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Zusammenfassung der Habilitationsschrift

Decomposition methods and their applications

in the theory of function spaces

Dr. rer. nat. Jan Vyb́ıral, Ph.D.

Die vorgelegte kumulative Habilitationsschrift Decomposition methods and their ap-

plications in the theory of function spaces (Zerlegungstechniken und ihre Anwendungen

in der Theorie der Funktionenräume) präsentiert die Ergebnisse der Arbeiten [1–7].
Studiert werden isotrope Funktionenräume vom Besov und Triebel-Lizorkin Typ

sowie einige ihrer Varianten, wie Räume mit dominierend gemischten Glattheitseigen-
schaften und Räume mit variabler Glattheit und Integrabilität). Die Fourier-analytische
Definition der isotropen Funktionenräume Bs

p,q(R
d) und F s

p,q(R
d) benutzt eine glatte

Zerlegung der Eins (ϕj)
∞
j=0. Daraus ergibt sich eine Zerlegung einer Distribution f ∈

S′(Rd)

f =

∞
∑

j=0

F−1(ϕjFf), Konvergenz in S′(Rd).

Hierbei steht F für die Fouriertransformation auf S′(Rd) und F−1 für ihre Inverse. Die
Benutzung der Fouriertransformation direkt in der Definition der betrachteten Funktio-
nenräume hat viele Vorteile für zahlreiche Anwendungen, insbesondere in der Theorie
der partiellen Differentialgleichungen.

Erst in den siebziger und achtziger Jahren des 20. Jahrhunderts wurde auch klar, dass
die guten Eigenschaften der Besov und Triebel-Lizorkin Skalen eine atomare Charak-
terisierung dieser Räume erlauben. Die erste Charakterisierung von diesem Typ scheint
die von Coifman [8] zu sein. Er betrachtet die Hardy Räume Hp(R) mit 0 < p ≤ 1 und
beweist, dass eine Distribution f ∈ S′(R) dann und nur dann in Hp(R) liegt, wenn eine
Zerlegung

f =

∞
∑

i=0

αibi

existiert, wobei αi reelle Zahlen sind, bi so genannte p-Atome und

A‖f |Hp(R)‖p ≤

∞
∑

i=0

|αi|
p ≤ B‖f |Hp(R)‖p

gilt. Die Konstanten A,B > 0 hängen hier nur von p ab.
Durch die Arbeiten von Frazier und Jawerth [9] und [10] wurde diese Technik auch

auf viele andere Räume angewendet - im Prinzip auf alle die Räume, welche Triebel
in seinem Buch [11] als gute Räume bezeichnet. Das sind alle Funktionenräume, die
genug Fourier-Multiplikatoren besitzen. Leider zeigte sich, dass viele klassische Räume
(Cm(Rd), L1(R

d), L∞(Rd) oder BV (Rd)) diese Definition nicht erfüllen und diese wer-
den deshalb von Triebel als schlechte Räume bezeichnet.
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Ein weiterer Durchbruch wurde dann in den Arbeiten von Daubechies [12, 13] erzielt.
In diesen wird die Konstruktion von Wavelets mit kompaktem Träger beschrieben,
welche in der angewandten Mathematik sehr populär geworden sind. Später wurden
auch Wavelet-Charakterisierungen von Besov und Triebel-Lizorkin Räumen mit Hilfe
von Daubechies-Wavelets gezeigt, vgl. [14] und [15].

Die vorgelegten Arbeiten [1–7] präsentieren die Vor- und Nachteile von einigen dieser
Zerlegungen und beschreiben ihre Anwendungen in der Theorie der Funktionenräume.

In der ersten Arbeit [1] werden die Zerlegungstechniken ausgenutzt, um Eigenschaften
kompakter Einbettungsoperatoren zwischen isotropen Besov und Triebel-Lizorkin Räumen
zu studieren. Falls Ω ein Lipschitz Gebiet ist und die Ungleichung

s1 − s2 > d
( 1

p1
−

1

p2

)

+

erfüllt ist, dann ist die Einbettung

Id : Bs1
p1q1(Ω) → Bs2

p2q2(Ω)

kompakt. Die Theorie der s-Zahlen (cf. [16]) ordnet dann dem Operator Id eine
monoton-fallende Folge reeller Zahlen sn(Id) zu. Das Abfallverhalten dieser Folge
beschreibt dann gewisse geometrische Eigenschaften des Operators Id. Das Konzept
von s-Zahlen enthält insbesondere die Approximationszahlen, Kolmogorov-Zahlen und
Gelfand-Zahlen. Das Verhalten von sn(Id) wurde in den letzten dreißig Jahren ausführlich
studiert. Die Arbeit [1] sammelt die bekannten Ergebnisse auf dem Gebiet und schließt
einige gebliebene Lücken dieser Theorie. Hierbei ist der Ansatz bei allen drei oben
genannten Typen von s-Zahlen gleich - die Abschätzung von sn(Id : Bs1

p1q1(Ω) →

Bs2
p2q2(Ω)) wird mit Hilfe der Zerlegungstechniken auf Abschätzung von sn(id : bs1,Ωp1q1 →

b
s2,Ω
p2q2) reduziert. Hierbei sind die Folgenräume b

s,Ω
pq viel anschaulicher und einfacher zu

behandeln.
Der zweite Artikel [2] beschäftigt sich mit anderen Eigenschaften isotroper Besov und

Triebel-Lizorkin Räume. Falls X ein (quasi-)Banachraum von lokal integrierbaren Funk-
tionen ist, dann definiert man die sogenannte Wachstums-Envelope-Funktion (growth
envelope function) von X als

EX
G (t) := sup

‖f |X‖≤1
f∗(t), 0 < t < 1.

Hier steht f∗ für die nicht-wachsende Umordnung von f .
Falls für 0 < t < 1 und ein α > 0 die Relation EX

G (t) ≈ t−α erfüllt ist, dann
definiert man den Wachstums-Envelope-Index (growth envelope index ) uX als Infimum
aller Zahlen v ∈ (0,∞], so dass

(1)

(
∫ ǫ

0

[

f∗(t)

EX
G (t)

]v
dt

t

)1/v

≤ c ‖f |X‖

(mit der üblichen Modifikation für v = ∞) für ein ǫ > 0, c > 0 und alle f ∈ X gilt. Das
Paar EG(X) = (EX

G , uX) nennt sich dann Wachstums-Envelope (growth envelope) des
Funktionenraums X.

Diese Begriffe wurden von D. D. Haroske eingeführt und ausführlich studiert, vgl. [17]
und [18]. Wir benutzen in [2] die atomare und die Wavelet-Zerlegung, um das Verhalten
in Grenzfällen zu untersuchen. Die Ergebnisse kann man dann auch als Aussagen über
optimale Einbettungen von Besov und Triebel-Lizorkin Räumen in die sogenannten
Lorentzräume interpretieren.
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Die dritte Arbeit [3] beschäftigt sich mit den Einbettungen von Franke und Jawerth
[19, 20] (vgl. die Formel (2.10) der Habilitationsschrift) für Räume mit dominieren-
den gemischten Glattheitseigenschaften. Die Beweismethode von Franke und Jaw-
erth basiert auf einem klugen Interpolationstrick und ist im Fall von Räumen mit do-
minierend gemischten Glattheitseigenschaften nicht direkt anwendbar. Partielle Ergeb-
nisse wurden in [21, 22] erzielt, aber einige Fälle sind offen geblieben. Unsere Methode
modifiziert die Technik von [23] und ermöglicht einen einheitlichen Beweis ohne Ein-
schränkung an die Parameter der Räume.

Die Arbeit [4] studiert Räume von Triebel-Lizorkin Typ, die erst vor kurzem in [24]
eingeführt wurden. Diese Räume werden durch Funktionsparameter s(x), p(x) und
q(x) beschrieben. Das heißt, dass die Glattheit, Integrabilität und Summabilität in
diesen Räumen von dem Ort x abhängt. Die Theorie dieser Räume basiert auf den
Lebesgueräumen mit variabler Integrabilität Lp(·)(R

d), die insbesondere durch die Ar-
beiten von Kováčik, Rákosńık und Růžička [25, 26] populär geworden sind. In [4] wurde
gezeigt, dass die Einbettung

F
s0(·)
p0(·),q(·)

(Rd) →֒ F
s1(·)
p1(·),q(·)

(Rd)

gilt, wenn die Funktionsparameter s(·), p(·) und q(·) gewisse Regularitätsbedingungen
erfüllen und die Identität

s0(x)−
d

p0(x)
= s1(x)−

d

p1(x)
, x ∈ R

d

punktweise erfüllt ist.
In den Arbeiten [5, 6] wurden Eigenschaften von diagonalen Spuroperatoren im Rah-

men der Funktionenräume mit dominierenden gemischten Glattheitseigenschaften in R
2

und R
3 studiert. Das Verhalten des nicht-diagonalen Spuroperators

(trf)(t) := f(t, 0), t ∈ R

in diesen Räumen ist bekannt [27]. Für den diagonalen Spuroperator

(trΓf)(t) := f(t, t), t ∈ R

gab es partielle Ergebnisse im zweidimensionalen Fall, cf. [28] und [29]. Die Arbeit [5]
liefert eine (fast) komplette Antwort auf diese Frage im R

2. In [6] hat sich gezeigt, dass
im R

3 neue Effekte eintreten und der Spurraum als Summe von drei Räumen gegeben
ist. Die Beweise in diesen beiden Arbeiten basieren auf atomaren Zerlegungen.

Die letzte Arbeit [7] widmet sich dem Studium radialer Funktionen. Falls X(Rd) ⊂
S′(Rd) ein (quasi-)Banachraum von Distributionen ist, dann bezeichnen wir mit RX(Rd)
die Menge aller radialen Distributionen von X(Rd) ausgestattet mit der Norm in X(Rd).
Wir untersuchen die Eigenschaften des Spuroperators

(trf)(t) := f(t, 0, . . . , 0), t > 0

im Rahmen von radialen Besov, Triebel-Lizorkin und Sobolevräumen. Im Fall von Besov
und Triebel-Lizorkin Räumen benutzen wir eine angepasste atomare Charakterisierung
um trXBs

p,q(R
d) und trXF s

p,q(R
d) zu beschreiben. Diese wird weiter benutzt, um Reg-

ularitätseigenschaften und den Abfall der radialen Funktionen aus diesen Räumen zu
untersuchen.
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[24] L. Diening, P. Hästö and S. Roudenko, Function spaces of variable smoothness and integrability, J.

Funct. Anal. 256 (2009), no. 6, 1731–1768.
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Preface

This cumulative habilitation thesis presents the work done in seven research articles [28, 68,
72, 93, 95, 97, 98]. The summary introduces the mathematical background of the subject and
contains a historical survey of decomposition techniques in the frame of function spaces. After
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on the proofs of the results and put them into the historical perspective given before, I would
like to point the reader to the original papers for full proofs and further references.

Acknowledgment

I would like to thank to prof. Hans-Jürgen Schmeißer for reading excerpts of earlier versions of
the summary. Furthermore I would like to acknowledge the support from the DFG under the
grant Hi 584/2-2 and from FWF project Y 432-N15 START-Preis “Sparse Approximation and
Optimization in High Dimensions”.

The work presented here was done mainly at the Friedrich-Schiller University Jena and to a
smaller extent also at RICAM in Linz. I would like to thank the colleagues in these places for
their hospitality and friendly environment.

I would like to thank my collaborators, namely M. Hansen, W. Sickel, and L. Skrzypczak, for
many inspiring discussions and for the work they contributed to the articles collected in this
thesis.

Jena, Mai 2011 Jan Vyb́ıral

3



Contents

1 Introduction 5

2 Definitions and basic notation 6

2.1 Classical spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Besov and Triebel-Lizorkin spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Spaces on domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Function spaces of dominating mixed smoothness . . . . . . . . . . . . . . . . . . 10

3 Decomposition techniques 11

3.1 Hardy spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Besov and Triebel-Lizorkin spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Function spaces of dominating mixed smoothness . . . . . . . . . . . . . . . . . . 16

4 Results of the thesis 18

4.1 Widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.1 Approximation numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.2 Kolmogorov and Gelfand numbers . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Envelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.2 Spaces of dominating mixed smoothness . . . . . . . . . . . . . . . . . . . 26

4.2.3 Spaces of variable smoothness and integrability . . . . . . . . . . . . . . . 28

4.3 Traces of spaces with dominating mixed smoothness . . . . . . . . . . . . . . . . 31

4.3.1 Two-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.2 Three-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Radial subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.1 Trace spaces of radial subspaces . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.2 Regularity and decay properties . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.3 Functions with bounded variation . . . . . . . . . . . . . . . . . . . . . . 45

5 Bibliography 46

6 Publications relevant to the thesis 52

4



1 Introduction

The main subject of this habilitation thesis are function spaces and their various decomposition
techniques with a special emphasis on the applications of these techniques to more or less classical
problems of the theory of function spaces. We start with a brief historical overview, which we
use also to introduce some basic notation. As we are not able to cover all the topics of the theory
of function spaces in this short survey, we refer to [1, 2, 37, 44, 45, 77, 53, 83] for much more
details and further references. Our selection of the topics is mainly governed by our interest in
decomposition techniques.

The very first traces of the study of function spaces may be found already in the second half
of eighteen century. This period was devoted to the study of classical spaces of continuous and
continuously differentiable functions. A new era of function spaces started with the pioneering
work of Sobolev [73, 74, 75] (with some forerunners [24, 58]). The theory of distributions became
an essential tool, which allowed to achieve new results (e.g. embedding theorems) applicable in
the study of partial differential equations.

In later years, the area became an object of a vastly growing interest. More and more function
spaces were defined with the help of explicit norms. In the parallel, the advantages of the
techniques of Fourier analysis (like Littlewood-Paley theory) became evident. In this connection,
the Hardy spaces Hp(∆) (cf. Section 3) played a crucial role.

During the 60’s and 70’s of the last century, the well structured scales of Besov and Triebel-
Lizorkin spaces, cf. Definition 2.1, emerged from the variety of function spaces available so far.
They exhibit several advantages. Many classical spaces may be identified as Besov or Triebel-
Lizorkin spaces for a special choice of parameters. Furthermore, their definition is given in
terms of distributions and Fourier analysis and these spaces have “good” properties from the
Fourier-analytic point of view, cf. [84, Section 2.2.3]. Also the spaces with fractional (or even
negative) smoothness could be incorporated easily into these two scales. On the other hand, the
definition of Besov and Triebel-Lizorkin spaces involves a certain smooth dyadic decomposition
of unity, which makes it look much more complicated than that of Sobolev spaces.

Further essential breakthrough was achieved in the work of Frazier and Jawerth [22] and [23]
(with an important forerunner being [13]). It was discovered that spaces of functions and
distributions may be characterized in terms of their decomposition properties. They considered
the decomposition formula f =

∑
Q〈f, ϕQ〉ψQ for all f ∈ S′(Rd), where Q runs over all dyadic

cubes of Rd and ϕQ and ψQ are shifts of dilations of special functions ϕ and ψ.

A similar approach was then followed in all other decomposition techniques, which appeared
afterwards. They all say, roughly speaking, that a function (or a distribution) f belongs to a
certain function space (say Bs

p,q(R
d)) if, and only if, it may be written in a form

f =
∑

j,m

λj,maj,m, (1.1)

where λj,m are (real or complex) scalars and aj,m are certain special building blocks. Fur-
thermore, the (quasi-)norm of f in the given function space is in some sense equivalent to the
(quasi-)norm of the sequence λ = (λj,m)j,m in an appropriate sequence space (i.e. bsp,q in the
case of Besov spaces).

Of course, the formula (1.1) gives arise to many questions, like the uniqueness of the decompo-
sition or the linearity of the dependence of λ on f . For example, in the decomposition of Frazier
and Jawerth the mapping f → {〈f, ϕQ〉}Q is linear, but it is not an isomorphism between the
given function space and the corresponding sequence space.
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But three properties of the building blocks aj,m appearing already in [22] and [23] are common
to most of all the known decomposition techniques. Those are smoothness, vanishing moment
conditions and localization.

• Quite naturally, the basic building blocks are supposed to exhibit at least the same degree of
smoothness as the functions (or distributions) in the function space under consideration. Due
to the very weak convergence of (1.1) (which is usually assumed to converge in S′(Rd)), the
smoothness of the building blocks is not limited from above. As the classical Haar wavelets are
not even continuous, the question of minimal smoothness required in (1.1) has also been studied,
cf. [88].

• The necessity of the moment conditions becomes clear when dealing with singular distributions.
Therefore, the number of moment conditions needed grows with s (the smoothness of the space)
decreasing, cf. Theorem 3.6. Let us point out, that one possible way how to achieve (even an
infinite number of) vanishing moments is to work with a function, whose Fourier transform has
its support bounded away from zero.

• Finally, the localization of the building blocks is also necessary. One may observe that for
p > 1 overlapping building blocks would allow to consider decompositions of f with arbitrarily
small norm of the sequence of coefficients λ = (λj,m)j,m. This corresponds to no localization
conditions needed in the decomposition theorem of Hp(R

d), 0 < p ≤ 1 of Coifman [13], cf.
Theorem 3.2.

During last two decades, various different decomposition techniques appeared. They are usually
named after the building blocks used, so that we speak about atomic, molecular, quarkonial or
wavelet decomposition. Furthermore, these decompositions were adapted to a number of different
function spaces (anisotropic spaces, spaces with dominating mixed smoothness, spaces of Morrey
and Campanato type, . . . ). Last, but not least, the methods were adapted to spaces on domains.
The huge interest in these techniques was driven by the large number of applications based on
or making a use of them, i.e. signal processing in many disciplines (like medicine or geology),
algorithm design, data compression or numerical analysis to name at least a few of them.

Our approach in this thesis is different. We want to point out, how the theory of decomposition
techniques is helping to deal with problems in the theory of function spaces. It turns out (and
it has been like that since the work of Frazier and Jawerth), that many classical problems may
be much more easily formulated and handled in the language of sequence spaces. We shall deal
here mainly with Sobolev and trace embeddings of function spaces and their properties.

The plan of this survey is as follows. In Section 2, we present necessary notation and definitions,
Section 3 describes (some of) the decomposition techniques with an emphasis on those which
shall be used later on and Section 4 presents the results of the papers, which are part of this
cumulative thesis.

2 Definitions and basic notation

In this section we give the necessary notation and the definitions of the function spaces considered
in this work.

We denote by R the set of all real numbers and by R
d the d-dimensional Euclidean space.

Furthermore, N stands for the set of all natural numbers, Z for the set of all integers and C for
the set of all complex numbers.

We denote by S(Rd) the Schwartz space of all complex-valued rapidly decreasing infinitely
differentiable functions equipped with the usual topology and its dual by S′(Rd).
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The Fourier transform of ϕ ∈ S(Rd) is given by

Fϕ(ξ) = 1

(2π)d/2

∫

Rd

ϕ(x)e−iξ·xdx, ξ ∈ R
d

with ins inverse denoted by

F−1ϕ(ξ) =
1

(2π)d/2

∫

Rd

ϕ(x)eiξ·xdx, ξ ∈ R
d.

Both F and F−1 are extended to S′(Rd) by duality. We often write ϕ̂ as a shortcut for Fϕ and
ϕ∨ for F−1ϕ.

Although we are mainly interested in function spaces of Besov and Triebel-Lizorkin type (as
defined in Section 2.2), we first collect the definitions of (some of) the classical function spaces.

2.1 Classical spaces

(i) The space of all complex-valued bounded and uniformly continuous functions is denoted
by C(Rd) and is equipped with the norm ‖f |C(Rd)‖ = supx∈Rd |f(x)|.
Let m ∈ N. Then we denote by Cm(Rd) the space of all functions on R

d, such that Dαf ∈
C(Rd) for all multiindices α with |α| ≤ m. The norm is then given by ‖f |Cm(Rd)‖ =
max|α|≤m ‖Dαf |C(Rd)‖.

(ii) The Lebesgue spaces Lp(R
d), 0 < p ≤ ∞ are spaces of measurable functions, for which

‖f |Lp(Rd)‖ :=





(∫

Rd

|f(x)|pdx
)1/p

, if 0 < p <∞

ess supx∈Rd |f(x)|, if p = ∞

is finite. Sometimes, we write only ‖f‖p instead of ‖f |Lp(Rd)‖ for short.

(iii) Let 1 ≤ p ≤ ∞ and k ∈ N0. Then the Sobolev space W k
p (R

d) is defined by

W k
p (R

d) = {f ∈ S′(Rd) : Dαf ∈ Lp(R
d) if |α| ≤ k}.

Here, the derivatives are interpreted in the distributional sense. One of the cornerstones of
the theory of Sobolev spaces is the embedding property (usually called Sobolev embedding)

W k0
p0 (R

d) →֒ W k1
p1 (R

d) (2.1)

if 0 ≤ k1 ≤ k0 are natural numbers, 1 ≤ p0 ≤ p1 <∞ and

k0 −
d

p0
= k1 −

d

p1
. (2.2)

When considering the spaces on domains, then (under conditions which we shall discuss
in detail later) (2.1) becomes even compact.

(iv) An essential effort was devoted to the extension of the theory of function spaces also to
spaces with fractional (or even negative) smoothness. One of the reasons for that is hidden
already in (2.2) - for given p0, p1 and k0, the optimal k1 may be a fractional real number.
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The classical way is represented by Hölder spaces Cs(Rd). Let s > 0 be not an integer.
Then we define

Cs(Rd) =

{
f ∈ C [s](Rd) : (2.3)

‖f |Cs(Rd)‖ := ‖f |C [s](Rd)‖+
∑

|α|=[s]

sup
x 6=y

|Dαf(x)−Dαf(y)|
|x− y|{s} <∞

}
.

Here, s = [s] + {s} with 0 ≤ {s} < 1 is a decomposition of s into its integer and fractional
part.

The closely related Zygmund spaces Cs(Rd) are obtained by replacing the first order by
second order differences in (2.3). The definition of the (classical) Besov spaces reflects a
similar idea. It works with the decomposition of the smoothness parameter s = [s]−+{s}+,
where 0 < {s}+ ≤ 1. Let s > 0 and 1 ≤ p, q <∞. Then

Λsp,q(R
d) =

{
f ∈W [s]−(Rd) : ‖f |Λsp,q(Rd)‖ := ‖f |W [s]−(Rd)‖ (2.4)

+
∑

|α|=[s]−

(∫

Rd

|h|−{s}+q‖∆2
hD

αf‖qp
dh

|h|d

)1/q

<∞
}
, (2.5)

where ∆2
hg are the usual second order differences of g. If q = ∞, only notational changes

are necessary. Let us refer to [84, Section 2.2] for other spaces (i.e. Slobodeckij spaces and
Bessel potential spaces) with fractional smoothness.

2.2 Besov and Triebel-Lizorkin spaces

We give a Fourier-analytic definition of Besov and Triebel-Lizorkin spaces, which relies on the
so-called smooth dyadic resolution of unity. Let ϕ ∈ S(Rd) with

ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥ 3

2
. (2.6)

We put ϕ0 = ϕ and ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x) for j ∈ N and x ∈ R
d. This leads to the

identity
∞∑

j=0

ϕj(x) = 1, x ∈ R
d.

Definition 2.1. (i) Let s ∈ R and 0 < p, q ≤ ∞. Then Bs
pq(R

d) is the collection of all f ∈ S′(Rd)
such that

‖f |Bs
pq(R

d)‖ =

( ∞∑

j=0

2jsq‖(ϕj f̂)∨|Lp(Rd)‖q
)1/q

(2.7)

is finite (with the usual modification for q = ∞).

(ii) Let s ∈ R, 0 < p <∞ and 0 < q ≤ ∞. Then F spq(R
d) is the collection of all f ∈ S′(Rd) such

that

‖f |F spq(Rd)‖ =

∥∥∥∥
( ∞∑

j=0

2jsq|(ϕj f̂)∨(·)|q
)1/q

|Lp(Rd)
∥∥∥∥ (2.8)

is finite (with the usual modification for q = ∞).
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Remark 2.2. (i) The spaces Bs
pq(R

d) and F spq(R
d) are independent on the choice of the function

ϕ as soon as it satisfies (2.6). Unfortunately, if p = ∞ in the F -case (which was excluded
in Definition 2.1), then this is no longer true and a different approach is necessary. We
shall not go into details and refer to the recent monograph [100].

(ii) Let s ∈ R, 0 < p <∞ and 0 < q ≤ ∞. Then the embedding

Bs
p,min(p,q)(R

d) →֒ F sp,q(R
d) →֒ Bs

p,max(p,q)(R
d).

is an easy consequence of the Definition 2.1.

(iii) Let −∞ < s1 < s0 <∞, 0 < p0 < p1 <∞, 0 < q0 ≤ q1 ≤ ∞ with

s0 −
d

p0
= s1 −

d

p1
.

Then the classical Sobolev embedding (2.1) has its counterpart also for Besov and Triebel-
Lizorkin spaces

Bs0
p0,q0(R

d) →֒ Bs1
p1,q1(R

d) and F s0p0,∞(Rd) →֒ F s1p1,q0(R
d). (2.9)

Furthermore, the Jawerth-Franke embedding [21, 33] states that

F s0p0,∞(Rd) →֒ Bs1
p1,p0(R

d) and Bs0
p0,p1(R

d) →֒ F s1p1,q0(R
d). (2.10)

(iv) The books [84, 53, 7] describe the stage of the theory of function spaces of Besov and
Triebel-Lizorkin type as it stood in the late 1970’s. For the more modern aspects of this
theory we refer to the books of Triebel [86, 91, 92] and to [100].

(v) We use this place to introduce the symbols

σp = max(1/p − 1, 0), σpq = max(1/p − 1, 1/q − 1, 0)

and
σdp = dmax(1/p − 1, 0), σdpq = dmax(1/p − 1, 1/q − 1, 0).

These quantities play an important role in the theory of this spaces and shall be used
frequently later on.

(vi) Definition 2.1 covers many of the classical spaces defined by derivatives and/or differences
(cf. Section 2.1 for some examples). Especially,

Bs
∞,∞(Rd) = Cs(Rd) if s > 0,

Bs
∞,∞(Rd) = Cs(Rd) if s > 0, s 6∈ N,

Bs
p,q(R

d) = Λsp,q(R
d) if s > 0, 1 ≤ p <∞, 1 ≤ q ≤ ∞,

F sp,2(R
d) =W s

p,2(R
d) if s > 0, s ∈ N, 1 < p <∞.

(vii) Definition 2.1 of isotropic Besov and Triebel-Lizorkin spaces has numerous modifications
and extensions, which lead to specific function spaces, for example anisotropic spaces,
spaces of generalized smoothness or spaces of variable smoothness and/or integrability.

Later on, we shall give the definition of spaces of dominating mixed smoothness, which
play an important role in analysis of high-dimensional problems and which is based on a
special decomposition of unity involving a certain tensor product structure.
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2.3 Spaces on domains

Let Ω be a bounded domain. Then one may easily modify the definitions given in Section 2.1 to
obtain function spaces on Ω. Unfortunately, Definition 2.1 relies essentially on the use of Fourier
transform and does not allow such an easy modification. Therefore, the Besov and Triebel-
Lizorkin spaces on Ω are usually defined by restriction. Let D(Ω) = C∞

0 (Ω) be the collection of
all complex-valued infinitely-differentiable functions with compact support in Ω and let D′(Ω)
be its dual - the space of all complex-valued distributions on Ω.

Let g ∈ S′(Rd). Then we denote by g|Ω its restriction to Ω:

(g|Ω) ∈ D′(Ω), (g|Ω)(ψ) = g(ψ) for ψ ∈ D(Ω).

Definition 2.3. Let Ω be a bounded domain in Rd. Let s ∈ R, 0 < p, q ≤ ∞ with p < ∞ in
the F -case. Let Aspq stand either for Bs

pq or F
s
pq. Then

Aspq(Ω) = {f ∈ D′(Ω) : ∃g ∈ Aspq(R
d) : g|Ω = f}

and
‖f |Aspq(Ω)‖ = inf ‖g|Aspq(Rd)‖,

where the infimum is taken over all g ∈ Aspq(R
d) such that g|Ω = f.

Although Definition 2.3 is an easy and convenient way how to define function spaces on domains,
an intrinsic characterization of these spaces is necessary on many occasions. It turns out, that
under only minor regularity assumptions on Ω (i.e. Lipschitz boundary), the spaces may be
characterized by differences (in a fashion similar to Section 2.1). As this will not be needed in
the sequel, we only refer to [91, Section 1.11] for details and further references.

We shall later need the existence of a universal extension operator as it was given by Rychkov
[60]. This result (with many forerunners for which we refer to references given in [60]) states,
that if Ω has Lipschitz boundary then there is a common bounded linear extension operator Ext :
Asp,q(Ω) → Asp,q(R

d) for all admissible s, p and q. Another important fact will be the existence of
atomic and wavelet decomposition techniques adapted to function spaces on domains. We shall
return to this point in Section 3.

2.4 Function spaces of dominating mixed smoothness

In many real-life applications it is necessary to consider functions depending on a large number
of variables d. Furthermore, many of the usual numerical techniques suffer from the so-called
curse of dimensionality, i.e. the fact, that its complexity grows very fast (i.e. exponentially) in
d. We refer to the recent monographs of Novak and Woźniakowski [51, 52]. It is known since
late 1950’s that boundedness of certain mixed derivatives is a suitable assumption, which allows
to essentially restrict the critical influence of the dimension d.

Sobolev spaces with dominating mixed smoothness SrpW (Rd) have been introduced in 1962 by
S. M. Nikol’skij, see [48, 49], originally in connection with some partial differential equations. If
r = (r1, . . . , rd) ∈ N

d
0 is a vector of non-negative integers, then the space SrpW (Rd) is defined as

SrpW (Rd) =

{
f ∈ S′(Rd) : ‖f |SrpW (Rd)‖ :=

( ∑

0≤α≤r

‖Dαf‖pp
)1/p}

.

Here, the summation runs over all multiindices α ∈ N
d
0, such that 0 ≤ αi ≤ ri for all i = 1, . . . , d.

The terms with mixed derivatives (i.e. ‖Drf‖p) play a crucial role and gave the name to this
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scale of function spaces. Also spaces of Besov type with q = ∞, i.e. the spaces denote below by
Srp,∞B(Rd), were considered by Nikol’skij. A systematic treatment of spaces with dominating
mixed smoothness was then given in [3].

Later on there has been some interest in these type of spaces as special cases of vector-valued
Sobolev spaces (Sr,...,rp W (Rd) can be interpreted as an iterated version of the Sobolev spaces
W r
p (R)), see Grisvard [26], Sparr [76], Schmeißer [62] and Sickel and Ullrich [70, 71]. We refer,

e.g., to the monographs of Tikhomirov [82], Temlyakov [80] and Nikol’skij [50] and to the surveys
[8] and [11] for more details and further references.

We deal with function spaces of dominating mixed smoothness of Besov and Triebel-Lizorkin type
very much in the spirit of [65]. Their definition is based on Definition 2.1 with the decomposition
of unity replaced by another one with a tensor product structure.

For k = (k1, . . . , kd) ∈ N
d
0 and x = (x1, . . . , xd) ∈ R

d we define ϕk(x) = ϕk1(x1) · · ·ϕkd(xd).
Then, since ∑

k∈Nd
0

ϕk(x) = 1 for every x ∈ R
d, (2.11)

the system (ϕk)k∈Nd
0
forms a dyadic resolution of unity with the inner tensor product structure.

Definition 2.4. Let r = (r1, . . . , rd) ∈ R
d and 0 < q ≤ ∞.

(i) Let 0 < p ≤ ∞. Then Srp,qB(Rd) is the collection of all f ∈ S′(Rd) such that

‖f |Srp,qB(Rd)‖ϕ =
(∑

k∈Nd
0

2qk·r‖(ϕk f̂)∨|Lp(Rd)‖q
)1/q

= ‖2k·r(ϕk f̂)∨|ℓq(Lp)‖ (2.12)

is finite.

(ii) Let 0 < p <∞. Then Srp,qF (R
d) is the collection of all f ∈ S′(Rd) such that

‖f |Srp,qF (Rd)‖ϕ =
∥∥∥
(∑

k∈Nd
0

|2k·r(ϕkf̂)∨(·)|q
)1/q

|Lp(Rd)
∥∥∥ = ‖2k·r(ϕk f̂)∨|Lp(ℓq)‖ (2.13)

is finite.

We shall need later on also other variants of Definition 2.1, cf. Definition 4.18 and Definition
4.25.

3 Decomposition techniques

3.1 Hardy spaces

The history of atomic decompositions is closely related to Hardy spaces Hp. In its original form,
the Hardy space Hp(∆) is a space of holomorphic functions on the unit disc ∆ := {z ∈ C : |z| <
1} satisfying

‖f |Hp(∆)‖ := sup
0<r<1

(
1

2π

∫ 2π

0
|f(reit)|pdt

)1/p

<∞.

This definition (which goes back to F. Riesz) was extended to functions of real variables by C.
Fefferman and E. M. Stein in [20]. The space Hp(R

d), 0 < p ≤ ∞ is a space of f ∈ S′(Rd), such
that

(MΦf)(x) := sup
t>0

|(f ∗ Φt)(x)|, x ∈ R
d

11



is in Lp(R
d). Here Φ ∈ S(Rd) with

∫
Rd Φ(x)dx = 1 is arbitrary and Φt(x) = t−dΦ(x/t).

Furthermore,
‖f |Hp(R

d)‖ := ‖MΦf |Lp(Rd)‖
is a quasinorm on Hp(R

d). Different choices of Φ lead to equivalent quasinorms. If 1 < p < ∞,
then Hp(R

d) coincides with Lp(R
d). But for 0 < p ≤ 1, one obtains new function spaces of

distributions on R
d.

The first atomic decomposition of Hp(R
d) with d = 1 and 0 < p ≤ 1 was given in [13] and

generalized to d > 1 in [38]. It uses the notion of p-atoms on the real line.

Definition 3.1. Let 0 < p ≤ 1. A p-atom is a real-valued function b on R such that∫∞
−∞ b(x)xkdx = 0, 0 ≤ k ≤ [1/p] − 1, k ∈ N0, and the support of which is contained in an

interval I for which supx∈R |b(x)| ≤ |I|−1/p.

The quantity [1/p] is the integer part of 1/p. The corresponding decomposition theorem then
takes the following form.

Theorem 3.2. ([13]) A distribution f lies in Hp(R), 0 < p ≤ 1 if, and only if, it can be written
in the form

f =

∞∑

i=0

αibi,

where αi are in R, bi are p-atoms for i ∈ N and

A‖f |Hp(R)‖p ≤
∞∑

i=0

|αi|p ≤ B‖f |Hp(R)‖p.

Here the constants A,B > 0 depend only on p.

3.2 Besov and Triebel-Lizorkin spaces

M. Frazier and B. Jawerth extended in [22, 23] the method of Coifman to a huge variety of other
function spaces. They studied the decomposition formula f =

∑
Q〈f, ϕQ〉ψQ for f ∈ S′(Rd).

Here, Q runs over all dyadic cubes of Rd and ϕQ and ψQ arise through shifting and dilating of
special functions ϕ and ψ. These functions are smooth, rapidly decreasing and possess compactly
supported Fourier transform. The mapping

Sϕ : f → (〈f, ϕQ〉)Q
is called ϕ-transform. Theorem 2.2 of [23] then states, that Sϕ maps the homogenous Triebel-
Lizorkin space Ḟ sp,q(R

d) into a special sequence space ḟ sp,q, which is defined through the (quasi)norm

‖λ|ḟ sp,q‖ :=

∥∥∥∥∥∥∥


∑

Q

(|Q|−s/n−1/2|λQ|)qχQ(·)




1/q
∥∥∥∥∥∥∥
p

,

where the sum runs again over all dyadic cubes of Rd, |Q| stands for the Lebesgue measure of
Q and χQ is the characteristic function of Q.

Furthermore, the inverse ϕ-transform defined as

Tψ : λ = (λQ)Q →
∑

Q

λQψQ

maps ḟ sp,q onto Ḟ
s
p,q(R

d) and Tψ ◦ Sϕ is the identity on Ḟ sp,q(R
d).
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Remark 3.3. • Frazier and Jawerth worked mainly with the homogenous function spaces
and stated only in Section 12 of [23] the necessary modifications needed to deal with
inhomogeneous spaces.

• Unfortunately, the ϕ-transform Sϕ is no isomorphism between Ḟ sp,q(R
d) and ḟ sp,q, i.e. Sϕ

does not map Ḟ sp,q(R
d) onto ḟ sp,q. This was essentially improved using the theory of

wavelets.

• The theory of [23] applies exactly to those function spaces which admit some sort of
Littlewood-Paley characterization. This is in a very good agreement with the the obser-
vation of Triebel (see [84, Section 2.2.3]), who divided the function spaces into good and
bad spaces according to their Fourier-analytic properties. Let us mention on this place
that some prominent function spaces (like L1(R

d), L∞(Rd) or C(Rd)) are considered as
bad function spaces from this point of view.

• The condition on vanishing moments of Coifman is incorporated in [23] through the as-
sumption, that the support of the Fourier transform of ϕ and ψ stays away from zero.
The new condition of [23] is that the building blocks ψQ are essentially localized on the
dyadic cube Q (i.e. rapidly decreasing outside Q). This is reflected in all other decompo-
sition techniques which involve both the vanishing moments condition and some kind of
localization of the building blocks.

The central role in the theory of decomposition of function spaces is played by the atomic
decomposition. We give the version as presented by Triebel in Section 1.5 of [91]. First, we
define the corresponding building blocks. Let us observe, that in contrast with Definition 3.1,
the localization of the atoms is required.

Definition 3.4. (i) Let ν ∈ N0 and m ∈ Z
d. Then we denote by Qνm the closed cube in

R
d with sides parallel to the coordinate axes, centered at 2−νm, and with side-length 2−ν+1.

Furthermore, cQνm stands for the cube in Rd concentric with Qνm and with side length c 2−ν+1.

(ii) Let K ∈ N0 and c ≥ 1. A continuous function a : Rd → C for which there exist all derivatives
Dαa if |α| ≤ K is called a 1K -atom if

suppa ⊂ cQ0,m for some m ∈ Z
d

and
|Dαa(x)| ≤ 1 for |α| ≤ K.

(iii) Let K ∈ N0, L ≥ 0, and c ≥ 1. A continuous function a : Rd → C for which there exist all
derivatives Dαa if |α| ≤ K is called an (K,L)-atom if

supp a ⊂ cQνm for some ν ∈ N,m ∈ Z
d,

|Dα(x)a| ≤ 2|α|ν for |α| ≤ K,

and ∫

Rd

xβa(x)dx = 0 for |β| < L.

Also the sequence spaces used in the frame of Besov and Triebel-Lizorkin spaces are somewhat
more complicated compared to Theorem 3.2. We present a version, which reflects all the three
parameters of the corresponding function spaces.
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Definition 3.5. If 0 < p, q ≤ ∞, s ∈ R and

λ = {λνm ∈ C : ν ∈ N0,m ∈ Z
d} (3.1)

then we define

bspq =

{
λ : ‖λ|bspq‖ =

( ∞∑

ν=0

2
ν(s− d

p
)q
( ∑

m∈Zd

|λνm|p
)q/p)1/q

<∞
}

(3.2)

and

f spq =

{
λ : ‖λ|f spq‖ =

∥∥∥∥
( ∞∑

ν=0

∑

m∈Zd

|2νsλνmχνm(·)|q
)1/q

|Lp(Rd)
∥∥∥∥ <∞

}
(3.3)

with the usual modification for p and/or q equal to ∞. Here χνm stands for the characteristic
function of Qνm.

The atomic decomposition of Besov and Triebel-Lizorkin spaces is then given very much in the
spirit of Theorem 3.2 and it goes back in a similar form to [22] and [23].

Theorem 3.6. ([91], Theorem 1.19) (i) Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R. Let K ∈ N0, L ≥
0 with

K > s and L > σdp − s

be fixed. Then f ∈ S′(Rd) belongs to Bs
p,q(R

d) if, and only if, it can be represented as

f =
∞∑

ν=0

∑

m∈Zd

λνmaνm, unconditional convergence being in S′(Rd), (3.4)

where for fixed c ≥ 1, aνm are 1K-atoms (ν = 0) or (K,L)-atoms (ν ∈ N) and λ ∈ bspq.
Furthermore,

‖f |Bs
p,q(R

d)‖ ≈ inf ‖λ|bspq‖
are equivalent quasi-norms where the infimum is taken over all admissible representations (3.4).
(ii) Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R. Let K ∈ N0, L ≥ 0 with

K > s and L > σdpq − s

be fixed. Then f ∈ S′(Rd) belongs to F sp,q(R
d) if, and only if, it can be represented by (3.4), where

for fixed c ≥ 1, aνm are 1K-atoms (ν = 0) or (K,L)-atoms (ν ∈ N) and λ ∈ f sp,q. Furthermore,

‖f |F sp,q(Rd)‖ ≈ inf ‖λ|f spq‖

are equivalent quasi-norms where the infimum is taken over all admissible representations (3.4).

Nowadays, a large variety of decomposition techniques is available in the literature. We shall
present (a variant of) one of the most important one - the wavelet decomposition theorem. It
removes some of the obstacles of Theorem 3.6. The first is the implicit definition of atoms - atoms
are building blocks satisfying certain properties but may vary from one function to the other.
The other sometimes inconvenient feature of Theorem 3.6 is the dependence of the coefficients
λ in the optimal decomposition (3.4) on the distribution f . Due to some applications it would
be desirable that this dependence is linear. Unfortunately, this does not follow from the theory
of atomic decompositions.

We do not aim to give an overview of the vast area of wavelets. We recall only the minimum
needed later on and point to [15, 46, 99] as standard references. The following theorem of
Daubechies ensures the existence of compactly supported wavelets.

14



Theorem 3.7. ([14, 15]) For any k ∈ N there are real-valued compactly supported functions

ψ0, ψ1 ∈ Ck(R)

satisfying ∫

R

tαψ1(t)dt = 0, α = 0, 1, . . . , k − 1,

such that
{2ν/2ψνm : ν ∈ N0,m ∈ Z}

with

ψνm(t) =

{
ψ0(t−m) if ν = 0,m ∈ Z,

2−
1
2ψ1(2

ν−1t−m) if ν ∈ N,m ∈ Z

is an orthonormal basis in L2(R).

Wavelets on R
d may be obtained as tensor products of one-dimensional wavelets. With their

help we obtain the following characterization of Besov and Triebel-Lizorkin spaces.

Theorem 3.8. ([90], Theorem 19) Let 0 < p, q ≤ ∞, s ∈ R and k ∈ N with k > max(s, σdp−s).
Let ψ0, ψ1 be the Daubechies wavelets of smoothness k. Let E = {0, 1}d \ (0, . . . , 0). For e =
(e1, . . . , ed) ∈ E let

Ψe(x) =

d∏

j=1

ψej (xj), x = (x1, . . . , xd) ∈ R
d.

(i) Then 



Ψ(x−m) =
d∏

j=1

ψ0(xj −mj) m = (m1, . . . ,md) ∈ Z
d,

2
ν−1
2
dΨe(2

ν−1x−m) e ∈ E, ν ∈ N,m ∈ Z
d

is an orthonormal basis in L2(R
d).

(ii) Let f ∈ S′(Rd). Then f ∈ Bs
pq(R

d) if, and only if, it can be represented as

f =
∑

m∈Zd

λmΨ(x−m) +
∑

ν∈N

∑

e∈E

∑

m∈Zd

λeνm2
−νd/2Ψe(2

ν−1x−m), convergence in S′(Rd) (3.5)

with

‖λ|bspq‖ =
( ∑

m∈Zd

|λm|p
) 1

p
+

( ∞∑

ν=1

2
ν(s− d

p
)q
∑

e∈E

( ∑

m∈Zd

|λeνm|p
) q

p

)1
q

<∞

appropriately modified if p = ∞ and/or q = ∞. The representation in (3.5) is unique, the
complex coefficients (λm)m∈Zd and (λeνm)e∈E,ν∈N0,m∈Zd depend linearly on f and the mapping,

which associates to f ∈ Bs
pq(R

d) the sequence of coefficients, is an isomorphic map of Bs
pq(R

d)
onto b

s
pq.

(iii) Let f ∈ S′(Rd). Then f ∈ F spq(Rd) if, and only if, it can be represented as

f =
∑

m∈Zd

λmΨ(x−m) +
∑

ν∈N

∑

e∈E

∑

m∈Zd

λeνm2
−νd/2Ψe(2

ν−1x−m), convergence in S′(Rd) (3.6)
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with

‖λ|fspq‖ =
( ∑

m∈Zd

|λm|p
) 1

p
+

∥∥∥∥∥∥∥




∞∑

ν=1

2ν(s−
d
p
)q
∑

e∈E

∑

m∈Zd

|λeνm|qχνm(x)




1/q
∥∥∥∥∥∥∥
p

<∞

appropriately modified if p = ∞ and/or q = ∞. The representation in (3.6) is unique, the
complex coefficients (λm)m∈Zd and (λeνm)e∈E,ν∈N0,m∈Zd depend linearly on f and the mapping,

which associates to f ∈ F spq(R
d) the sequence of coefficients, is an isomorphic map of F spq(R

d)
onto f

s
pq.

Remark 3.9. The wavelet decomposition has several very convenient advantages. The decompo-
sition (3.5) is unique and its coefficients depend in a linear way on f . Furthermore, it provides
an isomorphism between the corresponding function and sequence spaces. On the other hand,
the structure of the compactly supported wavelets from Theorem 3.7 is rather complicated. For
example, it is known that the their support must grow linearly with k. In particular, there are
no compactly supported infinitely differentiable wavelets.

3.3 Function spaces of dominating mixed smoothness

We shall describe some of the decomposition techniques also in the context of function spaces
with dominating mixed smoothness, cf. Definition 2.4. We shall again give only those decom-
positions necessary later.

For ν ∈ N
d
0 and m ∈ Z

d we denote by Qνm the cube with the center at the point 2−νm =
(2−ν1m1, . . . , 2

−νdmd) with sides parallel to the coordinate axes and of lengths 2−ν1 , . . . , 2−νd .
We denote by χνm = χQνm

the characteristic function of Qνm and by cQνm we mean a cube
concentric with Qνm with sides c times longer.

Definition 3.10. If 0 < p, q ≤ ∞, r ∈ R
d and

λ = {λνm ∈ C : ν ∈ N
d
0,m ∈ Z

d} (3.7)

then we define

srpqb =

{
λ : ‖λ|srpqb‖ =

(∑

ν∈Nd
0

2ν·(r−
1
p
)q
( ∑

m∈Zd

|λνm|p
)q/p)1/q

<∞
}

(3.8)

and

srpqf =

{
λ : ‖λ|srpqf‖ =

∥∥∥∥
(∑

ν∈Nd
0

∑

m∈Zd

|2ν·rλνmχνm(·)|q
)1/q

|Lp(Rd)
∥∥∥∥ <∞

}
(3.9)

with the usual modification for p and/or q equal to ∞.

Remark 3.11. We point out that with λ given by (3.7) and gν(x) =
∑

m∈Zd

λνmχνm(x), we obtain

‖λ|srpqb‖ = ‖2ν·rgν |ℓq(Lp)‖, ‖λ|srpqf‖ = ‖2ν·rgν |Lp(ℓq)‖.

Next we briefly describe the atomic and subatomic decomposition. We refer to [94] for details.
Compared to the situation there, we now concentrate on the ”regular” case,

r >

{
σp in the B-case,

σpq in the F-case.
(3.10)

In this case, no vanishing moment conditions are needed.
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Definition 3.12. Let K ∈ N
d
0 and γ > 1. A K-times differentiable complex-valued function

a(x) is called K-atom related to Qν m if

supp a ⊂ γQν m, (3.11)

and
|Dαa(x)| ≤ 2α·ν for 0 ≤ α ≤ K (3.12)

Theorem 3.13. ([94], Theorem 2.4) Let 0 < p, q ≤ ∞, (p < ∞ in the F−case) and r ∈ R
d

with (3.10). Fix K ∈ N
d
0 with

Ki ≥ (1 + [ri])+ i = 1, . . . , d. (3.13)

Then f ∈ S′(Rd) belongs to Srp,qA(R
d) if, and only if, it can be represented as

f =
∑

ν∈Nd
0

∑

m∈Zd

λνmaνm(x), convergence being in S′(Rd), (3.14)

where (aνm(x))ν∈Nd
0,m∈Zd are K-atoms related to Qν m and λ ∈ srpqa. Furthermore,

inf ‖λ|srpqa‖,

where the infimum runs over all admissible representations (3.14), is an equivalent quasi-norm
in Srp,qA(R

d).

One observes, that Theorem 3.13 resembles very much Theorem 3.6 with necessary modifications
forced by the tensor product structure of function spaces with dominating mixed smoothness.
Another decomposition needed later is the so-called quarkonial decomposition. We refer to [87]
and [89] for the isotropic version.

Definition 3.14. Let ψ ∈ S(R) be a non-negative function with

suppψ ⊂ {t ∈ R : |t| < 2φ} (3.15)

for some φ ≥ 0 and ∑

n∈Z

ψ(t− n) = 1, t ∈ R. (3.16)

We define Ψ(x) = ψ(x1) · · ·ψ(xd) and Ψβ(x) = xβΨ(x) for x = (x1, . . . , xd) and β ∈ N
d
0. Further

let r ∈ R
d and 0 < p ≤ ∞. Then

(β − qu)νm(x) = Ψβ(2νx−m), ν ∈ N
d
0, m ∈ Z

d (3.17)

is called β-quark related to Qν m.

Theorem 3.15. ([94], Theorem 2.6) Let 0 < p, q ≤ ∞ (with p < ∞ in the F-case) and
r ∈ R

d with (3.10).

(i) Let

λ = {λβ : β ∈ N
d
0} with λβ = {λβνm ∈ C : ν ∈ N

d
0,m ∈ Z

d}
and let ̺ > φ, where φ is the number from (3.15). Then f ∈ S′(Rd) belongs to Srp,qA(R

d) if, and
only if, it can be represented as

f =
∑

β∈Nd
0

∑

ν∈Nd
0

∑

m∈Zd

λβνm(β − qu)νm(x), convergence being in S′(Rd), (3.18)

17



where (β − qu)νm(x) are β-quarks related to Qν m and

sup
β∈Nd

0

2̺|β|‖λβ |srpqa‖ <∞.

Furthermore,
inf sup

β∈Nd
0

2̺|β|‖λβ|srpqa‖ <∞,

where the infimum runs over all admissible representations (3.18), is an equivalent quasi-norm
in Srp,qA(R

d).

The advantage of the quarkonial decomposition is the very simple form of the starting function
ψ, cf. (3.15) and (3.16). Its dilations form actually an infinitely differentiable decomposition of
unity. The price to pay is the more complicated decomposition (3.18) involving triple sums as
well as the more complicated sequence spaces featuring the additional factor supβ.

4 Results of the thesis

This section describes the actual results of the presented thesis, i.e. of the publications [28, 68,
72, 93, 95, 97, 98]. They all have one in common, namely they use the decomposition techniques
as described in the previous section to obtain some information about the structure of various
function spaces. We shall use the notation as presented above supplemented by new definitions
if necessary. We shall not give the technical details of the proofs (which may be found in the
references) but we shall comment on the use of the decomposition techniques.

4.1 Widths

To describe the properties of infinite-dimensional objects (like function spaces, or operators
between them), one may use several different tools. The prominent role among them is played
by the theory of s-numbers as developed by Pietsch, cf. [56]. Roughly speaking, one associates
to every linear operator T from one (quasi-)Banach space X into another (quasi-)Banach space
Y a (non-increasing) sequence of non-negative real numbers sn(T ). The properties of T are
then reflected in the speed of the decay of sn(T ). This approach takes it motivation from
approximation theory, where it was intuitively used already in nineteenth century. We refer to
[56, 12] for further details.

Let us now give the formal definition of s-numbers. First, we recall the definition of p-Banach
spaces.

Definition 4.1. Given p ∈ (0, 1], we say, that the quasi-Banach space Y is a p-Banach space if
the inequality

‖x+ y|Y ‖p ≤ ‖x|Y ‖p + ‖y|Y ‖p

is satisfied for all x, y ∈ Y.

Let T : X → Y (where X and Y are quasi-Banach spaces) be a linear operator and let

s1(T ) ≥ s2(T ) ≥ · · · ≥ 0

be a sequence of scalars.
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Let W,X, Y,Z be (quasi-)Banach spaces and let Y be a p-Banach space, 0 < p ≤ 1. If the rule
s : T → (sn(T ))n∈N satisfies

(S1) ‖T‖ = s1(T ) ≥ s2(T ) ≥ · · · ≥ 0,

(S2) spm+n−1(S + T ) ≤ spm(T ) + spn(S) for all S, T ∈ L(X,Y ) and m,n ∈ N,

(S3) sn(STU) ≤ ‖S‖sn(T )‖U‖ for all U ∈ L(W,X), T ∈ L(X,Y ), S ∈ L(Y,Z) and n ∈ N,

(S4) If rank T < n, then sn(T ) = 0,

(S5) sn(I : ℓ2(n) → ℓ2(n)) = 1.

then the sn(T ) are called s-numbers of the operator T .

The property (S1) is usually referred to as monotonicity. Furthermore, (S2) and (S3) reflect
subadditivity and submultiplicativity of s-numbers, respectively.

We shall not use (S4) and (S5) later on. Hence, our approach applies also to rules s : T →
(sn(T ))n∈N which satisfy only (S1)-(S3). Such rules are called pseudo-s-numbers in [55, Chapter
12] and cover also the concept of entropy numbers.

We shall apply the notion of s-numbers to study the properties of the embedding operator
between two function spaces.

Let Ω be a bounded Lipschitz domain and let

s1 − s2 > d
( 1

p1
− 1

p2

)
+
. (4.1)

Then the embedding
Id : Bs1

p1q1(Ω) → Bs2
p2q2(Ω) (4.2)

is compact.

Using Theorem 3.8 and the existence of a universal extension operator due to Rychkov [60], the
question may be reduced to the corresponding problem on the sequence space level. We obtain

sn(Id : Bs1
p1q1(Ω) → Bs2

p2q2(Ω)) ≈ sn(id : bs,Ωpq → b
s,Ω
pq ), (4.3)

where bs,Ωpq is a certain variant of the spaces bspq as described in Theorem 3.8 adapted to function
spaces on domains.

The discretization technique was used in connection with s-numbers and embeddings of function
spaces already in [43] and [42]. We refer also to [39] and [57] for the survey of the state of the art
as it was in the second half of 1980’s and to [41] for a more modern presentation. The main aim
of the presented paper [95] was to collect the known facts, to extend the results to the case of
quasi-Banach spaces and to fill some minor gaps left up to that time. Finally, we remark that the
behavior of s-numbers in connection with function spaces with dominating mixed smoothness
was studied in the classical book of Temlyakov [80] and in the more recent papers [4, 5, 17, 18].

The rest of this section is devoted to the study of the decay of sn(Id) for three different s-
numbers, namely approximation, Kolmogorov and Gelfand numbers.
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4.1.1 Approximation numbers

The approximation numbers of the operator T describe, how well may this operator be approx-
imated (in the operator norm) be finite rank operators.

Definition 4.2. Let X,Y be two quasi-Banach spaces and let T ∈ L(X,Y ). For n ∈ N, we
define the nth approximation number by

an(T ) = inf{‖T − L‖ : L ∈ L(X,Y ), rank(L) < n}. (4.4)

This definition goes back to Pietsch [54] and Tikhomirov [81].

The estimate of an(Id) is based on (4.3) and the estimates of an(id : ℓnp → ℓnq ). If p, q ≥ 1, the
behavior of these quantities is known, cf. [25].

For 0 < p ≤ ∞, we set

p′ =





p
p−1 if 1 < p <∞,

1 if p = ∞,

∞ if 0 < p ≤ 1.

Lemma 4.3. For 1 ≤ n ≤ m <∞ and 1 ≤ p1 < p2 ≤ ∞, we define

Φ(m,n, p1, p2) :=





(
min{1,m

1
p2 n−

1
2 }
)

1
p1

− 1
p2

1
2 − 1

p2 if 2 ≤ p1 < p2 ≤ ∞,

max{m
1
p2

− 1
p1 ,min{1,m

1
p2 n−

1
2 } ·

√
1− n

m} if 1 ≤ p1 < 2 ≤ p2 ≤ ∞,

max{m
1
p2

− 1
p1 ,
√

1− n
m

1
p1

− 1
p2

1
p1

− 1
2 } if 1 ≤ p1 < p2 ≤ 2

and

Ψ(m,n, p1, p2) :=

{
Φ(m,n, p1, p2) if 1 ≤ p1 < p2 ≤ p′1,

Φ(m,n, p′2, p
′
1) if max(p1, p

′
1) < p2 ≤ ∞.

Then if 1 ≤ p1 < p2 ≤ ∞ and (p1, p2) 6= (1,∞)

an(id : ℓmp1 → ℓmp2) ≈ Φ(m,n, p1, p2), 1 ≤ n ≤ m <∞.

The constants of equivalence may depend on p1 and p2 but are independent of m and n.

This was complemented in [95] by the following two lemmas with a rather straightforward proof
involving only standard techniques.

Lemma 4.4. ([95], Lemma 3.3) If 1 ≤ n ≤ m <∞ and 0 < p2 ≤ p1 ≤ ∞, then

an(id : ℓmp1 → ℓmp2) = (m− n+ 1)
1
p2

− 1
p1 .

Lemma 4.5. ([95], Lemma 3.4) Let 0 < p ≤ 1.
(i) Let 0 < λ < 1. Then there is a number cλ > 0 such that

an(id : ℓmp → ℓm∞) ≤ cλ√
n

(4.5)

holds for all natural numbers n and m with mλ < n ≤ m.

(ii) There is a number c > 0 such that

an(id : ℓ2np → ℓ2n∞ ) ≥ c√
n
, n ≥ 1. (4.6)
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Although the estimates in Lemma 4.4 and Lemma 4.5 are not optimal, it was already sufficient
to prove the following statement.

Theorem 4.6. ([95], Theorem 3.5) Let −∞ < s2 < s1 < ∞ and 0 < p1, p2, q1, q2 ≤ ∞ with
(4.1). Let Ω ⊂ R

d be a bounded Lipschitz domain. Then (4.2) is compact and for n ∈ N

an(Id) ≈ n
−

s1−s2
d

+
(

1
p1

− 1
p2

)
+ if





either 0 < p1 ≤ p2 ≤ 2,

or 2 ≤ p1 ≤ p2 ≤ ∞,

or 0 < p2 ≤ p1 ≤ ∞,

(4.7)

an(Id) ≈ n
−

s1−s2
d

+ 1
p
− 1

2 if 0 < p1 < 2 < p2 <∞ (4.8)

and
s1 − s2
d

>
1

p
= max

(
1− 1

p2
,
1

p1

)
,

an(Id) ≈ n

(
−

s1−s2
d

+ 1
p1

− 1
p2

)
·
min(p′1,p2)

2 if
s1 − s2
d

<
1

p
= max

(
1− 1

p2
,
1

p1

)
, (4.9)

and either 1 < p1 < 2 < p2 = ∞
or 0 < p1 < 2 < p2 <∞

an(Id) ≈ n
−

s1−s2
d

+ 1
p1

− 1
2 if 0 < p1 ≤ 1 < p2 = ∞. (4.10)

The estimates of Theorem 4.6 may be formulated also for other function spaces. We shall give
a result for the Bessel potential spaces, which are for 1 ≤ p ≤ ∞ and s ∈ R defined as

Hs
p(R

d) = {f ∈ S′(Rd) : ‖f |Hs
p(R

d)‖ = ‖F−1(1 + |ξ|2)s/2Ff |Lp(Rd)‖ <∞}.

The space Hs
p(Ω) is then defined again by restriction similarly to Definition 2.3.

The embeddings
B0

∞,1(Ω) →֒ C(Ω) →֒ L∞(Ω) →֒ B0
∞,∞(Ω)

and
Bs
p,1(Ω) →֒ Hs

p(Ω) →֒ Bs
p,∞(Ω)

imply the following version of Theorem 4.6.

Theorem 4.7. ([95], Theorem 5.1) Let 1 ≤ p ≤ ∞, s > d
p and let Ω ⊂ R

d be a bounded
Lipschitz domain. Then the embeddings

Id1 : Hs
p(Ω) → C(Ω) (4.11)

Id2 : Hs
p(Ω) → L∞(Ω) (4.12)

are compact and

an(Id1) ≈ an(Id2) ≈ n−
s
d
+ 1

p if 2 ≤ p ≤ ∞,

an(Id1) ≈ an(Id2) ≈ n−
s
d
+ 1

2 if 1 ≤ p < 2 and
s

d
> 1,

an(Id1) ≈ an(Id2) ≈ n

(
− s

d
+ 1

p

)
· p

′

2 if 1 < p < 2 and
1

p
<
s

d
< 1.
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4.1.2 Kolmogorov and Gelfand numbers

Other very well known and often used s-widths are Kolmogorov and Gelfand widths. They are
defined in the following manner.

Definition 4.8. Let X,Y be two quasi-Banach spaces and let T ∈ L(X,Y ).
(i) For n ∈ N, we define the nth Kolmogorov number by

dn(T ) = inf{‖QYNT‖ : N ⊂⊂ Y,dim(N) < n}. (4.13)

Here, QYN stands for the natural surjection of Y onto the quotient space Y/N .

(ii) For n ∈ N, we define the nth Gelfand number by

cn(T ) = inf{‖TJXM‖ :M ⊂⊂ X, codim(M) < n}. (4.14)

Here, JXM stands for the natural injection of M into X.

Remark 4.9. The definitions (4.13) and (4.14) may be written in an equivalent way as

dn(T ) = inf
N⊂⊂Y
dimN<n

sup
x∈X

‖x‖X≤1

inf
z∈N

‖Tx− z‖Y ,

cn(T ) = inf
M⊂⊂X

codimM<n

sup
x∈M

‖x‖X≤1

‖Tx‖Y .

We observe, that the linear approximation used in (4.4) was replaced by a non-linear approxi-
mation in the definition of dn, which is implicitly hidden in the definition of the quotient map
QYN . A similar effect is achieved in the definition of cn by restricting to suprema over x ∈ M
with ‖x‖X ≤ 1. This explains, why an are sometimes referred to as linear widths and dn and cn
as non-linear widths. Furthermore, the inequality max{dn(T ), cn(T )} ≤ an(T ) follows easily.

The corresponding counterparts of Theorem 4.6 for Kolmogorov and Gelfand widths read as
follows.

Theorem 4.10. ([95], Theorem 4.6) Let −∞ < s2 < s1 <∞ and 0 < p1, p2, q1, q2 ≤ ∞ with
(4.1). Let Ω ⊂ R

d be a bounded Lipschitz domain. Then (4.2) is compact and for n ∈ N

dn(Id) ≈ n
−

s1−s2
d

+
(

1
p1

− 1
p2

)
+ if

{
either 0 < p1 ≤ p2 ≤ 2,

or 0 < p2 ≤ p1 ≤ ∞,
(4.15)

dn(Id) ≈ n−
s1−s2

d if 2 < p1 ≤ p2 ≤ ∞ (4.16)

and
s1 − s2
d

>
1

2

1
p1

− 1
p2

1
2 − 1

p2

,

dn(Id) ≈ n
p2
2

(

−
s1−s2

d
+ 1

p1
− 1

p2

)

if 2 < p1 ≤ p2 ≤ ∞ (4.17)

and
s1 − s2
d

<
1

2

1
p1

− 1
p2

1
2 − 1

p2

,

dn(Id) ≈ n

(
−

s1−s2
d

+ 1
p1

− 1
2

)
if 0 < p1 < 2 < p2 ≤ ∞ (4.18)

and
s1 − s2
d

>
1

p1
,
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dn(Id) ≈ n
p2
2

(
−

s1−s2
d

+ 1
p1

− 1
p2

)

if 0 < p1 < 2 < p2 <∞ (4.19)

and
1

p1
− 1

p2
<
s1 − s2
d

<
1

p1
.

Theorem 4.11. ([95], Theorem 4.12) Let −∞ < s2 < s1 < ∞ and 0 < p1, p2, q1, q2 ≤ ∞
with (4.1). Let Ω ⊂ R

d be a bounded Lipschitz domain. Then (4.2) is compact and for n ∈ N

cn(Id) ≈ n
−

s1−s2
d

+
(

1
p1

− 1
p2

)
+ if

{
either 2 ≤ p1 < p2 ≤ ∞,

or 0 < p2 ≤ p1 ≤ ∞,
(4.20)

cn(Id) ≈ n−
s1−s2

d if 0 < p1 < p2 ≤ 2 (4.21)

and
s1 − s2
d

>
1

2

1
p1

− 1
p2

1
p1

− 1
2

,

cn(Id) ≈ n
p′1
2

(

−
s1−s2

d
+ 1

p1
− 1

p2

)

if 1 < p1 < p2 ≤ 2 (4.22)

and
s1 − s2
d

<
1

2

1
p1

− 1
p2

1
p1

− 1
2

,

cn(Id) ≈ n

(
−

s1−s2
d

+ 1
2
− 1

p2

)

if 0 < p1 < 2 < p2 ≤ ∞ (4.23)

and
s1 − s2
d

> 1− 1

p2
,

cn(Id) ≈ n
p′1
2

(
−

s1−s2
d

+ 1
p1

− 1
p2

)

if 1 < p1 < 2 < p2 ≤ ∞ (4.24)

and
1

p1
− 1

p2
<
s1 − s2
d

< 1− 1

p2
.

The proof of Theorem 4.10 and Theorem 4.11 resembles very much the proof of Theorem 4.6.
Of course, the estimates of an(id : ℓnp → ℓnq ) must be replaced by similar estimates for dn(id :
ℓnp → ℓnq ) and cn(id : ℓnp → ℓnq ). Again, if p, q ≥ 1, then they may be found in the literature, but
for min(p, q) < 1 some additional work was necessary.

4.2 Embeddings

The papers [98, 28, 97] study the existence of embeddings between various function spaces. In
[98], we studied the so-called growth envelopes of Besov and Triebel-Lizorkin spaces as introduced
by D. Haroske, cf. [30]. Using the wavelet decomposition Theorem 3.8, it was possible to close
some gaps in the limiting situation of parameters and answer an open problem posed by Triebel
[87] and Haroske [30].

The second paper presented in this section [28] studies the Jawerth-Franke embedding (2.10)
in the frame of function spaces with dominating mixed smoothness. The classical method of
Jawerth [33] and Franke [21] uses interpolation theory and faces several serious obstacles when
applied to this scale of function spaces. We adapt the alternative proof of [96] (which is based
on discretization techniques). This allows to give a rather final answer to this problem and
complete the previous work of Krbec, Schmeisser and Sickel [36, 64].

Finally, [97] studies the function spaces of variable smoothness and integrability as introduced
recently by L. Diening, P. Hästö and S. Roudenko in [16]. It turns out, that the Sobolev
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embedding may be proven also in this frame of function spaces with (2.2) replaced by a pointwise
condition

s0(x)−
d

p0(x)
= s1(x)−

d

p1(x)
, x ∈ R

d.

4.2.1 Envelopes

Under certain conditions on the parameters involved, the spaces Bs
p,q(R

d) and F sp,q(R
d) consist of

locally integrable functions. The situation was completely characterized in [69, Theorem 3.3.2]
by showing, that

Bs
p,q(R

d) →֒ Lloc
1 (Rd) ⇔





either s > σdp ,

or s = σdp , 1 < p ≤ ∞, 0 < q ≤ min(p, 2),

or s = σdp , 0 < p ≤ 1, 0 < q ≤ 1

(4.25)

and

F sp,q(R
d) →֒ Lloc

1 (Rd) ⇔





either s > σdp ,

or s = σdp , 1 ≤ p <∞, 0 < q ≤ 2,

or s = σdp , 0 < p < 1, 0 < q ≤ ∞.

(4.26)

In that case, one may apply to the elements of Asp,q(R
d) the technique of nonincreasing rear-

rangement known from the theory of Banach function spaces, cf. [6]. Let us recall its definition

Definition 4.12. Let µ be the Lebesgue measure in R
d. If h is a measurable function on R

d,
we define the non-increasing rearrangement of h through

h∗(t) = sup{λ > 0 : µ{x ∈ R
d : |h(x)| > λ} > t}, t ∈ (0,∞). (4.27)

The use of non-increasing rearrangement is closely connected also to the theory of Lorentz spaces,
which are defined as follows.

Definition 4.13. Let 0 < p < ∞ and 0 < q ≤ ∞. Then the Lorentz space Lp,q(R
d) consists of

all f ∈ Lloc
1 (Rd) such that the quantity

‖f |Lp,q(Rd)‖ =





(∫ ∞

0
[t

1
p f∗(t)]q

dt

t

)1/q

, 0 < q <∞,

sup
0<t<∞

t
1
p f∗(t), q = ∞

is finite

Remark 4.14. We shall recall two (almost obvious) properties of Lorentz spaces.

• If 0 < p = q <∞, then Lp,p(R
d) = Lp(R

d).

• If 0 < p <∞ and 0 < q0 ≤ q1 ≤ ∞, then Lp,q0(R
d) →֒ Lp,q1(R

d).

Non-increasing rearrangement was used by D. Haroske and H. Triebel (see [29], [30], [87] and
references given there) to introduce a new way to classify the function spaces of Besov and
Triebel-Lizorkin type. Their growth envelope function of X is defined by

EXG (t) := sup
‖f |X‖≤1

f∗(t), 0 < t < 1,
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where f∗ denotes the non-increasing rearrangement of f .

In the case where EXG (t) ≈ t−α for 0 < t < 1 and some α > 0 the growth envelope index uX is
given as the infimum of all numbers v, 0 < v ≤ ∞, such that

(∫ ǫ

0

[
f∗(t)

EXG (t)

]v dt
t

)1/v

≤ c ‖f |X‖ (4.28)

(with the usual modification for v = ∞) holds for some ǫ > 0, c > 0 and all f ∈ X. The pair
EG(X) = (EXG , uX) is called growth envelope of the function space X.

In the case σdp < s, the growth envelopes of Asp,q(R
d) are known, cf. [87, Theorem 15.2] and [30,

Theorem 8.1]. If s = σdp and (4.25) or (4.26) is fulfilled in the B or F case, respectively, then

the growth function is given by t
− 1

max(p,1) , but the known information about the growth index u
is not complete, cf. [87, Remarks 12.5, 15.1] and [30, Prop. 8.12, 8.14 and Remark 8.15].

The growth index of B
σdp
p,q(Rd) satisfies

{
q ≤ u ≤ p if 1 ≤ p <∞ and 0 < q ≤ min(p, 2),

q ≤ u ≤ 1 if 0 < p < 1 and 0 < q ≤ 1.
(4.29)

The growth index of F
σdp
p,q(Rd) satisfies p ≤ u ≤ 1 if 0 < p < 1 and 0 < q ≤ ∞ and is equal to p,

if 1 ≤ p <∞ and 0 < q ≤ 2.

The growth envelopes of B0
∞,q defined on torus T

d = (R/Z)d with 1 ≤ q ≤ 2 were identified

recently by Seeger and Trebels in [66] and are equivalent to | log t|1/q′ for 0 < t ≤ 1/2. We fill
the remaining gaps for p <∞ by proving the following

Theorem 4.15. ([95], Theorem 1.1) (i) Let 1 ≤ p <∞ and 0 < q ≤ min(p, 2). Then

EG(B
0
p,q) = (t−

1
p , p).

(ii) Let 0 < p < 1 and 0 < q ≤ 1. Then

EG(B
σdp
p,q) = (t−1, q).

(iii) Let 0 < p < 1 and 0 < q ≤ ∞. Then

EG(F
σdp
p,q) = (t−1, p).

These results are closely related to optimal embeddings into the scale of Lorentz spaces. Al-
though the Lorentz spaces do not allow any easy way of discretization (up to the case 1 < p =
q < ∞, when Lp,q(R

d) = Lp(R
d)), the use of this method still allowed to prove the following

theorem.

Theorem 4.16. ([95], Theorem 1.2) (i) Let 1 ≤ p <∞ and 0 < q ≤ min(p, 2). Then

B0
p,q(R

d) →֒ Lp(R
d).

(ii) Let 0 < p < 1 and 0 < q ≤ 1. Then

B
σdp
p,q(R

d) →֒ L1,q(R
d). (4.30)

(iii) Let 0 < p < 1 and 0 < q ≤ ∞. Then

F
σdp
p,q(R

d) →֒ L1,p(R
d)

and all these embeddings are optimal with respect to the second fine parameter of the scale of the
Lorentz spaces.
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Remark 4.17. (i) The embedding (4.30) improves [69, Theorem 3.2.1] and [67, Theorem 2.2.3],

where the embedding B
n( 1

p
−1)

p,q (Rd) →֒ L1(R
d) is proved for all 0 < p < 1 and 0 < q ≤ 1.

(ii) The proof of Theorem 4.15 (i) and Theorem 4.16 (i) is based on a construction of a sequence
of special functions defined in the terms of their wavelet coefficients. The arguments
justifying Theorem 4.15 (ii) and Theorem 4.16 (ii) rely on atomic decompositions. Finally,
Theorem 4.15 (iii) and Theorem 4.16 (iii) follows easily by Franke-Jawerth embedding
(2.10).

4.2.2 Spaces of dominating mixed smoothness

The main aim of the paper [28] is to prove the analogue of the Jawerth-Franke embedding (2.10)
in the frame of function spaces with dominating mixed smoothness. Let us mention, that partial
results in this direction were already known, cf. [36, 64]. Unfortunately, the original technique
of Jawerth [33] and Franke [21] is based on a clever interpolation trick and can not be easily
applied to function spaces of dominating mixed smoothness. Although the authors of [36, 64]
succeeded to overcome numerous technical obstacles, the results still contain several gaps. We
follow a different strategy. We adapt the alternative proof of (2.10) given in [96].

We work with a slightly more general function spaces compared to those presented in Definition
2.4. Namely, let N ≥ 2 be a natural number and let d1, . . . , dN be natural numbers. We set
d = (d1, . . . , dN ) and d = d1+ · · ·+dN . For i = 1, . . . , N we define

(
ϕij
)∞
j=0

⊂ S(Rdi) as described

in Section 2.2 and put for k = (k1, . . . , kN ) ∈ N
N
0 and x = (x1, . . . , xN ) ∈ R

d

ϕk(x) := ϕ1
k1(x

1) · · ·ϕNkN (x
N ). (4.31)

As
∑

k∈NN
0

ϕk(x) =

(
∞∑

k1=0

ϕk1(x
1)

)
· · ·
(

∞∑

kN=0

ϕkN (x
N )

)
= 1

for all x = (x1, . . . , xN ) ∈ R
d, we see that

(
ϕk
)
k∈NN

0
forms also a decomposition of unity on R

d

with the tensor product structure.

Definition 4.18. Let r ∈ R
N , 0 < q ≤ ∞ and ϕ =

(
ϕk
)
k∈NN

0
be as above.

1. Let 0 < p ≤ ∞. Then Srp,qB(Rd1 × · · · × R
dN ) is the set of all f ∈ S′(Rd), such that

∥∥f
∣∣Srp,qB(Rd1 × · · · × R

dN )
∥∥
ϕ
:=

(
∑

k∈NN
0

2k·rq
∥∥(ϕkf̂

)∨∣∣Lp(Rd)
∥∥q
)1/q

(4.32)

is finite.

2. Let 0 < p <∞. Then Srp,qF (R
d1 × · · · ×R

dN ) is the set of all f ∈ S′(Rd), such that

∥∥f
∣∣Srp,qF (Rd1 × · · · ×R

dN )
∥∥
ϕ
:=

∥∥∥∥∥

(
∑

k∈NN
0

2k·rq
∣∣(ϕkf̂

)∨
(·)
∣∣q
)1/q∣∣∣∣∣Lp(R

d)

∥∥∥∥∥ (4.33)

is finite.
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Of course, if d1 = · · · = dN = 1 we obtain the spaces considered in Definition 2.4. The analogue
of (2.10) in the frame of these function spaces is then contained in the following theorem.

Theorem 4.19. ([28], Theorem 1.2) Let r0, r1 ∈ R
N , 0 < p0 < p1 ≤ ∞ and 0 < q0, q1 ≤ ∞

with

r0j −
dj
p0

= r1j −
dj
p1
, j = 1, . . . , N. (4.34)

1. Then
Sr

0

p0,q0F (R
d1 × · · · × R

dN ) →֒ Sr
1

p1,q1B(Rd1 × · · · × R
dN ) (4.35)

if, and only if, p0 ≤ q1.

2. If p1 <∞, then

Sr
0

p0,q0B(Rd1 × · · · × R
dN ) →֒ Sr

1

p1,q1F (R
d1 × · · · × R

dN ) (4.36)

if, and only if, q0 ≤ p1.

Remark 4.20. Let us comment briefly on the technique of the proof of Theorem 4.19.

• The wavelet characterization of the spaces introduced in Definition 4.18 was given in [94]
if d1 = d2 = · · · = dN = 1 (i.e. for the spaces considered in the Definition 2.4) and in the
general case in [27]. This allows to reduce the question to the sequence space level.

• Another technique used in [96] was the concept of non-increasing rearrangement, as de-
scribed already in Definition 4.12. In the setting of function spaces with dominating mixed
smoothness, the so-called multivariate rearrangements may serve as a suitable replacement.
This was already observed by Krbec and Schmeisser in [36]. It is defined in the following
way.

Let f : (0,∞)k−1 × R
dk × · · · × R

dN → C, k ≤ N , be a measurable function. We set

(Rkf)(t1, . . . , tk−1, s, y
k+1, . . . , yN ) = [f(t1, . . . , tk−1, ·, yk+1, . . . , yN )]∗(s),

s > 0, t1, . . . , tk−1 ∈ (0,∞), yi ∈ R
di , i = k + 1, . . . , N.

We define the multivariate non-increasing rearrangement of f : Rd → C by

(Rf)(s) = (RN ◦ · · · ◦R1f)(s), s = (s1, . . . , sN ) ∈ (0,∞)N .

The following reformulation of Theorem 4.19 is sometimes more convenient.

Theorem 4.21. ([28], Theorem 1.4) Let r0, r, r1 ∈ R
N , 0 < p0 < p < p1 ≤ ∞ with

r0j −
dj
p0

= rj −
dj
p

= r1j −
dj
p1
, j = 1, . . . , N.

Let 0 < q, u, v ≤ ∞. Then

Sr
0

p0,uB(Rd1 × · · · × R
dN ) →֒ Srp,qF (R

d1 × · · · × R
dN ) →֒ Sr

1

p1,vB(Rd1 × · · · × R
dN )

if, and only if, 0 < u ≤ p ≤ v ≤ ∞.

Furthermore, (4.35) was used in [28] to characterize those spaces Srp,qB(Rd) and Srp,qF (R
d) which

are embedded in C(Rd) and Lu(R
d), 1 < u ≤ ∞. This approach was applied already in [36], cf.

also [63].

27



Theorem 4.22. ([28], Theorem 1.5) (i) Let r ∈ R
N , 0 < p ≤ ∞ and 0 < q ≤ ∞. Then the

following three assertions are equivalent.

(a) Srp,qB(Rd1 × · · · × R
dN ) →֒ C(Rd),

(b) Srp,qB(Rd1 × · · · × R
dN ) →֒ L∞(Rd),

(c)





ri −
di
p
> 0 for all i = 1, . . . , N or

ri −
di
p

≥ 0 for all i = 1, . . . , N and 0 < q ≤ 1.

(ii) Let r ∈ R
N , 0 < p <∞ and 0 < q ≤ ∞. Then the following three assertions are equivalent.

(a′) Srp,qF (R
d1 × · · · × R

dN ) →֒ C(Rd),

(b′) Srp,qF (R
d1 × · · · × R

dN ) →֒ L∞(Rd),

(c′)





ri −
di
p
> 0 for all i = 1, . . . , N or

ri −
di
p

≥ 0 for all i = 1, . . . , N and 0 < p ≤ 1.

We consider a similar problem also for Lu, 1 < u <∞. Due to the Littlewood-Paley theory the
number 2 plays an exceptional role if 1 < u <∞.

Theorem 4.23. (i) Let r ∈ R
N , 1 < u < ∞, 0 < p ≤ ∞ and 0 < q ≤ ∞. Then Srp,qB(Rd1 ×

· · · × R
dN ) →֒ Lu(R

d) if, and only if, p ≤ u and



ri >
di
p

− di
u

for all i = 1, . . . , N or

ri ≥
di
p

− di
u

for all i = 1, . . . , N, 0 < p < u and 0 < q ≤ u or

ri ≥ 0 for all i = 1, . . . , N, p = u and 0 < q ≤ min(u, 2).

(ii) Let r ∈ R
N , 1 < u <∞, 0 < p <∞ and 0 < q ≤ ∞. Then Srp,qF (R

d1×· · ·×R
dN ) →֒ Lu(R

d)
if, and only if, p ≤ u and



ri >
di
p

− di
u

for all i = 1, . . . , N or

ri ≥
di
p

− di
u

for all i = 1, . . . , N and 0 < p < u or

ri ≥ 0 for all i = 1, . . . , N, p = u and 0 < q ≤ 2.

4.2.3 Spaces of variable smoothness and integrability

The last work presented in this section, namely the paper [97], studies the spaces of variable
smoothness and integrability as introduced recently by L. Diening, P. Hästö, and S. Roudenko
in [16].

The definition of these spaces is based on the Lebesgue spaces of variable integrability. The
modern era of interest in these spaces dates back essentially to the paper by Kováčik and
Rákosńık [35].

Definition 4.24. Let p : Rd → (0,∞) be a measurable function. Then the space Lp(·)(R
d)

consists of all measurable functions f : Rd → [−∞,∞] such that ‖f |Lp(·)(Rd)‖ <∞, where

‖f |Lp(·)(Rd)‖ = inf{λ > 0 :

∫

Rd

( |f(x)|
λ

)p(x)
dx ≤ 1}
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is the Minkowski functional of the set {f :
∫
Rd |f(x)|p(x)dx ≤ 1}.

To ensure, that Lp(·)(R
d) are quasi-Banach spaces, we assume that

p− := inf
x∈Rd

p(x) > 0.

Furthermore, to avoid the known difficulties of the Triebel-Lizorkin scale for p = ∞, we require
also that

p+ = sup
x∈Rd

p(x) <∞,

hence we assume, that

0 < p− := inf
z∈Rd

p(z) ≤ p(x) ≤ sup
z∈Rd

p(z) =: p+ <∞, x ∈ R
d. (4.37)

This allows to define Triebel-Lizorkin spaces of variable smoothness and integrability by assum-
ing, that s, p and q in Definition 2.1 are (locally integrable) functions of x.

Definition 4.25. Let s : Rd → R, p : Rd → (0,∞) and q : Rd → (0,∞] be measurable functions.

Then F
s(·)
p(·),q(·)(R

d) is the collection of all f ∈ S′(Rd) such that

‖f |F s(·)p(·),q(·)(R
d)‖ =

∥∥∥∥
( ∞∑

j=0

2js(·)q(·)|(ϕj f̂)∨(·)|q(·)
)1/q(·)

|Lp(·)(Rd)
∥∥∥∥ <∞ (4.38)

(with the usual modification for q(x) = ∞). Here, the sequence (ϕj)j∈N0 is the decomposition
of unity used in Definition 2.1.

This definition places (almost) no conditions on the functional parameters s, p and q. Unfor-
tunately, in that case the spaces may depend on the choice of the decomposition of unity - an
effect very well from the theory of F s∞,q-spaces, cf. [100]. Therefore we pose some regularity
restrictions (identical to those made in [16]).

Definition 4.26. Let g be a continuous function on R
d.

(i) We say, that g is 1-locally log-Hölder continuous, abbreviated g ∈ C log
1−loc(R

d), if there exists
c > 0 such that

|g(x) − g(y)| ≤ c

log(e+ 1/‖x− y‖∞)
for all x, y ∈ R

d with ‖x− y‖∞ ≤ 1.

Here, ‖z‖∞ = max{|z1|, . . . , |zn|} denotes the maximum norm of z ∈ R
d.

(ii) We say, that g is locally log-Hölder continuous, abbreviated g ∈ C log
loc (R

d), if there exists
c > 0 such that

|g(x)− g(y)| ≤ c

log(e+ 1/|x− y|) , x, y ∈ R
d.

(iii) We say, that g is globally log-Hölder continuous, abbreviated g ∈ C log(Rd), if it is locally
log-Hölder continuous and there exists c > 0 and g∞ ∈ R such that

|g(x) − g∞| ≤ c

log(e+ |x|) , x ∈ R
d.

Definition 4.27. (Standing assumptions of [16]). Let p and q be positive functions on R
d

such that 1
p ,

1
q ∈ C log(Rd) and let s ∈ C log

loc (R
d) with s(x) ≥ 0 and let s(x) have a limit at infinity.
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Remark 4.28. Our approach in [97] was based on the results of [16]. Especially, to ensure that
the norm (4.38) does not depend on the choice of the decomposition of unity, it was necessary
to pose the standing assumptions throughout. Later on, Kempka [34] proved, that (4.38) gives
equivalent quasi-norms for different decompositions of unity also for a wider range of parameters.

We introduce the sequence spaces associated with the Triebel-Lizorkin spaces of variable smooth-
ness and integrability. We shall use again the notation of the dyadic cubes as given in Definition
3.4. If

γ = {γjm ∈ C : j ∈ N0,m ∈ Z
d},

−∞ < s(x) <∞, 0 < p(x) <∞ and 0 < q(x) ≤ ∞ for all x ∈ R
d, we define

‖γ|f s(·)p(·),q(·)‖ =

∥∥∥∥
( ∞∑

j=0

∑

m∈Zd

2js(·)q(·)|γjm|q(·)χjm(·)
)1/q(·)

|Lp(·)(Rd)
∥∥∥∥ (4.39)

=

∥∥∥∥
∞∑

j=0

∑

m∈Zd

2js(·)|γjm|χjm(·)|Lp(·)(ℓq(·))
∥∥∥∥.

Establishing the connection between the function spaces F
s(·)
p(·),q(·)(R

d) and the sequence spaces

f
s(·)
p(·),q(·) was the main aim of [16]. Following [22] and [23], these authors investigated the prop-

erties of the ϕ-transform (as discussed briefly in Section 3.2 and denoted by Sϕ) and obtained
the following result.

Theorem 4.29. ([16], Corollary 3.9) Under the Standing assumptions of [16]

‖f |F s(·)p(·),q(·)(R
d)‖ ≈ ‖Sϕf |f s(·)p(·),q(·)‖

with constants independent of f ∈ F
s(·)
p(·),q(·)(R

d).

Although the technique of non-increasing rearrangement fails in many aspects in the frame of
variable-exponent Lebesgue spaces, it was possible to use some ideas from [96] and to prove the
following embedding theorem for the sequence spaces.

Theorem 4.30. ([97], Theorem 3.1) Let −∞ < s1(x) ≤ s0(x) <∞, 0 < p0(x) ≤ p1(x) <∞
for all x ∈ R

d with 0 < p−0 ≤ p+1 <∞ and

s0(x)−
d

p0(x)
= s1(x)−

d

p1(x)
, x ∈ R

d.

Let q(x) = ∞ for all x ∈ R
d or 0 < q− ≤ q(x) < ∞ for all x ∈ R

d and s0,
1
p0

∈ C log
1−loc(R

d).
Then

f
s0(·)
p0(·),q(·)

→֒ f
s1(·)
p1(·),q(·)

.

If the first summability index q(·) should be replaced by ∞ (as one would guess from (2.9)), we
have to assume, that s0(x) is strictly larger then s1(x), i.e. infx∈Rd(s0(x)− s1(x)) > 0. Then it
is possible to prove the following variant of Theorem 4.30.

Theorem 4.31. ([97], Theorem 3.2) Let −∞ < s1(x) < s0(x) <∞ and 0 < p0(x) < p1(x) <
∞ for all x ∈ R

d with 0 < p−0 < p+1 <∞,

s0(x)−
d

p0(x)
= s1(x)−

d

p1(x)
, x ∈ R

d
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and

ε := inf
x∈Rd

(s0(x)− s1(x)) = d inf
x∈Rd

(
1

p0(x)
− 1

p1(x)

)
> 0. (4.40)

Let s0,
1
p0

∈ C log
1−loc(R

d). Then, for every 0 < q ≤ ∞,

f
s0(·)
p0(·),∞

→֒ f
s1(·)
p1(·),q

.

Using the theory of [16], our results can be translated immediately into embeddings of function
spaces.

Theorem 4.32. ([97], Theorem 3.4) Let s0, s1, p0, p1 and q be continuous functions satisfying
the Standing assumptions of [16] with s0(x) ≥ s1(x) and p0(x) ≤ p1(x) for all x ∈ R

d and

s0(x)−
d

p0(x)
= s1(x)−

d

p1(x)
, x ∈ R

d.

(i) Then

F
s0(·)
p0(·),q(·)

(Rd) →֒ F
s1(·)
p1(·),q(·)

(Rd).

(ii) If moreover

inf
x∈Rd

(s0(x)− s1(x)) = d inf
x∈Rd

( 1

p0(x)
− 1

p1(x)

)
> 0,

then
F
s0(·)
p0(·),q0(·)

(Rd) →֒ F
s1(·)
p1(·),q1(·)

(Rd).

The proof of Theorem 4.32 follows directly from the corresponding estimates on the sequence
space level (cf. Theorem 4.30 and Theorem 4.31) and the properties of the ϕ-transform (cf.
Theorem 4.29). One may observe, that the conditions posed on the sequence space level are
much milder then those of Theorem 4.29.

Using the recent results of Kempka [34], one could probably obtain a connection between

F
s(·)
p(·),q(·)(R

d) and f
s(·)
p(·),q(·) for a larger set of parameters, which would then lead to an improvement

of Theorem 4.32. Nevertheless, this direction is open for further investigations.

4.3 Traces of spaces with dominating mixed smoothness

This section presents the results of [93] and [72]. Both the papers deal with the properties of the
(diagonal) trace operator in the frame of function spaces with dominating mixed smoothness as
introduced in Definition 2.4 - the first one in the plane, the second one in R

3. Let us briefly
introduce the problem.

The (off-diagonal) trace operator is defined as

(tr f)(t) := f(t, 0), t ∈ R. (4.41)

We denote by Γ = {(t, t) ∈ R
2 : t ∈ R} the diagonal of R2 and define also the diagonal trace

operator
(trΓ f)(t) := f(t, t), t ∈ R. (4.42)

In the frame of the isotropic function spaces Bs
p,q(R

d) and F sp,q(R
d), the mapping properties of

tr and trΓ coincide. In the frame of function spaces with dominating smoothness the situation
is more complicated. But let us first clarify some details concerning (4.41) and (4.42).
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Both (4.41) and (4.42) are well defined as soon as f is continuous. To avoid this restriction, we
assume, that

‖ tr f |X(R)‖ ≤ c ‖f |Srp,qA(R2)‖, f ∈ S(R2)

holds for some quasi-Banach space X(R) of distributions with X(R) →֒ S′(R). If S(R2) is dense
in Srp,qA(R

2), then tr extends uniquely to an operator tr : Srp,qA(R
2) → X(R). Furthermore, the

condition that S(R2) is dense in Srp,qA(R
2) may be sometimes circumvented by the use of trivial

embeddings. The symbol trSrp,qA(R
2) = X(R) is used to denote that tr : Srp,qA(R

2) → X(R)
and, moreover, there is an (linear, bounded) extension operator ext : X(R) → Srp,qA(R

2) such
that tr ◦ ext = id. The same holds true for trΓ and similar arguments apply of course also to
function spaces in higher dimensions d > 2.

The properties of the off-diagonal trace operator tr in the frame of function spaces with domi-
nating mixed smoothness are well known, cf. [65, Section 2.4.2].

Proposition 4.33. Let 0 < q ≤ ∞.
(i) Let 0 < p ≤ ∞ and r3 > 1/p and let T be the following trace operator

T : f(x1, x2, x3) → f(x1, x2, 0).

Then T Sr1,r2,r3p,q B(R3) = Sr1,r2p,q B(R2).
(ii) Let 0 < p <∞ and r3 >

1
p . Then TSr1,r2,r3p,q F (R3) = Sr1,r2p,q F (R2).

4.3.1 Two-dimensional case

We study the behavior of the diagonal trace operator trΓ as defined above. In [85] Triebel proved

that, for 1 ≤ p ≤ ∞, trΓ S
(r1,r2)
p,1 B(R2) = B̺

p,1(R), where ̺ = min(r1, r2, r1 + r2 − 1
p) > 0. The

q-dependence was studied in [59], where Rodriguez proved that trΓ S
(r1,r2)
p,q B(R2) = B̺

p,q(R),
where

0 < p ≤ ∞, 0 < q <∞, ̺ > σp and min(r1, r2) 6=
1

p
.

In the ”limiting case” min(r1, r2) =
1
p the same result is proven for q ≤ min(1, p).

It was one of the main aims of [93] to complete the information provided by [85] and [59] and
fill the remaining gaps. Surprisingly enough, it turned out that in some cases the trace space

of S
(r1,r2)
p,q B(R2) is the so-called space of generalized smoothness, cf. [47, 19]. These spaces are

defined very much in the spirit of Definition 2.1 with 2js replaced by more general sequences, i.e.

(j + 1)α2js, where α ∈ R is an additional parameter. The spaces are then denoted by A
(s,α)
p,q (R)

with A ∈ {B,F}. If we want to emphasize, that we consider these space on the diagonal Γ, we

write rather A
(s,α)
p,q (Γ) instead.

The sequence spaces corresponding to these function spaces are then given by

Definition 4.34. If 0 < p, q ≤ ∞, r, α ∈ R and

λ = {λµn ∈ C : µ ∈ N0, n ∈ Z}

then we define

b(r,α)pq =

{
λ : ‖λ|b(r,α)pq ‖ =

(∑

µ∈N0

(µ+ 1)αq2µ(r−
1
p
)q
(∑

n∈Z

|λµn|p
)q/p)1/q

<∞
}
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and

f (r,α)pq =

{
λ : ‖λ|f (r,α)pq ‖ =

∥∥∥∥
(∑

µ∈N0

∑

n∈Z

|(µ+ 1)α2µrλµnχµn(·)|q
)1/q

|Lp(R)
∥∥∥∥ <∞

}

with the usual modification for p and/or q equal to ∞.

The following theorem was proved in [93] using quarkonial decomposition, cf. Definition 3.14
and Theorem 3.15, adapted to function spaces of dominating mixed smoothness. We refer to
[94] for the corresponding version.

Theorem 4.35. ([93], Theorem 3.1) Let 0 < p, q ≤ ∞, and r = (r1, r2) ∈ R
2 with

0 < r1 ≤ r2, ̺ = min
(
r1, r1 + r2 −

1

p

)
> σp.

If r2 6= 1
p or r2 =

1
p and q ≤ min(1, p) then

trΓ S
r
p,qB(R2) = B̺

p,q(Γ).

If r2 =
1
p , 1 ≤ min(p, q) then

trΓ S
r
p,qB(R2) = B

(r1,
1
q
−1)

p,q (Γ).

Finally, if r2 =
1
p , p ≤ min(1, q) then

trΓ : Srp,qB(R2) → B
(r1,

1
q
− 1

p
)

p,q (Γ)

and

ext : B
(r1,min( 1

q
−1,0))

p,q (Γ) → Srp,qB(R2).

The following diagram illustrates the behavior of trΓ in the non-limiting case.

B
r2
p,q

B
r1
p,q

r1
1
p

σp
0

σp

1
p

r2

B
r1+r2−

1
p

p,q
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The other main aim of [93] was to study the behavior in the frame of the Triebel-Lizorkin spaces
of dominating mixed smoothness, where virtually nothing was known before. We observe, that
in some (but not all) cases the trace space does not depend on q (an effect very well known in
the isotropic case, cf. [23]).

Theorem 4.36. ([93], Theorem 4.1) Let

0 < p <∞, 0 < q ≤ ∞, 0 < r1 ≤ r2

with

̺ = min
(
r1, r1 + r2 −

1

p

)
> σp,q.

If r2 >
1
p then

trΓ S
r
p,qF (R

2) = F ̺p,q(Γ). (4.43)

If r2 <
1
p then

trΓ S
r
p,qF (R

2) = F ̺p,p(Γ) = B̺
p,p(Γ). (4.44)

If r2 =
1
p and p ≤ min(1, q) then

trΓ S
r
p,qF (R

2) = F r1p,q(Γ). (4.45)

If r2 =
1
p and q < p ≤ 1 then

trΓ S
r
p,qF (R

2) = F r1p,p(Γ). (4.46)

If r2 =
1
p and 1 ≤ p ≤ q then

trΓ : Srp,qF (R
2) → F

(r1,
1
q
−1)

p,q (Γ). (4.47)

Finally, if r2 =
1
p and p ≥ max(1, q) then

trΓ : Srp,qF (R
2) → F

(r1,
1
p
−1)

p,p (Γ). (4.48)

We again illustrate the behavior of trΓ in the non-limiting cases by a simple diagram.

r1
1
p

0

1
p

r2

F
r1
p,q

F
r2
p,q

σpq

σpq

B
r1+r2−

1
p

p,p
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4.3.2 Three-dimensional case

The paper [72] studies a similar question in R
3. Surprisingly enough, new fundamental effects

appear. To be able to demonstrate these effects in a most simple way, we first consider the case
of Sobolev spaces with p = 2. In this case, we use the techniques of Fourier analysis and proceed
directly. Later on, we use the machinery of atomic decompositions to generalize the results to
the full scale of Besov and Triebel-Lizorkin spaces of dominating mixed smoothness.

We consider the trace with respect to the hyperplane

Γ :=
{
(x1, x2, x3) ∈ R

3 : x1 + x2 + x3 = 0
}

with Γ as a model case for a hyperplane in an oblique position. However, taking the trace with
respect to the hyperplane

Γγ := {(x1, x2, x3) : γ1x1 + γ2x2 + γ3x3 = 0}, γ = (γ1, γ2, γ3) ,

where γ1 · γ2 · γ3 6= 0, would give us the same result (up to the norms of considered operators).
This statement relies on the fact, that the mapping

f(x1, x2, x3) → f(λ1x1, λ2x2, λ3x3), λ1 · λ2 · λ3 6= 0,

is a bounded bijective mapping of Sr2W (R3) onto itself (cf. Definition 4.37 for the definition of
Sr2W (R3)).

The trace operator shall depend on the choice of the orthogonal basis in Γ. Let us give the
details. Let

O = {~σ1, ~σ2}, ~σ1 = (σ1,1, σ1,2, σ1,3) ∈ Γ, ~σ2 = (σ2,1, σ2,2, σ2,3) ∈ Γ, ~σ1 ⊥ ~σ2 (4.49)

be an orthogonal basis of Γ. Then we associate to this basis the corresponding ”orthogonal”
trace operator

(trO f)(z1, z2) = f(z1~σ1 + z2~σ2), z1, z2 ∈ R. (4.50)

The ”natural” trace operators

(tr1 f)(x2, x3) = f(−x2 − x3, x2, x3), (4.51)

(tr2 f)(x1, x3) = f(x1,−x1 − x3, x3), (4.52)

(tr3 f)(x1, x2) = f(x1, x2,−x1 − x2) (4.53)

and the trace operator trO f , see (4.49) and (4.50), are connected through

(trO f)(z1, z2) = f(z1~σ1 + z2~σ2) = f (σ1,1z1 + σ2,1z2, σ1,2z1 + σ2,2z2, σ1,3z1 + σ2,3z2)

= (tr1 f) (σ1,2z1 + σ2,2z2, σ1,3z1 + σ2,3z2)

= (tr1 f)(R1~z), (4.54)

where

R1 =

(
σ1,2 σ2,2
σ1,3 σ2,3

)
and ~z =

(
z1
z2

)
. (4.55)

Analogously one obtains

(trO f)(z1, z2) = (tr2 f)(R2~z) = (tr3 f)(R3~z) , (4.56)
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with

R2 =

(
σ1,1 σ2,1
σ1,3 σ2,3

)
, R3 =

(
σ1,1 σ2,1
σ1,2 σ2,2

)
. (4.57)

The linear independence of the vectors ~σ1, ~σ2, combined with ~σ1, ~σ2 ∈ Γ, ensure that the matrices
R1,R2,R3 are regular. In what follows we shall determine the regularity of trO f as well as of
tri f , i = 1, 2, 3. For that, we shall need certain new spaces.

Let M be a 2× 2-matrix,

M =

(
a c
b d

)
with detM 6= 0. (4.58)

Definition 4.37. (i) Let 1 < p <∞ and r = (r1, . . . , rd) ∈ R
d. Then SrpW (Rd) is defined as

SrpW (Rd) =
{
f ∈ S′(Rd) : F−1

(
(1 + |ξ1|2)r1/2 . . . (1 + |ξd|2)rd/2Ff(ξ)

)
( · ) ∈ Lp(Rd)

}
.

Furthermore, SrpW (Rd) is equipped with the norm

‖ f |SrpW (Rd)‖ :=
∥∥∥F−1

( d∏

i=1

(1 + |ξi|2)ri/2 Ff(ξ)
)
( · )
∣∣∣Lp(Rd)

∥∥∥. (4.59)

(ii) Let M be as in (4.58). Let r1, r2 ∈ R. Then Sr1,r22 W (M,R2) denotes the collection of all
tempered distributions f ∈ S′(R2) such that f ◦M ∈ Sr1,r22 W (R2). We endow this class with
the norm

‖ f |Sr1,r22 W (M,R2)‖ := ‖ f ◦M|Sr1,r22 W (R2)‖ .

Using the well-known properties of the Fourier transform, it was possible to obtain the descrip-
tion of the properties of trO as described by the following theorem.

Theorem 4.38. ([72], Theorem 2.9) Let O be an orthogonal basis of Γ and let Ri, i = 1, 2, 3
be matrices associated with O by (4.49), (4.55) and (4.57).
Let r = (r1, r2, r3) ∈ R

3 with ri 6= 1/2, i = 1, 2, 3 and

min

(
r1, r2, r3, r1 + r2 −

1

2
, r1 + r3 −

1

2
, r2 + r3 −

1

2

)
> 0 . (4.60)

Then
trO ∈ L

(
Sr2W (R3), S1(R2) + S2(R2) + S3(R2)

)
, (4.61)

where

S1(R2) :=

{
Sr2,r32 W (R−1

1 ,R2), if r1 >
1
2 ,

S
r2,r3+r1−

1
2

2 W (R−1
1 ,R2) ∩ Sr2+r1−

1
2
,r3

2 W (R−1
1 ,R2), if r1 <

1
2 ,

and similarly for S2 and S3.

Conversely, to each function g ∈ S1(R2)+S2(R2)+S3(R2) there exists a function f ∈ Sr2W (R3)
such that trO f = g.

Let us give more details on the sum of the three spaces appearing in (4.61). It may be illustrated
from a different point of view on the Fourier side. For simplicity we concentrate on the situation
min(r1, r2, r3) > 1/2.
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Let again O be an orthogonal basis of Γ = {(x1, x2, x3) ∈ R
3 : x1 + x2 + x3 = 0} and let

R1,R2,R3 be the matrices associated with O. First, we notice that g3 ∈ Sr1,r22 W (R−1
3 ,R2) if,

and only if,

[
1 + (σ2,2ξ1 − σ1,2ξ2)

2
]r1/2[

1 + (σ2,1ξ1 − σ1,1ξ2)
2
]r2/2

︸ ︷︷ ︸
m3(ξ1,ξ2)

Fg3(ξ1, ξ2) ∈ L2(R
2) ,

Similarly, g1 ∈ Sr2,r32 W (R−1
1 ,R2) if, and only if,

[
1 +

(
σ2,3ξ1 − σ1,3ξ2

)2]r2/2[
1 +

(
σ2,2ξ1 − σ1,2ξ2

)2]r3/2

︸ ︷︷ ︸
m1(ξ1,ξ2)

Fg1(ξ1, ξ2) ∈ L2(R
2)

and g2 ∈ Sr1,r32 W (R−1
2 ,R2) if, and only if,

[
1 +

(
σ2,3ξ1 − σ1,3ξ2

)2]r1/2[
1 + (σ2,1ξ1 − σ1,1ξ2)

2
]r3/2

︸ ︷︷ ︸
m2(ξ1,ξ2)

Fg2(ξ1, ξ2) ∈ L2(R
2) .

In view of these characterizations we define

m(ξ1, ξ2) := min
(
m1(ξ1, ξ2),m2(ξ1, ξ2),m3(ξ1, ξ2)

)
. (4.62)

and
L2(R

2,m) :=
{
g ∈ L2(R

2) : mFg ∈ L2(R
2)
}

equipped with the natural norm

‖ g |L2(R
2,m)‖ := ‖mFg |L2(R

2)‖ .

Equipped with this notation, we may restate the result of Theorem 4.38 in the following way.

Theorem 4.39. ([72], Theorem 2.11) Let O be an orthogonal basis of Γ and let Ri, i = 1, 2, 3
be matrices associated with O by (4.49), (4.55) and (4.57). Suppose that ri > 1/2, i = 1, 2, 3.
Then there exists a continuous function m such that trO becomes a retraction of Sr1,r2,r32 W (R3)
onto L2(R

2,m). There is a bounded linear extension operator ext ∈ L(L2(R
2,m), Sr1,r2,r32 W (R3))

such that trO ◦ ext = I (identity on L2(R
2,m)).

Let us mention that the proofs of Theorems 4.38 and 4.39 involve properties of the Fourier
transform (i.e. Plancherel identity), which are not available for p 6= 2. Therefore, a direct
generalization of this method to such p’s seems to be impossible. Nevertheless, the powerful
technique of atomic decompositions allowed this step. The description of trO in the frame of
Besov and Triebel-Lizorkin spaces is based on the modification of Definition 4.37.

Definition 4.40. Let 0 < p, q ≤ ∞ with 0 < p < ∞ in the F -case. Let R be a (2, 2)-matrix
with detR 6= 0. Then we put

Srp,qA(R,R2) :=
{
f ∈ S′(R2) : f ◦ R ∈ Srp,qA(R

2)
}
,

‖f |Srp,qA(R,R2)‖ := ‖ f ◦ R |Srp,qA(R2)‖ .
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Recall that for p = q = 2 we have coincidence of Sr2,2B(R,R2) with Sr2W (R,R2) in the sense
of equivalent norms, cf. [65, Thm. 2.3.1]. By means of these classes we are able to describe the
trace classes for Besov as well as for Lizorkin-Triebel classes.

The counterpart of Theorem 4.38 for Besov spaces is as follows.

Theorem 4.41. ([72], Theorem 3.10) Let O be an orthogonal basis of Γ and let Ri, i = 1, 2, 3
be matrices associated with O by (4.49), (4.55) and (4.57).
Let 0 < p, q ≤ ∞ and r = (r1, r2, r3) ∈ R

3 with ri 6= 1
p , i = 1, 2, 3 and

min

(
r1, r2, r3, r1 + r2 −

1

p
, r1 + r3 −

1

p
, r2 + r3 −

1

p

)
> σp. (4.63)

Then
trO ∈ L

(
Srp,qB(R3), S1(R2) + S2(R2) + S3(R2)

)
, (4.64)

where

S1(R2) :=




Sr2,r3p,q B(R−1

1 ,R2), if r1 >
1
p ,

S
r2,r3+r1−

1
p

p,q B(R−1
1 ,R2) ∩ Sr2+r1−

1
p
,r3

p,q B(R−1
1 ,R2), if r1 <

1
p ,

and similarly for S2 and S3.

Conversely, to each function g ∈ S1(R2)+S2(R2)+S3(R2) there exists a function f ∈ Srp,qB(R3)
such that trO f = g.

The proof is based on the atomic decomposition of spaces with dominating mixed smoothness
as described in Theorem 3.13 combined with a certain discrete variant of (4.62).

Now we turn to the Triebel-Lizorkin classes. To prove an analog of Theorem 4.41 for these
spaces we can proceed in the same way as in case of the Besov spaces.

Theorem 4.42. ([72], Theorem 3.14) Let O be an orthogonal basis of Γ and let Ri, i = 1, 2, 3
be matrices associated with O by (4.49), (4.55) and (4.57). Let 0 < p <∞ and 0 < q ≤ ∞. Let
r = (r1, r2, r3) ∈ R

3 with

min(r1, r2, r3) > max

(
1

p
, σpq

)
. (4.65)

Then

trO ∈ L
(
Srp,qF (R

3), Sr2,r3p,q F (R−1
1 ,R2) + Sr1,r3p,q F (R−1

2 ,R2) + Sr1,r2p,q F (R−1
3 ,R2)

)
. (4.66)

Conversely, to each function g ∈ Sr2,r3p,q F (R−1
1 ,R2) + Sr1,r3p,q F (R−1

2 ,R2) + Sr1,r2p,q F (R−1
3 ,R2) there

exists a function f ∈ Srp,qF (R
3) such that trO f = g.

4.4 Radial subspaces

The last section presents the results of [68]. The study of radial functions was initiated at the
end of seventies through the works of Strauss [79] and Lions [40]. The radial lemma of Strauss
reads as follows.

Lemma 4.43. ([79]) Let d ≥ 2. Every radial function f ∈W 1
2 (R

d) is almost everywhere equal
to a function f̃ , continuous for x 6= 0, such that

|f̃(x)| ≤ c |x| 1−d
2 ‖ f |W 1

2 (R
d)‖, x ∈ R

d,

where c depends only on d.
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The Radial Lemma contains three different assertions:

(a) the existence of a representative of f , which is continuous outside the origin;

(b) the decay of f near infinity;

(c) the limited unboundedness near the origin.

The aim of [68] was to study the interplay between regularity and decay properties of radial
functions in the broad frame of the scales of Besov and Triebel-Lizorkin spaces. We follow a
simple philosophy, namely that the properties of a radial function f : Rd → C are completely
determined by its trace

(tr f)(t) := f(t, 0, . . . , 0) , t ∈ R.

The corresponding extension operator is then defined by

(ext g)(x) := g(|x|) , x ∈ R
d.

Both tr and ext are defined pointwise only under natural regularity restrictions on f and g,
respectively. We shall later discuss the existence of the trace in a distributional sense. We shall
use the following notation. If E is a space of functions or distributions on R

d, then we denote by
RE the subspace of radial functions or distributions of E equipped with the same (quasi-)norm.

4.4.1 Trace spaces of radial subspaces

Although the following result may be very well known, we were not able to find the reference.
It presents in a simple way our strategy.

Theorem 4.44. ([68], Theorem 1) Let d ≥ 2. For m ∈ N0 the mapping tr is a linear
isomorphism of RCm(Rd) onto RCm(R) with inverse ext.

The proof of this theorem proceeds by mathematical induction and makes use of direct calcu-
lations only. This comes as no surprise since the spaces Cm(Rd) fall into the category of “bad”
spaces with no convenient decomposition technique available.

Using real interpolation it is not difficult to derive the following result for the spaces of Hölder-
Zygmund type.

Theorem 4.45. ([68], Theorem 2) Let s > 0 and let 0 < q ≤ ∞. Then the mapping tr is a
linear isomorphism of RBs

∞,q(R
d) onto RBs

∞,q(R) with inverse ext.

The description of the properties of the trace operator in the frame of Besov and Triebel-Lizorkin
spaces with p <∞ is predetermined by the simple case of Lebesgue spaces.

Lemma 4.46. Let d ≥ 2.
(i) Let 0 < p <∞. Then tr : RLp(R

d) → RLp(R, |t|d−1) is an linear isomorphism with inverse
ext.
(ii) Let p = ∞. Then tr : RL∞(Rd) → RL∞(R) is an linear isomorphism with inverse ext.

In particular this means, that whenever the Besov-Triebel-Lizorkin space Asp,q(R
d) is contained

in L1(R
d) + L∞(Rd), then tr is well-defined on its radial subspace. Furthermore, it is known,

that
Bs
p,q(R

d) , F sp,q(R
d) →֒ L1(R

d) + L∞(Rd)
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if s > d max(0, 1p−1), see, e.g., [69]. The proof of Lemma 4.46 involves only a simple substitution.

The trace spaces of the radial subspaces of Bs
p,q(R

d) and F sp,q(R
d) are spaces defined in terms

of atoms. To explain this we need to introduce an appropriate notion of atom as well as
appropriately adapted sequence spaces.

Definition 4.47. Let L ≥ 0 be an integer. Let I be a set either of the form I = [−a, a] or of
the form I = [−b,−a] ∪ [a, b] for some 0 < a < b <∞. An even function g ∈ CL(R) is called an
even L-atom centered at I if

max
t∈R

|b(n)(t)| ≤ |I|−n , 0 ≤ n ≤ L

and if either

supp g ⊂ [−3 a

2
,
3a

2
] in case I = [−a, a] ,

or

supp g ⊂ [−3b− a

2
,−3a− b

2
] ∪ [

3a− b

2
,
3b− a

2
] in case I = [−b,−a] ∪ [a, b] .

Definition 4.48. Let 0 < p <∞, 0 < q ≤ ∞ and s ∈ R. Let

χ#
j,k(t) :=

{
1 if 2−jk ≤ |t| ≤ 2−j(k + 1) ,
0 otherwise,

t ∈ R .

Then we define

bsp,q,d :=

{
λ = (λj,k)j,k : ‖λ |bsp,q,d‖ =

( ∞∑

j=0

2
j(s− d

p
)q
( ∞∑

k=0

(1 + k)d−1 |λj,k|p
)q/p)1/q

<∞
}

and

f sp,q,d :=

{
λ = (λj,k)j,k :

‖λ |f sp,q,d‖ =

∥∥∥∥
( ∞∑

j=0

2jsq
∞∑

k=0

|λj,k|q χ#
j,k(·)

)1/q

|Lp(R, |t|d−1)

∥∥∥∥ <∞
}
,

respectively.

Observe bsp,q,d = f sp,q,d in the sense of equivalent quasi-norms. Also the weight |t|d−1 from Lemma
4.46 has its direct counterpart in the definition of bsp,q,d and f

s
p,q,d. Equipped with these sequence

spaces we define now function spaces on R.

Definition 4.49. Let 0 < p <∞, 0 < q ≤ ∞, s > 0 and L ∈ N0.
(i) Then TBs

p,q(R, L, d) is the collection of all functions g : R → C such that there exists a
decomposition

g(t) =
∞∑

j=0

∞∑

k=0

λj,k gj,k(t) (4.67)

(convergence in Lmax(1,p)(R, |t|d−1)), where the sequence (λj,k)j,k belongs to bsp,q,d and the func-

tions gj,k are even L-atoms centered at either [−2−j , 2−j ] if k = 0 or at

[−2−j(k + 1),−2−jk] ∪ [2−jk, 2−j(k + 1)]
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if k > 0. We put

‖ g |TBs
p,q(R, L, d)‖ := inf

{
‖ (λj,k) |bsp,q,d‖ : (4.67) holds

}
.

(ii) Then TF sp,q(R, L, d) is the collection of all functions g : R → C such that there exists a
decomposition (4.67), where the sequence (λj,k)j,k belongs to f sp,q,d and the functions gj,k are as
in (i). We put

‖ g |TF sp,q(R, L, d)‖ := inf
{
‖ (λj,k) |f sp,q,d‖ : (4.67) holds

}
.

The following theorem shows, that the spaces TAsp,q(R, L, d) are the trace spaces of RAsp,q(R
d).

Theorem 4.50. ([68], Theorem 3) Let d ≥ 2, 0 < p <∞ and 0 < q ≤ ∞.
(i) Suppose s > σdp and L ≥ [s] + 1. Then the mapping tr is a linear isomorphism of RBs

p,q(R
d)

onto TBs
p,q(R, L, d) with inverse ext.

(ii) Suppose s > σdp,q and L ≥ [s]+1. Then the mapping tr is a linear isomorphism of RF sp,q(R
d)

onto TF sp,q(R, L, d) with inverse ext.

Of course, the description of the trace spaces given in Theorem 4.50 suffers from the fact that
the spaces TAsp,q(R, L, d) were defined through their atomic decomposition properties. It would
be highly desirable to have some intrinsic characterization of these spaces - for example if one
could identify them with some weighted Besov and Triebel-Lizorkin spaces very much in the
same manner as Lemma 4.46 describes the trace spaces of radial Lebesgue spaces as weighted
Lebesgue spaces.

Unfortunately, this is not always possible. The following theorem shows that even the weighted
Lebesgue space obtained in Lemma 4.46 is not always a space of distributions. To allow a
comparison between trace spaces of radial Besov and Triebel-Lizorkin spaces and weighted spaces
of the same type, we therefore need to know first, when the trace operator maps RAsp,q(R

d) into
S′(R). The answer is described by the following

Theorem 4.51. ([68], Theorem 8) Let d ≥ 2, 0 < p <∞, and 0 < q ≤ ∞.
(a) Let d ≥ 2 and let 0 < p <∞. Then RLp(R, |t|d−1) ⊂ S′(R) if and only if d < p.
(b) Let s > σdp and L ≥ [s] + 1. Then the following assertions are equivalent:

(i) The mapping tr maps RBs
p,q(R

d) into S′(R).

(ii) The mapping tr : RBs
p,q(R

d) → S′(R) is continuous.
(iii) We have TBs

p,q(R, L, d) →֒ S′(R).

(iv) We have either s > d(1p − 1
d) or s = d(1p − 1

d) and q ≤ 1.

(c) Let s > σdp,q and L ≥ [s] + 1. Then following assertions are equivalent:

(i) The mapping tr maps RF sp,q(R
d) into S′(R).

(ii) The mapping tr : RF sp,q(R
d) → S′(R) is continuous.

(iii) We have TF sp,q(R, L, d) →֒ S′(R).

(iv) We have either s > d(1p − 1
d) or s = d(1p − 1

d) and 0 < p ≤ 1.

Weighted function spaces of Besov and Triebel-Lizorkin type, denoted byBs
p,q(R, w) and F

s
p,q(R, w),

respectively, are a well-developed subject in the literature, we refer to [9, 10, 61]. Fourier an-
alytic definitions as well as characterizations by atoms are given under various restrictions on
the weights, see e.g. [9, 10, 31, 32, 65]. In this subsection we are interested in these spaces with
respect to the weights wd−1(t) := |t|d−1, t ∈ R, d ≥ 2. Of course, these weights belong to the
Muckenhoupt class A∞, more exactly wd−1 ∈ Ar for any r > d, see [78]. It turns out, that if
the trace operator maps into S′(R), then it is really possible to identify the trace spaces with
corresponding weighted spaces.
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Theorem 4.52. ([68], Theorem 9) Let d ≥ 2, 0 < p <∞, and 0 < q ≤ ∞.
(i) Suppose s > σdp and let L ≥ [s] + 1. If TBs

p,q(R, L, d) →֒ S′(R) (see Theorem 4.51), then
TBs

p,q(R, L, d) = RBs
p,q(R, wd−1) in the sense of equivalent quasi-norms.

(ii) Suppose s > σdp,q and let L ≥ [s] + 1. If TF sp,q(R, L, d) →֒ S′(R) (see Theorem 4.51), then
TF sp,q(R, L, d) = RF sp,q(R, wd−1) in the sense of equivalent quasi-norms.

The following diagram summarizes the situation.
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The trace spaces of Sobolev spaces may be described more directly. As suggested by Lemma
4.46, we can expect, that a crucial role should be played by the weight wd−1(t) = |t|d−1. We
obtain the following characterization.

Theorem 4.53. ([68], Theorem 6) Let d ≥ 2 and 1 ≤ p <∞.
(i) The mapping tr is a linear isomorphism (with inverse ext) of RW 1

p (R
d) onto the closure of

RC∞
0 (R) with respect to the norm

‖ g |Lp(R, |t|d−1)‖+ ‖ g′ |Lp(R, |t|d−1)‖ .

(ii) The mapping tr is a linear isomorphism (with inverse ext) of RW 2
p (R

d) onto the closure of
RC∞

0 (R) with respect to the norm

‖ g |Lp(R, |t|d−1)‖+ ‖ g′ |Lp(R, |t|d−1)‖+ ‖ g′/r |Lp(R, |t|d−1)‖+ ‖ g′′ |Lp(R, |t|d−1)‖ .

Surprisingly enough, the generalization to higher order Sobolev spaces remains open.

4.4.2 Regularity and decay properties

The characterizations obtained so far allow several direct corollaries. For example, if the dis-
tribution of f is supported outside of origin, the regularity of its trace may be described in a
surprisingly simple way.

Corollary 4.54. ([68], Corollary 1) Let τ > 0. Let d ≥ 2, 0 < p <∞, and 0 < q ≤ ∞.
(i) We suppose s > σdp . If f ∈ RBs

p,q(R
d) such that

supp f ⊂ {x ∈ R
d : |x| ≥ τ} (4.68)
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then its trace f0 belongs to Bs
p,q(R). Furthermore, there exists a constant c (not depending on f

and τ) such that
‖ f0 |Bs

p,q(R)‖ ≤ c τ−(d−1)/p ‖ f |Bs
p,q(R

d)‖ (4.69)

holds for all such functions f and all τ > 0.
(ii) We suppose s > σdp,q. If f ∈ RF sp,q(R

d) such that (4.68) holds, then its trace f0 belongs to
F sp,q(R). Furthermore, there exists a constant c (not depending on f and τ) such that

‖ f0 |F sp,q(R)‖ ≤ c τ−(d−1)/p ‖ f |F sp,q(Rd)‖ (4.70)

holds for all such functions f all τ > 0.

If the support of f stays away from zero and from infinity, the situation becomes very simple.
Roughly speaking, in that case the trace of RAsp,q(R

d) is RAsp,q(R).

Corollary 4.55. ([68], Corollary 2) Let d ≥ 2, 0 < p <∞, 0 < q ≤ ∞ and 0 < a < b <∞.
(i) We suppose s > σdp . If g ∈ RBs

p,q(R) such that

supp g ⊂ {x ∈ R : a ≤ |x| ≤ b} (4.71)

then the radial function f := ext g belongs to RBs
p,q(R

d) and there exist positive constants A,B
such that

A ‖ g |Bs
p,q(R)‖ ≤ ‖ f |Bs

p,q(R
d)‖ ≤ B ‖ g |Bs

p,q(R)‖ .
(ii) We suppose s > σdp,q. If g ∈ RF sp,q(R) such that (4.71) holds, then the radial function

f := ext g belongs to RF sp,q(R
d) and there exist positive constants A,B such that

A ‖ g |F sp,q(R)‖ ≤ ‖ f |F sp,q(Rd)‖ ≤ B ‖ g |F sp,q(R)‖ .

Furthermore, following corollary describes the uniform continuity of radial functions.

Corollary 4.56. ([68], Corollary 4) Let τ > 0. Let d ≥ 2, 0 < p <∞, and 0 < q ≤ ∞.
(i) If either s > 1/p or s = 1/p and q ≤ 1 then f ∈ RBs

p,q(R
d) is uniformly continuous on the

set |x| ≥ τ .
(ii) If either s > 1/p or s = 1/p and p ≤ 1 then f ∈ RF sp,q(R

d) is uniformly continuous on the
set |x| ≥ τ .

By looking at the restrictions in Corollary 4.56 we introduce the following set of parameters.

Definition 4.57. (i) We say that the triple (s, p, q) belongs to the set U(B) if (s, p, q) satisfies
the restrictions in part (i) of Corollary 4.56.
(ii) The triple (s, p, q) belongs to the set U(F ) if (s, p, q) satisfies the restrictions in part (ii) of
Corollary 4.56.

These sets of parameters determine the decay properties of f at infinity.

Theorem 4.58. ([68], Theorem 10) Let d ≥ 2, 0 < p <∞, and 0 < q ≤ ∞.
(i) Suppose (s, p, q) ∈ U(A). Then there exists a constant c such that

|x|(d−1)/p |f(x)| ≤ c ‖ f |Asp,q(Rd)‖ (4.72)

holds for all |x| ≥ 1 and all f ∈ RAsp,q(R
d).

(ii) Suppose (s, p, q) ∈ U(A). Then

lim
|x|→∞

|x|
d−1
p |f(x)| = 0 (4.73)
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holds for all f ∈ RAsp,q(Rd).
(iii) Suppose (s, p, q) ∈ U(A). Then there exists a constant c > 0 such that for all x, |x| > 1,
there exists a smooth radial function f ∈ RAsp,q(R

d), ‖ f |RAsp,q(Rd)‖ = 1, such that

|x|
d−1
p |f(x)| ≥ c . (4.74)

(iv) Suppose (s, p, q) 6∈ U(A) and 1
p > σdp. We assume also that 1

p > σdq in the F -case. Then,

for all sequences (xj)∞j=1 ⊂ R
d \ {0} such that limj→∞ |xj | = ∞, there exists a radial function

f ∈ RAsp,q(R
d), ‖ f |RAsp,q(Rd)‖ = 1, such that f is unbounded in any neighborhood of xj, j ∈ N.

The regularity properties by zero may be characterized in a similar way. It turns out, that
s > d/p implies, that a radial f ∈ Asp,q(R

d) is bounded. In the limiting case s = d/p, the
situation is again different for B and F spaces.

Lemma 4.59. ([68], Lemma 3) (i) The embedding RBs
p,q(R

d) →֒ L∞(Rd) holds if and only if
either s > d/p or s = d/p and q ≤ 1.
(ii) The embedding RF sp,q(R

d) →֒ L∞(Rd) holds if and only if either s > d/p or s = d/p and
p ≤ 1.

Hence, unboundedness can only happen in case s ≤ d/p. In that case, we obtain the following.

Theorem 4.60. ([68], Theorem 13) Let d ≥ 2, 0 < p <∞ and 0 < q ≤ ∞.
(i) Suppose (s, p, q) ∈ U(A) and s < d

p . Then there exists a constant c such that

|x|
d
p
−s |f(x)| ≤ c ‖ f |RAsp,q(Rd)‖ (4.75)

holds for all 0 < |x| ≤ 1 and all f ∈ RAsp,q(Rd).
(ii) Let σdp < s < d/p. There exists a constant c > 0 such that for all x, 0 < |x| < 1, there exists

a smooth radial function f ∈ RAsp,q(R
d), ‖ f |RAsp,q(Rd)‖ = 1, such that

|x|
d
p
−s |f(x)| ≥ c (4.76)

✻
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4.4.3 Functions with bounded variation

The space of functions with bounded variation plays an important role in the calculus of vari-
ation, signal processing and other branches of pure and applied analysis. Unfortunately, this
space behaves badly in connection with Fourier analysis and, in particular, no decomposition
technique of this space is known. Therefore, the trace space of BV (Rd) is identified by a com-
pletely different method. The trace space is then a certain weighted space of functions with
bounded variation. Let us first define this new space.

Definition 4.61. (i) A function ϕ ∈ C([0,∞)) belongs to C1
c ([0,∞)) if it is continuously

differentiable on R
+, has compact support, satisfies ϕ(0) = 0 and lim

t→0+
ϕ′(t) = ϕ′(0) = lim

t→0+

ϕ(t)

t
exists and is finite.
(ii) A function g ∈ L1(R

+, td−1) is said to belong to BV (R+, td−1) if there is a signed Radon
measure ν on R

+ such that
∫ ∞

0
g(t) [ϕ(s)sd−1]′(t) dt = −

∫ ∞

0
ϕ(t) td−1 dν(t) , ∀ϕ ∈ C1

c ([0,∞)) (4.77)

and

‖ g |BV (R+, td−1)‖ := ‖ g |L1(R
+, td−1)‖+

∫ ∞

0
rd−1 d|ν|(r) (4.78)

is finite.

By using these new spaces we can prove the following trace theorem.

Theorem 4.62. ([68], Theorem 12) Let g be a measurable function on R
+. Then ext g ∈

BV (Rd) if, and only if, g ∈ BV (R+, td−1) and

‖ ext g |BV (Rd)‖ ≍ ‖ g |BV (R+, td−1) ‖ .

The following statement is known to hold for functions f ∈ W 1
1 (R

d) - in that case, the proof is
rather straightforward and goes back to Lions [40]. With the help of the previous characteriza-
tion, it may be extended to a larger class, namely to BV (Rd) ⊃ W 1

1 (R
d). In view of Theorem

4.58, the limiting situation s = 1/p is of particular interest.

Theorem 4.63. ([68], Theorem 11) Let d ≥ 2. Then there exists constant c such that

|x|d−1 |f(x)| ≤ c ‖ f |BV (Rd)‖ (4.79)

holds for all |x| > 0 and all f ∈ RBV (Rd). Also

lim
|x|→∞

|x|d−1 |f(x)| = 0 (4.80)

is true for all f ∈ RBV (Rd).
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[59] M.C. Rodŕıguez Fernández, Über die Spur von Funktionen mit dominierenden gemischten
Glattheitseigenschaften auf der Diagonale. Ph.D. thesis, Jena, 1997.

[60] V. S. Rychkov, On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with
respect to Lipschitz domains, J. London Math. Soc. (2) 60 (1999), 237–257.

[61] V. S. Rychkov, Littlewood-Paley theory and function spaces with Aℓoc
p weights, Math. Nachr.

224 (2001), 145–180.

[62] H.-J. Schmeisser, Vector-valued Sobolev and Besov spaces, Teubner-Texte zur Math. 96
(1987), 4–44.

[63] H.-J. Schmeisser, Recent developments in the theory of function spaces with dominating
mixed smoothness, Proc. NAFSA-8, Prague 2006, 145–204.

[64] H.-J. Schmeisser and W. Sickel, Spaces of functions of mixed smoothness and approximation
from hyperbolic crosses, J. Approx. Theory 128 (2004), no. 2, 115–150.

[65] H.-J. Schmeisser and H. Triebel, Topics in Fourier analysis and function spaces, Chichester,
Wiley, 1987.

[66] A. Seeger and W. Trebels, Low regularity classes and entropy numbers, Arch. Math. (Basel)
92 (2009), no. 2, 147–157.

[67] W. Sickel and T. Runst, Sobolev spaces of fractional order, Nemytskij operators, and nonlin-
ear partial differential equations. de Gruyter Series in Nonlinear Analysis and Applications,
3. Walter de Gruyter & Co., Berlin, 1996.

[68] W. Sickel, L. Skrzypczak and J. Vyb́ıral, On the interplay of regularity and decay in case
of radial functions I. Inhomogeneous spaces, to appear in Commun. Contemp. Math.
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anderen Prüfungsbehörde vorgelegt.

Ich versichere, daß ich nach bestem Wissen die reine Wahrheit gesagt und nichts verschwiegen
habe.

Jena, den . . . Unterschrift

53



Widths of embeddings in function spaces

Jan Vyb́ıral

Mathematisches Institut, Universität Jena
Ernst-Abbe-Platz 2, 07743 Jena, Germany

vybiral@minet.uni-jena.de

Abstract

We study the approximation, Gelfand and Kolmogorov numbers of embeddings in

function spaces of Besov and Triebel-Lizorkin type. Our aim here is to provide sharp

estimates in several cases left open in the literature and give a complete overview of

the known results. We also add some historical remarks.

AMS Classification: 41A45, 41A46, 46E35

Keywords and phrases: Approximation numbers, Gelfand numbers, Kolmogorov num-
bers, Besov spaces, Sobolev embeddings

1
54



1 Introduction

Let Ω ⊂ Rd be a bounded domain, 1 ≤ p ≤ ∞ and let k be a natural number. We denote by
W k

p (Ω) the Sobolev spaces of functions from Lp(Ω) with all distributive derivatives of order
smaller or equal to k in Lp(Ω). If p2 <∞,

k1 − k2 ≥ d

(
1

p1
− 1

p2

)

+

, (1.1)

and the boundary of Ω is Lipschitz then W k1
p1

(Ω) is continuously embedded into W k2
p2

(Ω).
This theorem goes back to Sobolev [55].

If the inequality in (1.1) is strict, the embedding is even compact, cf. [48] and [31]. During
the second half of the last century, this fact (and its numerous generalisations) found its ap-
plications in many areas of modern analysis, especially in connection with partial differential
(and pseudo-differential) equations.

Later on, mathematicians started to be interested in measuring the quality of compactness
of the embedding

I : W k1
p1

(Ω) →֒ W k2
p2

(Ω).

The very first question is, of course, how to measure compactness. During the years, several
methods were developed. The most popular one assigns to I a non-increasing sequence of
non-negative real numbers, say {sn(I)}n∈N, often based on specific approximation quantities,
and measures the decay of sn as n tends to infinity.

Let us present this approach on the following example. Let X and Y be Banach spaces and
let T : X → Y be a bounded linear operator between them. Then the nth approximation
number of T is defined by

an(T ) = inf{||T − L|| : L ∈ L(X, Y ), rank (L) < n}, n ∈ N, (1.2)

where L(X, Y ) is the space of all bounded linear operators mapping X into Y endowed with
the classical operator norm and rank L denotes the dimension of L(X). Hence, we measure
how well the operator T may be approximated by finite rank operators. If lim

n→∞
an(T ) = 0,

then T is compact. And in some sense, the faster the sequence {an(T )}n∈N tends to zero,
the more compact T is.

There are many other ways, how to define a sequence {sn(T )}n∈N for an operator T ∈
L(X, Y ) such that the decay of {sn} describes in some sense the compactness of T ; we refer
to [43, 44, 6], where the axiomatic theory of the so-called s-numbers can be found.

It was observed by many authors, that even in the most simple case

id : ℓmp1
→ ℓmp2

, m ∈ N

it is surprisingly difficult to calculate (or at least estimate) the approximation numbers,
as well as the other s-numbers, corresponding to id. The complexity of the problem may
be demonstrated by the fact, that in several cases the proofs are based on probabilistic
arguments and no optimal constructive approximation procedure is known up to now.

As a part of the good news is that these results may be combined with the discretization
technique of Măıorov [37] to get direct counterparts for embeddings between function spaces.
Nowadays, there are many discretization techniques well known and studied in the literature.
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Let us mention at least spline and wavelet decompositions and the ϕ-transform, cf. [8, 7,
49, 64, 23, 11, 16, 17].

The research in this area was complicated also by another regretful phenomena, namely
communication problems between several groups working on the field. This effect was al-
ready pointed out by Caetano [4] and Pietsch [45, Section 6.2.6]. Also the separation of
the Russian mathematical school causes some obstacles. Many breakthroughs achieved by
Kashin, Gluskin and others were published in Russian. The nicely written dissertation of
Lubitz [36] was written in German, never translated into English and never published.

The aim of this paper is rather extensive. We wish to

• give an overview of known results in this area,

• collect some historical references,

• close several minor gaps left open until now,

• present the power of the discretization method, but also its limits,

• provide an easy reference to the results about function spaces.

Several overviews may already be found in the literature, cf. [46, 34, 35, 45]. Unfortunately,
they sometimes restrict themselves to d = 1, state the results only implicitly, or deal only with
integer smoothness parameters s1, s2 ∈ N. Here, leaded by the needs of possible applications,
we shall study three types of s-numbers, namely approximation, Kolmogorov and Gelfand
numbers, with respect to embeddings of function spaces defined on Lipschitz domains. This
generalisation is not particularly interesting from the standpoint of functional analysis, but
is of course crucial as far as the applications are concerned.

I would like to thank to my colleagues from Jena, Aicke Hinrichs, Erich Novak, Winfried
Sickel and Hans Triebel, for many valuable discussions on the topic.

2 Function and sequence spaces

2.1 Notation

We use standard notation: N denotes the collection of all natural numbers, Z the collection
of all integers, R

d is the Euclidean d-dimensional space, where d ∈ N, and C stands for the
complex plane. Let S(Rd) be the Schwartz space of all complex-valued rapidly decreasing,
infinitely differentiable functions on Rd and let S ′(Rd) be its dual, the space of all tempered
distributions.

Furthermore, Lp(R
d) with 0 < p ≤ ∞, are the classical Lebesgue spaces endowed with the

(quasi-)norm

||f |Lp(R
d)|| =






(∫

Rd

|f(x)|pdx
)1/p

, 0 < p <∞,

ess sup
x∈Rd

|f(x)|, p =∞.

For ψ ∈ S(Rd) we denote by

ψ̂(ξ) = (Fψ)(ξ) = (2π)−d/2

∫

Rd

e−i<x,ξ>ψ(x)dx, x ∈ R
d,
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its Fourier transform and by ψ∨ or F−1ψ its inverse Fourier transform. Through duality, F
and F−1 are extended to S ′(Rd).

If {an}∞n=1 and {bn}∞n=1 are two sequences of non-negative real numbers, we write an . bn
if there is a constant c > 0, such that an ≤ c bn for all natural numbers n. The symbols
an & bn and an ≈ bn are defined similarly.

2.2 Function spaces

We give a Fourier-analytic definition of Besov and Triebel-Lizorkin spaces, which relies on
the so-called smooth dyadic resolution of unity. Let ϕ ∈ S(Rd) with

ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥ 3

2
. (2.1)

We put ϕ0 = ϕ and ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x) for j ∈ N and x ∈ Rd. This leads to the
identity

∞∑

j=0

ϕj(x) = 1, x ∈ R
d.

Definition 2.1. (i) Let s ∈ R, 0 < p, q ≤ ∞. Then Bs
pq(R

d) is the collection of all f ∈ S ′(Rd)
such that

||f |Bs
pq(R

d)|| =
( ∞∑

j=0

2jsq||(ϕj f̂)∨|Lp(R
d)||q

)1/q

<∞ (2.2)

(with the usual modification for q =∞).

(ii) Let s ∈ R, 0 < p <∞, 0 < q ≤ ∞. Then F s
pq(R

d) is the collection of all f ∈ S ′(Rd) such
that

||f |F s
pq(R

d)|| =
∣∣∣∣

∣∣∣∣

( ∞∑

j=0

2jsq|(ϕj f̂)∨(·)|q
)1/q

|Lp(R
d)

∣∣∣∣

∣∣∣∣ <∞ (2.3)

(with the usual modification for q =∞).

Remark 2.2. We recommend [40, 59, 60, 51, 61] as standard references with respect to these
classes of distributions. Extensive historical overviews, remarks and comments may be found
in [60, Chapter 1], [61, Chapter 1] and [45, Chapter 6.7]. Let us mention that the spaces
Bs

pq(R
d) and F s

pq(R
d) do not depend on the choice of ϕ in the sense of equivalent (quasi-

)norms. Many classical function spaces are included in these two scales.

1. If 1 < p <∞, then the Littlewood-Paley theorem states that

F 0
p2(R

d) = Lp(R
d).

2. Let 1 < p <∞ and s ∈ N. Then

F s
p2(R

d) = W s
p (Rd)

are the classical Sobolev spaces.
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3. Let s > 0, s 6∈ N. Then
Bs

∞∞(Rd) = Cs(Rd)

are the Hölder-Zygmund spaces.

On the other hand, many important function spaces (especially L1(R
d), L∞(Rd), BV (R) -

the space of functions with bounded variation and Ck(Rd) - the space of functions with all
partial derivatives of order smaller or equal to k uniformly continuous and bounded) are not
included.

If X and Y are two topological vector spaces, we writeX →֒ Y ifX is continuously embedded
in Y . The following embeddings describe the interplay between these function spaces and
the Besov scale.

B0
11(R

d) →֒ L1(R
d) →֒ B0

1∞(Rd),

B0
∞1(R

d) →֒ C(Rd) →֒ L∞(Rd) →֒ B0
∞∞(Rd), (2.4)

Bk
∞1(R

d) →֒ Ck(Rd) →֒ Bk
∞∞(Rd).

In many cases it will be possible to use the Fourier-analytical methods in the framework of
Besov spaces and afterwards, simply by applying these simple continuous embeddings, to
derive the same results also for the “bad” spaces L1(R

d), L∞(Rd) and Ck(Rd). The same
procedure may be used also for the Triebel-Lizorkin scale because of

Bs
p,min(p,q)(R

d) →֒ F s
pq(R

d) →֒ Bs
p,max(p,q)(R

d). (2.5)

Remark 2.3. If 0 < p1 ≤ p2 ≤ ∞, 0 < q1, q2 ≤ ∞ and s2 ≤ s1, then the following version of
the Sobolev embedding is true, see [2], [40, Chapters 3 and 11] and [58, Section 2.8.1].

Bs1
p1,q1

(Rd) →֒ Bs2
p2,q2

(Rd), if s1 −
d

p1
> s2 −

d

p2
.

There are several modifications of this embedding, which result in compact mappings. The
first possibility is to restrict to function spaces on smooth bounded domains, the second
involves weighted spaces and another one considers the so-called radial spaces, i.e. spaces of
radial symmetric functions. We concentrate on the first possibility and refer to [61, Chapter
6] and [54] for the second and third approach.

Let Ω be a bounded domain. Let D(Ω) = C∞
0 (Ω) be the collection of all complex-valued

infinitely-differentiable functions with compact support in Ω and let D′(Ω) be its dual - the
space of all complex-valued distributions on Ω.

Let g ∈ S ′(Rd). Then we denote by g|Ω its restriction to Ω:

(g|Ω) ∈ D′(Ω), (g|Ω)(ψ) = g(ψ) for ψ ∈ D(Ω).

Definition 2.4. Let Ω be a bounded domain in Rd. Let s ∈ R, 0 < p, q ≤ ∞ with p < ∞
in the F -case. Let As

pq stand either for Bs
pq or F s

pq. Then

As
pq(Ω) = {f ∈ D′(Ω) : ∃g ∈ As

pq(R
d) : g|Ω = f}

and
||f |As

pq(Ω)|| = inf ||g|As
pq(R

d)||,
where the infimum is taken over all g ∈ As

pq(R
d) such that g|Ω = f.

Intrinsic characterization of Bs
p,q(Ω), s > σp = d

(
1

p
− 1

)

+

= dmax

(
1

p
− 1, 0

)
are known

to exist in case of Lipschitz domains, see [12, 13, 14] and [61, Section 1.11.9].
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2.3 Sequence spaces

In this section we comment on the discretization techniques mentioned in the Introduction.

First, we describe the situation on Rd. Therefore, we introduce the sequence spaces b
s
pq

and give a wavelet decomposition theorem for Besov spaces on Rd. Good references in our
context are [8, 11, 23, 38, 39, 63, 64].

Second, we deal with bounded domains Ω ⊂ Rd. The wavelet decomposition techniques may
be adapted also to these function spaces, cf. [9, 61], but unfortunately, there are still open
problems in this setting. To avoid these gaps, we use the theory on Rd and combine it with
suitable extension and restriction operators.

Theorem 2.5. For any k ∈ N there are real-valued compactly supported functions

ψ0, ψ1 ∈ Ck(R)

satisfying ∫

R

tαψ1(t)dt = 0, α = 0, 1, . . . , k − 1,

such that
{2ν/2ψνm : ν ∈ N0, m ∈ Z}

with

ψνm(t) =

{
ψ0(t−m) if ν = 0, m ∈ Z,

2−
1
2ψ1(2

ν−1t−m) if ν ∈ N, m ∈ Z

is an orthonormal basis in L2(R).

Remark 2.6. This theorem was first proven by Daubechies in [10]. The functions ψ0 and ψ1

are therefore usually called Daubechies wavelets. We refer to [63, Theorem 19] for the proof
of the next theorem.

Theorem 2.7. Let 0 < p, q ≤ ∞, s ∈ R and k ∈ N with k > max(s, σp−s). Let ψ0, ψ1 be the
Daubechies wavelets of smoothness k. Let E = {0, 1}d \ (0, . . . , 0). For e = (e1, . . . , ed) ∈ E
let

Ψe(x) =

d∏

j=1

ψej
(xj), x = (x1, . . . , xd) ∈ R

d.

(i) Then 




Ψ(x−m) =
d∏

j=1

ψ0(xj −mj) m = (m1, . . . , md) ∈ Zd,

2
ν−1
2

dΨe(2
ν−1x−m) e ∈ E, ν ∈ N, m ∈ Zd

is an orthonormal basis in L2(R
d).

(ii) Let f ∈ S ′(Rd). Then f ∈ Bs
pq(R

d) if, and only if, it can be represented as

f =
∑

m∈Zd

λmΨ(x−m) +
∑

ν∈N

∑

e∈E

∑

m∈Zd

λe
νm2−νd/2Ψe(2

ν−1x−m) (2.6)

with

||λ|bs
pq|| =

(∑

m∈Zd

|λm|p
) 1

p

+

( ∞∑

ν=1

2ν(s− d
p
)q
∑

e∈E

(∑

m∈Zd

|λe
νm|p

) q

p

) 1
q

<∞
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appropriately modified if p = ∞ and/or q = ∞. The representation in (2.6) is unique, the
complex coefficients {λm}m∈Zd and {λe

νm}e∈E,ν∈N0,m∈Zd depend linearly on f and the mapping,
which associates to f ∈ Bs

pq(R
d) the sequence of coefficients, is an isomorphic map of Bs

pq(R
d)

onto b
s
pq.

2.4 s-numbers

Given p ∈ (0, 1], we say, that the quasi-Banach space Y is a p-Banach space if the inequality

||x+ y|Y ||p ≤ ||x|Y ||p + ||y|Y ||p, x, y ∈ Y.

is satisfied.

We recall a few basic facts of the theory of s-numbers. We refer to [44, 6] for further details.
In this theory, one associates to every linear operator T : X → Y (X and Y quasi-Banach
spaces) a sequence of scalars

s1(T ) ≥ s2(T ) ≥ · · · ≥ 0.

Let W,X, Y, Z be (quasi-)Banach spaces and let Y be a p-Banach space, 0 < p ≤ 1. If the
rule s : T → {sn(T )}n∈N satisfies

(S1) ||T || = s1(T ) ≥ s2(T ) ≥ · · · ≥ 0,

(S2) sp
m+n−1(S + T ) ≤ sp

m(T ) + sp
n(S) for all S, T ∈ L(X, Y ) and m,n ∈ N,

(S3) sn(STU) ≤ ||S||sn(T )||U || for all U ∈ L(W,X), T ∈ L(X, Y ), S ∈ L(Y, Z) and n ∈ N,

(S4) If rank T < n, then sn(T ) = 0,

(S5) sn(I : ℓ2(n)→ ℓ2(n)) = 1.

then the sn(T ) are called s-numbers of the operator T .

Let us point out, that we shall not use (S4) and (S5) in what follows. Hence, our approach
applies also to rules s : T → {sn(T )}n∈N which satisfy only (S1)-(S3). Such rules are called
pseudo-s-numbers in [43, Chapter 12] and cover also the concept of entropy numbers with
||T || ≥ s1(T ) in (S1).

Let
Id : Bs1

p1q1
(Ω)→ Bs2

p2q2
(Ω) (2.7)

be compact, i.e.

s1 − s2 > d
( 1

p1
− 1

p2

)

+
. (2.8)

We denote by
ext : Bs1

p1q1
(Ω)→ Bs1

p1q1
(Rd) (2.9)

a bounded linear extension operator. A convenient reference for this is Rychkov, cf. [52],
but see also the references given there. Here we use the Lipschitz smoothness of ∂Ω. The
natural restriction will be denoted by

re : Bs2
p2q2

(Rd)→ Bs2
p2q2

(Ω).
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Clearly, it also represents a bounded linear operator.

Let k > max(s1, σp1 − s1, s2, σp2 − s2) be a natural number and let W be the mapping which
associates to each f ∈ Bs1

p1q1
(Rd) its wavelet coefficients with respect to the Daubechies

wavelets of smoothness k, as described in Theorem 2.7. Our choice of k ensures, that
Theorem 2.7 may be applied to both, Bs1

p1q1
(Rd) and Bs2

p2q2
(Rd), simultaneously and that

W−1 is a bounded linear operator, which maps b
s2
p2q2

isomorphically onto Bs2
p2q2

(Rd).

Finally, we adapt the sequence spaces b
s
pq to the function spaces on domains.

Definition 2.8. (i) Let M = {Mν}∞ν=0 be a sequence of non-negative integers. We say, that
M is admissible, if there is some ν0 ∈ N0 and two positive real constants c1, c2 such that

Mν = 0 for all ν < ν0

and
c12

νd ≤Mν ≤ c22
νd, ν ≥ ν0.

(ii) If 0 < p, q ≤ ∞, s ∈ R, E = {0, 1}d \ (0, . . . , 0), M = {Mν}∞ν=0 is an admissible sequence
and

λ = {λk : k = 1, . . . ,M0} ∪ {λe
νk : e ∈ E, ν ∈ N, k ∈Mν},

we set

||λ|bs,M
pq || =

( M0∑

k=1

|λk|p
) 1

p

+

( ∞∑

ν=1

2ν(s− d
p
)q
∑

e∈E

(Mν∑

k=1

|λe
νk|p
) q

p

) 1
q

, (2.10)

again appropriately modified if p =∞ and/or q =∞.

Let now Ω be a bounded Lipschitz domain in Rd and let the number k ∈ N describing
the smoothness of the wavelets be fixed. Then we collect those wavelets, whose support
intersects Ω̄:

Mν =

{
{m ∈ Zd : supp Ψ(· −m) ∩ Ω̄ 6= ∅} if ν = 0,

{m ∈ Zd : ∃e ∈ E : supp Ψe(2
ν−1 · −m) ∩ Ω̄ 6= ∅} if ν ≥ 1.

We observe that the sequence M = {Mν}∞ν=0 with

Mν = #(Mν) = number of elements ofMν , ν ∈ N0,

is an admissible sequence in the sense of Definition 2.8.

With a slight abuse of notation, there is a natural projection operator P : b
s
pq → b

s,M
pq and

a natural embedding operator Q : b
s,M
pq → b

s
pq.

Using the weak multiplicativity property (S3) of s-numbers and the commutative diagram

Bs1
p1q1

(Ω)
ext−−−→ Bs1

p1q1
(Rd)

W−−−→ b
s1
p1q1

P−−−→ b
s1,M
p1q1

Id

y
yid

Bs2
p2q2

(Ω)
re←−−− Bs2

p2q2
(Rd)

W−1

←−−− b
s2
p2q2

Q←−−− b
s2,M
p2q2

we conclude that
sn(Id) . sn(id), n ∈ N.
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To obtain the reverse inequality, we first set

M′
ν =

{
{m ∈ Zd : supp Ψ(· −m) ⊂ Ω} if ν = 0,

{m ∈ Zd : ∀e ∈ E : supp Ψe(2
ν−1 · −m) ⊂ Ω} if ν ≥ 1.

(2.11)

Again, we observe, that the sequence M ′ = {M ′
ν}∞ν=0 with

M ′
ν = #(M′

ν) = number of elements ofM′
ν , ν ∈ N0,

is an admissible sequence in the sense of Definition 2.8.

If we use (S3) and

b
s1,M ′

p1q1

Q′

−−−→ b
s1
p1q1

W−1

−−−→ Bs1
p1q1

(Rd)
re−−−→ Bs1

p1q1
(Ω)

id′

y
yId

b
s2,M ′

p2q2

P ′

←−−− b
s2
p2q2

W←−−− Bs2
p2q2

(Rd)
ext←−−− Bs2

p2q2
(Ω),

we get the inequality.
sn(id′) . sn(Id), n ∈ N.

Hence
sn(id′) . sn(Id) . sn(id), n ∈ N. (2.12)

It tells us, roughly speaking, that we may restrict ourselves to sequence spaces and all the
results translate also into the language of function spaces. Before we start with the study
of sn(id) and sn(id′), we make another simplification. The (finite) sum over e ∈ E in (2.10)
comes from the theory of multivariate wavelet decompositions, but has no influence on the
s-numbers.

If M = {Mν}∞ν=0 is an admissible sequence, we set

||λ|bs,Mpq || =
( ∞∑

ν=0

2ν(s− d
p
)q
(Mν∑

k=1

|λνk|p
) q

p

) 1
q

.

It follows that

sn(Id : Bs1
p1q1

(Ω)→ Bs2
p2q2

(Ω)) ≈ sn(id : b
s,M
pq → b

s,M
pq ) ≈ sn(id : bs,Mpq → bs,Mpq ). (2.13)

Remark 2.9. The formulas (2.12) and (2.13) represent the main result of this section and is
of a crucial importance for our study of s-numbers of (2.7). We have proved (2.13) under
the assumption that Ω is a bounded domain in Rd with Lipschitz boundary. Using more
sophisticated tools from the theory of function spaces, it may be proven that (2.13) holds
also for more general classes of domains, at least under some restrictions on the parameters
s1, s2, p1, p2, q1, q2. A detailed inspection of our proof shows, that (2.13) is true anytime there
is a bounded linear extension operator (2.9) and its counterpart for Bs2

p2q2
(Ω). We refer to

[62, Section 4.3.4] for a detail treatment of these questions.
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3 Approximation numbers

Definition 3.1. Let X, Y be two quasi-Banach spaces and let T ∈ L(X, Y ). For n ∈ N, we
define the nth approximation number by

an(T ) = inf{||T − L|| : L ∈ L(X, Y ), rank(L) < n}.

In the setting of Banach spaces, this definition goes back to Pietsch [41] and Tikhomirov
[57]. The generalisation to quasi-Banach spaces may be found in [15, Section 1.3.1]. In this
section, we characterize the approximation numbers of (2.7) with (2.8).

First, we recall some lemmas which we shall need on the sequence space level. Lemma
3.2 is taken from [22] and Lemma 3.3 in the case 1 ≤ p2 ≤ p1 ≤ ∞ may be found in
[43, Section 11.11.5]. The proof may be directly generalised to the quasi-Banach setting
0 < p2 ≤ p1 ≤ ∞.

For 0 < p ≤ ∞, we set

p′ =






p
p−1

if 1 < p <∞,
1 if p =∞,
∞ if 0 < p ≤ 1.

Lemma 3.2. For 1 ≤ n ≤ m <∞ and 1 ≤ p1 < p2 ≤ ∞, we define

Φ(m,n, p1, p2) :=






(
min{1, m

1
p2 n− 1

2}
)

1
p1
− 1

p2

1
2
− 1

p2 if 2 ≤ p1 < p2 ≤ ∞,
max{m

1
p2

− 1
p1 ,min{1, m

1
p2 n− 1

2} ·
√

1− n
m
} if 1 ≤ p1 < 2 ≤ p2 ≤ ∞,

max{m
1

p2
− 1

p1 ,
√

1− n
m

1
p1
− 1

p2

1
p1
− 1

2 } if 1 ≤ p1 < p2 ≤ 2

and

Ψ(m,n, p1, p2) :=

{
Φ(m,n, p1, p2) if 1 ≤ p1 < p2 ≤ p′1,

Φ(m,n, p′2, p
′
1) if max(p1, p

′
1) < p2 ≤ ∞.

Then if 1 ≤ p1 < p2 ≤ ∞ and (p1, p2) 6= (1,∞)

an(id : ℓmp1
→ ℓmp2

) ≈ Φ(m,n, p1, p2), 1 ≤ n ≤ m <∞.
The constants of equivalence may depend on p1 and p2 but are independent of m and n.

Lemma 3.3. If 1 ≤ n ≤ m <∞ and 0 < p2 ≤ p1 ≤ ∞, then

an(id : ℓmp1
→ ℓmp2

) = (m− n + 1)
1

p2
− 1

p1 .

Lemma 3.4. Let 0 < p ≤ 1.

(i) Let 0 < λ < 1. Then there is a number cλ > 0 such that

an(id : ℓmp → ℓm∞) ≤ cλ√
n

(3.1)

holds for all natural numbers n and m with mλ < n ≤ m.

(ii) There is a number c > 0 such that

an(id : ℓ2n
p → ℓ2n

∞ ) ≥ c√
n
, n ≥ 1. (3.2)
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Proof. Let A = (ai,j)
m
i,j=1 be an m×m matrix. Then

||A|L(ℓm1 , ℓ
m
∞)|| = ||A|L(ℓmp , ℓ

m
∞)|| = max

i,j=1,...,m
|ai,j|

for every 0 < p ≤ 1. Hence, the approximation numbers of id : ℓmp → ℓm∞ do not depend on
0 < p ≤ 1 and it is enough, when we prove Lemma 3.4 only for p = 1.

The first part follows from a combinatorial result of Kashin, cf. [26, 27] and [43, Section
11.11.11]:

Let 0 < λ < 1 and mλ ≤ n ≤ m be natural numbers. Then there are m ℓn2 -unit vectors
{fi}mi=1 ⊂ Rn, such that

|(fi, fj)| ≤
cλ√
n
, if i 6= j.

We set A = (ai,j)
m
i,j=1 with ai,j = (fi, fj). Then A is a matrix with rank A ≤ n and

||I −A|L(ℓm1 , ℓ
m
∞)|| ≤ cλ√

n
.

The proof of the second part follows trivially from the result of Stechkin, cf. [56] and [43,
Section 11.11.8]:

an(id : ℓm1 → ℓm2 ) =

(
m− n+ 1

m

)1/2

and
||id : ℓm∞ → ℓm2 || =

√
m.

Theorem 3.5. Let −∞ < s2 < s1 < ∞ and 0 < p1, p2, q1, q2 ≤ ∞ with (2.8). Let Ω ⊂ Rd

be a bounded Lipschitz domain. Then (2.7) is compact and for n ∈ N

an(Id) ≈ n
− s1−s2

d
+
(

1
p1

− 1
p2

)
+ if






either 0 < p1 ≤ p2 ≤ 2,

or 2 ≤ p1 ≤ p2 ≤ ∞,
or 0 < p2 ≤ p1 ≤ ∞,

(3.3)

an(Id) ≈ n− s1−s2
d

+ 1
p
− 1

2 if 0 < p1 < 2 < p2 <∞ (3.4)

and
s1 − s2

d
>

1

p
= max

(
1− 1

p2

,
1

p1

)
,

an(Id) ≈ n

(
− s1−s2

d
+ 1

p1
− 1

p2

)
·min(p′1,p2)

2 if
s1 − s2

d
<

1

p
= max

(
1− 1

p2

,
1

p1

)
, (3.5)

and either 1 < p1 < 2 < p2 =∞
or 0 < p1 < 2 < p2 <∞

an(Id) ≈ n
− s1−s2

d
+ 1

p1
− 1

2 if 0 < p1 ≤ 1 < p2 =∞. (3.6)

Proof. Approximation numbers form an additive and multiplicative scale of s-numbers. This
fact may be verified directly, or the reader may consult [43, Section 11.2] in the Banach space
settings and [15, Section 1.3] for the extension to quasi-Banach spaces.

Hence (2.12) applies to approximation numbers and we may restrict ourselves to sequence
spaces.

The estimates covered by (3.3)-(3.5) are known. We refer to [15, Section 3.3.4] and [4]. The
proof given in [15] is rather complicated, but [4] uses an approach very similar to ours.
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It remains to prove the only missing case (3.6). We use Lemma 3.4 to estimate the approx-
imation numbers of

id : bs1,M
p1q1

= ℓq1(2
ν(s1− d

p1
)
ℓMν

p1
)→ ℓq2(2

νs2ℓMν

∞ ) = bs2,M
∞ q2

,

where M = {Mν}∞ν=0 is an admissible sequence. Let

idν : 2
ν(s1− d

p1
)
ℓMν

p1
→ 2νs2ℓMν

∞ , ν = 0, 1, 2, . . .

denote the identity operator between the finite dimensional building blocks of the considered
sequence spaces. With a slight abuse of notation, we get

id =
∞∑

ν=0

idν , (3.7)

which, combined with the additivity of approximation numbers, leads to

aω
n′(id) ≤

N1∑

ν=0

aω
nν

(idν) +

N2∑

ν=N1+1

aω
nν

(idν) +
∞∑

ν=N2+1

||idν||ω,

where N1 < N2 are natural numbers, n′ − 1 =

N2∑

ν=0

(nν − 1) and ω = min(1, q2). We set

nν =

{
Mν + 1 if 0 ≤ ν ≤ N1,

n1+α2−ανd if N1 + 1 ≤ ν ≤ N2,

where

0 < α < 2
(s
d
− 1

p1

)
(3.8)

and

N1 =

[
log2 n

d

]
, N2 =

[
s
d
− 1

p
+ 1

2
s
d
− 1

p

· log2 n

d

]

≥ N1.

Here, [a] denotes the integer part of a real number a.

For this choice we get

n′ =

N2∑

ν=0

(nν − 1) + 1 ≈ 2νN1d +N1+α
1 2−ανd ≈ n.

A simple calculation shows that there is a number λ > 0 such that Mλ
ν ≤ nν ≤Mν . Hence

anν
(idν) ≤

{
0 if 0 ≤ ν ≤ N1,

cλ√
nν

2
−ν(s− d

p1
)

if N1 + 1 ≤ ν ≤ N2

and
N1∑

ν=0

aω
nν

(idν) = 0,

N2∑

ν=N1+1

aω
nν

(idν) ≤
N2∑

ν=N1+1

cωλ√
nω

ν

≤ cn− 1+α
2

ω

N2∑

ν=N1+1

2
−νdω( s

d
− 1

p1
−α

2
)
. n

−ω
(

s
d
− 1

p1
+ 1

2

)
,

∞∑

ν=N2+1

||idν ||ω ≤
∞∑

ν=N2+1

2
−νω(s− d

p1
)
. n

−ω
(

s
d
− 1

p1
+ 1

2

)
.
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It follows, that there is a constant c > 0 such that

acn(id) . n
−
(

s
d
− 1

p1
+ 1

2

)
, n ≥ 1,

which is equivalent to

an(id) . n
−
(

s
d
− 1

p1
+ 1

2

)
, n ≥ 1. (3.9)

The proof of the reverse inequality to (3.9) follows easily from the second part of Lemma
3.4.

Let M ′ = {M ′
ν}∞ν=0 be an admissible sequence. Then, for ν ≥ ν0

an(id) ≥ an(idν) & 2
−ν(s− d

p1
) · 1√

n

if n =
[

Mν

2

]
. This leads to

an(id) & n
−
(

s
d
− 1

p1
+ 1

2

)
, n =

[
Mν

2

]
, ν ≥ ν0

and by means of the monotonicity of the approximation numbers the result follows.

Remark 3.6. We have used the open case (3.6) to demonstrate the typical use of the wavelet
decomposition method and (2.12). Also (3.3)–(3.5) could be proven exactly in the same
manner. For example, the proof of (3.5) in [4] follows along this line.

Remark 3.7. Although the results were stated only for Besov spaces, with the aid of (2.4)
and (2.5) we may extend them also to Triebel-Lizorkin spaces, Sobolev and Lebesgue spaces
and C(Ω), L1(Ω) and L∞(Ω). We return to this point later on.

Remark 3.8. The first estimates on approximation numbers of Sobolev embeddings of func-
tion spaces were obtained by Kolmogorov [30], who dealt with the Hilbert space case
p1 = q1 = p2 = q2 = 2. Later on, Birman and Solomyak [3] studied the embeddings of
Sobolev spaces. Finally, Kashin [29] observed the effect of “small smoothness” expressed by
(3.5). In the framework of Besov spaces the results are contained in [15, 4]. Nowadays, the
proof of (3.3)–(3.5) could be done very similar to the proof of (3.6), only using Lemmas 3.2
and 3.3 instead of Lemma 3.4.

4 Kolmogorov and Gelfand numbers

In this chapter we deal with Kolmogorov and Gelfand numbers. To begin with we recall
their definition and describe their decay in connection with Sobolev embeddings of Besov
spaces. We use the symbol A ⊂⊂ B if A is a closed subspace of a topological vector space
B.

Definition 4.1. Let X, Y be two quasi-Banach spaces and let T ∈ L(X, Y ).

(i) For n ∈ N, we define the nth Kolmogorov number by

dn(T ) = inf{||QY
NT || : N ⊂⊂ Y, dim(N) < n}.

Here, QY
N stands for the natural surjection of Y onto the quotient space Y/N .
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(ii) For n ∈ N, we define the nth Gelfand number by

cn(T ) = inf{||TJX
M || : M ⊂⊂ X, codim(M) < n}.

Here, JX
M stands for the natural injection of M into X.

Clearly, the notion dimension of a subspace is purely algebraic and may be freely used also
in the setting of quasi-Banach spaces. We refer to [50, Section 1.40] for the definition of
a quotient subspace in the framework of general topological vector spaces (including quasi-
Banach spaces as a special case). Finally, the codimension of a subspace may be defined as
the dimension of the quotient space.

Both, Gelfand and Kolmogorov numbers, are additive and multiplicative s-scales. This
follows directly from Definition 4.1, but the reader may wish to consult [44, Sections 2.4,
2.5] for the proof in the Banach space case. The generalisation to p-Banach spaces is obvious
and causes no complications. Also the following relations are trivial:

cn(T ) ≤ an(T ), dn(T ) ≤ an(T ), n ∈ N. (4.1)

The Gelfand and Kolmogorov numbers are dual to each other in the following sense, cf. [44,
Section 11.7.6-7]: If X and Y are Banach spaces, then

cn(T ∗) = dn(T ) (4.2)

for all compact operators T ∈ L(X, Y ) and

dn(T ∗) = cn(T ) (4.3)

for all T ∈ L(X, Y ).

The following result is due to Gluskin, cf. [21, 22] with [56, 24, 26, 27] as forerunners. It
gives a very precise information on the behaviour of dn(id : ℓmp1

→ ℓmp2
) in the Banach space

setting.

Lemma 4.2. For 1 ≤ n ≤ m <∞ and 1 ≤ p1, p2 ≤ ∞, we define

Φ(m,n, p1, p2) :=






(m− n+ 1)
1

p2
− 1

p1 if 1 ≤ p2 ≤ p1 ≤ ∞,

(
min{1, m

1
p2 n− 1

2}
)

1
p1
− 1

p2

1
2
− 1

p2 if 2 ≤ p1 < p2 ≤ ∞,

max{m
1

p2
− 1

p1 ,
√

1− n
m

1
p1
− 1

p2

1
p1
− 1

2 } if 1 ≤ p1 < p2 ≤ 2,

max{m
1

p2
− 1

p1 ,min{1, m
1

p2 n− 1
2} ·

√
1− n

m
} if 1 ≤ p1 < 2 < p2 ≤ ∞.

Then
dn(id : ℓmp1

→ ℓmp2
) ≈ Φ(m,n, p1, p2), 1 ≤ n ≤ m <∞,

if p2 <∞. The constants of equivalence may depend on p1 and p2 but are independent of m
and n.

Furthermore, there are two constants cp1 and Cp1 such that

cp1Φ(m,n, p1,∞) ≤ dn(id : ℓmp1
→ ℓm∞) ≤ Cp2Φ(m,n, p1,∞)

(
log
(em
n

))3/2

,

for 1 ≤ p1 ≤ ∞.
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Again we shall add some estimates which apply to quasi-Banach spaces.

Lemma 4.3. If 0 < p2 ≤ p1 ≤ ∞, then there is a constant c > 0 such that

d[cn]+1(ℓ
2n
p1
, ℓ2n

p2
) & n

1
p2

− 1
p1 , n ∈ N,

where [cn] denotes the upper integer part of cn.

Proof. If p2 ≥ 1, then the result is a special case of [43, Section 11.11.4], which states that

dn(ℓ
m
p1
, ℓmp2

) = (m− n + 1)
1

p2
− 1

p1 , 1 ≤ n ≤ m.

Let us mention, that (in contrast to Lemma 3.3 and Lemma 4.8) the estimate

dn(ℓmp1
, ℓmp2

) = (m− n + 1)
1

p2
− 1

p1 , 1 ≤ n ≤ m ≤ ∞,

is not true for Kolmogorov numbers if 0 < p2 ≤ p1 ≤ ∞ and p2 < 1. Simple counterexamples
can be constructed directly.

If p2 < 1 the proof is based on an inequality between entropy numbers and Kolmogorov
numbers. First, we recall the basic facts about entropy numbers. Let T : X → Y be a
bounded linear operator between two quasi-Banach spaces X and Y and let UX and UY be
the unit ball of X and Y , respectively. If k ∈ N, we define the kth entropy number ek(T ) as
the infimum of all ǫ > 0 such that

T (UX) ⊂
2k−1⋃

j=1

(yj + ǫUY ) for some y1, . . . , y
2k−1 ∈ Y.

We refer to [43] and [15] for detailed discussions of this concept, its history and further
references.

The following Lemma may be found in [1], cf. also [5] and [47, Section 5].

Lemma 4.4. If α > 0 and 0 < p < 1, then there is a constant cα,p > 0 such that for all
p-Banach spaces X and Y , all linear mappings T : X → Y and all n ∈ N we have

sup
k≤n

kαek(T ) ≤ cα,p sup
k≤n

kαdk(T ).

We apply this lemma to T = id : ℓ2n
p1
→ ℓ2n

p2
and combine it with the estimate (cf. [53])

ek(T ) & 2−
k
4n (2n)

1
p2

− 1
p1 , k, n ∈ N.

This leads to
nαn

1
p2

− 1
p1 . sup

k≤n
kαdk(T ).

Hence, for every n ∈ N there is a kn ≤ n such that

nαn
1

p2
− 1

p1 . kα
ndkn

(T ) ≤ kα
n(2n)

1
p2

− 1
p1 . (4.4)

We conclude, that there is a constant 1 ≥ c > 0 such that n ≥ kn ≥ cn for all n ∈ N. Finally,
we insert this estimate into (4.4) and the result follows.
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It is an obvious fact that the convex hull of the unit ball of ℓmp , 0 < p < 1, is the unit ball of
ℓm1 . This can be combined with the following simple observation, cf. [35, Section 13.1].

Lemma 4.5. Let X be a Banach space and let K ⊂ X. We define by

dn(K,X) = inf{sup
x∈K

inf
y∈N
||x− y|| : N ⊂⊂ Y, dim(N) < n}

the nth Kolmogorov number of the set K.

Then
dn(K,X) = dn(convK,X),

where convK is the convex hull of K.

Theorem 4.6. Let −∞ < s2 < s1 < ∞ and 0 < p1, p2, q1, q2 ≤ ∞ with (2.8). Let Ω ⊂ Rd

be a bounded Lipschitz domain. Then (2.7) is compact and for n ∈ N

dn(Id) ≈ n
− s1−s2

d
+
(

1
p1

− 1
p2

)
+ if

{
either 0 < p1 ≤ p2 ≤ 2,

or 0 < p2 ≤ p1 ≤ ∞,
(4.5)

dn(Id) ≈ n− s1−s2
d if 2 < p1 ≤ p2 ≤ ∞ (4.6)

and
s1 − s2

d
>

1

2

1
p1
− 1

p2

1
2
− 1

p2

,

dn(Id) ≈ n
p2
2

“

− s1−s2
d

+ 1
p1

− 1
p2

”

if 2 < p1 ≤ p2 ≤ ∞ (4.7)

and
s1 − s2

d
<

1

2

1
p1
− 1

p2

1
2
− 1

p2

,

dn(Id) ≈ n

(
− s1−s2

d
+ 1

p1
− 1

2

)

if 0 < p1 < 2 < p2 ≤ ∞ (4.8)

and
s1 − s2

d
>

1

p1
,

dn(Id) ≈ n
p2
2

(
− s1−s2

d
+ 1

p1
− 1

p2

)

if 0 < p1 < 2 < p2 <∞ (4.9)

and
1

p1

− 1

p2

<
s1 − s2

d
<

1

p1

.

Proof. Lubitz [36] used the results of [21] and was able to prove (4.5)–(4.9) if 1 ≤ p1, p2 ≤ ∞
up to a certain logarithmic gap. This gap originates from using only the weaker results of
[21] instead of the sharp inequalities in [22]. Using [22] and the method of Lubitz (which is
very similar to the discretization method presented above), the proof of (4.5)–(4.9) in the
Banach space setting follows immediately.

Hence, we concentrate on the proof of
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(♣) (4.5) if 0 < p2 ≤ p1 ≤ ∞ and 0 < p2 < 1,

(♥) (4.5) if 0 < p1 < p2 ≤ 2 and 0 < p1 < 1,

(♠) (4.8) if 0 < p1 < 1, 2 < p2 ≤ ∞ and
s1 − s2

d
>

1

p1
,

(♦) (4.8) if 0 < p1 < 1, 2 < p2 <∞ and
1

p1
− 1

p2
<
s1 − s2

d
<

1

p1
.

Let us mention that all the estimates from above follow from the estimates given in Theorem
3.5 and (4.1). We shall give the proof of the estimates from below in following three steps.

Step 1. - Proof of (♣)

The proof of (4.5) can be finished in the same manner as in the proof of Theorem 3.5.
Namely, if M ′ = {M ′

ν}∞ν=0 is an admissible sequence, we get for ν ≥ ν0

dn(id) ≥ dn(idν) & 2
−ν(s1−s2− d

p1
+ d

p2
) ·M

1
p2

− 1
p1

ν

for n =
[

c
2
·M ′

ν

]
, where c is the constant from Lemma 4.3. This leads to

dn(id) & n− s1−s2
d , n =

[ c
2
·M ′

ν

]
, ν ≥ ν0

Again the monotonicity of the Kolmogorov numbers completes the proof.

Step 2. - Proof of (♠) and (♦)

It follows from Lemma 4.5, that if 0 < p1 < 1 and 2 < p2 ≤ ∞

dn(ℓmp1
, ℓmp2

) = dn(ℓm1 , ℓ
m
p2

), 1 ≤ n ≤ m <∞. (4.10)

The proof of (♠) follows from (4.10), (4.2), Lemma 4.2 and the choice n =
[

M ′

ν

2

]
.

The proof of (♦) follows in the same way, but with n =
[
(M ′

ν)
2

p2

]
.

Step 3. - Proof of (♥)

We generalise the idea of Lemma 4.5 to p-Banach spaces, namely we show that for 0 < p1 <
p2 ≤ 2

dn(ℓ
m
p1
, ℓmp2

) = dn(ℓ
m
min(1,p2)

, ℓmp2
), 1 ≤ n ≤ m <∞. (4.11)

If p2 ≥ 1, this follows immediately from Lemma 4.5. If p2 ≤ 1, we show that

dn(ℓ
m
p1
, ℓmp2

) ≥ dn(Em, ℓ
m
p2

) ≥ dn(ℓmp2
, ℓmp2

). (4.12)

Here, Em = {ei}mi=1 ⊂ Rm and ei = (0, . . . , 0, 1, 0, . . . , 0) are the canonical unit vectors having
all but one components 0 and the ith component 1.

Of course, (4.12) implies one half of (4.11), the second one being obvious. From (4.12), only
the second inequality needs a proof. Let N ⊂⊂ ℓmp2

= Y be such that

sup
i=1,...,n

inf
y∈N
||ei − y||p2 ≤ (1 + ε)dn(Em, ℓ

m
p2

)

with dim N < n. Hence, to every ei ∈ Em there is a fi ∈ N such that

||ei − fi||Y ≤ (1 + ε)2dn(Em, ℓ
m
p2

).
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To every x ∈ ℓmp2
, x =

m∑

i=1

xiei with

m∑

i=1

|xi|p2 ≤ 1 we associate x̃(x) =

m∑

i=1

xifi ∈ N . The

estimate

dn(id : ℓmp2
→ ℓmp2

)p2 ≤ sup
||x||p2≤1

inf
y∈N
||x− y||p2

p2

≤ sup
||x||p2≤1

||x− x̃(x)||p2
p2

= sup
||x||p2≤1

∣∣∣∣

∣∣∣∣
m∑

i=1

xi(ei − fi)

∣∣∣∣

∣∣∣∣
p2

p2

≤ sup
||x||p2≤1

m∑

i=1

||xi(ei − fi)||p2
p2

= sup
||x||p2≤1

m∑

i=1

|xi|p2||ei − fi||p2
p2

≤ sup
||x||p2≤1

m∑

i=1

|xi|p2(1 + ε)2p2dn(Em, ℓ
m
p2

)p2

≤ (1 + ε)2p2dn(Em, ℓ
m
p2

)p2

finishes the proof of (4.12).

The proof of (♥) follows in the same way as in the first and the second step.

Now, we turn our attention to Gelfand numbers. First, we collect some information about
cn(id : ℓmp1

→ ℓmp2
), cf. [22], (4.2) and (4.3).

Lemma 4.7. For 1 ≤ n ≤ m <∞ and 1 ≤ p1, p2 ≤ ∞, we define

Φ(m,n, p1, p2) :=






(m− n+ 1)
1

p2
− 1

p1 if 1 ≤ p2 ≤ p1 ≤ ∞,

(
min{1, m1− 1

p1 n− 1
2}
)

1
p1
− 1

p2

1
p1
− 1

2 if 1 < p1 < p2 ≤ 2,

max{m
1

p2
− 1

p1 ,
√

1− n
m

1
p1
− 1

p2

1
2
− 1

p2 } if 2 ≤ p1 < p2 ≤ ∞,
max{m

1
p2

− 1
p1 ,min{1, m1− 1

p1 n− 1
2} ·

√
1− n

m
} if 1 < p1 ≤ 2 < p2 ≤ ∞.

Then, if p1 > 1,

cn(id : ℓmp1
→ ℓmp2

) ≈ Φ(m,n, p1, p2), 1 ≤ n ≤ m <∞.

Furthermore, there are two constants cp2 and Cp2 such that

cp2Ψ(m,n, p2) ≤ cn(id : ℓm1 → ℓmp2
) ≤ Cp2Ψ(m,n, p2)

(
log
(em
n

))3/2

,

where

Ψ(m,n, p2) :=

{
n

1− 1
p2 if 1 < p2 ≤ 2,

min{1,max{m1− 1
p2 , m− 1

2

√
m
n
− 1}} if 2 ≤ p2 ≤ ∞.

The proof of this lemma follows by (4.2) or (4.3) and Lemma 4.2.
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Lemma 4.8. If 0 < p2 ≤ p1 ≤ ∞, then

cn(ℓ
m
p1
, ℓmp2

) = (m− n+ 1)
1

p2
− 1

p1 .

The proof of this lemma follows literally [44, Section 11.11.4].

Lemma 4.9. Let 0 < p < 1. Then there is a real constant c > 0 such that

cn(id : ℓmp → ℓm2 ) ≤ c

[
n

log
(
1 + m

n

)
] 1

2
− 1

p

, 1 ≤ n ≤ m <∞.

Proof. This lemma slightly generalises a result of Kashin [28], which was later improved by
Gluskin [22] and Garnaev and Gluskin [20]. We closely follow the presentation given in [35,
Chapter 14].

Let y = (y1, . . . , yn) be a multivector, with y1, . . . , yn ∈ Sm−1, the unit sphere of Rm. We set

Fm,n(x,y) =
|(x, y1)|+ · · ·+ |(x, yn)|

n
, x ∈ R

m.

We equip the space
Σm,n = Sm−1 × · · · × Sm−1

︸ ︷︷ ︸
n times

with the natural rotation invariant probability measure P . Then (cf. [35, Lemma 4.1,
Chapter 14]) we have the following

Lemma 4.10. For any x ∈ Sm−1 and m,n ≥ 2

P

{
y ∈ Σm,n :

1

8
√
m
≤ F (x,y) ≤ 3√

m

}
>

{
1− e−n, n > 2,
1
2
, n = 2.

Let l and m be natural numbers with 1 ≤ l ≤ m. Let bmp denote the unit ball of ℓmp . We

denote by bm,l
p the subset of all vectors from bmp whose coordinates are of the form k

l
, k ∈ Z.

Then there is a real constant c̃ > 0 such that for any natural number n ≤ m with

l =



 1

2c̃

(
n

log
(
1 + m

n

)
)1/p



 ≥ 1

there exists a multivector y = (y1, . . . , yn) such that for all x ∈ bm,l
p

1

8
√
m
||x||2 ≤ F (x,y) ≤ 3√

m
||x||2. (4.13)

To prove it, we need to estimate the number of the elements of bm,l
p from above. It could be

done directly, but we prefer to use known results. Observe that the mutual ℓm∞ distance of
the points in bm,l

p is at least 1
l
. Hence, if Mm,l

p = #bm,l
p (i.e. the number of elements of bm,l

p )
is greater than 2n for some natural number n, then

en(id : ℓmp → ℓm∞) ≥ 1

2l
. (4.14)
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But, according to [53] and [15, Section 3.2.2], there is a constant c̃ such that

en(id : ℓmp → ℓm∞) ≤ c̃

(
log(1 + m

n
)

n

)1/p

, 1 ≤ n ≤ m. (4.15)

From (4.14) and (4.15), it follows that if

1

2l
> c̃

(
log(1 + m

n
)

n

)1/p

,

then Mm,l
p ≤ 2n < en. This, combined with Lemma 4.10 ensures the existence of the multi-

vector y.

Let bm,l
p be as above and let bm∞ be a unit ball of ℓm∞. Let V m,l

p = bm,l
p ∩ (1

l
bm∞) be the set of all

vectors in Rm with the ℓmp -quasinorm at most one and with components in {0,±1
l
}. Then

we claim that

bmp ∩
(

1

l
bm∞

)
= convp(V

m,l
p ) ⊂ conv(V m,l

p ), (4.16)

where convp(V
m,l
p ) is the so-called p-convex hull of V m,l

p . We refer to [18, 19, 25] for the
notion of p-convexity, p-extreme points and the quasi-convex variant of the Krein-Milman
theorem, which gives the identity in (4.16). The inclusion is a simple consequence of the fact
that p < 1.

To prove Lemma 4.9, we need to find N ⊂⊂ Rm of codimension at most n such that for each
point x ∈ N ∩ bmp we have ||x||2 ≤ c√

l
.

Let y be one multivector with (4.13). We set

N = {x ∈ R
m : F (x,y) = 0} .

Let x ∈ N ∩ bmp and let x′ ∈ bm,l
p be the closest point to x, hence ||x − x′||∞ ≤ 1

l
. We set

x′′ = x− x′. Then

||x′′||2 ≤ ||x′′||
p

2
p · ||x′′||1−

p

2∞ ≤ l
p

2
−1. (4.17)

It remains to estimate ||x′||2. This will be done by estimating the value of F (x′,y). The
estimate

F (x′,y) ≥ 1

8
√
m
||x′||2 (4.18)

follows from (4.13) and the fact that x′ ∈ bm,l
p . On the other hand, because of x ∈ N and F

is subadditive,
F (x′,y) ≤ F (x,y) + F (x′′,y) = F (x′′,y). (4.19)

For all x̃ ∈ V m,l
p ⊂ bm,l

p , we have

F (x̃,y) ≤ 3√
m
||x̃||2 ≤ 3m− 1

2 l
p

2
−1 (4.20)

and by subadditivity of F and (4.16), the same holds also for x′′ ∈ bmp ∩
(

1
l
bm∞
)
.

We insert (4.20) into (4.19) and (4.18) and get ||x′||2 ≤ 24l
p

2
−1, and together with (4.17),

||x|| ≤ 25√
l
.
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Lemma 4.11. Let 0 < p1 < 1 and p1 < p2 ≤ ∞. Then there is a real constant c > 0 such
that

cn(id : ℓmp1
→ ℓmp2

) ≤ c

[
n

log
(
1 + m

n

)
] 1

min(p2,2)
− 1

p1

, 1 ≤ n ≤ m <∞.

Theorem 4.12. Let −∞ < s2 < s1 <∞ and 0 < p1, p2, q1, q2 ≤ ∞ with (2.8). Let Ω ⊂ Rd

be a bounded Lipschitz domain. Then (2.7) is compact and for n ∈ N

cn(Id) ≈ n
− s1−s2

d
+
(

1
p1

− 1
p2

)
+ if

{
either 2 ≤ p1 < p2 ≤ ∞,
or 0 < p2 ≤ p1 ≤ ∞,

(4.21)

cn(Id) ≈ n− s1−s2
d if 0 < p1 < p2 ≤ 2 (4.22)

and
s1 − s2

d
>

1

2

1
p1
− 1

p2

1
p1
− 1

2

,

cn(Id) ≈ n
p′1
2

“

− s1−s2
d

+ 1
p1

− 1
p2

”

if 1 < p1 < p2 ≤ 2 (4.23)

and
s1 − s2

d
<

1

2

1
p1
− 1

p2

1
p1
− 1

2

,

cn(Id) ≈ n

(
− s1−s2

d
+ 1

2
− 1

p2

)

if 0 < p1 < 2 < p2 ≤ ∞ (4.24)

and
s1 − s2

d
> 1− 1

p2

,

cn(Id) ≈ n
p′1
2

(
− s1−s2

d
+ 1

p1
− 1

p2

)

if 1 < p1 < 2 < p2 ≤ ∞ (4.25)

and
1

p1
− 1

p2
<
s1 − s2

d
< 1− 1

p2
.

Proof. As Gelfand numbers are multiplicative and additive s-numbers, we may invoke (2.12)
and restrict again to sequence spaces. Then, the method of the proof of Theorem 3.5 applies.
The estimates on the sequence space side are given by Lemma 4.2 and (4.2). This approach
finishes the proof in case 1 ≤ p1, p2 ≤ ∞.
In the cases, when p1 < 1 and/or p2 < 1, (4.2) and (4.3) fail and Lemma 4.2 does not provide
suitable estimates for cn(id : ℓmp1

→ ℓmp2
). Hence, we are forced to treat these cases separately.

(♣) (4.21) if 0 < p2 ≤ p1 ≤ ∞ and 0 < p2 < 1,

(♥) (4.22) if 0 < p1 < p2 ≤ 2 and 0 < p1 < 1,

(♠) (4.24) if 0 < p1 < 1 and 2 < p2 ≤ ∞.

Step 1. - Proof of (♣)

The proof of the estimate from below in (♣) follows exactly as in the proof of Theorem 4.6
with Lemma 4.3 replaced by Lemma 4.8.

The estimate from above in (♣) is provided by the corresponding statement about approxi-
mation numbers, cf. Theorem 3.5 and (4.1).
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Step 2. - Proof of the estimates from below in (♥) and (♠)

If 1 ≤ p2 ≤ ∞, we use the estimate

cn(id : ℓm1 → ℓmp2
) ≤ ||id : ℓm1 → ℓmp1

|| · cn(id : ℓmp1
→ ℓmp2

) (4.26)

and if p2 < 1, we use the estimate

cn(id : ℓmp2
→ ℓmp2

) ≤ ||id : ℓmp2
→ ℓmp1

|| · cn(id : ℓmp1
→ ℓmp2

). (4.27)

This leads to

cn(id : ℓ2n
p1
→ ℓ2n

p2
) &

{
n

1
2
− 1

p1 if 2 ≤ p2 ≤ ∞,
n

1
p2

− 1
p1 if 0 < p2 ≤ 2

(4.28)

and the proof of the estimates from below included in (♥) and (♠) may be again finished as
in the proof of Theorem 4.6.

Step 3. - Proof of the estimates from above in (♥) and (♠)

Again, the knowledge of the behaviour of cn(id : ℓmp1
→ ℓmp2

) is of a crucial importance.
Lemma 4.11 contains already the necessary information and the proof can be finished using
the standard discretization method.

5 Conclusion

In Theorems 3.5, 4.6 and 4.12 we gave an overview of the behaviour of approximation,
Kolmogorov and Gelfand numbers of

Id : Bs1
p1q1

(Ω)→ Bs2
p2q2

(Ω),

where Ω is a bounded domain in Rd with smooth (i.e. Lipschitz) boundary and the param-
eters satisfy

s1 − s2 > d
( 1

p1
− 1

p2

)

+
.

The reader has surely noticed, that all the obtained results about the asymptotic decay of
an(Id), dn(Id) and cn(Id) do not depend on the fine parameters 0 < q1, q2 ≤ ∞. This is of
course no coincidence. The reason lies in the roots of the method we have used, namely in
(3.7).

Nevertheless, the presented bounds from above and from below coincide in all “non-limiting”
cases. Unfortunately, this method has also its natural bounds. For example, if 0 < p1 <
2 < p2 ≤ ∞ and s1 − s2 = dmax(1 − 1

p2
, 1

p1
), then Theorem 3.5 fails to characterize the

decay of an(Id). One observes, that in this case both (3.4) and (3.5) meet at n− 1
2 , but (in

general) this is not the exact speed of the decay of an(Id). It was shown by Kulanin [33],
that additional logarithmic factors come into play. Their exact order seems to be unknown,
but we believe that it depends on q1 and q2. So, for principle reasons, the decomposition
method can not be extended to this “limiting” case.

Using the elementary embeddings (2.4), we conclude, that all the results hold for Triebel-
Lizorkin spaces, Lebesgue spaces, Sobolev spaces, Bessel potential spaces and Hölder-Zygmund
spaces as well.

For example, Theorem 3.5 may be stated in the framework of Bessel potential spaces and
their embeddings into C(Ω) and L∞(Ω).
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Theorem 5.1. Let 1 ≤ p ≤ ∞, s > d
p

and let Ω ⊂ R
d be a bounded Lipschitz domain. Then

the embeddings
Id1 : Hs

p(Ω)→ C(Ω) (5.1)

Id2 : Hs
p(Ω)→ L∞(Ω) (5.2)

are compact and

an(Id1) ≈ an(Id2) ≈ n− s
d
+ 1

p if 2 ≤ p ≤ ∞,
an(Id1) ≈ an(Id2) ≈ n− s

d
+ 1

p̃
− 1

2 if 0 < p < 2 and
s

d
>

1

p̃
= max

(
1,

1

p

)
,

an(Id1) ≈ an(Id2) ≈ n

(
− s

d
+ 1

p

)
· p′

2 if 1 < p < 2 and
1

p
<
s

d
< 1.
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Abstract

We discuss the growth envelopes of Fourier-analytically defined Besov
and Triebel-Lizorkin spaces Bs

p,q(R
n) and F s

p,q(R
n) in the limiting case

s = σp := n max( 1

p
− 1, 0). These results may be also reformulated as

optimal embeddings into the scale of Lorentz spaces Lp,q(R
n). We close

several open problems outlined already in [H. Triebel, The structure of

functions, Birkhäuser, Basel, 2001] and explicitly stated in [D. D. Haroske,
Envelopes and sharp embeddings of function spaces, Chapman & Hall /
CRC, Boca Raton, 2007].

AMS Classification: 46E35, 46E30
Keywords and phrases: Besov spaces, Triebel-Lizorkin spaces, rearrange-

ment invariant spaces, Lorentz spaces, growth envelopes

1 Introduction and main results

In this paper we prove sharp embedding theorems for Besov and Triebel-Lizorkin
spaces Bs

p,q(R
n) and F s

p,q(R
n) in some limiting cases of the range guaranteeing

that these spaces consist of locally integrable functions. As proven in [12, The-
orem 3.3.2],

Bs
p,q(R

n) →֒ Lloc
1 (Rn) ⇔











either s > σp := nmax( 1
p − 1, 0),

or s = σp, 1 < p ≤ ∞, 0 < q ≤ min(p, 2),

or s = σp, 0 < p ≤ 1, 0 < q ≤ 1

(1)

and

F s
p,q(R

n) →֒ Lloc
1 (Rn) ⇔











either s > σp,

or s = σp, 1 ≤ p <∞, 0 < q ≤ 2,

or s = σp, 0 < p < 1, 0 < q ≤ ∞.

(2)
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The embeddings can be measured quantitavily by the growth envelope function
of X as defined by D. D. Haroske and H. Triebel (see [3], [4], [16] and references
given there) by

EX
G (t) := sup

||f |X||≤1

f∗(t), 0 < t < 1,

where f∗ denotes the non-increasing rearrangement of f .
In the case where EX

G (t) ≈ t−α for 0 < t < 1 and some α > 0 the growth
envelope index uX is given as the infimum of all numbers v, 0 < v ≤ ∞, such
that

(∫ ǫ

0

[

f∗(t)

EX
G (t)

]v
dt

t

)1/v

≤ c ||f |X || (3)

(with the usual modification for v = ∞) holds for some ǫ > 0, c > 0 and all
f ∈ X. The pair EG(X) = (EX

G , uX) is called growth envelope for the function
space X .

In the case σp < s, the growth envelopes of As
p,q(R

n) are known, cf. [16,
Theorem 15.2] and [4, Theorem 8.1]. If s = σp and (1) or (2) is fulfilled in the B

or F case, respectively, then the growth function is given by t−
1

max(p,1) , but the
known information about the growth index u is not complete, cf. [16, Remarks
12.5, 15.1] and [4, Prop. 8.12, 8.14 and Remark 8.15].

The growth index of B
σp

p,q(Rn) satisfies

{

q ≤ u ≤ p if 1 ≤ p <∞ and 0 < q ≤ min(p, 2),

q ≤ u ≤ 1 if 0 < p < 1 and 0 < q ≤ 1.
(4)

The growth index of F
σp
p,q(Rn) satisfies p ≤ u ≤ 1 if 0 < p < 1 and 0 < q ≤ ∞

and is equal to p, if 1 ≤ p <∞ and 0 < q ≤ 2.
The growth envelopes of B0

∞,q defined on torus T
n = (R/Z)n with 1 ≤ q ≤ 2

were identified recently by Seeger and Trebels in [10] and are equivalent to
| log t|1/q′

for 0 < t ≤ 1/2. We fill the remaining gaps for the range p <∞.

Theorem 1.1. (i) Let 1 ≤ p <∞ and 0 < q ≤ min(p, 2). Then

EG(B0
p,q) = (t−

1
p , p).

(ii) Let 0 < p < 1 and 0 < q ≤ 1. Then

EG(Bσp

p,q) = (t−1, q).

(iii) Let 0 < p < 1 and 0 < q ≤ ∞. Then

EG(F σp
p,q) = (t−1, p).

These results are closely related to optimal embeddings into the scale of
Lorentz spaces. In this context, we prove the following

2
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Theorem 1.2. (i) Let 1 ≤ p <∞ and 0 < q ≤ min(p, 2). Then

B0
p,q(R

n) →֒ Lp(R
n).

(ii) Let 0 < p < 1 and 0 < q ≤ 1. Then

Bσp

p,q(R
n) →֒ L1,q(R

n). (5)

(iii) Let 0 < p < 1 and 0 < q ≤ ∞. Then

F σp

p,q(R
n) →֒ L1,p(R

n)

and all these embeddings are optimal with respect to the second fine parameter
of the scale of the Lorentz spaces.

Remark 1.3. (i) Let us observe, that (5) improves [12, Theorem 3.2.1] and [11,

Theorem 2.2.3], where the embedding B
n( 1

p
−1)

p,q (Rn) →֒ L1(R
n) is proved for all

0 < p < 1 and 0 < q ≤ 1.
(ii) We also mention, that growth envelopes for function spaces with minimal

smoothness were recently studied in [2]. These authors worked with spaces
defined by differences and their results differ from ours in logarithmic factors.
This shows indirectly, that the Fourier-analytical definition and the classical
definition of Besov spaces do not coincide for s = 0 - an effect observed in detail
recently by Schneider [9].

We denote the Lebesgue and Lorentz spaces by Lp(R
n) and Lp,q(R

n), re-
spectively. The reader may consult [13, Chapter 5, Section 3] or [1, Chapter 4,
Section 4]. We shall use the following well known property of Lorentz spaces
L1,q. It’s proof follows immediately from Hardy’s lemma (cf. [1, Chapter 2,
Proposition 3.6]).

Lemma 1.4. Let 0 < q < 1. Then the || · |L1,q(R
n)|| is the q-norm, it means

||f1 + f2|L1,q(R
n)||q ≤ ||f1|L1,q(R

n)||q + ||f2|L1,q(R
n)||q

holds for all f1, f2 ∈ L1,q(R
n).

We work with Fourier-analytically defined Besov and Triebel-Lizorkin spaces
Bs

p,q(R
n) and F s

p,q(R
n) as studied for example in [8], [14], [15] and [17]. We shall

also use the sequence spaces bspq associated to Bs
p,q(R

n) in a way described in
[17, Chapters 2 and 3]. This approach goes back to [5] and [6].

All the unimportant constants are denoted by the letter c, whose meaning
may differ from one occurrence to another. If {an}

∞
n=1 and {bn}

∞
n=1 are two

sequences of positive real numbers, we write an . bn if, and only if, there is a
positive real number c > 0 such that an ≤ c bn, n ∈ N. Furthermore, an ≈ bn
means that an . bn and simultaneously bn . an.
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2 Proofs of the main results

2.1 Proof of Theorem 1.1 (i)

In view of (4), it is enough to prove, that for 1 ≤ p <∞ and 0 < q ≤ min(p, 2)
the index u associated to B0

p,q(R
n) is greater or equal to p.

We assume in contrary that (3) is fulfilled for some 0 < v < p, ǫ > 0, c > 0
and all f ∈ B0

p,q(R
n). Let ψ be a non-vanishing C∞ function in R

n supported
in [0, 1]n with

∫

Rn ψ(x)dx = 0.
Let J ∈ N be such that 2−Jn < ǫ and consider the function

fj =
2(j−J)n
∑

m=1

λjmψ(2j(x− (m, 0, . . . , 0))), j > J, (6)

where

λjm =
1

m
1
p log

1
v (m+ 1)

, m = 1, . . . , 2(j−J)n.

Then (6) represents an atomic decomposition of f in the space B0
p,q(R

n) accord-
ing to [17, Chapter 1.5] and we obtain (recall that v < p)

||fj |B
0
p,q(R

n)|| . 2−j n
p





2(j−J)n
∑

m=1

λp
jm





1/p

≤ 2−j n
p

(

∞
∑

m=1

m−1(log(m+ 1))−
p

v

)1/p

. 2−j n
p . (7)

On the other hand,

(∫ ǫ

0

[

f∗
j (t)t

1
p

]v dt

t

)1/v

≥

(

∫ 2−Jn

0

f∗
j (t)vtv/p−1dt

)1/v

&





2(j−J)n
∑

m=1

λv
jm

∫ c 2−jnm

c 2−jn(m−1)

tv/p−1dt





1/v

&





2(j−J)n
∑

m=1

λv
jm2−jnv/pmv/p−1





1/v

= 2−j n
p





2(j−J)n
∑

m=1

1

m log(m+ 1)





1/v

.

As the last series is divergent for j → ∞, this is in a contradiction with (7) and
(3) cannot hold for all fj , j > J.

Remark 2.1. Observe, that Theorem 1.2 (i) is a direct consequence of Theo-
rem 1.1 (i). The embeddings B0

1,q(R
n) →֒ B0

1,1(R
n) →֒ L1(R

n) if p = 1 and
B0

p,q(R
n) →֒ F 0

p,2(R
n) = Lp(R

n) if 1 < p < ∞ show, that B0
p,q(R

n) →֒ Lp(R
n).

And Theorem 1.1 (i) implies that if B0
p,q(R

n) →֒ Lp,v(R
n) for some 0 < v <∞,

then p ≤ v. This proves the optimality of Theorem 1.2 (i) in the frame of the
scale of Lorentz spaces.
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2.2 Proof of Theorem 1.1 (ii) and Theorem 1.2 (ii)

Let 0 < p < 1, 0 < q ≤ 1 and s = σp = n
(

1
p − 1

)

. We prove first Theorem 1.2

(ii), i.e. we show that

B
n
p
−n

p,q (Rn) →֒ L1,q(R
n),

or, equivalently,

(∫ ∞

0

[tf∗(t)]q
dt

t

)1/q

≤ c ||f |B
n
p
−n

p,q (Rn)||, f ∈ B
n
p
−n

pq (Rn).

Let

f =
∞
∑

j=0

fj =
∞
∑

j=0

∑

m∈Zn

λjmajm

be the optimal atomic decomposition of an f ∈ B
n
p
−n

p,q (Rn), again in the sense
of [17, Chapter 1.5]. Then

||f |B
n
p
−n

p,q (Rn)|| ≈





∞
∑

j=0

2−jqn

(

∑

m∈Zn

|λjm|p

)q/p




1/q

(8)

and by Lemma 1.4

||f |L1,q(R
n)|| = ||

∞
∑

j=0

fj |L1,q(R
n)|| ≤





∞
∑

j=0

||fj |L1,q(R
n)||q





1/q

. (9)

We shall need only one property of the atoms ajm, namely that their support

is contained in the cube Q̃jm - a cube centred at the point 2−jm with sides
parallel to the coordinate axes and side length α2−j , where α > 1 is fixed and
independent of f . We denote by χ̃jm(x) the characteristic functions of Q̃jm and
by χjl the characteristic function of the interval (l2−jn, (l + 1)2−jn). Hence

fj(x) ≤ c
∑

m∈Zn

|λjm|χ̃jm(x), x ∈ R
n

and

||fj |L1,q(R
n)|| .

(

∫ ∞

0

∞
∑

l=0

[(λj)
∗
l χjl(t)]

q
tq−1dt

)1/q

≤

(

∞
∑

l=0

[(λj)
∗
l ]

q
∫ 2−jn(l+1)

2−jnl

tq−1dt

)1/q

(10)

. 2−jn

(

∞
∑

l=0

[(λj)
∗
l ]

q
(l + 1)q−1

)1/q

. 2−jn||λj |ℓp||.
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The last inequality follows by (l + 1)q−1 ≤ 1 and ℓp →֒ ℓq if p ≤ q. If p > q, the
same follows by Hölder’s inequality with respect to indices α = p

q and α′ = p
p−q :

(

∞
∑

l=0

[(λj)
∗
l ]

q (l + 1)q−1

)1/q

≤

(

∞
∑

l=0

[(λj)
∗
l ]

q· p

q

)
1
q
· q

p

·

(

∞
∑

l=0

(l + 1)(q−1)· p

p−q

)
1
q
· p−q

p

≤ c ||λj |ℓp||.

Here, we used that for 0 < q < p < 1 the exponent (q−1)p
p−q = −1 + (p−1)q

p−q is
strictly smaller than −1.

The proof now follows by (8), (9) and (10).

||f |L1,q(R
n)|| ≤





∞
∑

j=0

||fj |L1,q(R
n)||q





1/q

≤ c





∞
∑

j=0

2−jnq||λj |ℓp||
q





1/q

≤ c ||f |Bσp

p,q(R
n)||.

Remark 2.2. We actually proved, that (3) holds for X = B
n
p
−n

pq (Rn), v = q and
ǫ = ∞. This, together with (4) implies immediately Theorem 1.1 (ii).

2.3 Proof of Theorem 1.1 (iii) and Theorem 1.2 (iii)

Let 0 < p < 1 and 0 < q ≤ ∞. By the Jawerth embedding (cf. [7] or [18]) and
Theorem 1.1 (ii) we get for any 0 < p < p̃ < 1

F σp

p,q(R
n) →֒ B

σp̃

p̃,p(R
n) →֒ L1,p(R

n).
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The Jawerth-Franke embedding

of spaces with dominating mixed smoothness

Markus Hansen and Jan Vyb́ıral

Abstract

We give a proof of the Jawerth embedding for function spaces with
dominating mixed smoothness of Besov and Triebel-Lizorkin type

Sr0

p0,q0
F (Rd1 × · · · × R

dN ) →֒ Sr1

p1,p0
B(Rd1 × · · · × R

dN ),

where
0 < p0 < p1 ≤ ∞ and 0 < q0, q1 ≤ ∞

and
d = (d1, . . . , dN ) ∈ N

N , ri = (ri
1, . . . , r

i
N ) ∈ R

N , i = 0, 1

with

r0
i −

di

p0
= r1

i −
di

p1
, i = 1, . . . , N.

If p1 < ∞, we prove also the Franke embedding

Sr0

p0,p1
B(Rd1 × · · · × R

dN ) →֒ Sr1

p1,q1
F (Rd1 × · · · × R

dN ).

Our main tools are discretization by a wavelet isomorphism and multi-
variate rearrangements.

AMS Classification: 42B35, 46E30, 46E35

Keywords and phrases: Besov spaces, Triebel-Lizorkin spaces, Sobolev em-
bedding, dominating mixed smoothness, Jawerth-Franke embedding
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1 Introduction and main results

1.1 Introduction

Our aim is to study function spaces with dominating mixed smoothness prop-
erties. These spaces were first defined by S. M. Nikol’skij in [18] and [19]. He
introduced the spaces of Sobolev type

Sr
pW (R2) =

{
f ∈ Lp(R2) : ||f |Sr

pW (R2)|| = ||f |Lp(R
2)|| +

∣∣∣
∣∣∣
∂r1f

∂xr1
1

| Lp(R2)
∣∣∣
∣∣∣+

+
∣∣∣
∣∣∣
∂r2f

∂xr2
2

| Lp(R2)
∣∣∣
∣∣∣+
∣∣∣
∣∣∣
∂r1+r2f

∂xr1
1 ∂x

r2
2

| Lp(R2)
∣∣∣
∣∣∣ <∞

}
,

where 1 < p < ∞, r = (r1, r2) ∈ N2
0. The mixed derivative ∂r1+r2f

∂x
r1
1 ∂x

r2
2

plays the

dominant part here and gave the name to this class of spaces.

We prefer to work with the following more general version. Namely, let N ≥
2 be a natural number and let d1, . . . , dN be natural numbers. We set d =
(d1, . . . , dN) and d = d1 + · · · + dN . Let further r = (r1, . . . , rN) ∈ NN

0 and
1 < p <∞. Then

Sr
pW (Rd) = Sr

pW (Rd1 × · · · × R
dN ) =

{
f ∈ Lp(Rd) : ||Dαf |Lp(R

d)|| <∞

for all α = (α1, . . . , αN), αi ∈ N
di

0 and |αi| ≤ ri for i = 1, . . . , N
}
.

The spaces of this type found many applications in connection with partial
differential equations ([18], [19], [37], [17], [38]), approximation theory ([28],
[29], [33], [27]), information based complexity ([36], [20]) and other areas of
mathematics. The reader may consult the survey [22] for more references.

The Fourier-analytic approach to these function spaces is based on the so-called
decomposition of unity.

Let ϕ ∈ S(Rn) be from the Schwartz-space of smooth rapidly decreasing func-
tions with

ϕ(x) = 1 if |x| ≤ 4/3 and ϕ(x) = 0 if |x| ≥ 3/2.

We put ϕ0 = ϕ, ϕ1 = ϕ(·/2) − ϕ and

ϕj(x) = ϕ1(2
−j+1x), x ∈ R

n, j ∈ N.

We observe, that the system {ϕj}
∞
j=0 satisfies

∞∑

j=0

ϕj(t) = 1 for all t ∈ R
n. (1.1)

Let N ≥ 2 be again a natural number and let d1, . . . dN be natural numbers.
We define d and d as above. For i = 1, . . . , N we define

{
ϕi

j

}∞
j=0

⊂ S(Rdi) as

2
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described above and put for k = (k1, . . . , kN) ∈ N
N
0 and x = (x1, . . . , xN ) ∈ R

d

ϕk(x) := ϕ1
k1

(x1) · · ·ϕN
kN

(xN ). (1.2)

As
∑

k∈NN
0

ϕk(x) =

(
∞∑

k1=0

ϕk1(x
1)

)
· · ·

(
∞∑

kN=0

ϕkN
(xN)

)
= 1

for all x = (x1, . . . , xN) ∈ Rd, we see that
{
ϕk

}
k∈NN

0
forms also a decomposition

of unity on R
d with the tensor product structure.

We denote by f̂ the Fourier transform of a distribution f ∈ S ′(Rd) and by f∨

its inverse transform.

Definition 1.1. Let r ∈ RN , 0 < q ≤ ∞ and ϕ =
{
ϕk

}
k∈NN

0
be as above.

1. Let 0 < p ≤ ∞. Then Sr
p,qB(Rd1 × · · · ×RdN ) is the set of all f ∈ S ′(Rd),

such that

∥∥f
∣∣Sr

p,qB(Rd1 ×· · ·×R
dN )
∥∥

ϕ
:=

(
∑

k∈NN
0

2k·rq
∥∥(ϕkf̂

)∨∣∣Lp(Rd)
∥∥q

)1/q

(1.3)

is finite.

2. Let 0 < p <∞. Then Sr
p,qF (Rd1 × · · · × RdN ) is the set of all f ∈ S ′(Rd),

such that

∥∥f
∣∣Sr

p,qF (Rd1 × · · · × R
dN )
∥∥

ϕ
:=

∥∥∥∥∥

(
∑

k∈NN
0

2k·rq
∣∣(ϕkf̂

)∨
(·)
∣∣q
)1/q∣∣∣∣∣Lp(Rd)

∥∥∥∥∥

(1.4)
is finite.

Let us mention, that (1.3) and (1.4) lead to equivalent quasi-norms for different
choices of {ϕk}. If d1 = d2 = · · · = dN , then this and other basic aspects of
the theory of function spaces with dominating mixed smoothness may be found
in [1], [24], [2] or [34]. We refer to [10] for the general case. To shorten the

notation, we write sometimes Sr
p,qB(Rd) instead of Sr

p,qB(Rd1 × · · · × R
dN ) and

similar in the F−case.

One of the main features of the classes Sr
p,qB(Rd) and Sr

p,qF (Rd) consists in the
fact, that their quasi-norms are cross-quasi-norms, i.e. if

f = (f1 ⊗ · · · ⊗ fN ),

where fi ∈ S ′(Rdi), i = 1, . . . , N and f is a tensor product of tempered distri-
butions in the sense of [25, Chapters IV and VII] or [12, Chapter X], then

||f1 ⊗ · · · ⊗ fN |Sr
p,qB(Rd1 × · · · × R

dN )|| =

N∏

i=1

||fi|B
ri
p,q(R

di)|| (1.5)

3
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and

||f1 ⊗ · · · ⊗ fN |Sr
p,qF (Rd1 × · · · × R

dN )|| =

N∏

i=1

||fi|F
ri
p,q(R

di)|| (1.6)

where Bs
p,q(R

n) and F s
p,q(R

n) are the Fourier-analytic Besov spaces and Triebel-
Lizorkin spaces, respectively.

1.2 Main result

Our main result is the following theorem:

Theorem 1.2. Let r0, r1 ∈ RN , 0 < p0 < p1 ≤ ∞ and 0 < q0, q1 ≤ ∞ with

r0
j −

dj

p0
= r1

j −
dj

p1
, j = 1, . . . , N. (1.7)

1. Then
Sr0

p0,q0
F (Rd1 × · · · × R

dN ) →֒ Sr1

p1,q1
B(Rd1 × · · · × R

dN ) (1.8)

if, and only if, p0 ≤ q1.

2. If p1 <∞, then

Sr0

p0,q0
B(Rd1 × · · · × R

dN ) →֒ Sr1

p1,q1
F (Rd1 × · · · × R

dN ) (1.9)

if, and only if, q0 ≤ p1.

Remark 1.3. (i) The original proofs in the isotropic case, cf. [13] and [9], use in-
terpolation techniques. This approach was applied in [23] also to function spaces
with dominating mixed smoothness but (although these authors succeeded to
overcome numerous obstacles) led only to partial results.

Here, we shall use a different method of proof, originally introduced in [35] to
prove Theorem 1.2 in the isotropic situation.

(ii) Embeddings of Jawerth-Franke type have been proved already for several
other scales of function spaces of Besov and Triebel-Lizorkin type. We refer
to [8, Appendix C.3] for anisotropic case, to [6] and [11] for weighted function
spaces and to [5] and [7] for spaces with generalised smoothness. In general, all
these authors used the method of Jawerth and Franke and we believe that in
all these cases one could apply our approach as well.

(iii) Embedding (1.8) was already obtained by Krbec and Schmeisser (cf. [15,
Lemma 4.7]) in the special case N = 2 and p1 = ∞. Furthermore, Schmeisser
and Sickel (cf. [23, Theorem 3]) proved (1.9) in the Banach space setting, i.e.
1 ≤ p0 < p1 < ∞ and 1 ≤ q0, q1 ≤ ∞. The use of duality arguments allowed
to prove also (1.8) but only for 1 < p0 < ∞. Our approach yields the proof of
Theorem 1.2 without any further restrictions on the parameters.

(iv) For applications the following reformulation of Theorem 1.2 might be useful.

4
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Theorem 1.4. Let r0, r, r1 ∈ R
N , 0 < p0 < p < p1 ≤ ∞ with

r0
j −

dj

p0

= rj −
dj

p
= r1

j −
dj

p1

, j = 1, . . . , N.

Let 0 < q, u, v ≤ ∞. Then

Sr0

p0,uB(Rd1 × · · · × R
dN ) →֒ Sr

p,qF (Rd1 × · · · × R
dN ) →֒ Sr1

p1,vB(Rd1 × · · · × R
dN )

if, and only if, 0 < u ≤ p ≤ v ≤ ∞.

1.3 Further consequences

Let C(Rd) be the space of all complex-valued bounded and uniformly continuous
functions on Rd. One of the well studied problems in the isotropic case is the
embedding of Besov and Triebel-Lizorkin spaces into C(Rd) or Lr(R

d) with
1 ≤ r ≤ ∞. This problem is connected with the works of Grisvard, Peetre,
Golovkin, Stein, Zygmund, Besov or Iljin. We refer to [4] and [26] for details.

We use (1.8) to characterize those spaces Sr
p,qB(Rd) and Sr

p,qF (Rd) which are
embedded in C(Rd) and Lu(Rd), 1 < u ≤ ∞. This approach was applied
already in [16], cf. also [22]. Unfortunately, there was a flaw in the arguments
used in [16].

Theorem 1.5. (i) Let r ∈ RN , 0 < p ≤ ∞ and 0 < q ≤ ∞. Then the following
three assertions are equivalent.

(a) Sr
p,qB(Rd1 × · · · × RdN ) →֒ C(Rd),

(b) Sr
p,qB(Rd1 × · · · × RdN ) →֒ L∞(Rd),

(c)






ri −
di

p
> 0 for all i = 1, . . . , N or

ri −
di

p
≥ 0 for all i = 1, . . . , N and 0 < q ≤ 1.

(ii) Let r ∈ RN , 0 < p <∞ and 0 < q ≤ ∞. Then the following three assertions
are equivalent.

(a′) Sr
p,qF (Rd1 × · · · × RdN ) →֒ C(Rd),

(b′) Sr
p,qF (Rd1 × · · · × RdN ) →֒ L∞(Rd),

(c′)






ri −
di

p
> 0 for all i = 1, . . . , N or

ri −
di

p
≥ 0 for all i = 1, . . . , N and 0 < p ≤ 1.

We consider a similar problem also for Lu, 1 < u <∞. Due to the Littlewood-
Paley theory the number 2 plays an exceptional role if 1 < u <∞.

Theorem 1.6. (i) Let r ∈ R
N , 1 < u <∞, 0 < p ≤ ∞ and 0 < q ≤ ∞. Then

Sr
p,qB(Rd1 × · · · × RdN ) →֒ Lu(Rd) if, and only if, p ≤ u and

5
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ri >
di

p
−
di

u
for all i = 1, . . . , N or

ri ≥
di

p
−
di

u
for all i = 1, . . . , N, 0 < p < u and 0 < q ≤ u or

ri ≥ 0 for all i = 1, . . . , N, p = u and 0 < q ≤ min(u, 2).

(ii) Let r ∈ RN , 1 < u < ∞, 0 < p < ∞ and 0 < q ≤ ∞. Then Sr
p,qF (Rd1 ×

· · · × R
dN ) →֒ Lu(Rd) if, and only if, p ≤ u and




ri >
di

p
−
di

u
for all i = 1, . . . , N or

ri ≥
di

p
−
di

u
for all i = 1, . . . , N and 0 < p < u or

ri ≥ 0 for all i = 1, . . . , N, p = u and 0 < q ≤ 2.

Remark 1.7. Let 1 < u ≤ ∞. Direct comparison of Theorems 1.5-1.6 with sim-
ilar assertions for isotropic Besov and Triebel-Lizorkin spaces (cf. [26]) shows,
that Sr

p,qB(Rd1 × · · · × RdN ) →֒ Lu(Rd) if, and only if, Bri
p,q(R

di) →֒ Lu(Rdi)
for all i = 1, . . . , N. The same statement holds true, if L∞(Rd) is replaced by
C(Rd) and also for the Triebel-Lizorkin spaces.

Remark 1.8. Also the optimal embeddings into L1(Rn) and Lloc
1 (Rn) - the space

of locally integrable functions - are very well known in the isotropic case. To
extend these results to function spaces with dominating mixed smoothness, it
would be probably necessary to consider the analog of the Hardy space H1 and
of the space of bounded mean oscilation BMO in the framework of dominating
mixed smoothness. But this goes beyond the scope of this work.

2 Proofs

2.1 Preliminaries

Our approach is based on two classical techniques - decomposition theorems
and multivariate rearrangements.

First, we describe the sequence spaces associated to Sr
p,qB(Rd) and Sr

p,qF (Rd).

Let m ∈ Z
d, m = (m1, . . . , mN) with mi ∈ Z

di , and ν ∈ N
N
0 . Then Qν,m

denotes the closed cube in Rd with sides parallel to the coordinate axes, cen-
tred at the point 2−νm = (2−ν1m1, . . . , 2−νNmN ), and with sides of the lengths
2−ν1, . . . , 2−νN . Explicitly,

Qν,m = {x ∈ R
d : |xi − 2−νimi|∞ ≤ 2−νi−1, i = 1, . . . , N}, (2.1)

where x = (x1, . . . , xN), xi ∈ Rdi , and |t|∞ = max
i=1,...,n

|ti|, t ∈ Rn. By χν,m =

χQν,m
we denote the characteristic function of Qν,m. If

λ = {λν,m ∈ C : ν ∈ N
N
0 , m ∈ Z

d},

6
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r ∈ R
N and 0 < p, q ≤ ∞, we set

∥∥λ
∣∣sr

p,qb
∥∥ =

(
∑

ν∈NN
0

2ν·(r−d/p)q

(
∑

m∈Zd

|λν,m|
p

)q/p)1/q

, (2.2)

appropriately modified if p = ∞ and/or q = ∞. If p <∞, we define also

∥∥λ
∣∣sr

p,qf
∥∥ =

∥∥∥∥∥

(
∑

ν∈NN
0

∑

m∈Zd

|2ν·rλν,m|
qχν,m(·)

)1/q∣∣∣∣∣Lp(Rd)

∥∥∥∥∥. (2.3)

Using the wavelet decomposition techniques, one may give linear isomorphisms
between function spaces with dominating mixed smoothness properties and cor-
responding sequence spaces. We refer to [35] if d1 = d2 = · · · = dN = 1 and to
[10] in the general case.

This allows to reduce the proof of Theorem 1.2 to the embeddings of sequence
spaces. Hence, it is enough to prove that under condition (1.7)

sr0
p0,q0

f →֒ sr1
p1,q1

b (2.4)

if, and only if, p0 ≤ q1 and
sr0

p0,q0
b →֒ sr1

p1,q1
f, (2.5)

if, and only if, q0 ≤ p1.

Now, we present briefly the concept of non-increasing rearrangement. We refer
to [3, Chapter 2] for details.

Definition 2.1. Let µ be the Lebesgue measure in Rn. If h is a measurable
function on Rn, we define the non-increasing rearrangement of h through

h∗(t) = sup{λ > 0 : µ{x ∈ R
n : |h(x)| > λ} > t}, t ∈ (0,∞). (2.6)

We shall need also the so-called multivariate rearrangements.

Let f : (0,∞)k−1×R
dk ×· · ·×R

dN → C, k ≤ N , be a measurable function. We
set

(Rkf)(t1, . . . , tk−1, s, y
k+1, . . . , yN) = [f(t1, . . . , tk−1, ·, y

k+1, . . . , yN)]∗(s),

s > 0, t1, . . . , tk−1 ∈ (0,∞), yi ∈ R
di , i = k + 1, . . . , N.

We define the multivariate non-increasing rearrangement of f : R
d → C by

(Rf)(s) = (RN ◦ · · · ◦R1f)(s), s = (s1, . . . , sN) ∈ (0,∞)N .

The utility of multivariate rearrangements in connection with embeddings of
Sobolev type has been discovered by Kolyada [14]. Later on, it was used by
Krbec and Schmeisser [16] in connection with function spaces with dominating
mixed smoothness.

We shall use the following two properties. They are well known in the scalar
case N = 1 (cf. [3]) and may be easily generalised to N > 1.
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Lemma 2.2. If 0 < p ≤ ∞, then

||h|Lp(Rd)|| = ||Rh|Lp((0,∞)N)||

for every measurable function h.

Lemma 2.3. Let h1 and h2 be two non-negative measurable functions on Rd.
If 1 ≤ p ≤ ∞, then

||h1 + h2|Lp(Rd)|| ≤ ||Rh1 +Rh2|Lp((0,∞)N)||.

If g : (0,∞)N → R is measurable, we define the average operator Ag by

(Ag)(t) :=

( N∏

i=1

ti

)−1 ∫

[0,t]

|g(x)|dx for t ∈ (0,∞)N .

The following property is also well known if N = 1, the generalisation to N > 1
follows by iteration.

Lemma 2.4. If 1 < p ≤ ∞, then there is a constant cp such that

||Ah|Lp((0,∞)N)|| ≤ cp||h|Lp((0,∞)N)||

for every measurable function h defined on (0,∞)N .

2.2 Proof of Theorem 1.2

Step 1. Proof of (2.4)

We observe, that the operator

Ir : λν,m → λ̃ν,m = 2ν·rλν,m, ν ∈ N
N
0 , m ∈ Z

d

forms a linear isomorphism from sr0

p,qb onto sr0−r
p,q b, where r, r0 ∈ RN are arbi-

trary. The same statement holds for the f -spaces as well.

We combine this with the simple embedding

sr
p,q0
f →֒ sr

p,q1
f if 0 < q0 ≤ q1 ≤ ∞,

and hence it is enough to prove that

sr
p0,∞f →֒ s0

p1,p0
b, (2.7)

where

ri = di

(
1

p0
−

1

p1

)
, i = 1, . . . , N. (2.8)

Let λ ∈ sr
p0,∞f . We set

h(x) = sup
ν∈NN

0

2ν·r
∑

m∈Zd

|λν,m|χν,m(x), x ∈ R
d. (2.9)
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Using this notation, we get

|λν,m| ≤ 2−ν·r inf
x∈Qν,m

h(x), ν ∈ N
N
0 , m ∈ Z

d

and ∥∥h
∣∣Lp0(Rd)

∥∥ =
∥∥λ
∣∣sr

p0,∞f
∥∥ <∞. (2.10)

The main step of our calculation is the following estimate:

∑

m∈Zd

inf
x∈Qν,m

h(x)p1 ≤
∑

k∈NN

(Rh)(2−(ν1+1)d1k1, . . . , 2
−(νN+1)dNkN)p1 , ν ∈ N

N
0 ,

(2.11)
for 0 < p1 <∞ and

sup
m∈Zd

inf
x∈Qν,m

h(x) ≤ (Rh)(2−(ν1+1)d1 , . . . , 2−(νN+1)dN ) (2.12)

for p1 = ∞ and all ν ∈ NN
0 .

We start with the case p1 = ∞. To prove (2.12) we fix some ν ∈ N
N
0 . Then we

make use of the fact, that the sets Qν,m have a product structure. Hence, they
may be rewritten as

Qν,m = Qν1,m1 × · · · ×QνN ,mN .

Let ε > 0, and fix x2 ∈ R
d2 , . . . , xN ∈ R

dN . Then there is some m1
0 ∈ Z

d1 , such
that

sup
m1∈Zd1

inf
y∈Q

ν1,m1

h(y, x2, . . . , xN) < inf
y∈Q

ν1,m1
0

h(y, x2, . . . , xN) + ε. (2.13)

Let us point out, that (2.10) implies that the supremum on the left-hand side
of (2.13) is finite for almost every (x2, . . . , xN) ∈ Rd2+···+dN .

Obviously,
h(x1, x2, . . . , xN) > inf

y∈Q
ν1,m1

0

h(y, x2, . . . , xN ) − ε

holds for all x1 ∈ Qν1,m1
0
. This is a set of Lebesgue-measure 2−ν1d1 > 2−(ν1+1)d1 .

From this, it follows

(R1h)(2−(ν1+1)d1 , x2, . . . , xN ) ≥ inf
y∈Q

ν1,m1
0

h(y, x2, . . . , xN ) − ε

≥ sup
m1∈Zd1

inf
y∈Q

ν1,m1

h(y, x2, . . . , xN) − 2ε.

With ε→ 0 we get

sup
k1∈N

(R1h)(2−(ν1+1)d1k1, x
2, . . . , xN) = (R1h)(2−(ν1+1)d1 , x2, . . . , xN )

≥ sup
m1∈Zd1

inf
y∈Q

ν1,m1

h(y, x2, . . . , xN ).
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If we use the same argument for the function (R1h)(2−(ν1+1)d1 , ·, x3, . . . , xN ), we
get

sup
k1,k2∈N

(R2 ◦R1h)(2−(ν1+1)d1k1, 2
−(ν2+1)d2k2, x

3, . . . , xN)

≥ sup
m2∈Zd2

inf
y2∈Q

ν2,m2

(R1h)(2−(ν1+1)d1 , y2, x3, . . . , xN)

≥ sup
m2∈Zd2

inf
y2∈Q

ν2,m2

sup
m1∈Zd1

inf
y1∈Q

ν1,m1

h(y1, y2, x3, . . . , xN)

≥ sup
m2∈Zd2 ,m1∈Zd1

inf
y2∈Q

ν2,m2 ,y1∈Q
ν1,m1

h(y1, y2, x3, . . . , xN).

Further iteration yields

sup
k∈NN

(Rh)(2−(ν1+1)d1k1, . . . , 2
−(νN+1)dNkN)

≥ sup
mN∈Z

dN ,...,m1∈Zd1

inf
yN∈Q

νN ,mN ,...,y1∈Q
ν1,m1

h(y1, . . . , yN) = sup
m∈Zd

inf
y∈Qν,m

h(y),

and (2.12) is proven.

If 0 < p1 < ∞ then (2.11) may be proved by similar arguments, but we prefer
to present an alternative way. We shall use the abbreviation ηm := inf

x∈Qν,m

h(x).

By (2.9) and (2.10) we have

0 ≤ ηm <∞, m ∈ Z
d.

As the interiors of Qν,m are mutually disjoint, we may define a new function h̃
by

h̃(y) = ηm, y ∈ interior(Qν,m) and h̃(y) = 0 if y ∈ boundary(Qν,m).

One observes immediately, that 0 ≤ h̃(x) ≤ h(x) for x ∈ Rd and therefore
(Rh̃)(t) ≤ (Rh)(t) for t ∈ (0,∞)N .

It follows, that
(
∑

m∈Zd

inf
x∈Qν,m

h(x)p1

)1/p1

= 2ν·d/p1 ||h̃|Lp1(R
d)|| = 2ν·d/p1 ||Rh̃|Lp1((0,∞)N)||.

As h̃ is constant on the cubes Qν,m, Rh̃ is constant on the cubes Q′
ν,m with

vertices in (2−ν1d1m1, . . . ,
2−νNdNmN) and (2−ν1d1(m1 + 1), . . . , 2−νNdN (mN + 1)) and sides parallel to the
coordinate axes. Here, m = (m1, . . . , mN ) ∈ NN

0 .

Hence

2ν·d/p1 ||Rh̃|Lp1((0,∞)N)|| ≤




∑

k∈NN

(Rh̃)(2−(ν1+1)d1k1, . . . , 2
−(νN+1)dNkN)p1




1/p1

≤



∑

k∈NN

(Rh)(2−(ν1+1)d1k1, . . . , 2
−(νN+1)dNkN)p1




1/p1
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and (2.11) follows.

Now we are ready to give the proof of (2.4). Using condition (1.7) we obtain
rp0 + dp0/p1 = d and hence

∥∥λ
∣∣s0

p1,p0
b
∥∥p0

≤
∑

ν∈NN
0

2−ν·d

(
∑

m∈Zd

inf
x∈Qν m

h(x)p1

) p0
p1

≤
∑

ν∈NN
0

2−ν·d




∑

k∈NN

(Rh)(2−(ν1+1)d1k1, . . . , 2
−(νN+1)dNkN)p1





p0
p1

≤
∑

ν∈NN
0

2−ν·d



∑

l∈NN
0

∑

k∈NN :
∀i:2lidi≤ki<2(li+1)di

(Rh)(2−(ν1+1)d1k1, . . . , 2
−(νN+1)dNkN)p1




p0
p1

.
∑

ν∈NN
0

2−ν·d



∑

l∈NN
0

2l·d(Rh)(2(l1−ν1−1)d1 , . . . , 2(lN−νN−1)dN )p1




p0
p1

≤
∑

ν∈NN
0

2−ν·d
∑

l∈NN
0

2
l·d

p0
p1 (Rh)(2(l1−ν1−1)d1 , . . . , 2(lN−νN−1)dN )p0.

We substitute n = l − ν − 1 and find
∥∥λ
∣∣s0

p1,p0
b
∥∥p0 ≤

∑

ν∈NN
0

2−ν·d
∑

n∈ZN :n+ν+1∈NN
0

2
(n+ν+1)·d

p0
p1 (Rh)(2n1d1 , . . . , 2nNdN )p0

≤ 2
d

p0
p1

∑

n∈ZN

2
n·d

p0
p1 (Rh)(2n1d1 , . . . , 2nNdN )p0

∑

ν∈ZN :ν+1≥−n

2
ν·d(

p0
p1

−1)

.
∑

n∈ZN

2
n·d

p0
p1 (Rh)(2n1d1 , . . . , 2nNdN )p02

−n·d(
p0
p1

−1)

=
∑

n∈ZN

2n·d(Rh)(2n1d1 , . . . , 2nNdN )p0 ∼
∥∥Rh

∣∣Lp0((0,∞)N)
∥∥p0

=
∥∥h
∣∣Lp0(R

d)
∥∥p0.

This finishes the proof of (2.4) under the condition (1.7) and p1 < ∞. In case
p1 = ∞ one can estimate more directly

∥∥λ
∣∣s0

∞,p0
b
∥∥p0

≤
∑

ν∈NN
0

2−ν·d sup
m∈Zd

inf
x∈Qν m

h(x)p0

≤
∑

ν∈NN
0

2−ν·d(Rh)(2−(ν1+1)d1 , . . . , 2−(νN+1)dN )p0

≤ 2d
∑

ν∈ZN

2−(ν+1)·d(Rh)(2−(ν1+1)d1 , . . . , 2−(νN+1)dN )p0

∼
∥∥Rh

∣∣Lp0((0,∞)N)
∥∥p0 =

∥∥h
∣∣Lp0(R

d)
∥∥p0.
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Step 2. Proof of (2.5)

We use similar arguments as in Step 1, this time combined with duality.

Using lifting properties and trivial embeddings, we may again restrict the proof
to

sr
p0,p1

b →֒ s0
p1,qf,

where

ri = di

(
1

p0
−

1

p1

)
, i = 1, . . . , N

and 0 < q < p0.

Let λ = {λν}ν∈NN
0

= {λν,m}ν∈NN
0 ,m∈Zd be in sr

p0,p1
b. The multivariate non-

increasing rearrangement of λν = {λν,m}m∈Zd is defined similar to Definition

2.1 and denoted by λ̃ν = {λ̃ν,m}m∈NN
0

. As λν ∈ ℓp0(Zd), this rearrangement
is also a rearrangement of a sequence in the classical sense. Furthermore, we
write χ̃ν m for characteristic functions of cubes Q′

ν,m ⊂ (0,∞)N , which were
used already in the Step 1.

Then, using q < p1 and Lemma 2.3,

∥∥λ
∣∣s0

p1qf
∥∥ =

∥∥∥∥∥

(
∑

ν∈NN
0

∑

m∈Zd

|λν m|
qχν,m(x)

)1/q∣∣∣∣∣Lp1(R
d)

∥∥∥∥∥

≤

∥∥∥∥∥
∑

ν∈NN
0

∑

m∈NN
0

λ̃q
ν mχ̃ν m(x)

∣∣∣∣∣L
p1
q

((0,∞)N)

∥∥∥∥∥

1/q

. (2.14)

Let α and β be the conjugate exponents of p0

q
and of p1

q
, respectively. Using

duality, (2.14) may be rewritten as

∥∥λ
∣∣s0

p1qf
∥∥ ≤ sup

g



∫

(0,∞)N

g(x)




∑

ν∈NN
0

∑

m∈NN
0

λ̃q
ν,mχ̃ν,m(x)



 dx




1/q

= sup
g



∑

ν∈NN
0

∑

m∈NN
0

2−ν·dλ̃q
ν,mgν,m




1/q

, (2.15)

where the supremum is taken over all non-negative functions g : (0,∞)N →
[0,∞], which are non-increasing in each variable, ‖g|Lβ((0,∞)N)‖ ≤ 1 and

gν,m = 2ν·d
∫
g(x)χ̃ν,m(x)dx.

We use twice Hölder’s inequality and estimate (2.15) from above by



∑

ν∈NN
0

2−ν·d



∑

m∈NN
0

λ̃p0

ν,m




p1
p0




1/p1

· sup
g



∑

ν∈NN
0

2−ν·d



∑

m∈NN
0

gα
ν m




β/α



1
βq

.

(2.16)
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The first factor in (2.16) is equal to ‖λ|sr
p0,p1

b‖ due to condition (1.7). Hence it
is enough to prove that there is a constant c > 0, such that



∑

ν∈NN
0

2−ν·d



∑

m∈NN
0

gα
ν,m




β/α



1
βq

≤ c

for every non-negative measurable function g, which is non-increasing in each
component and with ‖g|Lβ((0,∞)N)‖ ≤ 1.

First, we use the monotonicity of g and obtain

∑

m∈NN
0

gα
ν m =

∑

l∈NN
0

∑

m∈N
N
0 :

∀i:2lidi−1≤mi<2(li+1)di−1

gα
ν,m

.
∑

l∈NN
0

2l·d


2ν·d

∫

W
ν,(2l1d1 ,...,2lN dN )

g(x)dx




α

.
∑

l∈NN
0

2l·d(Ag)(2(l1−ν1)d1 , . . . , 2(lN−νN )dN )α,

where Wν,k = [2−ν1d1(k1 − 1), 2−ν1d1k1] × · · · × [2−νN dN (kN − 1), 2−νNdNkN ].

Using 1 < β < α <∞, this leads to

∑

ν∈NN
0

2−ν·d

( ∑

m∈NN
0

gα
ν m

)β/α

≤
∑

ν∈NN
0

2−ν·d
∑

l∈NN
0

2l·d β

α (Ag)(2(l1−ν1)d1 , . . . , 2(lN−νN )dN )β

=
∑

k∈ZN

2k·d β

α

∑

ν∈NN
0 :ν≥−k

2−ν·d2ν·d β

α (Ag)(2k1d1 , . . . , 2kNdN )β

≤
∑

k∈ZN

2k·d β

α (Ag)(2k1d1 , . . . , 2kNdN )β
∑

ν∈ZN :ν≥−k

2ν·d( β

α
−1)

.
∑

k∈ZN

2k·d β

α (Ag)(2k1d1 , . . . , 2kNdN )β2−k·d( β

α
−1)

∼
∥∥Ag

∣∣Lβ((0,∞)N)
∥∥β

∼
∥∥g
∣∣Lβ((0,∞)N)

∥∥β
≤ 1.

This finishes the proof of (2.5).

Step 3.

We show, that if (1.7) and (2.4) hold, then p0 ≤ q1. Suppose, that 0 < q1 <
p0 <∞ and set

λν,m =





ν
−1/q1

1 2ν1(d1/p1−r1
1) if ν = (ν1, 0, . . . , 0), ν1 ∈ N

and m = (0, . . . , 0) ∈ Zd,

0, otherwise.
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Direct calculations show that ||λ|sr1
p1q1

b|| = ∞ and ||λ|sr0
p0q0

f || <∞. Hence (2.4)
does not hold.

Step 4.

We show, that (2.5) implies q0 ≤ p1. To this end we assume that 0 < p1 < q0 ≤
∞ and set

λν,m =






ν
−1/p1

1 2ν1(d1/p1−r1
1) if ν = (ν1, 0, . . . , 0), ν1 ∈ N

and m = (0, . . . , 0) ∈ Zd,

0, otherwise.

This leads to ||λ|sr1
p1q1

f || = ∞ and ||λ|sr0
p0q0

b|| <∞. Hence (2.5) does not hold.

2.3 Proof of Theorem 1.5

If (c) is satisfied, then we use the embedding

S0
∞,1B(Rd) →֒ C(Rd), (2.17)

which follows directly from Definition 1.1, and the Sobolev embedding (cf. [24,
Theorem 2.4.1])

Sr0

p0,q0
B(Rd) →֒ Sr1

p1,q1
B(Rd)

if

r0
j −

dj

p0

= r1
j −

dj

p1

, j = 1, . . . , N, 0 < p0 < p1 ≤ ∞ and 0 < q0 ≤ q1 ≤ ∞.

Hence, Sr
p,qB(Rd) →֒ C(Rd) →֒ L∞(Rd). This proves (c) =⇒ (a) =⇒ (b).

If (c) is not satisfied, we look for a distribution f ∈ Sr
pqB(Rd), which may not

be represented by a bounded measurable function in the usual sense. The coun-
terexamples may be given directly using the wavelet expansions as presented in
[10]. But one may proceed also indirectly:

Let us assume that rj −
dj

p
< 0 for some 1 ≤ j ≤ N or rj −

dj

p
≤ 0 for some

1 ≤ j ≤ N and q > 1. In both cases, it is known that there is a distribution
ψj ∈ B

rj
pq(Rdj ), such that ψj 6∈ L∞(Rdj ), cf. [26, Theorem 3.3.1]. Now it is

enough to consider
f = ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψN ,

where ψi ∈ S(Rdi), i 6= j, are suitably chosen smooth functions. The proof of
(ii) uses similar arguments, this time combined with (1.8).

2.4 Proof of Theorem 1.6

The proof of Theorem 1.6 follows by similarly with (2.17) replaced by

S0
u,2F (Rd) = Lu(Rd), 1 < u <∞.

14

101



Acknowledgements: We would like to thank to Winfried Sickel and Hans
Triebel for fruitful discussions.

References

[1] T. I. Amanov, Spaces of differentiable functions with dominating mixed
derivatives. (Russian), Alma-Ata, Nauka Kaz. SSR 1976.

[2] D. B. Bazarkhanov, Characterizations of the Nikol’skii-Besov and Lizorkin-
Triebel function spaces of mixed smoothness, Proc. of Steklov Inst. Math.
243 (2003), 53-65.

[3] C. Bennett and R. Sharpley, Interpolation of operators, Academic Press,
San Diego, 1988.

[4] Ju. A. Brudny̆ı, The scale of Lλ,θ
p spaces, and sharp imbedding theorems.

(Russian) Imbedding theorems and their applications (Proc. All-Union
Sympos., Alma-Ata, 1973) (Russian), pp. 23–27, 184. Izdat. ”Nauka”
Kazah. SSR, Alma-Ata, 1976.

[5] M. Bricchi and S. D. Moura, Complements on growth envelopes of spaces
with generalized smoothness in the sub-critical case, Z. Anal. Anwend. 22,
383–398.

[6] H.-Q. Bui, Weighted Besov and Triebel spaces: interpolation by the real
method, Hiroshima Math. J. 12 (1982), no. 3, 581–605.

[7] A. M. Caetano and H.-G. Leopold, Local growth envelopes of Triebel-
Lizorkin spaces of generalized smoothness, J. Fourier Anal. Appl. 12 (2006),
no. 4, 427–445.

[8] W. Farkas, J. Johnsen and W. Sickel, Traces of anisotropic Besov-Lizorkin-
Triebel spaces—a complete treatment of the borderline cases. Math. Bohem.
125 (2000), no. 1, 1–37.

[9] J. Franke, On the spaces F s
pq of Triebel-Lizorkin type: pointwise multipliers

and spaces on domains, Math. Nachr. 125 (1986), 29-68.

[10] M. Hansen, Nonlinear approximation and function spaces of dominating
mixed smoothness, in preparation.

[11] D. D. Haroske and L. Skrzypczak, Entropy and approximation numbers
of embeddings of function spaces with Muckenhoupt weights I, Rev. Mat.
Complut. 21 (2008), 135-177.

[12] L. Jantscher, Distributionen, Walter de Gruyter, Berlin, New York, 1971.

15

102



[13] B. Jawerth, Some observations on Besov and Lizorkin-Triebel spaces,
Math. Scand. 40 (1977), 94-104.

[14] V. I. Kolyada, Embeddings of fractional Sobolev spaces and estimates of
Fourier transforms (Russian), Mat. Sb. 192 (2001), 51-72. (English transl.
in: Sb. Math. 192 (2001), 979-1000).

[15] M. Krbec and H.-J. Schmeisser, Imbeddings of Brézis-Wainger type. The
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Abstract

We consider the Triebel-Lizorkin spaces F
s(·)
p(·),q(·)(R

n) of variable smoothness and integra-

bility as introduced recently by Diening, Hästö and Roudenko in [9]. Under certain regularity

conditions on the function parameters involved we show that

F
s0(·)
p0(·),q(·)(R

n) →֒ F
s1(·)
p1(·),q(·)(R

n)

if

s0(x) ≥ s1(x) and s0(x) −
n

p0(x)
= s1(x) −

n

p1(x)
for all x ∈ R

n

with embeddings of Sobolev and Bessel potential spaces included as special cases.

If inf
x∈Rn

(s0(x) − s1(x)) > 0 we recover also the analogue of the Jawerth embedding

F
s0(·)
p0(·),q0(·)(R

n) →֒ F
s1(·)
p1(·),q1(·)(R

n)

for any q0, q1.

The proofs are based on the decomposition techniques of [9] and work exclusively with the

associated sequence spaces f
s(·)
p(·),q(·).

AMS Classification: 46E35, 46E30

Keywords and phrases: Triebel-Lizorkin spaces, variable smoothness, variable integrability,

Jawerth embedding, Sobolev embedding
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1 Introduction

The interplay between smoothness and integrability constitutes one of the corner stones of the

theory of function spaces. It can be traced back as far as to Hardy and Littlewood [13, 14], but

the decisive breakthrough was achieved by Sobolev [33], who proved the famous embedding

W m
p (Ω) →֒ Lq(Ω), (1.1)

where Ω ⊂ R
n is a bounded domain with Lipschitz boundary, Lq(Ω) stands for the usual Lebesgue

space and W m
p (Ω) denotes the Sobolev space of functions with all distributive derivatives of order

smaller or equal to m bounded in the Lp(Ω) norm. The crucial relation between the involved

parameters m ∈ N, 1 < p < n/m and 1 < q < ∞ is

1

q
=

1

p
−

m

n
. (1.2)

During the last seventy years, many scales of spaces of smooth functions were defined using various

techniques (e.g. derivatives, differences, Fourier coefficients or Fourier transform) with the corre-

sponding analogues of (1.1) and (1.2) playing usually an important role in most of the applications.

Actually, it seems that any new scale of spaces of smooth functions needs to exhibit some kind of

interaction between smoothness and integrability to be accepted by the mathematical audience.

In recent years there has been a growing interest in function spaces describing local regularity

properties of functions. The first spaces of this type are the spaces of variable integrability, which

were introduced by Orlicz [27] already in 1931 and studied in detail by Kováčik and Rákosńık [24] in

1991 together with the corresponding Sobolev spaces of variable integrability. During 1990’s these

spaces found applications in the study of variational integrals with non-standard growth, but it was

probably the work of Růžička [29, 30, 31] on electrorheological fluids what promoted an enormous

interest in these spaces. Since then, more than one hundred papers on this topic appeared. We

refer to [8] for a brief overview and an extensive collection of references.

Another way how to describe the local properties of a function was outlined already by Peetre

in [28, page 266] in Chapter 12 named “Some strange new spaces” and resulted in the concept of

2-microlocal spaces, cf. [5] and [20]. Along a different line of study, Leopold [25] introduced spaces

of Besov-type with variable smoothness, but constant integrability. This approach was further

developed by Besov [3, 4].

The Sobolev embedding for the spaces with variable integrability was addressed already by

Kováčik and Rákosńık [24] and later on by Růžička [31]. But their results failed to cover the

optimal exponent according to (1.1). Edmunds and Rákosńık [10, 11] proved the optimal Sobolev

embedding theorem under Lipschitz and Hölder continuity of the exponents, cf. also [16]. Finally,

Diening [7] and Samko [32] showed, that log-Hölder continuity is sufficient.

The embeddings of Besov and Triebel-Lizorkin spaces of variable smoothness were obtained by

Besov [4] in a fairly general form. It seems that Leopold [26] was the only one up to now who

tried to connect the function spaces with variable smoothness with spaces of variable integrability.

Unfortunately, he also failed to recover the optimal exponent.
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The last step (up to now) was done by Diening, Hästö and Roudenko in [9]. These authors

combined the concept of spaces with variable integrability of Orlicz, Kováčik and Rákosńık with

the concept of variable smoothness of Leopold and Besov (which is in some sense very similar to

the ideas of Peetre, Bony and Jaffard) and proposed the function spaces of Triebel-Lizorkin type

of variable smoothness and integrability, cf. Definition 2.5. They proved (under some restrictions

on the function parameters involved), that these spaces include the Lebesgue and Sobolev spaces

of variable integrability and the spaces of variable smoothness as special cases. They proved also a

certain version of the atomic decomposition theorem, which is a well known tool in the theory of

function spaces of Besov and Triebel-Lizorkin type. Finally, they proved an analogue of the usual

trace theorem, which exhibits the interplay between smoothness and integrability. The reader may

consult also [17], [15] and references given there for other versions of the trace embedding theorem

for Sobolev spaces with varying integrability.

Although mentioned on several places in [9] (and even in the abstract), the authors have not

presented any version of Sobolev embedding, which would not only result in a generalization of

(1.1) with (1.2) holding pointwise, but would (in the sense described above) help to justify the

existence of this scale of function spaces - at least until this promising line of research finds any

applications.

Our aim is to fill this gap. In the frame of Triebel-Lizorkin spaces with constant parameters,

the following analogue of Sobolev embedding is true.

Theorem 1.1. (Jawerth, [21]). Let

−∞ < s1 < s0 < ∞, 0 < p0 < p1 < ∞, 0 < q ≤ ∞ (1.3)

with

s0 −
n

p0
= s1 −

n

p1
. (1.4)

Then

F s0
p0,∞(Rn) →֒ F s1

p1,q(R
n). (1.5)

The remarkable effect, which was first observed by Jawerth and which is in some sense unique

to the Triebel-Lizorkin spaces, is the improvement in the third fine parameter q > 0, which may be

chosen arbitrarily small. Of course, (1.5) holds only for q = ∞ if s0 = s1 (or, equivalently, p0 = p1).

If the smoothness and integrability parameters s and p become functions of x ∈ R
n, then it seems

to be appropriate to assume that (1.4) holds pointwise, i.e.

s0(x) −
n

p0(x)
= s1(x) −

n

p1(x)
, x ∈ R

n (1.6)

and if the improvement in the fine parameter is to be achieved, that also

inf
x∈Rn

(s0(x) − s1(x)) = n inf
x∈Rn

( 1

p0(x)
−

1

p1(x)

)
> 0. (1.7)
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We prove that these “natural” assumptions (combined with appropriate regularity conditions) are

really sufficient. We show, that if s1(x) ≤ s0(x) and p0(x) ≤ p1(x) with (1.6) and 0 < q(x) ≤ ∞

for all x ∈ R
n, then

F
s0(·)
p0(·),q(·)(R

n) →֒ F
s1(·)
p1(·),q(·)(R

n). (1.8)

If also (1.7) is satisfied, then even

F
s0(·)
p0(·),∞

(Rn) →֒ F
s1(·)
p1(·),q(·)(R

n)

holds.

2 Preliminaries

Let S(Rn) be the Schwartz space of all complex-valued rapidly decreasing, infinitely differentiable

functions on R
n and let S′(Rn) be its dual - the space of all tempered distributions. For f ∈ S′(Rn)

we denote by f̂ = Ff its Fourier transform and by f∨ or F−1f its inverse Fourier transform. We

give a Fourier-analytic definition of Triebel-Lizorkin spaces, which relies on the so-called dyadic

resolution of unity. Let ϕ ∈ S(Rn) with

ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥
3

2
. (2.1)

We put ϕ0 = ϕ and ϕj(x) = ϕ(2−jx)−ϕ(2−j+1x) for j ∈ N and x ∈ R
n. This leads to the identity

∞∑

j=0

ϕj(x) = 1, x ∈ R
n.

Definition 2.1. Let s ∈ R, 0 < p < ∞, 0 < q ≤ ∞. Then F s
pq(R

n) is the collection of all f ∈ S′(Rn)

such that

||f |F s
pq(R

n)|| =

∣∣∣∣

∣∣∣∣

( ∞∑

j=0

2jsq|(ϕj f̂)∨(·)|q
)1/q

|Lp(R
n)

∣∣∣∣

∣∣∣∣ < ∞ (2.2)

(with the usual modification for q = ∞).

Remark 2.2. (i) These spaces have a long history. In this context we recommend [28, 34, 35, 37] as

standard references. We point out that the spaces F s
pq(R

n) are independent of the choice of ϕ in

the sense of equivalent (quasi-)norms. Special cases of this scale include Lebesgue spaces, Sobolev

spaces and inhomogeneous Hardy spaces.

(ii) Interchanging the order of Lp and ℓq norm in (2.2) would lead to the Fourier-analytic

definition of Besov spaces. Unfortunately, they seem to be less convenient for describing local

regularity properties of distributions, because they lack the so-called localization principle, cf. [35,

Theorem 2.4.7]. Hence (also in correspondence with [9]) we study only the F -scale.

Next, we introduce the Lebesgue spaces of variable integrability.
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Definition 2.3. Let p : R
n → (0,∞) be a measurable function. Then the space Lp(·)(R

n) consists

of all measurable functions f : R
n → [−∞,∞] such that ||f |Lp(·)(R

n)|| < ∞, where

||f |Lp(·)(R
n)|| = inf{λ > 0 :

∫

Rn

(
|f(x)|

λ

)p(x)

dx ≤ 1}

is the Minkowski functional of the absolutely convex set {f :
∫

Rn |f(x)|p(x)dx ≤ 1}.

Remark 2.4. (i) One could also consider (and it was done so already by Kováčik and Rákosńık in

[24]) that p(x) = ∞ on a set of a positive measure. But Definition 2.3 is already sufficient for our

purpose, cf. also Remark 2.6.

(ii) If p(x) ≥ 1 for all x ∈ R
n, then Lp(·)(R

n) are Banach spaces. To ensure, that Lp(·)(R
n) are

at least quasi-Banach spaces, we assume that

p− := inf
x∈Rn

p(x) > 0.

The generalization of Definition 2.1 to the setting of variable smoothness and integrability as it

was given by [9] is surprisingly simple.

Definition 2.5. Let −∞ < s(x) < +∞, 0 < p(x) < ∞, 0 < q(x) ≤ ∞. Then F
s(·)
p(·),q(·)(R

n) is the

collection of all f ∈ S′(Rn) such that

||f |F
s(·)
p(·),q(·)(R

n)|| =

∣∣∣∣

∣∣∣∣

( ∞∑

j=0

2js(·)q(·)|(ϕj f̂)∨(·)|q(·)
)1/q(·)

|Lp(·)(R
n)

∣∣∣∣

∣∣∣∣ < ∞ (2.3)

(with the usual modification for q(x) = ∞).

Remark 2.6. This definition introduces the Triebel-Lizorkin spaces of variable smoothness, inte-

grability and summability under almost no conditions on s(·), p(·) and q(·). Unfortunately, these

spaces may depend on the choice of the function ϕ as described in (2.1). This is the case already

when s and q < ∞ are constant and p = ∞. We refer to [34, Chapter 2.3.4] for a detailed discussion

of related aspects. So, a first natural restriction seems to be the condition

p+ = sup
x∈Rn

p(x) < ∞.

Together with Remark 2.4(ii) this leads to

0 < p− := inf
z∈Rn

p(z) ≤ p(x) ≤ sup
z∈Rn

p(z) =: p+ < ∞, x ∈ R
n. (2.4)

Next we present the regularity assumptions of [9].

Definition 2.7. Let g be a continuous function on Rn.

(i) We say, that g is 1-locally log-Hölder continuous, abbreviated g ∈ C log
1−loc(R

n), if there exists

c > 0 such that

|g(x) − g(y)| ≤
c

log(e + 1/||x − y||∞)
for all x, y ∈ R

n with ||x − y||∞ ≤ 1.
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Here, ||z||∞ = max{|z1|, . . . , |zn|} denotes the maximum norm of z ∈ R
n.

(ii) We say, that g is locally log-Hölder continuous, abbreviated g ∈ C log
loc (Rn), if there exists

c > 0 such that

|g(x) − g(y)| ≤
c

log(e + 1/|x − y|)
, x, y ∈ R

n.

(iii) We say, that g is globally log-Hölder continuous, abbreviated g ∈ C log(Rn), if it is locally

log-Hölder continuous and there exists c > 0 and g∞ ∈ R such that

|g(x) − g∞| ≤
c

log(e + |x|)
, x ∈ R

n.

Remark 2.8. (i) The conditions (ii) and (iii) are overtaken literally from [9] and we shall need

them only for the transference of our results from sequence spaces to function spaces. It is the less

restrictive condition (i), which we shall involve in our proofs.

(ii) The condition (i) is very similar to the original condition of Diening used in [6] to show the

boundedness of the maximal operator.

We shall use the property (i) in the form formulated in next Lemma. We leave out the trivial

proof.

Lemma 2.9. Let g ∈ C log
1−loc(R

n). Then there exists a constant c > 0 such that for every j ∈ N0

and every x, y ∈ R
n with ||x − y||∞ ≤ 2−j the following inequalities hold:

1

c
≤ 2−j|g(x)−g(y)| ≤ 2j(g(x)−g(y)) ≤ 2j|g(x)−g(y)| ≤ c.

Definition 2.10. (Standing assumptions of [9]). Let p and q be positive functions on R
n such

that 1
p , 1

q ∈ C log(Rn) and let s ∈ C log
loc (Rn) ∩ L∞(Rn) with s(x) ≥ 0 and let s(x) have a limit at

infinity.

Remark 2.11. (i) Let us note, that the Standing assumptions imply in particular (2.4) and a similar

chain of inequalities for q(x).

We introduce the sequence spaces associated with the Triebel-Lizorkin spaces of variable smooth-

ness and integrability. Let j ∈ N0 and m ∈ Z
n. Then Qjm denotes the closed cube in R

n with sides

parallel to the coordinate axes, centered at 2−jm, and with side length 2−j . By χjm = χQjm
we

denote the characteristic function of Qj m. If

γ = {γjm ∈ C : j ∈ N0,m ∈ Z
n},

−∞ < s(x) < ∞, 0 < p(x) < ∞ and 0 < q(x) ≤ ∞ for all x ∈ R
n, we define

||γ|f
s(·)
p(·),q(·)|| =

∣∣∣∣

∣∣∣∣

( ∞∑

j=0

∑

m∈Zn

2js(·)q(·)|γjm|q(·)χjm(·)

)1/q(·)

|Lp(·)(R
n)

∣∣∣∣

∣∣∣∣ (2.5)

=

∣∣∣∣

∣∣∣∣
∞∑

j=0

∑

m∈Zn

2js(·)|γjm|χjm(·)

∣∣∣∣Lp(·)(ℓq(·))

∣∣∣∣

∣∣∣∣.

Establishing the connection between the function spaces F
s(·)
p(·),q(·)(R

n) and the sequence spaces

f
s(·)
p(·),q(·) was the main aim of [9]. Following [18] and [19], these authors investigated the properties

of the so-called ϕ-transform (denoted by Sϕ) and obtained the following result.
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Theorem 2.12. Under the Standing assumptions of [9]

||f |F
s(·)
p(·),q(·)(R

n)|| ≈ ||Sϕf |f
s(·)
p(·),q(·)||

with constants independent of f ∈ F
s(·)
p(·),q(·)(R

n).

Remark 2.13. (i) The assumptions on s in the Theorem 2.12 seem to be too restrictive. It seems,

that several authors now try to prove similar results also for s(x), which are not necessarily positive

or convergent at infinity. We refer at least to [23] and [39].

From this reason we formulate the theorems of embeddings of sequence spaces under minimal

assumptions, which shall really be needed in the proof. If later on any improved version of Theorem

2.12 should appear, the results may then be easily taken over.

(ii) We shall use only a corollary of Theorem 2.12, namely that (under the Standing assumptions)

the space F
s(·)
p(·),q(·)(R

n) is isomorphic to a subspace of f
s(·)
p(·),q(·) via the Sϕ transform.

3 Main results

First, we state the results in the form of embeddings of sequence spaces under those assumptions

really needed in the proof. Later on, we combine those with the Standing assumptions of [9] and

obtain similar results also for the embeddings of function spaces. Finally, we state separately the

embeddings of Sobolev and Bessel potential spaces.

Theorem 3.1. Let −∞ < s1(x) ≤ s0(x) < ∞, 0 < p0(x) ≤ p1(x) < ∞ for all x ∈ R
n with

0 < p−0 ≤ p−1 ≤ p+
1 < ∞ and

s0(x) −
n

p0(x)
= s1(x) −

n

p1(x)
, x ∈ R

n.

Let q(x) = ∞ for all x ∈ R
n or 0 < q− ≤ q(x) < ∞ for all x ∈ R

n and s0,
1
p0

∈ C log
1−loc(R

n). Then

f
s0(·)
p0(·),q(·)

→֒ f
s1(·)
p1(·),q(·)

.

Proof. Step 1. q(x) = ∞ for all x ∈ R
n.

We set

h(x) = sup
j,m

2js0(x)|γjm|χjm(x), x ∈ R
n. (3.1)

Here, and later on, the supremum is taken over all j ∈ N0 and m ∈ Z
n. Then by (2.5)

||γ|f
s0(·)
p0(·),∞|| = ||h|Lp0(·)(R

n)|| (3.2)

and trivially

2js0(x)|γjm| ≤ h(x), x ∈ Qjm, (3.3)

which leads to

|γjm| ≤ inf
x∈Qjm

2−js0(x)h(x), j ∈ N0, m ∈ Zn. (3.4)
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Using consequently (2.5), (3.4) and Lemma 2.9 for s0 we may estimate

||γ|f
s1(·)
p1(·),∞|| =

∣∣∣∣

∣∣∣∣sup
j,m

2js1(x)|γjm|χjm(x)|Lp1(·)(R
n)

∣∣∣∣

∣∣∣∣

≤

∣∣∣∣

∣∣∣∣sup
j,m

2js1(x)
(

inf
y∈Qjm

2−js0(y)h(y)
)
χjm(x)|Lp1(·)(R

n)

∣∣∣∣

∣∣∣∣

=

∣∣∣∣

∣∣∣∣sup
j,m

2j(s1(x)−s0(x))
(

inf
y∈Qjm

2j(s0(x)−s0(y))h(y)
)
χjm(x)|Lp1(·)(R

n)

∣∣∣∣

∣∣∣∣

≤ c

∣∣∣∣

∣∣∣∣sup
j,m

2
jn
(

1
p1(x)

− 1
p0(x)

)(
inf

y∈Qjm

h(y)
)
χjm(x)|Lp1(·)(R

n)

∣∣∣∣

∣∣∣∣.

Let A−1 ⊂ R
n stand for those x, where

sup
j,m

2
jn
(

1
p1(x)

− 1
p0(x)

)(
inf

y∈Qjm

h(y)
)
χjm(x) = 0. (3.5)

For each x ∈ Rn we denote by J = Jx ∈ N0 the smallest non-negative integer, such that

sup
j,m

2
jn
(

1
p1(x)

− 1
p0(x)

)(
inf

y∈Qjm

h(y)
)
χjm(x) ≤ 2 · 2

Jn
(

1
p1(x)

− 1
p0(x)

) ∑

m∈Zn

(
inf

y∈QJm

h(y)
)
χJm(x). (3.6)

We may assume, that for almost all x ∈ R
n (3.5) is finite. Otherwise h(x) = ∞ on a set of

positive measure and there is nothing to prove. Furthermore, we denote by AJ ⊂ R
n those x with

Jx = J ∈ N0.

Let λ > 0 be a positive real number such that

1 ≥

∫

Rn

(
h(x)

λ

)p0(x)

dx =
∞∑

J=−1

∫

AJ

(
h(x)

λ

)p0(x)

dx (3.7)

≥

∞∑

J=0

∑

m∈Zn

∫

AJ∩QJm

(
h(x)

λ

)p0(x)

dx.

We set

hjm :=

inf
y∈Qjm

h(y)

λ
, j ∈ N0, m ∈ Z

n

and show, that there is a constant C > 0 such that

∫

Rn

(

C−1 sup
j,m

2
jn
(

1
p1(x)

− 1
p0(x)

)
hjmχjm(x)

)p1(x)

dx ≤ 1.

We split the integration over R
n into integrals over AJ and use (3.6).

∫

Rn

(

C−1 sup
j,m

2
jn
(

1
p1(x)

− 1
p0(x)

)
hjmχjm(x)

)p1(x)

dx

≤
∞∑

J=0

∫

AJ

(
(C/2)−1

∑

m∈Zn

2
Jn
(

1
p1(x)

− 1
p0(x)

)
hJmχJm(x)

)p1(x)

dx

=

∞∑

J=0

∑

m∈Zn

∫

AJ

(
(C/2)−12

Jn
(

1
p1(x)

− 1
p0(x)

)
hJm

)p1(x)

χJm(x)dx

=

∞∑

J=0

∑

m∈Zn

∫

AJ∩QJm

(C/2)−p1(x)2
Jn
(
1−

p1(x)
p0(x)

)
h

p1(x)
Jm dx (3.8)
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Let us fix (J,m) ∈ N0 × Z
n. We shall distinguish two cases.

1. case: hJm ≤ 1.

Then (as p0(x) ≤ p1(x))

2
Jn
(
1−

p1(x)

p0(x)

)
≤ 1

and

h
p1(x)
Jm ≤ h

p0(x)
Jm .

Hence for C ≥ 2 we obtain

∫

AJ∩QJm

(C/2)−p1(x)2
Jn
(
1−

p1(x)
p0(x)

)
h

p1(x)
Jm dx ≤

∫

AJ∩QJm

h
p0(x)
Jm dx (3.9)

≤

∫

AJ∩QJm

(
h(x)

λ

)p0(x)

dx.

2. case: hJm > 1.

Then

1 ≥

∫

QJm

(
h(x)

λ

)p0(x)

dx ≥

∫

QJm

h
p0(x)
Jm dx ≥ 2−Jnh

pJm
0

Jm ,

where pJm
0 = inf

x∈QJm

p0(x) > 0. Hence

1 < hJm ≤ 2Jn/pJm
0 . (3.10)

We rewrite the integrals in (3.8) as

∫

AJ∩QJm

(C/2)−p1(x)2
Jn
(
1−

p1(x)
p0(x)

)
h

p1(x)
Jm dx =

∫

AJ∩QJm

(C/2)−p1(x)2
Jn
(
1−

p1(x)
p0(x)

)
h

p1(x)−p0(x)
Jm︸ ︷︷ ︸

(⋆)

h
p0(x)
Jm dx

(3.11)

and show that the estimate (⋆) ≤ 1 for C ≥ 2 large enough and x ∈ QJm finishes immediately the

proof. By (3.9) and (3.11) combined with (⋆) ≤ 1 and (3.7)

∞∑

J=0

∑

m∈Zn

∫

AJ∩QJm

(C/2)−p1(x)2
Jn
(
1−

p1(x)
p0(x)

)
h

p1(x)
Jm dx =

∑

(J,m):hJm≤1

· · · +
∑

(J,m):hJm>1

. . .

≤
∑

(J,m):hJm≤1

∫

AJ∩QJm

(
h(x)

λ

)p0(x)

dx +
∑

(J,m):hJm>1

∫

AJ∩QJm

h
p0(x)
Jm dx

≤
∞∑

J=0

∑

m∈Zn

∫

AJ∩QJm

(
h(x)

λ

)p0(x)

dx ≤ 1.

Hence, it remains to prove that (⋆) ≤ 1 for all x ∈ QJm. By (3.10), it is enough to show that

(C/2)−p1(x)2
Jn
(
1−

p1(x)
p0(x)

)
· 2

Jn·
p1(x)−p0(x)

pJm
0 ≤ 1

or, equivalently,

2
Jn[p1(x)−p0(x)]·[ 1

pJm
0

− 1
p0(x)

]
≤ (C/2)p1(x).
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Using Lemma 2.9 for 1
p0

(with constant 2clog), this follows from

2
n[1−

p0(x)
p1(x)

]·clog ≤ C/2.

As 0 ≤ 1 − p0(x)
p1(x) ≤ 1, we may choose C = 2nclog+1 ≥ 2.

Step 2. 0 < q(x) < ∞ for all x ∈ R
n.

Let λ > 0 be a positive real number with

∫

Rn

( ∞∑

j=0

∑

m∈Zn

2js0(x)q(x)|γjm|q(x)λ−q(x)χjm(x)
)p0(x)/q(x)

dx ≤ 1. (3.12)

We have to show that there is a constant C > 0 independent of {γjm}, such that

∫

Rn

( ∞∑

j=0

∑

m∈Zn

2js1(x)q(x)|γjm|q(x)(Cλ)−q(x)χjm(x)
)p1(x)/q(x)

dx ≤ 1. (3.13)

We show, that under (3.12) the following inequality holds for almost all x ∈ R
n

( ∞∑

j=0

∑

m∈Zn

2js1(x)q(x) |γjm|q(x)

(Cλ)q(x)
χjm(x)

)p1(x)
≤
( ∞∑

j=0

∑

m∈Zn

2js0(x)q(x) |γjm|q(x)

λq(x)
χjm(x)

)p0(x)
. (3.14)

Obviously, (3.14) implies (3.13).

For almost every x ∈ R
n and every j ∈ N0, there is exactly one m = m(j) ∈ Z

n such that

x ∈ Qj,m(j). We fix one such an x. Then (3.14) reads like

∞∑

j=0

2js1(x)q(x)|γj,m(j)|
q(x)(Cλ)−q(x) ≤

( ∞∑

j=0

2js0(x)q(x)|γj,m(j)|
q(x)λ−q(x)

)p0(x)/p1(x)
. (3.15)

We set

αj := 2js0(x) |γj,m(j)|

λ
, j ∈ N0

and rewrite (3.15) once again. It now becomes

∞∑

j=0

2
jn
(

1
p1(x)

− 1
p0(x)

)
q(x)

(αj/C)q(x) ≤
( ∞∑

j=0

α
q(x)
j

)p0(x)/p1(x)
. (3.16)

Using (3.12) and Lemma 2.9 for s0, we get

1 ≥

∫

Qj,m(j)

(
2js0(y)q(y)|γj,m(j)|

q(y)λ−q(y)
)p0(y)/q(y)

dy =

∫

Qj,m(j)

(
2js0(y)|γj,m(j)|λ

−1
)p0(y)

dy

=

∫

Qj,m(j)

(
2j(s0(y)−s0(x))2js0(x)|γj,m(j)|λ

−1
)p0(y)

dy ≥

∫

Qj,m(j)

(
c 2js0(x)|γj,m(j)|λ

−1
)p0(y)

dy

=

∫

Qj,m(j)

(
c αj

)p0(y)
dy.

If cαj > 1, we may further estimate

1 ≥ 2−jn
(
c αj

)infz∈Qj,m(j)
p0(z)

,

10
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or, equivalently,

c αj ≤ 2

jn

infz∈Qj,m(j)
p0(z)

= 2
jn

p0(x) 2

jn

infz∈Qj,m(j)
p0(z)

− jn

p0(x)
≤ c′2

jn
p0(x) (3.17)

and this estimate holds true also if c αj ≤ 1.

If
∞∑

j=0

α
q(x)
j ≤ 1, then (3.16) follows by monotonicity and p0(x) ≤ p1(x) for any C ≥ 1. If

∞∑

j=0

α
q(x)
j = ∞, then there is nothing to prove. In the remaining case 1 <

∞∑

j=0

α
q(x)
j < ∞ we find a

non-negative integer J ∈ N0 such that

2
Jnq(x)
p0(x) <

∞∑

j=0

α
q(x)
j ≤ 2

(J+1)nq(x)
p0(x) . (3.18)

We split the sum over j ∈ N0 into two parts, apply (3.17) in the first part and use the inequality

p0(x) ≤ p1(x) together with (3.18) in the second part.

∞∑

j=0

2
jn
(

1
p1(x)

− 1
p0(x)

)
q(x)

α
q(x)
j =

J∑

j=0

2
jn
(

1
p1(x)

− 1
p0(x)

)
q(x)

α
q(x)
j +

∞∑

j=J+1

2
jn
(

1
p1(x)

− 1
p0(x)

)
q(x)

α
q(x)
j

≤ cq(x)
J∑

j=0

2
jn
(

1
p1(x)

− 1
p0(x)

)
q(x)

2
jnq(x)
p0(x) + 2

(J+1)n
(

1
p1(x)

− 1
p0(x)

)
q(x)

∞∑

j=J+1

α
q(x)
j

≤ cq(x)
J∑

j=0

2
jnq(x)
p1(x) + 2

(J+1)nq(x)
p1(x) ≤ c

q(x)
1 2

(J+1)nq(x)
p1(x)

≤ c
q(x)
1 2

nq(x)
p1(x)

( ∞∑

j=0

α
q(x)
j

) p0(x)
p1(x)

≤ Cq(x)
( ∞∑

j=0

α
q(x)
j

) p0(x)
p1(x)

.

In the last line, we used 0 < p−1 ≤ p+
1 < ∞ and again (3.18). This finishes the proof of (3.16) and

consequently of the whole Step 2.

Theorem 3.2. Let −∞ < s1(x) < s0(x) < ∞ and 0 < p0(x) < p1(x) < ∞ for all x ∈ R
n with

0 < p−0 < p+
1 < ∞,

s0(x) −
n

p0(x)
= s1(x) −

n

p1(x)
, x ∈ R

n

and

ε := inf
x∈Rn

(s0(x) − s1(x)) = n inf
x∈Rn

(
1

p0(x)
−

1

p1(x)

)
> 0. (3.19)

Let s0,
1
p0

∈ C log
1−loc(R

n). Then, for every 0 < q ≤ ∞,

f
s0(·)
p0(·),∞

→֒ f
s1(·)
p1(·),q

.

11
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Proof. We use again the notation of (3.1)-(3.4).

||γ|f
s1(·)
p1(·),q

|| =

∣∣∣∣

∣∣∣∣

( ∞∑

j=0

∑

m∈Zn

2js1(x)q|γj m|qχj m(x)

)1/q

|Lp1(·)(R
n)

∣∣∣∣

∣∣∣∣

≤

∣∣∣∣

∣∣∣∣

( ∞∑

j=0

∑

m∈Zn

2js1(x)q
(

inf
y∈Qjm

2−js0(y)h(y)
)q

χjm(x)
)1/q

|Lp1(·)(R
n)

∣∣∣∣

∣∣∣∣ (3.20)

≤

∣∣∣∣

∣∣∣∣
( ∞∑

j=0

∑

m∈Zn

2j(s1(x)−s0(x))q
(

inf
y∈Qjm

2j(s0(x)−s0(y))h(y)
)q

χjm(x)
)1/q

|Lp1(·)(R
n)

∣∣∣∣

∣∣∣∣

≤ c

∣∣∣∣

∣∣∣∣
( ∞∑

j=0

∑

m∈Zn

2
jn
(

1
p1(x)

− 1
p0(x)

)
q
(

inf
y∈Qjm

h(y)
)q

χjm(x)
)1/q

|Lp1(·)(R
n)

∣∣∣∣

∣∣∣∣.

Let again λ > 0 be a positive real number, such that
∫

Rn

(h(x)

λ

)p0(x)
dx ≤ 1. (3.21)

For almost every x ∈ R
n and every j ∈ N0 there is exactly one m = m(j) such that x ∈ Qj,m(j).

Fix one such x ∈ R
n and set

αj :=

inf
y∈Qj,m(j)

h(y)

λ
.

Then {αj}
∞
j=0 is a non-decreasing sequence of non-negative real numbers with α := lim

j→∞
αj ≤

h(x)

λ
.

Let first α ≤ 1. Then we use the monotonicity of {αj}, (3.19) and obtain for Cq ≥ (1−2−nǫq)−1

(
∞∑

j=0

C−q2
jn
(

1
p1(x)

− 1
p0(x)

)
q
αq

j

)p1(x)/q

≤

(
∞∑

j=0

C−q2
jn
(

1
p1(x)

− 1
p0(x)

)
q
αq

)p1(x)/q

=

(
∞∑

j=0

C−q2
jn
(

1
p1(x)

− 1
p0(x)

)
q

)p1(x)/q

· αp1(x) ≤ αp0(x) ≤
(h(x)

λ

)p0(x)
. (3.22)

Let us now consider the case α > 1. By (3.21), we get

1 ≥

∫

Rn

(h(x)

λ

)p0(x)
dx ≥

∫

Qj,m(j)

α
p0(x)
j dx.

If αj > 1, we may further estimate

1 ≥ 2−jnα
infy∈Qj,m(j)

p0(y)

j .

We apply Lemma 2.9 for 1
p0

to obtain an analogue of (3.17)

αj ≤ 2

jn

infy∈Qj,m(j)
p0(y)

= 2
jn

p0(x) · 2

jn

infy∈Qj,m(j)

− jn

p0(x)
≤ clog 2

jn

p0(x) (3.23)

and this estimate holds true also for αj ≤ 1.

We show, that for C > 0 large enough (cf. (3.16))

∞∑

j=0

C−q2
jn
(

1
p1(x)

− 1
p0(x)

)
q
αq

j ≤ α
qp0(x)
p1(x) . (3.24)
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As α = ∞ implies h(x) = ∞ and this happens only for a set of x ∈ R
n with measure zero, we may

choose for almost every x ∈ R
n a non-negative integer J ∈ N0 such that

2
Jn

p0(x) < α ≤ 2
(J+1)n
p0(x) (3.25)

and split
∞∑

j=0

C−q2
jn
(

1
p1(x)

− 1
p0(x)

)
q
αq

j =

J∑

j=0

. . .

︸ ︷︷ ︸
I

+

∞∑

j=J+1

. . .

︸ ︷︷ ︸
II

.

By (3.23) and (3.25)

I =

J∑

j=0

C−q2
jnq

p1(x) · 2
− jnq

p0(x) · αq
j ≤

J∑

j=0

C−qclog2
jnq

p1(x) ≤ c−12
(J+1)nq

p1(x) ≤ 2
Jnq

p1(x) ≤ α
qp0(x)
p1(x) .

The monotonicity of {αj} and (3.25) lead to

II ≤

∞∑

j=J+1

2
jn
(

1
p1(x)

− 1
p0(x)

)
q
αq

jC
−q ≤ αqC−q

∞∑

j=J+1

2
jn
(

1
p1(x)

− 1
p0(x)

)
q
≤ αqC−q2

Jn
(

1
p1(x)

− 1
p0(x)

)
q

≤ αqC−q
(
αp0(x)2−n

)( 1
p1(x)

− 1
p0(x)

)
q

= α
qp0(x)
p1(x) C−q2

n
(

1
p0(x)

− 1
p1(x)

)
q
≤ α

qp0(x)
p1(x)

This finishes the proof of (3.24). Now (3.20), (3.22), (3.24) with (3.21) gives

||γ|f
s1(·)
p1(·),q

|| ≤ C||γ|f
s0(·)
p0(·),∞

||.

Remark 3.3. The original proof of Jawerth of Theorem 1.1 used the technique of a distribution

function, which fails for Lp(·)(R
n). Another proof was given by Johnsen and Sickel [22] and relied

on an inequality of Plancherel-Pólya-Nikol’skij type. Its classical proof [34, Chapter 1.3] is based

on dilation arguments and (at least to our knowledge) there is still no analogue of these inequalities

for Lp(·)(R
n) up to now.

Our proofs of Theorems 3.1 and 3.2 were motived by [38]. An essential technique used there

was the concept of non-increasing rearrangement. Unfortunately, it fails completely in the case

of variable integrability exponents p0(x) and p1(x). To avoid this obstacle, we had to employ the

somehow artificial inequality (3.24) - or its analogue (3.16). To motivate this step, let us consider

the interpolation inequality between Lorentz spaces

||f |Lp1,q(0, 1)|| ≤ c ||f |Lp0,∞(0, 1)||θ · ||f |L∞(0, 1)||1−θ (3.26)

with

0 < p0 < p1 < ∞,
1

p1
=

θ

p0
+

1 − θ

∞
, 0 < θ < 1

and its discrete version
(

∞∑

j=0

2
−jnq( 1

p0
− 1

p1
)
f∗(2−jn)q

)1/q

≤ c
(

sup
j∈N0

2−jn/p0f∗(2−jn)
)1−

p0
p1 ·

(
sup
j∈N0

f∗(2−jn)
) p0

p1 .
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We refer to [2, Chapter 2] as a standard reference for non-increasing rearrangements and to [2,

Chapter 4.4] for the notation connected with Lorentz spaces. We leave the details to the reader.

The reader may also observe some similarities between (3.26) and the inequality (4) of [22].

Using Theorem 2.12, we obtain immediately following

Theorem 3.4. Let s0, s1, p0, p1 and q be continuous functions satisfying the Standing assumptions

of [9]. Let s0(x) ≥ s1(x) and p0(x) ≤ p1(x) for all x ∈ R
n with

s0(x) −
n

p0(x)
= s1(x) −

n

p1(x)
, x ∈ R

n.

Then

F
s0(·)
p0(·),q(·)(R

n) →֒ F
s1(·)
p1(·),q(·)(R

n).

We denote by W k
p(·)(R

n) the Sobolev space of functions form Lp(·)(R
n), such that all its distri-

butional derivatives of order smaller or equal to k exist and belong to Lp(·)(R
n). Furthermore, we

introduce the Bessel potential spaces of variable integrability introduced by Almeida and Samko

[1] and by Gurka, Harjulehto and Nekvinda [12]. Let σ ∈ R and let Bσ = F−1(1 + |ξ|2)−σ/2F be

the Bessel potential operator. We set

Lσ
p(·)(R

n) = {Bσf : f ∈ Lp(·)(R
n)}

and equip this space with norm ||f |Lσ
p(·)(R

n)|| = ||B−σf |Lp(·)(R
n)||.

Let p ∈ C log(Rn) with 1 < p− ≤ p+ < ∞ and σ ∈ [0,∞). It was shown in [9, Theorem

4.5] that F σ
p(·),2(R

n) ∼= Lσ
p(·)(R

n) in the sense of equivalent norms. If moreover σ ∈ N0, then

F σ
p(·),2(R

n) ∼= W σ
p(·)(R

n).

Hence setting q = 2 implies embeddings of Bessel potential spaces.

Theorem 3.5. Let 0 ≤ s1 ≤ s0 < ∞ and p0, p1 ∈ C log(Rn) with 1 < p−0 ≤ p0(x) ≤ p1(x) ≤ p+
1 < ∞

for all x ∈ R
n. If

s0 −
n

p0(x)
= s1 −

n

p1(x)
, x ∈ R

n,

then

Ls0

p0(·)
(Rn) →֒ Ls1

p1(·)
(Rn).

If s1 ∈ N0, then Ls1

p1(·)
(Rn) may be replaced by W s1

p1(·)
(Rn) and similarly for s0.

Remark 3.6. Let us only mention, that if 1 < p− ≤ p+ < ∞, then p ∈ C log(Rn) if, and only if,
1
p ∈ C log(Rn). So the Standing assumptions on p0 and p1 are satisfied and the proof becomes trivial.

Theorem 3.7. Let s0, s1, p0, p1, q0, q1 be continuous functions satisfying the Standing assumptions

of [9] with

s0(x) −
n

p0(x)
= s1(x) −

n

p1(x)
, x ∈ R

n

and

inf
x∈Rn

(s0(x) − s1(x)) = n inf
x∈Rn

( 1

p0(x)
−

1

p1(x)

)
> 0.
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Then

F
s0(·)
p0(·),q0(·)

(Rn) →֒ F
s1(·)
p1(·),q1(·)

(Rn).

Proof. By monotonicity and using Theorem 3.2, we obtain

f
s0(·)
p0(·),q0(·)

→֒ f
s0(·)
p0(·),∞

→֒ f
s1(·)

p1(·),q
−

1

→֒ f
s1(·)
p1(·),q1(·)

and Theorem 2.12 finishes the proof.

Finally, we may combine our embedding results with the trace results of [9] and obtain the

following Sobolev embeddings for traces. We state it for Sobolev spaces, but a similar assertion

holds also for Bessel potential spaces and Triebel-Lizorkin spaces.

Theorem 3.8. Let k ∈ N and 1 < p− ≤ p+ < n
k with 1

p ∈ C log(Rn). Then

W k
p(·)(R

n) →֒ L (n−1)p(·)
n−kp(·)

(Rn−1).

Proof. By Theorem 3.13. of [9], we have

tr W k
p(·)(R

n) → F
k− 1

p(·)

p(·),p(·)(R
n−1),

which may be combined with Theorem 3.7

F
k− 1

p(·)

p(·),p(·)
(Rn−1) →֒ F 0

p̃(·),2(R
n−1) = Lp̃(·)(R

n−1)

for p̃(·) given by

k −
1

p(·)
−

n − 1

p(·)
= −

n − 1

p̃(·)
.

This finishes the proof.
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A diagonal embedding theorem for function spaces

with dominating mixed smoothness

Jan Vyb́ıral

Abstract

The aim of this paper is to study the diagonal embeddings of function spaces
with dominating mixed smoothness. From certain point of view, this paper may be
considered as a direct continuation of [8] and [6].

AMS Classification: 42B35, 46E35

Keywords and phrases: function spaces, dominating mixed smoothness, traces

1 Introduction

Spaces with dominating mixed smoothness were introduced by S. M. Nikol’skii ([4], [5]). The
simplest case on the plane R2 are the spaces of Sobolev type

Sr
pW (R2) =

{

f |f ∈ Lp(R
2), ||f |Sr

pW (R2)|| = ||f |Lp|| +
∣
∣
∣

∣
∣
∣
∂r1f

∂xr1
1

| Lp

∣
∣
∣

∣
∣
∣+

+
∣
∣
∣

∣
∣
∣
∂r2f

∂xr2
2

| Lp

∣
∣
∣

∣
∣
∣ +

∣
∣
∣

∣
∣
∣
∂r1+r2f

∂xr1
1 ∂x

r2
2

| Lp

∣
∣
∣

∣
∣
∣ <∞

}

, (1.1)

where 1 < p < ∞, ri = 0, 1, 2, . . . ; (i = 1, 2). The mixed derivative ∂r1+r2f

∂x
r1
1 ∂x

r2
2

plays the

dominant part here and gave the name to this class of spaces.

These spaces were studied extensively by many mathematicians. We quote Amanov ([1]),
Schmeisser and Triebel ([7]) to mention at least some of them. We describe some aspects of
this theory necessary in the sequel in Section 2. Sections 3 and 4 are devoted to the study
of the trace operator

T : f(x1, x2) → f(x1, x1). (1.2)

In [8] Triebel proved that, for 1 ≤ p ≤ ∞, the trace operator (1.2) is a retraction from

S
(r1,r2)
p,1 B(R2) onto B̺

p,1(R), where ̺ = min(r1, r2, r1 + r2 −
1
p
) > 0. The q-dependence was

studied in [6]. Rodriguez proved that (1.2) is a retraction from S
(r1,r2)
p,q B(R2) onto B̺

p,q(R),
where

0 < p ≤ ∞, 0 < q <∞, ̺ > σp = max
(1

p
− 1, 0

)

and min(r1, r2) 6=
1

p
.

In the ”limiting case” min(r1, r2) = 1
p

the same result is proven for q ≤ min(1, p).

We fill some of the minor gaps left open by Rodriguez in the B-case and study the trace oper-
ator in the context of F-spaces. As these include the spaces of dominating mixed smoothness
of Sobolev type (1.1), we answer the question of their traces on the diagonal.

I would like to thank to prof. Sickel and prof. Triebel for valuable discussions on this topic.
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2 Notation and Definitions

As usual, Rd denotes the d−dimensional real Euclidean space, N the collection of all natural
numbers and N0 = N ∪ {0}. The letter Z stands for the set of all integer numbers and C

denotes the plain of complex numbers.

If x, y ∈ R
d, we write x > y if, and only if, xi > yi for every i = 1, . . . , d. Similarly, we define

the relations x ≥ y, x < y, x ≤ y. Finally, in slight abuse of notation, we write x > λ for
x ∈ Rd, λ ∈ R if xi > λ, i = 1, . . . , d.

When α = (α1, . . . , αd) ∈ N
d
0 is a multi-index, we denote its length by |α| =

∑d
j=1 αj.

Let S(Rd) be the Schwartz space of all complex–valued rapidly decreasing infinitely differ-
entiable functions on Rd. We denote the d−dimensional Fourier transform of a function
ϕ ∈ S(Rd) by ϕ̂. Its inverse is denoted by ϕ∨. Both ˆ and ∨ are extended to the dual
Schwartz space S ′(Rd) in the usual way.

We recall the basic aspects of the theory of function spaces used in the sequel. We don’t
mean to give some extensive survey on various decomposition techniques. Especially, as
far as the standard Besov (Bs

p,q(R
d)) and Triebel-Lizorkin (F s

p,q(R
d)) spaces are considered,

we use the references [9] and [10]. Furthermore, we give the definition of function spaces
with dominating mixed smoothness in general dimension. Setting d = 1, one gets the one-
dimensional version Bs

p,q(R) or F s
p,q(R), respectively.

Let ϕ ∈ S(R) with

ϕ(t) = 1 if |t| ≤ 1 and ϕ(t) = 0 if |t| ≥
3

2
. (2.1)

We put ϕ0 = ϕ, ϕ1(t) = ϕ(t/2) − ϕ(t) and

ϕj(t) = ϕ1(2
−j+1t), t ∈ R, j ∈ N.

For k = (k1, . . . , kd) ∈ Nd
0 and x = (x1, . . . , xd) ∈ Rd we define ϕk(x) = ϕk1(x1) · · ·ϕkd

(xd).
Then, since

∑

k∈Nd
0

ϕk(x) = 1 for every x ∈ R
d, (2.2)

the system {ϕk}k∈Nd
0

forms a dyadic resolution of unity with the inner tensor product struc-
ture.

Definition 2.1. Let r = (r1, . . . , rd) ∈ R
d, 0 < q ≤ ∞.

(i) Let 0 < p ≤ ∞. Then Sr
p,qB(Rd) is the collection of all f ∈ S ′(Rd) such that

||f |Sr
p,qB(Rd)||ϕ =

(∑

k∈Nd
0

2qk·r||(ϕkf̂)∨|Lp(R
d)||q

)1/q

= ||2k·r(ϕkf̂)∨|ℓq(Lp)|| (2.3)

is finite.

(ii) Let 0 < p <∞. Then Sr
p,qF (Rd) is the collection of all f ∈ S ′(Rd) such that

||f |Sr
p,qF (Rd)||ϕ =

∣
∣
∣

∣
∣
∣

(∑

k∈Nd
0

|2k·r(ϕkf̂)∨(·)|q
)1/q

|Lp(R
d)

∣
∣
∣

∣
∣
∣ = ||2k·r(ϕkf̂)∨|Lp(ℓq)|| (2.4)

is finite.
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Remark 2.2. Sometimes, we write Sr
p,qA(Rd) meaning one of spaces Sr

p,qB(Rd) or Sr
p,qF (Rd).

As mentioned above, by setting d = 1, we get Bs
p,q(R) = S

(s)
p,qB(R) and F s

p,q(R) = S
(s)
p,qF (R).

If we replace in this case the factor 2ks by (k+1)α2ks, α ∈ R, we get the spaces of generalised

smoothness A
(s,α)
p,q (R). We refer to [3] and references given there for details.

Our approach uses the full power of several decomposition techniques developed for these
function spaces in [9], [3] and [12]. They all work with sequence spaces associated to these
function spaces.

For ν ∈ N
d
0, m ∈ Z

d we denote by Qν m the cube with the centre at the point 2−νm =
(2−ν1m1, . . . , 2

−νdmd) with sides parallel to the coordinate axes and of lengths 2−ν1, . . . , 2−νd.
We denote by χν m = χQν m

the characteristic function of Qν m and by cQν m we mean a cube
concentric with Qν m with sides c times longer.

Definition 2.3. If 0 < p, q ≤ ∞, r ∈ Rd and

λ = {λν m ∈ C : ν ∈ N
d
0, m ∈ Z

d} (2.5)

then we define

sr
pqb =

{

λ : ||λ|sr
pqb|| =

(
∑

ν∈Nd
0

2ν·(r− 1
p
)q
( ∑

m∈Zd

|λν m|
p
)q/p

)1/q

<∞

}

(2.6)

and

sr
pqf =

{

λ : ||λ|sr
pqf || =

∣
∣
∣
∣

∣
∣
∣
∣

(
∑

ν∈Nd
0

∑

m∈Zd

|2ν·rλν mχν m(·)|q
)1/q

|Lp(R
d)

∣
∣
∣
∣

∣
∣
∣
∣
<∞

}

(2.7)

with the usual modification for p and/or q equal to ∞.

Remark 2.4. We point out that with λ given by (2.5) and gν(x) =
∑

m∈Zd

λν mχν m(x), we

obtain

||λ|sr
pqb|| = ||2ν·rgν |ℓq(Lp)||, ||λ|sr

pqf || = ||2ν·rgν |Lp(ℓq)||.

Definition 2.5. If 0 < p, q ≤ ∞, r, α ∈ R and

λ = {λµ n ∈ C : µ ∈ N0, n ∈ Z} (2.8)

then we define

b(r,α)
pq =

{

λ : ||λ|b(r,α)
pq || =

(
∑

µ∈N0

(µ+ 1)αq2µ(r− 1
p
)q
(∑

n∈Z

|λµ n|
p
)q/p

)1/q

<∞

}

(2.9)

and

f (r,α)
pq =

{

λ : ||λ|f (r,α)
pq || =

∣
∣
∣
∣

∣
∣
∣
∣

(
∑

µ∈N0

∑

n∈Z

|(µ+ 1)α2µrλµ nχµ n(·)|q
)1/q

|Lp(R)

∣
∣
∣
∣

∣
∣
∣
∣
<∞

}

(2.10)

with the usual modification for p and/or q equal to ∞.

3
125



Next we briefly describe the atomic and subatomic decomposition. We refer to [11] and [12]
for details. Compared to the situation there, we now concentrate on the ”regular” case,

r >







σp = max
(

1
p
− 1, 0

)

in the B-case

σpq = max
(

1
min(p,q)

− 1, 0
)

in the F-case.
(2.11)

Definition 2.6. Let K ∈ Nd
0 and γ > 1. A K-times differentiable complex-valued function

a(x) is called K-atom related to Qν m if

supp a ⊂ γQν m, (2.12)

and
|Dαa(x)| ≤ 2α·ν for 0 ≤ α ≤ K (2.13)

Theorem 2.7. Let 0 < p, q ≤ ∞, (p < ∞ in the F−case) and r ∈ Rd with (2.11). Fix

K ∈ Nd
0 with

Ki ≥ (1 + [ri])+ i = 1, . . . , d. (2.14)

Then f ∈ S ′(Rd) belongs to Sr
p,qA(Rd) if, and only if, it can be represented as

f =
∑

ν∈Nd
0

∑

m∈Zd

λν maν m(x), convergence being in S ′(Rd), (2.15)

where {aν m(x)}ν∈Nd
0,m∈Zd are K-atoms related to Qν m and λ ∈ sr

pqa. Furthermore,

inf ||λ|sr
pqa||,

where the infimum runs over all admissible representations (2.15), is an equivalent quasi-

norm in Sr
p,qA(Rd).

Definition 2.8. Let ψ ∈ S(R) be a non-negative function with

suppψ ⊂ {t ∈ R : |t| < 2φ} (2.16)

for some φ ≥ 0 and
∑

n∈Z

ψ(t− n) = 1, t ∈ R. (2.17)

We define Ψ(x) = ψ(x1) · . . . · ψ(xd) and Ψβ(x) = xβΨ(x) for x = (x1, . . . , xd) and β ∈ Nd
0.

Further let r ∈ R
d and 0 < p ≤ ∞. Then

(βqu)ν m(x) = Ψβ(2νx−m), ν ∈ N
d
0, m ∈ Z

d (2.18)

is called an β-quark related to Qν m.

Theorem 2.9. Let 0 < p, q ≤ ∞ (with p <∞ in the F-case) and r ∈ R
d with (2.11).

(i) Let

λ = {λβ : β ∈ N
d
0} with λβ = {λβ

ν m ∈ C : ν ∈ N
d
0, m ∈ Z

d}

and let ̺ > φ, where φ is the number from (2.16). Then f ∈ S ′(Rd) belongs to Sr
p,qA(Rd) if,

and only if, it can be represented as

f =
∑

β∈Nd
0

∑

ν∈Nd
0

∑

m∈Zd

λβ
ν m(βqu)ν m(x), convergence being in S ′(Rd), (2.19)
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where (βqu)ν m(x) are β-quarks related to Qν m and

sup
β∈Nd

0

2̺|β|||λβ|sr
pqa|| <∞.

Furthermore,

inf sup
β∈Nd

0

2̺|β|||λβ|sr
pqa|| <∞,

where the infimum runs over all admissible representations (2.19), is an equivalent quasi-

norm in Sr
p,qA(Rd).

Remark 2.10. According to [9], [10] and [3], similar decomposition theorems are available

also for spaces A
(s,α)
p,q (R). They may be obtained from Theorem 2.7 and Theorem 2.9 by

setting d = 1 and replacing Sr
p,qA(Rd) with A

(s,α)
p,q (R) and sr

p,qa with a
(s,α)
p,q .

Lemma 2.11. Let 0 < p <∞, 0 < q ≤ ∞, r ∈ Rd and γ1, γ2 > 0. Let

Eν m ⊂ γ1Qν m,
|Eν m|

|Qν m|
≥ γ2, ν ∈ N

d
0, m ∈ Z

d. (2.20)

Then
∣
∣
∣
∣ 2ν·r|λν m|χEν m

(·)
∣
∣Lp(ℓq)

∣
∣
∣
∣≈ ||λ|sr

p,qf ||

with constants of equivalence independent of λ.

Proof. We follow closely [2]. Namely, from (2.20) we see that

χEν m
(x) ≤ cMχQν m

(x), x ∈ R
d

and
χQν m

(x) ≤ cMχEν m
(x), x ∈ R

d.

Here M = M2 ◦M1, where

(M1f)(x) = sup
s>0

1

2s

∫ x1+s

x1−s

|f(t, x2)|dt, x = (x1, x2) ∈ R
2, (2.21)

and similar for M2.

Then we take ω > 0 such that ω < min(1, p, q) and observe

∣
∣
∣
∣ 2ν·r|λν m|χEν m

(·)
∣
∣Lp(ℓq)

∣
∣
∣
∣=

∣
∣
∣
∣ 2ν·rω|λν m|

ωχEν m
(·)

∣
∣L p

ω
(ℓ q

ω
)
∣
∣
∣
∣

1
ω

with a direct counterpart for ||λ|sr
pqf ||. This, together with the boundedness of the maximal

operator M (see [7] or [12] for details) finishes the proof.

By Γ = {(t, t) ∈ R
2 : t ∈ R} we denote the diagonal of R

2. As Γ is isomorphic to R, all the
function spaces considered so far may be taken over from the real line to Γ. In the natural
sense, we get A

(r,α)
p,q (R) = A

(r,α)
p,q (Γ) for all admissible α, p, q and r.

Finally, we discuss the notion of the trace. The trace operator Tf , as it is described in (1.2),
makes sense only when the function f satisfies some regularity conditions, especially, if it
is continuous. This is satisfied for f ∈ Sr

p,qA(R2) with r > 1
p
. To avoid this restriction, we
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use the following general definition of the trace. It is well known that S0
∞,1B(R2) →֒ C(R2).

So, for f ∈ S0
∞,1B(R2), we may define (trΓ f)(t) = f(t, t). If S(R2) is a dense subspace of

Sr
p,qA(R2) and trΓ satisfies the inequality

|| trΓ f |X(Γ)|| ≤ c||f |Sr
p,qA(R2)||, f ∈ S(R2), (2.22)

for some quasi-Banach space X(Γ) →֒ S ′(R), then there is a unique extension operator
trΓ : Sr

p,qA(R2) → X(Γ). It turns out that this defines the trΓ f for all f ∈ Sr
p,qA(R2) with

max(p, q) < ∞ and r = (r1, r2) with r large enough and this definition does not depend on
X(Γ). In the last case, q = ∞, we use the embedding Sr

p,∞A(R2) →֒ Sr−ǫ
p,1 A(R2), with ǫ > 0

small, which defines trΓ f as soon as the trace operator is defined on Sr−ǫ
p,1 A(R2).

We write trΓ : Sr
p,qA(R2) → X(Γ), if (2.22) is satisfied for all f ∈ Sr

p,qA(R2). The symbol
trΓ S

r
p,qA(R2) = X(Γ) is used to denote that trΓ : Sr

p,qA(R2) → X(Γ) and, moreover, there is
an (linear, bounded) extension operator ext : X(Γ) → Sr

p,qA(R2) such that trΓ ◦ ext = id.

Hence trΓ S
r
p,qA(R2) = X(Γ) if, and only if, trΓ is a retraction from Sr

p,qA(R2) onto X(Γ).

3 Traces of B-spaces

Theorem 3.1. Let 0 < p, q ≤ ∞, and r = (r1, r2) ∈ R2 with

0 < r1 ≤ r2, ̺ = min
(

r1, r1 + r2 −
1

p

)

> σp.

If r2 6=
1
p

or r2 = 1
p

and q ≤ min(1, p) then

trΓ S
r
p,qB(R2) = B̺

p,q(Γ).

If r2 = 1
p
, 1 ≤ min(p, q) then

trΓ S
r
p,qB(R2) = B

(r1, 1
q
−1)

p,q (Γ).

Finally, if r2 = 1
p
, p ≤ min(1, q) then

trΓ : Sr
p,qB(R2) → B

(r1, 1
q
− 1

p
)

p,q (Γ)

and

ext : B
(r1,min( 1

q
−1,0))

p,q (Γ) → Sr
p,qB(R2).
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Br2
p,q

Br1
p,q

r1
1
p

σp
0

σp

1
p

r2

B
r1+r2−

1
p

p,q

Proof. Step 1. - quarkonial decomposition, definition of trΓ f

Let f ∈ Sr
p,qB(R2). According to Theorem 2.9, f may be decomposed as

f =
∑

β∈N2
0

fβ, fβ(x) =
∑

ν∈N2
0

∑

m∈Z2

λβ
ν m(βqu)ν m(x) (3.1)

with
sup
β∈N2

0

2̺|β|||λβ|sr
p,qb|| ≈ ||f |Sr

p,qB(R2)||. (3.2)

We point out that we may assume taht the coefficients λ of the optimal quarkonial decom-
position (3.1) depend linearly on f . We refer again to [10] and [12] for detailed discussion of
this effect.

Naturally, we define

trΓ f =
∑

β∈N2
0

(trΓ f)β, (trΓ f)β(t) =
∑

ν∈N2
0

∑

m∈Z2

λβ
ν m(βqu)ν m(t, t). (3.3)

In (3.3) we may restrict to m from

Bν = {m ∈ Z
2 : supp(βqu)ν m ∩ Γ 6= ∅}.

Next we split

Bν =
⋃

n∈Z

Bν n (3.4)

such that
sup
ν,n

|Bν n| <∞ (3.5)

and, for µ = max(ν1, ν2),

{t : (βqu)ν m(t, t) 6= 0} ⊂ (2−µ(n− c), 2−µ(n + c)), m ∈ Bν n, (3.6)

for some fixed constant c > 0.
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Using this new notation, we rewrite (3.3).

(trΓ f)β(t) =
∞∑

µ=0

∑

n∈Z

∑

ν∈N2
0

max(ν1,ν2)=µ

∑

m∈Bν n

λβ
ν m(βqu)ν m(t, t) =

∞∑

µ=0

∑

n∈Z

γβ
µ na

β
µ n(t), (3.7)

where
γβ

µ n = 2φ|β|
∑

ν∈N2
0

max(ν1,ν2)=µ

∑

m∈Bν n

|λβ
ν m|.

We have to prove that

1. aβ
µ n are atoms according to Definition 2.6, for d = 1, related to (µ, n).

2. ||γβ|b̺p,q|| ≤ c2φ|β|||λβ|sr
p,qb||, resp. ||γβ|b

(r1,α)
p,q || ≤ c2φ|β|||λβ|sr

p,qb|| (♣)

3. trΓ f defined by (3.3) coincides with the trace operator introduced in Section 2.

It is easy to prove the first statement. The support property (2.12) follows directly from
(3.6). Also the second property (2.13) is satisfied (up to some constant which depends only
on ψ from Definition 2.8). To prove the third statement, consider f ∈ S0

∞,1B(R2). Then
λβ ∈ s0

∞1b for every β ∈ Nd
0 and the series in (3.1) both converge uniformly on R2. So, for

f ∈ S0
∞,1B(R2), trΓ f defined by (3.3) coincides with the trace operator of Section 2. Using

density arguments, this may be extended to all f ∈ Sr
p,qB(R2).

So, in the following we concentrate on the proof of (♣).

This will finish the first part of the proof, namely the existence and boundedness of the trace
operator trΓ : Sr

p,qB(R2) → B̺
p,q(Γ). To see that, denote ω = min(1, p, q) and write

|| trΓ f |B
̺
p,q(Γ)||ω ≤

∑

β∈N2
0

||(trΓ f)β|B
̺
p,q(Γ)||ω ≤ c

∑

β∈N2
0

||γβ|b̺p,q||

≤ c
∑

β∈N2
0

2φ|β|||λβ|sr
p,qb|| ≤ c sup

β∈N2
0

2̺|β|||λβ|sr
p,qb|| ≤ c ||f |Sr

p,qB(R2)||.

Step 2. - Proof of (♣). We take β ∈ N2
0 fixed and suppose, that the sequence

λβ = λ = {λν,m : ν ∈ N
2
0, m ∈ Bν}

is given. Then we set

γµ n =
∑

ν∈N2
0

max(ν1,ν2)=µ

∑

m∈Bν n

|λν m|, µ ∈ N0, n ∈ Z.

We recall (3.4) for the relation of Bν n and Bν .

Finally, we denote

α(ν) = max(ν1, ν2)
(

̺−
1

p

)

− ν ·
(

r −
1

p

)

(3.8)

and

β =

{
1
q
− 1

min(1,p)
, if r2 = 1

p
and q ≥ min(1, p),

0 in other cases.
(3.9)
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Next, we point out that, if ̺ = r1,

α(ν) =

{

ν2(r1 − r2) − ν1(r1 −
1
p
) ≤ −ν1(r2 −

1
p
) for ν1 ≤ ν2,

−ν2(r2 −
1
p
) for ν1 ≥ ν2.

(3.10)

and, for ̺ = r1 + r2 −
1
p
,

α(ν) =

{

(ν2 − ν1)(r1 −
1
p
) ≤ 0 for ν1 ≤ ν2,

(ν1 − ν2)(r2 −
1
p
) ≤ 0 for ν1 ≥ ν2.

(3.11)

The estimates (3.10) and (3.11) play a crucial role in the following calculations.

We need to prove that

||{γµn}|ℓq((µ+ 1)β2µ(̺− 1
p
)ℓp)|| ≤ c ||{λν m}|ℓq(2

ν·(r− 1
p
)ℓp)||, (3.12)

where ℓp and ℓq on the left-hand side denotes sequence spaces with one-dimensional summa-
tion and the same symbols stand for sequence spaces with two-dimensional summation on
the right hand side.

If p ≤ 1, then

∑

n∈Z

γp
µ n ≤

∑

n∈Z

∑

ν∈N
2
0

max(ν1,ν2)=µ

∑

m∈Bν n

|λβ
ν m|

p =
∑

ν∈N
2
0

max(ν1,ν2)=µ

∑

m∈Bν

|λβ
ν m|

p. (3.13)

And if q
p
≤ 1( =⇒ β = 0), we get immediately,

∞∑

µ=0

2µ(̺− 1
p
)q
(∑

n∈Z

γp
µ n

) q
p

≤
∞∑

µ=0

2µ(̺− 1
p
)q

∑

ν∈N2
0

max(ν1,ν2)=µ

( ∑

m∈Bν

|λβ
ν m|

p
) q

p

.

This, together with (3.8)–(3.11), finishes the proof of (3.12) for 0 < q ≤ p ≤ 1.

If p ≤ 1 and q
p
> 1, we get by (3.13) and Hölder’s inequality

∞∑

µ=0

(µ+ 1)βq2µ(̺− 1
p
)q
(∑

n∈Z

γp
µ n

) q
p

≤
∞∑

µ=0

(µ+ 1)βq
( ∑

ν∈N2
0

max(ν1,ν2)=µ

2ν·(r− 1
p
)p+α(ν)p

∑

m∈Bν

|λν m|
p
) q

p

≤

≤
∞∑

µ=0

(µ+ 1)βq
( ∑

ν∈N2
0

max(ν1,ν2)=µ

2ν·(r− 1
p
)p q

p
( ∑

m∈Bν

|λν m|
p
) q

p

)

·
( ∑

ν∈N2
0

max(ν1,ν2)=µ

2α(ν)p( q
p
)′
)

q
p

(
q
p )′

.

Here ( q
p
)′ = q

q−p
is the conjugated index to q

p
.

So, if r2 6= 1
p
, then β = 0 and, according to (3.10) and (3.11), the last sum is uniformly

bounded and the result follows. If r2 = 1
p
, the last sum is ≤ c (µ + 1)

q/p

(
q
p )′ = c (µ + 1)

q−p
p =

(µ+ 1)−βq.
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Next we consider p > 1. From (3.5) we get

∑

m∈Bν n

|λν m| ≤ c (
∑

m∈Bν n

|λν m|
p)

1
p

︸ ︷︷ ︸

aν n

, n ∈ Z, ν ∈ N
2
0. (3.14)

By this notation, we get

∞∑

µ=0

(µ+ 1)βq2µ(̺− 1
p
)q
(∑

n∈Z

γp
µ n

) q
p
≤

∞∑

µ=0

(µ+ 1)βq2µ(̺− 1
p
)q
(∑

n∈Z

( ∑

ν∈N2
0

max(ν1,ν2)=µ

aν n

)p) q
p
≤

≤
∞∑

µ=0

(µ+ 1)βq2µ(̺− 1
p
)q
( ∑

ν∈N2
0

max(ν1,ν2)=µ

(∑

n∈Z

ap
ν n

) 1
p

)q

, (3.15)

where in the last step we have used the Minkowski’s inequality (p > 1).

If q ≤ 1( =⇒ β = 0), we may estimate the last expression from above by

∞∑

µ=0

2µ(̺− 1
p
)q

∑

ν∈N2
0

max(ν1,ν2)=µ

(∑

n∈Z

ap
ν n

) q
p

=
∑

ν∈N2
0

2ν·(r− 1
p
)2α(ν)

( ∑

m∈Bν

|λν m|
p
) q

p
.

As α(ν) ≤ 0 for all ν ∈ N2
0, this finishes the proof.

If q > 1, we continue in (3.15) using Hölder’s inequality.

LHS(3.15) ≤
∞∑

µ=0

(µ+ 1)βq
( ∑

ν∈N
2
0

max(ν1,ν2)=µ

2ν·(r− 1
p
)+α(ν)

(∑

n∈Z

ap
ν n

) 1
p

)q

≤
∞∑

µ=0

(µ+ 1)βq
( ∑

ν∈N
2
0

max(ν1,ν2)=µ

2ν·(r− 1
p
)q
(∑

n∈Z

ap
ν n

) q
p

)

·
( ∑

ν∈N
2
0

max(ν1,ν2)=µ

2α(ν)q′
) q

q′

If now r2 6=
1
p
, then the last sum is uniformly bounded for all µ ∈ N0 and we get the desired

estimate. If r2 = 1
p

we get the same estimate with additional factor (µ+ 1)q−1 = (µ+ 1)−βq.

Step 2. - extension operators

In this step we prove the boundedness of the corresponding extension operators.

We fix f ∈ B̺
p,q(Γ) (or f ∈ B

(̺, 1
q
−1)

p,q (Γ), respectively). Then it may be decomposed into
quarks

f =

∞∑

β=0

fβ =

∞∑

β=0

∞∑

µ=0

∑

n∈Z

λβ
µ,n(βqu)µ,n,

where the coefficients {λβ
µ,n} depend linearly on f and belong to the corresponding sequence

space b̺p,q or b
(̺, 1

q
−1)

p,q . Moreover,

sup
β∈N

2ρβ ||λβ|b(̺,α)
p,q || ≈ ||f |B(̺,α)

p,q (R)||

10
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with constants independent of f .

We define

aβ
(ν1,ν2)(m1,m2)(x1, x2) =

{

(βqu)ν1,m1(x1)h(2
ν2(x2 − 2−ν1m1)), ν2 ≤ ν1, m2 = [2ν2−ν1m1 + 1

2
]

(βqu)ν2,m2(x2)h(2
ν1(x1 − 2−ν2m2)), ν1 ≤ ν2, m1 = [2ν1−ν2m2 + 1

2
],

where h ∈ S(R) with h(t) = 1 for |t| ≤ 2φ and h(t) = 0 for |t| ≥ 2φ+1 and φ is the constant
in (2.16). This definition ensures that 2−φβaβ

ν m are K-atoms for every fixed K ∈ N2
0 up to

some constant which depends only on the function ψ involved in the definition of quarks and
K.

If now r2 >
1
p

or r2 = 1
p

and q ≤ min(1, p) then {λβ
µ,n} ∈ br1

p,q with supβ∈N0
2ρβ ||λ|br1

p,q|| ≤

c||f |Br1
p,q(R)||. We define

γβ

(µ,0)(n,[2−µn+ 1
2
])

= λβ
µ,n, µ ∈ N0, n ∈ Z (3.16)

and zero otherwise. Finally we set

ext f =

∞∑

β=0

ext fβ =

∞∑

β=0

∑

ν∈N2
0

∑

m∈Z2

γβ
ν ma

β
ν m (3.17)

and observe that for ω = min(1, p, q)

|| ext f |Sr
p,qB(R2)||ω ≤

∞∑

β=0

|| ext fβ|Sr
p,qB(R2)||ω ≤ c

∞∑

β=0

2φβω||γβ|sr
p,qb||

ω

≤ c sup
β∈N0

2ρβω||γβ|sr
p,qb||

ω = c sup
β∈N0

2ρβω

(
∑

ν∈N2
0

2ν·(r− 1
p
)q
( ∑

m∈Z2

|γβ
ν m|

p
)q/p

)ω/q

(3.18)

= c sup
β∈N0

2ρβω

( ∞∑

µ=0

2µ(r1−
1
p
)q
(∑

n∈Z

|λβ
µn|

p
)q/p

)ω/q

(3.19)

= c sup
β∈N0

2ρβω||λβ|br1
p,q||

ω ≤ c||f |Br1
p,q(R)||ω.

Furthermore, the definition of aβ
ν m ensures that tr ◦ ext f = f

The case r2 <
1
p

follows the same scheme. We define

γβ
(µ,µ)(n,n) = λβ

µ,n, µ ∈ N, n ∈ Z (3.20)

and γβ
ν m = 0 otherwise. We get now similarly to (3.18)

||γβ|sr
p,qb|| =

(
∑

ν∈N2
0

2ν·(r− 1
p
)q
( ∑

m∈Z2

|γβ
ν m|

p
)q/p

)1/q

=

( ∞∑

µ=0

2µ(r1+r2−
2
p
)q
(∑

n∈Z

|λβ
µ n|

p
)q/p

)1/q

= ||λβ|b̺p,q||.
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Finally, in the case r2 = 1
p
, q > 1 and q > p we set for 0 ≤ ν2 ≤ µ

γβ
(µ,ν2)(n,ñ) = (µ+ 1)−1λβ

µ,n, ñ = [2ν22−µn +
1

2
]

and zero otherwise. Then we get for β = 1
q
− 1

||γβ|sr
p,qb|| =

(
∑

ν∈N2
0

2ν·(r− 1
p
)q
( ∑

m∈Z2

|γβ
ν m|

p
)q/p

)1/q

=

( ∞∑

µ=0

2µ(r1−
1
p
)q(µ+ 1)

(∑

n∈Z

|(µ+ 1)−1λβ
µ n|

p
)q/p

)1/q

= ||λβ|b(̺,β)
p,q ||.

4 Traces of F spaces

Theorem 4.1. Let

0 < p <∞, 0 < q ≤ ∞, 0 < r1 ≤ r2

with

̺ = min
(

r1, r1 + r2 −
1

p

)

> σp,q.

If r2 >
1
p

then

trΓ S
r
p,qF (R2) = F ̺

p,q(Γ). (4.1)

If r2 <
1
p

then

trΓ S
r
p,qF (R2) = F ̺

p,p(Γ) = B̺
p,p(Γ). (4.2)

If r2 = 1
p

and p ≤ min(1, q) then

trΓ S
r
p,qF (R2) = F r1

p,q(Γ). (4.3)

If r2 = 1
p

and q < p ≤ 1 then

trΓ S
r
p,qF (R2) = F r1

p,p(Γ). (4.4)

If r2 = 1
p

and 1 ≤ p ≤ q then

trΓ : Sr
p,qF (R2) → F

(r1, 1
q
−1)

p,q (Γ). (4.5)

Finally, if r2 = 1
p

and p ≥ max(1, q) then

trΓ : Sr
p,qF (R2) → F

(r1, 1
p
−1)

p,p (Γ). (4.6)
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r1
1
p

0

1
p

r2

F r1
p,q

F r2
p,q

σpq

σpq

B
r1+r2−

1
p

p,p

Proof. We recall our task. We use again the notation (3.1)-(3.13).

We suppose, that the sequence

λ = {λν,m : ν ∈ N
2
0, m ∈ Bν}

is given. Then we set

γµ n =
∑

ν∈N
2
0

max(ν1,ν2)=µ

∑

m∈Bν n

|λν m|. (4.7)

and recall (3.4) for the relation of Bµ n and Bν . We need to prove that (r2 >
1
p
)

||{γµn}|f
r1
p,q|| ≤ c ||{λν m}|s

r
p,qf || (4.8)

or (r2 <
1
p
)

||{γµn}|f
r1+r2−

1
p

p,p || ≤ c ||{λν m}|s
r
p,qf || (4.9)

respectively.

We split (4.7) into two parts,

γ(1)
µn =

µ
∑

ν2=0

∑

m∈B(µ,ν2),n

|λ(µ,ν2),m|, γ(2)
µn =

µ
∑

ν1=0

∑

m∈B(ν1,µ),n

|λ(ν1,µ),m| (4.10)

and prove (4.8) and (4.9) for both these parts separately.

Step 1.

We start with the case r2 >
1
p
. We recall the definitions of sequence spaces involved in (4.8)

and obtain

||{γµn}|f
r1
p,q||

p =

∫ ∞

−∞

( ∞∑

µ=0

∑

n∈Z

|2µr1γµ nχµ n(x1)|
q
)p

q

dx1

and

||{λν m}|s
r
p,qf ||

p ≥ c

∫ ∞

−∞

∫ x1+1

x1−1

(∑

ν∈N2
0

∑

m∈Bν

|2ν·rλν mχν m(x1, x2)|
q
)p

q

dx2dx1.

13
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So, to prove (4.8) for γ(1), it is enough to prove

( ∞∑

µ=0

∑

n∈Z

|2µr1γ(1)
µ nχµ n(x1)|

q
)p

q
≤ c

∫ 1

−1

(∑

ν∈N2
0

∑

m∈Bν

|2ν·rλν mχν m(x1, x1 + x2)|
q
) p

q
dx2 (4.11)

for every fixed x1.

Finally, we try to change the notation in such a way that we could switch from integrals to
sums. With x1 being fixed, there is only one n = n(µ) such that χµ n(x1) = 1. We denote

γ
(1)
µ = γ

(1)
µ n(µ). So, the left hand side of (4.11) reduces to

( ∞∑

µ=0

|2µr1γ(1)
µ |q

)p
q

.

Finally, as a direct corollary of (3.5), we may suppose, that each Bν n contains only one
element. So, to every µ ∈ N0 and every ν1 ≤ µ there is a unique m = m(µ, ν2) ∈ B(µ,ν2) n(µ).
We denote λ(µ,ν2) = λ(µ,ν2) m(µ,ν2).

We reformulate once more our task. We start with a given sequence

λ = {λν : ν ∈ N
2
0, ν1 ≥ ν2},

and define

γµ =

µ
∑

ν2=0

|λ(µ,ν2)|.

Finally, we use the Lemma 2.11 and choose the sets Eν m such that E(µ,ν2),m(µ,ν2) and
E(µ,ν′

2),m(µ,ν′

2) are disjoint for ν2 6= ν ′2.

E(3,3)

E(3,2)

E(3,1)

E(3,0)

x1

x2

It turns out, that it is enough to prove that

( ∞∑

µ=0

|2µr1γµ|
q
)p

q
≤ c

∞∑

j=0

2−j
( ∞∑

µ=j

|2µr1+jr2λ(µ,j)|
q
) p

q
(4.12)
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with c independent on the starting sequence λ. We just mention, that the j−sum comes
from decomposition of the integral in (4.11) according to the supports of χν m involved.

First we discuss the case q ≤ 1. In that case,

γq
µ ≤

µ
∑

ν2=0

|λ(µ,ν2)|
q ≤

µ
∑

ν2=0

2ν2(r2−
1
p
)q|λ(µ,ν2)|

q.

If moreover p
q
≤ 1,

( ∞∑

µ=0

2µr1qγq
µ

)p
q
≤

( ∞∑

µ=0

2µr1q

µ∑

ν2=0

2ν2(r2−
1
p
)q|λ(µ,ν2)|

q
) p

q

=
( ∞∑

ν2=0

2−ν2
q
p

∞∑

µ=ν2

|2µr1+ν2r2λ(µ,ν2)|
q
)p

q

≤ c

∞∑

ν2=0

2−ν2

( ∞∑

µ=ν2

|2µr1+ν2r2λ(µ,ν2)|
q
) p

q

This proves (4.12) for p ≤ q ≤ 1 and r2 ≥
1
p
.

In the case q ≤ 1, q < p we denote

bqν2
=

∞∑

µ=ν2

|2µr1λ(µ,ν2)|
q.

By this notation, the right-hand side of (4.12) may be rewritten like

RHS(4.12) =
∞∑

ν2=0

2−ν2

(

2ν2r2qbqν2

) p
q

=
∞∑

ν2=0

2ν2(r2−
1
p
)pbpν2

and the left-hand side may be estimated by

(
∞∑

µ=0

|2µr1γ(1)
µ |q

) p
q≤

(
∞∑

ν2=0

bqν2

) p
q .

This (and Hölder’s inequality) finishes the proof of (4.12) for r2 >
1
p

and q ≤ 1, q < p.

Next, we take q > 1. We denote β = − 1
q′

= 1
q
− 1 if r2 = 1

p
and β = 0 if r2 >

1
p
.

By Hölder’s inequality we get

γµ ≤ c (µ+ 1)−β
( µ

∑

ν2=0

2ν2(r2−
1
p
)q|λµ,ν2|

q
) 1

q
, µ ∈ N0.

Hence, for p ≤ q,

(
∞∑

µ=0

(µ+ 1)βq2µr1qγq
µ

)p
q ≤ c

( ∞∑

µ=0

2µr1q

µ
∑

ν2=0

2ν2(r2−
1
p
)q|λµ,ν2|

q
) p

q

= c
( ∞∑

ν2=0

2−ν2
q
p

∞∑

µ=ν2

2µr1q+ν2r2q|λ(µ,ν2)|
q
) p

q

≤ c

∞∑

ν2=0

2−ν2

( ∞∑

µ=ν2

2µr1q+ν2r2q|λ(µ,ν2)|
q
) p

q
.
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This finishes the proof of (4.12) for max(p, 1) ≤ q and r2 >
1
p
. But for r2 = 1

p
this also

proves the generalisation of (4.12), where 2µr1 is replaced by (µ + 1)β2µr1 on the left-hand
side. Hence, also the boundedness of the trace operator in (4.5) follows.

For p > q > 1 and r2 −
1
p
> ε > 0 we get similarly

γµ ≤ c
( µ

∑

ν2=0

2ν2(r2−
1
p
−ε)q|λµ,ν2|

q
) 1

q

and

(
∞∑

µ=0

2µr1qγq
µ

) p
q ≤ c

( ∞∑

ν2=0

2ν2(r2−
1
p
−ε)qbqν2

)p
q

≤ c

∞∑

ν2=0

(

2ν2(r2−
1
p
)qbqν2

)p
q

This finishes the boundedness of the trace operator for r2 >
1
p
. In the case of r2 = 1

p
, we have

only discussed the cases p ≤ q ≤ 1 and 1 ≤ p ≤ q. To complete the proof in those cases,
where the result depends on q, we consider p ≤ 1 ≤ q. We get by Minkowski’s inequality

( ∞∑

µ=0

2µr1q
(

µ
∑

ν2=0

|λ(µ,ν2)|
)q

) p
q
≤

( ∞∑

ν2=0

(
∞∑

µ=ν2

2µr1q|λ(µ,ν2)|
q
) 1

q

)p

≤
∞∑

ν2=0

( ∞∑

µ=ν2

2µr1q|λ(µ,ν2)|
q
) p

q

= RHS(4.12).

Finally, to prove the boundedness of the trace operator in (4.4) and (4.6) we use the embed-
ding

Sr
p,qF (R2) →֒ Sr

p,pB(R2),

which holds for q ≤ p, and Theorem 3.1.

Step 2.

Next we discuss the remaining case 0 < r1 ≤ r2 <
1
p
, ̺ = r1 + r2 −

1
p
> σp,q.

We now need to prove (4.9). We introduce again the same notation as in the Step 1. and
replace (4.12) by

∞∑

µ=0

|2µ̺γ(1)
µ |p ≤ c

∞∑

j=0

2−j
( ∞∑

µ=j

|2µr1+jr2λ(µ,j)|
q
)p

q
. (4.13)

Finally, we prove (4.13) for all 0 < q ≤ ∞ if we prove it for q = ∞. We denote

aν2 = sup
µ≥ν2

2µr1 |λ(µ,ν2)|, ν2 ∈ N0.

Then the right-hand side of (4.13) may be (for q = ∞) rewritten as

RHS(4.13) = c

∞∑

ν2=0

2−ν2
(

sup
µ≥ν2

2µr1+ν2r2 |λµ,ν2|
)p

= c

∞∑

ν2=0

2−ν2+ν2r2pap
ν2
.

As for the left-hand side in (4.13), we get for p ≤ 1

LHS(4.13) ≤
∞∑

µ=0

2µ̺p

µ
∑

ν2=0

|λµ,ν2|
p =

∞∑

ν2=0

∞∑

µ=ν2

2µ̺p|λµ,ν2|
p ≤ c

∞∑

ν2=0

2ν2(r2−
1
p
)pap

ν2
.
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For p > 1 we denote ǫ = 1
p
− r2 > 0 and get

LHS(4.13) =
∞∑

µ=0

2µr1p−µǫp
( µ

∑

ν2=0

2(µ−ν2)ǫ/2−(µ−ν2)ǫ/2|λµ,ν2|
)p

≤
∞∑

µ=0

2µr1p−µǫp
(

µ
∑

ν2=0

2(µ−ν2)pǫ/2|λµ,ν2|
p
)(

µ
∑

ν2=0

2−(µ−ν2)p′ǫ/2
)p/p′

≤ c

∞∑

ν2=0

∞∑

µ=ν2

2µr1p−µǫp+(µ−ν2)pǫ/2|λµ,ν2|
p

≤ c

∞∑

ν2=0

2−ν2pǫ/2ap
ν2

∞∑

µ=ν2

2−µǫp+µpǫ/2 ≤ c

∞∑

ν2=0

2−ν2ǫpap
ν2
.

This finishes the proof of (4.8) and (4.9) for γ(1). One could follow the same arguments also
for γ(2). Alternatively, to a given sequence

λ = {λν : ν ∈ N
2
0, ν1 ≤ ν2}

we consider a sequence
λ = {λν : ν ∈ N

2
0, ν1 ≥ ν2}

defined by λ(ν1,ν2) = λ(ν2,ν1) and use (4.12) for γ(1) associated with λ. In this way, we prove
(4.8) and (4.9) for γ(2) and finish the proof of boundedness of the trace operator.

Step 3.

Next, we consider the corresponding extension operators. We use the same operators as in
the B-case. The first one (given by (3.16) and (3.17)) gives an extension operator in the case
r2 >

1
p
. To prove the corresponding inequality on the sequence space level, we again fix x1

and prove a pointwise inequality, which now reduces to trivial

( ∞∑

µ=0

2µr1q
(

µ
∑

ν2=0

|γµ,ν2|
)q

)p/q

=
(

∞∑

µ=0

2µr1q|λµ|
q
)p/q

.

The same operator proves also (4.3).

The second operator, characterised by (3.17) and (3.20) gives an extension operator for
r2 <

1
p

and in (4.4). We omit the trivial calculation.
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Traces of Functions with a Dominating Mixed Derivative in R
3

Jan Vyb́ıral and Winfried Sickel

Abstract

We investigate traces of functions, belonging to a class of functions with dominating mixed

smoothness in R3, with respect to planes in oblique position. In comparison with the classi-

cal theory for isotropic spaces a few new phenomenona occur. We shall present two different

approaches. One is based on the use of the Fourier transform and restricted to p = 2. The

other one is applicable in the general case of Besov-Lizorkin-Triebel spaces and based on atomic

decompositions.

AMS Classification: 42B35, 46E35

Keywords and phrases: Sobolev spaces of dominating mixed smoothness, Besov and Lizorkin-

Triebel classes of dominating mixed smoothness, Fourier analytic characterizations, atomic decom-

positions, traces on hyperplanes in oblique position.

1 Introduction

Sobolev spaces with dominating mixed smoothness Sr
pW (Rd) have been introduced in 1962 by

S.M. Nikol’skij, see [Ni1, Ni2], originally in connection with some partial differential equations.

Later on there has been some interest in these type of spaces as special cases of vector-valued Sobolev

spaces (Sr,...,r
p W (Rd) can be interpreted as an iterated version of the Sobolev spaces W r

p (R)), see

Grisvard [Gr], Sparr [Sp] and Schmeißer [Sc]. At the end of the eighties Triebel [Tr1], motivated by

problems in connection with eigenvalue distributions of integral operators, investigated the trace

problem with respect to the diagonal x1 = x2 for the Besov spaces Sr,r
p,1B(R2). In recent years there

is an increasing interest in function spaces with a dominating mixed derivative in connection with

the numerical solution of some special partial differential equations or integral equations, see e.g.

Griebel, Oswald, Schiekofer [GOS], Yserentant [Ys1, Ys2], Nitzsche [Ni] or Bungartz and Griebel

[BG].

We are interested in the description of the trace classes of Sr1,r2,r3
p W (R3) (and more general function

spaces) with respect to an hyperplane in oblique position. Since at least twenty years the situation

is well understood if the trace is taken with respect to hyperplanes parallel to the coordinate axes,

cf. e.g. the monographs Amanov [Am], Gelman, Maz’ya [GM] (p = 2) and Schmeißer, Triebel [ST].

However, there is an essential difference in case that the hyperplane is in an oblique position. First

observations in this direction have been made by Triebel [Tr1] in the two-dimensional case, later

continued by Rodriguez [Ro] and complemented by the first author, see [Vy3]. To our own surprise

the problem for d = 3 turned out to be more complicated. New phenomenona occur. Whereas

for d = 2 almost all trace classes of Sobolev and Besov-Lizorkin-Triebel spaces are again Besov or

1
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Lizorkin-Triebel classes (in some limiting cases of generalized smoothness, see [Vy3]) the situation

changes with d = 3. Here it turns out that the trace classes can be described as the sum of three

different function spaces of dominating mixed smoothness. In proving such a statement we offer

two different approaches. The first one is restricted to p = 2 and uses elementary properties of

the Fourier transform. In this simplified situation we are also able to establish a characterization

of the trace class of Sr1,r2,r3

2 W (R3) as a L2-space with a weight in the Fourier image. For p 6= 2

one is confronted with difficult Fourier multiplier assertions. To circumvent this we apply the

characterization of these classes by atoms which works also in the more general case of Besov and

Lizorkin-Triebel spaces. However, the description of the trace classes found in this way is not very

transparent. Here some further progress would be desirable.

To explain a part of the difficulties let us consider an example. We equip the hyperplane x1 +x2 +

x3 = 0 with an orthogonal basis

O = {~σ1, ~σ2}, ~σ1 = (σ1,1, σ1,2, σ1,3) ∈ Γ, ~σ2 = (σ2,1, σ2,2, σ2,3) ∈ Γ, ~σ1 ⊥ ~σ2 . (1.1)

Then we associate to this basis the corresponding ”orthogonal” trace operator

(trO f)(z1, z2) = f(z1~σ1 + z2~σ2), z1, z2 ∈ R. (1.2)

Now we consider the following family of functions

fλ(x1, x2, x3) := ψ(x1)ψ(x2)ψ(x3) |x3|λ , (x1, x2, x3) ∈ R
3 , λ ∈ R ,

where ψ : R → R is a smooth cut-off function supported around the origin. Such a function fλ

belongs to Sr,r,r
p W (R3) if λ > r − 1/p. But the regularity of the function

gλ(z1, z2) = ψ(σ1,1z1 + σ2,1z2)ψ(σ1,2z1 + σ2,2z2)ψ(σ1,3z1 + σ2,3z2) |σ1,3z1 + σ2,3z2|λ

depends on O. The function gλ belongs to Sr,r
p W (R2), λ > r − 1/p, if either σ1,3 = 0 or σ2,3 = 0.

If σ1,3 · σ2,3 6= 0, then gλ belongs to St,t
p W (R2), λ > 2 t− 1/p. As a consequence the description of

the traces of Sr1,r2,r3
p W (R3) to the hyperplane x1 + x2 + x3 = 0 must depend on the chosen basis

O.

The paper is organized as follows. In Section 2 we start with a general discussion of the notion of

the trace and continue with a detailed investigation of the trace problem for the Sobolev spaces

of dominating smoothness built on L2(R
3). Here we shall apply methods from Fourier analysis.

In case p 6= 2, treated in Section 3, the situation becomes more complicated and we switch to the

powerful but less transparent method of decompositions of functions into small building blocks like

atoms. By means of those decompositions we are able to describe the trace classes for the general

case of Besov and Lizorkin-Triebel classes. Our main results are contained in Theorems 2.11, 3.10,

and 3.14.

2
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2 The Trace of Sobolev Spaces of Dominating Mixed Smoothness

Sr
2(R

3)

2.1 Sobolev Spaces of Dominating Mixed Smoothness

Let 1 < p < ∞ and r = (r1, . . . , rd) ∈ N
d
0 (N0 denotes the natural numbers including 0). The

Sobolev space of dominating mixed smoothness r = (r1, . . . , rd) is the collection of all functions

f ∈ Lp(R
d) such that

Dαf ∈ Lp(R
d) , 0 ≤ αi ≤ ri , i = 1, . . . , d ,

endowed with the norm

‖ f |Sr
pW (Rd)‖ :=

∑

α≤r

‖Dαf |Lp(R
d)‖ . (2.1)

Here α ≤ r means αi ≤ ri, i = 1, . . . , d.

The mixed derivative ∂r1+ ... +rdf

∂x
r1
1

... ∂x
rd
d

plays a dominant part here and this fact is responsible for

the name of these classes. Based on a Fourier multiplier theorem of Lizorkin one can prove a

characterization of these classes using the Fourier transfom. Let S(Rd) denote the class of all

complex-valued rapidly decreasing infinitely differentiable functions defined on R
d. By S ′(Rd) we

mean the collection of all tempered distributions and F and F−1 denote the Fourier transform

and its inverse, respectively, both defined on S ′(Rd). Then f ∈ S ′(Rd) belongs to Sr
pW (Rd) if and

only if

F−1
(
(1 + |ξ1|2)r1/2 . . . (1 + |ξd|2)rd/2 Ff(ξ)

)
( · ) ∈ Lp(R

d) .

Furthermore, the norms ‖ f |Sr
pW (Rd)‖ and

‖ f |Sr
pW (Rd)‖∗ :=

∥∥∥F−1
( d∏

i=1

(1 + |ξi|2)ri/2 Ff(ξ)
)
( · )
∣∣∣Lp(R

d)
∥∥∥ (2.2)

are equivalent, cf. e.g. [ST, 2.3.1]. The Fourier-analytic description can be taken to generalize

these Sobolev spaces to fractional and negative order of smoothness, cf. [ST, Chapt. 2]. We will

take (2.2) as the definition of Sr
pW (Rd) if r = (r1, . . . , rd), ri ∈ R, i = 1, . . . , d.

2.2 Some new Function Spaces

As it will become clear below the description of the trace spaces will lead to some new Sobolev-type

spaces. For us it will be sufficient to introduce these classes in the two-dimensional setting. For

the rest of this section we concentrate on p = 2.

Let M be a 2 × 2-matrix,

M =

(
a c

b d

)
, detM 6= 0 , and let ~η1 =

(
a

b

)
, ~η2 =

(
c

d

)
. (2.3)

3
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Definition 2.1. Let M, ~η1, ~η2 be as in (2.3). Let r1, r2 ∈ R. Then Sr1,r2

2 W (M,R2) denotes the

collection of all tempered distributions f ∈ S ′(R2) such that f ◦M ∈ Sr1,r2

2 W (R2). We endow this

class with the norm

‖ f |Sr1,r2

2 W (M,R2)‖ := ‖ f ◦M|Sr1,r2

2 W (R2)‖ .

The following properties of these classes are immediate.

Lemma 2.2. Let M, ~η1, ~η2 be as in (2.3). Let r1, r2 ∈ R.

(i) The classes Sr1,r2

2 W (M,R2) are Banach spaces continuously embedded into S ′(R2).

(ii) C∞
0 (R2) is a dense subset of Sr1,r2

2 W (M,R2).

(iii) A function f ∈ S ′(R2) belongs to Sr1,r2

2 W (M,R2) if and only if

(1 + |a ξ1 + b ξ2|2)r1/2 (1 + |c ξ1 + d ξ2|2)r2/2 |Ff(ξ)| ∈ L2(R
2) .

Furthermore, the expression
∥∥∥ (1 + |a ξ1 + b ξ2|2)r1/2 (1 + |c ξ1 + d ξ2|2)r2/2 |Ff(ξ)|

∣∣∣L2(R
2)
∥∥∥

yields an equivalent norm in Sr1,r2

2 W (M,R2).

For r1, r2 ∈ N0 (here N0 denotes the natural numbers including 0) there is an other interpretation.

As usual, by ∂f
∂~η we denote the weak directional derivative of f in direction ~η.

Definition 2.3. Let ~η1, ~η2 be linearly independent vectors in R
2. Let r1, r2 ∈ N0. Then

Sr1,r2

2 W (~η1, ~η2) denotes the collection of all functions f ∈ L2(R
2) such that

∂α1+α2f

∂ ~η1
α1 ∂ ~η2

α2
∈ L2(R

2) for all αi ≤ ri, i = 1, 2 .

We endow this class with the norm

‖ f |Sr1,r2

2 W (~η1, ~η2)‖ :=

r1∑

α1=0

r2∑

α2=0

∥∥∥
∂α1+α2f

∂ ~η1
α1 ∂ ~η2

α2

∣∣∣L2(R
2)
∥∥∥ .

Remark 2.4. Obviously, these classes Sr1,r2

2 W (~η1, ~η2) are Banach spaces. Let e1, e2 denote the

elements of the canonical basis of R
2. Then we have Sr1,r2

2 W (e1, e2) = Sr1,r2

2 W (R2). Furthermore,

C∞
0 (R2) is a dense set in Sr1,r2

2 W (~η1, ~η2) for arbitrary vectors ~η1, ~η2.

For a smooth function f it follows

∂

∂x1
(f ◦M)(x) =< ∇f(Mx), ~η1 >=

∂f

∂~η1
(Mx) .

By an induction argument we conclude

∂α1+α2

∂xα1

1 ∂xα2

2

(f ◦M)(x) =
∂α1+α2f

∂ ~η1
α1 ∂ ~η2

α2
(Mx) .

Using the density of smooth compactly supported functions this proves the following.

Lemma 2.5. Let M, ~η1, and ~η2 be as in (2.3). A function f ∈ L2(R
2) belongs to Sr1,r2

2 W (~η1, ~η2) if

and only if the function f◦M belongs to Sr1,r2

2 W (R2). Furthermore, the norms ‖ f |Sr1,r2

2 W (~η1, ~η2)‖
and ‖ f ◦M|Sr1,r2

2 W (R2)‖ are equivalent.

4

144



2.3 The Trace with Respect to an Arbitrary Orthogonal Basis of the Hyper-

plane

Let A1(R
3) be a class of functions (distributions) defined on R

3 and let C(R3) be the collection of

all continuous functions on R
3. By Γ̃ we denote a hyperplane in R

3. Then we consider the mapping

T : f → f|eΓ

which is well-defined in case of a continuous function f . The aim of this paper consists in deter-

mining a class of functions A2(R
2) →֒ S ′(R2) such that T , originally defined on A1(R

3) ∩ C(R3),

extends to a linear, continuous and surjective mapping belonging to L(A1(R
3), A2(R

2)). In case,

that there exists a linear and continuous operator ext ∈ L(A2(R
2), A1(R

3)) such that T ◦ ext = I

(identity on A2(R
2)), we shall call T a retraction and ext its corresponding coretraction.

In the monographs Amanov [Am, 9.5], Gelman, Maz’ya [GM, 2.3] and Schmeißer, Triebel [ST,

2.4.2] the traces of function spaces with dominating mixed smoothness on hyperplanes parallel to

the coordinate axes were studied. For simplicity let the hyperplane be given by x3 = 0. Then the

result is the following.

Proposition 2.6. Let r3 > 1/2. Then the mapping

T : f(x1, x2, x3) → f(x1, x2, 0)

extends to a retraction from Sr1,r2

2 W (R3) onto Sr1,r2

2 W (R2) .

Remark 2.7. A few comments are in order. First of all, S(R3) is dense in the class Sr1,r2
p W (R3).

So the trace operator is the unique linear extension of the mapping T . Secondly, there is a natural

coordinate system on the hyperplane x3 = 0 to measure the smoothness of the trace, namely that

one induced by the unit vectors e1 = (1, 0) and e2 = (0, 1). Notice that the spaces Sr1,r2
p W (R2) are

not invariant under rotations in general.

In this paper we investigate the trace with respect to the hyperplane

Γ :=
{
(x1, x2, x3) ∈ R

3 : x1 + x2 + x3 = 0
}
.

with Γ as a model case for a hyperplane in an oblique position. However, taking the trace with

respect to the hyperplane

Γγ := {(x1, x2, x3) : γ1x1 + γ2x2 + γ3x3 = 0}, γ = (γ1, γ2, γ3) ,

where γ1 ·γ2 ·γ3 6= 0, would give us the same result (up to the norms of considered operators). This

statement relies on the fact, that the mapping

f(x1, x2, x3) → f(λ1x1, λ2x2, λ3x3), λ1 · λ2 · λ3 6= 0,

is a bounded bijective mapping of Sr
2W (R3) onto itself.

The ”natural” trace operators

(tr1 f)(x2, x3) = f(−x2 − x3, x2, x3), (2.4)

(tr2 f)(x1, x3) = f(x1,−x1 − x3, x3), (2.5)

(tr3 f)(x1, x2) = f(x1, x2,−x1 − x2) (2.6)

5
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and the trace operator trO f , see (1.1) and (1.2), are connected through

(trO f)(z1, z2) = f(z1~σ1 + z2~σ2) = f (σ1,1z1 + σ2,1z2, σ1,2z1 + σ2,2z2, σ1,3z1 + σ2,3z2)

= (tr1 f) (σ1,2z1 + σ2,2z2, σ1,3z1 + σ2,3z2)

= (tr1 f)(R1~z), (2.7)

where

R1 =

(
σ1,2 σ2,2

σ1,3 σ2,3

)
and ~z =

(
z1

z2

)
. (2.8)

Analoguously one obtains

(trO f)(z1, z2) = (tr2 f)(R2~z) = (tr3 f)(R3~z) , (2.9)

with

R2 =

(
σ1,1 σ2,1

σ1,3 σ2,3

)
, R3 =

(
σ1,1 σ2,1

σ1,2 σ2,2

)
. (2.10)

The linear independence of the vectors ~σ1, ~σ2, combined with ~σ1, ~σ2 ∈ Γ, ensure that these matrices

R1,R2,R3 are regular.

In what follows we shall determine the regularity of trO f as well as of tri f , i = 1, 2, 3.

Above we considered all orthogonal bases of Γ. Probably it would be more natural to restrict to

orthonormal bases. However, all function spaces under consideration here remain invariant under

the change from an orthogonal to the associated orthonormal basis (up to equivalent quasi-norms).

The greater generality leads to nothing new but it simplifies the calculations. For that reason we

shall work with orthogonal bases.

2.4 The Regularity of trO f

2.4.1 A Description of the General Case

Let f ∈ C∞
0 (R3). Now we introduce a very useful decomposition of f . Let Xi denote the charac-

teristic function of the set

Mi :=
{

(τ1, τ2, τ3) : |τi| = min(|τ1|, |τ2|, |τ3|)
}
, i = 1, 2, 3.

Hence

|Mi ∩Mj | = 0 , i 6= j , and

3⋃

i=1

Mi = R
3 ,

(here | · | denotes the Lebesgue measure in R
3). We put

fi(x) := F−1[Xi(ξ)Ff(ξ)](x) ,

and obtain f = f1 + f2 + f3. We continue by defining

gi(x1, x2) = (tri fi)(x1, x2) , i = 1, 2, 3 . (2.11)

6
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Elementary properties of the Fourier transform yield

F2g1(ξ1, ξ2) =
1√
2π

∫

R

F3f1(τ1, ξ1 + τ1, ξ2 + τ1) dτ1

F2g2(ξ1, ξ2) =
1√
2π

∫

R

F3f2(ξ1 + τ2, τ2, ξ2 + τ2) dτ2

F2g3(ξ1, ξ2) =
1√
2π

∫

R

F3f3(ξ1 + τ3, ξ2 + τ3, τ3) dτ3 , (2.12)

where F2g denotes the Fourier transform in R
2 and F3f the Fourier transform in R

3, respectively.

Now we are going to check the regularity of the functions gi. To begin with we investigate i = 1.

Let r1 > 1/2. By using Hölder’s inequality we obtain
∫

R2

(1 + ξ22)r2(1 + ξ23)
r3

∣∣∣
∫

R

F3f1(τ1, ξ2 + τ1, ξ3 + τ1) dτ1

∣∣∣
2
dξ1 dξ2

≤ c1

∫

R3

(1 + ξ22)
r2(1 + ξ23)

r3(1 + τ2
1 )r1 |F3f1(τ1, ξ2 + τ1, ξ3 + τ1)|2 dτ1 dξ1 dξ2

= c1

∫

R3

[1 + (τ2 − τ1)
2]r2 [1 + (τ3 − τ1)

2]r3(1 + τ2
1 )r1 |F3f1(τ1, τ2, τ3)|2 d~τ

with c1 =
∫

R
(1 + τ2

1 )−r1 dτ1 < ∞. Finally, we observe that if |τ1| ≤ min(|τ2|, |τ3|), then |τ2 − τ1| ≤
2|τ2|, |τ3 − τ1| ≤ 2|τ3| and

[1 + (τ2 − τ1)
2]r2 [1 + (τ3 − τ1)

2]r3 ≤ 4r2+r3 (1 + τ2
2 )r2 (1 + τ2

3 )r3 .

Because of suppF3f1 ⊂ {(τ1, τ2, τ3) ∈ R
3 : |τ1| ≤ min(|τ2|, |τ3|)}, we finally conclude

‖ tr1 f1 |Sr2,r3

2 W (R2)‖ ≤ c2 ‖ f1 |Sr
2W (R3)‖ ≤ c2 ‖ f |Sr

2W (R3)‖ . (2.13)

This proves tr1 f1 ∈ Sr2,r3

2 W (R2). Similarly one obtains tr2 f2 ∈ Sr1,r3

2 W (R2) (if r2 > 1/2) and

tr3 f3 ∈ Sr1,r2

2 W (R2) (if r3 > 1/2), respectively. To summarize our findings we need to recall a

further notion. For three quasi-Banach spaces A1, A2, A3 →֒ S ′(R2) of tempered distributions we

put

A1 +A2 +A3 :=
{
g ∈ S ′(R2) : ∃gi ∈ Ai, i = 1, 2, 3, s.t. g = g1 + g2 + g3

}
.

We equip this space with a quasi-norm by taking

‖ g |A1 +A2 +A3‖ := inf
{ 3∑

i=1

‖ gi|Ai‖ : g = g1 + g2 + g3 , gi ∈ Ai, i = 1, 2, 3
}
.

Lemma 2.8. Let O be an orthogonal basis of Γ and let Ri, i = 1, 2, 3 be matrices associated with

O by (1.1), (2.8) and (2.10).

Suppose min(r1, r2, r3) > 1/2. Then trO becomes a continuous mapping of Sr1,r2,r3

2 W (R3) into

Sr1,r2

2 W (R−1
3 ,R2) + Sr1,r3

2 W (R−1
2 ,R2) + Sr2,r3

2 W (R−1
1 ,R2) (2.14)

Proof. The boundedness of trO follows from the identity

(trO f)(~z) =

3∑

i=1

(trO fi)(~z) =

3∑

i=1

(tri fi)(Ri~z) ,

cf. (2.7), (2.9), the definition of the spaces Sr1,r2

2 W (M,R2) and the inequality (2.13) and its

counterparts for tr2 and tr3.
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The restriction min(r1, r2, r3) > 1/2 has been convenient but is by no means necessary. Moreover,

as we shall see by the next theorem the operator trO is surjective in Lemma 2.8. The description

of the trace class becomes more complicated than in Lemma 2.8 if min(r1, r2, r3) < 1/2.

Theorem 2.9. Let O be an orthogonal basis of Γ and let Ri, i = 1, 2, 3 be matrices associated with

O by (1.1), (2.8) and (2.10).

Let r = (r1, r2, r3) ∈ R
3 with ri 6= 1/2, i = 1, 2, 3 and

min

(
r1, r2, r3, r1 + r2 −

1

2
, r1 + r3 −

1

2
, r2 + r3 −

1

2

)
> 0 . (2.15)

Then

trO ∈ L
(
Sr

2W (R3), S1(R2) + S2(R2) + S3(R2)
)
, (2.16)

where

S1(R2) :=




Sr2,r3

2 W (R−1
1 ,R2), if r1 >

1
2 ,

S
r2,r3+r1−

1

2

2 W (R−1
1 ,R2) ∩ Sr2+r1−

1

2
,r3

2 W (R−1
1 ,R2), if r1 <

1
2 ,

and similarly for S2 and S3.

Conversely, to each function g ∈ S1(R2) + S2(R2) + S3(R2) there exists a function f ∈ Sr
2W (R3)

such that trO f = g.

Proof. Step 1. Preparations. For α, β, t ∈ R we define

I(α, β, t) :=

∫ ∞

−∞
(1 + (t+ τ)2)−α (1 + τ2)−β dτ .

In case α+ β > 1/2, β < 1/2, elementary calculations yield

I(α, β, t) ≤ c





(1 + t2)−β if α > 1/2 ,

(1 + t2)−β (1 + log(1 + |t|)) if α = 1/2 ,

(1 + t2)−(α+β)+1/2 if α < 1/2 ,

(2.17)

for some c independent of t.

Step 2. The boundedness of trO in case min(r1, r2, r3) > 1/2 has been proven before.

Now we suppose 0 < r1 < 1/2. We proceed as at the beginning of this subsection and obtain

∫

R2

(1 + ξ22)
r2(1 + ξ23)r3+r1−

1

2

∣∣∣
∫

R

F3f1(τ1, ξ2 + τ1, ξ3 + τ1) dτ1

∣∣∣
2
dξ1 dξ2

≤
∫

R3

(1 + ξ22)r2(1 + ξ23)
r3+r1−

1

2 I(α, r1, ξ3) (1 + τ2
1 )r1 (1 + (τ1 + ξ3)

2)α

× |F3f1(τ1, ξ2 + τ1, ξ3 + τ1)|2 dτ1 dξ1 dξ2
≤ c1

∫

R3

[1 + (τ2 − τ1)
2]r2 [1 + (τ3 − τ1)

2]r3−α(1 + τ2
1 )r1 (1 + τ2

3 )α |F3f1(τ1, τ2, τ3)|2 d~τ ,

where we have used (2.17) with some α satisfying 1
2 − r1 < α < 1

2 . Choosing α sufficiently close to
1
2 − r1 our restriction r1 + r3 > 1/2, see (2.15), guarantees r3 − α ≥ 0. Furthermore, taking into

account the information on the support of Ff1 we arrive at

‖ tr1 f1 |S
r2,r3+r1−

1

2

2 W (R2)‖ ≤ c2 ‖ f1 |Sr
2W (R2)‖ ≤ c2 ‖ f |Sr

2W (R2)‖
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with some c independent of f . Interchanging the roles of ξ1 and ξ2 also

‖ tr1 f1 |S
r2+r1−

1

2
,r3

2 W (R2)‖ ≤ c3 ‖ f |Sr
2W (R2)‖

follows. Moreover, by symmetry we obtain the needed estimates of tri f1, i = 2, 3, as well. This

completes the proof of the boundedness.

Step 3. Construction of an extension operator.

Substep 3.1. Construction of a linear extension operator for Sr1,r2

2 W (R2). Let ϕ ∈ C∞
0 (R) be a

function such that
∫
ϕ(t) dt =

√
2π. Then, for g ∈ C∞

0 (R2) and x ∈ R
3, we define

f1(x) = ext∗1 g(x) := F−1
3

[
ϕ(ξ1)F2g(ξ2 − ξ1, ξ3 − ξ1)

]
(x)

f2(x) = ext∗2 g(x) := F−1
3

[
ϕ(ξ2)F2g(ξ1 − ξ2, ξ3 − ξ2)

]
(x)

f3(x) = ext∗3 g(x) := F−1
3

[
ϕ(ξ3)F2g(ξ1 − ξ3, ξ2 − ξ3)

]
(x) .

Hence, e.g. for f3, we conclude

1√
2π

∫

R

F3f3(ξ1 + τ3, ξ2 + τ3, τ3) dτ3 = F2g(ξ1, ξ2)

and from this identity we derive

g(x1, x2) = (tr3 f3)(x1, x2) = f3(x1, x2,−x1 − x2) , (x1, x2) ∈ R
2 .

Similarly

g = tr1 f1 and g = tr2 f2 .

The regularity of ext∗3 g is easily checked in view of

∫

R3

(1 + ξ21)r1 (1 + ξ22)
r2 (1 + ξ23)

r3 |F3 ext∗ g(ξ)|2 d~ξ

=

∫

R3

(1 + |ξ1 + τ3|2)r1 (1 + |ξ2 + τ3|2)r2 (1 + τ2
3 )r3 |ϕ(τ3)F2g(ξ1, ξ2)|2 dξ1 dξ2 dτ3

≤ c1

∫

R

(1 + |τ3|2)r1+r2+r3 |ϕ(τ3)|2 dτ3 ‖ g |Sr1,r2

2 W (R2)‖2

≤ c2 ‖ g |Sr1,r2

2 W (R2)‖2 ,

where we also used the fact that ϕ has compact support. This proves ext∗3 ∈
L(Sr1,r2

2 W (R2), Sr1,r2,r3

2 W (R3)) for any r3 ∈ R. Similarly, ext∗1 ∈ L(Sr2,r3

2 W (R2), Sr1,r2,r3

2 W (R3))

for any r1 and ext∗2 ∈ L(Sr1,r3

2 W (R2), Sr1,r2,r3

2 W (R3)) for any r2, respectively.

Substep 3.2. Construction of an extension operator in case min(r1, r2, r3) > 1/2. We shall use the

abbreviations A1 = Sr2,r3

2 W (R−1
1 ,R2), A2 = Sr1,r3

2 W (R−1
2 ,R2) and A3 = Sr1,r2

2 W (R−1
3 ,R2). Let

g ∈ A1 +A2 +A3. Further, let g = g1 + g2 + g3, where

gi ∈ Ai , i = 1, 2, 3 and ‖ g |A1 +A2 +A3‖ ≤ 2
3∑

i=1

‖ gi |Ai‖ .

By definition g1(R−1
1 ·) ∈ Sr2,r3

2 W (R2) and consequently, by Step 3.1, f1 := ext∗1 g1(R−1
1 ·) ∈

Sr1,r2,r3

2 W (R3). Similarly, f2 := ext∗2 g2(R−1
2 ·), f3 := ext∗3 g3(R−1

3 ·) ∈ Sr1,r2,r3

2 W (R3). We put
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f := f1 + f2 + f3. Because of

trO f =
3∑

i=1

trO fi =
3∑

i=1

(tri fi)(Ri ·)

=
3∑

i=1

(
tri ext∗i gi(R−1

i ·)
)
(Ri ·)

=
3∑

i=1

gi = g ,

see Substep 3.1, this proves the existence of a bounded extension of g if min(r1, r2, r3) > 1/2.

Substep 3.3. Let 0 < r1 < 1/2. We shall use the abbreviations A1 = S
r2,r3+r1−

1

2

2 W (R2), A2 =

S
r2+r1−

1

2
,r3

2 W (R2). By the arguments from the previous substep (and by symmetry) it will be

sufficient to construct a function f1 ∈ Sr1,r2,r3

2 W (R3) such that tr1 f1 = g1(R−1
1 ·) ∈ A1 ∩ A2. To

shorten notation we write h1 instead of g1(R−1
1 ·). To begin with we define two subsets of R

3

Ω1 :=
{

(ξ1, ξ2, ξ3) : |ξ2 − ξ1| ≤ |ξ3 − ξ1| ,
|ξ2 − ξ1|

4
≤ |ξ1| ≤

|ξ2 − ξ1|
2

if |ξ2 − ξ1| ≥ 1 ,

|ξ1| ≤ 1 if |ξ2 − ξ1| < 1
}
,

Ω2 :=
{

(ξ1, ξ2, ξ3) : |ξ3 − ξ1| < |ξ2 − ξ1| ,
|ξ3 − ξ1|

4
≤ |ξ1| ≤

|ξ3 − ξ1|
2

if |ξ3 − ξ1| ≥ 1 ,

|ξ1| ≤ 1 if |ξ3 − ξ1| < 1
}
.

Obviously, these sets are disjoint. Let Xi denote the characteristic function of Ωi, i = 1, 2. Then

we define

f1(x) :=

∫
eixξ F2h1(ξ2 − ξ1, ξ3 − ξ1)

×
(
X1(ξ)

(1 + (ξ2 − ξ1)
2)r2+r1−1/2 (1 + (ξ3 − ξ1)

2)r3

(1 + ξ21)
r1 (1 + ξ22)

r2 (1 + ξ23)r3
H1(ξ2 − ξ1, ξ3 − ξ1)

+ X2(ξ)
(1 + (ξ2 − ξ1)

2)r2 (1 + (ξ3 − ξ1)
2)r3+r1−1/2

(1 + ξ21)
r1 (1 + ξ22)r2 (1 + ξ23)

r3
H2(ξ2 − ξ1, ξ3 − ξ1)

)
d~ξ ,

where the functions H1,H2 will be chosen later. First we prove tr1 f1 = h1. It is sufficient to

assume h1 ∈ C∞
0 (R2). Setting τ2 = ξ2 − ξ1 and τ3 = ξ3 − ξ1 we find

f1(−x2 − x3, x2, x3) =

∫

|τ2|≤|τ3|
ei(x2τ2+x3τ3) F2h1(τ2, τ3) (1 + τ2

2 )r2+r1−1/2 (1 + τ2
3 )r3 H1(τ2, τ3)

×
∫

I(τ2)

1

(1 + ξ21)
r1 (1 + (τ2 + ξ1)2)r2 (1 + (τ3 + ξ1)2)r3

dξ1 dτ2 dτ3

+

∫

|τ3|<|τ2|
ei(x2τ2+x3τ3) F2h1(τ2, τ3) (1 + τ2

2 )r2 (1 + τ2
3 )r3+r1−1/2H2(τ2, τ3)

×
∫

I(τ3)

1

(1 + ξ21)
r1 (1 + (τ2 + ξ1)2)r2 (1 + (τ3 + ξ1)2)r3

dξ1 dτ2 dτ3
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with I(τ2) and I(τ3) being appropriate subsets of R. The functions H1 and H2 are determined

through the identities

H1(τ2, τ3) =
1

2π

( ∫

I(τ2)

(1 + τ2
2 )r2+r1−1/2 (1 + τ2

3 )r3

(1 + ξ21)
r1 (1 + (τ2 + ξ1)2)r2 (1 + (τ3 + ξ1)2)r3

dξ1

)−1
,

H2(τ2, τ3) =
1

2π

( ∫

I(τ3)

(1 + τ2
2 )r2 (1 + τ2

3 )r3+r1−1/2

(1 + ξ21)
r1 (1 + (τ2 + ξ1)2)r2 (1 + (τ3 + ξ1)2)r3

dξ1

)−1
.

As a consequence we obtain

f1(−x2 − x3, x2, x3) =
1

2π

∫

R2

ei(x2τ2+x3τ3 F2h1(τ2, τ3) dτ2 dτ3 = h1(x2, x3)

as claimed. ¿From the definition of the sets Ωi we derive the existence of two positive constants c1

and c2 such that for all τ2, τ3

c1 ≤ H1(τ2, τ3) ≤ c2

as well as

c1 ≤ H2(τ2, τ3) ≤ c2 .

This will be used to prove that f1 is sufficiently regular. Indeed, we have

∫

R3

(1 + ξ21)
r1 (1 + ξ22)r2 (1 + ξ23)

r3 |F3f1(ξ)|2 d~ξ

=

∫

R3

(1 + ξ21)−r1 (1 + ξ22)
−r2 (1 + ξ23)

−r3 |F2h1(ξ2 − ξ1, ξ3 − ξ1)|2

×
(
X1(ξ) |H1(ξ2 − ξ1, ξ3 − ξ1)|2 (1 + (ξ2 − ξ1)

2)2r2+2r1−1 (1 + (ξ3 − ξ1)
2)2r3

+ X2(ξ) |H2(ξ2 − ξ1, ξ3 − ξ1)|2 (1 + (ξ2 − ξ1)
2)2r2 (1 + (ξ3 − ξ1)

2)2r3+2r1−1
)
d~ξ

=: J1 + J2 .

A change of coordinates, the boundedness of H1 and the definition of Ω1 yield

J1 ≤ c22

∫

|τ2|≤|τ3|
|F2h1(τ2, τ3)|2 (1 + τ2

2 )2r2+2r1−1 (1 + τ2
3 )2r3

×
∫

I(τ2)
(1 + ξ21)

−r1 (1 + (τ2 + ξ1)
2)−r2 (1 + (τ3 + ξ1)

2)−r3 dξ1 dτ2 dτ3

≤ c3

∫

R2

|F2h1(τ2, τ3)|2 (1 + τ2
2 )r2+r1−1/2 (1 + τ2

3 )r3 dτ2 dτ3 .

The estimate of J2 is similar. Hence

‖ f1 |Sr1,r2,r3

2 W (R3)‖ ≤ c4

(
‖h1 |S

r2,r3+r1−
1

2

2 W (R2)‖ + ‖h1 |S
r2+r1−

1

2
,r3

2 W (R2)‖
)

with some constant c4 independent of h1. This proves the boundedness of the extension.

Remark 2.10. Let us mention that we have not shown the existence of a linear and continuous

extension operator. The step in which g is splitted into the three functions g1, g2 and g3 need not

be linear. This problem will be investigated in the next subsection.
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2.4.2 A Description of the Trace Classes on the Fourier Side

For simplicity we concentrate on the situation min(r1, r2, r3) > 1/2. The sum Sr1,r2

2 W (R−1
3 ,R2) +

Sr1,r3

2 W (R−1
2 ,R2) + Sr2,r3

2 W (R−1
1 ,R2) is not direct. It is obvious that

C∞
0 (R3) ⊂

(
Sr1,r2

2 W (R−1
3 ,R2) ∩ Sr1,r3

2 W (R−1
2 ,R2) ∩ Sr2,r3

2 W (R−1
1 ,R2)

)
.

At this moment it is not clear whether the connection between g and its optimal decomposition

g1 + g2 + g3 can be realized in a linear way. But that can be seen easily by the Fourier-analytic

description of the trace space.

Let O be an orthogonal basis of Γ = {(x1, x2, x3) ∈ R
3 : x1 + x2 + x3 = 0} and let R1,R2,R3 be

the matrices associated with O. First, we notice that g3 ∈ Sr1,r2

2 W (R−1
3 ,R2) if, and only if,

[
1 + (σ2,2ξ1 − σ1,2ξ2)

2
]r1/2[

1 + (σ2,1ξ1 − σ1,1ξ2)
2
]r2/2

︸ ︷︷ ︸
m3(ξ1,ξ2)

Fg3(ξ1, ξ2) ∈ L2(R
2) , (2.18)

cf. Lemma 2.2(iii). Similarly, g1 ∈ Sr2,r3

2 W (R−1
1 ,R2) if, and only if,

[
1 +

(
σ2,3ξ1 − σ1,3ξ2

)2]r2/2[
1 +

(
σ2,2ξ1 − σ1,2ξ2

)2]r3/2

︸ ︷︷ ︸
m1(ξ1,ξ2)

Fg1(ξ1, ξ2) ∈ L2(R
2). (2.19)

and g2 ∈ Sr1,r3

2 W (R−1
2 ,R2) if, and only if,

[
1 +

(
σ2,3ξ1 − σ1,3ξ2

)2]r1/2[
1 + (σ2,1ξ1 − σ1,1ξ2)

2
]r3/2

︸ ︷︷ ︸
m2(ξ1,ξ2)

Fg2(ξ1, ξ2) ∈ L2(R
2) . (2.20)

In view of these characterizations we define

m(ξ1, ξ2) := min
(
m1(ξ1, ξ2),m2(ξ1, ξ2),m3(ξ1, ξ2)

)
. (2.21)

and

L2(R
2,m) :=

{
g ∈ L2(R

2) : mFg ∈ L2(R
2)
}

(2.22)

equipped with the natural norm

‖ g |L2(R
2,m)‖ := ‖mFg |L2(R

2)‖ .

Now we arrive at the main result of this section.

Theorem 2.11. Let O be an orthogonal basis of Γ and let Ri, i = 1, 2, 3 be matrices associated

with O by (1.1), (2.8) and (2.10). Suppose (2.15) and ri 6= 1/2, i = 1, 2, 3. Then there exists a

continuous function m such that trO becomes a retraction of Sr1,r2,r3

2 W (R3) onto L2(R
2,m). There

is a bounded linear extension operator ext ∈ L(L2(R
2,m), Sr1,r2,r3

2 W (R3)) such that trO ◦ ext = I

(identity on L2(R
2,m)).

Proof. We concentrate on the case min(r1, r2, r3) > 1/2. Then the function m is given by (2.21).

The modifications which have to be made for the general situation are obvious. We omit the details.
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Step 1. Boundedness. Again we shall use the abbreviations A1 = Sr2,r3

2 W (R−1
1 ,R2), A2 =

Sr1,r3

2 W (R−1
2 ,R2) and A3 = Sr1,r2

2 W (R−1
3 ,R2). Let g ∈ A1 + A2 + A3 and let g = g1 + g2 + g3 be

an optimal decomposition of g with gi ∈ Ai. Then

m(ξ) |Fg(ξ)| ≤
3∑

i=1

mi(ξ) |Fgi(ξ)| , ξ ∈ R
2 .

But this implies

‖ g |L2(R
2,m)‖ ≤

3∑

i=1

‖mi Fgi |L2(R
2)‖ ≤ c

3∑

i=1

‖ gi |Ai‖ ,

with some c independent of g.

Vice versa, if g ∈ L2(R
2,m), then we define

Ωi :=
{

(ξ1, ξ2) : mi(ξ1, ξ2) = m(ξ1, ξ2)
}
, (2.23)

Xi denotes its characteristic function, and

gi(x) := F−1[Xi(ξ)Fg(ξ)](x) , i = 1, 2, 3. (2.24)

Thanks to

|Ωi ∩ Ωj| = 0 , i 6= j , and

3⋃

i=1

Ωi = R
2 ,

(| · | Lebesgue measure in R
2) this implies g = g1 + g2 + g3 and

‖mi Fgi |L2(R
2)‖ ≤ ‖mFg |L2(R

2)‖ , i = 1, 2, 3 .

Summarizing we have proved the coincidence of Sr1,r2

2 W (R−1
3 ,R2) + Sr1,r3

2 W (R−1
2 ,R2) +

Sr2,r3

2 W (R−1
1 ,R2) and L2(R

2,m) in the sense of equivalent norms. Hence trO ∈
L(Sr1,r2,r3

2 W (R3), L2(R
2,m)).

Step 2. The linear extension. Since the mappings g → gi, i = 1, 2, 3, cf. (2.24), are linear and

continuous, the extension operator constructed in the proof of Theorem 2.9 is linear and bounded

as well.

2.4.3 The Trace Space for a Dominating Direction

This subsection contains an additional observation of minor importance. So we concentrate on

min(r1, r2, r3) > 1/2.

A simplified description of the trace spaces can be given in case that one of the parameters r1, r2, r3

is dominating the sum of the other.

Lemma 2.12. Let O be an orthogonal basis of Γ and let Ri, i = 1, 2, 3 be matrices associated with

O by (1.1), (2.8) and (2.10). Then the embeddings

Sr1,r3

2 W (R−1
2 ,R2) →֒ Sr1,r2

2 W (R−1
3 ,R2) and Sr2,r3

2 W (R−1
1 ,R2) →֒ Sr1,r2

2 W (R−1
3 ,R2)

exists if, and only if, r3 ≥ r1 + r2.
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Proof. Again we work in the Fourier image. Let m1,m2 and m3 be the functions defined in (2.18)-

(2.20). Then the first embedding is equivalent to the boundedness of m3/m2 and the second is

equivalent to the boundedness of m3/m1, respectively.

Let us turn to the boundedness of the first quotient. By a change of coordinates

y1 := σ2,2ξ1 − σ1,2ξ2 and y2 := σ2,3ξ1 − σ1,3ξ2

and taking care of ~σ1, ~σ2 ∈ Γ the boundedness of m3/m2 is equivalent to

sup
y1,y2∈R

(1 + y2
1)

r1 [1 + (y1 + y2)
2]r2

(1 + y2
1)

r3(1 + y2
2)

r2
<∞ .

With y2 = 0 the necessity of r3 ≥ r1 + r2 follows. Sufficiency can be derived from

1 + (y1 + y2)
2 ≤ 2(1 + y2

1)(1 + y2
2) .

Theorem 2.13. Let O be an orthogonal basis of Γ = {(x1, x2, x3) ∈ R
3 : x1 + x2 + x3 = 0} and

let R3 be the matrix associated with O by (1.1) and (2.10). Let min(r1, r2, r3) > 1/2 and suppose

r3 ≥ r1 + r2. Then trO becomes a retraction of Sr1,r2,r3

2 W (R3) onto Sr1,r2

2 W (R−1
3 ,R2)) and

Sr1,r2

2 W (R−1
3 ,R2)) = L2(R

2,m3) (equivalent norms).

Proof. ¿From Lemma 2.12 we derive

Sr1,r2

2 W (R3,R
2) + Sr2,r3

2 W (R1,R
2) + Sr1,r3

2 W (R2,R
2) = Sr1,r2

2 W (R3,R
2)

with equivalent norms. Now the statement follows from Theorems 2.9 and 2.11. The last identity

has been derived in (2.18).

Also tr1, tr2 and tr3 have additional properties if one of the smoothness parameters dominates the

sum of the other.

Theorem 2.14. Let O be an orthogonal basis of Γ = {(x1, x2, x3) ∈ R
3 : x1 + x2 + x3 = 0} and

let R3 be the matrix associated with O by (1.1) and (2.10). Let min(r1, r2, r3) > 1/2 and suppose

r3 ≥ r1 + r2.

Then tr3 becomes a retraction of Sr1,r2,r3

2 W (R3) onto Sr1,r2

2 W (R2), i.e. there exists a linear

extension operator ext∗ ∈ L(Sr1,r2

2 W (R2), Sr1,r2,r3

2 W (R3)) s.t. tr3 ◦ ext∗ = I.

Proof. Step 1. Boundedness of tr3. To show that, we use again (2.12). Furthermore, taking

h(ξ1, ξ2, τ3) := Ff(ξ1 + τ3, ξ2 + τ3, τ3), it will be enough to show the existence of some positive

constant c such that

∫

R2

(1 + y2
1)

r1 (1 + y2
2)

r2

∣∣∣∣
∫

R

h(y1, y2, y3) dy3

∣∣∣∣
2

dy1 dy2 (2.25)

≤ c

∫

R3

[1 + (y1 + y3)
2]r1 [1 + (y2 + y3)

2]r2 [1 + y2
3]

r3 |h(y1, y2, y3)|2 dy1 dy2 dy3 .
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Let us denote

Θ1(y1, y2) := (1 + y2
1)

r1 (1 + y2
2)

r2

and

Θ2(y1, y2, y3) := [1 + (y1 + y3)
2]r1 [1 + (y2 + y3)

2]r2 (1 + y2
3)

r3 ,

respectively. Then Hölder’s inequality leads to

(1 + y2
1)

r1 (1 + y2
2)

r2

(∫

R

|h(y1, y2, y3)| dy3

)2

=

(∫

R

√
Θ1(y1, y2)√

Θ2(y1, y2, y3)

√
Θ2(y1, y2, y3)|h(y1, y2, y3)| dy3

)2

≤
(

sup
y1,y2∈R

∫

R

Θ1(y1, y2)

Θ2(y1, y2, y3)
dy3

)

︸ ︷︷ ︸

∫

R

Θ2(y1, y2, y3)|h(y1, y2, y3)|2 dy3 .

:= Θ(r1, r2, r3)

If Θ(r1, r2, r3) < ∞, then it is enough to integrate this inequality with respect to y1, y2 ∈ R to

obtain (2.25). To prove finiteness of Θ(r1, r2, r3) under the given restrictions is elementary.

Step 2. Surjectivity of tr3. Here we make use of the operator ext∗3, defined in the proof of Theorem

2.9, Substep 3.1.

Remark 2.15. By symmetry we have similar statements with respect to tr1 as well as to tr2, e.g.

if min(r1, r2, r3) > 1/2 and r2 ≥ r1 + r3 then tr2 becomes a retraction of Sr1,r2,r3

2 W (R3) onto

Sr1,r3

2 W (R2).

2.4.4 An Example

We consider the orthogonal basis ~σ1 := (1,−1, 0), and ~σ2 := (1, 1,−2) of Γ. Then the functions

mi, i = 1, 2, 3, defined in (2.18)-(2.20), are given by

m2
1(ξ1, ξ2) =

[
1 + (2ξ1)

2
]r2
[
1 + (ξ1 + ξ2)

2
]r3

,

m2
2(ξ1, ξ2) =

[
1 + (2ξ1)

2
]r1
[
1 + (ξ1 − ξ2)

2
]r3

,

m2
3(ξ1, ξ2) =

[
1 + (ξ1 + ξ2)

2
]r1
[
1 + (ξ1 − ξ2)

2
]r2

.

Let r1 = r2 = r3 = 1 and define

w(ξ1, ξ2) := min
(
1 + 5ξ21 + ξ22 + 2ξ1ξ2 + 4ξ41 + 4ξ21ξ

2
2 + 8ξ31ξ2,

1 + 5ξ21 + ξ22 − 2ξ1ξ2 + 4ξ41 + 4ξ21ξ
2
2 − 8ξ31ξ2, 1 + 2ξ21 + 2ξ22 + ξ41 − 2ξ21ξ

2
2 + ξ42

)

cf. (2.21). Hence, the trace space of the Sobolev space S1,1,1
2 W (R3) with respect to this orthogonal

basis is the collection of all functions g ∈ L2(R
2) such that

∫

R2

w(ξ1, ξ2) |Fg(ξ1, ξ2)|2dξ <∞ .

Furthermore, the trace space of the Sobolev space S1,1,2
2 W (R3) with respect to this orthogonal

basis is the collection of all functions g ∈ L2(R
2) such that

∫

R2

(
1 + 2ξ21 + 2ξ22 + ξ41 − 2ξ21ξ

2
2 + ξ42

)
|Fg(ξ1, ξ2)|2dξ <∞ .
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3 Besov and Triebel-Lizorkin Spaces

Now we turn to the general case of Besov and Triebel-Lizorkin spaces. To begin with we recall the

Fourier-analytic definition as well as the characterization by atoms of these classes. Since we shall

need the spaces for d = 3 and for d = 2 we shall work for a while with the general d-dimensional

case.

3.1 Notation

As usual, R
d denotes the d−dimensional real Euclidean space, N the collection of all natural numbers

and N0 = N∪{0}. The letter Z stands for the set of all integers and C denotes the complex numbers.

If x, y ∈ R
d, we write x > y if, and only if, xi > yi for every i = 1, . . . , d. Similarly, we define the

relations x ≥ y, x < y, x ≤ y. Finally, in slight abuse of notation, we write x > λ for x ∈ R
d, λ ∈ R

if xi > λ, i = 1, . . . , d. For a real number x we denote by x+ := max(x, 0) the nonnegative part.

Let S(Rd) be the Schwartz space of all complex–valued rapidly decreasing infinitely differentiable

functions on R
d.

3.2 The Fourier-analytic Approach

Let ϕ ∈ S(R) with

ϕ(t) = 1 if |t| ≤ 1 and ϕ(t) = 0 if |t| ≥ 3

2
. (3.1)

We put ϕ0 = ϕ, ϕ1(t) = ϕ(t/2) − ϕ(t) and

ϕj(t) := ϕ1(2
−j+1t), t ∈ R, j ∈ N.

Hence we have
∑∞

j=0 ϕj(t) = 1 for all t ∈ R. For k = (k1, . . . , kd) ∈ N
d
0 and x = (x1, . . . , xd) ∈ R

d

we define ϕk(x) := ϕk1
(x1) · . . . · ϕkd

(xd). Then, since
∑

k∈Nd
0

ϕk(x) = 1 for every x ∈ R
d, (3.2)

the system {ϕk}k∈Nd
0

forms a smooth dyadic resolution of unity. This will be used to define the

classes of functions we are interested in.

Definition 3.1. Let r = (r1, . . . , rd) ∈ R
d, and 0 < q ≤ ∞.

(i) Let 0 < p ≤ ∞. Then the Besov space of dominating mixed smoothness Sr
p,qB(Rd) is the

collection of all f ∈ S′(Rd) such that

||f |Sr
p,qB(Rd)||ϕ =

(∑

k∈Nd
0

2qk·r|| F−1[ϕk Ff ] |Lp(R
d)||q

)1/q
= ||2k·rF−1[ϕkFf ] |ℓq(Lp)|| (3.3)

is finite.

(ii) Let 0 < p < ∞. Then the Triebel-Lizorkin space of dominating mixed smoothness Sr
p,qF (Rd)

is the collection of all f ∈ S′(Rd) such that

||f |Sr
p,qF (Rd)||ϕ =

∣∣∣
∣∣∣
(∑

k∈Nd
0

|2k·rF−1[ϕk Ff ](·) |q
)1/q

|Lp(R
d)
∣∣∣
∣∣∣ = ||2k·rF−1[ϕk Ff ] |Lp(ℓq)|| (3.4)
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is finite.

Remark 3.2. 1. Sometimes, we shall write Sr
p,qA(Rd) instead of Sr

p,qB(Rd) or Sr
p,qF (Rd).

2. Different functions ϕ (with properties described above) lead to equivalent quasi-norms on

Sr
p,qA(Rd). We shall write ||f |Sr

p,qA(Rd)|| meaning one of these quasi-norms (which one is in general

with no importance in our context). For details see [ST, Section 2.2.3].

3. For a systematic investigation of these classes we refer to the monographs [Am] and [ST]. More

recent developments may be found in [Ba], [Ho] and [Vy1, Vy2, Vy3].

4. For 1 < p < ∞ we have the coincidence of Sr
p,2F (Rd) and the Sobolev space Sr

pW (Rd) in the

sense of equivalent norms, cf. [LN] and [ST, 2.3.1].

3.3 Atomic Decomposition

In the mid-eighties Frazier and Jawerth [FJ1] have been the first who studied atomic decompositions

of Besov spaces. One of the applications has been a description of the solution of the trace problem

with respect to hyperplanes in the isotropic situation. Here we follow the same philosophy. We

shall make use of the characterization of Besov and Lizorkin-Triebel spaces by means of atoms for

studiing the properties of trO.

Atomic decomposition techniques allow a certain discretization. Function spaces are replaced by

sequence spaces. This method has been studied in various situations by now, cf. [FJ1, FJ2, AH,

Tr2] for isotropic spaces of Besov and Lizorkin-Triebel type and [HN] for some generalizations in

various directions. Besov and Lizorkin-Triebel spaces of dominating mixed smoothness have been

characterized in such a way in [Vy2].

3.3.1 Sequence Spaces

For ν ∈ N
d
0,m ∈ Z

d we denote by Qν m the cube with the centre at the point 2−νm =

(2−ν1m1, . . . , 2
−νdmd), sides parallel to the coordinate axes and of lengths 2−ν1 , . . . , 2−νd . We de-

note by χν m = χQν m
the characteristic function of Qν m and by cQν m we mean a cube concentric

with Qν m with sides c times larger.

Definition 3.3. If 0 < p, q ≤ ∞, r ∈ R
d and

λ = {λν m ∈ C : ν ∈ N
d
0,m ∈ Z

d} , (3.5)

then we define

sr
pqb :=

{
λ : ||λ|sr

pqb|| =

(∑

ν∈Nd
0

2ν·(r− 1

p
)q
( ∑

m∈Zd

|λν m|p
)q/p

)1/q

<∞
}

(3.6)

and

sr
pqf :=

{
λ : ||λ|sr

pqf || =

∣∣∣∣
∣∣∣∣
(∑

ν∈Nd
0

∑

m∈Zd

|2ν·rλν mχν m(·)|q
)1/q

|Lp(R
d)

∣∣∣∣
∣∣∣∣ <∞

}
(3.7)

with the usual modification for p and/or q equal to ∞.

Remark 3.4. We shall use the same convention as in case of the distribution spaces: from time to

time we shall write ‖λ|sr
pqa‖ instead of ‖λ|sr

pqb‖ or ‖λ|sr
pqf‖, respectively.
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3.3.2 Atomic Decompositions

We will be very brief and refer for details to [Vy1] and [Vy2]. Here we concentrate on the ”regular”

case, i.e.

r >




σp = max

(
1
p − 1, 0

)
in the B-case

σpq = max
(

1
min(p,q) − 1, 0

)
in the F-case.

(3.8)

The phrase ”regular” indicates that only those distribution spaces are considered which consists

of regular distributions. Then, compared with the general case, no moment conditions have to be

satisfied by the elementary building blocks called atoms. As usual, [x] denotes the integer part of

the real number x. If Q is a cube and δ is a positive real number then δQ denotes the cube with

the same center as Q, sides parallel to those of Q and sidelength multiplied by δ.

Definition 3.5. Let K = (K1, . . . ,Kd) ∈ N
d
0 and δ > 1. A K-times differentiable complex-valued

function a(x) is called K-atom related to Qν m if

suppa ⊂ δ Qν m, (3.9)

and

sup
x∈Rd

|Dαa(x)| ≤ 2α·ν for 0 ≤ α ≤ K (3.10)

Theorem 3.6. Let 0 < p, q ≤ ∞, (p <∞ in the F−case) and r ∈ R
d with (3.8). Fix K ∈ N

d
0 with

Ki ≥ (1 + [ri])+ i = 1, . . . , d , (3.11)

and δ sufficiently large.

Then f ∈ S′(Rd) belongs to Sr
p,qA(Rd) if, and only if, it can be represented as

f =
∑

ν∈Nd
0

∑

m∈Zd

λν maν m(x), (convergence in S′(Rd)), (3.12)

where {aν m(x)}ν∈Nd
0
,m∈Zd are K-atoms related to Qν m and λ ∈ sr

pqa. Furthermore,

inf ||λ|sr
pqa||,

where the infimum is taken over all admissible representations (3.12), yields an equivalent quasi-

norm in Sr
p,qA(Rd).

Remark 3.7. To explain our philosophy, let the function a be a K = (K1,K2,K3)-atom related to

Qν m, where ν = (ν1, ν2, ν3) and m = (m1,m2,m3). Then

(tr3 a)(x1, x2) = a(x1, x2,−(x1 + x2))

becomes a (K1,K2)-atom with respect to Q(ν1,ν2),(m1,m2) if K3 ≥ K1 + K2 and ν3 ≤ min(ν1, ν2).

Similarly tr2 a (tr1 a) becomes a (K1,K3)-atom ((K2,K3)-atom) with respect to Q(ν1,ν3),(m1,m3)

(Q(ν2,ν3),(m2,m3)) if K2 ≥ K1 +K3 (K1 ≥ K2 +K3) and ν2 ≤ min(ν1, ν3) ( ν1 ≤ min(ν2, ν3) ). This

simple observation will motivate an appropriate decomposition of the atomic decomposition of a

function which turns out to be a basic step in our proof of the boundedness of trO.
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3.4 Traces of Besov Spaces of Dominating Mixed Smoothness

For a better comparison we recall the properties of the mapping f(x1, x2, x3) 7→ f(x1, x2, 0) in this

general context, cf. e.g. Amanov [Am, 9.5] and Schmeißer, Triebel [ST, 2.4.2] (further references

are given in [ST, Remark 2.4.2]).

Proposition 3.8. Let 0 < q ≤ ∞.

(i) Let 0 < p ≤ ∞ and r3 > 1/p. Then the mapping

T : f(x1, x2, x3) → f(x1, x2, 0)

extends to a retraction from Sr1,r2,r3
p,q B(R3) onto Sr1,r2

p,q B(R2).

(ii) Let 0 < p < ∞ and r3 >
1
p . Then the mapping T extends to a retraction from Sr1,r2,r3

p,q F (R3)

onto Sr1,r2
p,q F (R2).

As mentioned in Introduction, to reflect the underlying geometry of our problem, we have to define

some new spaces with dominating mixed smoothness, cf. Subsection 2.2 for p = 2.

Definition 3.9. Let 0 < q ≤ ∞, 0 < p ≤ ∞ in the B-case and 0 < p <∞ in the F-case. Let R be

a (2, 2)-matrix with detR 6= 0. Then we put

Sr
p,qA(R,R2) :=

{
f ∈ S′(R2) : f ◦ R ∈ Sr

p,qA(R2)
}
,

||f |Sr
p,qA(R,R2)|| := || f ◦ R |Sr

p,qA(R2)|| .

Recall that for p = q = 2 we have coincidence of Sr
2,2B(R,R2) with Sr

2W (R,R2) in the sense of

equivalent norms, cf. [LN] or [ST, Thm. 2.3.1]. By means of these classes we are able to describe

the trace classes for Besov as well as for Lizorkin-Triebel classes.

The counterpart of Theorem 2.9 for Besov spaces is as follows.

Theorem 3.10. Let O be an orthogonal basis of Γ and let Ri, i = 1, 2, 3 be matrices associated

with O by (1.1), (2.8) and (2.10).

Let 0 < p, q ≤ ∞ and r = (r1, r2, r3) ∈ R
3 with ri 6= 1

p , i = 1, 2, 3 and

min

(
r1, r2, r3, r1 + r2 −

1

p
, r1 + r3 −

1

p
, r2 + r3 −

1

p

)
> σp. (3.13)

Then

trO ∈ L
(
Sr

p,qB(R3), S1(R2) + S2(R2) + S3(R2)
)
, (3.14)

where

S1(R2) :=




Sr2,r3

p,q B(R−1
1 ,R2), if r1 >

1
p ,

S
r2,r3+r1−

1

p
p,q B(R−1

1 ,R2) ∩ Sr2+r1−
1

p
,r3

p,q B(R−1
1 ,R2), if r1 <

1
p ,

and similarly for S2 and S3.

Conversely, to each function g ∈ S1(R2) + S2(R2) + S3(R2) there exists a function f ∈ Sr
p,qB(R3)

such that trO f = g.
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Proof. The restrictions in (3.13) are guaranteeing that we may apply Theorem 3.6 for Sr
p,qB(R3)

as well as for all spaces appearing in the definition of the target spaces but taken with the identity

matrix instead of R−1
i , i ∈ {1, 2, 3}.

Step 1. According to Theorem 3.6, each f ∈ Sr
p,qB(R3) may be decomposed into

f =
∑

ν∈Nd
0

∑

m∈Zd

λν maν m(x), (3.15)

with

||λ |sr
p,qb|| ≤ c ||f |Sr

p,qB(R3)|| (3.16)

with some constant c independent of f . We require some additional regularity of the atoms, cf.

Definition 3.5:

Ki ≥ max
(
[r1] + [r2] + 2, [r1] + [r3] + 2, [r2] + [r3] + 2

)
, i = 1, 2, 3 . (3.17)

In view of Remark 3.7 we decompose f into three parts fi, i = 1, 2, 3, where

f1(x) :=
∞∑

ν1=0

∞∑

ν2=ν1

∞∑

ν3=ν1

∑

m∈Z3

λν m aν m(x), (3.18)

f2(x) :=
∞∑

ν2=0

∞∑

ν1=ν2+1

∞∑

ν3=ν2

∑

m∈Z3

λν m aν m(x), (3.19)

f3(x) :=
∞∑

ν3=0

∞∑

ν1=ν3+1

∞∑

ν2=ν3+1

∑

m∈Z3

λν m aν m(x). (3.20)

This allows us to decompose trO f into (see (2.7))

(trO f)(z1, z2) =
3∑

i=1

(tri fi)(Ri~z) . (3.21)

So, to establish (3.14) it is enough to prove the existence of a constant c independent of f such

that

|| tr1 f1 |Sr2,r3

p,q B(R2)|| ≤ c || f |Sr
p,qB(R3)|| (3.22)

if r1 >
1
p and

|| tr1 f1 |S
r2,r3+r1−

1

p
p,q B(R2)|| ≤ c || f |Sr

p,qB(R3)|| , (3.23)

|| tr1 f1 |S
r2+r1−

1

p
,r3

p,q B(R2)|| ≤ c ||f |Sr
p,qB(R3)|| (3.24)

if r1 <
1
p and corresponding analoga for tri fi, i = 2, 3.

Step 2. Proof of (3.22)–(3.24). We proceed similar to [Vy3]. For brevity we put

Υ1 := {ν ∈ N
3
0 : ν1 ≤ min(ν2, ν3) } ,

Υ2 := {ν ∈ N
3
0 : ν2 ≤ min(ν1, ν3) } ,

Υ3 := {ν ∈ N
3
0 : ν3 ≤ min(ν1, ν2) } .
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Then

tr1 f1(x2, x3) =
∑

ν∈Υ1

∑

m∈Bν

λν m aν m(−x2 − x3, x2, x3) , (3.25)

where

Bν := {m ∈ Z
3 : suppaν m ∩ Γ 6= ∅} . (3.26)

Due to (3.9), for given ν ∈ Υ1 and m2,m3 ∈ Z, there are at most N integers m1 ∈ Z, such that

m = (m1,m2,m3) ∈ Bν . The number N does not depend on ν and m2,m3. To simplify notation

we shall work only with one number m1, denoted by m1(ν,m2,m3) or simply by m1 if the values

of ν,m2 and m3 are clear from context. Rewriting (3.25) this gives

tr1 f1(x2, x3) =
∞∑

ν2=0

∞∑

ν3=0

∑

(m2,m3)∈Z2

min(ν2,ν3)∑

ν1=0

λν (m1,m2,m3) aν (m1,m2,m3)(−x2 − x3, x2, x3)

=

∞∑

ν2=0

∞∑

ν3=0

∑

(m2,m3)∈Z2

γ(ν2,ν3) (m2,m3) b(ν2,ν3) (m2,m3)(x2, x3), (3.27)

where

γ(ν2,ν3) (m2,m3) =

min(ν2,ν3)∑

ν1=0

|λν (m1,m2,m3)| , (3.28)

b(ν2,ν3) (m2,m3)(x2, x3) = 0 if γ(ν2,ν3) (m2,m3) = 0, and

b(ν2,ν3) (m2,m3)(x2, x3) =
1

γ(ν2,ν3) (m2,m3)

min(ν2,ν3)∑

ν1=0

λν (m1,m2,m3) aν (m1,m2,m3)(−x2 − x3, x2, x3)

if γ(ν2,ν3) (m2,m3) > 0. We recall, that in this sum m1 is an abbreviation for m1(ν,m2,m3).

Step 3. We claim

1. b(ν2,ν3) (m2,m3) are atoms in the sense of Definition 3.5 related to (ν2, ν3), (m2,m3) up to a

general constant.

2. || γ |sr2,r3
p,q b|| ≤ c ||λ |sr

p,qb|| if r1 >
1
p ,

3. || γ |sr2,r3+r1−
1

p
p,q b|| ≤ c ||λ |sr

p,qb|| and || γ |sr2+r1−
1

p
,r3

p,q b|| ≤ c ||λ |sr
p,qb|| if r1 <

1
p .

Substep 3.1. The proof of the first assertion is elementary, see Remark 3.7. Two comments are

in order. The first one concerns regularity. If the components of K are large enough then b is

sufficiently smooth to satisfy (3.10) for some K̃ such that we can apply Theorem 3.6 with respect

to the target space, cf. (3.17). The second comment concerns the estimate (3.10). As claimed this

estimate is satisfied by the functions b(ν2,ν3),(m2,m3) up to a general constant cα depending on α.

Since we need to control a finite number of derivatives only we conclude that C b(ν2,ν3),(m2,m3) are

atoms with C−1 := maxα cα. This is enough for our purpose.

Substep 3.2. Let r1 >
1
p . Let r1 − 1/p = ε1 + ε2, εi > 0, i = 1, 2. Obviuosly, ε1 > 0 guarantees

min(ν2,ν3)∑

ν1=0

|λν m| ≤ c1




min(ν2,ν3)∑

ν1=0

| 2ν1ε1 λν m|p



1/p

.
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Next we use ε2 > 0 and obtain

|| γ |sr2,r3

p,q b||q =

∞∑

ν2=0

∞∑

ν3=0

2
[ν2(r2−

1

p
)+ν3(r3−

1

p
)]q
( ∑

(m2,m3)∈Z2

|γ(ν2,ν3)(m2,m3)|p
)q/p

≤ c2

∞∑

ν2=0

∞∑

ν3=0

2
[ν2(r2−

1

p
)+ν3(r3−

1

p
)]q
(min(ν2,ν3)∑

ν1=0

2ν1ε1p
∑

(m2,m3)∈Z2

|λν m|p
)q/p

≤ c3
∑

ν∈Υ1

2ν·(r− 1

p
)q
( ∑

(m2,m3)∈Z2

|λν m|p
)q/p

≤ c3 ||λ |sr
p,qb||q.

Substep 3.3. Let r1 <
1
p . To begin with let p ≥ 1. The triangle inequality yields

( ∑

(m2,m3)∈Z2

(min(ν2,ν3)∑

ν1=0

|λν m|
)p
)1/p

≤
min(ν2,ν3)∑

ν1=0

( ∑

(m2,m3)∈Z2

|λν m|p
)1/p

. (3.29)

If now q ≤ 1, we get

|| γ |sr2,r3+r1−
1

p
p,q b||q ≤

∞∑

ν2=0

∞∑

ν3=0

2[ν2(r2−
1

p
)+ν3(r3+r1−

1

p
− 1

p
)]q




min(ν2,ν3)∑

ν1=0

( ∑

(m2,m3)∈Z2

|λν m|p
)1/p




q

≤
∑

ν∈Υ1

2ν·(r− 1

p
)q
( ∑

(m2,m3)∈Z2

|λν m|p
)q/p

≤ ||λ |sr
p,qb||q.

For q > 1, we denote

̺ν :=
( ∑

(m2,m3)∈Z2

|λν m|p
)1/p

and apply Hölder’s inequality to obtain

|| γ |sr2,r3+r1−
1

p
p,q b||q

≤
∞∑

ν2=0

∞∑

ν3=0

2[ν2(r2−
1

p
)+ν3(r3+r1−

1

p
− 1

p
)]q




min(ν2,ν3)∑

ν1=0

2(ν3−ν1)(r1−
1

p
)2(ν1−ν3)(r1−

1

p
) ̺ν




q

≤




min(ν2,ν3)∑

ν1=0

2(ν3−ν1)(r1−
1

p
)q′




q/q′

∑

ν∈Υ1

2ν·(r− 1

p
)q ̺q

ν

≤ c ||λ |sr
p,qb||q.

This proves our claims if p ≥ 1. Now let p < 1. We substitute (3.29) by

( ∑

(m2,m3)∈Z2

(min(ν2,ν3)∑

ν1=0

|λν m|
)p
)1/p

≤
( ∑

(m2,m3)∈Z2

min(ν2,ν3)∑

ν1=0

|λν m|p
)1/p

=
(min(ν2,ν3)∑

ν1=0

̺p
ν

)1/p
. (3.30)

If q ≤ p the monotonicity of the ℓr-quasinorms yields

|| γ |sr2,r3+r1−
1

p
p,q b||q ≤

∞∑

ν2=0

∞∑

ν3=0

2[ν2(r2−
1

p
)+ν3(r3+r1−

1

p
− 1

p
)]q




min(ν2,ν3)∑

ν1=0

̺p
ν




q/p

≤
∑

ν∈Υ1

2
ν·(r− 1

p
)q
̺q

ν ≤ ||λ |sr
p,qb||q. (3.31)
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And for q > p, we combine (3.30) with Hölder’s inequality

min(ν2,ν3)∑

ν1=0

2(ν3−ν1)(r1−
1

p
)p2(ν1−ν3)(r1−

1

p
)p ̺p

ν ≤ c

(min(ν2,ν3)∑

ν1=0

2(ν1−ν3)(r1−
1

p
)q ̺q

ν

)p/q

to derive (3.31) again. Moreover, the second estimate in Claim 3 follows by interchanging the roles

of r2 and r3. This completes the estimates claimed for γ.

Step 4. We shall prove the estimate for tr1 f1. In case r1 >
1
p we argue, by using Claim 2 and

Theorem 3.6, first in d = 2 and later in d = 3, as follows

|| tr1 f1|Sr2,r3

p,q B(R2)|| ≤ c1 || γ |sr2,r3

p,q b|| ≤ c2 ||λ |sr
p,qb|| ≤ c3 || f |Sr

p,qB(R3)|| .

Mutatis mutandis the case r1 < 1
p can be treated. The estimates of tri fi, i = 2, 3 follow by

symmetry.

Step 5. Now we construct the (non-)linear extension operator. We start with a function g ∈
S1(R2) + S2(R2) + S3(R2). Then there are gi ∈ Si(R2), i = 1, 2, 3, such that gi ∈ Si(R2), g =

g1 + g2 + g3 and

|| gi |Si(R2)|| ≤ 2 || g |S1(R2) + S2(R2) + S3(R2)|| .

We shall extend each gi separately. It means, we construct three functions f1, f2, f3 ∈ Sr
p,qB(R3)

such that trO fi = gi, i = 1, 2, 3. The desirable extension will than be given by f = f1 + f2 + f3.

Substep 5.1 We restrict ourselves to i = 1, the other cases follow by symmetry. To begin with we

treat the case r1 > 1/p. We put h1 := g1 ◦ R−1
1 . Then h1 ∈ Sr2,r3

p,q B(R2) and, according to (2.7),

we get

g1(z1, z2) = (trO f1)(z1, z2) = (tr1 f1)(R1~z)

for all ~z = (z1, z2) ∈ R
2 if, and only if,

g1(R−1
1 ~z) = h1(~z) = (tr1 f1)(z1, z2) = f1(−z1 − z2, z1, z2), ~z = (z1, z2) ∈ R

2.

Hence, our original task, namely to find f1 such that trO f1 = g1, where g1 ∈ Sr2,r3
p,q B(R−1

1 ,R2) is

given, can be replaced by searching for f1 such that tr1 f1 = h1, where h1 ∈ Sr2,r3
p,q B(R2). Again

we make use of atomic decompositions. According to Theorem 3.6 we can decompose

h1(x2, x3) =
∑

(ν2,ν3)∈N2
0

∑

(m2,m3)∈Z2

γ(ν2,ν3) (m2,m3)b(ν2,ν3) (m2,m3)(x2, x3),

where

c1 ‖ γ |sr2,r3

p,q b‖ ≤ ‖h1 |Sr2,r3

p,q B(R2)‖ ≤ c2 ‖ γ |sr2,r3

p,q b‖

for certain positive constants c1 and c2 independent of h1. Now we choose an integer m1 such that

|2−ν1m1 + 2−ν2m2 + 2−ν3m3| ≤ 2−ν1 and define

aν m(x1, x2, x3) := ψ(2ν1x1 −m1) b(ν2,ν3) (m2,m3)(x2, x3),

where

ψ ∈ S(R), suppψ ⊂ [−2(1 + δ), 2(1 + δ)], ψ(t) = 1 if t ∈ [−(1 + δ), (1 + δ)]
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and δ is the number from (3.9). For ν1 ≤ min(ν2, ν3) some easy calculations yield

aν m(−x2 − x3, x2, x3) = b(ν2,ν3) (m2,m3)(x2, x3) , (x2, x3) ∈ R
2 .

If the first component of m differs from this specific m1 then we define aν m ≡ 0. Further, we put

λ(ν1,ν2,ν3) (m1,m2,m3) :=

{
γ(ν2,ν3) (m2,m3) if ν1 = 0 ,

0 otherwise ,
(3.32)

and

f1 := exth1 =
∑

ν∈Υ1

∑

m∈Z3

λν m aν m .

Then

|| exth1 |Sr
p,qB(R3)|| ≤ C1 ||λ |sr

p,qb|| = C1 || γ |sr2,r3

p,q b|| ≤ C2 ||h1 |Sr2,r3

p,q B(R2)||. (3.33)

This showes that f1 represents an appropriate extension of h1 if r1 >
1
p .

Substep 5.2. Let r1 < 1/p. First of all notice that this time h1 ∈ S
r2,r3+r1−

1

p
p,q B(R2) ∩

S
r2+r1−

1

p
,r3

p,q B(R2). We have to modify the definition of λ, cf. (3.32). This time we use

λ(ν1,ν2,ν3) (m1,m2,m3) :=

{
γ(ν2,ν3) (m2,m3) if ν1 = min(ν2, ν3) ,

0 otherwise ,
(3.34)

for the specific value of m1 as chosen in Substep 5.1. In all other cases we put λν m = 0. Then

|| exth1 |Sr
p,qB(R3)||q ≤ C1 ||λ |sr

p,qb||q

= C1

∞∑

ν2=0

∞∑

ν3=0

2
[min(ν2,ν3)(r1−1/p)+ν2(r2−

1

p
)+ν3(r3−

1

p
)]q
( ∑

(m2,m3)∈Z2

|γ(ν2,ν3)(m2,m3)|p
)q/p

= C1

( ∞∑

ν2=0

∞∑

ν3=ν2

2[ν2(r1−1/p)+ν2(r2−
1

p
)+ν3(r3−

1

p
)]q
( ∑

(m2,m3)∈Z2

|γ(ν2,ν3)(m2,m3)|p
)q/p

+

∞∑

ν3=0

∞∑

ν2=ν3+1

2
[ν3(r1−1/p)+ν2(r2−

1

p
)+ν3(r3−

1

p
)]q
( ∑

(m2,m3)∈Z2

|γ(ν2,ν3)(m2,m3)|p
)q/p)

≤ C1

(
|| γ |sr2+r1−

1

p
,r3

p,q b|| + || γ |sr2,r3+r1−
1

p
p,q b||

)q

≤ C2

(
||h1 |S

r2+r1−
1

p
,r3

p,q B(R2)|| + ||h1 |S
r2,r3+r1−

1

p
p,q B(R2)||

)q
.

Hence, also in this situation we have an appropriate extension of g1. The modifications for an

extension of g2 and g3 are obvious.

Remark 3.11. The reader may notice that the only possible failure of linearity of the extension

operator comes from the (generally non-linear) decomposition of g into g = g1 + g2 + g3.

It remains to consider the limiting cases where at least one of the ri equals 1/p. We concentrate

on the more simple situation where 0 < p, q ≤ 1.

24

164



Proposition 3.12. Let O be an orthogonal basis of Γ and let Ri, i = 1, 2, 3 be matrices associated

with O by (1.1), (2.8) and (2.10).

Let 0 < p, q ≤ 1. Then the statement of Theorem 3.10 remains true without the assumption

ri 6= 1/p, i = 1, 2, 3.

Proof. The proof of Theorem 3.10 extends to the present situation since in Substep 3.2 one can

work with ε1 = ε2 = 0.

Remark 3.13. Proposition 3.12 does not extend to values of p larger than 1. In analogy to the

two-dimensional situation, cf. [Vy3] for details, more complicated spaces occur. We omit details.

3.5 Traces of Lizorkin-Triebel Spaces

Now we turn to the Lizorkin-Triebel classes. To prove an analog of Theorem 3.10 for these spaces

we can proceed in the same way as in case of the Besov spaces. We shall describe the needed

modifications only.

Theorem 3.14. Let O be an orthogonal basis of Γ and let Ri, i = 1, 2, 3 be matrices associated

with O by (1.1), (2.8) and (2.10). Let 0 < p <∞ and 0 < q ≤ ∞. Let r = (r1, r2, r3) ∈ R
3 with

min(r1, r2, r3) > max

(
1

p
, σpq

)
. (3.35)

Then

trO ∈ L
(
Sr

p,qF (R3), Sr2,r3

p,q F (R−1
1 ,R2) + Sr1,r3

p,q F (R−1
2 ,R2) + Sr1,r2

p,q F (R−1
3 ,R2)

)
. (3.36)

Conversely, to each function g ∈ Sr2,r3
p,q F (R−1

1 ,R2) + Sr1,r3
p,q F (R−1

2 ,R2) + Sr1,r2
p,q F (R−1

3 ,R2) there

exists a function f ∈ Sr
p,qF (R3) such that trO f = g.

Proof. We shall use the same notation as in the proof of Theorem 3.10.

Step 1. Boundedness. In Step 1 of the proof of Theorem 3.10 we simply change the letter B to F .

In Step 2 nothing is to change and we concentrate on Step 3 now. We have to prove that

|| γ |sr2,r3

p,q f || ≤ c ||λ |sr1,r2,r3

p,q f || (3.37)

with some c independent of λ.

Instead we shall prove a pointwise inequality. So, first we fix a point (x2, x3) ∈ R
2. Then there

is only one element (m2,m3) ∈ Z
2 such that χ(ν2,ν3) (m2,m3)(x2, x3) = 1. We denote γ(ν2,ν3) =

γ(ν2,ν3) (m2,m3). Similarly, for each ν = (ν1, ν2, ν3), there is a unique m(ν) = (m1,m2,m3) such that

χ(ν1,ν2,ν3) (m1,m2,m3)(x1, x2, x3) = 1 and m ∈ Bν . We denote λν = λν m.

Substep 2.1. Let r1 > 1/p and 0 < q ≤ 1. Then

|γ(ν2,ν3)|q =
(min(ν2,ν3)∑

ν1=0

|λ(ν1,ν2,ν3)|
)q

≤
min(ν2,ν3)∑

ν1=0

|λ(ν1,ν2,ν3)|q ,
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and 


∞∑

ν2,ν3=0

2[ν2r2+ν3r3]q|γ(ν2,ν3)|q



p/q

≤
(

∞∑

ν1=0

∞∑

ν2,ν3=ν1

2[ν2r2+ν3r3]q|λν |q
)p/q

.

To continue we distinguish two cases. Let 0 < p ≤ q. Then

(
∞∑

ν1=0

∞∑

ν2,ν3=ν1

2[ν2r2+ν3r3]q|λν |q
)p/q

≤
∞∑

ν1=0

(
∞∑

ν2,ν3=ν1

2[ν2r2+ν3r3]q|λν |q
)p/q

≤
∞∑

ν1=0

2−ν1r1p

(
∞∑

ν2,ν3=ν1

2[ν1r1+ν2r2+ν3r3]q|λν |q
)p/q

.

Now let 0 < q < p <∞. With 0 < ε < r1p− 1 and applying Hölder’s inequality we find

(
∞∑

ν1=0

∞∑

ν2,ν3=ν1

2[ν2r2+ν3r3]q|λν |q
)p/q

≤ c
∞∑

ν1=0

2−ν1(r1p−ε)

(
∞∑

ν2,ν3=ν1

2[ν1r1+ν2r2+ν3r3]q|λν |q
)p/q

≤ c

∞∑

ν1=0

2−ν1

(
∞∑

ν2,ν3=ν1

2[ν1r1+ν2r2+ν3r3]q|λν |q
)p/q

.

Substep 2.2. If q > 1 we use triangle inequality

( ∞∑

ν2,ν3=0

2[ν2r2+ν3r3]q
(min(ν2,ν3)∑

ν1=0

|λν |
)q)1/q

≤
∞∑

ν1=0

( ∞∑

ν2,ν3=ν1

2[ν2r2+ν3r3]q|λν |q
)1/q

≤
∞∑

ν1=0

2−ν1r1

( ∞∑

ν2,ν3=ν1

2[ν1r1+ν2r2+ν3r3]q|λν |q
)1/q

.

If 0 < p ≤ 1

( ∞∑

ν2,ν3=0

2[ν2r2+ν3r3]q
(min(ν2,ν3)∑

ν1=0

|λν |
)q)p/q

≤
∞∑

ν1=0

2−ν1r1p

( ∞∑

ν2,ν3=ν1

2[ν1r1+ν2r2+ν3r3]q|λν |q
)p/q

follows. If p > 1 we apply again Hölder’s inequality and find

( ∞∑

ν2,ν3=0

2[ν2r2+ν3r3]q
(min(ν2,ν3)∑

ν1=0

|λν |
)q)p/q

≤ c

∞∑

ν1=0

2−ν1(r1p−ε)

( ∞∑

ν2,ν3=ν1

2[ν1r1+ν2r2+ν3r3]q|λν |q
)p/q

≤ c

∞∑

ν1=0

2−ν1

( ∞∑

ν2,ν3=ν1

2[ν1r1+ν2r2+ν3r3]q|λν |q
)p/q

.

Substep 2.3. Summarizing in all situations we have found




∞∑

ν2,ν3=0

2[ν2r2+ν3r3]q|γ(ν2,ν3)|q



p/q

≤ c
∞∑

ν1=0

2−ν1

(
∞∑

ν2,ν3=ν1

2[ν1r1+ν2r2+ν3r3]q|λν |q
)p/q

, (3.38)

where c does not depend on λ. We have to show that this inequality implies (3.37). For fixed

(x2, x3) we choose a sequence of intervals Iν1
such that

Iν1
∩ Iν′

1
= ∅ , ν1 6= ν ′1 , |Iν1

| ≥ c 2−ν1
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for some c > 0 and

{
(x1, x2, x3) : x1 ∈ Iν1

}
⊂ Qν m , ν ∈ Υ1 , m ∈ Bν .

Then (3.38) implies

( ∞∑

ν2,ν3=0

2[ν2r2+ν3r3]q|γ(ν2,ν3) χ(ν2,ν3) (m2,m3)(x2, x3)|q
)p/q

≤ c

∞∑

ν1=0

∫

Iν1

(
∞∑

ν2,ν3=ν1

2[ν1r1+ν2r2+ν3r3]q|λν χν(x1, x2, x3)|q
)p/q

dx1.

Integration with respect to x2 and x3 completes the proof of the boundedness of tr1 f1. The rest is

the same as in the B-case.

Step 2. The extension. Here the same construction as in the B-case can be applied, cf. Substep

5.1 of the proof of Theorem 3.10.

The above proof can be used also in case that some of the ri coincide with 1/p, at least under

additional restrictions on p and q.

Proposition 3.15. Let O be an orthogonal basis of Γ and let Ri, i = 1, 2, 3 be matrices associated

with O by (1.1), (2.8) and (2.10).

Let 0 < p ≤ min(1, q). Then the statement of Theorem 3.14 remains true under the weaker

restriction

min(r1, r2, r3) ≥
1

p
and min(r1, r2, r3) > σp,q.

Remark 3.16. A final remark. In the general situation of the Besov-Lizorkin-Triebel spaces we

have proved a full counterpart of Theorem 2.9. In fact, it is not only a counterpart. Based on

the identities Sr
2W (R3) = Sr

2,2F (R3) = Sr
2,2B(R3) (in the sense of equivalent norms) we have given

a new proof of Theorem 2.9. Because of Sr
pW (R3) = Sr

p,2F (R3), 1 < p < ∞, (also in the sense

of equivalent norms) Theorem 3.14 contains the extension to Sobolev spaces of dominating mixed

smoothness with p different from 2. However, we do not have counterparts of Theorems 2.11 and

2.13, respectively. Here a good description of the spaces Sr1,r2
p,q A(R,R2) in terms of atoms would

be desirable, see Lemma 2.2(iii) for the Fourier-analytic counterpart.
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On the Interplay of Regularity and Decay in Case

of Radial Functions I. Inhomogeneous spaces

Winfried Sickel, Leszek Skrzypczak and Jan Vybiral

Abstract

We deal with decay and boundedness properties of radial functions be-

longing to Besov and Lizorkin-Triebel spaces. In detail we investigate the

surprising interplay of regularity and decay. Our tools are atomic decomposi-

tions in combination with trace theorems.

1 Introduction

At the end of the seventies Strauss [38] was the first who observed that there is an

interplay between the regularity and decay properties of radial functions. We recall

his

Radial Lemma: Let d ≥ 2. Every radial function f ∈ H1(Rd) is almost everywhere

equal to a function f̃ , continuous for x 6= 0, such that

|f̃(x)| ≤ c |x|
1−d
2 ‖ f |H1(Rd)‖ , (1)

where c depends only on d.

The Radial Lemma contains three different assertions:

(a) the existence of a representative of f , which is continuous outside the origin;

(b) the decay of f near infinity;

(c) the limited unboundedness near the origin.

These three properties do not extend to all functions in H1(Rd), of course. It will

be our aim in this paper to investigate the specific regularity and decay properties

of radial functions in a more general framework than Sobolev spaces. In our opinion

a discussion of these properties in connection with fractional order of smoothness

results in a better understanding of the announced interplay of regularity on the one

side and local smoothness, decay at infinity and limited unboundedness near the

origin on the other side. In the literature there are several approaches to fractional

order of smoothness. Probably most popular are Bessel potential spaces Hs
p(R

d),
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s ∈ R, or Slobodeckij spaces W s
p (Rd) (s > 0, s 6∈ N). These scales would be enough

to explain the main interrelations. However, for some limiting cases these scales are

not sufficient. For that reason we shall discuss generalizations of the Radial Lemma

in the framework of Besov spaces Bs
p,q(R

d) and Lizorkin-Triebel spaces F s
p,q(R

d).

These scales cover the Bessel potential and the Slobodeckij spaces since

• Wm
p (Rd) = Fm

p,2(R
d), m ∈ N0, 1 < p <∞;

• Hs
p(R

d) = F s
p,2(R

d), s ∈ R, 1 < p <∞;

• W s
p (Rd) = F s

p,p(R
d) = Bs

p,p(R
d), s > 0, s 6∈ N, 1 ≤ p ≤ ∞,

where all identities have to be understood in the sense of equivalent norms, see, e.g.,

[40].

All three phenomena (a)-(c) extend to a certain range of parameters which we shall

characterize exactly. For instance, decay near infinity will take place in spaces with

s ≥ 1/p (see Theorem 10) and limited unboundedness near the origin in the sense

of (1) will happen in spaces such that 1/p ≤ s ≤ d/p (see Theorem 13). For s = 1/p

(or s = d/p) always the microscopic parameter q comes into play. We will study the

above properties also for spaces with p < 1. To a certain extend this is motivated by

the fact, that the decay properties of radial functions near infinity are determined

by the parameter p and the decay rate increases when p decreases, see Theorem 10.

Our main tools here are the following. Based on the atomic decomposition theorem

for inhomogeneous Besov and Lizorkin-Triebel spaces, which we proved in [31], we

shall deduce a trace theorem for radial subspaces which is of interest on its own.

Then this trace theorem will be applied to derive the extra regularity properties

of radial functions. To derive the decay estimates and the assertions on controlled

unboundedness near zero we shall also employ the atomic decomposition technique.

With respect to the decay it makes a difference, whether one deals with inhomo-

geneous or homogeneous spaces of Besov and Lizorkin-Triebel type. Homogeneous

spaces (with a proper interpretation) are larger than their inhomogeneous coun-

terparts (at least if s > dmax(1
p
− 1)). Hence, the decay rate of the elements of

inhomogeneous spaces can be better than that one for homogeneous spaces. This

turns out to be true. However, here in this article we concentrate on inhomogeneous

spaces. Radial subspaces of homogeneous spaces will be subject to the continuation

of this paper, see [32]. In a further paper [33] we shall investigate a few more prop-

erties of radial subspaces like interpolation and characterization by differences.

The paper is organized as follows.

1. Introduction

2. Main results

2.1 The characterization of traces of radial subspaces

2.1.1 Traces of radial subspaces with p = ∞

2
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2.1.2 Traces of radial subspaces with p <∞

2.1.3 Traces of radial subspaces of Sobolev spaces

2.1.4 The trace in S ′(R)

2.1.5 The trace in S ′(R) and weighted function spaces of Besov and Lizorkin-Triebel

type

2.1.6 The regularity of radial functions outside the origin

2.2 Decay and boundedness properties of radial functions

2.2.1 The behaviour of radial functions near infinity

2.2.2 The behaviour of radial functions near infinity – borderline cases

2.2.3 The behaviour of radial functions near the origin

2.2.4 The behaviour of radial functions near the origin – borderline cases

3. Traces of radial subspaces – proofs

4. Decay properties of radial functions – proofs

We add a few comments. In 2.1.1 we state also trace assertions for radial subspaces

of Hölder-Zygmund classes. Within the borderline cases in Subsection 2.2.2 the

spaces BV (Rd) show up. In this context we will also deal with the trace problem

for the associated radial subspaces. All proofs will be given in Sections 3 and 4.

There also additional material is collected, e.g., in Subsection 3.1 we deal with in-

terpolation of radial subspaces, in Subsection 3.3.2 we recall the characterization of

radial subspaces by atoms as given in [31], and finally, in Subsection 3.8 we discuss

the regularity properties of some families of test functions.

Besov and Lizorkin-Triebel spaces are discussed at various places, we refer, e.g., to

the monographs [26, 28, 40, 41, 43]. We will not give definitions here and refer for

this to the quoted literature.

The present paper is a continuation of [31], [35] and [21].

Notation

As usual, N denotes the natural numbers, N0 := N ∪ {0}, Z denotes the integers

and R the real numbers. If X and Y are two quasi-Banach spaces, then the symbol

Y →֒ X indicates that the embedding is continuous. By L(X, Y ) the set of all linear

and bounded operators T : X → Y is denoted equipped with the standard quasi-

norm. As usual, the symbol c denotes positive constants which depend only on the

fixed parameters s, p, q and probably on auxiliary functions, unless otherwise stated;

its value may vary from line to line. Sometimes we will use the symbols “ <
∼ ” and

“ >
∼ ” instead of “≤” and “≥”, respectively. The meaning of A <

∼ B is given by:

there exists a constant c > 0 such that A ≤ cB. Similarly >
∼ is defined. The

symbol A ≍ B will be used as an abbreviation of A <
∼ B <

∼ A.

We shall use the following conventions throughout the paper:

• If E denotes a space of functions on Rd then by RE we mean the subset of

3
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radial functions in E and we endow this subset with the same quasi-norm as

the original space.

• Inhomogeneous Besov and Lizorkin-Triebel spaces are denoted by Bs
p,q and

F s
p,q, respectively. If there is no reason to distinguish between these two scales

we will use the notation As
p,q. Similarly for the radial subspaces.

• If an equivalence class [f ] contains a continuous representative then we call the

class continuous and speak of values of f at any point (by taking the values

of the continuous representative).

• Throughout the paper ψ ∈ C∞
0 (Rd) denotes a specific radial cut-off function,

i.e., ψ(x) = 1 if |x| ≤ 1 and ψ(x) = 0 if |x| ≥ 3/2.

2 Main results

This section consists of two parts. In Subsection 2.1 we concentrate on trace the-

orems which are the basis for the understanding of the higher regularity of radial

functions outside the origin. Subsection 2.2 is devoted to the study of decay and

boundedness properties of radial functions in dependence on their regularity. To

begin with we study the decay of radial functions near infinity. Special emphasize

is given to the limiting situation which arises for s = 1/p. Then we continue with

an investigation of the behaviour of radial functions near the origin. Also here we

investigate the limiting situations s = d/p and s = 1/p in some detail.

2.1 The characterization of the traces of radial subspaces

Let d ≥ 2. Let f : Rd → C be a locally integrable radial function. By using a

Lebesgue point argument its restriction

f0(t) := f(t, 0, . . . , 0) , t ∈ R .

is well defined a.e. on R. However, this restriction need not be locally integrable.

A simple example is given by the function

f(x) := ψ(x) |x|−1 , x ∈ R
d ,

where ψ denotes a smooth cut-off function s.t. ψ(0) 6= 0. Furthermore, if we start

with a measurable and even function g : R → C, s.t. g is locally integrable on all

intervals (a, b), 0 < a < b < ∞, then (again using a Lebesgue point argument) the

function

f(x) := g(|x|) , x ∈ R
d

4
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is well-defined a.e. on Rd and is radial, of course. In what follows we shall study

properties of the associated operators

tr : f 7→ f0 and ext : g 7→ f .

Both operators are defined pointwise only. Later on we shall have a short look onto

the existence of the trace in the distributional sense, see Subsection 2.1.4. Probably

it would be more natural to deal with functions defined on [0,∞) in this context.

However, that would result in more complicated descriptions of the trace spaces.

So, our target spaces will be spaces of even functions defined on R.

2.1.1 Traces of radial subspaces with p = ∞

The first result is maybe well-known but we did not find a reference for it.

Theorem 1 Let d ≥ 2. For m ∈ N0 the mapping tr is a linear isomorphism of

RCm(Rd) onto RCm(R) with inverse ext .

Using real interpolation it is not difficult to derive the following result for the spaces

of Hölder-Zygmund type.

Theorem 2 Let s > 0 and let 0 < q ≤ ∞. Then the mapping tr is a linear

isomorphism of RBs
∞,q(R

d) onto RBs
∞,q(R) with inverse ext .

2.1.2 Traces of radial subspaces with p <∞

Now we turn to the description of the trace classes of radial Besov and Lizorkin-

Triebel spaces with p <∞. Again we start with an almost trivial result.

Lemma 1 Let d ≥ 2.

(i) Let 0 < p < ∞. Then tr : RLp(R
d) → RLp(R, |t|

d−1) is an linear isomorphism

with inverse ext .

(ii) Let p = ∞. Then tr : RL∞(Rd) → RL∞(R) is an linear isomorphism with

inverse ext .

In particular this means, that whenever the Besov-Lizorkin-Triebel space As
p,q(R

d)

is contained in L1(R
d)+L∞(Rd), then tr is well-defined on its radial subspace. This

is in sharp contrast to the general theory of traces on these spaces. To guarantee

that tr is meaningful on As
p,q(R

d) one has to require

s >
d− 1

p
+ max

(
0,

1

p
− 1
)
,

cf. e.g. [20], [14], [40, Rem. 2.7.2/4] or [12]. On the other hand we have

Bs
p,q(R

d) , F s
p,q(R

d) →֒ L1(R
d) + L∞(Rd)

5
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if s > d max(0, 1
p
− 1), see, e.g., [34]. Since

d max(0,
1

p
− 1) <

d− 1

p
+ max

(
0,

1

p
− 1
)

we have the existence of tr with repect to RAs
p,q(R

d) for a wider range of parameters

than for As
p,q(R

d).

Below we shall develop a description of the traces of the radial subspaces of Bs
p,q(R

d)

and F s
p,q(R

d) in terms of atoms. To explain this we need to introduce first an

appropriate notion of an atom and second, adapted sequence spaces.

Definition 1 Let L ≥ 0 be an integer. Let I be a set either of the form I = [−a, a]

or of the form I = [−b,−a] ∪ [a, b] for some 0 < a < b < ∞. An even function

g ∈ CL(R) is called an even L-atom centered at I if

max
t∈R

|b(n)(t)| ≤ |I|−n , 0 ≤ n ≤ L .

and if either

supp g ⊂ [−
3 a

2
,

3a

2
] in case I = [−a, a] ,

or

supp g ⊂ [−
3b− a

2
,−

3a− b

2
] ∪ [

3a− b

2
,
3b− a

2
] in case I = [−b,−a] ∪ [a, b] .

Definition 2 Let 0 < p <∞, 0 < q ≤ ∞ and s ∈ R. Let

χ#
j,k(t) :=

{
1 if 2−jk ≤ |t| ≤ 2−j(k + 1) ,

0 otherwise .
t ∈ R .

Then we define

bsp,q,d :=

{
s = (sj,k)j,k : ‖ s |bsp,q,d‖ =

( ∞∑

j=0

2j(s− d
p
)q

( ∞∑

k=0

(1+k)d−1 |sj,k|
p

)q/p)1/q

<∞

}
.

and

f s
p,q,d :=

{
s = (sj,k)j,k :

‖ s |f s
p,q,d‖ =

∥∥∥∥
( ∞∑

j=0

2jsq
∞∑

k=0

|sj,k|
q χ#

j,k(·)

)1/q

|Lp(R, |t|
d−1)

∥∥∥∥ <∞

}
,

respectively.

Remark 1 Observe bsp,q,d = f s
p,q,d in the sense of equivalent quasi-norms.

Adapted to these sequence spaces we define now function spaces on R.

6
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Definition 3 Let 0 < p <∞, 0 < q ≤ ∞, s > 0 and L ∈ N0.

(i) Then TBs
p,q(R, L, d) is the collection of all functions g : R → C such that there

exists a decomposition

g(t) =
∞∑

j=0

∞∑

k=0

sj,k gj,k(t) (2)

(convergence in Lmax(1,p)(R, |t|
d−1)), where the sequence (sj,k)j,k belongs to bsp,q,d and

the functions gj,k are even L-atoms centered at either [−2−j , 2−j] if k = 0 or at

[−2−j(k + 1),−2−jk] ∪ [2−jk, 2−j(k + 1)]

if k > 0. We put

‖ g |TBs
p,q(R, L, d)‖ := inf

{
‖ (sj,k) |b

s
p,q,d‖ : (2) holds

}
.

(ii) Then TF s
p,q(R, L, d) is the collection of all functions g : R → C such that there

exists a decomposition (2), where the sequence (sj,k)j,k belongs to f s
p,q,d and the func-

tions gj,k are as in (i). We put

‖ g |TF s
p,q(R, L, d)‖ := inf

{
‖ (sj,k) |f

s
p,q,d‖ : (2) holds

}
.

We need a few further notation. In connection with Besov and Lizorkin-Triebel

spaces quite often the following numbers occur:

σp(d) := d max
(
0,

1

p
− 1
)

and σp,q(d) := d max
(
0,

1

p
− 1,

1

q
− 1
)
. (3)

For a real number s we denote by [s] the integer part, i.e. the largest integer m such

that m ≤ s.

Theorem 3 Let d ≥ 2, 0 < p <∞ and 0 < q ≤ ∞.

(i) Suppose s > σp(d) and L ≥ [s]+1. Then the mapping tr is a linear isomorphism

of RBs
p,q(R

d) onto TBs
p,q(R, L, d) with inverse ext .

(ii) Suppose s > σp,q(d) and L ≥ [s]+1. Then the mapping tr is a linear isomorphism

of RF s
p,q(R

d) onto TF s
p,q(R, L, d) with inverse ext .

Remark 2 Let 0 < p ≤ 1 < q ≤ ∞. Then the spaces RB
σp
p,q(Rd) contain sin-

gular distributions, see [34]. In particular, the Dirac delta distribution belongs to

RB
d
p
−d

p,∞ (Rd), see, e.g., [28, Rem. 2.2.4/3]. Hence, our pointwise defined mapping tr

is not meaningful on those spaces, or, with other words, Theorem 3 does not extend

to values s < σp(d).

Outside the origin radial distributions are more regular. We shall discuss several

examples for this claim.

7
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Theorem 4 Let d ≥ 2, 0 < p < ∞ and 0 < q ≤ ∞. Suppose s > max(0, 1
p
− 1).

Let f ∈ RAs
p,q(R

d) s.t. 0 6∈ supp f . Then f is a regular distribution in S ′(Rd).

Remark 3 There is a nice and simple example which explains the sharpness of the

restrictions in Thm. 4. We consider the singular distribution f defined by

ϕ 7→

∫

|x|=1

ϕ(x) dx , ϕ ∈ S(Rd) .

By using the wavelet characterization of Besov spaces, it is not difficult to prove

that the spherical mean distribution f belongs to the spaces B
1
p
−1

p,∞ (Rd) for all p.

Theorem 5 Let d ≥ 2, 0 < p < ∞ and 0 < q ≤ ∞. Suppose s > max(0, 1
p
− 1).

Let f ∈ RAs
p,q(R

d) s.t. 0 6∈ supp f . Then f0 = tr f belongs to As
p,q(R).

Remark 4 As mentioned above

As
p,q(R) →֒ L1(R) + L∞(R) if s > σp(1) = max

(
0,

1

p
− 1
)
,

which shows again that we deal with regular distributions. However, in Thm. 5

some additional regularity is proved.

2.1.3 Traces of radial subspaces of Sobolev spaces

Clearly, one can expect that the description of the traces of radial Sobolev spaces

can be given in more elementary terms. We discuss a few examples without having

the complete theory.

Theorem 6 Let d ≥ 2 and 1 ≤ p <∞.

(i) The mapping tr is a linear isomorphism (with inverse ext ) of RW 1
p (Rd) onto

the closure of RC∞
0 (R) with respect to the norm

‖ g |Lp(R, |t|
d−1)‖ + ‖ g′ |Lp(R, |t|

d−1)‖ .

(ii) The mapping tr is a linear isomorphism (with inverse ext ) of RW 2
p (Rd) onto

the closure of RC∞
0 (R) with respect to the norm

‖ g |Lp(R, |t|
d−1)‖ + ‖ g′ |Lp(R, |t|

d−1)‖ + ‖ g′/r |Lp(R, |t|
d−1)‖ + ‖ g′′ |Lp(R, |t|

d−1)‖ .

Remark 5 Both statements have elementary proofs, see (11) for (i). However, the

complete extension to higher order Sobolev spaces is open.

There are several ways to define Sobolev spaces on Rd. For instance, if 1 < p <∞

we have

f ∈W 2m
p (Rd) ⇐⇒ f ∈ Lp(R

d) and ∆mf ∈ Lp(R
d) . (4)

8
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Such an equivalence does not extend to p = 1 or p = ∞ if d ≥ 2, see [36, pp. 135/160].

Recall that the Laplace operator ∆ applied to a radial function yields a radial

function. In particular we have

∆f(x) = Drf0(r) := f ′′
0 (r) +

d− 1

r
f ′

0(r) , r = |x| , (5)

in case that f is radial and tr f = f0. Obviously, if f ∈ RC∞
0 (Rd), then

‖ f |Lp(R
d)‖ + ‖∆mf |Lp(R

d)‖ (6)

=
( πd/2

Γ(d/2)

)1/p (
‖ f0 |Lp(R, |t|

d−1)‖ + ‖Dm
r f0 |Lp(R, |t|

d−1)‖
)
.

This proves the next characterization.

Theorem 7 Let 1 < p < ∞ and m ∈ N. Then the mapping tr yields a linear

isomorphism (with inverse ext ) of RW 2m
p (Rd) onto the closure of RC∞

0 (R) with

respect to the norm

‖ f0 |Lp(R, |t|
d−1)‖ + ‖Dm

r f0 |Lp(R, |t|
d−1)‖ .

Remark 6 By means of Hardy-type inequalities one can simplify the terms

‖Dm
r f0 |Lp(R, |t|

d−1)‖ to some extend, see Theorem 6(ii) for a comparison. We

do not go into detail.

2.1.4 The trace in S ′(R)

Many times applications of traces are connected with boundary value problems. In

such a context the continuity of tr considered as a mapping into S ′ is essential.

Again we consider the simple situation of the Lp-spaces first.

Lemma 2 Let d ≥ 2 and let 0 < p < ∞. Then RLp(R, |t|
d−1) ⊂ S ′(R) if and only

if d < p.

From the known embedding relations of RAs
p,q(R

d) into Lu-spaces one obtains

one half of the proof of the following general result.

Theorem 8 Let d ≥ 2, 0 < p <∞, and 0 < q ≤ ∞.

(a) Let s > σp(d) and L ≥ [s] + 1. Then the following assertions are equivalent:

(i) The mapping tr maps RBs
p,q(R

d) into S ′(R).

(ii) The mapping tr : RBs
p,q(R

d) → S ′(R) is continuous.

(iii) We have TBs
p,q(R, L, d) →֒ S ′(R).

(iv) We have either s > d(1
p
− 1

d
) or s = d(1

p
− 1

d
) and q ≤ 1.

(b) Let s > σp,q(d) and L ≥ [s] + 1. Then following assertions are equivalent:

(i) The mapping tr maps RF s
p,q(R

d) into S ′(R).

(ii) The mapping tr : RF s
p,q(R

d) → S ′(R) is continuous.

(iii) We have TF s
p,q(R, L, d) →֒ S ′(R).

(iv) We have either s > d(1
p
− 1

d
) or s = d(1

p
− 1

d
) and 0 < p ≤ 1.

9
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2.1.5 The trace in S ′(R) and weighted function spaces of Besov and

Lizorkin-Triebel type

Weighted function spaces of Besov and Lizorkin-Triebel type, denoted by Bs
p,q(R, w)

and F s
p,q(R, w), respectively, are a well-developed subject in the literature, we refer

to [5, 6, 29]. Fourier analytic definitions as well as characterizations by atoms

are given under various restrictions on the weights, see e.g. [4, 5, 6, 16, 18, 30].

In this subsection we are interested in these spaces with respect to the weights

wd−1(t) := |t|d−1, t ∈ R, d ≥ 2. Of course, these weights belong to the Muckenhoupt

class A∞, more exactly wd−1 ∈ Ar for any r > d, see [37].

Theorem 9 Let d ≥ 2, 0 < p <∞, and 0 < q ≤ ∞.

(i) Suppose s > σp(d) and let L ≥ [s] + 1. If TBs
p,q(R, L, d) →֒ S ′(R) (see Theorem

8), then TBs
p,q(R, L, d) = RBs

p,q(R, wd−1) in the sense of equivalent quasi-norms.

(ii) Suppose s > σp,q(d) and let L ≥ [s] + 1. If TF s
p,q(R, L, d) →֒ S ′(R) (see Theorem

8), then TF s
p,q(R, L, d) = RF s

p,q(R, wd−1) in the sense of equivalent quasi-norms.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Remark 7 We add some statements concerning the regularity of the most promi-

nent singular distribution, namely δ : ϕ → ϕ(0), ϕ ∈ S(Rd). This tempered

distribution has the following regularity properties:

• First we deal with the situation on Rd. We have δ ∈ RB
d
p
−d

p,∞ (Rd) (but δ 6∈

RB
d
p
−d

p,q (Rd) for q <∞ and δ 6∈ RF
d
p
−d

p,∞ (Rd)), see, e.g., [28, Rem. 2.2.4/3].

• Now we turn to the situation on R. By using more or less the same arguments

as on Rd one can show δ ∈ B
d
p
−1

p,∞ (R, wd−1) (but δ 6∈ B
d
p
−1

p,q (R, wd−1) for any

q <∞ and δ 6∈ F
d
p
−1

p,∞ (R, wd−1)).
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2.1.6 The regularity of radial functions outside the origin

Let f be a radial function such that supp f ⊂ {x ∈ Rd : |x| ≥ τ} for some τ > 0.

Then the following inequality is obvious:

‖ f0 |Lp(R)‖ ≤ τ−(d−1)/p
(Γ(d/2)

πd/2

)1/p

‖ f |Lp(R
d)‖ .

An extension to first or second order Sobolev spaces can be done by using Theorem 6.

However, an extension to all spaces under consideration here is less obvious. Partly

it could be done by interpolation, see Proposition 1, but we prefer a different way

(not to exclude p < 1). We shall compare the atomic decompositions in Theorem 3

with the known atomic and wavelet characterizations of Bs
p,q(R) and F s

p,q(R).

Corollary 1 Let τ > 0. Let d ≥ 2, 0 < p <∞, and 0 < q ≤ ∞.

(i) We suppose s > σp(d). If f ∈ RBs
p,q(R

d) such that

supp f ⊂ {x ∈ R
d : |x| ≥ τ} (7)

then its trace f0 belongs to Bs
p,q(R). Furthermore, there exists a constant c (not

depending on f and τ) such that

‖ f0 |B
s
p,q(R)‖ ≤ c τ−(d−1)/p ‖ f |Bs

p,q(R
d)‖ (8)

holds for all such functions f and all τ > 0.

(ii) We suppose s > σp,q(d). If f ∈ RF s
p,q(R

d) such that (7) holds, then its trace f0

belongs to F s
p,q(R). Furthermore, there exists a constant c (not depending on f and

τ) such that

‖ f0 |F
s
p,q(R)‖ ≤ c τ−(d−1)/p ‖ f |F s

p,q(R
d)‖ (9)

holds for all such functions f all τ > 0.

We wish to mention that Corollary 1 has a partial inverse.

Corollary 2 Let d ≥ 2, 0 < p <∞, 0 < q ≤ ∞ and 0 < a < b <∞.

(i) We suppose s > σp(d). If g ∈ RBs
p,q(R) such that

supp g ⊂ {x ∈ R : a ≤ |x| ≤ b} (10)

then the radial function f := ext g belongs to RBs
p,q(R

d) and there exist positive

constants A,B such that

A ‖ g |Bs
p,q(R)‖ ≤ ‖ f |Bs

p,q(R
d)‖ ≤ B ‖ g |Bs

p,q(R)‖ .

(ii) We suppose s > σp,q(d). If g ∈ RF s
p,q(R) such that (10) holds, then the radial

function f := ext g belongs to RF s
p,q(R

d) and there exist positive constants A,B such

that

A ‖ g |F s
p,q(R)‖ ≤ ‖ f |F s

p,q(R
d)‖ ≤ B ‖ g |F s

p,q(R)‖ .

11
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For our next result we need Hölder-Zygmund spaces. Recall, that Cs(Rd) =

Bs
∞,∞(Rd) in the sense of equivalent norms if s 6∈ N0. Of course, also the spaces

Bs
∞,∞(Rd) with s ∈ N allow a characterization by differences. We refer to [40, 2.2.2,

2.5.7] and [41, 3.5.3]. We shall use the abbreviation

Zs(Rd) = Bs
∞,∞(Rd) , s > 0 .

Taking into account the well-known embedding relations for Besov as well as for

Lizorkin-Triebel spaces defined on R Thm. 5 implies in particular:

Corollary 3 Let d ≥ 2, 0 < p < ∞, 0 < q ≤ ∞, and s > max(0, 1
p
− 1). Let ϕ

be a smooth radial function, uniformly bounded together with all its derivatives, and

such that 0 6∈ supp ϕ. If f ∈ RAs
p,q(R

d), then ϕ f ∈ Zs−1/p(Rd).

Remark 8 P.L. Lions [23] has proved the counterpart of Corollary 3 for first order

Sobolev spaces. We also dealt in [31] with these problems.

Finally, for later use, we would like to know when the radial functions are con-

tinuous out of the origin.

Corollary 4 Let τ > 0. Let d ≥ 2, 0 < p <∞, and 0 < q ≤ ∞.

(i) If either s > 1/p or s = 1/p and q ≤ 1 then f ∈ RBs
p,q(R

d) is uniformly

continuous on the set |x| ≥ τ .

(ii) If either s > 1/p or s = 1/p and p ≤ 1 then f ∈ RF s
p,q(R

d) is uniformly

continuous on the set |x| ≥ τ .

By looking at the restrictions in Cor. 4 we introduce the following set of param-

eters.

Definition 4 (i) We say (s, p, q) belongs to the set U(B) if (s, p, q) satisfies the

restrictions in part (i) of Cor. 4.

(ii) The triple (s, p, q) belongs to the set U(F ) if (s, p, q) satisfies the restrictions in

part (ii) of Cor. 4.

Remark 9 (a) The abbreviation (s, p, q) ∈ U(A) will be used with the obvious

meaning.

(b) Let 1 ≤ p = p0 <∞ be fixed. Then there is always a largest space in the set

{Bs
p0,q(R

d) : (s, p0, q) ∈ U(B)} ∪ {F s
p0,q(R

d) : (s, p0, q) ∈ U(F )} .

This space is given either by F 1
1,∞(Rd) if p0 = 1 or by B

1/p0

p0,1 (Rd) if 1 < p0 < ∞.

If p0 < 1, then obviously B
1/p0

p0,1 (Rd) is the largest Besov space and F
1/p0
p0,∞(Rd) is

the largest Lizorkin-Triebel space in the above family. However, these spaces are

incomparable.

12
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2.2 Decay and boundedness properties of radial functions

We deal with improvements of Strauss’ Radial Lemma. Decay can only be expected

if we measure smoothness in function spaces built on Lp(R
d) with p <∞.

It is instructive to have a short look onto the case of first order Sobolev spaces. Let

f = g(r(x)) ∈ RC∞
0 (Rd). Then

∂f

∂xi
(x) = g′(r)

xi

r
, r = |x| > 0 , i = 1, . . . , d .

Hence

|| |∇f(x)| |Lp(R
d)|| = cd || g

′ |Lp(R, |t|
d−1)|| , (11)

where 1 ≤ p <∞. Next we apply the identity

g(r) = −

∫ ∞

r

g′(t)dt

and obtain

|g(r)| ≤

∫ ∞

r

|g′(t)|dt ≤ r−(d−1)

∫ ∞

r

td−1|g′(t)|dt.

This extends to all functions in RW 1
1 (Rd) by a density argument. On this elementary

way we have proved the inequality

|x|d−1 |f(x)| = rd−1 |g(r)| ≤ cd

∫

|x|>r

|∇f(x)| dx ≤ cd ‖∇f(x) ‖1 . (12)

This inequality can be interpreted in several ways:

• The possible unboundedness in the origin is limited.

• There is some decay, uniformly in f , if |x| tends to +∞.

• We have lim|x|→∞ |x|d−1 |f(x)| = 0 for all f ∈ RW 1
1 (Rd).

• It makes sense to switch to homogeneous function spaces, since in (12) only

the norm of the homogeneous Sobolev space occurs.

We shall show that all these phenomena will occur also in the general context of

radial subspaces of Besov and Lizorkin-Triebel spaces.

2.2.1 The behaviour of radial functions near infinity

Suppose (s, p, q) ∈ U(A). Then f ∈ RAs
p,q(R

d) is uniformly continuous near infinity

and belongs to Lp(R
d). This implies lim|x|→∞ |f(x)| = 0. However, much more is

true.

13
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Theorem 10 Let d ≥ 2, 0 < p <∞, and 0 < q ≤ ∞.

(i) Suppose (s, p, q) ∈ U(A). Then there exists a constant c s.t.

|x|(d−1)/p |f(x)| ≤ c ‖ f |As
p,q(R

d)‖ (13)

holds for all |x| ≥ 1 and all f ∈ RAs
p,q(R

d).

(ii) Suppose (s, p, q) ∈ U(A). Then

lim
|x|→∞

|x|
d−1

p |f(x)| = 0 (14)

holds for all f ∈ RAs
p,q(R

d).

(iii) Suppose (s, p, q) ∈ U(A). Then there exists a constant c > 0 such that for all x,

|x| > 1, there exists a smooth radial function f ∈ RAs
p,q(R

d), ‖ f |RAs
p,q(R

d)‖ = 1,

s.t.

|x|
d−1

p |f(x)| ≥ c . (15)

(iv) Suppose (s, p, q) 6∈ U(A) and 1
p
> σp(d). We assume also that 1

p
> σq(d) in

the F -case. Then, for all sequences (xj)∞j=1 ⊂ Rd \ {0} s.t. limj→∞ |xj| = ∞, there

exists a radial function f ∈ RAs
p,q(R

d), ‖ f |RAs
p,q(R

d)‖ = 1, s.t. f is unbounded in

any neighborhood of xj, j ∈ N.

Remark 10 (i) Observe, that increasing s (for fixed p) is not improving the decay

rate. In the case of Banach spaces, i.e., p, q ≥ 1, the additional assumptions in

point (iv) are always fullfiled. Hence, the largest spaces, guaranteeing the decay

rate (d− 1)/p, are spaces with s = 1/p, see Remark 9.

(ii) Observe that in (iii) the function depends on |x|. There is no function in

RAs
p,q(R

d) such that (15) holds for all x, |x| ≥ 1, simultaneously. The naive con-

struction f(x) := (1 − ψ(x)) |x|
1−d

p , x ∈ Rd, does not belong to Lp(R
d).

(iii) If one switches from inhomogeneous spaces to the larger homogeneous spaces

of Besov and Lizorkin-Triebel type, then the decay rate becomes smaller. It will

depend also on s, see [7] and [32] for details.

(iv) Of course, formula (13) generalizes the estimate (1). Also Coleman, Glazer and

Martin [8] have dealt with (1). P.L. Lions [23] proved a p-version of the Radial

Lemma. Originally the Radial Lemma has been used to prove compactness of em-

beddings of radial Sobolev spaces into Lp-spaces, see [8], [23]. In the framework of

radial subspaces of Besov and of Lizorkin-Triebel spaces compactness of embeddings

has been investigated in [31].

14
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2.2.2 The behaviour of radial functions near infinity – borderline cases

As indicated in Remark 9, within the scales of Besov and Lizorkin-Triebel spaces the

borderline cases for the decay rate (d−1)/p are either F 1
1,∞(Rd) if p = 1 or B

1/p
p,1 (Rd)

if 1 < p <∞. Now we turn to spaces which do not belong to these scales and where

the elements of the radial subspaces have such a decay rate. Hence, we are looking

for spaces of radial functions with a simple norm which satisfy (13). The Sobolev

space RW 1
1 (Rd) is such a candidate for which (13) is already known, see [23]. But

this is not the end of the story. Also for the radial functions of bounded variation

such a decay estimate is true.

Theorem 11 Let d ≥ 2. Then there exists constant c s.t.

|x|d−1 |f(x)| ≤ c ‖ f |BV (Rd)‖ (16)

holds for all |x| > 0 and all f ∈ RBV (Rd). Also

lim
|x|→∞

|x|d−1 |f(x)| = 0 (17)

is true for all f ∈ RBV (Rd).

Remark 11 (i) Both assertions, (16) and (17), require an interpretation since, in

contrast to d = 1, the spaces BV (Rd), d ≥ 2, are spaces of equivalence classes, see

Subsection 4.2. Nevertheless, in every equivalence class [f ] ∈ BV (Rd), there is a

representative f̃ ∈ [f ], such that

|f̃(x)| ≤ lim sup
y→x

|f(y)|

(simply take f̃(x) := f(x) in every Lebesgue point x of f and f̃(x) := 0 otherwise).

Hence, (16) and (17) have to be interpreted as follows: whenever we work with

15
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values of the equivalence class [f ] then we mean the function values of the above

representative f̃ .

(ii) Notice that F 1
1,∞(Rd) and BV (Rd) are incomparable.

(iii) Observe, as in case of the Radial Lemma, that (16) holds for x 6= 0.

As a preparation for Theorem 11 we shall characterize the traces of radial el-

ements in BV (Rd). This seems to be of independent interest. For this reason we

are forced to introduce weighted spaces of functions of bounded variation on the

positive half axis. We denote by R
+ the set (0,∞).

Definition 5 (i) A function ϕ ∈ C([0,∞)) belongs to C1
c ([0,∞)) if it is continu-

ously differentiable on R+, has compact support, satisfies ϕ(0) = 0 and lim
t→0+

ϕ′(t) =

ϕ′(0) = lim
t→0+

ϕ(t)

t
exists and is finite.

(ii) A function g ∈ L1(R
+, td−1) is said to belong to BV (R+, td−1) if there is a signed

Radon measure ν on R+ such that
∫ ∞

0

g(t) [ϕ(s)sd−1]′(t) dt = −

∫ ∞

0

ϕ(t) td−1 dν(t) , ∀ϕ ∈ C1
c ([0,∞)) (18)

and

‖ g |BV (R+, td−1)‖ := ‖ g |L1(R
+, td−1)‖ +

∫ ∞

0

rd−1 d|ν|(r) (19)

is finite.

By using these new spaces we can prove the following trace theorem.

Theorem 12 Let g be a measurable function on R+. Then ext g ∈ BV (Rd) if, and

only if g ∈ BV (R+, td−1) and

‖ ext g |BV (Rd)‖ ≍ ‖ g |BV (R+, td−1) ‖ .

Spaces with 1 < p <∞

For 1 < p < ∞ one could use interpolation between p = 1 and p = ∞ to obtain

spaces with the decay rate (d−1)/p. The largest spaces with this respect are obtained

by the real method. Let Mp(R
d) := (RL∞(Rd), RBV (Rd))Θ,∞, Θ = 1/p. Then (13)

holds for all elements f ∈Mp(R
d). The disadvantage of these classes Mp(R

d) lies in

the fact that elementary descriptions of Mp(R
d) are not known. However, at least

some embeddings are known. From

RB
1/p
p,1 (Rd) = [RB0

∞,1(R
d), RB1

1,1,(R
d)]Θ →֒ (RL∞(Rd), RBV (Rd))Θ,∞ , Θ = 1/p ,

(combine Proposition 1 with [1, Thm. 4.7.1]), we get back Theorem 10 (i), but only

in case 1 < p <∞.
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2.2.3 The behaviour of radial functions near the origin

At first we mention that the embedding relations with respect to L∞(Rd) do not

change when we switch from As
p,q(R

d) to its radial subspace RAs
p,q(R

d).

Lemma 3 (i) The embedding RBs
p,q(R

d) →֒ L∞(Rd) holds if and only if either s >

d/p or s = d/p and q ≤ 1.

(ii) The embedding RF s
p,q(R

d) →֒ L∞(Rd) holds if and only if either s > d/p or

s = d/p and p ≤ 1.

The explicit counterexamples will be given in Lemma 8 below. Hence, unbound-

edness can only happen in case s ≤ d/p.

Theorem 13 Let d ≥ 2, 0 < p <∞ and 0 < q ≤ ∞.

(i) Suppose (s, p, q) ∈ U(A) and s < d
p
. Then there exists a constant c s.t.

|x|
d
p
−s |f(x)| ≤ c ‖ f |RAs

p,q(R
d)‖ (20)

holds for all 0 < |x| ≤ 1 and all f ∈ RAs
p,q(R

d).

(ii) Let σp(d) < s < d/p. There exists a constant c > 0 such that for all x, 0 < |x| <

1, there exists a smooth radial function f ∈ RAs
p,q(R

d), ‖ f |RAs
p,q(R

d)‖ = 1, s.t.

|x|
d
p
−s |f(x)| ≥ c . (21)

Remark 12 (i) In case of RBs
p,∞(Rd) we have a function which realizes the extremal

behaviour for all |x| < 1 simultaneously. It is well-known, see e.g. [28, Lem. 2.3.1/1],

that the function

f(x) := ψ(x) |x|
d
p
−s , x ∈ R

d ,

belongs to RBs
p,∞(Rd), as long as s > σp(d). This function does not belong to

RBs
p,q(R

d), q < ∞. Since it is also not contained in RF s
p,q(R

d), 0 < q ≤ ∞ we

conclude that in these cases there is no function, which realizes this upper bound

for all x simultaneously. In these cases the function f in (21) has to depend on x.

(ii) These estimates do not change by switching to the larger homogeneous spaces

RȦs
p,q(R

d) of Besov and Lizorkin-Triebel type. In case of RḢs(Rd) = RḞ s
p,2(R

d) this

has been observed in a recent paper by Cho and Ozawa [7], see also Ni [25], Rother

[27] and Kuzin, Pohozaev [22, 8.1]. The general case is treated in [32].

(iii) In the literature one can find various types of further inequalities for radial

functions. Many times preference is given to a homogeneous context, see the in-

equalities (1) and (16) as examples. Then one has to deal with the behaviour at

infinity and around the origin simultaneously. That would be not appropriate in the

context of inhomogeneous spaces. Inequalities like (1) and (16) will be investigated

systematically in [32]. However, let us refer to [38], [23], [25], [27], [22, 8.1] and [7]
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for results in this direction. Sometimes also decay estimates are proved by replacing

on the right-hand side the norm in the space As
p,q(R

d) (Ȧs
p,q(R

d)) by products of

norms, e.g., ‖ f |Lp(R
d)‖1−Θ ‖ f |Ȧs

p,q(R
d)‖Θ for some Θ ∈ (0, 1), see [23], [25], [27]

and [7]. Here we will not deal with those modifications.
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Finally we have to investigate s ≤ 1/p and (s, p, q) 6∈ U(A).

Lemma 4 Let d ≥ 2, 0 < p < ∞ and 0 < q ≤ ∞. Suppose (s, p, q) 6∈ U(A) and

σp(d) < 1/p. Moreover let σq(d) < 1/p in the F -case. Then there exists a radial

function f ∈ RAs
p,q(R

d), ‖ f |RAs
p,q(R

d)‖ = 1, and a sequence (xj)j ⊂ Rd \ {0} s.t.

limj→∞ |xj| = 0 and f is unbounded in a neighborhood of all xj.

2.2.4 The behaviour of radial functions near the origin – borderline cases

Now we turn to the remaining limiting situation. We shall show that there is also

controlled unboundedness near the origin if s = d/p and RA
d/p
p,q (Rd) 6⊂ L∞(Rd).

Theorem 14 Let d ≥ 2, 0 < p <∞, 0 < q ≤ ∞, and suppose s = d/p.

(i) Let 1 < q ≤ ∞. Then there exists constant c s.t.

(− log |x|)−1/q′ |f(x)| ≤ c ‖ f |Bd/p
p,q (Rd)‖ (22)

holds for all 0 < |x| ≤ 1/2 and all f ∈ RB
d/p
p,q (Rd).

(ii) Let 1 < p <∞. Then there exists constant c s.t.

(− log |x|)−1/p′ |f(x)| ≤ c ‖ f |F d/p
p,q (Rd)‖ (23)

holds for all 0 < |x| ≤ 1/2 and all f ∈ RF
d/p
p,q (Rd).

Remark 13 Comparing Lemma 8 below and Theorem 14 we find the following. For

the case q = ∞ in Theorem 14(i) the function f1,0, see (61), realizes the extremal

behaviour. In all other cases there remains a gap of order log log to some power.
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3 Traces of radial subspaces – proofs

The main aim of this section is to prove Theorem 3. It expresses the fact that all

information about a radial function is contained in its trace onto a straight line

through the origin. However, a few things more will be done here. For later use one

subsection is devoted to the study of interpolation of radial subspaces (Subsection

3.1) and another one is devoted to the study of certain test functions (Subsection

3.8).

3.1 Interpolation of radial subspaces

We mention two different results here, one with respect to the complex method and

one with respect to the real method of interpolation.

3.1.1 Complex interpolation of radial subspaces

In [35] one of the authors has proved that in case p, q ≥ 1 the spaces RBs
p,q(R

d)

(RF s
p,q(R

d)) are complemented subspaces of Bs
p,q(R

d) (F s
p,q(R

d)). By means of the

method of retraction and coretraction, see, e.g., Theorem 1.2.4 in [39], this allows to

transfer the interpolation formulas for the original spaces Bs
p,q(R

d) (F s
p,q(R

d)) to its

radial subspaces. However, we prefer to quote a slightly more general result, proved

in [33], concerning the complex method. It is based on the results on complex

interpolation for Lizorkin-Triebel spaces from [14] and uses the method of [24] for

an extension to the quasi-Banach space case.

Proposition 1 Let 0 < p0, p1 ≤ ∞, 0 < q0, q1 ≤ ∞, s0, s1 ∈ R, and 0 < Θ < 1.

Define s := (1 − Θ) s0 + Θ s1,

1

p
:=

1 − Θ

p0
+

Θ

p1
and

1

q
:=

1 − Θ

q0
+

Θ

q1
.

(i) Let max(p0, q0) <∞. Then we have

RBs
p,q(R

d) =
[
RBs0

p0,q0
(Rd), RBs1

p1,q1
(Rd)

]
Θ
.

(ii) Let p1 <∞ and min(q0, q1) <∞. Then we have

RF s
p,q(R

d) =
[
RF s0

p0,q0
(Rd), RF s1

p1,q1
(Rd)

]
Θ
.

3.1.2 Real Interpolation of radial subspaces

For later use we also formulate a result with respect to the real method of interpo-

lation.
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Proposition 2 Let d ≥ 1, 1 ≤ q, q0, q1 ≤ ∞, s0, s1 ∈ R, s0 6= s1, and 0 < Θ < 1.

(i) Let 1 ≤ p ≤ ∞. Then, with s := (1 − Θ) s0 + Θ s1, we have

RBs
p,q(R

d) =
(
RBs0

p,q0
(Rd), RBs1

p,q1
(Rd)

)
Θ,q

.

(ii) Let 1 ≤ p <∞. Then, with s := (1 − Θ) s0 + Θ s1, we have

RBs
p,q(R

d) =
(
RF s0

p,q0
(Rd), RF s1

p,q1
(Rd)

)

Θ,q
.

Proof. As mentioned above, the spaces RBs
p,q(R

d) (RF s
p,q(R

d)) are complemented

subspaces of Bs
p,q(R

d) (F s
p,q(R

d)), see [35]. Using the method of retraction and core-

traction, see [40, 1.2.4], the above statements are consequences of the corresponding

formulas without R, see e.g. [40, 2.4.2].

3.2 Proofs of the statements in Subsection 2.1.1

Let m ∈ N0. Then Cm(Rd) denotes the collection of all functions f : R
d → C

such that all derivatives Dαf of order |α| ≤ m exist, are uniformly continuous and

bounded. We put

‖ f |Cm(Rd)‖ :=
∑

|α|≤m

‖Dαf |L∞(Rd)‖ .

By RCm(Rd) we denote its subspace of radial functions.

Proof of Theorem 1

We shall use the following statement.

Let m ∈ N0, a ∈ Rd and f ∈ Cm(Rd) ∩ Cm+1(Rd \ {a}). If

lim
x→a

Dαf(x)

exists and is finite for all |α| = m+ 1, then f ∈ Cm+1(Rd).

Step 1. Proof in case m ∈ {0, 1}. The case m = 0 is obvious. Hence, we deal with

m = 1. Let f ∈ RC1(Rd). Obviously,

∂f

∂x1

(x) = f ′
0(t) , x = (x1, 0, . . . , 0) , t = x1 ,

which proves the estimate

‖ tr f |C1(R)‖ ≤ ‖ f |C1(Rd)‖ (24)

and at the same time the continuity of the function tr f = f0 and its derivative.

Now we assume that g ∈ RC1(R). Let f := ext g. If x 6= 0 we have

∂f

∂x1
(x) = g′(r)

x1

r
, r = |x| > 0 . (25)
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This implies

sup
x 6=0

|
∂f

∂x1
(x)| ≤ sup

r>0
|g′(r)| = sup

t∈R

|g′(t)| .

It remains to deal with the continuity of the derivative at the origin. Since g is even

and continuously differentiable we know g′(0) = 0. This, together with (25) implies

that limx→0
∂f
∂x1

(x) = 0. Using the Statement, this proves the claim for m = 1.

Step 2. We proceed by induction. Our induction hypothesis is as follows. If the

assertion of Theorem 1 holds for m, then it holds also for m+ 1.

Substep 2.1. If f ∈ RCm+1(Rd), then, of course, f0 = tr f ∈ RCm+1(R) and also

the corresponding analogue of (24) follows immediately.

Substep 2.2. Now, let g ∈ RCm+1(R) and define f := ext g. Then f is a radial

function, which is m + 1-times continuously differentiable on R
d \ {0}. Therefore,

it is enough to discuss the regularity properties of f in the origin and to prove the

estimate

‖ ext g |Cm+1(Rd)‖ <
∼ ‖ g |Cm+1(R)‖ . (26)

First, let us state the following fact, which may be easily proved by induction. For

every n ∈ N0 there is a constant c > 0 such that the function r = r(x) satisfies

|Dαr(x)| ≤ cr(x)1−|α| (27)

for every multiindex α ∈ Nd
0 and all x ∈ Rd \ {0}.

First we deal with a simplified situation. We assume that

g(0) = g′(0) = · · · = g(m+1)(0) = 0. (28)

This clearly implies for 0 ≤ ℓ ≤ m+ 1

g(ℓ)(t) = o(|t|m+1−ℓ) if t→ 0 . (29)

Then, using chain rule and the estimates (27), (29) we find

| (Dαf)(x) | <
∼

|α|∑

ℓ=1

|g(ℓ)(r)|
∑

β1+...+βℓ=α

|Dβ1

r(x)| . . . |Dβℓ

r(x)|

<
∼

|α|∑

ℓ=1

o(rm+1−ℓ) rℓ−|α| = o(rm+1−|α|), r ↓ 0 , (30)

where |α| ≤ m+1. This implies, that limx→0D
αf(x) = 0 for all α with |α| ≤ m+1

Using the induction hypothesis we immediately get Dαf(0) = 0 if |α| ≤ m+ 1.

Now let |α| = m+ 2. For simplicity we concentrate on α = (m+ 2, 0, . . . , 0). Then,

as a consequence of (30), we find

D(m+1,0,... ,0)f(h, 0, . . . , 0) −D(m+1,0,... ,0)f(0, 0, . . . , 0)

h

=
D(m+1,0,... ,0)f(h, 0, . . . , 0)

h
= o(1) if h→ 0 .
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This yields (D(m+2,0,... ,0)f(0) = 0 and with the same type of argument Dαf(0) = 0

for all derivatives of order |α| = m + 2. This proves the continuity of Dαf , |α| ≤

m + 2, in the origin. Observe, that the inequality (26) follows as in (30) by using

the chain rule.

Finally, we wish to remove the restriction (28). Suppose that m is even. Hence

g′(0) = g′′′(0) = . . . = g(m+1)(0) = 0,

but g(0), g′′(0), . . . , g(m+2)(0) can be arbitrary. Let ψ0 = tr ψ. We introduce the

function

h(t) := g(t) − g1(t)ψ0(t) , t ∈ R ,

where

g1(t) := g(0) +
g′′(0)

2!
t2 + · · · +

g(m+2)(0)

(m+ 2)!
tm+2, t ∈ R.

The extension of g1 ψ0 is a radial function with compact support and continuous

derivatives of arbitrary order. Furthermore, we have the obvious estimate

‖ ext g1 ψ0 |C
m+2(Rd)|| ≤

m
2

+1∑

j=0

|g(2j)(0)|

(2j)!
‖ |x|2j ψ(x) |Cm+2(Rd)‖

<
∼ ‖ g |Cm+2(R)‖ .

The function h satisfies (28). Hence, ext h belongs to RC(m+2)(Rd) and

‖ ext h |Cm+2(Rd)‖ <
∼ ‖ h |Cm+2(R)‖

<
∼ (‖ g |Cm+2(R)‖ + ‖ g1 ψ0 |C

m+2(R)‖)

<
∼ ‖ g |Cm+2(R)‖ .

This shows that ext g = ext h+ext (g1 ψ0) ∈ RC(m+2)(Rd) and addition we also get

the estimate

‖ ext g |Cm+2(Rd)‖ <
∼ ‖ g |Cm+2(R)‖ .

For odd m the proof is similar.

Proof of Theorem 2

For tr ∈ L(Bs
∞,q(R

d), Bs
∞,q(R)) we refer to [40, 2.7.2]. This immediately gives tr ∈

L(RBs
∞,q(R

d), RBs
∞,q(R)). Concerning ext we argue by using real interpolation.

Observe, that ext ∈ L(RCm(R), RCm(Rd)) for all m ∈ N0, see Theorem 1. From

the interpolation property of the real interpolation method we derive

ext ∈ L
(
(RCm(R), RC(R))Θ,q, (RC

m(Rd), RC(Rd))Θ,q

)
.

Using Proposition 2 the claim follows.
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3.3 Proofs of the assertions in Subsection 2.1.2

3.3.1 Proof of Lemma 1

Recall, for f ∈ RLp(R) we have

∫

Rd

|f(x)|p dx = 2
πd/2

Γ(d/2)

∫ ∞

0

|f0(r)|
p rd−1 dr .

Using ∫ ∞

0

|f0(r)|
p rd−1 dr = lim

ε↓0

∫ ∞

ε

|f0(r)|
p rd−1 dr ,

which implies the density of the test functions in Lp([0,∞), rd−1), we can read this

formula also from the other side, it means

∫

Rd

| ext g(x)|p dx = 2
πd/2

Γ(d/2)

∫ ∞

0

|g(r)|p rd−1 dr

for all g ∈ Lp([0,∞), rd−1). This proves (i). Part (ii) is obvious.

3.3.2 Characterizations of radial subspaces by atoms

As mentioned above our proof of the trace theorem relies on atomic decompositions

of radial distributions on Rd. We recall our characterizations of RAs
p,q(R

d) from [31],

see also [21].

In this paper we shall consider two different versions of atoms. They are not related

to each other. We hope that it will be always clear fom the context with which type

of atoms we are working. For the following definition of an atom we refer to [14] or

[41, 3.2.2]. For an open set Q and r > 0 we put r Q = {x ∈ Rd : dist (x,Q) < r}.

Observe that Q is always a subset of r Q whatever r is.

Definition 6 Let s ∈ R and let 1 ≤ p ≤ ∞. Let L and M be integers such that

L ≥ 0 and M ≥ −1. Let Q ⊂ R
d be an open connected set with diam Q = r.

(a) A smooth function a(x) is called an 1L-atom centered in Q if

supp a ⊂
r

2
Q ,

sup
y∈Rd

|Dαa(y)| ≤ 1 , |α| ≤ L .

(b) A smooth function a(x) is called an (s, p)L,M-atom centered in Q if

supp a ⊂
r

2
Q ,

sup
y∈Rd

|Dαa(y)| ≤ rs−|α|− d
p , |α| ≤ L

∫

Rd

a(y) yα dy = 0 |α| ≤M .

23

192



Remark 14 If M = −1, then the interpretation is that no moment condition is

required.

In [31] and [21] we constructed a regular sequence of coverings with certain special

properties which we now recall. Consider the annuli (balls if k = 0)

Pj,k :=

{
x ∈ R

d : k 2−j ≤ |x| < (k + 1) 2−j

}
, j = 0, 1, . . . , k = 0, 1, . . . .

Then there is a sequence (Ωj)
∞
j=0 = ((Ωj,k,ℓ)k,ℓ)

∞
j=0 of coverings of Rd such that

(a) all Ωj,k,ℓ are balls with center in xj,k,ℓ s.t. xj,0,1 = 0 and |xj,k,ℓ| = 2−j(k + 1/2)

if k ≥ 1;

(b) diam Ωj,k,ℓ = 12 · 2−j for all k and all ℓ;

(c) Pj,k ⊂
C(d,k)⋃
ℓ=1

Ωj,k,ℓ , j = 0, 1, . . . , k = 0, 1, . . . , where the numbers

C(d, k) satisfy the relations C(d, k) ≤ (2k + 1)d−1, C(d, 0) = 1.

(d) the sums
∞∑

k=0

C(d,k)∑
ℓ=1

Xj,k,ℓ(x) are uniformly bounded in x ∈ Rd and j = 0, 1, . . .

(here Xj,k,ℓ denotes the characteristic function of Ωj,k,ℓ);

(e) Ωj,k,ℓ = {x ∈ Rd : 2j x ∈ Ω0,k,ℓ} for all j, k and ℓ;

(f) There exists a natural number K (independent of j and k) such that

{(x1, 0, . . . , 0) : x1 ∈ R} ∩
diam (Ωj,k,ℓ)

2
Ωj,k,ℓ = ∅ if ℓ > K (31)

(with an appropriate enumeration).

We collect some properties of related atomic decompositions. To do this it is con-

venient to introduce some sequence spaces.

Definition 7 Let 0 < q ≤ ∞.

(i) If 0 < p ≤ ∞, then we define

bp,q,d :=

{
s = (sj,k)j,k : ‖ s |bp,q,d‖ =




∞∑

j=0

(
∞∑

k=0

(1 + k)d−1 |sj,k|
p

)q/p



1/q

<∞

}
.

(ii) By χ̃j,k we denote the characteristic function of the set Pj,k. If 0 < p < ∞ we

define

fp,q,d :=

{
s = (sj,k)j,k :

‖ s |fp,q,d‖ =

∥∥∥∥∥

( ∞∑

j=0

∞∑

k=0

|sj,k|
q 2

jdq

p χ̃j,k(·)

)1/q

|Lp(R
d)

∥∥∥∥∥ <∞

}
.
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Remark 15 Observe bp,p,d = fp,p,d in the sense of equivalent quasi-norms.

Atoms have to satisfy moment and regularity conditions. With this respect we

suppose

L ≥ max(0, [s] + 1) , M ≥ max([σp(d) − s],−1) (32)

in case of Besov spaces and

L ≥ max(0, [s] + 1) , M ≥ max([σp,q(d) − s],−1) (33)

in case of Lizorkin-Triebel spaces. Under these restrictions the following assertions

are known to be true:

(i) Each f ∈ RBs
p,q(R

d) ( f ∈ RF s
p,q(R

d)) can be decomposed into

f =
∞∑

j=0

∞∑

k=0

C(d,k)∑

ℓ=1

sj,k aj,k,ℓ ( convergence in S ′(Rd) ), (34)

where the functions aj,k,ℓ are (s, p)L,M -atoms with respect to Ωj,k,ℓ (j ≥ 1),

and the functions a0,k,ℓ are 1L-atoms with respect to Ω0,k,ℓ.

(ii) Any formal series
∑∞

j=0

∑∞
k=0

∑C(d,k)
ℓ=1 sj,k aj,k,ℓ converges in S ′(Rd) with limit

in Bs
p,q(R

d) if the sequence s = (sj,k)j,k belongs to bp,q,d and if the aj,k,ℓ are

(s, p)L,M -atoms with respect to Ωj,k,ℓ (j ≥ 1), and the a0,k,ℓ are 1L-atoms with

respect to Ω0,k,ℓ. There exists a universal constant such that

‖
∞∑

j=0

∞∑

k=0

C(d,k)∑

ℓ=1

sj,k aj,k,ℓ |B
s
p,q(R

d)‖ ≤ c ‖ s |bp,q,d‖ (35)

holds for all sequences s = (sj,k)j,k.

(iii) There exists a constant c such that for any f ∈ RBs
p,q(R

d) there exists an

atomic decomposition as in (34) satisfying

‖ (sj,k)j,k |bp,q,d‖ ≤ c ‖ f |Bs
p,q(R

d)‖ . (36)

(iv) The infimum on the left-hand side in (35) with respect to all admissible rep-

resentations (34) yields an equivalent norm on RBs
p,q(R

d).

(v) Any formal series
∑∞

j=0

∑∞
k=0

∑C(d,k)
ℓ=1 sj,k aj,k,ℓ converges in S ′(Rd) with limit

in F s
p,q(R

d) if the sequence s = (sj,k)j,k belongs to fp,q,d and if the functions

aj,k,ℓ are (s, p)L,M -atoms with respect to Ωj,k,ℓ (j ≥ 1), and the functions a0,k,ℓ
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are 1L-atoms with respect to Ω0,k,ℓ. There exists a universal constant such

that

‖
∞∑

j=0

∞∑

k=0

C(d,k)∑

ℓ=1

sj,k aj,k,ℓ |F
s
p,q(R

d)‖ ≤ c ‖ s |fp,q,d‖ (37)

holds for all sequences s = (sj,k)j,k.

(vi) There exists a constant c such that for any f ∈ RF s
p,q(R

d) there exists an

atomic decomposition as in (34) satisfying

‖ (sj,k)j,k |fp,q,d‖ ≤ c ‖ f |F s
p,q(R

d)‖ . (38)

(vii) The infimum on the left-hand side in (37) with respect to all admissible repre-

sentations (34) yields an equivalent norm on RF s
p,q(R

d). Such decompositions

as in (36) and (38) we shall call optimal.

Remark 16 For proofs of all these facts (even with respect to more general decom-

positions of Rd) we refer to [31] and [35]. A different approach to atomic decompo-

sitions of radial subspaces has been given by Epperson and Frazier [10].

3.3.3 Proof of Theorem 3

Step 1. Let f ∈ RBs
p,q(R

d). Then there exists an optimal atomic decomposition, i.e.

f =

∞∑

j=0

∞∑

k=0

C(d,k)∑

ℓ=1

sj,k aj,k,ℓ (39)

‖ f |Bs
p,q(R

d)‖ ≍ ‖ (sj,k)j,k |bp,q,d‖ ,

see (34) - (36). Since f is even we obtain

f(x) =
∞∑

j=0

∞∑

k=0

C(d,k)∑

ℓ=1

sj,k
aj,k,ℓ(x) + aj,k,ℓ(−x)

2
. (40)

We define

gj,k,ℓ(t) := 2j(s−d/p)
(

tr
aj,k,ℓ( · ) + aj,k,ℓ(− · )

2

)
(t) , t ∈ R ,

and dj,k := 2−j(s−d/p) sj,k. Of course, aj,k,ℓ( · ) + aj,k,ℓ(− · ) is not a radial function.

But it is an even and continuous. So, tr means simply the restriction to the x1-axis.

Clearly,

fN(x) :=
N∑

j=0

N∑

k=0

C(d,k)∑

ℓ=1

sj,k
aj,k,ℓ(x) + aj,k,ℓ(−x)

2
, x ∈ R

d, N ∈ N ,
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is an even (not necessarily radial) function in CL(Rd). By means of property (f) of

the particular coverings of Rd, stated in the previous subsection, we obtain

tr fN =

N∑

j=0

N∑

k=0

min(C(d,k),K)∑

ℓ=1

dj,k gj,k,ℓ

(here K is the natural number in (31)). Furthermore

max
0≤n≤L

sup
t∈R

|(gj,k,ℓ)
(n)(t)| ≤ 12s−d/p 2jn .

Obviously

‖ (sj,k)j,k |bp,q,d‖ =




∞∑

j=0

(
∞∑

k=0

(1 + k)d−1 |sj,k|
p

)q/p



1/q

=




∞∑

j=0

2j(s− d
p
)q

(
∞∑

k=0

(1 + k)d−1 |dj,k|
p

)q/p



1/q

.

This implies

‖ tr fN |TBs
p,q(R, L, d)‖ ≤ K c ‖ f |Bs

p,q(R
d)‖

where c and K are independent of f and N .

Next we comment on the convergence of the sequences (fN)N and (tr fN)N . Of

course, fN converges in S ′(Rd) against f . For the investigation of the convergence

of (tr fN)N we choose s′ such that s > s′ > σp(d) and conclude

‖ tr fN − tr fM |TBs′

p,p(R, L, d)‖ <
∼

∥∥∥
N∑

j=M+1

N∑

k=0

min(C(d,k),K)∑

ℓ=1

dj,k gj,k,ℓ

∣∣∣TBs′

p,p(R)
∥∥∥

+
∥∥∥

N∑

j=0

N∑

k=M+1

min(C(d,k),K)∑

ℓ=1

dj,k gj,k,ℓ

∣∣∣TBs′

p,p(R)
∥∥∥

<
∼

( ∞∑

j=M+1

∞∑

k=0

(1 + k)d−1|2j(s′−s) sj,k|
p
)1/p

+
( ∞∑

j=0

∞∑

k=M+1

(1 + k)d−1|2j(s′−s) sj,k|
p
)1/p)

,

by taking into account the different normalization of the atoms in RBs′

p,p(R
d) and in

RBs
p,q(R

d), respectively. The right-hand side in the previous inequality tends to zero

if M tends to infinity since ‖ (sj,k)j,k |bp,q,d‖ < ∞. Lemma 1 in combination with

Bs
p,q(R

d) ⊂ Lp(R
d) implies the continuity of tr : RBs

p,1(R
d) → Lmax(1,p)(R, t

d−1) as

well as the existence of tr f ∈ Lmax(1,p)(R, |t|
d−1). Consequently

lim
N→∞

tr fN = tr ( lim
N→∞

fN ) = tr f
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with convergence in Lmax(1,p)(R, |t|
d−1). This proves that tr maps RBs

p,q(R
d) into

TBs
p,q(R, L, d) if L satisfies (32). Observe, that M can be chosen as −1.

Step 2. The same type of arguments proves that tr maps RF s
p,q(R

d) into TF s
p,q(R),

in particular the convergence analysis is the same. Furthermore, observe

∥∥∥∥
( ∞∑

j=0

2jsq

∞∑

k=0

|sj,k|
q χ#

j,k(·)

)1/q

|Lp(R, t
d−1)

∥∥∥∥

= cd

∥∥∥∥
( ∞∑

j=0

2jsq
∞∑

k=0

|sj,k|
q χ̃j,k(·)

)1/q

|Lp(R
d)

∥∥∥∥ .

This proves that tr maps RF s
p,q(R

d) into TF s
p,q(R, L, d) if L satisfies (33) (again we

use M = −1).

Step 3. Properties of ext . Let g be an even function with a decomposition as in (2)

and

‖ g |TBs
p,q(R, L, d)‖ ≍ ‖ (sj,k) |b

s
p,q,d‖ .

We define

aj,k(x) := gj,k(|x|) , x ∈ R
d .

The functions aj,k are compactly supported, continuous, and radial. Obviously

supp aj,k ⊂ {x : 2−jk − 2−j−1 ≤ |x| ≤ 2−j(k + 1) + 2−j−1} , k ∈ N ,

and

supp aj,0 ⊂ {x : |x| ≤ 3 · 2−j−1} .

From Theorem 1 we derive

|Dαaj,k(x)| ≤ ‖ aj,k |C
|α|(Rd)‖ <

∼ ‖ gj,k |C
|α|(R)‖ <

∼ 2j|α| , (41)

if |α| ≤ L. Here the constants behind <
∼ do not depend on j, k and gj,k. We

continue with an investigation of the sequence

hN(x) :=

N∑

j=0

∞∑

k=0

sj,k aj,k(x) , x ∈ R
d , N ∈ N . (42)

Related to our decomposition (Ωj,k,ℓ)j,k,ℓ of Rd, see Subsection 3.3.2, there is a se-

quence of decompositions of unity (ψj,k,ℓ)j,k,ℓ, i.e.

∞∑

k=0

C(d,k)∑

ℓ=1

ψj,k,ℓ(x) = 1 for all x ∈ R
d , j = 0, 1, . . . , (43)

supp ψj,k,ℓ ⊂ Ωj,k,ℓ , (44)

|Dαψj,k,ℓ| ≤ CL 2j|α| |α| ≤ L , (45)
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see [31]. Hence

hN(x) =
N∑

j=0

∞∑

k=0

sj,k aj,k(x)




∞∑

m=0

C(d,m)∑

ℓ=1

ψj,m,ℓ(x)





=
N∑

j=0

∞∑

m=0




C(d,m)∑

ℓ=1

7∑

k=−7

sj,m+k aj,m+k(x)ψj,m,ℓ(x)




=

N∑

j=0

∞∑

m=0

λj,m

C(d,k+m)∑

ℓ=1

ej,m,ℓ(x) .

where

λj,m := 2j(s− d
p
) max
−1≤k≤1

|sj,m+k|

ej,m,ℓ(x) := 2−j(s− d
p
) tj,m

7∑

k=−7

sj,m+k aj,m+k(x)ψj,m,ℓ(x)

tj,m :=





1 if max
k=−7, ... ,7

|sj,m+k| = 0,

( max
k=−7, ... ,7

|sj,m+k|)
−1 otherwise .

We claim that the functions ej,m,ℓ are (s, p)L,−1-atoms (1L-atoms if j = 0) on Rd

related to the covering (Ωj,k,ℓ)j,k,ℓ (up to a universal constant). But this follows

immediately from (44), (45), and (41). Finally we show that the sequence λ =

(λj,m)j,m belongs to bp,q,d. The estimate

‖ λ |bp,q,d‖ =
( N∑

j=0

( ∞∑

m=0

(1 +m)d−1 |λj,m|
p
)q/p)1/q

<
∼

( N∑

j=0

2j(s− d
p
)q
( ∞∑

m=0

(1 +m)d−1 |sj,m|
p
)q/p)1/q

is obvious. Hence ext maps TBs
p,q(R, L, d) into RBs

p,q(R
d). Here we need that the

pair (L,−1) satisfies (32).

Step 4. The proof of the F-case is similar. Here we need that the pair (L,−1)

satisfies (33). The proof is complete.

3.3.4 Proof of Theorem 4

Since RF s
p,q(R

d) →֒ RBs
p,∞(Rd) it will be enough to deal with radial Besov spaces.

Step 1. Let 1 ≤ p < ∞. Then σp(d) = σp(1) = 0. From s > 0 we derive

Bs
p,q(R

d) ⊂ Lp(R
d). Hence f is a regular distribution.
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Step 2. Let 0 < p < 1. Since 0 6∈ supp f there exists some ε > 0 s.t. the ball with

radius ε and centre in the origin has an empty intersection with supp f . Let λ > 0.

Since f is a regular distribution if, and only if f(λ · ) is a regular distribution we

may assume ε = 2. Let ϕ ∈ RC∞(Rd) be a function s.t. ϕ(x) = 1 if |x| ≥ 2 and

ϕ(x) = 0 if |x| ≤ 1. Again we shall work with an optimal atomic decomposition of

f ∈ RBs
p,q(R

d), see (39). Obviously

f = fϕ =

∞∑

j=0

∞∑

k=0

C(d,k)∑

ℓ=1

sj,k (ϕaj,k,ℓ) .

By checking the various support conditions we obtain

f =

3∑

j=0

sj,0 (ϕaj,0,1) +

∞∑

j=0

∞∑

k=max(1,2j−9)

C(d,k)∑

ℓ=1

sj,k (ϕaj,k,ℓ) .

We consider the following splitting

f1(x) :=
3∑

j=0

sj,0 ϕ(x)
aj,0,1(x) + aj,0,1(−x)

2

f2(x) :=

∞∑

j=0

∞∑

k=max(1,2j−9)

C(d,k)∑

ℓ=1

sj,k ϕ(x)
aj,k,ℓ(x) + aj,k,ℓ(−x)

2
.

Concerning the first part f1 we observe that tr f1 is a compactly supported even CL

function. Now we concentrate on f2. Let

f2,N(x) :=

N∑

j=0

2N∑

k=max(1,2j−9)

C(d,k)∑

ℓ=1

sj,k ϕ(x)
aj,k,ℓ(x) + aj,k,ℓ(−x)

2
, N ∈ N .

We put

gj,k,ℓ(t) := tr
(
ϕ( · )

aj,k,ℓ( · ) + aj,k,ℓ(− · )

2

)
(t) , t ∈ R ,

by using the same convention concerning tr as in Step 1 of the proof of Thm. 3.

Since

sup
t∈R

|g
(n)
j,k,ℓ(t)| ≤ cϕ (12 · 2−j)s−n−d/p , 0 ≤ n ≤ L ,

and | supp gj,k,ℓ| <∼ 2−j we obtain for a natural number m

∫ m+1

m

| tr f2,N(t)| dt <∼

N∑

j=0

2N∑

k=max(1,2j−9)

min(C(d,k),K)∑

ℓ=1

|sj,k|

∫ m+1

m

|gj,k,ℓ(t)| dt

<
∼

N∑

j=0

2−j 2−j(s−d/p)

2j(m+1)+6∑

k=2jm−9

|sj,k|

<
∼ m−(d−1)/p

N∑

j=0

2−j 2−j(s−d/p) 2−j(d−1)/p
( 2j(m+1)+6∑

k=2jm−9

(1 + k)d−1|sj,k|
p
)1/p

.

30

199



Hence

‖ tr fN |L1(R)‖ = 2

∫ ∞

1

| tr fN(t)| dt <
∼ ‖ (sj,k)j,k |bp,∞,d‖

∞∑

m=1

m−(d−1)/p

<
∼ ‖ f |Bs

p,q(R
d)‖

since s > 0 and 0 < p < 1. Let M ≤ N . Then the same type of argument yields

∫ m+1

m

| tr f2,N (t) − tr f2,M(t)| dt

<
∼

N∑

j=M+1

2N∑

k=max(1,2j−9)

min(C(d,k),K)∑

ℓ=1

|sj,k|

∫ m+1

m

|gj,k,ℓ(t)| dt

+
N∑

j=0

2N∑

k=max(2M ,2jm−9)

min(C(d,k),K)∑

ℓ=1

|sj,k|

∫ m+1

m

|gj,k,ℓ(t)| dt

<
∼ 2−Ms sup

j=M+1,...

2j(m+1)+6∑

k=2jm−9

|sj,k|

+
N∑

j=0

2−j 2−j(s−d/p)

2j(m+1)+6∑

k=max(2M ,2jm−9)

|sj,k|

<
∼ m−(d−1)/p

(
2−Ms ‖ (sj,k)j,k |bp,∞,d‖

+ sup
j=0,1,...

( 2j(m+1)+6∑

k=max(2M ,2jm−9)

(1 + k)d−1|sj,k|
p
)1/p)

.

Since

lim
M→∞

sup
j=0,1,...

( 2j(m+1)+6∑

k=max(2M ,2jm−9)

(1 + k)d−1|sj,k|
p
)1/p

= 0

for all m ∈ N we conclude

‖ tr f2,N − tr f2,M |L1(R)‖ −→ 0 if M → ∞ .

Hence
∞∑

j=0

∞∑

k=max(1,2j−9)

min(C(d,k),K)∑

ℓ=1

sj,k gj,k,ℓ ∈ L1(R) .

Let θ ∈ Rd, |θ| = 1. We denote by Tr θ the restriction of a continuous function to

the line Θ := {t θ : t ∈ R}. Now we repeat, what we have done with respect to

the x1-axis, for such a line. As the outcome we obtain

Tr θ

( 3∑

j=0

sj,0 (ϕaj,0,1) +

N∑

j=0

2N∑

k=max(1,2j−9)

C(d,k)∑

ℓ=1

sj,k (ϕaj,k,ℓ)
)
, N ∈ N ,
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is a Cauchy sequence in L1(Θ) and the limit satisfies

∥∥∥Tr θ

( 3∑

j=0

sj,0 (ϕaj,0,1) +

∞∑

j=0

∞∑

k=max(1,2j−9)

C(d,k)∑

ℓ=1

sj,k (ϕaj,k,ℓ)
) ∣∣∣L1(Θ)

∥∥∥

<
∼ ‖ f |Bs

p,q(R
d)‖

with a constant independent of θ (of course, here, by a slight abuse of notation,

Tr θ denotes the continuous extension of the previously defined mapping). Using

spherical coordinates this yields
∫

Rd

|f(x)| dx =

∫

|θ|=1

∫ ∞

0

|f(t θ)| dt dθ

<
∼ ‖ f |Bs

p,q(R
d)‖ .

But this means f is a regular distribution.

Remark 17 We have proved a bit more than stated. Under the given restrictions

the pointwise trace tr f of a distribution f ∈ RBs
p,q(R

d), 0 6∈ supp f , makes sense

and belongs to L1(R).

3.3.5 Proof of Remark 3

We shall argue by using the wavelet characterization of B
1
p
−1

p,∞ (Rd), see, e.g., [43,

Thm. 1.20]. Let φ denote an appropriate univariate scaling function and Ψ an

associated Daubechies wavelet of sufficiently high order. The tensor product ansatz

yields (d − 1) generators Ψ1, . . . ,Ψ2d−1 for the wavelet basis in L2(R
d). Let Φ

denote the d-fold tensor product of the univariate scaling function. We shall use the

abbreviations

Φk(x) := Φ(x− k) , k ∈ Z
d ,

and

Ψi,j,k(x) := 2jd/2 Ψi(2
jx− k) , k ∈ Z

d , j ∈ N0 , i = 1, . . . , 2d − 1 .

An equivalent norm in B
1
p
−1

p,∞ (Rd) is given by

‖ f |B
1
p
−1

p,∞ (Rd)‖ =
(∑

k∈Zd

|〈f,Φk〉|
p
)1/p

+ sup
j=0,1,...

2j( 1
p
−1+d( 1

2
− 1

p
))
( 2d−1∑

i=1

∑

k∈Zd

|〈f,Ψi,j,k〉|
p
)1/p

.

Daubechies wavelets have compact support. This implies

supp Ψi,j,k ⊂ C {x ∈ R
d : 2−j(kℓ − 1) ≤ xℓ ≤ 2−j(kℓ + 1) , ℓ = 1, . . . d}

and

supp Φk ⊂ C {x ∈ R
d : (kℓ − 1) ≤ xℓ ≤ (kℓ + 1) , ℓ = 1, . . . d}
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for an appropriate C > 1. By employing these relations we conclude that for fixed

j the cardinality of the set of those functions Ψi,j,k, which do not vanish identically

on |x| = 1 is <
∼ 2j(d−1). There is the general estimate

|〈f,Ψi,j,k〉| =
∣∣∣
∫

|x|=1

2jd/2 Ψi(2
jx− k) dx

∣∣∣ <∼ 2jd/2 2−j(d−1) ,

by using the information on the size of the support. Inserting this we find

2j( 1
p
−1+d( 1

2
− 1

p
))
( 2d−1∑

i=1

∑

k∈Zd

|〈f,Ψi,j,k〉|
p
)1/p

<
∼ 2j( 1

p
−1+d( 1

2
− 1

p
)) 2j(d−1)/p 2jd/2 2−j(d−1)

<
∼ 1 .

This proves the claim.

3.3.6 Proof of Theorem 5

From Thm. 4 we already know that for f ∈ RAs
p,q(R

d), 0 6∈ supp f , the trace tr f

makes sense and that tr f ∈ L1(R).

Step 1. Let f ∈ RBs
p,q(R

d). Since 0 6∈ supp f there exists some ε > 0 s.t. the

ball with radius ε and centre in the origin has an empty intersection with supp f .

Without loss of generality we assume ε < 1. Let ϕ ∈ RC∞(Rd) be a function s.t.

ϕ(x) = 1 if |x| ≥ ε and ϕ(x) = 0 if |x| ≤ ε/2. Again we shall work with an optimal

atomic decomposition of f , see (39). It follows

f =

m∑

j=0

sj,0 (ϕaj,0,1) +

∞∑

j=0

∞∑

k=kj

C(d,k)∑

ℓ=1

sj,k (ϕaj,k,ℓ)

where

m := 1 + [log2(18 ε−1)] and kj := max(1, [2j−1 ε] − 10) .

As in the previous proof we introduce the splitting f = f1 + f2, where

f1(x) :=
m∑

j=0

sj,0 ϕ(x)
aj,0,1(x) + aj,0,1(−x)

2
.

Obviously, tr f1 is a compactly supported even CL function. Let

f2,N(x) :=

N∑

j=0

2N∑

k=kj

C(d,k)∑

ℓ=1

sj,k ϕ(x)
aj,k,ℓ(x) + aj,k,ℓ(−x)

2
, N ∈ N .

As above we use the notation

gj,k,ℓ(t) := tr
(
ϕ( · )

aj,k,ℓ( · ) + aj,k,ℓ(− · )

2

)
(t) , t ∈ R .
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Hence

tr f2,N(t) =

N∑

j=0

2N∑

k=kj

min(C(d,k),K)∑

ℓ=1

sj,k gj,k,ℓ(t)

Since

sup
t∈R

|g
(n)
j,k,ℓ(t)| ≤ cϕ (12 · 2−j)s−n−d/p = cϕ (12 · 2−j)−(d−1)/p (12 · 2−j)s−n−1/p

the functions 2−j(d−1)/p12(d−1)/p gj,k,ℓ/cϕ are (s, p)L,−1-atoms in the sense of Sub-

section 3.3.2 (in the one-dimensional context). Applying property (ii) from this

subsection we find

‖ tr f2,N |Bs
p,q(R)‖ <

∼

( N∑

j=0

2j(d−1)q/p
( 2N∑

k=kj

|sj,k|
p
)q/p)1/q

<
∼

( N∑

j=0

( 2N∑

k=kj

(1 + k)d−1|sj,k|
p
)q/p)1/q

<
∼ ‖ f |RBs

p,q(R
d)‖ .

Now we consider convergence of the sequence tr fN . Let σp(1) < s′ < s. Arguing

as before (but taking into account the different normalization of the atoms with

respect to Bs′

p,p(R)) we find

‖ tr f2,N − tr f2,M |L1(R)‖ ≤ ‖ tr f2,N − tr f2,M |Bs′

p,p(R)‖

<
∼

( N∑

j=M+1

2N∑

k=kj

(1 + k)d−1|2j(s′−s)sj,k|
p
)1/p

+
( M∑

j=0

2N∑

k=max(2M ,kj)

(1 + k)d−1|2j(s′−s)sj,k|
p
)1/p

Since ‖(sj,k)j,k |bp,q,d‖ <∞ it follows that the right-hand side tends to 0 if M → ∞.

The uniform boundedness of (tr f2,N)N in Bs
p,q(R) in combination with the weak

convergence of this sequence yields limN→∞ tr f2,N ∈ Bs
p,q(R) by means of the

so-called Fatou property, see [3, 13]. Hence, tr f2 ∈ Bs
p,q(R). In combination with

our knowledge about f1 the claim in case of Besov spaces follows.

Step 2. Let f ∈ RF s
p,q(R

d). One can argue as in Step 1. For the Fatou property of

the spaces F s
p,q(R) we refer to [13].

3.4 Proofs of the statements in Subsection 2.1.3

Proof of Theorem 6

Step 1. The proof of Theorem 6(i) follows from formula (11) and the density of

RC∞
0 (Rd) in RW 1

p (Rd).
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Step 2. Let f ∈ RC∞
0 (Rd). This is equivalent to tr f = f0 ∈ RC∞

0 (R), see Thm. 1.

Observe, that

∂2f

∂xi∂xj
(x) =





f ′′
0 (r) ·

xi·xj

r2 − f ′
0(r)

xi·xj

r3 , if i 6= j ,

f ′′
0 (r) ·

x2
i

r2 − f ′
0(r) ·

r2−x2
i

r3 , if i = j.

We fix j ∈ {1, 2, . . . , d} and sum up

d∑

i=1

(
∂2f

∂xi∂xj

(x)

)2

=
f ′′

0 (r)2

r2
x2

j +
f ′

0(r)
2

r4
· (r2 − x2

j) .

Now we sum up with respect to j and find

d∑

i,j=1

(
∂2f

∂xi∂xj
(x)

)2

= f ′′
0 (r)2 +

d− 1

r2
· f ′

0(r)
2.

Since the terms on the right-hand side are nonnegative this proves the claim for

smooth f . As above the density argument completes the proof.

Proof of Theorem 7

The formulas (4)-(6) have to be combined with the density of RC∞
0 (Rd) in

RW 2m
p (Rd).

3.5 Proof of the statements in Subsection 2.1.4

3.5.1 Proof of Lemma 2

Step 1. Necessity of p > d. Let ϕ ∈ C∞
0 (R) be an even function s.t. ϕ(0) 6= 0 and

supp ϕ ⊂ [−1/2, 1/2]. Since d ≥ 2 the function g1(t) := ϕ(t) |t|−1, t ∈ R, belongs

to RLp(R, |t|
d−1) if p < d. Hence RLp(R, |t|

d−1) 6⊂ S ′(R) if p < d. Let p = d and

take g2(t) := ϕ(t) |t|−1 (− log |t|)−α, t ∈ R \ {0}, for α > 0. In case α d > 1 we have

g2 ∈ RLd(R, |t|
d−1). However, if α < 1 then g2 6∈ S ′(R). With 1/d < α < 1 the

claim follows.

Step 2. Sufficiency of p > d. Using Hölder’s inequality we find

∫ 1

−1

|g(t)| dt ≤
(∫ 1

−1

|g(t)|p |t|d−1 dt
)1/p (∫ 1

−1

|t|−
(d−1)p′

p dt
)1/p′

.

The second factor on the right-hand side is finite if, and only if,

(d− 1)(p′ − 1) < 1 ⇐⇒ d < p .
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Complemented by the obvious inequality
∫

|t|>1

|g(t)|p dt ≤

∫

|t|>1

|g(t)|p |t|d−1dt

we conclude Lp(R, |t|
d−1) →֒ L1(R) + Lp(R) ⊂ S ′(R).

3.5.2 Proof of Theorem 8

Step 1. We shall prove that (iv) implies (i) and (ii).

Substep 1.1. The B-case. It will be enough to deal with the limiting case. Let

s = d(1
p
− 1

d
) > 0 (s > σp(d)) and q = 1. In addition we assume 1 ≤ p < d, where

the upper bound results from the previous restriction on s, see Fig. 1 in Subsection

2.1.5. For f ∈ RBs
p,q(R

d) we select an optimal atomic decomposition of the trace in

the sense of Theorem 3. Let ϕ ∈ S(R). Then

∣∣∣
∫ ∞

−∞

∞∑

j=0

∞∑

k=0

sj,k bj,k(t)ϕ(t) dt
∣∣∣

≤ 4
∞∑

j=0

∞∑

k=0

|sj,k| 2
−j ‖ bj,k |L∞(R)‖ ‖ϕ |L∞(R)‖

≤ 4‖ϕ |L∞(R)‖
∞∑

j=0

2j(s−d/p)

∞∑

k=0

|sj,k|

≤ 4‖ϕ |L∞(R)‖
( ∞∑

k=0

(1 + k)−(d−1)p′

p

)1/p′

×
∞∑

j=0

2j(s−d/p)
( ∞∑

k=0

(1 + k)d−1|sj,k|
p
)1/p

.

Since ( ∞∑

k=0

(1 + k)−(d−1)p′

p

)1/p′

<∞

if 1 ≤ p < d, we obtain

∣∣∣
∫ ∞

−∞

∞∑

j=0

∞∑

k=0

sj,k bj,k(t)ϕ(t) dt
∣∣∣ ≤ c1 ‖ϕ |L∞(R)‖ ‖ (sj,k)j,k |b

s
p,1,d‖

≤ c2 ‖ϕ |L∞(R)‖ ‖ f |Bs
p,1(R

d)‖ ,

see Theorem 3. This proves sufficiency for 1 ≤ p < d and s = d(1
p
− 1

d
). Now, let

0 < p < 1. Then it is enough to apply the continuous embedding

B
d
p
−1

p,1 (Rd) →֒ Bd−1
1,1 (Rd) ,

see e.g. [40, 2.7.1] or [34].

Substep 1.2. Now we turn to the same implication in case of the F -spaces. Also here

36

205



an embedding argument turns out to be sufficient. For 0 < p ≤ 1 and p < p1 < ∞

we have

F
d
p
−1

p,∞ (Rd) →֒ B
d

p1
−1

p1,1 (Rd) ,

see [19] or [34]. Now the claim follows from Substep 1.1.

Step 2. Since tr is an isomorphism of RAs
p,q(R

d) onto TAs
p,q(R, L, d) we deduce from

Step 1 the implication (iv) =⇒ (iii).

Step 3. It remains to prove the implication (i) =⇒ (vi). We argue by contradiction.

Substep 3.1. The B-case. Let s = d
p
− 1 and suppose q > 1. Oriented at our

investigations in Lemma 5 we will use as test functions

fα(x) := ϕ(|x|) |x|−1(− log |x|)−α , x ∈ R
d . (46)

It is known, see e.g. [28, Lem. 2.3.1], that

fα ∈ B
d
p
−1

p,q (Rd) if, and only if, q α > 1 .

Since tr fα 6∈ S ′(R) if α < 1, we obtain that tr does not map into S ′(R) as long as

1/q < α < 1.

Substep 3.2. The F -case. This time it holds

fα ∈ F
d
p
−1

p,∞ (Rd) if, and only if, p α > 1 ,

see [28, Lem. 2.3.1]. Choosing 1/p < α < 1 we obtain that tr does not map

F
d
p
−1

p,∞ (Rd) into S ′(R).

3.6 Proof of the assertions in Subsection 2.1.5

Proof of Theorem 9

Comparing our atomic decomposition with that one for weighted spaces obtained

in [16] it is essentially a question of renormalization of the atoms. This is enough to

prove TAs
p,q(R, L, d) →֒ RAs

p,q(R, wd−1). To see the converse one has to start with

the fact that f ∈ RAs
p,q(R, wd−1) is even. This allows to decompose f into sum of

atoms that are even as well, see (39) and (40) for this argument.

Proof of Remark 7

The regularity of the δ distribution is calculated at several places, see e.g. [28,

Remark 2.2.4/3]. The argument, used in this reference, comes from Fourier analysis

and transfers to the weighted case. For the Fourier analytic characterization of

As
p,q(R, wd−1) we refer to [5, 6] and [16].
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3.7 Proof of the assertions in Subsection 2.1.6

Proof of Corollary 1

We shall only prove part (i). The proof for the Triebel-Lizorkin spaces is similar.

By our trace theorem we have

‖ f0 |TB
s
p,q(R, L, d)‖ <

∼ ‖ f |Bs
p,q(R

d)‖

if L > [s] + 1, cf. Theorem 3. Thus, it is sufficient to prove that

‖ f0 |B
s
p,q(R)‖ <

∼ τ−(d−1)/p ‖ f0 |TB
s
p,q(R, L, d)‖ . (47)

The trace f0 ∈ TBs
p,q(R, L, d) can be represented in the form

f0(t) =
∞∑

j=0

∞∑

k=0

sj,k gj,k(t) (48)

(convergence in Lmax(1,p)(R, |t|
d−1)), where the sequence (sj,k)j,k belongs to bsp,q,d, cf.

(2). Let ϕ ∈ C∞(R) be an even function such that ϕ(t) = 0 if |t| ≤ 1
2

and ϕ(t) = 1

if |t| ≥ 1. For any τ > 0 we define ϕτ (t) = ϕ(τ−1t). We will consider two cases:

τ ≥ 2 and 0 < τ < 2.

Case 1. Let τ ≥ 2. Under this assumption any function ϕτ gj,k is an even L-atom

centered at the same interval as gj,k itself (up to a general constant depending on

ϕ), see Definition 1. For any j ∈ N0 we define a nonnegative integer kj by

kj := max{k ∈ N0 : 2−j (k + 1) ≤ τ/2} .

Hence, ϕτ gj,k = 0 if k < kj. Furthermore, the functions 2−j(s−1/p) ϕτ gj,k, k ≥ 1,

restricted either to the positive or negative half axis, are (s, p)L,−1-atoms in the

sense of Definition 6 up to a universal constant c. The functions 2−j(s−1/p) ϕτ gj,0 are

(s, p)L,−1-atoms as well (again up to a universal constant). We obtain

f0(t) = ϕτ (t) f0(t) =

∞∑

j=0

∞∑

k=kj

sj,k ϕτ (t) gj,k(t)

and applying (35) (which is also valid for d = 1) we arrive at the estimate

‖ f0 |B
s
p,q(R)‖ <

∼

( ∞∑

j=0

2j(s− 1
p
)q

( ∞∑

k=kj

|sj,k|
p

)q/p)1/q

<
∼ τ

1−d
p

( ∞∑

j=0

2j(s− d
p
)q

( ∞∑

k=0

(1 + k)d−1 |sj,k|
p

)q/p)1/q

= τ
1−d

p ‖ s |bsp,q,d‖ (49)

since kj ∼ 2j τ . Taking the infimum with respect to all atomic representations of f0

we have proved (47).
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Case 2. Let 0 < τ < 2.

Step 1. We assume s < d/p. Then we define j0 ∈ N0 via the relation 2−j0 ≤ τ <

2−j0+1. Further, we put Kj := max(1, 2j−j0−1 − 1). Now we decompose f0 into four

sums

f0(t) = ϕτ (t) f0(t) =

j0+1∑

j=0

sj,0 ϕτ (t) gj,0(t) +
∞∑

j=j0

2j−j0+1∑

k=Kj

sj,k ϕτ (t) gj,k(t)

+
∞∑

j=j0

∞∑

k=2j−j0+1+1

sj,k gj,k(t) +

j0−1∑

j=0

∞∑

k=1

sj,k gj,k(t)

= f1(t) + . . . + f4(t) ,

with f4 = 0 if j0 = 0. Observe

supp fi ⊂ {t : |t| ≥ τ} , i = 3, 4 ,

whereas the supports of the functions ϕτ gj,k, occuring in the defintions of f1 and

f2, may have nontrivial intersections with the interval (τ/2, τ). The function f1

belongs to CL and has compact support. The functions f2, f3, and f4 are supported

on {t : |t| ≥ τ/2}. Thus, the known convergence in Lmax(1,p)(R, |t|
d−1) implies the

convergence in S ′(R). As in Case 1 the functions 2−j(s−1/p) gj,k, k ≥ 1, restricted

either to the positive or negative half axis, are (s, p)L,−1-atoms in the sense of Defi-

nition 6. An easy calculation shows that also the functions 2−j(s−1/p) ϕτ gj,k, j ≥ j0,

are (s, p)L,−1-atoms (up to a universal constant). Hence we may employ (35) and

obtain

‖ f2 + f3 |B
s
p,q(R)‖ <

∼

( ∞∑

j=j0

2j(s− 1
p
)q

( ∞∑

k=Kj

|sj,k|
p

)q/p)1/q

<
∼ τ

1−d
p

( ∞∑

j=j0

2j(s− d
p
)q

( ∞∑

k=Kj

(1 + k)d−1 |sj,k|
p

)q/p)1/q

as well as

‖ f4 |B
s
p,q(R)‖ <

∼

( j0−1∑

j=0

2j(s− 1
p
)q

( ∞∑

k=1

|sj,k|
p

)q/p)1/q

<
∼ 2j0

d−1
p

( ∞∑

j=0

2j(s− d
p
)q

( ∞∑

k=0

(1 + |k|)d−1 |sj,k|
p

)q/p)1/q

<
∼ τ

1−d
p

( ∞∑

j=0

2j(s− d
p
)q

( ∞∑

k=0

(1 + |k|)d−1 |sj,k|
p

)q/p)1/q

.

Now we turn to the estimate of f1. First we deal with the estimate of the quasi-

norm of the functions ϕτ gj,0. Let in addition s ≥ 1/p. Employing the Moser-type
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estimate of Lemma 5.3.7/1 in [28] (applied with r = ∞) we obtain

‖ϕτ gj,0 |B
s
p,q(R)‖ <

∼ ‖ϕτ |B
s
p,q(R)‖ ‖ gj,0 |L∞(R)‖ + ‖ϕτ |L∞(R)‖ ‖ gj,0 |B

s
p,q(R)‖

<
∼ τ−(s−1/p) ‖ϕ |Bs

p,q(R)‖ + ‖ϕ |L∞(R)‖ ‖ gj,0 |B
s
p,q(R)‖

<
∼ τ−(s−1/p) + 2j(s−1/p)

<
∼ 2j0(s−1/p) , (50)

since the functions 2−j(s−1/p) gj,0 are atoms and j ≤ j0 + 1. If s < 1/p, we argue by

using real interpolation. Because of

Bs
p,q(R) =

(
Bs0

p,q0
(R), Lp(R)

)
Θ,q

, s = (1 − Θ)s0 > σp(1) ,

see [9], an application of the interpolation inequality

‖ϕτ gj,0 |B
s
p,q(R)‖ <

∼ ‖ϕτ gj,0 |B
s0
p,q(R)‖1−Θ ‖ϕτ gj,0 |Lp(R)‖Θ

yields (50) for all s > σp(1). With r := min(1, p, q) and σp(d) < s < d/p we conclude

‖ f1 |B
s
p,q(R)‖r ≤

j0+1∑

j=0

|sj,0|
r ‖ϕτ bj,0 |B

s
p,q(R)‖r

<
∼ 2j0(s−

1
p
)r

j0+1∑

j=0

|sj,0|
r .

<
∼ τ

r(1−d)
p

j0+1∑

j=0

2r(j0−j)(s− d
p
)2j(s− d

p
)r |sj,0|

r

<
∼ τ

r(1−d)
p

(
sup

j=0,... ,j0+1
2j(s− d

p
) |sj,0|

)r

<
∼ τ

r(1−d)
p ‖ f1 |TB

s
p,∞(R)‖r .

This proves the claim for s < d/p.

Step 2. Let s ≥ d/p. As in Step 1 we define j0 ∈ N via the relation 2−j0 ≤ τ < 2−j0+1.

We shall use TAs
p,q(R, L, d) = RAs

p,q(R, wd−1), cf. Theorem 9. Alternatively one

could use interpolation, see Propositions 1, 2. The spaces RAs
p,q(R, wd−1) allow

a characterization by Daubechies wavelets, see [17] for Besov spaces and [18] for

Lizorkin-Triebel spaces. The same is true with respect to the ordinary spaces

As
p,q(R), see e.g. [43, Thm. 1.20]. Let φ denote an appropriate scaling function

and Ψ an associated Daubechies wavelet of sufficiently high order. Let

φ0,ℓ(t) := φ(t− ℓ) and Ψj,ℓ(t) := 2j/2 Ψj,ℓ(2
jt− ℓ) , ℓ ∈ Z , j ∈ N0 .

Since Ψ has compact support, say supp Ψ ⊂ [−2N , 2N ] for some N ∈ N, and

supp f0 ⊂ {t ∈ R : |t| ≥ τ} we find that

〈f0,Ψj,ℓ〉 = 0 if j − j0 ≥ N and |ℓ| ≤ 2j−j0 − 2N .
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Hence, f0 has a wavelet expansion given by

f0 =
∑

ℓ∈Z

〈f0, φ0,ℓ〉φ0,ℓ +

j0+N−1∑

j=0

∑

ℓ∈Z

〈f0,Ψj,ℓ〉Ψj,ℓ +

∞∑

j=j0+N

∑

|ℓ|>2j−j0−2N

〈f0,Ψj,ℓ〉Ψj,ℓ .

= f1 + f2 + f3 .

By the references given above it follows

‖ f1 |B
s
p,q(R, wd−1)‖ ≍

(∑

ℓ∈Z

|〈f0, φ0,ℓ〉|
p(1 + |ℓ|)d−1

)1/p

‖ f2 |B
s
p,q(R, wd−1)‖ ≍

( j0+N−1∑

j=0

2j(s+ 1
2
− d

p
)q

(∑

ℓ∈Z

|〈f0,Ψj,ℓ〉|
p(1 + |ℓ|)d−1

)q/p)1/q

‖ f3 |B
s
p,q(R, wd−1)‖ ≍

( ∞∑

j=j0+N

2j(s+ 1
2
− d

p
)q

( ∑

|ℓ|≥2j−j0−2N

|〈f0,Ψj,ℓ〉|
p(1 + |ℓ|)d−1

)q/p)1/q

.

The quasi-norm in the unweighted spaces is obtained by deleting the factor

2−j(d−1)/p (1 + |ℓ|)d−1, see [43, Thm. 1.20]. This immediately implies

‖ f1 |B
s
p,q(R)‖ <

∼ ‖ f1 |B
s
p,q(R, wd−1)‖ ,

‖ f2 |B
s
p,q(R)‖ <

∼ 2(j0+N)(d−1)/p ‖ f2 |B
s
p,q(R, wd−1)‖ .

Moreover, we also obtain

‖ f3 |B
s
p,q(R)‖ <

∼ 2(j0+N)(d−1)/p ‖ f3 |B
s
p,q(R, wd−1)‖ .

This proves (47) in case s ≥ d/p and 0 < τ < 2.

Proof of Corollary 2

We concentrate on the proof in case of Besov spaces. The proof for Lizorkin-Triebel

spaces is similar.

Step 1. We claim that g ∈ TBs
p,q(R, L, d). We argue as in Case 2, Step 2 of the

proof of Corollary 1. But this time we do not study the dependence of the constants

on a and b.

Under the given restrictions g ∈ RBs
p,q(R) has a wavelet expansion of the form

g =
∑

|ℓ|≤c1

〈g, φ0,ℓ〉φ0,ℓ +

∞∑

j=0

∑

|ℓ|≤c12j

〈g0,Ψj,ℓ〉Ψj,ℓ

with an appropriate constant c1. Since g is even we obtain

g =
∑

|ℓ|≤c1

〈g, φ0,ℓ〉
φ0,ℓ(t) + φ0,ℓ(−t)

2
+

∞∑

j=0

∑

|ℓ|≤c12j

〈g0,Ψj,ℓ〉
Ψj,ℓ(t) + Ψj,ℓ(−t)

2
.

41

210



The functions 2−j/2(Ψj,ℓ(t)+Ψj,ℓ(−t)) are even L-atoms (up to a universal constant)

centered at c2 Ij,ℓ, where

Ij,k := [−2−j(ℓ+ 1),−2−jℓ] ∪ [2−jℓ, 2−j(ℓ+ 1)]

(modification if ℓ = 0, see Definition 3). The constant c2 > 1 depends on the size of

the supports of the generators φ and Ψ. Without proof we mention that Theorem

3 remains true also for those more general decompositions. This implies

‖ g |TBs
p,q(R, L, d)‖ ≍

( ∑

|ℓ|≤c1b

(1 + |ℓ|)d−1|〈g, φ0,ℓ〉|
p
)1/p

+
( ∞∑

j=0

2j(s−d/p)q
( ∑

|ℓ|≤c12j

(1 + |ℓ|)d−1|2j/2 〈g,Ψj,ℓ〉|
p
)q/p)1/q

<
∼

( ∑

|ℓ|≤c1b

|〈g, φ0,ℓ〉|
p
)1/p

+
( ∞∑

j=0

2j(s+ 1
2
− 1

p
)q
( ∑

|ℓ|≤c12j

|〈g,Ψj,ℓ〉|
p
)q/p)1/q

<
∼ ‖ g |Bs

p,q(R)‖ ,

see e.g. [43, Thm. 1.20] for the last step. This proves the claim.

Step 2. Since g belongs to TBs
p,q(R, L, d) we derive by means of Theorem 3 that

f := ext g is an element of RBs
p,q(R

d) and

‖ f |RBs
p,q(R

d)‖ <
∼ ‖ g |TBs

p,q(R, L, d)‖ <
∼ ‖ g |Bs

p,q(R)‖ .

Since supp f ⊂ {x : |x| ≥ a} Corollary 1 yields

‖ g |Bs
p,q(R)‖ <

∼ a−(d−1)/p ‖ f |Bs
p,q(R

d)‖ ,

because of f0 = g. This completes the proof.

Remark 18 A closer look onto the proof shows that

a(d−1)/p ‖ g |As
p,q(R)‖ <

∼ ‖ f |RAs
p,q(R

d)‖ <
∼ b(d−1)/p ‖ g |As

p,q(R)‖

with constants independent of g, a > 0 and b ≥ 1.

Proof of Corollaries 3, 4

Step 1. Proof of Cor. 3. The function ϕ is a pointwise multiplier for the spaces

As
p,q(R

d), see e.g. [28, 4.8]. Hence, with f also the product ϕ f belongs to RAs
p,q(R

d)

and we can apply Thm. 5 with respect to this product. Concerning the sharp

embedding relations for the spaces As
p,q(R) into Hölder-Zygmund spaces we refer to

[34] and the references given there. This proves the assertion for ϕ0 f0. A further

application of Theorem 2 finishes the proof.
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Observe, that we do not need the assumption s > σp,q(d) in case of Lizorkin-Triebel

spaces. We may argue with RF s
p,∞(Rd) first and use the elementary embedding

RF s
p,q(R

d) →֒ RF s
p,∞(Rd) afterwards.

Step 2. Proof of Cor. 4. The arguments are as above. Concerning te embedding

relations of the spaces As
p,q(R) into the space of uniformly continuous and bounded

functions we also refer to [34] and the references given there.

Remark 19 A different proof of Cor. 4, restricted to Besov spaces, has been given

in [31].

3.8 Test functions

Using our previous results, in particular Corollary 2, we shall investigate the regu-

larity of certain families of radial test functions.

Lemma 5 Let 0 < α < min(1, 1/p). Let ϕ ∈ C∞
0 (R) be an even function such that

supp ϕ ⊂ [−2,−1/2] ∪ [1/2, 2] and ϕ(1) 6= 0.

(i) The function

fα(x) := ϕ(|x|) | |x| − 1 |−α , x ∈ R
d , (51)

belongs to B
1
p
−α

p,∞ (Rd) if

α <
1

p
− σp(d). (52)

(ii) Suppose 1
p
− α > σp(1). Then fα does not belong to B

1
p
−α

p,q (Rd) for any q <∞.

(iii) Under the same restriction as in (ii) we have that fα does not belong to

F
1
p
−α

p,∞ (Rd).

Proof. Step 1. Proof of (i). Let ϕ̃ ∈ C∞
0 (R) be a function such that supp ϕ̃ ⊂

[1/2, 2]. Then the regularity of

gα(t) := ϕ̃(t) |t− 1|−α , t ∈ R ,

is well understood, cf. e.g. [28, Lem. 2.3.1/1]. One has gα ∈ B
1
p
−α

p,∞ (R) as long as

0 < α < min(1, 1/p). An application of Corollary 2 yields the claim.

Step 2. Proof of (ii) and (iii). It is also known, see again [28, Lem. 2.3.1/1], that

gα 6∈ (B
1
p
−α

p,q (R) ∪ F
1
p
−α

p,∞ (R)) , 0 < q <∞ , 0 < α < min(1, 1/p) .

These properties do not change when we ”add” the reflection of gα to the left half

of the real axis. With other words, if we replace ϕ̃ by ϕ itself we do not change the

regularity properties. Now we use Thm. 5.
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Remark 20 Let δ > 0. Then also the regularity of functions like

fα,δ(x) := ϕ(|x|) | |x| − 1|−α (− log | |x| − 1|)−δ, x ∈ R
d , (53)

can be checked in this way. With the help of the parameter δ one can see the

microscopic index q. We refer to [36, 5.6.9] or [28, Lem. 2.3.1/1] for details.

Lemma 6 Let α > 0.

(i) Then the function

Φα(x) := max(0, (1 − |x|2))α , x ∈ R
d , (54)

belongs to B
1
p
+α

p,∞ (Rd) if
1

p
+ α > σp(d) . (55)

(ii) Suppose 1
p

+ α > σp(1). Then Φα does not belong to B
1
p
+α

p,q (Rd) for any q <∞.

(iii) Under the same restrictions as in (ii) we have that Φα does not belong to

F
1
p
+α

p,∞ (Rd).

Proof. Step 1. Proof of (i). First we investigate the one-dimensional case. Let

ψ1, ψ2 ∈ C∞
0 (R) be such that

supp ψ1 ⊂ [−1/2,∞), supp ψ2 ⊂ (−∞, 1/2] and ψ1(t) + ψ2(t) = 1

for all t ∈ R. We put Φi,α := ψi Φα, i = 1, 2. Then Φ1,α behaves near 1 like

φα(t) :=

{
tα if t > 0 ,

0 if t < 0 ,

near the origin. The regularity of φα is well understood, we refer to [28, Lem. 2.3.1].

As above the transfer to general dimensions d > 1 is done by Corollary 2.

Step 2. To prove the statements in (ii) and (iii) we argue by contradiction. If Φα

belongs to RAs
p,q(R

d), then also ϕΨα belongs to RAs
p,q(R

d) for any smooth radial ϕ.

Choosing ϕ s.t. 0 6∈ supp ϕ, we my apply Thm. 5 to conclude tr ϕΨα ∈ As
p,q(R).

But this implies Φ2,α ∈ As
p,q(R). In the one-dimensional case necessary and sufficient

conditions are known, we refer again to [28, Lem. 2.3.1].

Next we shall consider smooth functions supported in thin annuli.

Lemma 7 Let d ≥ 2, 0 < p, q ≤ ∞ and s > σp(d). Let ϕ ∈ C∞
0 (R) be an even

function such that ϕ(1) = 1 and supp ϕ ⊂ [−2,−1/2]∪ [1/2, 2]. Then the functions

fj,λ(y) := ϕ(2j |y| − λ) , y ∈ R
d , j ∈ N , λ > 0 .
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have the following properties:

supp fj,λ ⊂ {y : (λ− 2) 2−j ≤ |y| ≤ (2 + λ) 2−j} , (56)

‖ fj,λ |RB
s
p,q(R

d)‖ ≍ 2j(s− d
p
) λ(d−1)/p (57)

with constants in ≍ independent of λ > 1 and j ∈ N.

Proof. Step 1. Estimate from above in (57). It will be convenient to use the

atomic characterizations described in Subsection 3.3.2. Therefore we shall use the

decompositions of unity from (43)-(45). Thanks to the support restrictions for the

functions ψj,k,ℓ we obtain

fj,λ(y) =
∑

max(0,λ−2−n0)≤k≤λ+2+n0

C(d,k)∑

ℓ=1

(ϕ(2j|y| − λ)ψj,k,ℓ(y))

where n0 is a fixed number (n0 ≥ 18 would be sufficient). The functions

aj,k,ℓ(y) := 2−j(s− d
p
) ϕ(2j|y| − λ)ψj,k,ℓ(y)

are (s, p)M,−1-atoms for any M (up to a universal constant). Hence

‖ fj,λ |RB
s
p,q(R

d)‖ <
∼

( ∑

max(0,λ−2−n0)≤k≤λ+2+n0

kd−12j(s− d
p
)p
)1/p

<
∼ 2j(s− d

p
)λ(d−1)/p .

Step 2. Estimate from below.

Substep 2.1. First we deal with p = ∞. By construction fj,λ(y) = 1 if |y| =

(1 + λ) 2−j. Furthermore, calculating the derivatives of fj,λ(y1, 0, . . . , 0), y1 ∈ R, it

is immediate that

‖ fj,λ |C
m(Rd)‖ ≍ 2jm (58)

for all m ∈ N0. Now we argue by contradiction. We fix s > 1, q1 ∈ (0,∞] and

assume that

‖ fj,λ |B
s
∞,q1

(Rd)‖ ≤ φ(j, λ) 2js ,

where φ : N× [1,∞) → (0, 1) and limℓ→∞ φ(jℓ, λℓ) = 0 for some sequence (jℓ, λℓ)ℓ ⊂

N × [1,∞). We choose Θ ∈ (0, 1) s.t. m = Θ s and q = 1. Real interpolation

between C(Rd) and Bs
∞,q1

(Rd) yields

‖ fj,λ |B
m
∞,1(R

d)‖ ≤ c 2jm (φ(j, λ))Θ ,

where c is independent of j and λ, see the proof of Thm. 2. The continuous

embedding Bm
∞,1(R

d) →֒ Cm(Rd) leads to a contradiction with (58).

Now let 0 < s < 1. We interpolate between Bs
∞,q1

(Rd) and B2
∞,q(R

d). By arguing as

above we could improve the estimate from above with respect to the space B1
∞,1(R

d).
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Since B1
∞,1(R

d) →֒ C1(Rd) this contradicts again (58). Hence the claim is proved

with p = ∞, 0 < q ≤ ∞, and s > 0.

Substep 2.2. Also obvious is the behaviour in Lp(R
d). For 0 < p ≤ ∞ we have

‖ fj,λ |Lp(R
d)‖ ≍ 2−jd/p λ(d−1)/p . (59)

A few more calculations yield

‖ fj,λ |W
1
p (Rd)‖ ≍ 2j(1−d/p) λ(d−1)/p , (60)

as long as 1 ≤ p ≤ ∞.

Substep 2.3. Let p1 <∞. We assume that for some fixed s1 > σp1(d) and q1 ∈ (0,∞]

‖ fj,λ |B
s1
p1,q1

(Rd)‖ ≤ φ(j, λ) 2j(s1−d/p1 λ(d−1)/p1 ,

holds, where φ is as above. Complex interpolation between Bs1
p1,q1

(Rd) and

Bs2
∞,q0

(Rd), s2 > 0, yields an improvement of our estimate with respect to

Bs
p,q(R

d), where p > p1 is at our disposal. For s2 large we can choose p > 1 s.t.

s = (1 − Θ)s2 + Θ s1 > 1. Now we need a further interpolation, this time real,

between Bs
p,q(R

d) and Lp(R
d), improving the estimate for B1

p,1(R
d) in this way. But

B1
p,1(R

d) →֒W 1
p (Rd) and so we found a contradiction to (60).

Remark 21 Obviously there is no q-dependence in Lemma 7. As an immediate

consequence of the elemetary embeddings

Bs
p,min(p,q)(R

d) →֒ F s
p,q(R

d) →֒ Bs
p,max(p,q)(R

d) ,

see [40, ], and (57) we obtain

‖ fj,λ |F
s
p,q(R

d)‖ ≍ 2j(s− d
p
) λ(d−1)/p , λ > 1, j ∈ N .

Some extremal functions in A
d/p
p,q (Rd) have been investigated by Bourdaud [2], for

Bs
p,p(R

d) see also Triebel [42]. We recall the result obtained in [2]. For (α, σ) ∈ R2

we define

fα,σ(x) := ψ(x)
∣∣∣ log |x|

∣∣∣
α ∣∣∣ log | log |x| |

∣∣∣
−σ

, x ∈ R
d . (61)

Furthermore we define a set Ut ⊂ R2 as follows:

Ut :=






(α = 0 and σ > 0) or α < 0 if t = 1 ,

(α = 1 − 1/t and σ > 1/t) or α < 1 − 1/t if 1 < t <∞ ,

(α = 1 and σ ≥ 0) or α < 1 if t = ∞ ,
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Lemma 8 (i) Let 0 < p ≤ ∞ and 1 < q ≤ ∞. Then fα,σ belongs to RB
d/p
p,q (Rd) if,

and only if (α, σ) ∈ Uq.

(ii) Let 1 < p <∞. Then fα,σ belongs to RF
d/p
p,q (Rd) if, and only if (α, σ) ∈ Up.

Remark 22 Let us mention that in [2] the result is stated for p ≥ 1 only. However,

the proof extends to p < 1 nearly without changes (in his argument which follows

formula (9) in [2] one has to choose k > d/(2p)).

4 Decay properties of radial functions – proofs

4.1 Proof of Theorem 10

Step 1. Proof of (i). Following Remark 9 it will be enough to prove the decay

estimate (13) for RB
1/p
p,1 (Rd), 0 < p <∞, and for RF

1/p
p,∞(Rd), 0 < p ≤ 1. A proof in

case RB
1/p
p,1 (Rd) has been given in [31]. So we are left with the proof for the Lizorkin-

Triebel spaces. We will follow the ideas of the proof of Cor. 4. Let f ∈ RF
1/p
p,∞(Rd).

Let

f =
∞∑

j=0

sj,0 aj,0 +
∞∑

j=0

∞∑

k=1

Cd,k∑

ℓ=1

sj,k aj,k,ℓ,

be an atomic decomposition such that ‖sj,k|fp,∞,d‖ ≍ ‖ f |F
1/p
p,∞(Rd)‖. We fix x,

|x| > 1. Observe, that for all j ≥ 0 there exists kj ≥ 1 such that

kj 2−j ≤ |x| < (kj + 1) 2−j . (62)

Then the main part of f near (|x|, 0, . . . , 0) is given by the function

fM(y) =
∞∑

j=0

sj,kj
aj,kj,0(y) , y ∈ R

d , (63)

(in fact, f is a finite sum of functions of type

∞∑

j=0

sj,kj+rj
aj,kj+rj ,tj(y) ,

and |rj| and |tj| are uniformly bounded). For convenience we shall derive an estimate

of the main part fM only. Because of (62) and the normalization of the atoms we

obtain

|fM(y)| <
∼

∞∑

j=0

|sj,kj
| 2j d−1

p <
∼ |x|

1−d
p

( ∞∑

j=0

|sj,kj
|p kd−1

j

)1/p

, (64)

since p ≤ 1. On the other hand

‖ s |fp,∞,d‖ = ‖ sup
j=0,1,...

sup
k∈N0

|sj,k| 2
jd

p χ̃j,k(·) |Lp(R
d)‖

≥ ‖ sup
j=0,1,...

|sj,kj
| 2

jd

p χ̃j,kj
(·) |Lp(R

d)‖ . (65)
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Using Pj+1,kj+1
⊂ Pj,kj

we obtain the identity

sup
j

|sj,kj
| 2

jd

p χ̃j,kj
(·) =

∞∑

j=0

max
i=0,...,j

|si,ki
|
(
χ̃j,kj

(·) − χ̃j+1,kj+1
(·)
)
.

By the pairwise disjointness of the sets Pj,kj
\ Pj+1,kj+1

this implies

‖ sup
j=0,1,...

|sj,kj
| 2

jd

p χ̃j,kj
(·) |Lp(R

d)‖ ≍

( ∞∑

j=0

max
i=0,...,j

(
|si,ki

|p2id
)
2−jdkd−1

j

)1/p

. (66)

Obviously

( ∞∑

j=0

|sj,kj
|p kd−1

j

)1/p

≤

( ∞∑

j=0

max
i=0,...,j

(
|si,ki

|p2id
)
2−jdkd−1

j

)1/p

. (67)

Combining (64) - (67) we have proved (13) in case of Lizorkin-Triebel spaces.

Step 2. Proof of (ii). As in Step 1 it will be sufficient to deal with the limiting cases.

Substep 2.1. Let f ∈ RF
1/p
p,∞(Rd). Let Br(0) be the ball in Rd with center in the

origin and radius r. Then (64)-(67) yield

|fM(x)| <
∼ |x|

1−d
p ‖ sup

j=0,1,...
|sj,kj

| 2
jd

p χ̃j,kj
(·) |Lp(R

d \Br(0))‖

<
∼ |x|

1−d
p ‖ sup

j=0,1,...
sup
k∈N0

|sj,k| 2
jd

p χ̃j,k(·) |Lp(R
d \Br(0))‖

where r = |x| − 18 > 0, see property (b) of the covering (Ωj,k,ℓ) in Subsection

3.3.2. In view of this inequality an application of Lebesgue’s theorem on dominated

convergences proves (14).

Substep 2.2. Let f ∈ RB
1/p
p,1 (Rd). We argue as in Substep 2.1 by using the notation

from Step 1. Since

lim
r→∞

∞∑

j=0

(∑

k≥r

|sj,k|
p (1 + k)d−1

)1/p

= 0

we conclude from (64) that (14) holds in this case as well.

Step 3. Proof of (iii). We shall use the test functions constructed in Lemma 7. We

choose so > max{σp(d), s}. For simplicity we consider |x| = 2r with r ∈ N. We

choose λ s.t. |x| = (1 + λ)/2. Hence f1,λ(x) = 1. This implies

|x|
d−1

p |2−r(d−1)/p f1,λ(x)| = 1 ,

and

‖ 2−r(d−1)/p f1,λ |A
s
p,q(R

d)‖ <
∼ ‖ 2−r(d−1)/p f1,λ |B

so

p,q(R
d)‖ ≍ 1 ,

see Rem. 21, which proves the claim.

Step 4. Proof of (iv). It will be enough to study the case s = 1/p.
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Substep 4.1 Let q > 1. According to Lemma 8(i) there exists a compactly supported

function g0 which belongs to RB
1/p
p,q (R) and is unbounded near the origin. By mul-

tiplying with a smooth cut-off function if necessary we can make the support of this

functions as small as we want. For the given sequence (xj)j we define

g(t) :=

∞∑

j=1

1

max(|xj|, j)α
g0(t− |xj|) , t ∈ R ,

where we will choose α > 0 in dependence on p. The function g is unbounded

near |xj | and by means of the translation invariance of the Besov spaces B
1/p
p,q (R) we

obtain

‖ g |B1/p
p,q (R)‖min(1,p) ≤ ‖ g0 |B

1/p
p,q (R)‖min(1,p)

∞∑

j=1

j−α min(1,p) <
∼ ‖ g0 |B

1/p
p,q (R)‖min(1,p) ,

if α · min(1, p) > 1. We employ Rem. 18 (Cor. 2) with respect to each summand.

This yields

‖ ext g |B1/p
p,q (Rd)‖min(1,p)

≤
∞∑

j=1

max(|xj |, j)−α min(1,p) ‖ ext (g0( · − |xj |)) |B1/p
p,q (Rd)‖min(1,p)

<
∼ ‖ g0 |B

1/p
p,q (R)‖min(1,p)

∞∑

j=1

(
max(|xj|, j)−α |xj|(d−1)/p

)min(1,p)

<
∼ ‖ g0 |B

1/p
p,q (R)‖min(1,p) ,

if (α− (d− 1)/p) min(1, p) > 1.

Substep 4.2. We turn to the F -case. It will be enough to study the situation

s = 1/p and 1 < p < ∞. We argue as above using this time Lemma 8(ii). An

application of Rem. 18 (Cor. 2) yields the result but with the extra condition

1/p > σq(d).

4.2 Traces of BV -functions and consequences for the decay

We recall a definition of the space BV (Rd), d ≥ 2, which will be convenient for us,

see [11, 5.1] or [44, 5.1].

Definition 8 Let g ∈ L1(R
d). We say, that g ∈ BV (Rd) if for every i = 1, . . . , d

there is a signed Radon measure µi of finite total variation such that

∫

Rd

g(x)
∂

∂xi
φ(x)dx = −

∫

Rd

φ(x)dµi(x), φ ∈ C1
c (Rd),
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where C1
c (Rd) denotes the set of all continuously differentiable functions on Rd with

compact support. The space BV (Rd) is equipped with the norm

‖ g |BV (Rd)‖ = ‖ g |L1(R
d)‖ +

d∑

i=1

‖µi |M‖,

where ‖µi |M‖ is the total variation of µi.

4.2.1 Proof of Theorem 12

We need some preparations. Recall, the space C1
c ([0,∞)) has been defined in Defi-

nition 5. By ωd−1 we denote the surface area of the unit sphere in Rd and by σ the

(d− 1)-dimensional Hausdorff measure in Rd, i.e. ωd−1 := σ({x ∈ Rd : |x| = 1}). As

above r = r(x) := |x|.

Lemma 9 (i) If ϕ ∈ C1
c ([0,∞)), then all the functions

φi(x) :=





ϕ(r(x)) · xi

r(x)
if x = (x1, . . . , xd) 6= 0 ,

0 if x = 0 ,

(68)

i = 1, . . . , d, belong to C1
c (Rd).

(ii) If φ ∈ C1
c (Rd), then all functions

ϕi(t) :=





1
ωd−1 td−1

∫
|x|=t

φ(x) · xi

r(x)
dσ(x) if t > 0 ,

0 if t = 0 ,

(69)

i = 1, . . . , d, belong to C1
c ([0,∞)).

Proof. Step 1. Proof of (i). Under the given assumption we immediately get

φi ∈ C1(Rd \ {0}) and supp φi is compact. Hence, we have to study the regularity

properties in the origin. Obviously, φi(0) = 0 and lim
x→0

φi(x) = 0. We claim that

∂φi

∂xj

(0) =




ϕ′(0) if i = j,

0 otherwise.

Let e1, . . . ed denote the elements of the canonical basis of Rd. If i = j, then

lim
t→0

φi(tei)

t
= lim

t→0

ϕ(|t|)

|t|
= ϕ′(0) .

Hence
∂φi

∂xi
(0) = ϕ′(0). The cases i 6= j are obvious.

Next, we show, that the functions
∂φi

∂xj
are continuous in the origin. To begin with
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we investigate the case i = j. Then

∣∣∣∣
∂φi

∂xi
(x) − ϕ′(0)

∣∣∣∣ =

∣∣∣∣ϕ
′(r(x)) ·

x2
i

r2(x)
+ (ϕ(r(x)) − ϕ(0)) ·

r2(x) − x2
i

r3(x)
− ϕ′(0)

∣∣∣∣

=

∣∣∣∣ϕ
′(r(x)) ·

x2
i

r2(x)
+ ϕ′(θr(x)) ·

r2(x) − x2
i

r2(x)
− ϕ′(0)

∣∣∣∣ ,

where we have used the Mean Value Theorem with a suitable 0 < θ = θ(x) < 1.

The continuity of ϕ′ implies, that the expression on the right-hand side tends to

zero if x→ 0. If i 6= j, we write

∂φi

∂xj

(x) = ϕ′(r(x))
xixj

r2(x)
− ϕ(r(x))

xixj

r3(x)

= ϕ′(r(x))
xixj

r2(x)
+ (ϕ(0) − ϕ(r(x)))

xixj

r3(x)

=
xixj

r2(x)
[ϕ′(r(x)) − ϕ′(θr(x))] , (70)

with some 0 < θ < 1. Again the continuity of ϕ′ implies, that the expression in (70)

tends to zero as x→ 0. Hence, φi ∈ C1
c (R

d).

Step 2. Proof of (ii). The regularity and support properties of ϕi on (0,∞) are

obvious. Hence, we are left with the study of the behaviour near 0. We shall use

the identity ∫

|x|=t

xi

r(x)
dσ(x) = 0 , t > 0 .

In case t > 0 this leads to the estimate

|ϕi(t)| ≤
1

ωd−1td−1

( ∣∣∣∣
∫

|x|=t

φ(0)
xi

r(x)
dσ(x)

∣∣∣∣+
∣∣∣∣
∫

|x|=t

(φ(x) − φ(0))
xi

r(x)
dσ(x)

∣∣∣∣
)

≤ 0 + sup
|x|=t

|φ(x) − φ(0)|.

Hence, ϕi(t) tends to 0 if t→ 0+. Furthermore,

ϕi(t)

t
=

1

ωd−1 td

∫

|x|=t

(φ(x) − φ(0))
xi

r(x)
dσ(x)

=
1

ωd−1 td+1

∫

|x|=t

(∇φ(ηxx) · x) xi dσ(x)

=
1

ωd−1 td+1

d∑

j=1

∫

|x|=t

(
∂φ

∂xj
(ηxx) −

∂φ

∂xj
(0)

)
xj xi dσ(x)

+
1

ωd−1 td+1

d∑

j=1

∂φ

∂xj
(0)

∫

|x|=t

xj xi dσ(x)

with some 0 < ηx < 1. The first term on the right-hand side tends always to zero

as t → 0+ (since
∂φ

∂xj
is continuous). From the second term those summands with
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i 6= j are vanishing for all t. If i = j, then the integrand is homogeneous. We obtain,

by taking the limit with respect to t,

ϕ′
i(0) = lim

t→0+

ϕi(t)

t
=

1

ωd−1

∂φ

∂xi

(0)

∫

|y|=1

y2
i dσ(y) . (71)

It remains to check the limit of ϕ′
i(t) if t tends to 0+. Observe

ϕ′
i(t) =

1

ωd−1

d

dt

∫

|y|=1

φ(ty) yi dσ(y) =
1

ωd−1

d∑

j=1

∫

|y|=1

∂φ

∂yj

(ty) yj yi dσ(y) .

Since

∫

|y|=1

yj yi dσ(y) = 0 if i 6= j those summands (with i 6= j) tend to 0 if t tends

to 0+. Hence

lim
t→0+

ϕ′
i(t) = lim

t→0+

1

ωd−1

∫

|y|=1

∂φ

∂yi

(ty) y2
i dσ(y) = ϕ′(0) ,

see (71). The proof is complete.

Proof of Theorem 12.

Step 1. Let f(x) = g(|x|) ∈ BV (Rd). We claim that g ∈ BV (R+, td−1). Let

µ1, . . . , µd denote the corresponding signed Radon measures according to Definition

8. By means of

dν :=
d∑

i=1

xi

r(x)
dµi

we define the measure ν on Rd. Since g(r(x)) is radial we conclude µi({0}) = 0,

i = 1, . . . , d. Hence the measure dν is well defined. In addition we introduce a

measure ν+ on R+ by

ωd−1

∫

A

td−1 dν+(t) :=

∫

{|x|∈A}

dν(x),
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for any Lebesgue measurable subset A ⊂ R+. We fix ϕ ∈ C1
c ([0,∞)). Since

ϕ(r(x)) xi

r(x)
∈ C1

c (R
d), cf. Lemma 9(i), we calculate

ωd−1

∫ ∞

0

g(t) [ϕ(s) sd−1]′(t) dt = ωd−1

∫ ∞

0

td−1 g(t)

[
ϕ′(t) +

d− 1

t
ϕ(t)

]
dt

=

∫

Rd

g(r(x))

[
ϕ′(r(x)) + ϕ(r(x)) ·

d− 1

r(x)

]
dx

=

d∑

i=1

∫

Rd

g(r(x))

[
ϕ′(r(x))

x2
i

r2(x)
+ ϕ(r(x)) ·

r2(x) − x2
i

r3(x)

]
dx

=

d∑

i=1

∫

Rd

g(r(x))
∂

∂xi

[
ϕ(r(x)) ·

xi

r(x)

]
dx

= −
d∑

i=1

∫

Rd

ϕ(r(x))
xi

r(x)
dµi = −

∫

Rd

ϕ(r(x)) dν(x)

= −ωd−1

∫ ∞

0

td−1 ϕ(t) dν+(t) .

This proves (18). Moreover, (19) follows from

‖ g(r(x)) |L1(R
d)‖ = ωd−1 ‖ g |L1(R, |t|

d−1)‖

and

ωd−1

∫ ∞

0

td−1 d|ν+|(t) =

∫

Rd

d|ν|(x) ≤
d∑

i=1

∫

Rd

|xi|

r(x)
d|µi|

≤
d∑

i=1

∫

Rd

d|µi| ≤ ‖ g(r(x)) |BV (Rd)‖ .

Step 2. Let g be a function in BV (R+, td−1). We claim, that g(r(x)) ∈ BV (Rd).

Let ν+ be the signed Radon measure associated to g according to (18). We define

ν(A) :=

∫ ∞

0

σ({x : |x| = t} ∩ A) dν+(t)

for any Lebesgue measurable set A ⊂ Rd. Further we put µi := xi

r(x)
ν, i = 1, . . . d.

Let χA denote the characteristic function of A. Then

ν(A) =

∫

Rd

χA(x) dν(x) =

∫ ∞

0

[ ∫

|x|=t

χA(x) dσ(x)
]
dν+(t)

and this identity can be extended to
∫

Rd

φ(x) dν(x) =

∫ ∞

0

[ ∫

|x|=t

φ(x) dσ(x)
]
dν+(t) , φ ∈ L1(R

d) ,

by using some standard arguments. Next we want to show, that µi, i = 1, . . . , d,

are the weak derivatives of g(r(x)). Let φ ∈ C1
c (R

d) and let ϕi be the associated
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functions, see (69). According to Lemma 9 (ii) we know that ϕi ∈ C1
c ([0,∞)).

Using the normalized outer normal with respect to the surface {x : |x| = T}, which

is obviously given by

n(x) = (n1(x), . . . , nd(x)) =
1

r(x)
(x1, . . . , xd) ,

and the Gauss Theorem, we obtain

−ϕi(T )ωd−1 T
d−1 = −

∫

|x|=T

φ(x)
xi

r(x)
dσ(x) = −

∫

|x|=T

φ(x)ni(x) dσ(x)

= −

∫

|x|≤T

∂φ

∂xi
(x) dx =

∫

|x|≥T

∂φ

∂xi
(x) dx

=

∫ ∞

T

[ ∫

|x|=t

∂φ

∂xi

(x) dσ(x)
]
dt.

Hence

ωd−1

[
ϕi(t) t

d−1
]′

(T ) =

∫

|x|=T

∂φ

∂xi

(x) dσ(x) , T > 0.

This formula justifies the identity

∫

Rd

g(r(x))
∂φ(x)

∂xi
dx =

∫ ∞

0

g(t)

∫

|x|=t

∂φ(x)

∂xi
dσ(x) dt

= ωd−1

∫ ∞

0

g(t)[ϕi(s) s
d−1]′(t)dt .

Next we use g ∈ BV (R+, td−1). This implies

∫

Rd

g(r(x))
∂φ(x)

∂xi
dx = −ωd−1

∫ ∞

0

ϕi(t) t
d−1 dν+(t)

= −

∫ ∞

0

∫

|x|=t

φ(x) ·
xi

r(x)
dσ(x) dν+(t)

= −

∫

Rd

φ(x)
xi

r(x)
dν(x) = −

∫

Rd

φ(x) dµi(x) ,

which proves that the µi are the weak derivatives of g(r(x)).

It remains to prove the estimates for the related norms. The required estimate

follows easily by

∫

Rd

d|µi| =

∫

Rd

|xi|

r(x)
d|ν|(x) =

∫ ∞

0

[ ∫

|x|=t

|xi|

r(x)
dσ(x)

]
d|ν+|(t)

≤ ωd−1

∫ ∞

0

td−1 d|ν+|(t) .

The proof is complete.
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4.2.2 Proof of Theorem 11

Recall, that we will work with the particular representative f̃ of the equivalence

class [f ], see Remark 11. For convenience we will drop the tilde. We shall apply

standard mollifiers. Let ϕ ∈ C∞
0 (R) be a function such that ϕ ≥ 0, supp ϕ ⊂ [0, 1],

and
∫
ϕ(t) dt = 1. For R > 0 and ε > 0 we define

ϕε(t) := ε−1

∫ ∞

R

ϕ
(t− y

ε

)
dy =

∫ t−R
ε

−∞

ϕ(z) dz (72)

(which is nothing but the mollification of the characteristic function of the interval

(R,∞)). In addition we need a cut-off function. Let η ∈ C∞
0 (R) s.t. η(t) = 1 if

|t| ≤ 1 and η(t) = 0 if |t| ≥ 2. For M ≥ 1 we define ηM(t) := η(t/M), t ∈ R. It is

easily checked that the functions

φM,ε(t) := t1−d ϕε(t) ηM(t) , t ∈ R ,

belong to C1
c ([0,∞)). For g ∈ BV (R+, td−1) this implies
∫ ∞

0

g(t) [φM,ε(s) s
d−1]′(t) dt = −

∫ ∞

0

ϕε(t) ηM(t) dν+(t) , (73)

see (18). Since for M > R + ε we have
∫ ∞

0

g(t) [φM,ε(s) s
d−1]′(t) dt =

∫ R+ε

R

g(t) ε−1 ϕ
(t− R

ε

)
dt

+M−1

∫ ∞

M

g(t)ϕε(t)ψ
′(t/M) dt

and

lim
M→∞

M−1

∫ ∞

M

g(t)ϕε(t)ψ
′(t/M) dt = 0

(g ∈ L1(R
+, td−1)), we get

lim
ε↓0,M→∞

∫ ∞

0

g(t) [φM,ε(s) s
d−1]′(t) dt = g(R) , (74)

if R is a Lebesgue point of g. But
∣∣∣
∫ ∞

0

ϕε(t) ηM(t) dν+(t)
∣∣∣ ≤

∫ ∞

R

ϕε(t) d|ν
+|(t) ≤ R1−d

∫ ∞

R

td−1 d|ν+|(t) .

Combining (74), (73) with this estimate we have proved (16) and (17) simultane-

ously.

4.3 Proof of the assertions in Subsection 2.2.3

4.3.1 Proof of Lemma 3

Sufficiency of the conditions is obvious, see e.g. [34]. Necessity follows from the

examples investigated in Lemma 8.
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4.3.2 Proof of Theorem 13

We argue by using the atomic characterizations in Subsection 3.3.2.

Step 1. Proof of (i). For simplicity let |x| = 2−r, r ∈ N. If y satisfies 2−r−1 ≤

|x| ≤ 2−r+1, then, using the support condition for atoms, we know that f allows an

optimal atomic decomposition such that

f(y) =

∞∑

j=0

[2j−r]+n0∑

k=max(0,[2j−r ]−n0)

C(d,k)∑

ℓ=1

sj,k aj,k,ℓ(y) . (75)

Here n0 is a general natural number depending on the decomposition Ω, but not on

r.

Substep 1.1. We assume first that 1
p
< s < d

p
. From the L∞-estimate of the atoms,

property (f) of the coverings (Ωj,k,ℓ)j,k,ℓ, and the inequality (36) we derive

|f(y1, 0, . . . , 0)| ≤
∞∑

j=0

[2j−r ]+n0∑

k=max(0,[2j−r ]−n0)

K∑

ℓ=1

|sj,k| |aj,k,ℓ(y1, 0, . . . , 0)|

<
∼

( r+n1∑

j=0

n2∑

k=0

|sj,k| 2
−j(s−d/p) +

∞∑

j=r+n1+1

2j−r+n0∑

k=2j−r−n0

|sj,k| 2
−j(s−d/p)

)

<
∼ ‖ f |RBs

p,∞(Rd)‖
( r+n1∑

j=0

2−j(s−d/p) +
∞∑

j=r+n1+1

2−(j−r)(d−1)/p 2−j(s−d/p)
)

<
∼ 2r(d

p
−s) ‖ f |RBs

p,∞(Rd)‖ ,

for appropriate natural numbers n1, n2 (independent of r). For the last two steps of

the estimate we used 1/p < s < d/p. Taking into account the elementary embedding

As
p,q(R

d) →֒ Bs
p,∞(Rd) we obtain the inequality (20).

Substep 1.2. Now, let s = 1
p
. For the Besov spaces RB

1/p
p,1 (Rd) the inequality (20)

was proved in [31]. So it remains to consider the Lizorkin -Triebel spaces RF
1/p
p,∞(Rd)

with 0 < p ≤ 1. For simplicity we regard the main part of f ∈ RF
1/p
p,∞(Rd), cf. (75)

and compare with (63). Now kj = 1 if 0 ≤ j ≤ r + n1 and kj ∼ |x|2j if j > r + n1.

Hence, we obtain

|fM(|x|, 0, . . . , 0)| ≤
∞∑

j=0

|sj,kj
| |aj,kj,0(y)| <

∼

( ∞∑

j=0

|sj,kj
|p 2j(d−1)

)1/p

<
∼ |x|

1−d
p

( r+n1∑

j=0

|sj,kj
|p +

∞∑

j=r+n1+1

|sj,k|
p kd−1

j

)1/p
<
∼ |x|

1−d
p ‖ f |RF 1/p

p,∞(Rd)‖ ,

where we used p ≤ 1 for the second step and (65)-(66) for the last one.

Step 2. Proof of (ii). By using elementary embeddings it will be enough to prove

(21) with RAs
p,q(R

d) = RBs
p,q(R

d) and q small. Again we concentrate on |x| = 2−r,
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r ∈ N. Our test function is taken to be 2−r(s−d/p) fj,λ, see Lemma 7, where we choose

j := 1 + r and λ := 1. Then it follows

‖ 2−r(s−d/p) fj,λ |B
s
p,q(R

d)‖ ≍ 1 and fj,λ(x) = 2−r(s−d/p) = |x|s−d/p .

The proof is complete.

4.3.3 Proof of Lemma 4

The arguments are the same as in proof of Theorem 10(iv).

4.4 Proof of Theorem 14

We shall use the notation from the proof of Theorem 13, Step 1. Again we employ

the formula (75) and obtain

|f(y1, 0, . . . , 0)| <∼

( r+n1∑

j=0

n2∑

k=0

|sj,k| +
∞∑

j=r+n1+1

2j−r+n0∑

k=2j−r−n0

|sj,k|
)

since s = d/p.

Step 1. Proof of (i). We shall use the standard abbreviation q′ := q/(q − 1). Since

q > 1 we can use Hölder’s inequality and conclude

r+n1∑

j=0

n2∑

k=0

|sj,k| <∼ r1/q′
( r+n1∑

j=0

n2∑

k=0

|sj,k|
q
)1/q

<
∼ (− log |x|)1/q′ ‖ f |Bd/p

p,q (Rd)‖ (76)

as well as

∞∑

j=r+n1+1

2j−r+n0∑

k=2j−r−n0

|sj,k| <∼

∞∑

j=r+n1+1

2−(j−r)(d−1)/p
( ∑

k≥2j−r−n0

(1 + |k|)d−1 |sj,k|
p
)1/p

<
∼

( ∞∑

j=r+n1+1

( ∑

k≥2j−r−n0

(1 + |k|)d−1 |sj,k|
p
)q/p)1/q ( ∞∑

j=r+n1+1

2−(j−r)q′(d−1)/p
)1/q′

<
∼ ‖ f |Bd/p

p,q (Rd)‖ . (77)

The inequalities (76) and (77) yield (22).

Step 2. Proof of (ii). Let 1 < p < p0 < ∞. The Jawerth-Franke embedding

F
d/p
p,1 (Rd) →֒ B

d/p0
p0,p (Rd), see [19] or [34], combined with (22) proves (23).
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