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Practically motivated theoretical research

Research types

Teory

Practice

State
of the art basic

applied

Theoretical research
▶ Development of abstract well defined concepts

Practical research
▶ Problem definition takes often more time than

solution
▶ Simplicity is essential!

Best of both worlds
▶ Practically motivated theoretical problems
▶ Need for a good partner in the industry
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Common problem: expensive data

1. Optimization of machine design
▶ one simulation takes a day

2. Design of monitoring network for a
tokamak
▶ New measurement device is

expensive

3. Detection of novel mallware
▶ human analysis expensive and

slow



Bayesian Optimization Classic
▶ Močkus, Jonas. On Bayesian methods for seeking the extremum. In Optimization

Techniques IFIP Technical Conference: Novosibirsk, July 1–7, 1974, pp. 400-404.
Springer Berlin Heidelberg, 1975.

▶ Jones, Donald R., Matthias Schonlau, and William J. Welch. Efficient global
optimization of expensive black-box functions. Journal of Global optimization 13, no.
4 (1998): 455.

▶ Shahriari, Bobak, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando De Freitas.
Taking the human out of the loop: A review of Bayesian optimization. Proceedings
of the IEEE 104, no. 1 (2015): 148-175.

Becomes standard tool:

▶ part of google tools for tuning of Neural Networks
▶ winner of many benchmarks
▶ rules of thumb of using:

▶ when the number of data <1000
▶ when problem dimension <20
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Why it doesn’t work in higher-dimensions?
1. Curse of dimensionality (Binois, Wycoff, 2022):

2. Homogeneity of the model (Li, Rudner, Wilson, 2023)
▶ the distance function is same for all points
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Heterogenous GP models

1. Deep GP: f(x) ∼ GP(), x = g(z) ∼ GP()
▶ Kurt Cutajar, Mark Pullin, Andreas Damianou, Javier González, and Neil Lawrence. 2018. Deep

Gaussian processes for multi-fidelity modeling. In Proceedings of the International Conference on
Neural Information Processing Systems.

2. Non-stationary kernels:
▶ Christopher J. Paciorek and Mark J. Schervish. 2006. Spatial modelling using a new class of

nonstationary covariance functions. Environmetrics: The Official Journal of the International
Environmetrics Society 17, 5 (2006), 483–506

Methods have no analytical solution and are inaccurate and computationally costly!

Deep Neural networks
Neal 1995: Gaussian Process is a limit of multilayer perceptron with infinitely many neurons on
the hidden layer.

Open problem



Combining BO with Trust region: TuRBO

▶ Uses the idea of Trust Region to fit GP only locally
▶ Keeps multiple TR simultaneously and samples from them using the Multi-armed Bandit

methods
▶ David Eriksson, Michael Pearce, Jacob Gardner, Ryan D. Turner, and Matthias Poloczek. 2019. Scalable

global optimization via local Bayesian optimization. In Proceedings of the 33rd International Conference
on Neural Information Processing Systems. 5496–5507



Looking for a set of solutions

Task: Decide if we need to buy a new (expensive) sensor for Tokamak
Reason: Existing sensor network may not see clearly enough what is going on in the

plasma.
Evaluation: How will the new measurement reduce uncertainty?

Looking for: quantification of uncertainty:
▶ a set of admissible solution (Diversity in BO)
▶ posterior distribution / likelihood function

▶ Gutmann, M.U. and Cor, J., 2016. Bayesian optimization for likelihood-free
inference of simulator-based statistical models. Journal of Machine Learning
Research, 17(125), pp.1-47.



Illustrative example

Example:
unknown variables a, x observed via

y = ax + e1
p(y|a, x) = N (ax, σe)

every evaluation of p(y|a, x) is expensive!

Visualization of the posterior for
evaluated on a grid of 300x300 points for

y = 1, σe = 1.

▶ imagine every evaluation costs 100$



How it works

▶ The GP is used to model the model deviation ∆θ, present in the log-likelihood, e.g.

log p(y|a, x) = − 1

2σ
∆2

θ

▶ The estimate of the density is available in closed form
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▶ Acquisition function: minimize the variance of the likelihood function!
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Structured Data

Expensive experiments may have outcomes in different form:

Malware reports are JSON files: 10kb – 500MB

Looking for classifier: y = f(JSON), y ∈ {0, 1} done by Neural Networks

Label problem: supervised training works extremely well for large number of the data pairs.
▶ Malware evolves:

every day the system receives thousands of attempts to smuggle a new
malware

▶ Human analysts can no process thousand samples per day
▶ Selection of the most “informative” for the modeling

How to define a kernel? K(JSON, JSON′)



Recursive definition of a metric on trees
Consider two trees:
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Their metric is build by a recursive combination of:

▶ leaf metrics (discrete, continuous, string)
▶ (weighted) product metrics
▶ Set metrics (Wasserstein, Chamfer)



Composite metric with 23 parameters (Mutagenesis dataset)
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The goal is to lean the metric parameters

▶ in supervised setting, standard distance-based classifiers (kNN, SVM)
▶ hyper-parameter search by CV

▶ in unsupervised, we can define kernel methods (GP)



GP on heterogeneous trees

Kernel
K(J, J′) = exp

(
−1

2
|Dθ(J, J′)|

)
and using Type-II maximum likelihood approach (Zorek et. al., to be published):

Potential improvement: Bayesian estimate?



Open problems

Conventional BO:

▶ Locality proved to be essential!
▶ Why only rectangular boxes? CMA?

▶ Non-stationary processes ≈ Neural Networks

Posterior probability via BO:

▶ Same problem with non-stationarity
▶ interpret TR as components of a mixture?

GPs on heterogenous tree structured data

▶ Sensitivity to kernel choice
▶ Poor hyper-parameter estimates


