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ABSTRACT the properties of those vectors should resemble as muctsas po
From various reasons, it is sometimes useful both in theody a Sible the properties of the frame decomposition coeffisiefia
in praxis to consider random models of signals. The most popYpical signal.
ular method is the Bernoulli-Gaussian model, where each-coo ~ Probably the most common random model to generate sparse
dinate of a vector: € R™ is given as a product of independent vVectors, cf. [2, 5], is the so-calléBlernoulli-Gaussian model

Bernoulli and Gaussian variables. We propose another moddi€t againe > 0 be a real number and let = (w1,...,wn)
where each coordinate is taken randomly with respect to a defe a vector of independent Gaussian variables. Furtherheore
sity ¢, st =", where > —1 and0 < p < oo are real pa- 0 < p < 1 be areal number and let= (¢1,...,0,) be a
rameters. We show, that (on average) the coordinates ofssuchvector of independent Bernoulli variables
vector decay very fast. Theoretical results are also ithtet by ) »
numerical experiments. 0 = {1’ with probabilityp,
N , ' ith probability1 — p.
Keywords— bestm-term approximation, average widths, 0, withp yi-p
random sparse vectors, Bernoulli-Gaussian model TheBernoulli-Gaussian vectar € R” is then given by
1. INTRODUCTION T =egi-wi, t=1,...,n 2)

Let us point out, that this construction could be again rapéd

It the theory of signal processing, noise is usually modeiip (i.e. renormalized) in the sense of (1). Obviously, the nemb

random vectors. For example, tivite noises given byx = _ ) n
of non-zero elements af is almost surely given bEjzl 0j-

ew € R™, wheree > 0 is a positive real number and = h ) 4 val  thi orgis— Fusi
(w1,...,wy) is a vector of independent Gaussian variables. Ta e estimated value of this expressionkis= pn and using

distinguish more between the rolesofsize, or energy af) and Hoeffding’s inequality we observe, that
w (direction ofz), we may also consider the vectbgiven by

- 25%k2

. P i— k| >sk] <2exp| —

(Z" w2)1/2 = TS i=1,...,n. (1) ;Q] = p( n )
j=1%7

Thene = ||Z|, is the size ofi andw/||w]|2 is a random vector for arbitrarys > 0. It follows, that if & is small (i.e.k? < n)
in S*~1, the unit sphere oR™. If also the size of the vector then the concentration of the number of non-zero elemenis of
should be a random quantity, one needs only to reptase0  aroundk is not very strong. Unfortunately, ¥ gets larger, the
through an appropriate random variable. Both these singple ¢ €ffects of the theory ofoncentration of measu{€] come into
structions of random noise turned out to be extremely sisfges Play and the random vectors generated by (2) resemble more
in the theory of image processing but also in numerous rieal li @hd more the vectors of-dimensional white noise restricted
applications. to the coordinates, wherg = 1. In this sense, (2) represents
Itis the main purpose of this work to address the random gerfather arandomly filtered white noisthen a structured signal.
eration of a structured signal. This seems to be a more delicaEspecially, the first (let us say)'2 largest coordinates of are
and more complicated task. It is nowadays a common knowl@Pproximately of the same order, cf. Figure 1.
edge, that structured signals usually posses a sparsegdy ne  AS shown in a one simple example in Figure 2, the typical
sparse) representation in a suitable bases or frame ajgedpr ~ Signal exhibits a different behaviour. Namely, it is rathfee
adapted to the specific class of signals. We shall therefare ¢ decayof z* = (z7,..., z7;) (the non increasing rearrangement

sider models generating random vector&ih Our wish is, that ~ Of ) then itssparsity what characterizes a structured signal.
o _ Therefore, we are looking for a random model, where a typical
The author acknowledges the financial support provided bySFART-

award “Sparse Approximation and Optimization in High Dirsiems” of the vector would reprOduce this effect. To be able to formulaie t
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2. AVERAGE BEST M-TERM APPROXIMATION

We recall the notion of average besatterm approximation as
developed in [7]. We assume, that the signs of the components
: of a random vector are chosen uniformly{ir1,+1}. If one
~ ' wishes to obtain complex vectors, we take signs uniformdy di
tributed in{z € C : |z| = 1}. Therefore, we restrict ourselves
— to vectors with positive coordinates in the following defion.
° B o E e Furthermore, we prefer to split the properties of the ran-
@)k = 100 (b) k = 1000 dom vector into its size (which correspond to the real patame
¢ > 0 used already above) and its direction. We shall therefore
Fig. 1. We generated = 1000 random vectors iiR",n = 106 assume, that the random vector is chosen randomly o#,the
with respect to Bernoulli-Gaussian model with= 100 and  unit sphere irR™.
k = 1000. The graphs show the average of the rearrangements
of their absolute values. Observe, that the ratigz; , is ap- ~ Definition1 Let0 <p < coandletn > 2and1 < m < nbe
proximately 4 or 5, respectively. natural numbers.

(i) We set

o {te[(),oo)”:jzlté7 }pr<oo

p

e e

\ (ii) Letu be a Borel probability measure ah;. We put

- = 8 ab, (1) 1:/ zy, dp(w).
n
P

(a) Real-life picture (b) Rearranged coefficients

The quantityo?, _, () were called the average bestterm
Fig. 2: A real-life 64x64 picture and a rearrangement of the absiqth of id - v — 7 with respect tqu in [7]

solute value of coefficients of its 2D discrete Fourier tfans. The promment role in the geometry 6f spaces is played by
The rearranged coefﬁuents were divided bY the largest tne (the (normalized) cone measure and the (normalized) Hafisdor
make the curve startin 1) to allow a comparison later on. measure. Let us recall their definitions and their basic @rop
ties.

Before we come to that, let us sketch another interestin% o
point of view on this subject. Sparse vectors play a cruci r  Definition 2 Let0 < p < cc andn > 2.
in the novel and vastly growing area cdmpressed sensindf
was observed in [3], that the theory of compressed sensing ap
plies also to vectors, which abempressiblgi.e. ||z||,, is small

() Then the normalized cone measuredf) is defined by

for (preferably small) < p < 1. Indeed, the simple formula pp(A) = A0, 1] - A) , AcC A
A([0,1] - AR) g
sup inf{]|z — ylloo : #suppy < k} < k7P

ilz] <1 Here,[0,1] - A={t-2:0<t <1,z € A}.
tells us, that such a vectermay be very well approximated by  (ji) The normalized: — 1 dimensional Hausdorff measure on
sparse vectors. This suggest in an intuitive way, that acafpi A" is defined by
vector of the unit ball of;; should be (almost) sparse. It was P
one of the objectives of [7], to show, that this is wrong for ar H(A) N
bitraryp > 0, even forp < 1. Namely, it turned out, that all op(A) = H(AD)’ AC Ay,
the measures usually considered in the (non-convex) gebmet b
cal functional analysis in connection witlj spaces are “bad” where? is the usuak — 1 dimensional Hausdorff mea-
— a typical vector with respect to any of them does not involve sure inR™.

much structure and corresponds rather to a noise then d.signa
Therefore, we are looking for a new type of measures (cf. DefiLet us mention, that fop € {1, 2, oo} these measures coincide.
nition 3), which would behave better from this point of view. ~ The cone measure enjoys two fundamental properties. The firs



one is its connection to the Lebesgue measyrehich is de-
scribed by the so-callegblar decomposition identityf. [1],

f@ydA@) _
Ri / n—1
——— =n r flre)du,(z)dr, (3)
O A "y pp ) (2)
which holds for everyf € Li(R? ).
The second property @f,, is its description in terms of ran-
dom variables. Lep = 2 and letwy, ..., w, be independent
normally distributed Gaussian random variables. Then

(|W1|, ey |wn|)
g )

op(A)

eA), ACA,.

As noted in [8], this relation may be generalized to all value

of pwith 0 < p < oco. Letwy,...,w, be independent random
variables oriR . each with densit)cpe—tp, t > 0 with respect
to the Lebesgue measure, whege= ﬁ is the normalizing
constant. Then, cf. [8, Lemma 1],

(Wi, . wn)
p(A) = P<71p c
(2?21 Wf) /

Using (3) and (4), the following theorem was proven in [7].

A), ACAy. (4

Theorem 1 Let0 < p < occandletn > 2andl < m < n be
natural numbers. Then

r en\71/p
p,00 < log(m) 5
and y
r p
o log(en
0y 5 |12 )] ©)

Let us comment briefly on (5) and (6). The average value of the

components of a fixed € A} is obviouslyn~'/?. Theorem 1

Definition 3 Let0 < p < oo, § > —1 andn > 2. Then we
define the probability measuég s on A} by

by, - - B
, . | | : A" 7
s, () =C, 5 11 Ty, x €Ay, (7
where
Cpp= /An H xfd,up(x) (8)

p i=1

is the normalizing constant.

Intuitively, the more the parametgr > —1 gets closer to-1,
the stronger is the singularity cn‘f near zero and the bigger
role is played by the nearly sparse vectors, cf. Figure 4. The
condition$ > —1 ensures, that (8) is finite.

The following result (cf. [7]) is demonstrated numericaty
Figure 3 (b). It shows, that (with the choige= p/n — 1 >
—1) the components of a typical vectortaken with respect to
tp.p/n—1 decay even exponentially.

Theorem 2 Let0 < p < oo and letn > 2 and1 < m < n be
integers. Then for every fixed € N,

1

R SR PP
(1 )m S liminf o, (6 /n—1) ©)
14
P
. 1 e_m
<limsupob, (0pp/n-1) S + ’
n—oo ’ m!

1 m
(3+1)
where the constants do not dependenbut may depend om

Obviously,0, o = u,. For the case8 > 3 > p/n — 1, there
are no theoretical results up to now.

4. NUMERICAL EXPERIMENTS

4.1. Cone measure

states, that the average value of the maximum component of

(taken with respect tp,, or g,,) is only slightly larger (namely Let us describe, how the numerical experiments were pegdrm

(log(en))*/? times larger). This effect is numerically illustrated and implemented. We start with the cone measure. The key role

in Figure 3 (a). is played by (4). It shows, that a random point with respect to
Altogether, we observe, that (unfortunately) the concépt 0., may be generated in the following way. First, we generate

average best:-term approximation is of a very limited use in wy, ..., w, with respect to the density,e~*",¢ > 0 and then

connection with classical measurgs and g,. We shall see
in the rest of this paper, that it becomes useful, when aghpdie

other measures, which give more weight to vectors with agtro

decay of their components.

3. TENSOR PRODUCT MEASURES

In this section, we propose a new class of measures defined

A} through its density with respect to the cone measyye

Essentially, we follow the idea, that this new measures lghou POINtsz € A7

“promote sparsity”, i.e. the density should be large, if nand
more of the components aftend to zero.

calculate
(Wiy..vywn) "

(Z?:1 wjp)l/p D-

The running time of this algorithm is linear en Furthermore,
the values ofw; are easy to obtain. For example the pack-
ageGNU Scientific Library{4] implements a modification of

{he Marsaglia-Tsang random number generator with respect t

the gamma distribution. In this way, we generatéd random
for n = 100 andp € {0.5, 1, 2} to approximate

numerically the value ofi'/? - [, «% du,(z). The result may
be found in the Figure 3 (a).
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Fig. 3: Approximations ofn!/? . Jan Thdpp(z) (left) and
1og10(fan €5 d0) »/m—1) (right) for n = 100, p = 0.5(0),
p = 1(e) andp = 2(x) based on sampling af0® random
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points. Fig. 4: Approximations ofng xr.db g forn = 4000, p = 1
andg =0(—),8=3-1(--),f=.1-1(--),8=.01-1
4.2, Tensor measures (—--) based onV = 10* samples ofc. The curve from Figure

2 is plotted by—.
It was observed already in [1], that the measurgss

allow a formula similar to (4). We plug the function ) .

F(2) = X[0.00)-4 I, :pfe*“x“g into (3), whereA is any - [2] J. Bobin, J.-L. Starck,_J. M. Fadili, Y. Moudden, and D. L.

measurable subselt A and obtain Donoho. Morphological component analysis: An adap-
b tive thresholding strategyEEE Trans. Image Procesd.6

(11):2675 — 2681, 2007.

/ [T e " I2ax) = A0, 1] - A)-
[0,00)-A [3] A. Cohen, W. Dahmen, and R. DeVore. Compressed sens-

100 " ing and besk-term approximationJ. Amer. Math. So¢22
n—1+ng —rP B
n/o e dr'/ [T duy (1):211 — 231, 2009.

Furthermore, a similar formula fot = A?, leads to [4] GNU. GNU Scientific Library, Software Package.
htt p: //ww. gnu. or g/ sof t ware/ gsl /.
/Hﬂﬁfdﬂp(if) / HIE e ol dy [5] R. Gribonval, H. Rauhut, K. Schnass, and P. Vandergheyns
/1d9p ' 0°°)A1 L Atoms of all channels, unite! average case analysis
To generate a random point (mg with respect tod, 35, we  [6] M. Ledoux. The concentration of measure phenomenon
may therefore generate/, .. .,w!,, with respect to the density AMS, 2001.

8 — iz ' of multi-channel sparse recovery using greedy algorithms.
/n H“" dpip () /n Hl‘ o rdr J. Four. Anal. Appl.14:655-687, 2008.

p 1=1 +i=1

cppt’e t > 0, wherec, fo tPe*"dt is a normalizing e 0 L _
constant and then we conS|der the vector [7] J. Vybiral. Average est-term approximationpreprint,
(! W) http://arxiv.org/abs/1009. 1751, 2010.
1> %n n
n p)1/P P [8] G. Schechtman and J. Zinn. On the volume of the intersec-
(Zj:l(wj) )

tion of two [} balls. Proc. AMS 110 (1):217-224, 1990.
Using [4], we generated agai®® random pointse € AR

with respect tof,, ,,/,,—1 for n = 100 andp € {0.5,1,2}
and used them to numerically approximate the expression
logyo([an €5 d0, 5 /m—1), cf. Figure 3 (b).
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