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ABSTRACT
From various reasons, it is sometimes useful both in theory and
in praxis to consider random models of signals. The most pop-
ular method is the Bernoulli-Gaussian model, where each coor-
dinate of a vectorx ∈ R

n is given as a product of independent
Bernoulli and Gaussian variables. We propose another model,
where each coordinate is taken randomly with respect to a den-
sity cp,βt

βe−tp , whereβ > −1 and0 < p < ∞ are real pa-
rameters. We show, that (on average) the coordinates of sucha
vector decay very fast. Theoretical results are also illustrated by
numerical experiments.

Keywords— bestm-term approximation, average widths,
random sparse vectors, Bernoulli-Gaussian model

1. INTRODUCTION

It the theory of signal processing, noise is usually modelled by
random vectors. For example, thewhite noiseis given byx =
εω ∈ Rn, whereε > 0 is a positive real number andω =
(ω1, . . . , ωn) is a vector of independent Gaussian variables. To
distinguish more between the role ofε (size, or energy ofx) and
ω (direction ofx), we may also consider the vectorx̃ given by

x̃i = ε ·
ωi

(
∑n

j=1 ω
2
j

)1/2
=

εωi

‖ω‖2
, i = 1, . . . , n. (1)

Thenε = ‖x̃‖2 is the size of̃x andω/‖ω‖2 is a random vector
in Sn−1, the unit sphere ofRn. If also the size of the vector
should be a random quantity, one needs only to replaceε > 0
through an appropriate random variable. Both these simple con-
structions of random noise turned out to be extremely successful
in the theory of image processing but also in numerous real life
applications.

It is the main purpose of this work to address the random gen-
eration of a structured signal. This seems to be a more delicate
and more complicated task. It is nowadays a common knowl-
edge, that structured signals usually posses a sparse (or nearly
sparse) representation in a suitable bases or frame appropriately
adapted to the specific class of signals. We shall therefore con-
sider models generating random vectors inRn. Our wish is, that
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the properties of those vectors should resemble as much as pos-
sible the properties of the frame decomposition coefficients of a
typical signal.

Probably the most common random model to generate sparse
vectors, cf. [2, 5], is the so-calledBernoulli-Gaussian model.
Let againε > 0 be a real number and letω = (ω1, . . . , ωn)
be a vector of independent Gaussian variables. Furthermore, let
0 < p ≪ 1 be a real number and let̺ = (̺1, . . . , ̺n) be a
vector of independent Bernoulli variables

̺i =

{

1, with probabilityp,

0, with probability1− p.

TheBernoulli-Gaussian vectorx ∈ Rn is then given by

xi = ε̺i · ωi, i = 1, . . . , n. (2)

Let us point out, that this construction could be again rephrased
(i.e. renormalized) in the sense of (1). Obviously, the number
of non-zero elements ofx is almost surely given by

∑n
j=1 ̺j .

The estimated value of this expression isk := pn and using
Hoeffding’s inequality we observe, that
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for arbitrarys > 0. It follows, that if k is small (i.e.k2 ≪ n)
then the concentration of the number of non-zero elements ofx
aroundk is not very strong. Unfortunately, ifk gets larger, the
effects of the theory ofconcentration of measure[6] come into
play and the random vectors generated by (2) resemble more
and more the vectors ofn-dimensional white noise restricted
to the coordinates, where̺i = 1. In this sense, (2) represents
rather arandomly filtered white noisethen a structured signal.
Especially, the first (let us say)k/2 largest coordinates ofx are
approximately of the same order, cf. Figure 1.

As shown in a one simple example in Figure 2, the typical
signal exhibits a different behaviour. Namely, it is ratherthe
decayof x∗ = (x∗

1, . . . , x
∗
n) (the non increasing rearrangement

of x) then itssparsity, what characterizes a structured signal.
Therefore, we are looking for a random model, where a typical
vector would reproduce this effect. To be able to formulate this
idea more rigorously, we use the notion of bestm-term approx-
imation in a certain average setting.
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Fig. 1: We generatedN = 1000 random vectors inRn, n = 106

with respect to Bernoulli-Gaussian model withk = 100 and
k = 1000. The graphs show the average of the rearrangements
of their absolute values. Observe, that the ratiox∗

1/x
∗
k/2 is ap-

proximately 4 or 5, respectively.
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(b) Rearranged coefficients

Fig. 2: A real-life 64x64 picture and a rearrangement of the ab-
solute value of coefficients of its 2D discrete Fourier transform.
The rearranged coefficients were divided by the largest one (to
make the curve start in 1) to allow a comparison later on.

Before we come to that, let us sketch another interesting
point of view on this subject. Sparse vectors play a crucial role
in the novel and vastly growing area ofcompressed sensing. It
was observed in [3], that the theory of compressed sensing ap-
plies also to vectors, which arecompressible, i.e. ‖x‖p is small
for (preferably small)0 < p < 1. Indeed, the simple formula

sup
x:‖x‖p≤1

inf{‖x− y‖∞ : #supp y ≤ k} ≤ k−1/p

tells us, that such a vectorx may be very well approximated by
sparse vectors. This suggest in an intuitive way, that a typical
vector of the unit ball ofℓnp should be (almost) sparse. It was
one of the objectives of [7], to show, that this is wrong for ar-
bitrary p > 0, even forp ≪ 1. Namely, it turned out, that all
the measures usually considered in the (non-convex) geometri-
cal functional analysis in connection withℓnp spaces are “bad”
– a typical vector with respect to any of them does not involve
much structure and corresponds rather to a noise then a signal.
Therefore, we are looking for a new type of measures (cf. Defi-
nition 3), which would behave better from this point of view.

2. AVERAGE BEST M -TERM APPROXIMATION

We recall the notion of average bestm-term approximation as
developed in [7]. We assume, that the signs of the components
of a random vector are chosen uniformly in{−1,+1}. If one
wishes to obtain complex vectors, we take signs uniformly dis-
tributed in{z ∈ C : |z| = 1}. Therefore, we restrict ourselves
to vectors with positive coordinates in the following definition.

Furthermore, we prefer to split the properties of the ran-
dom vector into its size (which correspond to the real parameter
ε > 0 used already above) and its direction. We shall therefore
assume, that the random vector is chosen randomly on theℓp
unit sphere inRn.

Definition 1 Let 0 < p ≤ ∞ and letn ≥ 2 and1 ≤ m ≤ n be
natural numbers.

(i) We set

∆n
p :=















{

t ∈ [0,∞)n :

n
∑

j=1

tpj = 1
}

if p < ∞,

{

t ∈ [0,∞)n : max
j=1,...,n

tj = 1
}

if p = ∞.

(ii) Let µ be a Borel probability measure on∆n
p . We put

σp
m(µ) :=

∫

∆n

p

x∗
mdµ(x).

The quantityσp
m−1(µ) were called the average bestm-term

width of id : ℓnp → ℓn∞ with respect toµ in [7]
The prominent role in the geometry ofℓnp spaces is played by

the (normalized) cone measure and the (normalized) Hausdorff
measure. Let us recall their definitions and their basic proper-
ties.

Definition 2 Let0 < p ≤ ∞ andn ≥ 2.

(i) Then the normalized cone measure on∆n
p is defined by

µp(A) =
λ([0, 1] · A)

λ([0, 1] ·∆n
p )

, A ⊂ ∆n
p

Here,[0, 1] · A = {t · x : 0 ≤ t ≤ 1, x ∈ A}.

(ii) The normalizedn− 1 dimensional Hausdorff measure on
∆n

p is defined by

̺p(A) =
H(A)

H(∆n
p )

, A ⊂ ∆n
p ,

whereH is the usualn − 1 dimensional Hausdorff mea-
sure inRn.

Let us mention, that forp ∈ {1, 2,∞} these measures coincide.
The cone measure enjoys two fundamental properties. The first



one is its connection to the Lebesgue measureλ, which is de-
scribed by the so-calledpolar decomposition identity, cf. [1],
∫

R
n

+

f(x)dλ(x)

λ([0, 1] ·∆n
p )

= n

∫ ∞

0

rn−1

∫

∆n

p

f(rx)dµp(x)dr, (3)

which holds for everyf ∈ L1(R
n
+).

The second property ofµp is its description in terms of ran-
dom variables. Letp = 2 and letω1, . . . , ωn be independent
normally distributed Gaussian random variables. Then

̺p(A) = µp(A) = P

(

(|ω1|, . . . , |ωn|)
(
∑n

j=1 ω
2
j

)1/2
∈ A

)

, A ⊂ ∆n
p .

As noted in [8], this relation may be generalized to all values
of p with 0 < p < ∞. Let ω1, . . . , ωn be independent random
variables onR+ each with densitycpe−tp , t ≥ 0 with respect
to the Lebesgue measure, wherecp = p

Γ(1/p) is the normalizing
constant. Then, cf. [8, Lemma 1],

µp(A) = P

(

(ω1, . . . , ωn)
(
∑n

j=1 ω
p
j

)1/p
∈ A

)

, A ⊂ ∆n
p . (4)

Using (3) and (4), the following theorem was proven in [7].

Theorem 1 Let 0 < p ≤ ∞ and letn ≥ 2 and1 ≤ m ≤ n be
natural numbers. Then

σp,∞
m (µp) .

[

log
(

en
m

)

n

]1/p

(5)

and

σp,∞
1 (̺p) .

[

log(en)

n

]1/p

. (6)

Let us comment briefly on (5) and (6). The average value of the
components of a fixedx ∈ ∆n

p is obviouslyn−1/p. Theorem 1
states, that the average value of the maximum component ofx
(taken with respect toµp or ̺p) is only slightly larger (namely
(log(en))1/p times larger). This effect is numerically illustrated
in Figure 3 (a).

Altogether, we observe, that (unfortunately) the concept of
average bestm-term approximation is of a very limited use in
connection with classical measuresµp and̺p. We shall see
in the rest of this paper, that it becomes useful, when applied to
other measures, which give more weight to vectors with a strong
decay of their components.

3. TENSOR PRODUCT MEASURES

In this section, we propose a new class of measures defined on
∆n

p through its density with respect to the cone measureµp.
Essentially, we follow the idea, that this new measures should
“promote sparsity”, i.e. the density should be large, if more and
more of the components ofx tend to zero.

Definition 3 Let 0 < p < ∞, β > −1 andn ≥ 2. Then we
define the probability measureθp,β on∆n

p by

dθp,β
dµp

(x) = C−1
p,β ·

n
∏

i=1

xβ
i , x ∈ ∆n

p , (7)

where

Cp,β =

∫

∆n
p

n
∏

i=1

xβ
i dµp(x) (8)

is the normalizing constant.

Intuitively, the more the parameterβ > −1 gets closer to−1,
the stronger is the singularity ofxβ

i near zero and the bigger
role is played by the nearly sparse vectors, cf. Figure 4. The
conditionβ > −1 ensures, that (8) is finite.

The following result (cf. [7]) is demonstrated numericallyin
Figure 3 (b). It shows, that (with the choiceβ = p/n − 1 >
−1) the components of a typical vectorx taken with respect to
θp,p/n−1 decay even exponentially.

Theorem 2 Let 0 < p < ∞ and letn ≥ 2 and1 ≤ m ≤ n be
integers. Then for every fixedm ∈ N,

1
(

1
p + 1

)m . lim inf
n→∞

σp
m(θp,p/n−1) (9)

≤ lim sup
n→∞

σp
m(θp,p/n−1) .

1
(

1
p + 1

)m +
e−m

m!
,

where the constants do not depend onm, but may depend onp.

Obviously,θp,0 = µp. For the cases0 > β > p/n − 1, there
are no theoretical results up to now.

4. NUMERICAL EXPERIMENTS

4.1. Cone measure

Let us describe, how the numerical experiments were performed
and implemented. We start with the cone measure. The key role
is played by (4). It shows, that a random point with respect to
µp may be generated in the following way. First, we generate
ω1, . . . , ωn with respect to the densitycpe−tp , t > 0 and then
calculate

(ω1, . . . , ωn)
(
∑n

j=1 ω
p
j

)1/p
∈ ∆n

p .

The running time of this algorithm is linear onn. Furthermore,
the values ofωi are easy to obtain. For example the pack-
ageGNU Scientific Library[4] implements a modification of
the Marsaglia-Tsang random number generator with respect to
the gamma distribution. In this way, we generated108 random
pointsx ∈ ∆n

p for n = 100 andp ∈ {0.5, 1, 2} to approximate
numerically the value ofn1/p ·

∫

∆n
p

x∗
mdµp(x). The result may

be found in the Figure 3 (a).
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Fig. 3: Approximations ofn1/p ·
∫

∆n

p

x∗
mdµp(x) (left) and

log10(
∫

∆n
p

x∗
mdθp,p/n−1) (right) for n = 100, p = 0.5(◦),

p = 1(•) and p = 2(×) based on sampling of108 random
points.

4.2. Tensor measures

It was observed already in [1], that the measuresθp,β
allow a formula similar to (4). We plug the function
f(x) = χ[0,∞)·A

∏n
i=1 x

β
i e

−‖x‖p

p into (3), whereA is anyµp-
measurable subset of∆n

p , and obtain
∫

[0,∞)·A

n
∏

i=1

xβ
i e

−‖x‖p

pdλ(x) = λ([0, 1] ·∆n
p )·

· n ·

∫ ∞

0

rn−1+nβe−rpdr ·

∫

A

n
∏

i=1

xβ
i dµp(x).

Furthermore, a similar formula forA = ∆n
p , leads to

∫

A

1d θp,β =

∫

A

n
∏

i=1

xβ
i dµp(x)

∫

∆n

p

n
∏

i=1

xβ
i dµp(x)

=

∫

[0,∞)·A

n
∏

i=1

xβ
i e

−‖x‖p

pdx

∫

R
n

+

n
∏

i=1

xβ
i e

−‖x‖p

pdx

.

To generate a random point on∆n
p with respect toθp,β , we

may therefore generateω′
1, . . . , ω

′
n with respect to the density

cp,βt
βe−tp , t > 0, wherec−1

p,β =
∫∞

0 tβe−tpdt is a normalizing
constant and then we consider the vector

(ω′
1, . . . , ω

′
n)

(
∑n

j=1(ω
′
j)

p
)1/p

∈ ∆n
p .

Using [4], we generated again108 random pointsx ∈ ∆n
p

with respect toθp,p/n−1 for n = 100 and p ∈ {0.5, 1, 2}
and used them to numerically approximate the expression
log10(

∫

∆n

p

x∗
mdθp,p/n−1), cf. Figure 3 (b).
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