spaces $B_{p q}^{s}\left(\mathbb{R}^{n}\right), F_{p q}^{s}\left(\mathbb{R}^{n}\right)$ and the sequence spaces $b_{p q}^{s}, f_{p q}^{s}$ may be given by various decomposition techniques, we refer to [7, Chapters 2 and 3] for details and further references.

As a result of these characterisations, (1.4) is equivalent to (1.6).
We use the technique of non-increasing rearrangement. We refer to [1, Chapter 2$]$ for details.
Definition 2.1. Let μ be the Lebesgue measure in \mathbb{R}^{n}. If h is a measurable function on \mathbb{R}^{n}, we define the non-increasing rearrangement of h through

$$
\begin{equation*}
h^{*}(t)=\sup \left\{\lambda>0: \mu\left\{x \in \mathbb{R}^{n}:|h(x)|>\lambda\right\}>t\right\}, \quad t \in(0, \infty) \tag{2.3}
\end{equation*}
$$

We denote its averages by

$$
h^{* *}(t)=\frac{1}{t} \int_{0}^{t} h^{*}(s) d s, \quad t>0
$$

We shall use the following properties. The first two are very well known and their proofs may be found in [1], Proposition 1.8 in Chapter 2, and Theorem 3.10 in Chapter 3.

Lemma 2.2. If $0<p \leq \infty$, then

$$
\left\|h\left|L_{p}\left(\mathbb{R}^{n}\right)\|=\| h^{*}\right| L_{p}(0, \infty)\right\|
$$

for every measurable function h.
Lemma 2.3. If $1<p \leq \infty$, then there is a constant c_{p} such that

$$
\left\|h^{* *}\left|L_{p}(0, \infty)\left\|\leq c_{p}\right\| h^{*}\right| L_{p}(0, \infty)\right\|
$$

for every measurable function h.
Lemma 2.4. Let h_{1} and h_{2} be two non-negative measurable functions on \mathbb{R}^{n}. If $1 \leq p \leq \infty$, then

$$
\left\|h_{1}+h_{2}\left|L_{p}\left(\mathbb{R}^{n}\right)\|\leq\| h_{1}^{*}+h_{2}^{*}\right| L_{p}(0, \infty)\right\|
$$

Proof. The proof follows from Theorems 3.4 and 4.6 in [1, Chapter 2]

3 Main results

In this part, we present a direct proof of the discrete versions of Jawerth and Franke embedding. We start with the Jawerth embedding.

Theorem 3.1. Let $-\infty<s_{1}<s_{0}<\infty, 0<p_{0}<p_{1} \leq \infty$ and $0<q \leq \infty$. Then

$$
\begin{equation*}
f_{p_{0} q}^{s_{0}} \hookrightarrow b_{p_{1} p_{0}}^{s_{1}} \quad \text { if } \quad s_{0}-\frac{n}{p_{0}}=s_{1}-\frac{n}{p_{1}} \tag{3.1}
\end{equation*}
$$

Proof. Using the elementary embedding

$$
\begin{equation*}
f_{p q_{0}}^{s} \hookrightarrow f_{p q_{1}}^{s} \quad \text { if } \quad 0<q_{0} \leq q_{1} \leq \infty \tag{3.2}
\end{equation*}
$$

and the lifting property of Besov and Triebel-Lizorkin spaces (which is even more simple in the language of sequence spaces), we may restrict ourselves to the proof of

$$
\begin{equation*}
f_{p_{0} \infty}^{s} \hookrightarrow b_{p_{1} p_{0}}^{0}, \quad \text { where } \quad s=n\left(\frac{1}{p_{0}}-\frac{1}{p_{1}}\right) . \tag{3.3}
\end{equation*}
$$

Let $\lambda \in f_{p_{0} \infty}^{s}$ and set

$$
h(x)=\sup _{\nu \in \mathbb{N}_{0}} 2^{\nu s} \sum_{m \in \mathbb{Z}^{n}}\left|\lambda_{\nu m}\right| \chi_{\nu m}(x) .
$$

Hence

$$
\left|\lambda_{\nu m}\right| \leq 2^{-\nu s} \inf _{x \in Q_{\nu m}} h(x), \quad \nu \in \mathbb{N}_{0}, \quad m \in \mathbb{Z}^{n}
$$

Using this notation,

$$
\left\|\lambda\left|f_{p_{0} \infty}^{s}\|=\| h\right| L_{p_{0}}\left(\mathbb{R}^{n}\right)\right\|
$$

and

$$
\left\|\lambda \mid b_{p_{1} p_{0}}^{0}\right\|^{p_{0}} \leq \sum_{\nu=0}^{\infty} 2^{-\nu n}\left(\sum_{m \in \mathbb{Z}^{n}} \inf _{x \in Q_{\nu m}} h(x)^{p_{1}}\right)^{p_{0} / p_{1}} \leq \sum_{\nu=0}^{\infty} 2^{-\nu n}\left(\sum_{k=1}^{\infty} h^{*}\left(2^{-\nu n} k\right)^{p_{1}}\right)^{p_{0} / p_{1}}
$$

Using the monotonicity of h^{*} and the inequality $p_{0}<p_{1}$ we get

$$
\begin{aligned}
\left\|\lambda \mid b_{p_{1} p_{0}}^{0}\right\|^{p_{0}} & \lesssim \sum_{\nu=0}^{\infty} 2^{-\nu n}\left(\sum_{l=0}^{\infty} 2^{n l} \cdot\left(2^{n}-1\right) \cdot h^{*}\left(2^{-\nu n} 2^{n l}\right)^{p_{1}}\right)^{p_{0} / p_{1}} \\
& \lesssim \sum_{\nu=0}^{\infty} 2^{-\nu n} \sum_{l=0}^{\infty} 2^{n l \frac{p_{0}}{p_{1}}} h^{*}\left(2^{-\nu n} 2^{n l}\right)^{p_{0}} .
\end{aligned}
$$

We substitute $j=l-\nu$ and obtain

$$
\begin{aligned}
\left\|\lambda \mid b_{p_{1} p_{0}}^{0}\right\|^{p_{0}} & \lesssim \sum_{j=-\infty}^{\infty} \sum_{\nu=-j}^{\infty} 2^{-\nu n} 2^{n(\nu+j) \frac{p_{0}}{p_{1}}} h^{*}\left(2^{j n}\right)^{p_{0}} \\
& =\sum_{j=-\infty}^{\infty} 2^{n j \frac{p_{0}}{p_{1}}} h^{*}\left(2^{j n}\right)^{p_{0}} \sum_{\nu=-j}^{\infty} 2^{n \nu\left(\frac{p_{0}}{p_{1}}-1\right)} \\
& \approx \sum_{j=-\infty}^{\infty} 2^{n j} h^{*}\left(2^{n j}\right)^{p_{0}} \approx\left\|\left.h^{*}\left|L_{p_{0}}(0, \infty)\left\|^{p_{0}}=\right\| h\right| L_{p_{0}}\left(\mathbb{R}^{n}\right)\right|^{p_{0}} .\right.
\end{aligned}
$$

If $p_{1}=\infty$, only notational changes are necessary.
Theorem 3.2. Let $-\infty<s_{1}<s_{0}<\infty, 0<p_{0}<p_{1}<\infty$ and $0<q \leq \infty$. Then

$$
\begin{equation*}
b_{p_{0} p_{1}}^{s_{0}} \hookrightarrow f_{p_{1 q}}^{s_{1}} \quad \text { if } \quad s_{0}-\frac{n}{p_{0}}=s_{1}-\frac{n}{p_{1}} \tag{3.4}
\end{equation*}
$$

Proof. Using the lifting property and (3.2), we may suppose that $s_{1}=0$ and $0<q<p_{0}$.
Using Lemma 2.4, we observe that

$$
\left\|\lambda\left|f_{p_{1} q}^{0}\|=\|\left(\sum_{\nu=0}^{\infty} \sum_{m \in \mathbb{Z}^{n}}\left|\lambda_{\nu m}\right|^{q} \chi_{\nu m}(x)\right)^{1 / q}\right| L_{p_{1}}\left(\mathbb{R}^{n}\right)\right\|
$$

may be estimated from above by

$$
\begin{equation*}
\left\|\sum_{\nu=0}^{\infty} \sum_{m=0}^{\infty} \tilde{\lambda}_{\nu m}^{q} \tilde{\chi}_{\nu m}(\cdot) \left\lvert\, L_{\frac{p_{1}}{q}}(0, \infty)\right.\right\|^{1 / q} \tag{3.5}
\end{equation*}
$$

where $\tilde{\lambda}_{\nu}=\left\{\tilde{\lambda}_{\nu m}\right\}_{m=0}^{\infty}$ is a non-increasing rearrangement of $\lambda_{\nu}=\left\{\lambda_{\nu m}\right\}_{m \in \mathbb{Z}^{n}}$ and $\tilde{\chi}_{\nu m}$ is a characteristic function of the interval ($2^{-\nu n} m, 2^{-\nu n}(m+1)$).
Using duality, (3.5) may be rewritten as

$$
\begin{equation*}
\sup _{g}\left(\int_{0}^{\infty} g(x)\left(\sum_{\nu=0}^{\infty} \sum_{m=0}^{\infty} \tilde{\lambda}_{\nu m}^{q} \tilde{\chi}_{\nu m}(x)\right) d x\right)^{1 / q}=\sup _{g}\left(\sum_{\nu=0}^{\infty} \sum_{m=0}^{\infty} 2^{-\nu n} \tilde{\lambda}_{\nu m}^{q} g_{\nu m}\right)^{1 / q} \tag{3.6}
\end{equation*}
$$

where the supremum is taken over all non-increasing non-negative measurable functions g with $\left\|g \mid L_{\beta}(0, \infty)\right\| \leq 1$ and $g_{\nu m}=2^{\nu n} \int g(x) \tilde{\chi}_{\nu m}(x) d x$. Here, β is the conjugated index to $\frac{p_{1}}{q}$. Similarly, α stands for the conjugated index to $\frac{p_{0}}{q}$.
We use twice Hölder's inequality and estimate (3.6) from above by

$$
\begin{equation*}
\left(\sum_{\nu=0}^{\infty} 2^{-\nu n}\left(\sum_{m=0}^{\infty} \tilde{\lambda}_{\nu m}^{p_{0}}\right)^{\frac{p_{1}}{p_{0}}}\right)^{1 / p_{1}} \cdot \sup _{g}\left(\sum_{\nu=0}^{\infty} 2^{-\nu n}\left(\sum_{m=0}^{\infty} g_{\nu m}^{\alpha}\right)^{\frac{\beta}{\alpha}}\right)^{\frac{1}{\beta q}} \tag{3.7}
\end{equation*}
$$

The first factor in (3.7) is equal to $\left\|\lambda \mid b_{p_{0} p_{1}}^{s_{0}}\right\|$. To finish the proof, we have to show that

$$
\begin{equation*}
\left(\sum_{\nu=0}^{\infty} 2^{-\nu n}\left(\sum_{m=0}^{\infty} g_{\nu m}^{\alpha}\right)^{\frac{\beta}{\alpha}}\right)^{\frac{1}{\beta q}} \leq c \tag{3.8}
\end{equation*}
$$

for every non-increasing non-negative measurable functions g with $\left\|g \mid L_{\beta}(0, \infty)\right\| \leq 1$. We fix such a function g and write

$$
\begin{aligned}
\left(\sum_{\nu=0}^{\infty} 2^{-\nu n}\left(\sum_{m=0}^{\infty} g_{\nu m}^{\alpha}\right)^{\frac{\beta}{\alpha}}\right)^{1 / \beta} & \leq\left(\sum_{\nu=0}^{\infty} 2^{-\nu n}\left(\sum_{l=0}^{\infty} 2^{l n}\left(g^{* *}\right)^{\alpha}\left(2^{(-\nu+l) n}\right)\right)^{\frac{\beta}{\alpha}}\right)^{1 / \beta} \\
& \leq\left(\sum_{\nu=0}^{\infty} 2^{-\nu n} \sum_{l=0}^{\infty} 2^{l n}\left(g^{* *}\right)^{\beta}\left(2^{(-\nu+l) n}\right)\right)^{1 / \beta} \\
& \leq\left(\sum_{k=-\infty}^{\infty} 2^{k n \frac{\beta}{\alpha}} \sum_{\nu=-k}^{\infty} 2^{\nu n\left(\frac{\beta}{\alpha}-1\right)}\left(g^{* *}\right)^{\beta}\left(2^{k n}\right)\right)^{1 / \beta} \\
& \lesssim\left(\sum_{k=-\infty}^{\infty} 2^{k n}\left(g^{* *}\right)^{\beta}\left(2^{k n}\right)\right)^{1 / \beta} \\
& \lesssim\left\|g^{* *}\left|L_{\beta}(0, \infty)\|\leq c\| g\right| L_{\beta}(0, \infty)\right\| \leq c
\end{aligned}
$$

Taking the $\frac{1}{q}$-power of this estimate, we finish the proof of (3.8).

The Theorems 3.1 and 3.2 are sharp in the following sense.
Theorem 3.3. Let $-\infty<s_{1}<s_{0}<\infty, 0<p_{0}<p_{1} \leq \infty$ and $0<q_{0}, q_{1} \leq \infty$ with

$$
s_{0}-\frac{n}{p_{0}}=s_{1}-\frac{n}{p_{1}} .
$$

(i) If

$$
\begin{equation*}
f_{p_{0} q_{0}}^{s_{0}} \hookrightarrow b_{p_{1} q_{1}}^{s_{1}} \tag{3.9}
\end{equation*}
$$

then $q_{1} \geq p_{0}$.
(ii) If $p_{1}<\infty$ and

$$
\begin{equation*}
b_{p_{0} q_{0}}^{s_{0}} \hookrightarrow f_{p_{1} q_{1}}^{s_{1}} \tag{3.10}
\end{equation*}
$$

then $q_{0} \leq p_{1}$.
Remark 3.4. Using (any of) the usual decomposition techniques, the same statements hold true also for the function spaces. These results were first proved in [4].

Proof. (i) Suppose that $0<q_{1}<p_{0}<\infty$ and set

$$
\lambda_{\nu m}= \begin{cases}\nu^{-\frac{1}{q_{1}} 2^{\nu\left(\frac{n}{p_{1}}-s_{1}\right)}} & \text { if } \nu \in \mathbb{N}_{0} \quad \text { and } \quad m=0, \\ 0, & \text { otherwise. }\end{cases}
$$

A simple calculation shows, that $\left\|\lambda \mid f_{p_{0} q_{0}}^{s_{0}}\right\|<\infty$ and $\left\|\lambda \mid b_{p_{1} q_{1}}^{s_{1}}\right\|=\infty$. Hence, (3.9) does not hold.
(ii) Suppose that $0<p_{1}<q_{0} \leq \infty$ and set

$$
\lambda_{\nu m}= \begin{cases}\nu^{-\frac{1}{p_{1}} 2^{\nu\left(\frac{n}{p_{1}}-s_{1}\right)}} & \text { if } \nu \in \mathbb{N}_{0} \quad \text { and } \quad m=0, \\ 0, & \text { otherwise } .\end{cases}
$$

Again, it is a matter of simple calculation to show, that $\left\|\lambda \mid b_{p_{0} q_{0}}^{s_{0}}\right\|<\infty$ and $\left\|\lambda \mid f_{p_{1} q_{1}}^{s_{1}}\right\|=\infty$. Hence, (3.10) is not true.

References

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, San Diego, 1988.
[2] J. Franke, On the spaces $F_{p q}^{s}$ of Triebel-Lizorkin type: pointwise multipliers and spaces on domains, Math. Nachr. 125 (1986), 29-68.
[3] B. Jawerth, Some observations on Besov and Lizorkin-Triebel spaces, Math. Scand. 40 (1977), 94-104.
[4] W. Sickel and H. Triebel, Hölder inequalities and sharp embeddings in function spaces of $B_{p q}^{s}$ and $F_{p q}^{s}$ type, Z. Anal. Anwendungen, 14 (1995), 105-140.
[5] H. Triebel, Theory of function spaces, Birkhäuser, Basel, 1983.
[6] H. Triebel, Theory of function spaces II, Birkhäuser, Basel, 1992.
[7] H. Triebel, Theory of function spaces III, Birkhäuser, Basel, 2006.

