Modern Approximation Theory

...draft script...

Contents

1 Introduction 3
1.1 Banach spaces 3
1.2 Duality and convexity 3
1.3 Compactness and entropy numbers 8
1.4 Entropy numbers of $i d: \ell_{p}^{m} \rightarrow \ell_{q}^{m}$ 10
1.4.1 Remark to interpolation theory 13
1.4.2 Entropy numbers of $i d: \ell_{1}^{m} \rightarrow \ell_{\infty}^{m}$ 17
1.4.3 Extension to arbitrary p and q 20
1.5 Eigenvalues and Carl-Triebel inequality 22
1.6 Applications of entropy numbers 25
1.6.1 Applications to signal processing 25
1.6.2 Haar bases 26
1.6.3 Applications to PDE's 28
2 Approximation, Gelfand and Kolmogorov numbers 35
$2.1 s$-numbers 35
2.2 Approximation numbers 36
2.3 Gelfand and Kolmogorov numbers 39
2.3.1 Duality 46
2.4 Approximation, Gelfand and Kolmogorov numbers of id: $\ell_{p}^{m} \rightarrow \ell_{q}^{m}$ 50
2.4.1 Extreme points and the Krein-Milman theorem 50

1 Introduction

1.1 Banach spaces

Definition 1. Let X be a vector space over $\mathbb{R}($ or $\mathbb{C})$ equipped with a norm $\|\cdot\|: X \rightarrow[0, \infty)$. It means, that

- There are operations $+: X \times X \rightarrow X$ and $: ~: \mathbb{R} \times X \rightarrow X$ with the usual properties.
- The function $\|\cdot\|$ satisfies
(1) $\|x\|=0$ if, and only if, ${ }^{1} x=0$,
(2) $\|\alpha x\|=|\alpha| \cdot\|x\|$ for all $\alpha \in \mathbb{R}$ (or all $\alpha \in \mathbb{C}$) and all $x \in X$,
(3) $\quad\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in X$.

If X is complete ${ }^{2}$, it is called a Banach space.
Remark 1. We shall write $\|x\|_{X}$ or $\|x \mid X\|$ to emphasise the space X in the notation.
Remark 2. We recall the most classical Banach spaces

- $\mathbb{R}^{n}, \mathbb{C}^{n}, \ell_{p}^{n}(\mathbb{R}), \ell_{p}^{n}(\mathbb{C})$ with $1 \leq p \leq \infty$,
- ℓ_{p}, c_{0}, c_{00} with $1 \leq p \leq \infty$,
- $L_{p}([0,1]), L_{p}(\Omega), C(\Omega)$ with $1 \leq p \leq \infty$.

Remark 3. The most important concepts of functional analysis are

- completeness,
- duality,
- convexity,
- compactness.

Completeness shall be used only very rarely in this text.

1.2 Duality and convexity

Definition 2. Let X, Y be two Banach spaces.

- $f: X \rightarrow Y$ is linear, iff

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
$$

for all $\alpha, \beta \in \mathbb{R}($ or $\mathbb{C})$ and all $x, y \in X$.

- If $f: X \rightarrow Y$ is linear, it is continuous, iff there exists a real number $M>0$, such that

$$
\|f(x)\|_{Y} \leq M\|x\|_{X}
$$

for all $x \in X$.

- If $Y=\mathbb{R}$ (or $Y=\mathbb{C}$) and $f: X \rightarrow Y$ is linear and continuous, then it is called functional.

[^0]- $\mathcal{L}(X, Y)=\{f: X \rightarrow Y, f$ is linear and continuous $\}$.
- $X^{\prime}=\mathcal{L}(X, \mathbb{R})$ or $X^{\prime}=\mathcal{L}(X, \mathbb{C})$, respectively, is the dual space of X.

Remark 4. - $\mathcal{L}(X, Y)$ is complete with respect to the operator norm

$$
\|f \mid \mathcal{L}(X, Y)\|=\sup _{x \neq 0} \frac{\|f(x)\|_{Y}}{\|x\|_{X}}=\sup _{x \in X:\|x\|=1}\|f(x)\|_{Y}
$$

Especially,

$$
\left\|\left.f\left|X^{\prime} \|=\sup _{x \neq 0} \frac{|f(x)|}{\|x\|_{X}}=\sup _{x \in X:\|x\|=1}\right| f(x) \right\rvert\, .\right.
$$

- The supremum above may not be attained, cf. Exercise 2.
- It is usual to identify the dual space with some other well known space. For example, $\left(\ell_{1}\right)^{\prime}=\ell_{\infty}$, cf. Exercise 3. In this sense, we have

$$
\left(\ell_{p}\right)^{\prime}=\ell_{p^{\prime}}, \quad \text { where } \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1, \quad 1 \leq p<\infty .
$$

Let us recall, that $\left(\ell_{\infty}^{m}\right)^{\prime}=\ell_{1}^{m}$, but $\left(\ell_{\infty}\right)^{\prime} \neq \ell_{1}$, cf. Exercise 8 .

- The operators may be composed in the usual way, i.e.

$$
S \in \mathcal{L}(X, Y), \quad T \in \mathcal{L}(Y, Z) \quad \Longrightarrow T \circ S \in \mathcal{L}(X, Z)
$$

and

$$
\|T \circ S|\mathcal{L}(X, Z)\|\leq\| T| \mathcal{L}(Y, Z)\| \cdot\|S \mid \mathcal{L}(X, Y)\| .
$$

Definition 3. Let X be a vector space.
a) A set $M \subset X$ is called convex, iff

$$
\forall x, y \in M \quad \forall \lambda: 0 \leq \lambda \leq 1 \quad \lambda x+(1-\lambda) y \in M .
$$

b) Let $M \subset X$ be convex and let $f: M \rightarrow \mathbb{R}$ be an arbitrary function. Then f is convex, iff

$$
\forall x, y \in M \quad \forall \lambda: 0 \leq \lambda \leq 1 \quad f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

c) Let $M \subset X$. Then we define the convex hull of M by

$$
\operatorname{conv} M=\bigcap_{\substack{K \supset M \\ K \text { convex }}} K
$$

Remark 5. - Convexity is defined only algebraically. No topology or norm is assumed on X and no continuity of f is necessary.

- Let X be a Banach space and let

$$
B_{X}=\left\{x \in X:\|x\|_{X} \leq 1\right\}
$$

be its closed unit ball. Then B_{X} is convex.

Definition 4. a) Let X be a vector space and let $\|\cdot\|: X \rightarrow[0, \infty)$ with
(1) $\|x\|=0$ if, and only if, $x=0$,
(2) $\|\alpha x\|=|\alpha| \cdot\|x\|$ for all $\alpha \in \mathbb{R}$ (or all $\alpha \in \mathbb{C}$) and all $x \in X$,
(3) $\quad\|x+y\| \leq C(\|x\|+\|y\|)$ for some $C \geq 1$ and all $x, y \in X$.

Then $\|\cdot\|$ is called a quasi-norm and X is a quasi-normed space. If X is even complete in this quasi-norm, it is called also a quasi-Banach space.
b) Let X be a vector space and let $\|\cdot\|: X \rightarrow[0, \infty)$ with
(1) $\|x\|=0$ if, and only if, $x=0$,
(2) $\|\alpha x\|=|\alpha| \cdot\|x\|$ for all $\alpha \in \mathbb{R}$ (or all $\alpha \in \mathbb{C}$) and all $x \in X$,
(3) $\quad\|x+y\|^{p} \leq\|x\|^{p}+\|y\|^{p}$ for some $0<p \leq 1$ and all $x, y \in X$.

Then $\|\cdot\|$ is called a p-norm and X is a p-normed space. If X is even complete in this p-norm, it is called also a p-Banach space.

Example 1. Let us consider the space $L_{p}([0,1])$ with $0<p<1$. This is a space of (equivalence classes of) measurable functions on $[0,1]$, equipped with a mapping

$$
\left\|f \mid L_{p}([0,1])\right\|=\left(\int_{0}^{1}|f(x)|^{p} d x\right)^{1 / p}
$$

- Then it holds

$$
\begin{aligned}
\left\|f+g \mid L_{p}([0,1])\right\|^{p} & =\int_{0}^{1}|f(x)+g(x)|^{p} d x \leq \int_{0}^{1}|f(x)|^{p}+|g(x)|^{p} d x \\
& =\left\|\left.f\left|L_{p}([0,1])\right|\right|^{p}+\right\| g \mid L_{p}([0,1]) \|^{p} .
\end{aligned}
$$

Here, we used the first inequality from Exercise 5a) with $a=|f(x)|$ and $b=|g(x)|$. Hence, $\|\cdot\|$ is a p-norm.

- On the other hand, we get

$$
\begin{aligned}
\left\|f+g \mid L_{p}([0,1])\right\| & =\left(\int_{0}^{1}|f(x)+g(x)|^{p} d x\right)^{1 / p} \leq\left(\int_{0}^{1}|f(x)|^{p}+|g(x)|^{p} d x\right)^{1 / p} \\
& =\left(\int_{0}^{1}|f(x)|^{p} d x+\int_{0}^{1}|g(x)|^{p} d x\right)^{1 / p}=\left(\left\|f\left|L_{p}([0,1])\right|^{p}+\right\| g\left|L_{p}([0,1])\right|^{p}\right)^{1 / p} \\
& \leq 2^{1 / p-1}\left(\left\|f\left|L_{p}([0,1])\|+\| g\right| L_{p}([0,1])\right\|\right) .
\end{aligned}
$$

Here, we have used the second inequality from Exercise 5b) with $a=\left\|f \mid L_{p}([0,1])\right\|$ and $b=$ $\left\|g \mid L_{p}([0,1])\right\|$. Hence $\|\cdot\|$ is also a quasi-norm.

Next theorem shows, that this behaviour is no coincidence.
Theorem 5. a) Let X be a p-Banach space. Then X is also a quasi-Banach space with $C=2^{1 / p-1}$.
b) Let X be a quasi-Banach space with the quasi-norm $\|\cdot\|$. Then there is a $0<p \leq 1$ and a p-norm $\|\cdot\|_{p}$, which is equivalent ${ }^{3}$ to $\|\cdot\|$.

[^1]Proof. The proof of a) copies the proof given in Example 1.

$$
\|f+g\| \leq\left(\|f\|^{p}+\|g\|^{p}\right)^{1 / p} \leq\left[2^{1-p}(\|f\|+\|g\|)^{p}\right]^{1 / p}=2^{1 / p-1}(\|f\|+\|g\|) .
$$

The proof of b) is the essential part.
Let C denote the constant from the triangle inequality for $\|\cdot\|$. We put $C_{0}=2 C \geq 2$.
We define p through $C_{0}^{p}=2$ (i.e. $0<p \leq 1$) and put

$$
\|f\|_{p}=\inf _{f=f_{1}+\cdots+f_{m}}\left(\left\|f_{1}\right\|^{p}+\cdots+\left\|f_{m}\right\|^{p}\right)^{1 / p}
$$

The infimum runs over all decompositions $f=f_{1}+\cdots+f_{m}$.
It remains to prove, that $\|\cdot\|_{p}$ has all the properties of a p-norm. This is unfortunately a bit technical. We start with the following observation.
Step 1. We prove through induction, that

$$
\begin{equation*}
\left\|f_{1}+\cdots+f_{m}\right\| \leq \max _{1 \leq j \leq m}\left(C_{0}^{j}\left\|f_{j}\right\|\right) \tag{1.1}
\end{equation*}
$$

- The case $m=2$ is trivial.

$$
\left\|f_{1}+f_{2}\right\| \leq C\left(\left\|f_{1}\right\|+\left\|f_{2}\right\|\right) \leq \max \left(C_{0}\left\|f_{1}\right\|, C_{0}\left\|f_{2}\right\|\right) \leq \max \left(C_{0}\left\|f_{1}\right\|, C_{0}^{2}\left\|f_{2}\right\|\right)
$$

- The step $m-1 \rightarrow m$ follows.

$$
\begin{aligned}
\| f_{1}+\ldots & +f_{m} \| \leq C\left(\left\|f_{1}\right\|+\left\|f_{2}+\cdots+f_{m}\right\|\right) \leq \max \left(C_{0}\left\|f_{1}\right\|, C_{0}\left\|f_{2}+\cdots+f_{m}\right\|\right) \\
& \leq \max \left(C_{0}\left\|f_{1}\right\|, C_{0} \max \left(C_{0}\left\|f_{2}\right\|, C_{0}^{2}\left\|f_{3}\right\|, \ldots, C_{0}^{m-1}\left\|f_{m}\right\|\right)\right) \\
& \left.=\max \left(C_{0}\left\|f_{1}\right\|, C_{0}^{2}\left\|f_{2}\right\|, C_{0}^{3}\left\|f_{3}\right\|, \ldots, C_{0}^{m}\left\|f_{m}\right\|\right)\right)
\end{aligned}
$$

Step 2. We show, that $\|\cdot\|_{p}^{p}$ is subadditiv, i.e.

$$
\|f+g\|_{p}^{p} \leq\|f\|_{p}^{p}+\|g\|_{p}^{p}
$$

Let $f=f_{1}+\cdots+f_{m}$ and $g=g_{1}+\cdots+g_{n}$, such that

$$
\|f\|_{p} \geq(1-\varepsilon)\left(\left\|f_{1}\right\|^{p}+\cdots+\left\|f_{m}\right\|^{p}\right)^{1 / p} \quad \text { and } \quad\|g\|_{p} \geq(1-\varepsilon)\left(\left\|g_{1}\right\|^{p}+\cdots+\left\|g_{n}\right\|^{p}\right)^{1 / p}
$$

where $\varepsilon>0$ is arbitrary. Then $f+g=f_{1}+\cdots+f_{m}+g_{1}+\cdots+g_{n}$ and

$$
\|f+g\|_{p} \leq\left(\left\|f_{1}\right\|^{p}+\cdots+\left\|f_{m}\right\|^{p}+\left\|g_{1}\right\|^{p}+\cdots+\left\|g_{n}\right\|^{p}\right)^{1 / p} \leq\left[\left(\frac{\|f\|_{p}}{1-\varepsilon}\right)^{p}+\left(\frac{\|g\|_{p}}{1-\varepsilon}\right)^{p}\right]^{1 / p}
$$

Hence

$$
\|f+g\|_{p}^{p} \leq \frac{1}{(1-\varepsilon)^{p}}\left(\|f\|_{p}^{p}+\|g\|_{p}^{p}\right)
$$

and we let $\varepsilon \rightarrow 0$.
It follows trivially, that $\|\alpha f\|_{p}=|\alpha| \cdot\|f\|_{p}$ and $\|f\|_{p} \leq\|f\|$. We show, that there is a constant $A \geq 1$, such that

$$
\begin{equation*}
\|f\| \leq A\|f\|_{p}, \quad f \in X \tag{1.2}
\end{equation*}
$$

This inequality proves, that $\|\cdot\|$ and $\|\cdot\|_{p}$ are equivalent and gives as a byproduct, that $\|f\|_{p}=0$ if, and only if, $f=0$.
Step 3. Proof of (1.2).
We show by induction, that

$$
\begin{equation*}
\left\|f_{1}+\cdots+f_{m}\right\| \leq C_{0}\left(N\left(f_{1}\right)^{p}+\cdots+N\left(f_{m}\right)^{p}\right)^{1 / p} \tag{1.3}
\end{equation*}
$$

where

$$
N(f)= \begin{cases}0, & \text { if } \quad f=0 \\ C_{0}^{k}, & \text { if } \quad C_{0}^{k-1}<\|f\| \leq C_{0}^{k}, \quad k \in \mathbb{Z}\end{cases}
$$

From (1.3) follows (1.2) immediately. If $f=f_{1}+\cdots+f_{m}$, then

$$
\begin{aligned}
\|f\| & =\left\|f_{1}+\cdots+f_{m}\right\| \leq C_{0}\left(N\left(f_{1}\right)^{p}+\cdots+N\left(f_{m}\right)^{p}\right)^{1 / p} \\
& \leq C_{0}\left(\left(C_{0}\left\|f_{1}\right\|\right)^{p}+\cdots+\left(C_{0}\left\|f_{m}\right\|\right)^{p}\right)^{1 / p}=C_{0}^{2}\left(\left\|f_{1}\right\|^{p}+\cdots+\left\|f_{m}\right\|^{p}\right)^{1 / p}
\end{aligned}
$$

and we may consider the infimum over $f=f_{1}+\cdots+f_{m}$.

- The proof of (1.3) for $m=1$ is simple:

$$
\left\|f_{1}\right\| \leq N\left(f_{1}\right) \leq C_{0}\left(N\left(f_{1}\right)^{p}\right)^{1 / p}
$$

- The proof of $m \rightarrow m+1$ in (1.3).

We assume, that $\left\|f_{1}\right\| \geq \cdots \geq\left\|f_{m+1}\right\|$. If all $N\left(f_{j}\right), j=1, \ldots, m+1$ are different, then we get by (1.1)

$$
\left\|f_{1}+\cdots+f_{m+1}\right\| \leq \max _{1 \leq j \leq m+1}\left(C_{0}^{j}| | f_{j} \|\right)
$$

and

$$
C_{0}^{j}\left\|f_{j}\right\| \leq C_{0} N\left(f_{1}\right) \leq C_{0}\left(N\left(f_{1}\right)^{p}+\cdots+N\left(f_{m}\right)^{p}\right)^{1 / p}
$$

If $N\left(f_{j}\right)=N\left(f_{j+1}\right)=C_{0}^{l}$ for some $1 \leq j \leq m$ and some $l \in \mathbb{Z}$, then

$$
\left\|f_{j}+f_{j+1}\right\| \leq C_{0} \max \left(\left\|f_{j}\right\|,\left\|f_{j+1}\right\|\right) \leq C_{0}^{l+1}
$$

Hence

$$
N\left(f_{j}+f_{j+1}\right)^{p} \leq C_{0}^{(l+1) p}=2^{l+1}=2^{l}+2^{l}=N\left(f_{j}\right)^{p}+N\left(f_{j+1}\right)^{p} .
$$

Finally, we get by induction assumption

$$
\begin{aligned}
& \left\|f_{1}+\cdots+f_{m+1}\right\|=\left\|f_{1}+\cdots+f_{j-1}+\left(f_{j}+f_{j+1}\right)+f_{j+2}+\cdots+f_{m+1}\right\| \\
& \quad \leq C_{0}\left(N\left(f_{1}\right)^{p}+\cdots+N\left(f_{j-1}\right)^{p}+N\left(f_{j}+f_{j+1}\right)^{p}+N\left(f_{j+2}\right)^{p}+\cdots+N\left(f_{m+1}\right)^{p}\right)^{1 / p} \\
& \quad \leq C_{0}\left(N\left(f_{1}\right)^{p}+\cdots+N\left(f_{m+1}\right)^{p}\right)^{1 / p} .
\end{aligned}
$$

1.3 Compactness and entropy numbers

Definition 6. Let X be a Banach space, or a p-Banach space or a quasi-Banach space.
a) $M \subset X$ is open, iff $\forall x \in M \exists \varepsilon>0: B(x, \varepsilon)=\left\{y \in X:\|x-y\|_{X}<\varepsilon\right\} \subset M$.
b) $K \subset X$ is compact, iff $\forall\left\{M_{\alpha}\right\}_{\alpha \in I}, M_{\alpha}$ open with $\bigcup_{\alpha \in I} M_{\alpha} \supset K$ there exists a finite subsystem $\left\{a_{1}, \ldots, \alpha_{n}\right\} \subset I$ with $\bigcup_{i=1}^{n} M_{\alpha_{i}} \supset K$.
c) $T \in \mathcal{L}(X, Y)$ is compact, iff $\overline{T B_{X}} \subset Y$ is compact.

Let $K \subset X$ be compact. Then ${ }^{4}$ for every $\varepsilon>0$, there are finitely many points x_{1}, \ldots, x_{n}, such that

$$
\bigcup_{i=1}^{n} B\left(x_{i}, \varepsilon\right) \supset K
$$

Of course, the number of points $n(\varepsilon)$ grows, as $\varepsilon \rightarrow 0$. The concept of dyadic entropy numbers works with the inverse function, i.e. we ask, how large balls do we need to take to cover the set K with only n of them.

Definition 7. Let X, Y be two quasi-Banach spaces and let $T \in \mathcal{L}(X, Y)$. The sequence

$$
e_{n}(T)=\inf \left\{\varepsilon>0: \exists y_{1}, \ldots, y_{2^{n-1}}: T\left(B_{X}\right) \subset \bigcup_{i=1}^{2^{n-1}} B\left(y_{i}, \varepsilon\right)\right\}, \quad n \in \mathbb{N},
$$

is called the sequence of entropy numbers of the operator T.
Remark 6. We shall sometimes write $y_{i}+\varepsilon B_{Y}$ or $B_{Y}\left(y_{i}, \varepsilon\right)$ instead of $B\left(y_{i}, \varepsilon\right)$.
The following theorem summarises the basic properties of entropy numbers.
Theorem 8. Let X, Y, Z be three quasi-Banach spaces, let $S, T \in \mathcal{L}(X, Y)$ and let $R \in \mathcal{L}(Y, Z)$. Then it holds:
(i) $\|T \mid \mathcal{L}(X, Y)\| \geq e_{1}(T) \geq e_{2}(T) \geq \cdots \geq 0$.
(ii) $e_{n}(T) \rightarrow 0$, iff T is compact.
(iii) $\|T \mid \mathcal{L}(X, Y)\|=e_{1}(T)$ if Y is a Banach space ${ }^{5}$
(iv) $\forall n_{1}, n_{2} \in \mathbb{N}$ holds $e_{n_{1}+n_{2}-1}(R \circ S) \leq e_{n_{1}}(R) e_{n_{2}}(S)$.
(v) If Y is a p-Banach space, then

$$
e_{n_{1}+n_{2}-1}^{p}(S+T) \leq e_{n_{1}}^{p}(S)+e_{n_{2}}^{p}(T) .
$$

Proof. (i) The inequality $e_{j}(T) \geq e_{j+1}(T)$ follows directly from the Definition 7 . We write $\|T\|$ instead of $\|T \mid \mathcal{L}(X, Y)\|$ for short. The inequality $\|T\| \geq e_{1}(T)$ follows from

$$
T\left(B_{X}\right) \subset B(0,\|T\|) \subset Y .
$$

[^2](iii) If Y is a Banach space and $e_{1}(T)<\|T\|$, then there exist some real number $0<a<\|T\|$ and some $y \in Y$, such that
$$
T\left(B_{X}\right) \subset B(y, a),
$$
i.e.
$$
\|T x-y\|_{Y} \leq a
$$
for all $x \in B_{X}$. Then for every $x \in B_{X}$ we obtain
$$
\|T x\|_{Y} \leq\left\|\frac{T x}{2}+\frac{y}{2}\right\|_{Y}+\left\|\frac{T x}{2}-\frac{y}{2}\right\|_{Y}=\frac{1}{2}\|T(-x)-y\|_{Y}+\frac{1}{2}\|T x-y\|_{Y} \leq a
$$
hence $\|T\| \leq a$, which is a contradiction.
(ii) follows from Exercise 10a.
(iv) Let
\[

$$
\begin{aligned}
& R\left(B_{Y}\right) \subset \bigcup_{j=1}^{2^{n_{1}-1}} z_{j}+\left(e_{n_{1}}(R)+\varepsilon\right) B_{Z} \\
& S\left(B_{X}\right) \subset \bigcup_{i=1}^{2^{n_{2}-1}} y_{i}+\left(e_{n_{2}}(S)+\varepsilon\right) B_{Y}
\end{aligned}
$$
\]

Then

$$
\begin{aligned}
(R \circ S) B_{X}=R\left(S\left(B_{X}\right)\right) & \subset R\left(\bigcup_{i=1}^{2^{n_{2}-1}} y_{i}+\left(e_{n_{2}}(S)+\varepsilon\right) B_{Y}\right)=\bigcup_{i=1}^{2^{n_{2}-1}} R\left(y_{i}\right)+\left(e_{n_{2}}(S)+\varepsilon\right) R\left(B_{Y}\right) \\
& \subset \bigcup_{i=1}^{2^{n_{2}-1}} \bigcup_{j=1}^{2^{n_{1}-1}} \underbrace{R\left(y_{i}\right)+\left(e_{n_{2}}(S)+\varepsilon\right) z_{j}}_{v_{i, j}}+\left(e_{n_{1}}(T)+\varepsilon\right)\left(e_{n_{2}}(S)+\varepsilon\right) B_{Z} \\
& =\bigcup_{i=1}^{2^{n_{2}-1}} \bigcup_{j=1}^{2^{n_{1}-1}} v_{i, j}+\left(e_{n_{1}}(T)+\varepsilon\right)\left(e_{n_{2}}(S)+\varepsilon\right) B_{Z}
\end{aligned}
$$

Altogether, $(R \circ S)\left(B_{X}\right)$ may be covered by $2^{n_{1}-1+n_{2}-1}=2^{\left(n_{1}+n_{2}-1\right)-1}$ balls in Z with radius $\left(e_{n_{1}}(T)+\right.$ $\varepsilon)\left(e_{n_{2}}(S)+\varepsilon\right)$. Finally, we let $\varepsilon \rightarrow 0$.
(v) follows similarly. Let

$$
\begin{aligned}
& S\left(B_{X}\right) \subset \bigcup_{i=1}^{2^{n_{1}-1}} y_{i}+\left(e_{n_{1}}(S)+\varepsilon\right) B_{Y} \\
& T\left(B_{X}\right) \subset \bigcup_{j=1}^{2^{n_{2}-1}} z_{j}+\left(e_{n_{2}}(T)+\varepsilon\right) B_{Y}
\end{aligned}
$$

Then ${ }^{6}$

$$
\begin{aligned}
(S+T)\left(B_{X}\right) & \subset S\left(B_{X}\right)+T\left(B_{X}\right) \subset\left(\bigcup_{i=1}^{2^{n_{1}-1}} y_{i}+\left(e_{n_{1}}(S)+\varepsilon\right) B_{Y}\right)+\left(\bigcup_{j=1}^{2^{n_{2}-1}} z_{j}+\left(e_{n_{2}}(T)+\varepsilon\right) B_{Y}\right) \\
& \subset \bigcup_{i=1}^{2^{n_{1}-1}} \bigcup_{j=1}^{2^{n_{2}-1}}\left(y_{i}+z_{j}\right)+\left[\left(e_{n_{1}}(S)+\varepsilon\right) B_{Y}+\left(e_{n_{2}}(T)+\varepsilon\right) B_{Y}\right] \\
& \subset \bigcup_{i=1}^{2^{n_{1}-1}} \bigcup_{j=1}^{2^{n_{2}-1}}\left(y_{i}+z_{j}\right)+\left[\left(e_{n_{1}}(S)+\varepsilon\right)^{p}+\left(e_{n_{2}}(T)+\varepsilon\right)^{p}\right]^{1 / p} B_{Y}
\end{aligned}
$$

We have used Exercise 9 in the last step. Finally, we let $\varepsilon \rightarrow 0$ and observe, that

$$
e_{n}(S+T) \leq\left[e_{n_{1}}(S)^{p}+e_{n_{2}}(T)^{p}\right]^{1 / p}
$$

for n with $n-1=n_{1}-1+n_{2}-1$.

1.4 Entropy numbers of $i d: \ell_{p}^{m} \rightarrow \ell_{q}^{m}$

Up to very special cases (which we shall investigate in detail later on), the exact calculation of entropy numbers is almost impossible. Hence, we shall deal with estimates from above and below, which differ only through some constants, i.e. in formulas of the type

$$
e_{n}(T) \approx n^{-1}, \quad n \in \mathbb{N}
$$

which means, that there are two positive constants c_{1} and c_{2}, such that

$$
c_{1} n^{-1} \leq e_{n}(T) \leq c_{2} n^{-1}, \quad n \in \mathbb{N}
$$

The most simple case, which demonstrate many of the significant properties of entropy numbers, is the operator

$$
i d: \ell_{p}^{m}(\mathbb{R}) \rightarrow \ell_{q}^{m}(\mathbb{R})
$$

where $0<p, q \leq \infty$ and $m \in \mathbb{N}$. We are interested in estimates of $e_{n}(T)$ in the sense described above, but with c_{1} and c_{2} independent of n and m (but possibly depending on p and q).
Let us mention ${ }^{7}$, that

$$
e_{n}\left(i d: \ell_{p}^{m}(\mathbb{C}) \rightarrow \ell_{q}^{m}(\mathbb{C})\right) \approx e_{n}\left(i d: \ell_{p}^{2 m}(\mathbb{R}) \rightarrow \ell_{q}^{2 m}(\mathbb{R})\right), \quad n, m \in \mathbb{N}
$$

with constants of equivalence independent of n and m, but possibly depending on p and q. This somehow justifies our interest in real vector spaces.
We start with simple cases, it means with
Example 2. id : $\ell_{\infty}^{m} \rightarrow \ell_{\infty}^{m}$.
Step 1. Estimate from above.
We denote by $B=B_{\ell_{\infty}^{m}(\mathbb{R})}=[-1,1]^{m}$ the unit ball of $\ell_{\infty}^{m}(\mathbb{R})$.

[^3]We consider the sets

$$
A_{k, m}=\left\{-\frac{2^{k}-1}{2^{k}},-\frac{2^{k}-3}{2^{k}}, \ldots,-\frac{1}{2^{k}}, \frac{1}{2^{k}}, \ldots, \frac{2^{k}-1}{2^{k}}\right\}^{m}, \quad k, m \in \mathbb{N} .
$$

Simple calculation shows, that $A_{k, m}$ has

$$
\left(\frac{2^{k}-1+\left(2^{k}-1\right)+2}{2}\right)^{m}=2^{k \cdot m}
$$

elements. Furthermore,

$$
[-1,1] \subset \bigcup_{x \in A_{k, 1}} x+\frac{1}{2^{k}}[-1,1]
$$

and generally

$$
B=\bigcup_{x \in A_{k, m}} x+\frac{1}{2^{k}} B .
$$

This implies, that

$$
e_{k m+1}\left(i d: \ell_{\infty}^{m}(\mathbb{R}) \rightarrow \ell_{\infty}^{m}(\mathbb{R})\right) \leq \frac{1}{2^{k}}
$$

So, if $n \in \mathbb{N}$ may be written as $n=k m+1$, then

$$
e_{n}(i d) \leq \frac{1}{2^{k}}=\frac{1}{2^{\frac{n-1}{m}}}=\frac{2^{1 / m}}{2^{n / m}} \leq 2 \cdot 2^{-n / m}
$$

The same estimate follows for all n by standard arguments, namely monotonicity. Let us describe this in detail. Let

$$
\begin{equation*}
\underbrace{k_{0} m+1}_{n_{0}}<n<\underbrace{\left(k_{0}+1\right) m+1}_{n_{1}=n_{0}+m} \tag{1.4}
\end{equation*}
$$

for some $k_{0} \geq 1$. Then

$$
e_{n}(i d) \leq e_{n_{0}}(i d) \leq 2 \cdot 2^{-n_{0} / m}=2 \cdot 2^{-\frac{n_{1}-m}{m}} \leq 2 \cdot 2^{-\frac{n-m}{m}}=4 \cdot 2^{-n / m} .
$$

Finally, we consider $1 \leq n \leq m$, which cannot be expressed in the form given by (1.4). But for these n 's we obtain trivially

$$
e_{n}(i d) \leq 1 \leq 2 \cdot 2^{-n / m} \leq 4 \cdot 2^{-n / m}, \quad 1 \leq n \leq m
$$

Step 2. Estimate from below.
We use volume arguments, which shall be very useful also later on. Let us assume, that

$$
B \subset \bigcup_{j=1}^{2^{n-1}} y_{j}+\varepsilon B
$$

It means that

$$
\text { vol } B=2^{m} \leq 2^{n-1} \varepsilon^{m} \cdot \operatorname{vol} B=2^{m+n-1} \varepsilon^{m}
$$

Hence

$$
\varepsilon \geq 2^{\frac{1-n}{m}} \geq 2^{-n / m}
$$

Hence, we got

$$
\begin{equation*}
2^{-n / m} \leq e_{n}\left(i d: \ell_{\infty}^{m}(\mathbb{R}) \rightarrow \ell_{\infty}^{m}(\mathbb{R})\right) \leq 4 \cdot 2^{-n / m}, \quad n, m \in \mathbb{N} \tag{1.5}
\end{equation*}
$$

Let us mention, that even in this case, we got only estimates from above and from below, which differ by the constant 4 .

The second simple case, namely $e_{n}\left(i d: \ell_{1}^{m}(\mathbb{R}) \rightarrow \ell_{1}^{m}(\mathbb{R})\right)$ is postponed to the Exercise 11.
To be able to apply the volume arguments also in other (less trivial) situations, we shall need the Gamma function ${ }^{8}$

$$
\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s-1} d s, \quad s>0
$$

Theorem 9. Let $0<p, q \leq \infty$.
a) Then

$$
\operatorname{vol} B_{\ell_{p}^{m}(\mathbb{R})}=2^{m} \cdot \frac{\Gamma(1 / p+1)^{m}}{\Gamma(m / p+1)}, \quad m \in \mathbb{N}
$$

b) Then

$$
e_{n}\left(i d: \ell_{p}^{m}(\mathbb{R}) \rightarrow \ell_{q}^{m}(\mathbb{R})\right) \geq 2^{\frac{1-n}{m}} \cdot \frac{\Gamma(1 / p+1)}{\Gamma(1 / q+1)} \cdot\left[\frac{\Gamma(m / q+1)}{\Gamma(m / p+1)}\right]^{1 / m} \approx 2^{-n / m}\left[\frac{\Gamma(m / q+1)}{\Gamma(m / p+1)}\right]^{1 / m}
$$

with constants of equivalence independent of m and n, but depending on p and q.
c) Then

$$
e_{n}\left(i d: \ell_{p}^{m}(\mathbb{R}) \rightarrow \ell_{q}^{m}(\mathbb{R})\right) \gtrsim 2^{-n / m} m^{1 / q-1 / p}
$$

Proof. Step 1. Proof of a)
We have

$$
\operatorname{vol} B_{\ell_{p}^{m}(\mathbb{R})}=2^{m} \operatorname{vol}\left(B_{\ell_{p}^{m}(\mathbb{R})} \cap[0, \infty)^{m}\right)=2^{m} \int 1 d x
$$

where the last integral goes over all $x=\left(x_{1}, \ldots, x_{m}\right)$ with $x_{1} \geq 0, \ldots, x_{m} \geq 0$ and $x_{1}^{p}+\cdots+x_{m}^{p} \leq 1$. Through the substitution $t_{j}=x_{j}^{p}, \quad d t_{j}=p x_{j}^{p-1} d x_{j}$, this is equal to

$$
\left(\frac{2}{p}\right)^{m} \int \prod_{j=1}^{m} t_{j}^{1 / p-1} d t
$$

where the last integral goes over all $t=\left(t_{1}, \ldots, t_{m}\right)$ with $t_{1} \geq 0, \ldots, t_{m} \geq 0$ and $t_{1}+\cdots+t_{m} \leq 1$. This integral may be evaluated by induction, cf. Exercise 13 , and this finishes the proof of a).
Step 2. Proof of b)
Let $B_{\ell_{p}^{m}(\mathbb{R})}$ be covered by $2^{n-1} \varepsilon$-balls in $\ell_{q}^{m}(\mathbb{R})$ metric. Then

$$
\operatorname{vol} B_{\ell_{p}^{m}(\mathbb{R})} \leq 2^{n-1} \varepsilon^{m} \operatorname{vol} B_{\ell_{q}^{m}(\mathbb{R})}
$$

Hence,

$$
\varepsilon \geq 2^{\frac{1-n}{m}}\left[\frac{\operatorname{vol} B_{\ell_{p}^{m}(\mathbb{R})}}{\operatorname{vol} B_{\ell_{q}^{m}(\mathbb{R})}}\right]^{1 / m}
$$

This, together with a) gives b).
Step 3. Proof of c)

[^4]In view of b), it is enough to prove that

$$
2^{-n / m}\left[\frac{\Gamma(m / q+1)}{\Gamma(m / p+1)}\right]^{1 / m} \gtrsim 2^{-n / m} m^{1 / q-1 / p}
$$

i.e.

$$
\begin{equation*}
\left[\frac{\Gamma(m / q+1)}{\Gamma(m / p+1)}\right]^{1 / m} \gtrsim m^{1 / q-1 / p}, \quad m \in \mathbb{N} . \tag{1.6}
\end{equation*}
$$

We shall use the Stirling formula ${ }^{9}$

$$
\Gamma(x) \approx \frac{1}{\sqrt{x}} \cdot\left(\frac{x}{e}\right)^{x}, \quad x \geq 1
$$

Then

$$
L H S(1.6) \approx \underbrace{\left(\frac{\frac{m}{p}+1}{\frac{m}{q}+1}\right)^{\frac{1}{2 m}}}_{I} \cdot \underbrace{\left[\frac{\left(\frac{m}{q}+1\right)^{\frac{m}{q}+1}}{\left(\frac{m}{p}+1\right)^{\frac{m}{p}+1}}\right]^{1 / m}}_{I I} \cdot \underbrace{e^{-\left(\frac{m}{q}+1\right) \cdot \frac{1}{m}+\left(\frac{m}{p}+1\right) \cdot \frac{1}{m}}}_{I I I=e^{-1 / q+1 / p} \approx 1} .
$$

First, we deal with I. Let us observe, that for $m=1, I$ is equal to $\left[\frac{(1+p) q}{(1+q) p}\right]^{1 / 2}$ and for $m \rightarrow \infty, I$ goes to 1 . Hence, $I \approx 1$.
We rewrite $I I$ as

$$
\begin{aligned}
I I & =\left(\frac{m}{q}\right)^{1 / q+1 / m} \cdot\left(\frac{m}{p}\right)^{-1 / p-1 / m} \cdot \underbrace{\left[\left(1+\frac{q}{m}\right)^{\frac{m}{q}+1}\right]^{1 / m} \cdot\left[\left(1+\frac{p}{m}\right)^{\frac{m}{p}+1}\right]^{-1 / m}}_{\approx 1 \text {,again using limits }} \\
& \approx m^{1 / q-1 / p} \cdot q^{-1 / q} \cdot p^{1 / p} \cdot(p / q)^{1 / m} \approx m^{1 / q-1 / p} .
\end{aligned}
$$

1.4.1 Remark to interpolation theory

Let F be a linear operator with following properties:

$$
\begin{align*}
& F: L_{2}\left(\mathbb{R}^{d}\right) \rightarrow L_{2}\left(\mathbb{R}^{d}\right), \tag{1.7}\\
& F: L_{1}\left(\mathbb{R}^{d}\right) \rightarrow L_{\infty}\left(\mathbb{R}^{d}\right) . \tag{1.8}
\end{align*}
$$

Intuitively, it should follow that

$$
F: L_{p}\left(\mathbb{R}^{d}\right) \rightarrow L_{p^{\prime}}\left(\mathbb{R}^{d}\right), \quad 1 \leq p \leq 2, \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1 .
$$

This is really the case and is the main subject of the so-called interpolation theory ${ }^{10}$.

[^5]Example 3. a) A prominent example of such an operator is given by the Fourier transform

$$
\mathcal{F}(f)(\xi)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} f(x) e^{-i x \cdot \xi} d x
$$

Then (1.7) follows from the famous Parseval identity

$$
\left\|f\left|L_{2}\left(\mathbb{R}^{d}\right)\|=\| \mathcal{F} f\right| L_{2}\left(\mathbb{R}^{d}\right)\right\|
$$

and (1.8) follows almost trivially

$$
|\mathcal{F}(f)(\xi)| \leq \frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}}|f(x)| d x=\frac{\left\|f \mid L_{1}\left(\mathbb{R}^{d}\right)\right\|}{(2 \pi)^{d / 2}}
$$

b) Another famous application of the interpolation theory is the convolution operator.

Let $f \in L_{1}\left(\mathbb{R}^{d}\right)$ and put

$$
M_{f}(g)(x)=\int_{\mathbb{R}^{d}} f(x-y) g(y) d y
$$

Then we get

$$
\begin{aligned}
\left\|M_{f}(g) \mid L_{1}\left(\mathbb{R}^{d}\right)\right\| & =\int_{\mathbb{R}^{d}}\left|M_{f}(g)(x)\right| d x \leq \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}}|f(x-y) g(y)| d y d x=\int_{\mathbb{R}^{d}}|g(y)| \underbrace{\int_{\mathbb{R}^{d}}|f(x-y)| d x}_{\int_{\mathbb{R}^{d}}|f(x)| d x} d y \\
& =\int_{\mathbb{R}^{d}}|f(x)| d x \cdot \int_{\mathbb{R}^{d}}|g(y)| d y=\left\|f\left|L_{1}\left(\mathbb{R}^{d}\right)\|\cdot\| g\right| L_{1}\left(\mathbb{R}^{d}\right)\right\| .
\end{aligned}
$$

And similarly,

$$
\begin{aligned}
\left\|M_{f}(g) \mid L_{\infty}\left(\mathbb{R}^{d}\right)\right\| & \leq \sup _{x \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}}|f(x-y) g(y)| d y \leq \sup _{x \in \mathbb{R}^{d}} \sup _{z \in \mathbb{R}^{d}}|g(z)| \int_{\mathbb{R}^{d}}|f(x-y)| d y \\
& =\left\|g\left|L_{\infty}\left(\mathbb{R}^{d}\right)\|\cdot\| f\right| L_{1}\left(\mathbb{R}^{d}\right)\right\|
\end{aligned}
$$

Hence

$$
\left\|M_{f}: L_{1}\left(\mathbb{R}^{d}\right) \rightarrow L_{1}\left(\mathbb{R}^{d}\right)\right\| \leq\left\|f \mid L_{1}\left(\mathbb{R}^{d}\right)\right\| \quad \text { and } \quad\left\|M_{f}: L_{\infty}\left(\mathbb{R}^{d}\right) \rightarrow L_{\infty}\left(\mathbb{R}^{d}\right)\right\| \leq\left\|f \mid L_{1}\left(\mathbb{R}^{d}\right)\right\|
$$

By interpolation theory it follows, that

$$
\left\|M_{f}: L_{p}\left(\mathbb{R}^{d}\right) \rightarrow L_{p}\left(\mathbb{R}^{d}\right)\right\| \leq\left\|f \mid L_{1}\left(\mathbb{R}^{d}\right)\right\|, \quad 1 \leq p \leq \infty
$$

Theorem 10. Let X be a quasi-Banach space, \mathbb{Y} a vector space and let $T: X \rightarrow \mathbb{Y}$. Let $Y_{0}, Y_{1} \subset \mathbb{Y}$ be two p-Banach spaces with $0<p \leq 1$, let $0<\theta<1$ and let $Y_{\theta} \subset \mathbb{Y}$ be a quasi-Banach space with $T \in \mathcal{L}\left(X, Y_{0} \cap Y_{1}\right)$, where $\left\|y \mid Y_{0} \cap Y_{1}\right\|=\max \left(\|y\|_{Y_{0}},\|y\|_{Y_{1}}\right)$. If

$$
\begin{equation*}
\left\|y\left|Y_{\theta}\|\leq\| y\right| Y_{0}\right\|^{1-\theta} \cdot\left\|y \mid Y_{1}\right\|^{\theta}, \quad y \in Y_{0} \cap Y_{1} \subset Y_{\theta} \tag{1.9}
\end{equation*}
$$

then

$$
e_{n_{0}+n_{1}-1}\left(T: X \rightarrow Y_{\theta}\right) \leq 2^{1 / p} e_{n_{0}}^{1-\theta}\left(T: X \rightarrow Y_{0}\right) \cdot e_{n_{1}}^{\theta}\left(T: X \rightarrow Y_{1}\right), \quad n_{0}, n_{1} \in \mathbb{N}
$$

Proof. Let $a=(1+\varepsilon) e_{n_{0}}\left(T: X \rightarrow Y_{0}\right)$ and $b=(1+\varepsilon) e_{n_{1}}\left(T: X \rightarrow Y_{1}\right)$. It means, that there are $y_{1}, \ldots, y_{2^{n_{0}-1}} \in Y_{0}$ such that for every $x \in B_{X}$ there is a $j \in\left\{1, \ldots, 2^{n_{0}-1}\right\}$ with $\left\|T x-y_{j}\right\|_{Y_{0}} \leq a$. We consider the sets

$$
B_{j}=\left\{x \in B_{X}:\left\|T x-y_{j}\right\|_{Y_{0}} \leq a\right\} \subset B_{X}, \quad j=1, \ldots, 2^{n_{0}-1}
$$

Obviously,

$$
B_{X}=\bigcup_{j=1}^{2^{n_{0}-1}} B_{j}
$$

We can map each set B_{j} by T and cover in Y_{1}. So, there are points $z_{j}^{1}, \ldots, z_{j}^{2^{n_{1}-1}} \in Y_{1}$ such that for every $x \in B_{j}$ there is $i \in\left\{1, \ldots, 2^{n_{1}-1}\right\}$ such that $\left\|T x-z_{j}^{i}\right\|_{Y_{1}} \leq b$.
If z_{j}^{i} would lie in $T\left(B_{j}\right) \subset Y_{0} \cap Y_{1} \subset Y_{\theta}$, then we could use the calculation

$$
\left\|T x-z_{j}^{i}\right\|_{Y_{\theta}}^{p} \leq \underbrace{\left\|T x-z_{j}^{i}\right\|_{Y_{0}}^{p(1-\theta)}}_{\leq\left(\left\|T x-y_{j}\right\|_{Y_{0}}^{p}+\left\|y_{j}-z_{j}^{i}\right\|_{Y_{0}}^{p}\right)^{1-\theta} \leq\left(a^{p}+\left\|y_{j}-T\left(T^{-1} z_{j}^{i}\right)\right\|_{Y_{0}}^{p}\right)^{1-\theta} \leq\left(2 a^{p}\right)^{1-\theta}} \cdot \underbrace{\left\|T x-z_{j}^{i}\right\|_{Y_{1}}^{p \theta}}_{\leq b^{p \theta}} .
$$

Unfortunately, this is not necessarily the case. Hence, we choose

$$
w_{j}^{i} \in B_{Y_{1}}\left(z_{j}^{i}, b\right) \cap T\left(B_{j}\right)
$$

We may assume, that this is always possible. If not, then we just leave out z_{j}^{i}, because $B_{Y_{1}}\left(z_{j}^{i}, b\right)$ does not help with covering $T\left(B_{j}\right)$.
So, to every $x \in B_{X}$, we find $j \in\left\{1, \ldots, 2^{n_{0}-1}\right\}$ with $x \in B_{j}$ and then $i \in\left\{1, \ldots, 2^{n_{1}-1}\right\}$ such that

$$
\left\|T x-w_{j}^{i}\right\|_{Y_{1}}^{p} \leq\left\|T x-z_{j}^{i}\right\|_{Y_{1}}^{p}+\left\|z_{j}^{i}-w_{j}^{i}\right\|_{Y_{1}}^{p} \leq 2 b^{p}
$$

but also

$$
\left\|T x-w_{j}^{i}\right\|_{Y_{0}}^{p} \leq\left\|T x-y_{j}\right\|_{Y_{0}}^{p}+\left\|y_{j}-w_{j}^{i}\right\|_{Y_{0}}^{p} \leq 2 a^{p}
$$

hence

$$
\left\|T x-w_{j}^{i}\right\|_{Y_{\theta}} \leq\left\|T x-w_{j}^{i}\right\|_{Y_{0}}^{1-\theta} \cdot\left\|T x-w_{j}^{i}\right\|_{Y_{1}}^{\theta} \leq 2^{1 / p} a^{1-\theta} b^{\theta}
$$

Finally, we let $\varepsilon \rightarrow 0$.
Theorem 11. Let \mathbb{X} be a vector space and let $X_{0}, X_{\theta}, X_{1} \subset \mathbb{X}$ with $0<\theta<1$ and $X_{\theta} \subset X_{0}+X_{1}$. ${ }^{11}$ We define the so-called Peetre interpolation K-functional by

$$
K(t, x)=\inf \left\{\left\|x_{0}\right\|_{X_{0}}+t\left\|x_{1}\right\|_{X_{1}}: x=x_{0}+x_{1}, x_{0} \in X_{0}, x_{1} \in X_{1}\right\}, \quad x \in X_{\theta}, \quad t>0
$$

Let $T: D(T) \subset \mathbb{X} \rightarrow Y$, where Y is a p-Banach space, and let $T \in \mathcal{L}\left(X_{0}, Y\right)$ and $T \in \mathcal{L}\left(X_{1}, Y\right)$. If

$$
\begin{equation*}
t^{-\theta} K(t, x) \leq\|x\|_{X_{\theta}}, \quad t>0, \quad x \in X_{\theta} \tag{1.10}
\end{equation*}
$$

then also $T \in \mathcal{L}\left(X_{\theta}, Y\right)$ and

$$
e_{n_{0}+n_{1}-1}\left(T: X_{\theta} \rightarrow Y\right) \leq 2^{1 / p} e_{n_{0}}^{1-\theta}\left(T: X_{0} \rightarrow Y\right) \cdot e_{n_{1}}^{\theta}\left(T: X_{1} \rightarrow Y\right), \quad n_{0}, n_{1} \in \mathbb{N}
$$

[^6]Proof. The boundedness of T as an operator from X_{θ} into Y follows easily. Let us take $x \in B_{X_{\theta}}$ and $\varepsilon>0$. Then there are $x_{0} \in X_{0}$ and $x_{1} \in X_{1}$ such that $x=x_{0}+x_{1}$ and $\left\|x_{0}\right\|_{X_{0}}+\left\|x_{1}\right\|_{X_{1}} \leq(1+\varepsilon)-$ just choose $t=1$ in (1.10). The we have

$$
\|T x\|_{Y}^{p} \leq\left\|T x_{0}\right\|^{p}+\left\|T x_{1}\right\|^{p} \leq(1+\varepsilon)\left[\left\|T\left|\mathcal{L}\left(X_{0}, Y\right)\left\|^{p}+\right\| T\right| \mathcal{L}\left(X_{1}, Y\right)\right\|^{p}\right]
$$

hence (if we let $\varepsilon \rightarrow 0$)

$$
\left\|T \mid \mathcal{L}\left(X_{\theta}, Y\right)\right\| \leq\left[\left\|T\left|\mathcal{L}\left(X_{0}, Y\right)\left\|^{p}+\right\| T\right| \mathcal{L}\left(X_{1}, Y\right)\right\|^{p}\right]^{1 / p}
$$

Let

$$
a=e_{n_{0}}\left(T: X_{0} \rightarrow Y\right), \quad b=e_{n_{1}}\left(T: X_{1} \rightarrow Y\right), \quad t=b / a
$$

Let $x \in B_{X_{\theta}}$. Then there are $x_{0} \in X_{0}$ and $x_{1} \in X_{1}$ such that

$$
\left\|x_{0}\right\|_{X_{0}}+t \cdot\left\|x_{1}\right\|_{X_{1}} \leq(1+\varepsilon) K(t, x) \leq(1+\varepsilon) t^{\theta}\|x\|_{X_{\theta}} \leq(1+\varepsilon) t^{\theta}
$$

Let $y_{1}, \ldots, y_{2^{n_{0}-1}} \in Y$ be a $(1+\varepsilon) a$ net for $T\left(B_{X_{0}}\right)$ in Y and let $z_{1}, \ldots, z_{2^{n_{1}-1}} \in Y$ be a $(1+\varepsilon) b$ net for $T\left(B_{X_{1}}\right)$ in Y. Hence, there are j and k, such that

$$
\left\|\frac{T x_{0}}{(1+\varepsilon) t^{\theta}}-y_{j}\right\|_{Y} \leq(1+\varepsilon) a \quad \text { and } \quad\left\|\frac{T x_{1}}{(1+\varepsilon) t^{\theta-1}}-z_{k}\right\|_{Y} \leq(1+\varepsilon) b
$$

We estimate

$$
\begin{aligned}
\left\|T x-(1+\varepsilon) t^{\theta} y_{j}-(1+\varepsilon) t^{\theta-1} z_{k}\right\|_{Y}^{p} & \leq\left\|T x_{0}-(1+\varepsilon) t^{\theta} y_{j}\right\|_{Y}^{p}+\left\|T x_{1}-(1+\varepsilon) t^{\theta-1} z_{k}\right\|_{Y}^{p} \\
& \leq\left[(1+\varepsilon)^{2} a t^{\theta}\right]^{p}+\left[(1+\varepsilon)^{2} b t^{\theta-1}\right]^{p}=2(1+\varepsilon)^{2 p}\left[a^{1-\theta} b^{\theta}\right]^{p}
\end{aligned}
$$

i.e.

$$
\left\|T x-(1+\varepsilon) t^{\theta} y_{j}-(1+\varepsilon) t^{\theta-1} z_{k}\right\|_{Y} \leq 2^{1 / p}(1+\varepsilon)^{2} a^{1-\theta} b^{\theta}
$$

We observe, that the set

$$
\left\{(1+\varepsilon) t^{\theta} y_{j}+(1+\varepsilon) t^{\theta-1} z_{k}\right\}_{j, k}
$$

forms a $2^{1 / p}(1+\varepsilon)^{2} a^{1-\theta} b^{\theta}$ net for $T\left(B_{X_{\theta}}\right)$ in Y with cardinality $2^{n_{0}-1+n_{1}-1}$.
Remark 7. - In a typical situation, \mathbb{Y} in Theorem 10 and \mathbb{X} in Theorem 11 may be taken to be the space of all sequences or all measurable functions, respectively.

- Theorem 10 deals with interpolation on the target space. A following diagram is somtimes useful.

The assumption (1.9) follows usualy with the help of Hölder's inequality, cf. Exercise 17.

- Theorem 11 deals with interpolation on the source space, this time with following diagram.

$$
\begin{array}{ccc}
T: X_{0} & & \\
& \searrow \\
T: X_{\theta} & \rightarrow & Y \\
& \nearrow & \\
T: X_{1} &
\end{array}
$$

The assumption (1.10) is usualy more difficult to verify, cf. Exercise 18.

- Although the interpolation theory usually deals with interpolation on both (i.e. source and target) space side simultaneuously, there is no ${ }^{12}$ analog of Theorem 10 and Theorem 11 for this situation. That would correspond to the diagram

$$
\begin{array}{lll}
T: X_{0} & \rightarrow Y_{0} \\
T: X_{\theta} & \rightarrow & Y_{\theta} \\
T: X_{1} & \rightarrow & Y_{1} .
\end{array}
$$

1.4.2 Entropy numbers of $i d: \ell_{1}^{m} \rightarrow \ell_{\infty}^{m}$

The main purpose of this section is to prove following
Theorem 12. Let $m, n \in \mathbb{N}$. Then

$$
e_{n}\left(i d: \ell_{1}^{m}(\mathbb{R}) \rightarrow \ell_{\infty}^{m}(\mathbb{R})\right) \approx \begin{cases}1, & \text { if } 1 \leq n \leq \log _{2} m, \\ \frac{\log \left(\frac{m}{n}+1\right)}{n}, & \text { if } \log _{2} m \leq n \leq m, \\ 2^{-n / m} m^{-1}, & \text { if } m \leq n,\end{cases}
$$

where the constants of equivalence do not depend on m or n.
Proof. Step 1. $1 \leq n \leq \log _{2} m$.
The estimate from above is trivial and follows from Theorem 8 (or just the fact, that $B_{\ell_{1}^{m}} \subset B_{\ell_{\infty}^{m}}$.)
Also the estimate from below is simple. Let us consider the canonical unit vectors

$$
e^{j}=\left(e_{1}^{j}, \ldots, e_{m}^{j}\right), \quad j=1, \ldots, m
$$

where

$$
e_{i}^{j}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

As $\left\|e^{j}-e^{k}\right\|_{\infty}=1$ if $j \neq k$, each ℓ_{∞}^{m}-ball with radius strictly smaller than $1 / 2$ contains (at most) one of these points. Hence, if $n \leq \log _{2} m$ (i.e. $2^{n} \leq m$), then we need ℓ_{∞}^{m} balls of radius at least $1 / 2 \approx 1$ to cover $B_{\ell_{1}^{m}}$.
Step 2. $\log _{2} m \leq n \leq m$.

[^7]Let

$$
A_{k, m}=\left\{\left(t_{1}, \ldots, t_{m}\right) \in \mathbb{Z}^{m}:\|t\|_{1} \leq k\right\}, \quad k, m \in \mathbb{N}
$$

The number of elements of $A_{k, m}$ may be estimated from above by (cf. Exercises 14 c and 15)

$$
\# A_{k, m} \leq{ }^{13} 2^{k} \cdot \#\left\{\left(t_{0}, t_{1}, \ldots, t_{m}\right) \in \mathbb{N}_{0}^{m+1}, t_{0}+\cdots+t_{m}=k\right\}={ }^{14} 2^{k}\binom{k+m}{k} \leq(2 e)^{k} \cdot\left(\frac{k+m}{k}\right)^{k}
$$

Furthermore,

$$
B_{\ell_{1}^{m}} \subset \bigcup_{t \in A_{k, m}} \frac{t}{k}+\frac{1}{k} B_{\ell_{\infty}^{m}}
$$

To prove this inclusion, we consider to each $x \in B_{\ell_{1}^{m}}$ an element $\tilde{x}=\left(\tilde{x}_{1}, \ldots, \tilde{x}_{m}\right)$ with

$$
\tilde{x}_{i}=\operatorname{sgn}\left(x_{i}\right) \cdot \frac{1}{k} \cdot\left\lfloor k\left|x_{i}\right|\right\rfloor^{15}, \quad i=1, \ldots, m
$$

Then $\left\|x_{i}-\tilde{x}_{i}\right\|_{\infty} \leq 1 / k$ and $k \tilde{x} \in A_{k, m}$.
So, if

$$
\begin{equation*}
2^{n-1} \geq(2 e)^{k}\left(1+\frac{m}{k}\right)^{k} \quad \Longrightarrow \quad e_{n}\left(i d: \ell_{1}^{m}(\mathbb{R}) \rightarrow \ell_{\infty}^{m}(\mathbb{R})\right) \leq \frac{1}{k} \tag{1.11}
\end{equation*}
$$

According to Exercise 19 a) there exists a constant $c>0$, such that if

$$
\begin{equation*}
k \leq c n\left[\log _{2}\left(1+\frac{m}{n}\right)\right]^{-1} \tag{1.12}
\end{equation*}
$$

then

$$
\frac{n}{k} \geq \log _{2}\left(12\left(1+\frac{m}{k}\right)\right)
$$

hence

$$
2^{\frac{n}{k}} \geq 12\left(1+\frac{m}{k}\right)
$$

and this again implies that

$$
2^{n / k-1 / k} \geq 2 e\left(1+\frac{m}{k}\right)
$$

from which the assumption of (1.11) follows. Hence, the conclusion of (1.11) holds for all k with (1.12). Choosing the k as big as possible finishes the proof of the estimate from above.
To prove the estimate from below, we estimate the number of elements of $A_{k, m}$ from below by

$$
\# A_{k, m} \geq \#\left\{\left(t_{0}, t_{1}, \ldots, t_{m}\right) \in \mathbb{N}_{0}^{m+1}, t_{0}+\cdots+t_{m}=k\right\}=\binom{k+m}{k} \geq\left(\frac{k+m}{k}\right)^{k}
$$

So,

$$
\begin{equation*}
2^{n-1} \leq\left(1+\frac{m}{k}\right)^{k} \quad \Longrightarrow e_{n}\left(i d: \ell_{1}^{m}(\mathbb{R}) \rightarrow \ell_{\infty}^{m}(\mathbb{R})\right) \geq \frac{1}{2 k} \tag{1.13}
\end{equation*}
$$

From Exercise 19 b) we know, that there is a constant $c^{\prime}>0$, such that if

$$
\begin{equation*}
k \geq c^{\prime} n\left[\log _{2}\left(1+\frac{m}{n}\right)\right]^{-1} \tag{1.14}
\end{equation*}
$$

[^8]then
$$
n \leq k \log _{2}\left(1+\frac{m}{k}\right)
$$
which further implies
$$
2^{n-1} \leq 2^{n} \leq\left(1+\frac{m}{k}\right)^{k}
$$

So, every k with (1.14) satisfies also the conclusion of (1.13). Taking the smallest k possible finishes the proof.
Step 3. $m \leq n$.
The estimate from below follows by volume arguments given in Theorem 9 . We give the proof for the estimate from above.
We use the estimate of the number of elements of $A_{k, m}$

$$
\# A_{k, m} \leq 2^{m} \#\left\{\left(t_{0}, t_{1}, \ldots, t_{m}\right) \in \mathbb{N}_{0}^{m+1}, t_{0}+\cdots+t_{m}=k\right\} \leq 2^{m}\binom{k+m}{m} \leq(2 e)^{m}\left(1+\frac{k}{m}\right)^{m}
$$

Then we have

$$
\begin{equation*}
2^{n-1} \geq(2 e)^{m}\left(1+\frac{k}{m}\right)^{m} \quad \Longrightarrow \quad e_{n}\left(i d: \ell_{1}^{m}(\mathbb{R}) \rightarrow \ell_{\infty}^{m}(\mathbb{R})\right) \leq \frac{1}{k} \tag{1.15}
\end{equation*}
$$

Let $n \geq 5 m$. Then $2^{n / m-4} \geq 2$ and $2^{n / m-4}-1 \geq 2^{n / m-5}$. So, if

$$
\frac{k}{m} \leq 2^{n / m-5} \leq 2^{n / m-4}-1 \leq 2^{n / m-1 / m-3}-1
$$

we get

$$
\left(1+\frac{k}{m}\right)^{m} \leq 2^{n-1} 2^{-3 m} \leq(2 e)^{-m} 2^{n-1}
$$

and the conclusion of (1.15) follows. If $m \leq n \leq 5 m$, the estimate follows by monotonicity.
Step 4. We give an alternative proof of the estimate from above for $m \leq n$.
Let $0<r<1$ and let K_{r} be a maximal set of points from $B_{\ell_{1}^{m}}$, such that the mutual ℓ_{∞}^{m}-distance of every two different points is greater then r. This means

- $K_{r}=\left\{y_{1}, \ldots, y_{N}\right\} \subset B_{\ell_{1}^{m}}$,
- $\left\|y_{i}-y_{j}\right\|_{\infty}>r$ for every $i \neq j$,
- for all $y \in B_{\ell_{1}^{m}}$ there is an $i \in\{1, \ldots, N\}$ with $\left\|y-y_{i}\right\|_{\infty} \leq r$.

Let us observe, that if $z \in B_{\ell_{\infty}^{m}}$, then

$$
\left\|y_{j}+r z\right\|_{1} \leq\left\|y_{j}\right\|_{1}+r\|z\|_{1} \leq\left\|y_{j}\right\|_{1}+r m\|z\|_{\infty} \leq 1+r m
$$

which means, that

$$
\bigcup_{j=1}^{N} y_{j}+r B_{\ell_{\infty}^{m}} \subset(1+r m) B_{\ell_{1}^{m}}
$$

Furthermore, if $i \neq j$, then

$$
y_{i}+\frac{r}{2} B_{\ell_{\infty}^{m}} \cap y_{j}+\frac{r}{2} B_{\ell_{\infty}^{m}}=\emptyset
$$

This follows by contradiction; if $y_{i}+z_{i}=y_{j}+z_{j}$, with z_{i} and z_{j} from $\frac{r}{2} B_{\ell_{\infty}^{m}}$, then $\left\|y_{i}-y_{j}\right\|_{\infty}=$ $\left\|z_{i}-z_{j}\right\|_{\infty} \leq r$, which is a contradiction with properties of the set K_{r}.
Comparing the volumes, we obtain

$$
N \cdot\left(\frac{r}{2}\right)^{m} \cdot \operatorname{vol} B_{\ell_{\infty}^{m}} \leq(1+r m)^{m} \operatorname{vol} B_{\ell_{1}^{m}}
$$

hence

$$
\begin{equation*}
N \leq \frac{2^{m}(1+r m)^{m}}{r^{m} m!} \tag{1.16}
\end{equation*}
$$

This leads to implication

$$
\begin{equation*}
N \leq 2^{n-1} \quad \Longrightarrow \quad e_{n}\left(i d: \ell_{1}^{m}(\mathbb{R}) \rightarrow \ell_{\infty}^{m}(\mathbb{R})\right) \leq r \tag{1.17}
\end{equation*}
$$

According to (1.16), this is the case, if

$$
2^{n / m-1 / m} \geq\left(\frac{1}{r}+m\right) \cdot \frac{1}{\sqrt[m]{m!}} \approx\left(\frac{1}{r}+m\right) \cdot \frac{1}{m}
$$

So, if $m \leq n$, we may put $\frac{1}{r} \approx m 2^{n / m}$, which finishes the proof.

1.4.3 Extension to arbitrary p and q

Also this section has only one main aim, namely
Theorem 13. a) Let $m, n \in \mathbb{N}$ and $0<q \leq p \leq \infty$. Then

$$
e_{n}\left(i d: \ell_{p}^{m}(\mathbb{R}) \rightarrow \ell_{q}^{m}(\mathbb{R})\right) \approx m^{1 / q-1 / p} \cdot 2^{-n / m} \approx \begin{cases}m^{1 / q-1 / p}, & \text { if } n \leq m, \\ m^{1 / q-1 / p} 2^{-n / m}, & \text { if } m \leq n,\end{cases}
$$

where the constants of equivalence do not depend on m or n.
b) Let $m, n \in \mathbb{N}$ and $0<p \leq q \leq \infty$. Then

$$
e_{n}\left(i d: \ell_{p}^{m}(\mathbb{R}) \rightarrow \ell_{q}^{m}(\mathbb{R})\right) \approx \begin{cases}1, & \text { if } 1 \leq n \leq \log _{2} m \\ {\left[\frac{\log \left(\frac{m}{n}+1\right)}{n}\right]^{1 / p-1 / q},} & \text { if } \log _{2} m \leq n \leq m \\ m^{1 / q-1 / p} 2^{-n / m}, & \text { if } m \leq n\end{cases}
$$

where the constants of equivalence do not depend on m or n.
Proof. ${ }^{16}$
a) The estimate from below follows from Theorem 9 . The estimate from above for $n \leq m$ follows by

$$
e_{n}\left(i d: \ell_{p}^{m}(\mathbb{R}) \rightarrow \ell_{q}^{m}(\mathbb{R})\right) \leq\left\|i d: \ell_{p}^{m}(\mathbb{R}) \rightarrow \ell_{q}^{m}(\mathbb{R})\right\|=m^{1 / q-1 / p}
$$

We give the estimate from above for $n \geq m$ and $p=q$. It copies the Step 4 . of the proof of Theorem 12.

[^9]Let again $0<r<1$ and let $K_{r}=\left\{y_{1}, \ldots, y_{N}\right\}$ be a maximal set from $B \ell_{p}^{m}$ with mutual ℓ_{p}^{m}-distance of points greater then r. We obtain again

$$
\bigcup_{j=1}^{N} y_{j}+r B_{\ell_{p}^{m}} \subset 2 B_{\ell_{p}^{m}}
$$

and

$$
y_{i}+\frac{r}{2} B_{\ell_{p}^{m}} \cap y_{j}+\frac{r}{2} B_{\ell_{p}^{m}}=\emptyset, \quad i \neq j
$$

Comparison of volumes leads to

$$
N \cdot\left(\frac{r}{2}\right)^{m} \operatorname{vol} B_{\ell_{p}^{m}} \leq 2^{m} \operatorname{vol} B_{\ell_{p}^{m}}
$$

i.e. $N r^{m} \leq 4^{m}$. Hence if

$$
r \geq \frac{8}{2^{n / m}} \geq \frac{4}{2^{(n-1) / m}}
$$

we get $2^{n-1} \geq(4 / r)^{m} \geq N$ and $e_{n}\left(i d: \ell_{p}^{m} \rightarrow \ell_{p}^{m}\right) \leq r$ and the result follows.
If $0<q \leq p \leq \infty$, then

$$
\begin{aligned}
e_{n}\left(i d: \ell_{p}^{m}(\mathbb{R}) \rightarrow \ell_{q}^{m}(\mathbb{R})\right) & \leq e_{n}\left(i d: \ell_{p}^{m}(\mathbb{R}) \rightarrow \ell_{p}^{m}(\mathbb{R})\right) \cdot \underbrace{e_{1}\left(i d: \ell_{p}^{m}(\mathbb{R}) \rightarrow \ell_{q}^{m}(\mathbb{R})\right)}_{\leq\left\|i d: \ell_{p}^{\ell_{m}}(\mathbb{R}) \rightarrow \ell_{q}^{m}(\mathbb{R})\right\|=m^{1 / q-1 / p}} \\
& \lesssim 2^{-n / m} m^{1 / q-1 / p} .
\end{aligned}
$$

b) Let $0<p \leq q \leq \infty$.

The estimate from above for $1 \leq n \leq \log _{2} m$ follows again by $B_{\ell_{p}^{m}} \subset B_{\ell_{q}^{m}}$. The estimate from below follows by considering the canonical unit vectors e^{1}, \ldots, e^{m}.
If $\log _{2} m \leq n \leq m$, we give the proof only for the Banach space setting, i.e. $1 \leq p \leq q \leq \infty$.
The estimate from above follows by interpolation

$$
\begin{aligned}
e_{n}\left(i d: \ell_{p}^{m}(\mathbb{R}) \rightarrow \ell_{\infty}^{m}(\mathbb{R})\right) & \leq e_{n}^{1-\theta}\left(i d: \ell_{1}^{m}(\mathbb{R}) \rightarrow \ell_{\infty}^{m}(\mathbb{R})\right) \cdot e_{1}^{\theta}\left(i d: \ell_{\infty}^{m}(\mathbb{R}) \rightarrow \ell_{\infty}^{m}(\mathbb{R})\right) \\
& \lesssim\left[\frac{\log \left(1+\frac{m}{n}\right)}{n}\right]^{1-\theta} \cdot 1^{\theta}=\left[\frac{\log \left(1+\frac{m}{n}\right)}{n}\right]^{1 / p},
\end{aligned}
$$

where

$$
\frac{1}{p}=\frac{1-\theta}{1}+\frac{\theta}{\infty}
$$

Then we interpolate on the target side

$$
\begin{aligned}
e_{n}\left(i d: \ell_{p}^{m}(\mathbb{R}) \rightarrow \ell_{q}^{m}(\mathbb{R})\right) & \leq e_{1}^{1-\theta}\left(i d: \ell_{p}^{m}(\mathbb{R}) \rightarrow \ell_{p}^{m}(\mathbb{R})\right) \cdot e_{n}^{\theta}\left(i d: \ell_{p}^{m}(\mathbb{R}) \rightarrow \ell_{\infty}^{m}(\mathbb{R})\right) \\
& \lesssim\left[\frac{\log _{2}\left(1+\frac{m}{n}\right)}{n}\right]^{\theta / p}=\left[\frac{\log _{2}\left(1+\frac{m}{n}\right)}{n}\right]^{1 / p-1 / q},
\end{aligned}
$$

with

$$
\frac{1}{q}=\frac{1-\theta}{p}+\frac{\theta}{\infty}
$$

We skip the proof of the estimate from below. It is based on combinatorial arguments, quite similar to the case $p=1, q=\infty$.
If $m \leq n$, the estimate from below is supplied by Theorem 9 . The estimate from above follows similarly to the part a). We refer its proof into the Exercise 20.

1.5 Eigenvalues and Carl-Triebel inequality

We restrict ourselves to the Banach space setting in this section. The generalisation to the quasi-Banach spaces may be found in the book [1].
Let X be a complex Banach space and let $T \in \mathcal{K}(X, X)=\mathcal{K}(X)$. Then the spectrum of T is defined as

$$
\sigma(T)=\{\lambda \in \mathbb{C}:(T-\lambda I) \quad \text { is not boundedly invertible }\}
$$

Here, I is the identity mapping $I: X \rightarrow X$ and we say, that $(T-\lambda I)$ is boundedly invertible if

- $(T-\lambda I)^{-1}$ exists, i.e. $(T-\lambda I)$ must be injective and surjective, and
- $(T-\lambda I)^{-1}$ is boudned, i.e. $(T-\lambda I)^{-1} \in \mathcal{L}(X, X)$.

If for some $\lambda \in \mathbb{C}$, there is a $0 \neq x \in X$, such that $T x=\lambda x$, then $(T-\lambda I)$ is not injective and hence $\lambda \in \sigma(T)$. Such a λ is called eigenvalue and the corresponding x is called eigenvector. But in general, not all the elements of $\sigma(T)$ are eigenvalues, cf. Exercise 21.
We recall briefly the Riesz-Schauder theory of compact operators.
If $T \in \mathcal{K}(X)$, then

- $\sigma(T)$ is countable,
- for all $\varepsilon>0$, there are only finitely many $\lambda \in \sigma(T)$ with $|\lambda| \geq \varepsilon$,
- $0 \in \sigma(T)$,
- if $\lambda \in \sigma(T) \backslash\{0\}$, then λ is an eigenvalue and
- it has finite multiplicity.

We discuss in a bigger detail the notion of multiplicity of an eigenvalue. The geometrical multiplicity is defined as

$$
\operatorname{dim} \operatorname{ker}(T-\lambda I)
$$

and denotes the dimension of the space of eigenvectors associated to λ. The so-called algebraic multiplicity is defined as

$$
\operatorname{dim} \bigcup_{k=1}^{\infty} \operatorname{ker}(T-\lambda I)^{k}
$$

and is always bigger than (or equal to) the geometrical multiplicity. We refer to Exercise 24b.
According to the Riesz-Schauder theory, we may assign to each $T \in K(X)$ a sequence of all its eigenvalues

$$
\left|\lambda_{1}(T)\right| \geq\left|\lambda_{2}(T)\right| \geq \cdots \geq 0
$$

where each eigenvalue is repeated with its algebraic multiplicity. If T has only finitely many eigenvalues, fill the rest of the sequence with zeros.
Theorem 14. Let X be a complex Banach space and let $T \in \mathcal{K}(X)$. We re-order the eigenvalues, as described above. Then

$$
\begin{equation*}
\left|\lambda_{n}(T)\right| \leq\left(\prod_{j=1}^{n}\left|\lambda_{j}(T)\right|\right)^{1 / n} \leq \inf _{k \in \mathbb{N}} 2^{\frac{k}{2 n}} e_{k}(T) \leq \sqrt{2} e_{n}(T) \tag{1.18}
\end{equation*}
$$

Proof. We give the proof in the most significant case, when all the eigenvalues are simple. The full proof may be found for example in the book [2].
So, take $n \in \mathbb{N}$ and $\left|\lambda_{1}(T)\right| \geq\left|\lambda_{2}(T)\right| \geq \cdots \geq\left|\lambda_{n}(T)\right| \geq 0$. Then there are linearly independent $x_{1}, \ldots, x_{n} \in X$ such that $T x_{j}=\lambda x_{j}, j=1, \ldots, n$. We define $M=\operatorname{span}\left(x_{1}, \ldots, x_{n}\right)$. Then $\operatorname{dim} M=n$ and $T(M)=M$.
Let us take $x \in M$, i.e. $x=\sum_{j=1}^{n} \gamma_{j} x_{j}$ with $\gamma_{j} \in \mathbb{C}, j=1, \ldots, n$ and $T x=\sum_{j=1}^{n} \gamma_{j} \lambda_{j} x_{j}$.
We define an operator $J: M \rightarrow \mathbb{C}^{n}$, which assigns to each $x \in M$ the coefficients $\gamma_{1}, \ldots, \gamma_{n}$, i.e.

$$
J x=\left(\begin{array}{c}
\gamma_{1} \\
\vdots \\
\gamma_{n}
\end{array}\right) \quad \text { and } \quad J^{-1}: \mathbb{C}^{n} \rightarrow M, \quad J^{-1}\left(\begin{array}{c}
\gamma_{1} \\
\vdots \\
\gamma_{n}
\end{array}\right)=\sum_{j=1}^{n} \gamma_{j} x_{j} .
$$

Then $T x=J^{-1} T_{n} J x$ for every $x \in M$, where

$$
T_{n}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \ldots & 0 & \lambda_{n}
\end{array}\right)
$$

Unfortunately, we wish to apply volume arguments and in this context, $\mathbb{R}^{2 n}$ seems to be more suitable space then \mathbb{C}^{n}.
Hence, we define $\mathbb{J}: M \rightarrow \mathbb{R}^{2 n}$ and $\mathbb{J}^{-1}: \mathbb{R}^{2 n} \rightarrow M$ by

$$
\mathbb{J} x=\left(\begin{array}{c}
\operatorname{Re}\left(\gamma_{1}\right) \\
\operatorname{Im}\left(\gamma_{1}\right) \\
\vdots \\
\operatorname{Re}\left(\gamma_{n}\right) \\
\operatorname{Im}\left(\gamma_{n}\right)
\end{array}\right) \quad \text { and } \quad \mathbb{J}^{-1}\left(\begin{array}{c}
\alpha_{1} \\
\beta_{1} \\
\vdots \\
\alpha_{n} \\
\beta_{n}
\end{array}\right)=\sum_{j=1}^{n}\left(\alpha_{j}+i \beta_{j}\right) x_{j},
$$

where $\operatorname{Re}(z)$ denotes the real part of a complex number $z \in \mathbb{C}$ and $\operatorname{Im}(z)$ its imaginary part. Then $T x=\mathbb{J}^{-1} \mathbb{T}_{n} \mathbb{J} x$ for all $x \in M$, where

$$
\mathbb{T}_{n}=\left(\begin{array}{ccccccc}
\operatorname{Re}\left(\lambda_{1}\right) & -\operatorname{Im}\left(\lambda_{1}\right) & 0 & 0 & \cdots & 0 & 0 \\
\operatorname{Im}\left(\lambda_{1}\right) & \operatorname{Re}\left(\lambda_{1}\right) & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \operatorname{Re}\left(\lambda_{2}\right) & -\operatorname{Im}\left(\lambda_{2}\right) & \cdots & 0 & 0 \\
0 & 0 & \operatorname{Im}\left(\lambda_{2}\right) & \operatorname{Re}\left(\lambda_{2}\right) & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \operatorname{Re}\left(\lambda_{n}\right) & -\operatorname{Im}\left(\lambda_{n}\right) \\
0 & 0 & 0 & 0 & \cdots & \operatorname{Im}\left(\lambda_{n}\right) & \operatorname{Re}\left(\lambda_{n}\right)
\end{array}\right),
$$

while

$$
\begin{aligned}
T x & =\sum_{j=1}^{n}\left(\operatorname{Re}\left(\lambda_{j}\right)+i \operatorname{Im}\left(\lambda_{j}\right)\right)\left(\operatorname{Re}\left(\gamma_{j}\right)+i \operatorname{Im}\left(\lambda_{j}\right)\right) x_{j} \\
& =\sum_{j=1}^{n}\left\{\operatorname{Re}\left(\lambda_{j}\right) \operatorname{Re}\left(\gamma_{j}\right)-\operatorname{Im}\left(\lambda_{j}\right) \operatorname{Im}\left(\gamma_{j}\right)+i\left(\operatorname{Re}\left(\lambda_{j}\right) \operatorname{Im}\left(\lambda_{j}\right)+\operatorname{Im}\left(\lambda_{j}\right) \operatorname{Re}\left(\lambda_{j}\right)\right)\right\} x_{j}
\end{aligned}
$$

We define a measure μ on M by

$$
\mu(K)=\operatorname{vol}(\mathbb{J}(K))
$$

for all $K \subset M$, for which $\mathbb{J}(K) \subset \mathbb{R}^{2 n}$ is Lebesgue-measurable. ${ }^{17}$
With the help of the notation introduced so far, the proof becomes simple.
For every $K \subset M$, we get

$$
\mathbb{J} T(K)=\mathbb{J} \mathbb{J}^{-1} \mathbb{T}_{n} \mathbb{J}(K)=\mathbb{T}_{n}(\mathbb{J}(K))
$$

hence

$$
\begin{aligned}
\mu(T(K)) & =\operatorname{vol}(\mathbb{J} T(K))=\operatorname{vol}\left(\mathbb{T}_{n}(\mathbb{J}(K))\right) \\
& =\operatorname{det}\left(\mathbb{T}_{n}\right) \cdot \operatorname{vol}(\mathbb{J}(K)) \\
& =\left|\begin{array}{cc}
\operatorname{Re}\left(\lambda_{1}\right) & -\operatorname{Im}\left(\lambda_{1}\right) \\
\operatorname{Im}\left(\lambda_{1}\right) & \operatorname{Re}\left(\lambda_{1}\right)
\end{array}\right| \cdot\left|\begin{array}{cc}
\operatorname{Re}\left(\lambda_{2}\right) & -\operatorname{Im}\left(\lambda_{2}\right) \\
\operatorname{Im}\left(\lambda_{2}\right) & \operatorname{Re}\left(\lambda_{2}\right)
\end{array}\right| \ldots\left|\begin{array}{cc}
\operatorname{Re}\left(\lambda_{n}\right) & -\operatorname{Im}\left(\lambda_{n}\right) \\
\operatorname{Im}\left(\lambda_{n}\right) & \operatorname{Re}\left(\lambda_{n}\right)
\end{array}\right| \cdot \mu(K) \\
& =\left(\prod_{j=1}^{n}\left|\lambda_{j}\right|^{2}\right) \cdot \mu(K) .
\end{aligned}
$$

Let us mention, that this formula (with a slightly more technical proof, which uses the Jordan canonical form of T) holds also for eigenvalues with higher multiplicity.
Let $k \in \mathbb{N}$ and let

$$
T\left(B_{X}\right) \subset \bigcup_{j=1}^{2^{k-1}} y_{j}+\varepsilon B_{X}
$$

where $\varepsilon>e_{k}(T)$ is arbitrary. Then

$$
T\left(B_{X} \cap M\right) \subset \bigcup_{j=1}^{2^{k-1}}\left(y_{j}+\varepsilon B_{X}\right) \cap M
$$

If $\left(y_{j}+\varepsilon B_{X}\right) \cap M=\emptyset$, then we may leave out this j. Otherwise, we find $z_{j} \in M$, such that $y_{j}+\varepsilon B_{X} \subset z_{j}+2 \varepsilon B_{X}$. Then

$$
T\left(B_{X} \cap M\right) \subset \bigcup_{j=1}^{2^{k-1}}\left(z_{j}+2 \varepsilon B_{X}\right) \cap M=\bigcup_{j=1}^{2^{k-1}} z_{j}+2 \varepsilon\left(B_{X} \cap M\right)
$$

Comparing the μ-volumes, we obtain

$$
\left(\prod_{j=1}^{n}\left|\lambda_{j}\right|^{2}\right) \cdot \mu\left(B_{x} \cap M\right)=\mu\left(T\left(B_{X} \cap M\right)\right) \leq 2^{k-1} \mu\left(2 \varepsilon\left(B_{X} \cap M\right)\right)=2^{k-1} \cdot(2 \varepsilon)^{2 n} \cdot \mu\left(B_{X} \cap M\right)
$$

[^10]Dividing by $\mu\left(B_{X} \cap M\right)$ and taking the $2 n$-root, we get

$$
\sqrt[n]{\prod_{j=1}^{n}\left|\lambda_{j}\right|}=\sqrt[2 n]{\prod_{j=1}^{n}\left|\lambda_{j}\right|^{2 n}} \leq 2^{\frac{k-1}{2 n}} \cdot 2 \varepsilon \leq 2 \cdot 2^{\frac{k}{2 n}} \cdot \varepsilon
$$

As we may take ε arbitrarily close to $e_{k}(T)$, we get

$$
\sqrt[n]{\prod_{j=1}^{n}\left|\lambda_{j}\right|} \leq 2 \cdot 2^{\frac{k}{2 n}} \cdot e_{k}(T)
$$

We use the so-called Carl's trick to improve the constant, namely we apply the obtained result to T^{r} and $k^{\prime}=k r$ and take $r \rightarrow \infty$. This leads to

$$
\sqrt[n]{\prod_{j=1}^{n}\left|\lambda_{j}(T)\right|^{r}}=\sqrt[n]{\prod_{j=1}^{n}\left|\lambda_{j}\left(T^{r}\right)\right|} \leq 2 \cdot 2^{\frac{k r}{2 n}} e_{r k}\left(T^{r}\right) \leq 2 \cdot 2^{\frac{k n}{2 n} e_{k}^{r}(T)}
$$

Taking the $1 / r$ power gives

$$
\sqrt[n]{\prod_{j=1}^{n}\left|\lambda_{j}(T)\right|} \leq 2^{1 / r} \cdot 2^{\frac{k}{2 n}} \cdot e_{k}(T)
$$

and we let $r \rightarrow \infty$ to finish the proof.

1.6 Applications of entropy numbers

In this section, we describe two of the possible applications of compactness and entropy numbers. This concerns the area of signal processing and the spectral theory of partial differential equations.

1.6.1 Applications to signal processing

Let $T: X \rightarrow Y$ be compact, let $n \in \mathbb{N}$ and let $\varepsilon>e_{n}(T: X \rightarrow Y)$. Then

$$
T\left(B_{X}\right) \subset \bigcup_{j=1}^{2^{n-1}} y_{j}+\varepsilon B_{Y}
$$

This means, that for every $x \in B_{X}$, there is a $j \in\left\{1, \ldots, 2^{n-1}\right\}$ with $\left\|T x-y_{j}\right\|_{Y} \leq \varepsilon$.
We may define a mapping

$$
f: B_{X} \rightarrow\left\{1, \ldots, 2^{n-1}\right\}, \quad f(x)=j \quad \text { with } \quad\left\|T x-y_{j}\right\|_{Y} \leq \varepsilon
$$

If there are more j^{\prime} s with this property, we choose one of them arbitrarily. This means, that

- $\left\|x-y_{f(x)}\right\|_{Y} \leq \varepsilon$ for all $x \in X$,
- we need only $n-1$ bits to specify $f(x)$.

This may be used in an obvious way. If A and B are two different people or places and we want to transfer the information about an element $x \in B_{X}$ and are ready to accept accuracy $\varepsilon>0$, then we need to transfer only $n-1$ bits, where $e_{n}(T) \leq \varepsilon$. The price for this is, that both A and B has to know in advance the "lexicon" $y_{1}, \ldots, y_{2^{n-1}}$.
We demonstrate this idea in connections with image processing. In this case, $x=\left(x_{i, j}\right)_{i, j=1}^{N} \in \mathbb{R}^{N^{2}}$, where $N \approx 1000$. For example, $x_{i, j} \in[-1,1]$ may give the gray scala going from $x_{i, j}=-1$ (black) to $x_{i, j}=1$ (white). To deal with colorful pictures, we need the same approach for all the three RGB-channels, i.e. $m=3 N^{2}$.
It is a central observation of image processing, that expressing the vector $x=\left\{x_{i, j}\right\}_{i, j=1}^{N} \in \ell_{2}^{N^{2}}$ in a different orthonormal system leads to an element $\left\{y_{i, j}\right\}_{i, j=1}^{N}$ with the same $\ell_{2}^{N^{2}}$ norm, but (usually) with essentially smaller $\ell_{p}^{N^{2}}$ norm, where $p \leq 2$ (usually even $p \ll 1$). This means, that only few of the coefficients are large and many of them are very small, cf. Picture 1.
We return to this orthonormal system later on, but show immediately, what it means for further processing of the image. Using n bits of information, we may decode the element $y \in \ell_{2}^{N^{2}}$ with the $\ell_{2}^{N^{2}}$-error smaller or equal to

$$
\|y\|_{\ell_{p}^{N^{2}}} \cdot e_{n}\left(i d: \ell_{p}^{N^{2}}(\mathbb{R}) \rightarrow \ell_{2}^{N^{2}}(\mathbb{R})\right) \lesssim\|y\|_{\ell_{p}^{N^{2}}} \cdot\left[\frac{\log _{2}\left(1+\frac{N^{2}}{n}\right)}{n}\right]^{1 / p-1 / 2}
$$

where we have assumed that

$$
\log _{2} N^{2} \leq n \leq N^{2}, \quad \text { i.e. } \quad 2 \cdot \log _{2} 1024=20 \leq n \leq 1024^{2}
$$

which is definitely the typical case. We observe, that

- The success of the compression depends on the picture - "simple" picture is supposed to have $\|y\|_{\ell_{p}^{N^{2}}}$ small also for $p \ll 1$ small.
- The decay of the error is surprisingly fast and improves with p getting smaller, for example (up to the logarithmical factor) n^{-2} for $p=2 / 5$.

1.6.2 Haar bases

We return to the construction of the orthonormal system, which (at least for "simple" pictures) should lead to smaller ℓ_{p}-quasi-norms.
First, we construct a Haar basis on $[-1,1]^{d}$. We start with $d=1$ and set

$$
h_{0}^{0}(t)=1, \quad t \in[-1,1]
$$

and

$$
h_{1}^{0}(t)= \begin{cases}0, & \text { if } \quad|t|>1 \\ 1, & \text { if } \quad-1 \leq t \leq 0 \\ -1, & \text { if } \quad 0<t \leq 1\end{cases}
$$

The function h_{0}^{0} is usually called father wavelet and the function h_{1}^{0} is called mother wavelet . All the other vectors of the Haar basis are derived from the mother wavelet by

$$
h_{j}^{i}(t)=h_{1}^{0}\left(2^{j-1} t+2^{j-1}-(2 i+1)\right), \quad j \in\{2,3, \ldots\}, \quad i \in\left\{0,1, \ldots, 2^{j-1}-1\right\} .
$$

It is easy to see, that

$$
\left\{h_{j}^{i}\right\} \quad \text { with } \quad j=i=0 \quad \text { or } \quad j \in\{1,2,3, \ldots\}, \quad i \in\left\{0,1, \ldots, 2^{j-1}-1\right\}
$$

are mutualy orthogonal. So, after a proper normalisation, we obtain an orthonormal basis in $L_{2}([-1,1])$. If $d>1$, the situation becomes more interesting. There are namely two ways, how to generalise this construction to higher dimensions. The first is to consider the tensor products.
Let $\varphi^{1}(t), \ldots, \varphi^{d}(t) \in L_{2}([-1,1])$. Then we set

$$
\left(\varphi^{1} \otimes \cdots \otimes \varphi^{d}\right)\left(t_{1}, \ldots, t_{d}\right)=\varphi^{1}\left(t_{1}\right) \ldots \varphi^{d}\left(t_{d}\right), \quad\left(t_{1}, \ldots, t_{d}\right) \in[-1,1]^{d}
$$

The following lemma then provides the way to construct an orthonormal basis in higher dimensions.
Lemma 15. Let

$$
\left\{\varphi_{j}^{i}\right\}, \quad j \in \mathbb{N}_{0}
$$

be for each $i=1, \ldots, d$ an orthonormal basis of $L_{2}([-1,1])$. Then

$$
\left\{\varphi_{j_{1}}^{1} \otimes \cdots \otimes \varphi_{j_{d}}^{d}\right\}, \quad j=\left(j_{1}, \ldots, j_{d}\right) \in \mathbb{N}_{0}^{d}
$$

is an orthonormal basis of $L_{2}\left([-1,1]^{d}\right)$.
We leave the proof of this lemma to the Exercises.
The second construction works with several mother wavelets. We present the main idea in $d=2$. We set

$$
h_{0}\left(t_{1}, t_{2}\right)=1, \quad-1 \leq t_{1}, t_{2} \leq 1
$$

and

$$
\begin{gathered}
h_{1,1}\left(t_{1}, t_{2}\right)= \begin{cases}-1, & \text { if } \quad 0 \leq t_{1} \leq 1,\left|t_{2}\right| \leq 1, \\
1, & \text { if }-1 \leq t_{1}<0,\left|t_{2}\right| \leq 1, \\
0, & \text { elsewhere },\end{cases} \\
h_{1,2}\left(t_{1}, t_{2}\right)= \begin{cases}-1, & \text { if } 0 \leq t_{2} \leq 1,\left|t_{1}\right| \leq 1, \\
1, & \text { if }-1 \leq t_{2}<0,\left|t_{1}\right| \leq 1, \\
0, & \text { elsewhere, }\end{cases} \\
h_{1,3}\left(t_{1}, t_{2}\right)= \begin{cases}-1, & \text { if }-1 \leq t_{1}<0,-1 \leq t_{2}<0, \\
-1, & \text { if } 0 \leq t_{1} \leq 1,0 \leq t_{2} \leq 1, \\
1, & \text { if }-1 \leq t_{1}<0,0 \leq t_{2} \leq 1, \\
1, & \text { if }-1 \leq t_{2}<0,0 \leq t_{1} \leq 1, \\
0, & \text { elsewhere. }\end{cases}
\end{gathered}
$$

This definition is motivated by the observation, that the matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right), \quad\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

form an orthogonal basis of $\mathbb{R}^{2 \times 2}$.

The other wavelets are again produced from the mother wavelets, namely by the formula

$$
h_{j, k}^{i_{1}, i_{2}}\left(t_{1}, t_{2}\right)=h_{1, k}\left(2^{j-1}\left(t_{1}, t_{2}\right)+\left(2^{j-1}-\left(2 i_{1}+1\right), 2^{j-1}-\left(2 i_{2}+1\right)\right)\right)
$$

where

$$
j \in\{2,3, \ldots\}, \quad i_{1}, i_{2} \in\left\{0,1, \ldots, 2^{j-1}-1\right\}, \quad k \in\{1,2,3\}
$$

We put also $h_{1,1}^{0,0}=h_{1,1}, h_{1,2}^{0,0}=h_{1,2}, h_{1,3}^{0,0}=h_{1,3}$. Now the orthogonal basis in $L_{2}\left([-1,1]^{2}\right)$ is

$$
\left\{h_{0}\right\} \cup\left\{h_{j, k}^{i_{1}, i_{2}}\right\}_{i_{1}, i_{2}, j, k}, \quad \text { with } \quad j \in\{1,2,3, \ldots\}, \quad i_{1}, i_{2} \in\left\{0,1, \ldots, 2^{j-1}-1\right\}, \quad k \in\{1,2,3\} .
$$

Both these constructions may be directly generalised to sequence spaces. For example, for $\mathbb{R}^{4 \times 4}$ we consider the father-matrix and three mother-matrices

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right), \quad\left(\begin{array}{cccc}
-1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1 \\
-1 & -1 & 1 & 1 \\
-1 & -1 & 1 & 1
\end{array}\right)
$$

together with

$$
\left(\begin{array}{cccc}
-1 & -1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{cccc}
0 & 0 & -1 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

and further 2×4 matrices for the other two mother wavelets, i.e. alltogether 16 matrices.
Remark 8. Surprisingly enough, the second approach (based on several mother wavelets rather than on tensor constructions) is easier to handle and is usualy used in the literature.

1.6.3 Applications to PDE's

In this section, we present applications to (partial) differential equations, which are based on the CarlTriebel inequality (1.18). First, we show on one example the importance of eigenvalues in mathematical physics.

Let

- $\Omega \subset \mathbb{R}^{2}$ be a C^{∞} domain,
- $\Gamma=\partial \Omega$,
- $p(x)$ be the external force,
- $v \in C^{2}(\Omega) \operatorname{tr}_{\Gamma} v=0$ be the elongation of the membrane fixed on Γ and caused by the force $p(x)$,
- F be the surface described by $v(x)$, i.e. $F=\left\{\left(x_{1}, x_{2}, x_{3}\right): v\left(x_{1}, x_{2}\right)=x_{3}\right\}$.

We denote by $\Delta F=|F|-|\Omega|$ the enlargement of the area caused by the force p. The resulting function v is given by an interplay between the force p and the inner force of the membrane (which depends on $\Delta F)$. This idea is mirrored in the corresponding potential

$$
J(v)=\Delta F-\int_{\Omega} p(x) v(x) d x=\int_{\Omega} \underbrace{\sqrt{1+\left(\frac{\partial v}{\partial x_{1}}(x)\right)^{2}+\left(\frac{\partial v}{\partial x_{2}}(x)\right)^{2}}}_{\rightarrow|F|}-\underbrace{1}_{\rightarrow|\Omega|}-p(x) v(x) d x
$$

If both the partial derivatives are small, we may use the formula $\sqrt{1+x} \approx 1+\frac{x}{2}$ and get

$$
J(v) \approx \tilde{J}(v)=\int_{\Omega} \frac{1}{2}|\nabla v(x)|^{2}-p(x) v(x) d x
$$

We are looking for a function v, where the potential $\tilde{J}(v)$ is minimal. If φ is an arbitrary smooth function (for example $\varphi \in C_{0}^{2}(\Omega)$ or $\varphi \in C_{0}^{\infty}(\Omega)$), then it must hold

$$
\tilde{J}(v+\varepsilon \varphi) \geq \tilde{J}(v), \quad \varepsilon \in \mathbb{R}
$$

This leads to

$$
\begin{aligned}
& 0=\left.\frac{d}{d \varepsilon} \tilde{J}(v+\varepsilon \varphi)\right|_{\varepsilon=0}=\frac{d}{d \varepsilon}\left(\int_{\Omega} \frac{1}{2}|\nabla v(x)+\varepsilon \nabla \varphi(x)|^{2}-p(x)(v(x)+\varepsilon \varphi(x)) d x\right) \\
&=\frac{d}{d \varepsilon}\left(\int_{\Omega} \frac{1}{2}|\nabla v(x)|^{2}-p(x) v(x) d x+\varepsilon \int_{\Omega}\left(\frac{\partial v}{\partial x_{1}} \cdot \frac{\partial \varphi}{\partial x_{1}}+\frac{\partial v}{\partial x_{2}} \cdot \frac{\partial \varphi}{\partial x_{2}}\right)-p(x) \varphi(x) d x\right. \\
&\left.+\frac{\varepsilon^{2}}{2} \int_{\Omega}|\nabla \varphi(x)|^{2} d x\right)\left.\right|_{\varepsilon=0} \\
&=0+\int_{\Omega}(\nabla v)(x) \cdot(\nabla \varphi)(x)-p(x) \varphi(x) d x+0
\end{aligned}
$$

This means, that

$$
\int_{\Omega}(\nabla v)(x) \cdot(\nabla \varphi)(x)-p(x) \varphi(x) d x=0
$$

for every φ from (let us say) $C_{0}^{\infty}(\Omega)$. Using the Green's theorem, this is equivalent to

$$
\int_{\Omega} \varphi(x)(-\Delta v(x)-p(x)) d x=0
$$

and as this is supposed to hold for every φ, we arrive to the Dirichlet problem

$$
\begin{array}{r}
\Delta v(x)=-p(x), \quad x \in \Omega \tag{1.19}\\
\left.v\right|_{\partial \Omega}=0
\end{array}
$$

The solution of (1.19) is sometimes called stationary solution. It means, that if the membrane is in this stage and does not move (position is equal to v, velocity is equal to zero), then the combined action of the external force p and the action of the internal force caused by tension in F cancel each other. Or we may put it other way: if the surface F is described by v, then action of the tension of F is the same as the action of an external force $p(x)$ given by $p(x)=\Delta v(x) .{ }^{18}$
Now we consider, that the membrane oscilates (hence $v=v(x, t)$ depends also on the time $t>0$) and there is no external force p. The tension of the surfaces gives the surface acceleration

$$
m(x) \cdot \frac{\partial^{2} v(x, t)}{\partial t^{2}}
$$

where $m(x)$ is the mass density (which we shall put equal to 1 for simplicity).
This leads to the equation

$$
\Delta_{x} v(x, t)=\frac{\partial^{2} v(x, t)}{\partial t^{2}}
$$

[^11]We look first for solutions of the type

$$
v(x, t)=e^{i \lambda t} u(x)
$$

where

- λ is the main and only time frequency of this solution,
- $u(x)$ is its amplitude at the point $x \in \Omega$,
- $u(x)=0$ for all $x \in \partial \Omega$.

This leads immediately to

$$
e^{i \lambda t} \Delta u(x)=-\lambda^{2} e^{i \lambda t} u(x)
$$

i.e.

$$
\begin{equation*}
\Delta u(x)=-\lambda^{2} u(x),\left.\quad u\right|_{\partial \Omega}=0 \tag{1.20}
\end{equation*}
$$

The general solution is then a linear combination of these particular solutions $u_{\lambda}(x) e^{i \lambda x}$. The addmisible λ 's (also those λ 's for which a particular solution of (1.20) exists) are called eigenfrequencies.

Remark 9. For $\Omega=B(0,1)$ (and some other special domains) we may solve the problem explicitly. For general domains it is impossible. Nevertheless, one would still like to compute/estimate the eigenfrequencies.

When dealing with this question, we may immediately observe two problems.
First problem.
The operators

$$
d_{2}: L_{2}([-1,1]) \rightarrow L_{2}([-1,1]), \quad d_{2}(u)=u^{\prime \prime}
$$

or

$$
D_{2}: L_{2}(\Omega) \rightarrow L_{2}(\Omega), \quad D_{2}(u)=\Delta u
$$

are not even boudned (and hence very far from being compact).
A huge portion of functional analysis is therefore devoted to the study of unbounded operators. These are operators defined on a subspace of some Banach space X with values in the same space. For example

$$
T: \operatorname{dom}(T) \subset L_{2}([-1,1]) \rightarrow L_{2}([-1,1])
$$

where

$$
\operatorname{dom}(T)=\left\{f \in C^{2}([-1,1]): f(-1)=f^{\prime}(-1)=0\right\}
$$

and

$$
T f=f^{\prime \prime} \in C([-1,1]) \subset L_{2}([-1,1])
$$

If $T f(x)=f^{\prime \prime}(x)=g(x)$, we get $f^{\prime}(x)=\int_{-1}^{x} g(t) d t$ and

$$
f(x)=\int_{-1}^{x} \int_{-1}^{u} g(t) d t d u=\int_{-1}^{x} g(t) \int_{t}^{x} 1 d u d t=\int_{-1}^{x} g(t) \cdot(x-t) d t
$$

This means, that

$$
\left(T^{-1} g\right)(x)=\int_{-1}^{x} g(t) \cdot(x-t) d t, \quad T^{-1}: L_{2}([-1,1]) \rightarrow L_{2}([-1,1])
$$

is the inverse of T and the domain of T may be enlarged to

$$
\operatorname{dom}^{\prime}(T):=\left\{f \in L_{2}([-1,1]): \exists g \in L_{2}([-1,1]) \quad \text { with } \quad T^{-1} g=f\right\}
$$

One observes that

- The eigenvalues λ of T are the reciprocal values of eigenvalues of T^{-1},
- T^{-1} is compact.

At this stage, one may apply Carl-Triebel inequality to T^{-1}.
Second problem.
The second problem is that we were (almost) able to calculate the entropy numbers of $i d: \ell_{p}^{m}(\mathbb{R}) \rightarrow$ $\ell_{q}^{m}(\mathbb{C})$, but to estimate the entropy numbers of T, we need some information about function spaces. Obviously, it would be very useful to find some way, how to transfer our results about sequence space to function spaces. The most simple example of such an approach are the Fourier series in $L_{2}([-\pi, \pi])$. The set

$$
B=\left\{\frac{1}{\sqrt{2 \pi}}, \frac{1}{\sqrt{\pi}} \cos n x, \frac{1}{\sqrt{\pi}} \sin n x\right\}_{n=1}^{\infty}
$$

is an orthonormal basis of $L_{2}(-\pi, \pi)$. This means, that

$$
(f, g)=\int_{-\pi}^{\pi} f(x) \overline{g(x)} d x=0
$$

for all $f, g \in B, f \neq g$ and $(f, f)=1$ for all $f \in B$.
Let f be a measurable function on $(-\pi, \pi)$. Then $f \in L_{2}(-\pi, \pi)$ if, and only if, there are two sequences $\left\{a_{n}\right\}_{n=0}^{\infty} \in \ell_{2}$ and $\left\{b_{n}\right\}_{n=0}^{\infty} \in \ell_{2}$, such that

$$
f(x)=\frac{a_{0}}{\sqrt{2 \pi}}+\sum_{n=1}^{\infty} a_{n} \frac{\cos n x}{\sqrt{\pi}}+b_{n} \frac{\sin n x}{\sqrt{\pi}}
$$

with convergence in $L_{2}(-\pi, \pi)$ and

$$
\left\|f \mid L_{2}(-\pi, \pi)\right\|=\left(\sum_{n=0}^{\infty} a_{n}^{2}+\sum_{n=1}^{\infty} b_{n}^{2}\right)^{1 / 2}=\left(\left\|a\left|\ell_{2}\left\|^{2}+\right\| b\right| \ell_{2}\right\|^{2}\right)^{1 / 2}
$$

In the same way, one may consider the system

$$
B^{1}=\left\{\frac{1}{\sqrt{2 \pi}}, \frac{\cos n x}{\sqrt{\left(1+n^{2}\right) \pi}}, \frac{\sin n x}{\sqrt{\left(1+n^{2}\right) \pi}}\right\}_{n=1}^{\infty}
$$

This is an orthonormal base in the first order Sobolev space

$$
W_{2}^{1}(-\pi, \pi)=\left\{f \in A C(-\pi, \pi): f, f^{\prime} \in L_{2}(-\pi, \pi)\right\}
$$

equipped with the scalar product

$$
(f, g)_{W_{2}^{1}}=\int_{-\pi}^{\pi} f(x) \overline{g(x)}+f^{\prime}(x) \overline{g^{\prime}(x)} d x
$$

Again, $f \in W_{2}^{1}(-\pi, \pi)$ if, and only if, there exist two sequences $\left\{\alpha_{n}\right\}_{n=0}^{\infty} \in \ell_{2}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$, such that

$$
f(x)=\frac{\alpha_{0}}{\sqrt{2 \pi}}+\sum_{n=1}^{\infty} \alpha_{n} \frac{\cos n x}{\sqrt{\left(1+n^{2}\right) \pi}}+\beta_{n} \frac{\sin n x}{\sqrt{\left(1+n^{2}\right) \pi}}
$$

with convergence in $W_{2}^{1}(-\pi, \pi)$.
Using the fact, that B and B^{\prime} differ only by constant, we get

$$
a_{n}=\frac{\alpha_{n}}{\sqrt{1+n^{2}}}, \quad b_{n}=\frac{\beta_{n}}{\sqrt{1+n^{2}}}
$$

Hence,

$$
\left\|f \mid W_{2}^{1}(-\pi, \pi)\right\|=\left(\sum_{n=0}^{\infty} \alpha_{n}^{2}+\sum_{n=1}^{\infty} \beta_{n}^{2}\right)^{1 / 2}=\left(\sum_{n=0}^{\infty}\left(1+n^{2}\right) a_{n}^{2}+\sum_{n=1}^{\infty}\left(1+n^{2}\right) b_{n}^{2}\right)^{1 / 2}
$$

Remark 10. - This may be generalised to define

$$
\left\|f \mid W_{2}^{s}(-\pi, \pi)\right\|:=\left\{f \in L_{2}(-\pi, \pi):\left(a_{0}^{2}+\sum_{n=1}^{\infty}\left(1+n^{2}\right)^{s}\left(a_{n}^{2}+b_{n}^{2}\right)\right)^{1 / 2}<\infty\right\}
$$

for arbitrary $s \geq 0$.

- For $p \neq 2$ goes everything wrong. Especially $L_{p} \neq\left\{f:\left(\sum a_{n}^{p}+b_{n}^{p}\right)^{1 / p}<\infty\right\}$.
- One may proceed very similar (using tensor products) for $W_{2}^{s}\left((-\pi, \pi)^{d}\right)$, but $W_{2}^{s}(\Omega)$ needs essentially new ideas.
- The embedding $i d: W_{2}^{1}(-\pi, \pi) \rightarrow L_{2}(-\pi, \pi)$ is compact, cf. Exercise 26c.

We show, how we may use our results obtained so far, to estimate the entropy numbers of

$$
e_{n}\left(i d: W_{2}^{1}(-\pi, \pi) \rightarrow L_{2}(-\pi, \pi)\right), \quad n \in \mathbb{N}
$$

We denote by

$$
S^{0}: L_{2}(-\pi, \pi) \rightarrow \ell_{2}(\mathbb{Z})
$$

the operator, which assigns to each f its Fourier coefficients in the base B, i.e.

$$
\left(S^{0} f\right)(n)= \begin{cases}\int_{-\frac{\pi}{\pi}}^{\pi} \frac{1}{\sqrt{2 \pi}} \cdot f(x) d x, & \text { for } \quad n=0 \\ \int_{-\frac{\pi}{\pi}}^{\frac{\cos n x}{\sqrt{\pi}} f(x) d x,} & \text { for } \quad n \in \mathbb{N} \\ \int_{-\pi}^{\frac{\sin n x}{\sqrt{\pi}} f(x) d x,} & \text { for } \quad-n \in \mathbb{N}\end{cases}
$$

and by

$$
S^{1}: W_{2}^{1}(-\pi, \pi) \rightarrow \ell_{2}(\mathbb{Z})
$$

a similar operator with respect to B^{\prime}, i.e.

$$
\left(S^{1} f\right)(n)=\frac{\left(S^{0} f\right)(n)}{\sqrt{1+n^{2}}}= \begin{cases}\int_{-\pi}^{\pi} \frac{1}{\sqrt{2 \pi}} \cdot f(x) d x, & \text { for } n=0 \\ \int_{-\pi}^{\pi} \frac{\cos n x}{\sqrt{\left(1+n^{2}\right) \pi}} f(x) d x, & \text { for } n \in \mathbb{N} \\ \int_{-\pi}^{\pi} \frac{\sin n x}{\sqrt{\left(1+n^{2}\right) \pi}} f(x) d x, & \text { for } \quad-n \in \mathbb{N}\end{cases}
$$

Hence, we have a following commutative diagrams

$$
\begin{array}{cccccc}
W_{2}^{1}(-\pi, \pi) & \xrightarrow{i d} & L_{2}(-\pi, \pi) & W_{2}^{1}(-\pi, \pi) & \xrightarrow{i d} & L_{2}(-\pi, \pi) \\
S^{1} \downarrow & & \uparrow\left(S^{0}\right)^{-1} & \left(S^{1}\right)^{-1} \uparrow & & \\
\ell_{2}(\mathbb{Z}) & \xrightarrow{D} & \ell_{2}(\mathbb{Z}), & \ell_{2}(\mathbb{Z}) & \xrightarrow{D} & \ell_{2}(\mathbb{Z}),
\end{array}
$$

where the diagonal operator $D: \ell_{2}(\mathbb{Z}) \rightarrow \ell_{2}(\mathbb{Z})$ is defined as

$$
D\left(\left\{x_{n}\right\}_{n \in \mathbb{Z}}\right)=\left\{\frac{x_{n}}{\sqrt{1+n^{2}}}\right\}_{n \in \mathbb{Z}}
$$

The first diagram leads to

$$
\begin{aligned}
e_{n}(i d) & =e_{n}\left(\left(S^{0}\right)^{-1} \circ D \circ S^{1}\right) \leq\left\|\left(S^{0}\right)^{-1}\left|\mathcal{L}\left(\ell_{2}(\mathbb{Z}), L_{2}(-\pi, \pi)\right)\left\|\cdot e_{n}(D) \cdot\right\| S^{1}\right| \mathcal{L}\left(W_{2}^{1}(-\pi, \pi), \ell_{2}(\mathbb{Z})\right)\right\| \\
& =e_{n}(D)
\end{aligned}
$$

and the second to

$$
\begin{aligned}
e_{n}(D) & =e_{n}\left(S^{0} \circ i d \circ\left(S^{1}\right)^{-1}\right) \leq\left\|S^{0}\left|\mathcal{L}\left(L_{2}(-\pi, \pi), \ell_{2}(\mathbb{Z})\right)\left\|\cdot e_{n}(i d) \cdot\right\|\left(S^{1}\right)^{-1}\right| \mathcal{L}\left(\ell_{2}(\mathbb{Z}), W_{2}^{1}(-\pi, \pi)\right)\right\| \\
& =e_{n}(i d),
\end{aligned}
$$

hence $e_{n}(D)=e_{n}(i d)$.
We shall consider the (notationaly simpler) operator $D^{\prime}: \ell_{2}(\mathbb{N}) \rightarrow \ell_{2}(\mathbb{N})$ defined by

$$
D^{\prime}\left(\left\{x_{n}\right\}_{n \in \mathbb{N}}\right)=\left\{\frac{x_{n}}{n}\right\}_{n \in \mathbb{N}}
$$

and show, that $e_{n}\left(D^{\prime}\right) \approx \frac{1}{n}$. We split $D^{\prime}=D_{n}+D^{n}$, where

$$
D_{n}\left(\left\{x_{n}\right\}_{n \in \mathbb{N}}\right)=\left(\frac{x_{1}}{1}, \frac{x_{2}}{2}, \ldots, \frac{x_{n}}{n}, 0,0, \ldots\right), \quad D^{n}=D^{\prime}-D_{n}
$$

The estimate from below follows very quickly

$$
e_{n}\left(D^{\prime}\right) \geq e_{n}\left(D_{n}\right) \geq \frac{1}{n} \cdot e_{n}\left(i d: \ell_{2}^{n} \rightarrow \ell_{2}^{n}\right) \approx \frac{1}{n}
$$

where we used Theorem 13 in the last step.
For the estimate from above, we use first

$$
e_{n}\left(D^{\prime}\right) \leq e_{n}\left(D_{n}\right)+\left\|D^{n}\right\| \leq e_{n}\left(D_{n}\right)+\frac{1}{n} .
$$

To estimate $e_{n}\left(D_{n}\right)$ from above, we assume, that $n=2^{m}, m \in \mathbb{N}$ and split D_{n} into dyadic blocks $D_{n}=\Delta_{1}+\Delta_{2}+\cdots+\Delta_{m}$, where

$$
\begin{aligned}
\Delta_{1} & :\left\{x_{n}\right\}_{n \in \mathbb{N}} \rightarrow\left(\frac{x_{1}}{1}, \frac{x_{2}}{2}, 0,0, \ldots\right) \\
\Delta_{2} & :\left\{x_{n}\right\}_{n \in \mathbb{N}} \rightarrow\left(0,0, \frac{x_{3}}{3}, \frac{x_{4}}{4}, 0,0, \ldots\right) \\
\Delta_{3} & :\left\{x_{n}\right\}_{n \in \mathbb{N}} \rightarrow\left(0,0,0,0, \frac{x_{5}}{5}, \frac{x_{6}}{6}, \frac{x_{7}}{7}, \frac{x_{8}}{8}, 0,0, \ldots\right) \\
\Delta_{4} & :\left\{x_{n}\right\}_{n \in \mathbb{N}} \rightarrow\left(0, \ldots, 0, \frac{x_{9}}{9}, \ldots, \frac{x_{16}}{16}, 0,0, \ldots\right) \\
& \vdots \\
\Delta_{m} & :\left\{x_{n}\right\}_{n \in \mathbb{N}} \rightarrow\left(0, \ldots, 0, \frac{x_{2^{m-1}}+1}{2^{m-1}+1}, \ldots, \frac{x_{2^{m}}}{2^{m}}, 0,0, \ldots\right)
\end{aligned}
$$

and use the subaditivity of entropy numbers, i.e.

$$
e_{c n}\left(D_{n}\right) \leq e_{n_{1}}\left(\Delta_{1}\right)+e_{n_{2}}\left(\Delta_{2}\right)+\cdots+e_{n_{m}}\left(\Delta_{m}\right)
$$

We need to choose the natural numbers $n_{1}, \ldots n_{m}$ so, that

$$
\sum_{j=1}^{m} n_{j} \leq c 2^{m}
$$

and

$$
\sum_{j=1}^{m} e_{n_{j}}\left(\Delta_{j}\right) \leq c^{\prime} \frac{1}{2^{m}}
$$

Let us choose $n_{j}=(1+\varepsilon)(m-j+1) 2^{j-1}, j=1, \ldots, m .{ }^{19}$ Then it holds $(\varepsilon>0$ is fixed and does not tend to zero):

$$
\sum_{j=1}^{m} n_{j}=(1+\varepsilon) \sum_{j=1}^{m}(m-j+1) 2^{j-1}{ }_{l=m-j+1}^{=}(1+\varepsilon) \sum_{l=1}^{m} l 2^{m-l+1}=(1+\varepsilon) 2^{m+1} \sum_{l=1}^{m} l 2^{-l} \leq c(1+\varepsilon) 2^{m}
$$

and by Theorem 13

$$
\begin{aligned}
\sum_{j=1}^{m} e_{n_{j}}\left(\Delta_{j}\right) & \leq e_{n_{1}}\left(i d: \ell_{2}^{2} \rightarrow \ell_{2}^{2}\right)+\sum_{j=2}^{m} \frac{e_{n_{j}}\left(i d: \ell_{2}^{2^{j-1}} \rightarrow \ell_{2}^{2^{j-1}}\right)}{2^{j-1}} \\
& \leq c \sum_{j=1}^{m} 2^{-n_{j} / 2^{j-1}} \cdot \frac{1}{2^{j-1}}=c \sum_{j=1}^{m} 2^{-(1+\varepsilon)(m-j)-j+1} \\
& =c^{\prime} 2^{-(1+\varepsilon) m} \sum_{j=1}^{m} 2^{j \varepsilon} \approx 2^{-m}
\end{aligned}
$$

This proves, that $e_{c n}\left(D_{n}\right) \leq c^{\prime} / n$ for some two absolute constants $c, c^{\prime}>0$ and $n=2^{m}, m \in \mathbb{N}$. The rest follows by monotonicity arguments.

[^12]Remark 11. The technical problem, that n_{j} must be natural numbers may be overcomed in two ways. The first is to take the integer part of $(1+\varepsilon)(m-j+1) 2^{j-1}$. The second is to define $e_{x}(T)$ for all real $x>1$ by $e_{x}(T)=e_{\lfloor x\rfloor}(T)$. We do not go into (rather technical) details.

Finally, we show, how we may use the entropy numbers of embeddings of function spaces to estimate the entropy numbers (and eigenvalues) of some differential operators.
Let $d: \operatorname{dom} d \subset L_{2}(-\pi, \pi) \rightarrow L_{2}(-\pi, \pi)$ be given by

$$
\begin{aligned}
\operatorname{dom} d & =\left\{f \in A C(-\pi, \pi): f, f^{\prime} \in L_{2}(-\pi, \pi), f(-\pi)=0\right\}=\left\{f \in W_{2}^{1}(-\pi, \pi): f(-\pi)=0\right\} \\
(d f)(t) & =f^{\prime}(t), \quad t \in(-\pi, \pi)
\end{aligned}
$$

As d is unbouded, we estimate the entropy numbers of its (compact) inverse operator

$$
\left(d^{-1} f\right)(x)=\int_{-\pi}^{x} f(t) d t, \quad d^{-1}: L_{2}(-\pi, \pi) \rightarrow \operatorname{dom}(d) \subset L_{2}(-\pi, \pi)
$$

We use the following diagram

$$
\begin{gathered}
L_{2}(-\pi, \pi) \xrightarrow{\searrow d^{-1}} \xrightarrow{d^{-1}} L_{2}(-\pi, \pi) \\
W_{2}^{1}(-\pi, \pi)
\end{gathered}
$$

and get

$$
e_{n}\left(d^{-1}: L_{2} \rightarrow L_{2}\right) \leq\left\|d^{-1}: L_{2} \rightarrow W_{2}^{1}\right\| \cdot e_{n}\left(i d: W_{2}^{1} \rightarrow L_{2}\right) \leq c / n, \quad n \in \mathbb{N} .
$$

The estimate from below follows by

$$
\begin{array}{cll}
\left\{f \in W_{2}^{1}(-\pi, \pi): f(-\pi)=0\right\} & \xrightarrow{i d} L_{2}(-\pi, \pi) \\
& L_{2}(-\pi, \pi)
\end{array}
$$

and

$$
c / n \leq e_{n}\left(i d: W_{2}^{1} \rightarrow L_{2}\right) \leq\left\|d: W_{2}^{1} \rightarrow L_{2}\right\| \cdot e_{n}\left(d^{-1}: L_{2} \rightarrow L_{2}\right), \quad n \in \mathbb{N}
$$

Combined with Carl-Triebel inequality, this implies the estimates of eigenvalues of d^{-1} from above, hence estimates of eigenvalues of d from below.

2 Approximation, Gelfand and Kolmogorov numbers

This section is devoted to other ways, how to measure and describe compactness. Unfortunately, there are too many of them and a detailed treatment would clearly go beyond the scope of this script. Therefore, we concentrate on three of them, which seem to be most useful in approximation theory, namely approximation, Gelfand and Kolmogorov numbers.

$2.1 s$-numbers

The general theory of s-numbers was created and developped by Pietsch in [4] and [5]. We quote (almost literarily) the Definition 2.2.1 from [5].

Definition 16. A rule

$$
s: T \rightarrow\left\{s_{n}(T)\right\}_{n=1}^{\infty},
$$

which assigns to every operator a scalar sequence, is said to be an s-scale if the following conditions are satisfied:
(i) $\|T \mid \mathcal{L}(X, Y)\|=s_{1}(T) \geq s_{2}(T) \geq s_{3}(T) \geq \cdots \geq 0$ for $T \in \mathcal{L}(X, Y)$,
(ii) $s_{m+n-1}(S+T) \leq s_{m}(S)+s_{n}(T)$ for all $S, T \in \mathcal{L}(X, Y)$,
(iii) $s_{n}\left(T_{1} T T_{0}\right) \leq\left\|T_{0}\right\| \cdot s_{n}(T) \cdot\left\|T_{1}\right\|$ for $T_{0} \in \mathcal{L}\left(X_{0}, X\right), T \in \mathcal{L}(X, Y)$ and $T_{1} \in \mathcal{L}\left(Y, Y_{1}\right)$,
(iv) if $\operatorname{rank} T<n$, then $s_{n}(T)=0$,
(v) $s_{n}\left(i d: \ell_{2}^{n} \rightarrow \ell_{2}^{n}\right)=1$.

Remark 12. (i) For $T \in \mathcal{L}(X, Y)$, we denote by $\operatorname{rank} T=\operatorname{dim} T(X)$ the dimension of its range. If rank $T<\infty$, then T is called finite dimensional.
(ii) Of course, in this definition are X and Y assumed to be Banach spaces. We generalize this definition to suit also quasi-Banach spaces. Also the property (iii) shall be slightly generalized.
(iii) It is the property (iv), what excludes the entropy numbers of being s-numbers. This lead Pietsch in [4, Chapter 12] to replace the axioms (i)-(v) with a different set of axioms leading to the so-called pseudo s-functions. We omit any details.

Definition 17. Let X, Y, Z be three quasi-Banach spaces and let Y be a p-Banach space with $0<$ $p \leq 1$. The rule $s: T \rightarrow\left\{s_{n}(T)\right\}_{n=1}^{\infty}$ is called an s-function, if
(i) $\|T \mid \mathcal{L}(X, Y)\| \geq s_{1}(T) \geq s_{2}(T) \geq s_{3}(T) \geq \cdots \geq 0$ for all $T \in \mathcal{L}(X, Y)$,
(ii) $s_{m+n-1}^{p}(S+T) \leq s_{m}^{p}(S)+s_{n}^{p}(T)$ for all $S, T \in \mathcal{L}(X, Y)$,
(iii) $s_{m+n-1}(R \circ T) \leq s_{m}(R) \cdot s_{n}(T)$ for $R \in \mathcal{L}(Y, Z)$ and $T \in \mathcal{L}(X, Y)$,
(iv) if $\operatorname{rank} T<n$, then $s_{n}(T)=0$,
(v) $s_{n}\left(i d: \ell_{2}^{n} \rightarrow \ell_{2}^{n}\right)=1$.

Furthermore, we call $s_{n}(T)$ then n-th s-number of T.

2.2 Approximation numbers

The most important s-numbers are the approximation numbers.
Definition 18. Let X, Y be two quasi-Banach spaces and let $T \in \mathcal{L}(X, Y)$. Then we set

$$
a_{n}(T)=\inf \{\|T-A \mid \mathcal{L}(X, Y)\|: A \in \mathcal{L}(X, Y), \text { rank } A<n\} .
$$

Theorem 19. The approximation numbers a_{n} form an s-function.
Proof. The proof of (i) is immediate. Let us just recall, that the operator $A \in \mathcal{L}(X, Y)$ defined as $A x=0$ for all $x \in X$ has the range $\{0\} \in Y$, which (according to the usual definition) has dimension 0 .

Also the proof of (ii) follows by standard technique. Let $\varepsilon>0$ and let $A, B \in \mathcal{L}(X, Y)$ be such, that

$$
\left\|S-A\left|\mathcal{L}(X, Y)\left\|\leq(1+\varepsilon) a_{m}(S), \quad\right\| T-B\right| \mathcal{L}(X, Y)\right\| \leq(1+\varepsilon) a_{n}(T) .
$$

Then

$$
\begin{aligned}
\|S-A+T-B \mid \mathcal{L}(X, Y)\|^{p} & =\sup _{x \in B_{X}}\|(S-A) x+(T-B) x\|_{Y}^{p} \\
& \leq \sup _{x \in B_{X}}\|(S-A) x\|_{Y}^{p}+\sup _{x \in B_{X}}\|(T-B) x\|_{Y}^{p} \\
& \leq\left\|S-A\left|\mathcal{L}(X, Y)\left\|^{p}+\right\| T-B\right| \mathcal{L}(X, Y)\right\|^{p} \\
& \leq(1+\varepsilon)^{p}\left\{a_{m}^{p}(S)+a_{n}^{p}(T)\right\}
\end{aligned}
$$

Finally, we recall from linear algebra, that $\operatorname{rank}(A+B) \leq m-1+n-1$.
To prove (iii), let again $\varepsilon>0$ and $A \in \mathcal{L}(X, Y), B \in \mathcal{L}(Y, Z)$ be such, that

$$
\left\|T-A\left|\mathcal{L}(X, Y)\left\|\leq(1+\varepsilon) a_{n}(T), \quad\right\| R-B\right| \mathcal{L}(Y, Z)\right\| \leq(1+\varepsilon) a_{m}(R) .
$$

Then

$$
\begin{aligned}
& \| R \circ T-(R \circ A-B \circ A+B \circ T)|\mathcal{L}(X, Z)\|=\|(R-B) \circ(T-A)| \mathcal{L}(X, Z) \| \\
& \leq\|R-B|\mathcal{L}(Y, Z)\|\cdot\| T-A| \mathcal{L}(X, Y)\| \leq(1+\varepsilon)^{2} a_{n}(T) a_{m}(R) .
\end{aligned}
$$

Let us also remark, that rank $[(R-B) \circ A+B \circ T]<m+n-1$.
The proof of (iv) is trivial, as well as the proof of

$$
a_{n}\left(i d: \ell_{2}^{n} \rightarrow \ell_{2}^{n}\right) \leq 1 .
$$

Finally, the lower estimate follows from the following Lemma.
Lemma 20. Let X be a quasi-Banach space with $\operatorname{dim}(X) \geq n$. Then $a_{n}(i d: X \rightarrow X)=1$.
Proof. Let $a_{n}(i d: X \rightarrow X)<1$. Then there is an operator $A \in \mathcal{L}(X, X)$, such that

$$
\|i d-A \mid \mathcal{L}(X, X)\|<1 \quad \text { and } \quad \operatorname{rank} A<n .
$$

Then the Neumann series ${ }^{20}$ of $A=i d-(i d-A)$ shows, that A must be invertible. Hence $\operatorname{dim} X=$ rank $A<n$.

Another interesting property is that a_{n} are actually the largest s-numbers.
Theorem 21. The approximation numbers yield the largest s-function.
Proof. Let $T \in \mathcal{L}(X, Y)$ and let $n \in \mathbb{N}$ be fixed. Then for every $\varepsilon>0$ there is an operator $A \in \mathcal{L}(X, Y)$, such that

$$
\|T-A \mid \mathcal{L}(X, Y)\|<(1+\varepsilon) a_{n}(T) \quad \text { and } \quad \operatorname{rank} A<n .
$$

Then, for an arbitrary s-function s, it follows for suitable $0<p \leq 1$

$$
s_{n}^{p}(T) \leq\|T-A \mid \mathcal{L}(X, Y)\|^{p}+s_{n}^{p}(A) \leq(1+\varepsilon)^{p} a_{n}^{p}(T) .
$$

[^13]Remark 13. (i) It is very well known, that the identity on every infinite-dimensional Banach space is not compact. This is true also for quasi-Banach spaces - the reader may consult [1].
(ii) The relation between the set of all compact linear operators from X to Y (denoted by $\mathcal{K}(X, Y)$) and all continuous linear operators $\mathcal{L}(X, Y)$ may be very interesting. We quote (without proof) the Pitt theorem, which states that for $1 \leq q<p<\infty$ the following identity is true: $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)=\mathcal{K}\left(\ell_{p}, \ell_{q}\right)$. Hence, every bounded operator from ℓ_{p} into ℓ_{q} is also compact. Also $\mathcal{L}\left(c_{0}, \ell_{q}\right)=\mathcal{K}\left(c_{0}, \ell_{q}\right)$.
(iii) If $a_{n}(T) \rightarrow 0$, then T is compact, cf. Exercise 26. It was one of the most famous open problems, if also the converse is true. The counterexample was constructed by P. Enflo (and awarded live goose in Warsaw by Mazur). Nevertheless, the counterexample is very sophisticated and for "usual" spaces the converse is really true. Nevertheless, there are also exceptions. For example, if H is a separable Hilbert space, then $\mathcal{L}(H)$ does not have the approximation property.

Theorem 22. Let X be a Banach space and Y a separable Banach space. If there is a sequence $\left\{S_{n}\right\}_{n=1}^{\infty} \subset \mathcal{L}(Y)$ of finite-dimensional operators, such that

$$
\lim _{n \rightarrow \infty} S_{n} y=y
$$

for every $y \in Y$, then $\overline{\mathcal{F}(X, Y)}=\mathcal{K}(X, Y)$.

Proof. Let $T \in \mathcal{K}(X, Y)$. Then $S_{n} T \in \mathcal{F}(X, Y)$ and it is enough to show, that

$$
\left\|S_{n} T-T \mid \mathcal{L}(X, Y)\right\| \rightarrow 0
$$

According to the Theorem of Banach-Steinhaus, there is a $K \in \mathbb{R}$, such that $\sup _{n}\left\|S_{n} \mid \mathcal{L}(X, Y)\right\| \leq$ $K<\infty$.
Let $\varepsilon>0$ be arbitrary and let $\left\{y_{1}, \ldots, y_{r}\right\} \subset Y$ be such that

$$
\overline{T\left(B_{X}\right)} \subset \bigcup_{j=1}^{r} y_{j}+\varepsilon B_{Y}
$$

Then there is an $N \in \mathbb{N}$, such that $\left\|S_{n} y_{j}-y_{j}\right\|_{Y}<\varepsilon$ for all $j=1, \ldots, r$ and all $n \geq N$. This leads to

$$
\left\|S_{n} T x-T x\right\|_{Y} \leq\left\|S_{n}\left(T x-y_{j}\right)\right\|_{Y}+\left\|S_{n} y_{j}-y_{j}\right\|_{Y}+\left\|y_{j}-T x\right\|_{Y} \leq K \varepsilon+\varepsilon+\varepsilon=(K+2) \varepsilon
$$

for all $x \in B_{X}$, all $n \geq N$ and appropriately chosen $j \in\{1, \ldots, r\}$.

Remark 14. (i) The assumption of this theorem is satisfied for example for the spaces $Y=c_{0}, Y=$ $\ell_{p}, Y=L_{p}([0,1])$ with $1 \leq p<\infty$ or $Y=C([0,1])$.

Theorem 23. Let $0<p \leq \infty$ and let $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq 0$ be a non-increasing sequence. We define the diagonal operator D_{σ} as

$$
D_{\sigma}: \ell_{p} \rightarrow \ell_{p}, \quad D_{\sigma} x=\left(\sigma_{1} x_{1}, \sigma_{2} x_{2}, \ldots\right)
$$

Then

$$
a_{n}\left(D_{\sigma}\right)=\sigma_{n}, \quad n \in \mathbb{N}
$$

Proof. Step 1. Estimate from above
Let $n \in \mathbb{N}$. We denote by D_{σ}^{n-1} the $(n-1)$ th sectional operator

$$
D_{\sigma}^{n-1} x=\left(\sigma_{1} x_{1}, \ldots, \sigma_{n-1} x_{n-1}, 0,0, \ldots\right) .
$$

Then

$$
a_{n}\left(D_{\sigma}\right) \leq\left\|D_{\sigma}-D_{\sigma}^{n-1} \mid \mathcal{L}\left(\ell_{p}, \ell_{p}\right)\right\|=\sigma_{n} .
$$

Step 2. Estimate from below
For the estimate from below, we use the following operators

$$
\begin{aligned}
D_{\sigma}^{(n)}: \ell_{p}^{n} \rightarrow \ell_{p}^{n}, & D_{\sigma}^{(n)} x=\left(\sigma_{1} x_{1}, \sigma_{2} x_{2}, \ldots, \sigma_{n-1} x_{n-1}, \sigma_{n} x_{n}\right), \\
I_{p}^{n}: \ell_{p}^{n} \rightarrow \ell_{p}^{n}, & I_{p}^{n}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}\right) \\
J_{n}: \ell_{p}^{n} \rightarrow \ell_{p}, & J_{n}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}, 0,0, \ldots\right) \\
P_{n}: \ell_{p} \rightarrow \ell_{p}^{n}, & P_{n}\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots\right)=\left(x_{1}, x_{2}, \ldots, x_{n}\right) .
\end{aligned}
$$

We may assume, that $\sigma_{n} \neq 0$ - otherwise, there is nothing to prove. Then we may calculate

$$
\begin{aligned}
1 & \leq a_{n}\left(I_{p}^{n}\right)=a_{n}\left(\left(D_{\sigma}^{(n)}\right)^{-1} \circ D_{\sigma}^{(n)}\right) \leq\left\|\left(D_{\sigma}^{(n)}\right)^{-1}\right\| \cdot a_{n}\left(D_{\sigma}^{(n)}\right) \\
& =\sigma_{n}^{-1} a_{n}\left(D_{\sigma}^{(n)}\right)=\sigma_{n}^{-1} a_{n}\left(P_{n} \circ D_{\sigma} \circ J_{n}\right) \leq \sigma_{n}^{-1} \cdot\left\|P_{n}\right\| \cdot a_{n}\left(D_{\sigma}\right) \cdot\left\|J_{n}\right\|=\sigma_{n}^{-1} \cdot a_{n}\left(D_{\sigma}\right) .
\end{aligned}
$$

2.3 Gelfand and Kolmogorov numbers

In this section we define the Gelfand and Kolmogorov numbers, prove their basic properties and study their relation to approximation numbers.

Definition 24. Let X, Y be two quasi-Banach spaces and let $T \in \mathcal{L}(X, Y)$.
(i) We define the n-th Gelfand number of the operator T as

$$
c_{n}(T)=\inf \left\{\left\|T \circ J_{M}^{X} \mid \mathcal{L}(M, Y)\right\|: M \subset X, \quad \operatorname{codim} M<n\right\},
$$

where $J_{M}^{X}: M \rightarrow X$ denotes the canonical embedding of a subspace $M \subset X$ into X.
(ii) We define the n-th Kolmogorov number of the operator T as

$$
d_{n}(T)=\inf \left\{\left\|Q_{N}^{Y} \circ T \mid \mathcal{L}(X, Y / N)\right\|: N \subset Y, \quad \operatorname{dim} N<n\right\},
$$

where $Q_{N}^{Y}: Y \rightarrow Y / N$ is the quotient map.
Remark 15. (i) On many occasions, one uses an equivalent definition of c_{n}, namely

$$
c_{n}(T)=\inf _{\substack{M C X \\ \operatorname{codim} M<n}} \sup _{\substack{x \in M \\\|x\|_{X} \leq 1}}\|T x\|_{Y} .
$$

(ii) The quotient space Y / N is the space of cosets $\bar{y}=\{y-z: z \in N\}$ equipped with the quotient (quasi-)norm

$$
\|\bar{y} \mid Y / N\|=\inf \left\{\|y-z\|_{Y}: z \in N\right\} .
$$

The quotient $\operatorname{map} Q_{N}^{Y}$ is defined as $Q_{N}^{Y} y=\bar{y}$.
Using this terminology, we may rewrite the definition of Kolmogorov numbers as

$$
d_{n}(T)=\inf _{\substack{N \subset Y \\ \operatorname{dim} N<n}} \sup _{\substack{x \in X \\\|x\|_{X} \leq 1}}\|\overline{T x} \mid Y / N\|=\inf _{\substack{N \subset Y \\ \operatorname{dim} N<n}} \sup _{\substack{x \in X \\\|x\|_{X} \leq 1}} \inf _{z \in N}\|T x-z\|_{Y}
$$

(iii) Observe, that all the structures used so far (canonical embedding, quotient space, quotient mapping) are well definied also for quasi-Banach spaces. Nevertheless, if X and/or Y are Banach spaces, then there are numerous equivalent definitions of Gelfand and Kolmogorov numbers. We shall see some of them later on.
(iv) The definition of approximation numbers was based on a linear approximation of an operator T on the whole space X. Both the Gelfand as well as the Kolmogorov numbers involve certain nonlinearity (which shall be discussed later in the Exercises) and therefore the following proposition should not be really surprising.

Proposition 25. Let X and Y be two quasi-Banach spaces and let $T \in \mathcal{L}(X, Y)$. Then

$$
c_{n}(T) \leq a_{n}(T) \quad \text { and } \quad d_{n}(T) \leq a_{n}(T) \quad \text { for all } \quad n \in \mathbb{N}
$$

Proof. Let $\varepsilon>0$ be arbitrary and let $A \in \mathcal{L}(X, Y)$ be such, that $\|T-A \mid \mathcal{L}(X, Y)\|<(1+\varepsilon) a_{n}(T)$ and rank $A<n$.
Step 1. $d_{n}(T) \leq a_{n}(T)$.
We put $N=A(X)$. Then $\operatorname{dim} N=\operatorname{rank} A<n$ and

$$
d_{n}(T) \leq \sup _{x \in B_{X}} \inf _{y \in N}\|T x-y\|_{Y} \leq \sup _{x \in B_{X}}\|T x-A x\|_{Y}=\|T-A \mid \mathcal{L}(X, Y)\| \leq(1+\varepsilon) a_{n}(T)
$$

Step 2. $c_{n}(T) \leq a_{n}(T)$.
We put $M=\operatorname{kern} A=\{x \in X: A x=0\}$. Then we have

$$
c_{n}(T) \leq \sup _{\substack{x \in \operatorname{kern} A \\\|x\|_{X} \leq 1}}\|T x\|_{Y}=\sup _{\substack{x \in \operatorname{kern} A \\\|x\|_{X} \leq 1}}\|T x-A x\|_{Y} \leq\|T-A \mid \mathcal{L}(X, Y)\| \leq(1+\varepsilon) a_{n}(T)
$$

The last thing, which one has to consider is to show, that codim $M<n$. We postpone this (rather algebraic) proof to the Exercise 28.

Theorem 26. The Gelfand numbers as well as the Kolmogorov numbers form an s-function.

Proof. Step 1. Gelfand numbers

The proof of (i) follows from the observation, that the only space $M \subset X$ with codim $M<1$ is the space X itself. And then

$$
c_{1}(T)=\sup _{x \in B_{X}}\|T x\|_{Y}=\|T \mid \mathcal{L}(X, Y)\| .
$$

The proof of the property $c_{j}(T) \geq c_{j+1}(T)$ for all $j \in \mathbb{N}$ is trivial.
To prove (ii) we take $\varepsilon>0$ arbitrary and find

$$
\begin{array}{lll}
M_{1} \subset X & \text { with } \quad \text { codim } M_{1}<m: x \in M_{1} \Longrightarrow\|S x\|_{Y} \leq(1+\varepsilon) c_{m}(S)\|x\|_{X} \\
M_{2} \subset X & \text { with } \quad \text { codim } M_{2}<n: x \in M_{2} \Longrightarrow\|T x\|_{Y} \leq(1+\varepsilon) c_{n}(T)\|x\|_{X}
\end{array}
$$

Then we obtain

$$
\|(S+T) x\|_{Y}^{p} \leq\|S x\|_{Y}^{p}+\|T x\|_{Y}^{p} \leq(1+\varepsilon)^{p}\|x\|_{X}^{p}\left(c_{m}^{p}(S)+c_{n}^{p}(T)\right)
$$

for all $x \in M_{1} \cap M_{2}$ - a subspace of X with codimension smaller then $m+n-1$.
The proof of (iii) follows similarly.

$$
\begin{array}{ll}
M_{1} \subset X & \text { with } \quad \operatorname{codim} M_{1}<n: x \in M_{1} \Longrightarrow\|T x\|_{Y} \leq(1+\varepsilon) c_{n}(T)\|x\|_{X}, \\
M_{2} \subset Y & \text { with } \quad \operatorname{codim} M_{2}<m: y \in M_{2} \Longrightarrow\|R y\|_{Z} \leq(1+\varepsilon) c_{m}(R)\|y\|_{Y} .
\end{array}
$$

Then

$$
\|R(T x)\|_{Z} \leq(1+\varepsilon) c_{m}(R)\|T x\|_{Y} \leq(1+\varepsilon)^{2} c_{m}(R) c_{n}(T)\|x\|_{X}
$$

for all $x \in X$ with $x \in M_{1}$ and $T x \in M_{2}$, i.e. for all $x \in M_{1} \cap T^{-1}\left(M_{2}\right)$ - a subspace of X with codimension smaller then $m+n-1$, cf. Exercise 28.
To (iv): if rank $T<n$, then codim kern $T<n$ and $\left.T\right|_{\text {kern } T}=0$, hence $c_{n}(T)=0$.
Finally (v) follows from Lemma 27.
Step 2. Kolmogorov numbers
The only subspace $N \subset Y$ with $\operatorname{dim} N<1$ is the space $\{0\} \subset Y$. Hence

$$
d_{1}(T)=\sup _{x \in B_{X}}\|T x-0\|_{Y}=\|T \mid \mathcal{L}(X, Y)\| .
$$

The inequality $d_{j}(T) \geq d_{j+1}(T), j \in \mathbb{N}$ is again trivial and the proof of (i) is therefore complete.
To prove (ii) we take $\varepsilon>0$ arbitrary and find

$$
\begin{array}{ll}
N_{1} \subset Y & \text { with } \quad \operatorname{dim} N_{1}<m: x \in X \Longrightarrow \exists y_{1} \in N_{1}:\left\|S x-y_{1}\right\|_{Y} \leq(1+\varepsilon) d_{m}(S)\|x\|_{X}, \\
N_{2} \subset Y & \text { with } \quad \operatorname{dim} N_{2}<n: x \in X \Longrightarrow \exists y_{2} \in N_{2}:\left\|T x-y_{2}\right\|_{Y} \leq(1+\varepsilon) d_{n}(T)\|x\|_{X} .
\end{array}
$$

Take $x \in X$ and find corresponding y_{1} and y_{2} as described above. Then we obtain

$$
\left\|(S+T) x-y_{1}-y_{2}\right\|_{Y}^{p} \leq\left\|S x-y_{1}\right\|_{Y}^{p}+\left\|T x-y_{2}\right\|_{Y}^{p} \leq(1+\varepsilon)^{p}\|x\|_{X}^{p}\left(d_{m}^{p}(S)+d_{n}^{p}(T)\right) .
$$

Here, $y=y_{1}+y_{2} \in N_{1}+N_{2}$ - a subspace of Y with dimension smaller then $m+n-1$.
The proof of (iii) follows similarly.

$$
\begin{array}{ll}
N_{1} \subset Y & \text { with } \quad \operatorname{dim} N_{1}<n: x \in X \Longrightarrow \exists \bar{y} \in N_{1}:\|T x-\bar{y}\|_{Y} \leq(1+\varepsilon) d_{n}(T)\|x\|_{X}, \\
N_{2} \subset Z & \text { with } \quad \operatorname{dim} N_{2}<m: y \in Y \Longrightarrow \exists z \in N_{2}:\|R y-z\|_{Z} \leq(1+\varepsilon) d_{m}(R)\|y\|_{Y} .
\end{array}
$$

Let us take $x \in X$. We find \bar{y} to $T x$ as described above and z to $R(T x-\bar{y})$ instead of $R y$. Then we may estimate

$$
\|R(T x)-R(\bar{y})-z\|_{Z}=\|R(T x-\bar{y})-z\|_{Z} \leq(1+\varepsilon) d_{m}(R)\|T x-\bar{y}\|_{Y} \leq(1+\varepsilon)^{2} d_{m}(R) d_{n}(T)\|x\|_{X},
$$ where $R(\bar{y})+z \in R\left(N_{1}\right)+N_{2}$ - a subspace of Z with dimension smaller then $m+n-1$.

To (iv): if $\operatorname{rank} T<n$, then $\operatorname{dim} T(X)<n$

$$
d_{n}(T) \leq \sup _{x \in B_{X}} \inf _{y \in T(x)}\|T x-y\|_{Y}=0
$$

Finally (v) follows from Lemma 27.

Lemma 27. Let X be a quasi-Banach space with $\operatorname{dim}(X) \geq n$. Then $c_{n}(i d: X \rightarrow X)=d_{n}(i d: X \rightarrow$ $X)=1$.

Proof. Let $n \in \mathbb{N}$ and let X be a space with $\operatorname{dim} X \geq n$.
Step 1. Gelfand numbers
Let $M \subset X$ be a subspace of X with codimension smaller then n. Then $M \neq\{0\}$. Hence

$$
c_{n}(i d: X \rightarrow X)=\inf _{\substack{M \subset X \\ \operatorname{codim} M<n}} \sup _{\substack{x \in M \\\|x\|_{X} \leq 1}}\|i d(x)\|_{Y} \geq 1
$$

Step 2. Kolmogorov numbers
Let $\varepsilon>0$ and let $N \subset X$ with $\operatorname{dim} N<n$. Then $N \neq X$ and accordning to the Riesz's lemma, there is an $x_{N, \varepsilon} \in X \backslash N$, such that $\left\|x_{N, \varepsilon}\right\|_{X}=1$ and $\left\|x_{N, \varepsilon}-y\right\|_{X} \geq \frac{1}{1+\varepsilon}$ for all $y \in N$. Hence

$$
d_{n}(T) \geq \inf _{\substack{N \subset Y \\ \operatorname{dim} N<n}} \inf _{y \in N}\left\|T x_{N, \varepsilon}-y\right\| \geq \frac{1}{1+\varepsilon}
$$

Theorem 28. a) Let X and Y be two Banach spaces and let $T \in \mathcal{L}(X, Y)$. Then T is compact if, and only if, $c_{n}(T) \rightarrow 0$,
b) Let X and Y be two quasi-Banach spaces and let $T \in \mathcal{L}(X, Y)$. Then T is compact if, and only if, $d_{n}(T) \rightarrow 0$.

Proof. Step 1. Gelfand numbers
Let T be compact, i.e. for every $\varepsilon>0$

$$
\begin{equation*}
T\left(B_{X}\right) \subset \bigcup_{j=1}^{J} y_{j}+\varepsilon B_{Y} \tag{2.1}
\end{equation*}
$$

for suitable $J \in \mathbb{N}$ and $\left\{y_{1}, \ldots, y_{J}\right\} \in Y$.
According to the Hahn-Banach Theorem, there are functionals $\beta_{j} \in Y^{\prime}$, such that

$$
\left|\beta_{j}\left(y_{j}\right)\right|=\left\|y_{j}\right\|_{Y} \quad \text { and } \quad\left\|\beta_{j}\right\|_{Y^{\prime}}=1, \quad j=1, \ldots, J
$$

We define $\alpha_{j} \in X^{\prime}$ by $\alpha_{j}(x)=\beta_{j}(T(x)), j=1, \ldots, J$ and $M=\left\{x \in X: \alpha_{j}(x)=0\right.$ for all $\left.j=1, \ldots, J\right\}$. Then, ${ }^{21}$
for $x \in M$ with $\|x\|_{X} \leq 1$ and an appropriate $j \in\{1, \ldots, J\}$,
$\|T x\|_{Y} \leq\left\|T x-y_{j}\right\|_{Y}+\left\|y_{j}\right\|_{Y} \leq \varepsilon+\left|\beta_{j}\left(y_{j}\right)\right| \leq \varepsilon+\left|\beta_{j}\left(T x-y_{j}\right)\right|+\left|\beta_{j}(T x)\right| \leq \varepsilon+\left\|\beta_{j}\right\|_{Y^{\prime}} \cdot\left\|T x-y_{j}\right\|_{Y} \leq 2 \varepsilon$.
Conversely, let $c_{n}(T) \rightarrow 0$. Then for every $\varepsilon>0$, there are $J \in \mathbb{N}$ and $\alpha_{1}, \ldots, \alpha_{J} \in X^{\prime}$ such that for every

$$
x \in M=\bigcap_{j=1}^{J} \operatorname{kern} \alpha_{j}=\left\{x \in X: \alpha_{1}(x)=\cdots=\alpha_{J}(x)=0\right\}
$$

[^14]the following inequality holds
$$
\|T x\|_{Y} \leq \varepsilon\|x\|_{X}
$$

We show, that this implies, that T^{\prime} is compact (and hence also T).
Let $\beta \in B_{Y^{\prime}}$. Then $T^{\prime} \beta \in X^{\prime}$ and (according to the Hahn-Banach Theorem), there is a functional $\theta \in X^{\prime}$ such that $\theta(x)=T^{\prime} \beta(x)$ for every $x \in M$ and

$$
\|\theta\|_{X^{\prime}}=\sup _{x \in B_{X}}|\theta(x)|=\sup _{\substack{x \in M \\\|x \in\|_{X} \leq 1}}|\theta(x)|=\sup _{\substack{x \in M \\\|x \in\|_{X} \leq 1}}\left|\left(T^{\prime} \beta\right)(x)\right|=\sup _{\substack{x \in M \\\|x\|_{X} \leq 1}}|\beta(T x)| \leq\|\beta\|_{Y^{\prime}} \cdot \sup _{\substack{x \in M \\\|x\|_{X} \leq 1}}\|T x\| \leq \varepsilon .
$$

We define $\tilde{M}=\operatorname{Lin}\left(\alpha_{1}, \ldots, \alpha_{J}\right) \subset X^{\prime}$. As $\left(\theta-T^{\prime} \beta\right)(x)=0$ for all $x \in M$, we conclude, that $\theta-T^{\prime} \beta \in \tilde{M}$. Hence, $T^{\prime} \beta=\left(T^{\prime} \beta-\theta\right)+\theta \in \tilde{M}+\varepsilon B_{X^{\prime}}$.
This holds for all $\beta \in B_{Y^{\prime}}$, hence

$$
T^{\prime}\left(B_{Y^{\prime}}\right) \subset \tilde{M}+\varepsilon B_{X^{\prime}}
$$

But if $T^{\prime} \beta=\tilde{m}+\varepsilon \chi$ with $\tilde{m} \in \tilde{M}$ and $\chi \in B_{X^{\prime}}$, then

$$
\|\tilde{m}\|_{X^{\prime}} \leq\left\|T^{\prime} \beta\right\|_{X^{\prime}}+\varepsilon\|\chi\|_{X^{\prime}} \leq\left\|T^{\prime} \mid \mathcal{L}\left(Y^{\prime}, X^{\prime}\right)\right\| \cdot\|\beta\|_{Y^{\prime}}+\varepsilon .
$$

Hence even

$$
T^{\prime}\left(B_{Y^{\prime}}\right) \subset\left\|T^{\prime} \mid \mathcal{L}\left(Y^{\prime}, X^{\prime}\right)\right\| B_{X^{\prime}} \cap \tilde{M}+\varepsilon B_{X^{\prime}} .
$$

The set $\left\|T^{\prime} \mid \mathcal{L}\left(Y^{\prime}, X^{\prime}\right)\right\| B_{X^{\prime}} \cap \tilde{M}$ is a bounded set in a finite-dimensional space \tilde{M} and may be covered like

$$
\left\|T^{\prime} \mid \mathcal{L}\left(Y^{\prime}, X^{\prime}\right)\right\| B_{X^{\prime}} \cap \tilde{M} \subset \bigcup_{k=1}^{K} \gamma_{k}+\varepsilon B_{X^{\prime}}
$$

which leads to

$$
T^{\prime}\left(B_{Y^{\prime}}\right) \subset \bigcup_{k=1}^{K} \gamma_{k}+2 \varepsilon B_{X^{\prime}}
$$

Step 2. Kolmogorov numbers
Let T be compact, i.e. for every $\varepsilon>0$

$$
T\left(B_{X}\right) \subset \bigcup_{j=1}^{J} y_{j}+\varepsilon B_{Y}
$$

for suitable $J \in \mathbb{N}$ and $\left\{y_{1}, \ldots, y_{J}\right\} \in Y$. Put $N=\operatorname{Lin}\left(y_{1}, \ldots, y_{J}\right)$.
Then

$$
d_{J+1}(T) \leq \sup _{x \in B_{X}} \inf _{y \in N}\|T x-y\|_{Y} \leq \sup _{x \in B_{X}} \inf _{j=1, \ldots, J}\left\|T x-y_{j}\right\|_{Y} \leq \varepsilon .
$$

Let on the other hand $d_{n}(T) \rightarrow 0$. Then for every $\varepsilon>0$ there is a finite-dimensional subspace $N \subset Y$, such that

$$
\sup _{x \in B_{X}} \inf _{y \in N}\|T x-y\|_{Y}<\varepsilon
$$

This may be rewritten as

$$
T\left(B_{X}\right) \subset N+\varepsilon B_{Y} .
$$

But if $T x=y+\varepsilon z$ with $y \in N$ and $z \in B_{Y}$, then

$$
\|y\|_{Y}^{p} \leq\|T x\|_{Y}^{p}+\varepsilon^{p}
$$

for a suitable $0<p \leq 1$. Hence also

$$
T\left(B_{X}\right) \subset N \cap\left(\|T \mid \mathcal{L}(X, Y)\|^{p}+\varepsilon^{p}\right)^{1 / p} B_{Y}+\varepsilon B_{Y}
$$

The set $N \cap\left(\|T \mid \mathcal{L}(X, Y)\|^{p}+\varepsilon^{p}\right)^{1 / p} B_{Y}$ is a bounded set in finite-dimensional quasi-Banach space N and may be therefore covered

$$
N \cap\left(\|T \mid \mathcal{L}(X, Y)\|^{p}+\varepsilon^{p}\right)^{1 / p} B_{Y} \subset \bigcup_{j=1}^{m} z_{j}+\varepsilon B_{Y}
$$

for appropriate $m \in \mathbb{N}$ and $z_{1}, \ldots, z_{m} \in N$. Hence

$$
T\left(B_{X}\right) \subset \bigcup_{j=1}^{m} z_{j}+2^{1 / p-1} \varepsilon B_{Y}
$$

and T is compact.

When dealing with Hilbert spaces, the situation is usually much simpler - some (or even all) of the s-numbers coincide.

Theorem 29. Let X and Y be two quasi-Banach spaces and let $T \in \mathcal{L}(X, Y)$.
a) If X is even a Hilbert space, then $c_{n}(T)=a_{n}(T)$.
b) If Y is even a Hilbert space, then $d_{n}(T)=a_{n}(T)$.
c) If both X and Y are Hilbert spaces, then $c_{n}(T)=d_{n}(T)=a_{n}(T)$.

Proof. Of course, c) is a simple corollary of a) and b).
Step 1. Gelfand numbers
Let $n \in \mathbb{N}$ and $\varepsilon>0$ be arbitrary. Then there is a subspace $M \subset X$ with $\operatorname{codim} M<n$, such that

$$
x \in M \Longrightarrow\|T x\|_{Y} \leq(1+\varepsilon) c_{n}(T)\|x\|_{X}
$$

We define the space $M^{\perp}=\left\{y \in X:<x, y>_{X}=0\right.$ for all $\left.x \in M\right\}$ of all elements orthogonal to the all elements of M. Finally, we denote by $P_{M^{\perp}}$ the orthogonal projection of X onto M^{\perp} and set $A=T \circ P_{M^{\perp}}$.
Then

$$
\begin{aligned}
a_{n}(T) & \leq\|T-A \mid \mathcal{L}(X, Y)\|=\sup _{x \in B_{X}}\|T x-A x\|_{Y}=\sup _{x \in B_{X}}\left\|T x-T\left(P_{M^{\perp}} x\right)\right\|_{Y} \\
& =\sup _{x \in B_{X}}\|T(\underbrace{x-P_{M^{\perp}} x}_{\in M})\|_{Y} \leq(1+\varepsilon) c_{n}(T) \sup _{x \in B_{X}}\left\|x-P_{M^{\perp}} x\right\|_{X} \leq(1+\varepsilon) c_{n}(T)
\end{aligned}
$$

Finally, we let $\varepsilon \rightarrow 0$.
Step 2. Kolmogorov numbers

Let $n \in \mathbb{N}$ and $\varepsilon>0$ be arbitrary. Then there is a subspace $N \subset Y$ with $\operatorname{dim} N<n$, such that

$$
x \in X \Longrightarrow \inf _{y \in N}\|T x-y\|_{Y} \leq(1+\varepsilon) d_{n}(T)\|x\|_{X}
$$

We set $A=P_{N} T$, where P_{N} is again the orthogonal projection, this time of Y onto N. Then

$$
\begin{aligned}
a_{n}(T) & \leq\|T-A \mid \mathcal{L}(X, Y)\|=\sup _{x \in B_{X}}\|T x-A x\|_{Y}=\sup _{x \in B_{X}}\left\|T x-P_{N}(T x)\right\|_{Y} \\
& =\sup _{x \in B_{X}} \inf _{y \in N}\|T x-y\|_{Y} \leq(1+\varepsilon) d_{n}(T)
\end{aligned}
$$

and we let again $\varepsilon \rightarrow 0$.
Also the relation of interpolation theory to Gelfand and Kolmogorov numbers is easily seen.
Theorem 30. Let $X, T, Y_{0}, Y_{\theta}, Y_{1} \subset \mathbb{Y}, 0<p \leq 1$ and $0<\theta<1$ satisfy all the assumptions of Theorem 10. Then

$$
c_{n_{0}+n_{1}-1}\left(T: X \rightarrow Y_{\theta}\right) \leq c_{n_{0}}^{1-\theta}\left(T: X \rightarrow Y_{0}\right) \cdot c_{n_{1}}^{\theta}\left(T: X \rightarrow Y_{1}\right), \quad n_{0}, n_{1} \in \mathbb{N} .
$$

Proof. Let $M_{0}, M_{1} \subset X$ be two subspaces of X with

$$
\begin{array}{lll}
\operatorname{codim} M_{0}<n_{0} & \text { and } & x \in M_{0} \Longrightarrow\|T x\|_{Y_{0}} \leq(1+\varepsilon) c_{n_{0}}\left(T: X \rightarrow Y_{0}\right)\|x\|_{X} \\
\operatorname{codim} M_{1}<n_{1} & \text { and } & x \in M_{1} \Longrightarrow\|T x\|_{Y_{1}} \leq(1+\varepsilon) c_{n_{1}}\left(T: X \rightarrow Y_{1}\right)\|x\|_{X}
\end{array}
$$

Put $M=M_{0} \cap M_{1}$. Then codim $M<n_{0}+n_{1}-1$ and for $x \in M$

$$
\|T x\|_{Y_{\theta}} \leq\|T x\|_{Y_{0}}^{1-\theta} \cdot\|T x\|_{Y_{1}}^{\theta} \leq(1+\varepsilon)\|x\|_{X} c_{n_{0}}^{1-\theta}\left(T: X \rightarrow Y_{0}\right) c_{n_{1}}^{\theta}\left(T: X \rightarrow Y_{1}\right)
$$

and the result follows.
Theorem 31. Let $X_{0}, X_{\theta}, X_{1} \subset \mathbb{X}, T, Y, 0<p \leq 1$ and $0<\theta<1$ satisfy all the assumptions of Theorem 11. Then

$$
d_{n_{0}+n_{1}-1}\left(T: X_{\theta} \rightarrow Y\right) \leq 2^{1 / p} d_{n_{0}}^{1-\theta}\left(T: X_{0} \rightarrow Y\right) \cdot d_{n_{1}}^{\theta}\left(T: X_{1} \rightarrow Y\right), \quad n_{0}, n_{1} \in \mathbb{N} .
$$

Proof. Let us abbreviate $d_{n_{0}}=d_{n_{0}}\left(T: X_{0} \rightarrow Y\right)$ and $d_{n_{1}}=d_{n_{1}}\left(T: X_{1} \rightarrow Y\right)$
Let $N_{0}, N_{1} \subset Y$ be two subspaces of Y with

$$
\begin{aligned}
& \operatorname{dim} N_{0}<n_{0} \quad \text { and } \quad x \in X_{0} \Longrightarrow \inf _{y \in N_{0}}\|T x-y\|_{Y} \leq(1+\varepsilon) d_{n_{0}}\|x\|_{X_{0}}, \\
& \operatorname{dim} N_{1}<n_{1} \quad \text { and } \quad x \in X_{1} \Longrightarrow \inf _{y \in N_{1}}\|T x-y\|_{Y} \leq(1+\varepsilon) d_{n_{1}}\|x\|_{X_{1}} .
\end{aligned}
$$

Put $N=N_{0}+N_{1}$. Then $\operatorname{dim} N<n_{0}+n_{1}-1$. Let $x \in X$ and $t>0$ to be chosen later on. Then we find $x_{0} \in X_{0}$ and $x_{1} \in X_{1}$ such that

$$
x=x_{0}+x_{1} \quad \text { and } \quad\left\|x_{0}\right\|_{X_{0}}+t\left\|x_{1}\right\|_{X_{1}} \leq t^{\theta}\|x\|_{X_{\theta}}
$$

and $y_{0} \in N_{0}$ and $y_{1} \in N_{1}$, such that

$$
\left\|T x_{0}-y_{0}\right\|_{Y} \leq(1+\varepsilon) d_{n_{0}}\left\|x_{0}\right\|_{X_{0}} \text { and }\left\|T x_{1}-y_{1}\right\|_{Y} \leq(1+\varepsilon) d_{n_{1}}\left\|x_{1}\right\|_{X_{1}} .
$$

Finally, we arrive at

$$
\begin{aligned}
\left\|T x-\left(y_{0}+y_{1}\right)\right\|_{Y}^{p} & \leq\left\|T x_{0}-y_{0}\right\|_{Y}^{p}+\left\|T x_{1}-y_{1}\right\|_{Y}^{p} \leq(1+\varepsilon)\left(d_{n_{0}}^{p}\left\|x_{0}\right\|_{X_{0}}^{p}+d_{n_{1}}^{p}\left\|x_{1}\right\|_{X_{1}}^{p}\right) \\
& \leq(1+\varepsilon)\left(d_{n_{0}}^{p} t^{p \theta}\|x\|_{X_{\theta}}^{p}+d_{n_{1}}^{p} t^{p(\theta-1)}\|x\|_{X_{\theta}}^{p}\right) \leq 2 d_{n_{0}}^{p(1-\theta)} d_{n_{1}}^{p}\|x\|_{X_{\theta}}^{p},
\end{aligned}
$$

where we have chosen $t=d_{n_{1}} / d_{n_{0}}$. From this, the result follows.

2.3.1 Duality

In this section, we consider the relation between $c_{n}(T)$ and $d_{n}\left(T^{\prime}\right)$ (and briefly also between $a_{n}(T)$ and $\left.a_{n}\left(T^{\prime}\right)\right)$. Some of the main ideas were already hidden in the proof of Theorem 28, but here we are going to discuss the concept of duality and its connection to s-numbers in detail.
In this whole section we assume X and Y to be Banach spaces, so that we can

- work with X^{\prime} and Y^{\prime},
- apply the Hahn-Banach theorem,
- consider the dual operator $T^{\prime} \in \mathcal{L}\left(Y^{\prime}, X^{\prime}\right)$ for every $T \in \mathcal{L}(X, Y)$.

Let us recall the basic facts from functional analysis about duality.
If X and Y are two Banach spaces and $T \in \mathcal{L}(X, Y)$, then we define $T^{\prime} \in \mathcal{L}\left(Y^{\prime}, X^{\prime}\right)$ by

$$
\left[T^{\prime}(\varphi)\right](x)=\varphi(T(x))
$$

for every $\varphi \in Y^{\prime}$ and $x \in X$. It is quite simple to see, that with this definition the operator T^{\prime} is really linear and bounded (even with $\left.\left\|T\left|\mathcal{L}(X, Y)\|=\| T^{\prime}\right| \mathcal{L}\left(Y^{\prime}, X^{\prime}\right)\right\|\right)$. According to Schauder's theorem we know, that T is compact if, and only if, T^{\prime} is compact.
If X is a Banach space and X^{\prime} is its dual space, then we denote by $X^{\prime \prime}$ the second dual space. The canonical embedding of X into $X^{\prime \prime}$ is defined as

$$
\varepsilon_{X}: X \rightarrow X^{\prime \prime}, \quad \varepsilon_{X}(x)(\varphi)=\varphi(x)
$$

for every $x \in X$ and $\varphi \in X^{\prime}$. If ε_{X} is even an isomporhism of X onto $X^{\prime \prime}$, then X is called reflexive.
Definition 32. Let X be a Banach space and X^{\prime} be its dual space.
a) If $L \subset X$ is a subspace of X, we define

$$
L^{\perp}=\left\{\varphi \in X^{\prime}: \varphi(x)=0 \text { for all } x \in L\right\} .
$$

b) If $M \subset X^{\prime}$ is a subspace of X^{\prime}, we define

$$
M_{\perp}=\{x \in X: \varphi(x)=0 \text { for all } \varphi \in M\} .
$$

Both L^{\perp} and M_{\perp} are called annihilators.
Theorem 33. Let X, X^{\prime}, L and M be as above. Then

$$
\left(L^{\perp}\right)_{\perp}=\bar{L}, \quad\left(M_{\perp}\right)^{\perp}=\overline{M \omega^{*}} .
$$

Here \bar{L} stands for the closure of L and $\overline{M \omega^{*}}$ is the so-called weak-star closure of M.
Proof. Step 1. $\left(L^{\perp}\right)_{\perp}=\bar{L}$.
a) Let $x \in \bar{L}$ and let $\varphi \in L^{\perp}$. As $\varphi(L)=0$ and φ is continuous, then also $\varphi(x)=0$. Hence $\varphi(x)=0$ for all $\varphi \in L^{\perp}$, which means, that $x \in\left(L^{\perp}\right)_{\perp}$.
b) Let $x \notin \bar{L}$. According to the Hahn-Banach Theorem, there is a $\varphi \in X^{\prime}$, such that $\varphi(\bar{L})=0$ and $\varphi(x) \neq 0$. Hence, $x \notin\left(L^{\perp}\right)_{\perp}$.

Step 2. L^{\perp} is weak-star closed in X^{\prime} for all subspaces $L \subset X$.
Let us recall, that the set $\mathcal{O} \subset X^{\prime}$ is weak-star open if, and only if,

$$
\forall \varphi \in \mathcal{O} \exists \varepsilon>0 \exists x_{1}, \ldots, x_{n} \in X:\left\{\psi \in X^{\prime}:\left|\psi\left(x_{i}\right)-\varphi\left(x_{i}\right)\right|<\varepsilon \text { for all } i=1, \ldots, n\right\} \subset \mathcal{O}
$$

Of course, a set $\mathcal{C} \subset X^{\prime}$ is weak-star closed if, and only if, its complement is weak-star open, i.e.

$$
\forall \varphi \notin \mathcal{C} \exists \varepsilon>0 \exists x_{1}, \ldots, x_{n} \in X:\left\{\psi \in X^{\prime}:\left|\psi\left(x_{i}\right)-\varphi\left(x_{i}\right)\right|<\varepsilon \text { for all } i=1, \ldots, n\right\} \cap \mathcal{C}=\emptyset
$$

So, let us take $\varphi \notin L^{\perp}$. Then there is $x_{0} \in L$, such that $0<\left|\varphi\left(x_{0}\right)\right|=: \varepsilon$ and we observe that

$$
\left\{\psi \in X^{\prime}:\left|\psi\left(x_{0}\right)-\varphi\left(x_{0}\right)\right|<\varepsilon\right\} \cap L^{\perp}=\emptyset .
$$

Hence, L^{\perp} is weak-star closed.
Step 3. $\overline{M \omega^{*}} \subset\left(M_{\perp}\right)^{\perp}$
Obviuously, $M \subset\left(M_{\perp}\right)^{\perp}$. But the later set is weak-star closed (cf. Step 2.) and the inclusion follows.
Step 4. $\left(M_{\perp}\right)^{\perp} \subset \overline{M \omega^{*}}$
Let $\varphi \notin \overline{M^{\omega^{*}}}$. Then we may apply the Hahn-Banach Theorem with respect to the weak-star topology on X^{\prime} and find $\Psi \in\left(X^{\prime}, \omega^{*}\right)^{\prime}$, such that $\Psi(\varphi) \neq 0$ and $\Psi\left(\overline{M \omega^{*}}\right)=0$. It is a standard fact from functional analysis, that $\left(X^{\prime}, \omega^{*}\right)^{\prime}=\varepsilon_{X}(X) \subset X^{\prime \prime}$. Hence Ψ may be represented by an $x \in X$ with $\varphi(x) \neq 0$ and $\psi(x)=0$ for all $\psi \in \overline{M \omega^{*}}$ - especially $x \in M_{\perp}$. Hence $\varphi \notin\left(M_{\perp}\right)^{\perp}$.

The relation between annihilators and approximation theory is given in the following fundamental Lemma.

Lemma 34. a) Let X be a Banach space, $x \in X$ and let $L \subset X$ be a subspace of X. Then

$$
\begin{equation*}
\inf _{y \in L}\|x-y\|_{X}=\max \left\{|\varphi(x)|: \varphi \in L^{\perp},\|\varphi\|_{X^{\prime}} \leq 1\right\} \tag{2.2}
\end{equation*}
$$

b) Let X be a Banach space, X^{\prime} its dual space, let $M \subset X^{\prime}$ be a weak-star closed subspace and let $\varphi \in X^{\prime}$. Then

$$
\begin{equation*}
\min _{\psi \in M}\|\varphi-\psi\|_{X^{\prime}}=\sup \left\{|\varphi(x)|: x \in M_{\perp},\|x\|_{X} \leq 1\right\} \tag{2.3}
\end{equation*}
$$

Proof. a) We may assume, that L is closed - i.e. both sides of (2.2) do not change, if we replace L by \bar{L}. If $x \in L$, then there is nothing to prove. So, we may also assume, that $x \notin L$.
Let $\tilde{L}=\operatorname{lin}\{L, x\} \subset X$. It means, that every element $\omega \in \tilde{L}$ may be written (in a unique way) as $\omega=\lambda x+y$, where $\lambda \in \mathbb{R}$ and $y \in L$.
Let $\varphi: \tilde{L} \rightarrow \mathbb{R}$ be linear and continuous, such that $\varphi(L)=0, \varphi(x)>0$ and $\|\varphi\|_{(\tilde{L})^{\prime}}=1$.
Then for every $\varepsilon>0$ there is $z_{\varepsilon} \in \tilde{L}$, such that

$$
\left\|z_{\varepsilon}\right\|_{X}=1 \quad \text { and } \quad \varphi\left(z_{\varepsilon}\right) \geq(1-\varepsilon)\|\varphi\|_{(\tilde{L})^{\prime}}=1-\varepsilon
$$

We decompose $z_{\varepsilon}=\lambda_{\varepsilon} x+y_{\varepsilon}$. Then $\varphi\left(z_{\varepsilon}\right)=\lambda_{\varepsilon} \varphi(x)+\varphi\left(y_{\varepsilon}\right)=\lambda_{\varepsilon} \varphi(x)>1-\varepsilon$.

$$
\left\|x+\frac{y_{\varepsilon}}{\lambda_{\varepsilon}}\right\|_{X}=\left\|\frac{z_{\varepsilon}}{\lambda_{\varepsilon}}\right\|_{X}=\frac{1}{\left|\lambda_{\varepsilon}\right|} \cdot\left\|z_{\varepsilon}\right\|_{X}=\frac{1}{\lambda_{\varepsilon}} \leq \frac{\varphi(x)}{1-\varepsilon}
$$

And the result follows by

$$
\inf _{y \in L}\|x-y\|_{X} \leq \inf _{0<\varepsilon<1}\left\|x+\frac{y_{\varepsilon}}{\lambda_{\varepsilon}}\right\| \leq \inf _{0<\varepsilon<1} \frac{\varphi(x)}{1-\varepsilon}=\varphi(x)
$$

To prove the second inequality in (2.2), we calculate for arbitrary $y \in L$:

$$
\|x-y\|_{X}=\sup _{\varphi \in B_{Y^{\prime}}}|\varphi(x-y)| \geq \sup _{\substack{\varphi \in L^{\perp} \\\|\varphi\|_{Y^{\prime}} \leq 1}}|\varphi(x-y)|=\sup _{\substack{\varphi \in L^{\perp} \\\|\varphi\|_{Y^{\prime}} \leq 1}}|\varphi(x)|
$$

Let us remark, that it also follows from the proof, that the maximum on the right hand side of (2.2) is attained - namely by the φ constructed above.
b) Let $M \subset X^{\prime}, \varphi \in X^{\prime}$ and let $M \subset X^{\prime}$ be a weak-star closed subspace of X^{\prime}.

It follows from Theorem 33, that

$$
\theta \in X^{\prime}: \theta \in M \Leftrightarrow \theta\left(M_{\perp}\right)=0 .
$$

We put

$$
a:=\sup \left\{|\varphi(x)|: x \in M_{\perp},\|x\|_{X} \leq 1\right\}<\infty
$$

Then

$$
\|\varphi-\psi\|_{X^{\prime}}=\sup _{x \in B_{X}}|\varphi(x)-\psi(x)| \geq \sup _{\substack{x \in M_{\perp} \\\|x\|_{X} \leq 1}}|\varphi(x)|=a
$$

holds for all $\psi \in M$ and hence also for the infimum.
On the other hand, we apply Hahn-Banach Theorem to obtain $\psi \in X^{\prime}$ with

$$
\psi(x)=\varphi(x) \text { for all } x \in M \quad \text { and } \quad\|\psi\|_{X^{\prime}}=a
$$

We put $\theta=\varphi-\psi$. Then $\theta\left(M_{\perp}\right)=0$ and hence $\theta \in M$. But also

$$
\|\varphi-\theta\|_{X^{\prime}}=\|\psi\|_{X^{\prime}}=a
$$

Hence the minimum on the left-hand side of (2.3) is attained (in θ).
Theorem 35. Let X, Y be two Banach spaces and $T \in \mathcal{L}(X, Y)$.
a) Then

$$
\begin{equation*}
c_{n}(T)=d_{n}\left(T^{\prime}\right) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{n}\left(T^{\prime}\right) \leq d_{n}(T) . \tag{2.5}
\end{equation*}
$$

b) If T is even compact, then

$$
\begin{equation*}
c_{n}\left(T^{\prime}\right) \geq d_{n}(T) \tag{2.6}
\end{equation*}
$$

Proof. Step 1. Proof of (2.4)
Let $M \subset X$ be a subspace of X with codim $X<n$. We set $N=M^{\perp}$. Then $N_{\perp}=\left(M^{\perp}\right)_{\perp}=M$ and

$$
\begin{aligned}
\sup _{\substack{x \in M \\
\|x\|_{X} \leq 1}}\|T x\|_{Y}= & \sup _{\substack{x \in M \\
\|x\|_{X} \leq 1}} \sup _{\substack{\|\varphi\|^{\prime} \\
\|\in\|_{Y^{\prime}} \leq 1}}|\varphi(T x)|=\sup _{\substack{\varphi \in Y^{\prime} \\
\|\varphi\|_{Y^{\prime}} \leq 1}} \sup _{\substack{x \in M \\
\|x\|_{X} \leq 1}}\left|\left(T^{\prime} \varphi\right)(x)\right| \\
= & \sup _{\substack{\varphi \in Y^{\prime} \\
\|\varphi\|_{Y^{\prime}} \leq 1}} \sup _{\substack{x \in N_{\perp} \\
\|x\|_{X} \leq 1}}\left|\left(T^{\prime} \varphi\right)(x)\right|=\sup _{\substack{\varphi \in Y^{\prime} \\
\|\varphi\|_{Y^{\prime}} \leq 1}} \sup _{\psi \in N}\left\|T^{\prime} \varphi-\psi\right\|_{X^{\prime}}
\end{aligned}
$$

Taking infimum over all M finishes the proof.
Step 2. Proof of (2.5)
Let us recall, that

$$
\begin{aligned}
& d_{n}(T)= \inf _{\substack{N \subset Y \\
\operatorname{dim} N<n}} \sup _{x \in B_{X}} \inf _{y \in N}\|T x-y\|_{Y} \\
& c_{n}\left(T^{\prime}\right)=\inf _{\substack{M \subset Y^{\prime} \\
\operatorname{codim} M<n}} \sup _{\substack{\varphi \in M \\
\|\varphi\|_{Y^{\prime}} \leq 1}}\left\|T^{\prime} \varphi\right\|_{X^{\prime}}=\inf _{\substack{M \subset Y^{\prime} \\
\operatorname{codim} M<n}} \sup _{\substack{\varphi \in M \\
\varphi \in \|_{Y^{\prime}} \leq 1}} \sup _{x \in B_{X}}|\varphi(T x)| .
\end{aligned}
$$

Now let $\varepsilon>0$. Then there is a subspace $N \subset Y$ with $\operatorname{dim} N<n$, such that

$$
\begin{equation*}
\forall x \in B_{X} \exists y \in N:\|T x-y\|_{Y} \leq(1+\varepsilon) d_{n}(T) \tag{2.7}
\end{equation*}
$$

We put $M=N^{\perp}$ and fix $x \in B_{X}$ and $y \in N$ according to (2.7) and obtain

$$
\sup _{\substack{\varphi \in N^{\perp} \\\|\varphi\|_{Y^{\prime}} \leq 1}} \sup _{x \in B_{X}}|\varphi(T x)|=\sup _{\substack{\varphi \in N^{\perp} \\\|\varphi\|_{Y^{\prime}} \leq 1}} \sup _{x \in B_{X}}|\varphi(T x-y)| \leq \sup _{\substack{\varphi \in N^{\perp} \\\|\varphi\|_{Y^{\prime}} \leq 1}} \sup _{x \in B_{X}}\| \| \varphi\left\|_{Y^{\prime}} \cdot\right\| T x-y \|_{X} \leq(1+\varepsilon) d_{n}(T)
$$

Hence $c_{n}\left(T^{\prime}\right) \leq(1+\varepsilon) d_{n}(T)$ and we let $\varepsilon \rightarrow 0$ to finish the proof.
Step 3. Proof of (2.6).
This is the most complicated step. If X and Y would be reflexive, then the proof would be trivial, because then $d_{n}(T)=d_{n}\left(T^{\prime \prime}\right) \leq c_{n}\left(T^{\prime}\right)$. If this is not the case, we use the principle of local reflexivity.
Lemma 36. Let Y be a Banach space and let $M \subset Y^{\prime \prime}$ be a finite-dimensional subspace of $Y^{\prime \prime}$. Then for every $\varepsilon>0$ there exists $R \in \mathcal{L}(M, Y)$, such that $\|R \mid \mathcal{L}(M, Y)\|<1+\varepsilon$ and $R \varepsilon_{Y} y=y$ for all $y \in Y$ with $\varepsilon_{Y} y \in M$.

We now come back to the proof of (2.6).
We already know, that $c_{n}\left(T^{\prime}\right)=d_{n}\left(T^{\prime \prime}\right)$. So, it is enough to prove, that $d_{n}\left(T^{\prime \prime}\right) \geq d_{n}(T)$.
Let $\varepsilon>0$. Then there is a subspace $N \subset Y^{\prime \prime}$ with $\operatorname{dim} N<n$, such that

$$
\begin{equation*}
\inf _{y \in N}\left\|T^{\prime \prime} x-y\right\|_{Y^{\prime \prime}}<(1+\varepsilon) d_{n}\left(T^{\prime \prime}\right) \tag{2.8}
\end{equation*}
$$

Let $\left\{x_{1}, \ldots, x_{k}\right\} \subset X$ be such that $\left\{T x_{1}, \ldots, T x_{n}\right\}$ is an ε-net for $T\left(B_{X}\right)$. Let $M \subset Y^{\prime \prime}$ be the span of N and $\left\{\varepsilon_{Y}\left(T x_{1}\right), \ldots, \varepsilon_{Y}\left(T x_{k}\right)\right\}$ and let $R \in \mathcal{L}(M, Y)$ be the mapping from the principle of local reflexivity, i.e.

$$
\|R \mid \mathcal{L}(M, Y)\|<1+\varepsilon \quad \text { and } \quad R \varepsilon_{Y}\left(T x_{i}\right)=T x_{i}, \quad i=1, \ldots, k
$$

Finally, let $L=R(N) \subset Y$ be a subspace of Y with dimension smaller than n.
According to (2.8), we find $z_{1}, \ldots, z_{k} \in N$, such that

$$
\left\|T^{\prime \prime}\left(\varepsilon_{X} x_{i}\right)-z_{i}\right\|_{Y^{\prime \prime}}<d_{n}\left(T^{\prime \prime}\right)
$$

Altogether, we get for all $i=1, \ldots, k$

$$
\begin{aligned}
\inf _{y \in L}\left\|T x_{i}-y\right\|_{Y} & =\inf _{y \in L}\left\|R \varepsilon_{Y}\left(T x_{i}\right)-y\right\|_{Y}=\inf _{y \in L}\left\|R\left(T^{\prime \prime} \varepsilon_{X} x_{i}\right)-y\right\|_{Y} \\
& \leq\left\|R\left(T^{\prime \prime} \varepsilon_{X} x_{i}\right)-R\left(z_{i}\right)\right\|_{Y} \leq\|R \mid \mathcal{L}(M, Y)\| \cdot\left\|T^{\prime \prime} \varepsilon_{X} x_{i}-z_{i}\right\|_{Y^{\prime \prime}} \\
& \leq(1+\varepsilon)^{2} d_{n}\left(T^{\prime \prime}\right)
\end{aligned}
$$

If $x \in B_{X}$, we get for appropriate $i=1, \ldots, k$

$$
\inf _{y \in L}\|T x-y\|_{Y} \leq\left\|T x-T x_{i}\right\|_{Y}+\inf _{y \in L}\left\|T x_{i}-y\right\|_{Y} \leq \varepsilon+(1+\varepsilon)^{2} d_{n}\left(T^{\prime \prime}\right)
$$

and the result follows.
Remark 16. The inequality (2.6) does not hold for arbitrary linear operators. The classical counterexample is the identity $i d: \ell_{1} \rightarrow c_{0}$ with $i d^{\prime}: \ell_{1} \rightarrow \ell_{\infty}$. It may be shown, that $d_{n}(i d)=1$ and $c_{n}\left(i d^{\prime}\right)=1 / 2$ for all $n=2,3, \ldots$.

Theorem 37. Let X and Y be two Banach spaces and let $T \in \mathcal{K}(X, Y)$. Then

$$
a_{n}(T)=a_{n}\left(T^{\prime}\right), \quad n \in \mathbb{N} .
$$

Proof. We prove only the easy part, namely $a_{n}\left(T^{\prime}\right) \leq a_{n}(T)$. The proof of the reverse inequality uses again the principle of local reflexivity and resembles the proof of Theorem 35.

Let $P \in \mathcal{L}(X, Y)$ with rank $P<n$. We consider $P^{\prime} \in \mathcal{L}\left(Y^{\prime}, X^{\prime}\right)$ defined, as usually, by

$$
\left(P^{\prime} \varphi\right)(x)=\varphi(P x), \quad x \in X, \quad \varphi \in Y^{\prime}
$$

Then

$$
\begin{aligned}
\left\|T^{\prime}-P^{\prime} \mid \mathcal{L}\left(Y^{\prime}, X^{\prime}\right)\right\| & =\sup _{\varphi \in B_{Y^{\prime}}}\left\|\left(T^{\prime}-P^{\prime}\right)(\varphi)\right\|_{X^{\prime}}=\sup _{\varphi \in B_{Y^{\prime}}} \sup _{x \in B_{X}}\left|\left[\left(T^{\prime}-P^{\prime}\right)(\varphi)\right](x)\right| \\
& =\sup _{\varphi \in B_{Y^{\prime}}} \sup _{x \in B_{X}}\left|\varphi\left(\left(T^{\prime}-P^{\prime}\right)(x)\right)\right| \leq \sup _{\varphi \in B_{Y^{\prime}}} \sup _{x \in B_{X}}\|\varphi\|_{Y^{\prime}} \cdot\|(T-P)(x)\|_{Y} \\
& \leq \sup _{x \in B_{X}}\|(T-P)(x)\|_{Y}=\|T-P \mid \mathcal{L}(X, Y)\| .
\end{aligned}
$$

Taking the infimum over all P 's finishes the proof.

2.4 Approximation, Gelfand and Kolmogorov numbers of $i d: \ell_{p}^{m} \rightarrow \ell_{q}^{m}$

Theorem 38. Let $0<p \leq \infty$ and let $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq 0$ be a non-increasing sequence. We define the diagonal operator D_{σ} as

$$
D_{\sigma}: \ell_{p} \rightarrow \ell_{p}, \quad D_{\sigma} x=\left(\sigma_{1} x_{1}, \sigma_{2} x_{2}, \ldots\right)
$$

Then

$$
c_{n}\left(D_{\sigma}\right)=d_{n}\left(D_{\sigma}\right)=\sigma_{n}, \quad n \in \mathbb{N}
$$

Proof. The proof follows the same pattern as the proof of Theorem 23.

2.4.1 Extreme points and the Krein-Milman theorem

Definition 39. Let X be a vector space and let $K \subset X$ be convex. Then
a) $F \subset K$ is called side, if F is convex and it holds

$$
x_{1}, x_{2} \in K, 0<\lambda<1, \lambda x_{1}+(1-\lambda) x_{2} \in F \Longrightarrow x_{1}, x_{2} \in F
$$

b) $x \in K$ is called extreme point, if $\{x\} \subset K$ is a side of K. In other words, if

$$
x_{1}, x_{2} \in K, 0<\lambda<1, \lambda x_{1}+(1-\lambda) x_{2}=x \Longrightarrow x_{1}=x_{2}=x
$$

holds.
The set of all extreme points of K is denoted as Ext K.
Theorem 40. Let X be a Banach space. ${ }^{22}$ Let $K \subset X$ be compact, convex and non-empty. Then
a) Ext $K \neq \emptyset$,
b) $K=\overline{c o n v} \operatorname{Ext} K$.

Proof. Let \mathcal{F} denotes the set of all closed, non-empty sides of K. Then the following holds:

- $\mathcal{F} \neq \emptyset$, while $K \in \mathcal{F}$,
- if $\left\{F_{\alpha}\right\}_{\alpha \in A} \subset \mathcal{F}$ is a subsystem of \mathcal{F} with $F_{\alpha} \subset F_{\alpha^{\prime}}$ or $F_{\alpha} \supset F_{\alpha^{\prime}}$ for every $\alpha, \alpha^{\prime} \in A$, then $\bigcap_{\alpha \in A} F_{\alpha} \in \mathcal{F}$,
- \mathcal{F} is inductively ordered with respect to inclusion.

According to The Lemma of Zorn, there is a minimal element $F_{0} \in \mathcal{F}$.
We show, that F_{0} consists of only one point.
Let $x_{0}, y_{0} \in F_{0}$ with $x_{0} \neq y_{0}$. Then (Hahn-Banach!) there is an $x^{\prime} \in X^{\prime}$, such that

$$
\operatorname{Re} x^{\prime}\left(x_{0}\right)<\operatorname{Re} x^{\prime}\left(y_{0}\right) .
$$

Then the set

$$
F_{1}=\left\{x \in F_{0}: \operatorname{Re} x^{\prime}(x)=\sup _{y \in F_{0}} \operatorname{Re} x^{\prime}(y)\right\}
$$

is non-empty (F_{0} is compact and x^{\prime} is continuous). Further is F_{1} closed and a side of F_{0} and hence also of K, i.e. $F_{1} \in \mathcal{F}$. But $x_{0} \notin F_{1}$ - which is a contradiction with minimality of F_{0}.
To prove b), put

$$
\begin{equation*}
K_{1}=\overline{c o n v} \operatorname{Ext} K . \tag{2.9}
\end{equation*}
$$

Then $K_{1} \subset K$ is closed (and hence also compact) and (according to a) also non-empty. If $K \neq K_{1}$, then there are $x \in K \backslash K_{1}, \varepsilon>0$ and (Hahn-Banach!) $x^{\prime} \in X^{\prime}$, such that

$$
\operatorname{Re} x^{\prime}(x) \leq \operatorname{Re} x^{\prime}\left(x_{0}\right)-\varepsilon \quad \text { for all } \quad x \in K_{1} .
$$

We consider

$$
F=\left\{x \in K: \operatorname{Re} x^{\prime}(x)=\sup _{y \in K} \operatorname{Re} x^{\prime}(y)\right\} .
$$

Then one may show as above, that F is a closed, non-empty side in K. According to a), Ext $F \neq \emptyset$. Because of Ext $\mathrm{F} \subset$ Ext K, there is an $e \in \operatorname{Ext} \mathrm{~K}$ with $e \notin K_{1}$, which is a contradiction with (2.9).

[^15]Lemma 41. Let N be a subspace of ℓ_{∞}^{m} with $\operatorname{codim} N<n$. Then there exists $x=\left(x_{1}, \ldots, x_{m}\right) \in N$, such that $\|x\|_{\infty}=1$ and $\#\left\{k:\left|x_{k}\right|=1\right\} \geq m-n+1$.

Proof. Let x be an extreme point of $B_{\ell_{\infty}^{m}} \cap N$. Let

$$
K:=\left\{k:\left|x_{k}\right|=1\right\} \quad \text { and } \quad M:=\left\{y \in \ell_{\infty}^{m}: y_{k}=0 \text { for } k \in K\right\}
$$

Clearly $\# K+\operatorname{dim} M=m$. Suppose, that $\# K \leq m-n$. Then $\operatorname{dim} M \geq n$ and therefore $M \cap N \neq\{0\}$. Hence, there is an $y \in M \cap N$ with $\|y\|_{\infty}=1$.

As

$$
\delta:=1-\max \left\{\left|x_{k}\right|: k \notin K\right\}>0
$$

it follows, that $x \pm \delta y \in B_{\ell_{\infty}^{m}} \cap N$. Hence, x cannot be an extreme point, which is a contradiction.
Lemma 42. Let $0<q<p \leq \infty$. If $\left|x_{n+1}\right| \leq \min \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)$, then

$$
\frac{\left\{\sum_{j=1}^{n+1}\left|x_{j}\right|^{q}\right\}^{1 / q}}{\left\{\sum_{j=1}^{n+1}\left|x_{j}\right|^{p}\right\}^{1 / p}} \geq \frac{\left\{\sum_{j=1}^{n}\left|x_{j}\right|^{q}\right\}^{1 / q}}{\left\{\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right\}^{1 / p}}
$$

Proof. Let

$$
\alpha=\left\{\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right\}^{1 / p} \quad \text { and } \quad \beta=\left\{\sum_{j=1}^{n}\left|x_{j}\right|^{q}\right\}^{1 / q} .
$$

As $p>q$, we have

$$
\left|\frac{x_{j}}{x_{n+1}}\right|^{q} \leq\left|\frac{x_{j}}{x_{n+1}}\right|^{p} \quad \text { for all } \quad j=1, \ldots, n
$$

Summing over $j=1, \ldots, n$ gives

$$
\left(\frac{\beta}{\left|x_{n+1}\right|}\right)^{q} \leq\left(\frac{\alpha}{\left|x_{n+1}\right|}\right)^{p}
$$

and

$$
\left(1+\left(\frac{\left|x_{n+1}\right|}{\beta}\right)^{q}\right)^{p / q} \geq 1+\left(\frac{\left|x_{n+1}\right|}{\beta}\right)^{q} \geq 1+\left(\frac{\left|x_{n+1}\right|}{\alpha}\right)^{p}
$$

Finally, we get

$$
\frac{\left\{\sum_{j=1}^{n+1}\left|x_{j}\right|^{q}\right\}^{1 / q}}{\left\{\sum_{j=1}^{n+1}\left|x_{j}\right|^{p}\right\}^{1 / p}}=\frac{\left(\beta^{q}+\left|x_{n+1}\right|^{q}\right)^{1 / q}}{\left(\alpha^{p}+\left|x_{n+1}\right|^{p}\right)^{1 / p}}=\frac{\beta\left(1+\left|x_{n+1}\right|^{q} / \beta^{q}\right)^{1 / q}}{\alpha\left(1+\left|x_{n+1}\right|^{p} / \alpha^{p}\right)^{1 / p}} \geq \frac{\beta}{\alpha}
$$

Theorem 43. Let $0<q \leq p \leq \infty$. Then

$$
a_{n}\left(i d: \ell_{p}^{m} \rightarrow \ell_{q}^{m}\right)=c_{n}\left(i d: \ell_{p}^{m} \rightarrow \ell_{q}^{m}\right)=(m-n+1)^{1 / q-1 / p}
$$

If $1 \leq q \leq p \leq \infty$, then also

$$
d_{n}\left(i d: \ell_{p}^{m} \rightarrow \ell_{q}^{m}\right)=(m-n+1)^{1 / q-1 / p}
$$

Proof. For the estimate from above, we consider the operator

$$
P_{n-1}: \ell_{p}^{m} \rightarrow \ell_{q}^{m}, \quad P_{n-1}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{n-1}, 0, \ldots\right)
$$

This shows, that

$$
c_{n}\left(i d: \ell_{p}^{m} \rightarrow \ell_{q}^{m}\right) \leq a_{n}\left(i d: \ell_{p}^{m} \rightarrow \ell_{q}^{m}\right) \leq\left\|i d-P_{n-1} \mid \mathcal{L}\left(\ell_{p}^{m}, \ell_{q}^{m}\right)\right\|=(m-n+1)^{1 / q-1 / p}
$$

The estimate from below is the tricky part. Let $M \subset \ell_{p}^{m}$ be a subspace with codim $M<n$. Then Lemma 41 implies the existence of $x=\left(x_{1}, \ldots, x_{m}\right)$ with $\|x\|_{\infty}=1$ and $\#\left\{k:\left|x_{k}\right|=1\right\} \geq m-n+1$. Then we get by Lemma 42

$$
\left\|i d: M \rightarrow \ell_{q}^{m}\right\| \geq \frac{\|x\|_{q}}{\|x\|_{p}}=\frac{\left(\sum_{j=1}^{m}\left|x_{j}\right|^{q}\right)^{1 / q}}{\left(\sum_{j=1}^{m}\left|x_{j}\right|^{p}\right)^{1 / p}} \geq \frac{\left(\sum_{j \in K}\left|x_{j}\right|^{q}\right)^{1 / q}}{\left(\sum_{j \in K}\left|x_{j}\right|^{p}\right)^{1 / p}} \geq(m-n+1)^{1 / q-1 / p}
$$

hence

$$
c_{n}\left(i d: \ell_{p}^{m} \rightarrow \ell_{q}^{m}\right) \geq(m-n+1)^{1 / q-1 / p}
$$

If $p=\infty$, only notational changes are necessary.
The result for the Kolmogorov numbers then follows by duality.
Definition 44. Let H_{1} and H_{2} be two (separable) complex Hilbert spaces and let $T \in \mathcal{L}\left(H_{1}, H_{2}\right)$. Further let $\left\{u_{i}\right\}_{i \in I}$ be an orthonormal basis of H_{1}. Then the Hilbert-Schmidt norm of T is defined as

$$
\|T \mid \mathfrak{S}\|=\left(\sum_{i \in I}\left\|T u_{i}\right\|_{H_{2}}^{2}\right)^{1 / 2}
$$

Remark 17. The Hilbert-Schmidt norm does not depend on the choice of the orthonormal basis $\left\{u_{i}\right\}_{i \in I}$, cf. Exercises 33.

Theorem 45. Stechkin 1954.

$$
a_{n}\left(i d: \ell_{1}^{m} \rightarrow \ell_{2}^{m}\right)=\left(\frac{m-n+1}{m}\right)^{1 / 2} \quad \text { for } n=1, \ldots, m
$$

Proof. Step 1. Estimate from below.
Let

$$
L \in \mathcal{L}\left(\ell_{1}^{m}, \ell_{2}^{m}\right) \quad \text { with } \quad \text { rank } L<n
$$

Let $P \in \mathcal{L}\left(\ell_{2}^{m}, \ell_{2}^{m}\right)$ be the orthogonal projection of ℓ_{2}^{m} onto the orthogonal complement of the range of L, i.e. kern $\mathrm{P}=L\left(\ell_{2}^{m}\right)$.
Then $\|P \mid \mathfrak{S}\|^{2} \geq m-n+1$ and

$$
\sum_{k=1}^{m}\left\|P e_{k} \mid \ell_{2}^{m}\right\|^{2} \geq m-n+1
$$

where $\left\{e_{k}\right\}_{k=1}^{m}$ are the canonical unit vectors of \mathbb{R}^{m}.
Finally,

$$
\left\|i d-L\left|\mathcal{L}\left(\ell_{1}^{m}, \ell_{2}^{m}\right)\|\geq\| P(i d-L)\right| \mathcal{L}\left(\ell_{1}^{m}, \ell_{2}^{m}\right)\right\| \geq \max \left\{\left\|P e_{k} \mid \ell_{2}^{m}\right\|: k=1, \ldots, m\right\} \geq\left(\frac{m-n+1}{m}\right)^{1 / 2}
$$

Step 2. Estimate from above.
According to the Theorem 29, we have

$$
a_{n}\left(i d: \ell_{1}^{m} \rightarrow \ell_{2}^{m}\right)=d_{n}\left(i d: \ell_{1}^{m} \rightarrow \ell_{2}^{m}\right)=\inf \left\{\left\|i d-P \circ i d \mid \mathcal{L}\left(\ell_{1}^{m}, \ell_{2}^{m}\right)\right\|: \operatorname{rank} P<n\right\}
$$

where the infimum runs over all projections with rank $P<n$.
Using the fact, that

$$
\left\|A \mid \mathcal{L}\left(\ell_{1}^{m}, \ell_{2}^{m}\right)\right\|=\max _{j=1, \ldots, m}\left\|A e_{j}\right\|_{2}
$$

we may rewrite this as

$$
a_{n}\left(i d: \ell_{1}^{m} \rightarrow \ell_{2}^{m}\right)=\inf \left\{\max _{j=1, \ldots, m}\left\|(i d-P \circ i d) e_{j}\right\|_{2}: \operatorname{rank} P<n\right\}
$$

Finally, using orthogonality of P, we get

$$
\begin{equation*}
a_{n}\left(i d: \ell_{1}^{m} \rightarrow \ell_{2}^{m}\right)=\inf \left\{\max _{j=1, \ldots, m}\left(1-\left\|P e_{j}\right\|_{2}^{2}\right)^{1 / 2}: \operatorname{rank} P<n\right\} \tag{2.10}
\end{equation*}
$$

The proof is then easily finished with the help of
Lemma 46. Let $1 \leq n \leq m$ and $\left\{\pi_{j}\right\}_{j=1}^{m}$ with

$$
\sum_{j=1}^{m} \pi_{j}^{2}=n \quad \text { and } \quad 0 \leq \pi_{j} \leq 1 \quad \text { for } \quad j=1, \ldots, m
$$

Then there is an orthogonal projection $P: \ell_{2}^{m} \rightarrow \ell_{2}^{m}$ with $\operatorname{rank} P=n$ and

$$
\left\|P e_{j}\right\|_{2}=\pi_{j}, \quad \text { for all } \quad j=1, \ldots, m
$$

It is enough to choose $\pi_{j}^{2}=\frac{n-1}{m}$ and (2.10) becomes

$$
a_{n}\left(i d: \ell_{1}^{m} \rightarrow \ell_{2}^{m}\right) \leq \max _{j=1, \ldots, m}\left(1-\left\|P e_{j}\right\|_{2}^{2}\right)^{1 / 2}=\left(\frac{m-n+1}{m}\right)^{1 / 2}
$$

We return to the proof of Lemma 46.

Proof. The proof goes by induction over n. If $n=1$, then we set

$$
P y=<x, y>x,
$$

where $x=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)$. Then rank $P=1$ and

$$
\left\|P e_{j}\right\|_{2}^{2}=\left|<x, e_{j}>\right|^{2} \cdot\|x\|_{2}^{2}=\pi_{j}^{2}, \quad j=1, \ldots, m
$$

We suppose, that the assertion has been proved for some n and consider the sequence

$$
1 \geq \pi_{1} \geq \cdots \geq \pi_{m} \geq 0 \quad \text { with } \quad \sum_{j=1}^{m} \pi_{j}^{2}=n+1
$$

Then there exists a natural number k (which we shall fix for the rest of the proof), such that

$$
\sum_{j=1}^{k} \pi_{j}^{2} \leq 1<\sum_{j=1}^{k+1} \pi_{j}^{2}
$$

We define

$$
\sigma_{i}= \begin{cases}\pi_{i}, & i=1, \ldots, k-1 \\ \left(1-\sum_{j=1}^{k-1} \pi_{j}^{2}\right)^{1 / 2}, & i=k, \\ \left(\sum_{j=1}^{k+1} \pi_{j}^{2}-1\right)^{1 / 2}, & i=k+1, \\ \pi_{i}, & i=k+2, \ldots, m\end{cases}
$$

Then

$$
\sum_{j=1}^{k} \sigma_{j}^{2}=1 \quad \text { and } \quad \sum_{j=k+1}^{m} \sigma_{j}^{2}=\sum_{j=1}^{m} \pi_{j}^{2}-1=n .
$$

Hence, there is an orthogonal projection P with rank $P=n$ and

$$
\left\|P e_{j}\right\|_{2}^{2}=0 \text { if } j=1, \ldots, k \quad \text { and } \quad\left\|P e_{j}\right\|_{2}^{2}=\sigma_{j}^{2} \text { if } j=k+1, \ldots, m .
$$

We define

$$
x_{0}=\left(\sigma_{1}, \ldots, \sigma_{k}, 0, \ldots, 0\right) \in \mathbb{R}^{m} \quad \text { and } \quad P_{0} y:=<x_{0}, y>x_{0}+P y
$$

Then

- $\left\|x_{0}\right\|_{2}=1$,
- $P x_{0}=0$,
- P_{0} is an orthogonal projection,
- rank $P_{0}=n+1$,
- $\left\|P_{0} e_{i}\right\|_{2}^{2}=\sigma_{i}^{2}$ for $i=1,2, \ldots, m$.

For $0 \leq \alpha \leq 1$, we define the orthonormal sequence $\left\{u_{i}\right\}_{i=1}^{m}$ by

$$
u_{i}^{\alpha}= \begin{cases}e_{i}, & i=1, \ldots, k-1 \\ \left(1-\alpha^{2}\right)^{1 / 2} e_{k}+\alpha e_{k+1}, & i=k, \\ -\alpha e_{k}+\left(1-\alpha^{2}\right)^{1 / 2} e_{k+1}, & i=k+1, \\ e_{i}, & i=k+2, \ldots, m\end{cases}
$$

Hence,

$$
u_{i}^{0}=\left\{\begin{array}{ll}
e_{i}, & i=1, \ldots, k-1 \\
e_{k}, & i=k, \\
e_{k+1}, & i=k+1, \\
e_{i}, & i=k+2, \ldots, m,
\end{array} \quad \text { and } \quad u_{i}^{1}= \begin{cases}e_{i}, & i=1, \ldots, k-1 \\
e_{k+1}, & i=k, \\
-e_{k}, & i=k+1, \\
e_{i}, & i=k+2, \ldots, m\end{cases}\right.
$$

and u_{i}^{α} represents a continuous way between these two extrema.
As

$$
\begin{aligned}
& \left(\begin{array}{cc}
\left(1-\alpha^{2}\right)^{1 / 2} & \alpha \\
-\alpha & \left(1-\alpha^{2}\right)^{1 / 2}
\end{array}\right) \cdot\left(\begin{array}{cc}
\left(1-\alpha^{2}\right)^{1 / 2} & -\alpha \\
\alpha & \left(1-\alpha^{2}\right)^{1 / 2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \\
& \left(\begin{array}{cc}
\left(1-\alpha^{2}\right)^{1 / 2} & -\alpha \\
\alpha & \left(1-\alpha^{2}\right)^{1 / 2}
\end{array}\right) \cdot\left(\begin{array}{cc}
\left(1-\alpha^{2}\right)^{1 / 2} & \alpha \\
-\alpha & \left(1-\alpha^{2}\right)^{1 / 2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),
\end{aligned}
$$

we see, that the operator

$$
U_{\alpha} y:=\sum_{i=1}^{m}<e_{i}, y>u_{i}^{\alpha}
$$

is unitary. It follows, that if $P_{\alpha}=U_{\alpha}^{*} P_{0} U_{\alpha},{ }^{23}$ then

$$
\begin{aligned}
<x-P_{\alpha} x, P_{\alpha} y> & =<x-U_{\alpha}^{*} P_{0} U_{\alpha} x, U_{\alpha}^{*} P_{0} U_{\alpha} y>=<U_{\alpha} x-U_{\alpha} U_{\alpha}^{*} P_{0} U_{\alpha} x, U_{\alpha} U_{\alpha}^{*} P_{0} U_{\alpha} y> \\
& =<U_{\alpha} x-P_{0} U_{\alpha} x, P_{0} U_{\alpha} y>=0 .
\end{aligned}
$$

Hence, P_{α} is an orthogonal projection for every $0 \leq \alpha \leq 1$. Furthermore, we have

- $\left\|P_{\alpha} e_{i}\right\|_{2}^{2}=\sigma_{i}^{2}=\pi_{i}^{2}$ for all $i=1, \ldots, k-1$ and $i=k+2, \ldots, m$ and all $0 \leq \alpha \leq 1$,
- $\left\|P_{0} e_{k}\right\|_{2}^{2}=\sigma_{k}^{2}$,
- $\left\|P_{1} e_{k}\right\|_{2}^{2}=\sigma_{k+1}^{2}$,
- $\sigma_{k}^{2} \geq \pi_{k}^{2} \geq \pi_{k+1}^{2} \geq \sigma_{k+1}^{2}$.

Since $\left\|P_{\alpha} e_{k}\right\|_{2}^{2}$ depends continuously on α, there is an $\tilde{\alpha} \in[0,1]$ with $\left\|P_{\tilde{\alpha}} e_{k}\right\|_{2}^{2}=\pi_{k}^{2}$, which implies also $\left\|P_{\tilde{\alpha}} e_{k+1}\right\|_{2}^{2}=\pi_{k+1}^{2}$. Hence $P_{\tilde{\alpha}}$ is the desired projection.

Theorem 47.

$$
a_{n}\left(i d: \ell_{1} \rightarrow c_{0}\right)=1 \quad \text { for } \quad n=1,2, \ldots
$$

[^16]Proof. The estimate from above is trivial. For the estimate from below, we consider an arbitrary $A \in \mathcal{F}\left(\ell_{1}, c_{0}\right)$. Then A is compact and

$$
A\left(B_{\ell_{1}}\right) \subset \bigcup_{j=1}^{N} y^{j}+\varepsilon B_{c_{0}}
$$

for every $\varepsilon>0$ and suitable $N \in \mathbb{N}$ and $y^{1}, \ldots, y^{N} \in c_{0}$.
We choose an $n \in \mathbb{N}$, so that $\left|y_{n}^{j}\right|<\varepsilon$ for all $j=1, \ldots, N$. Then for some j^{\prime} we have $\left\|A e_{n}-y^{j^{\prime}}\right\|_{\infty} \leq \varepsilon$ and hence

$$
\left\|i d-A\left|\mathcal{L}\left(\ell_{1}, c_{0}\right)\|\geq\|(i d-A) e_{n} \|_{\infty} \geq\left|1-\left(A e_{n}\right)_{n}\right| \geq\left|1-y_{n}^{j^{\prime}}\right|-\left|y_{n}^{j^{\prime}}-\left(A e_{n}\right)_{n}\right| \geq 1-2 \varepsilon .\right.\right.
$$

This proves, that

$$
\left\|i d-A \mid \mathcal{L}\left(\ell_{1}, c_{0}\right)\right\| \geq 1 .
$$

Theorem 48.

$$
a_{n}\left(i d: \ell_{1} \rightarrow \ell_{\infty}\right)=1 / 2 \quad \text { for } \quad n=2, \ldots .
$$

Proof. Let

$$
A_{0} y:=\frac{x}{2} \cdot \sum_{i=1}^{\infty} x_{i} y_{i},
$$

where $x=(1,1,1, \ldots)$. Then rank $A_{0}=1$ and

$$
\left\|i d-A \mid \mathcal{L}\left(\ell_{1}, \ell_{\infty}\right)\right\|=\frac{1}{2}
$$

To prove the estimate from below, we suppose, that there is an $A \in \mathcal{F}\left(\ell_{1}, \ell_{\infty}\right)$, such that

$$
\left\|i d-A\left|\mathcal{L}\left(\ell_{1}, \ell_{\infty}\right) \|=\sup _{j, k \in \mathbb{N}}\right|\left(e_{j}-A e_{j}\right)_{k} \mid<1 / 2\right.
$$

But the estimate

$$
\begin{aligned}
\left\|A e_{j}-A e_{k}\right\|_{\infty} & \geq\left|\left(A e_{j}\right)_{k}-\left(A e_{k}\right)_{k}\right|=\left|1-\left(A e_{j}\right)_{k}-\left(1-\left(A e_{k}\right)_{k}\right)\right| \geq 1-\left|\left(A e_{j}\right)_{k}\right|-\left|1-\left(A e_{k}\right)_{k}\right| \\
& \geq 1-2\left\|i d-A \mid \mathcal{L}\left(\ell_{1}, \ell_{\infty}\right)\right\|>0 .
\end{aligned}
$$

Hence $A\left(B_{\ell_{1}}\right)$ is not precompact in ℓ_{∞}, which is a contradiction.
Next, we consider the approximation numbers of $i d: \ell_{1}^{m} \rightarrow \ell_{\infty}^{m}$. We start with the following simple observation

$$
\left\|i d-A\left|\mathcal{L}\left(\ell_{1}^{m}, \ell_{\infty}^{m}\right)\left\|=\max _{j=1, \ldots, m}\right\|(i d-A) e_{j} \|_{\infty}=\max _{j, k=1, \ldots, m}\right| e_{j, k}-\left(A e_{j}\right)_{k}\left|=\max _{j, k=1, \ldots, m}\right| \delta_{k}^{j}-A_{k, j} \mid .\right.
$$

The last expression is to be minimalised through all matrices $A=\left(A_{i, j}\right)_{i, j=1}^{m}$ with rank $A<n$.
The following lemma describes an easy way, how to produce a (symmetric) matrix A with small rank.
Lemma 49. Let $1 \leq n \leq m$ and let $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$. Then the matrix

$$
A=\left(A_{i, j}\right)_{i, j=1}^{m} \quad \text { with } \quad A_{i, j}=<x_{i}, x_{j}>
$$

has rank $A \leq n$.

Proof. Let $y=\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}$ and write

$$
\begin{aligned}
A y & =\sum_{i=1}^{m} \sum_{j=1}^{m}<x_{i}, x_{j}>y_{j} e_{i}=\sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{k=1}^{n} x_{i, k} x_{j, k}<y, e_{j}>e_{i}=\sum_{k=1}^{n}<y, \sum_{j=1}^{m} x_{j, k} e_{j}>\sum_{i=1}^{m} x_{i, k} e_{i} \\
& =\sum_{k=1}^{n}<y, \chi_{k}>\chi_{k}
\end{aligned}
$$

where $\chi_{k}=\sum_{j=1}^{m} x_{j, k} e_{j} \in \mathbb{R}^{m}$.

So, for the estimate of $a_{n}\left(i d: \ell_{1}^{m} \rightarrow \ell_{\infty}^{m}\right)$ we need to construct m vectors x_{1}, \ldots, x_{m} in \mathbb{R}^{n}, such that

- $\left\|x_{i}\right\|_{2}=1$, i.e. $\left(x_{i}, x_{i}\right)=1$ for all $i=1, \ldots, m$,
- $\left|<x_{i}, x_{j}>\right|$ is as small as possible for $i \neq j$.

We shall give two such constructions. One probabilistic, based on Khintchine's inequalities and another explicit, based on polynmials on $G F(p)$.

Lemma 50. Khintchine's Inequality Let

$$
r_{n}(t)=\operatorname{sign} \sin \left(2^{n} \pi t\right), \quad n \in \mathbb{N}, \quad t \in[0,1]
$$

Then for every $1 \leq p<\infty$, there are two constants A_{p} and B_{p}, such that

$$
A_{p}\left(\sum_{n=1}^{m}\left|a_{n}\right|^{2}\right)^{1 / 2} \leq\left(\int_{0}^{1}\left|\sum_{n=1}^{m} a_{n} r_{n}(t)\right|^{p} d t\right)^{1 / p} \leq B_{p}\left(\sum_{n=1}^{m}\left|a_{n}\right|^{2}\right)^{1 / 2}
$$

for every $m \in \mathbb{N}$ and all $a_{1}, \ldots, a_{m} \in \mathbb{R}$.

Proof. See [HHZ, pp. 205-206].
Remark 18. a) Let us remark (without proof), that $B_{p} \leq([p / 2]+1)^{1 / 2}$.
b) The Khintchine's inequality may be rewritten using sums. Then it reads

$$
A_{p}\left(\sum_{n=1}^{m}\left|a_{n}\right|^{2}\right)^{1 / 2} \leq\left(\frac{1}{2^{m}} \sum_{e \in\{-1,+1\}^{m}}|<a, e>|^{p} d t\right)^{1 / p} \leq B_{p}\left(\sum_{n=1}^{m}\left|a_{n}\right|^{2}\right)^{1 / 2}
$$

for every $m \in \mathbb{N}$ and every $a \in \mathbb{R}^{m}$.
Lemma 51. There are $x_{1}, \ldots, x_{m} \in \ell_{2}^{n}$ such that $\left\|x_{i}\right\|_{2}=1$ for all $i=1,2, \ldots, m$ and

$$
\left|\left(x_{i}, x_{j}\right)\right| \leq 2\left[\frac{\log _{2} m}{n}\right]^{1 / 2} \quad \text { for } \quad i \neq j
$$

Proof. If $m \leq n$, then we may take an orthonormal family $\left(x_{1}, \ldots, x_{m}\right) \subset \mathbb{R}^{n}$. Let us suppose, that $m \geq n$ and that the result has already been proved for this m. Then

$$
\sum_{i=1}^{m} \sum_{e \in\{-1,+1\}^{n}}\left|<x_{i}, e>\right|^{p} \leq B_{p}^{p} m 2^{n} .
$$

Hence, at least for one $e \in\{-1,+1\}^{n}$,

$$
\sum_{i=1}^{m}\left|<x_{i}, e>\right|^{p} \leq B_{p}^{p} m
$$

We put $x_{m+1}:=n^{-1 / 2} e$. Hence $\left\|x_{m+1}\right\|_{2}=1$ and

$$
\left|<x_{i}, x_{m+1}>\right| \leq B_{p} m^{1 / p} n^{-1 / 2} \quad \text { for } \quad i=1,2, \ldots, m .
$$

By choosing $p:=\log _{2} m$, we obtain

$$
\left|<x_{i}, x_{m+1}>\right| \leq 2\left[\frac{\log _{2} m}{n}\right]^{1 / 2} \quad \text { for } \quad i=1,2, \ldots, m
$$

Lemma 52. Let $0<\lambda<1$. Then there is a constant $c_{\lambda}>0$, such that for every $m^{\lambda} \leq n \leq m$, there are m unit vectors $x_{1}, x_{2}, \ldots, x_{m}$ in ℓ_{2}^{n}, such that

$$
\left|\left(x_{i}, x_{j}\right)\right| \leq \frac{c_{\lambda}}{n^{1 / 2}}, \quad i \neq j .
$$

Proof. Let p be a prime number and let $G F(p)$ be the Galois field, i.e. the set $\{0,1, \ldots, p-1\}$ equipped with addition and multiplication modulo p. Let $k \in \mathbb{N}$ and let \mathcal{P}_{k} denotes all the polynomes over $G F(p)$ with degree smaller or equal k. For every $\pi \in P_{k}$, we define a vector

$$
x^{\pi} \in \ell_{2}^{p^{2}}, \quad x_{i, j}^{\pi}= \begin{cases}1 & \text { if } \pi(i)=j, \\ 0 & \text { otherwise } .\end{cases}
$$

Hence

- $\left\|x^{\pi}\right\|_{2}=\sqrt{p}$ for every $\pi \in \mathcal{P}_{k}$,
- $\left|\left(x^{\pi}, x^{\sigma}\right)\right| \leq k$ for all $\pi, \sigma \in \mathcal{P}_{k}$ with $\pi \neq \sigma$,
- one obtains $\# \mathcal{P}_{k}=p^{k+1}$ vectors.

Hence the system

$$
\left\{\frac{x^{\pi}}{\sqrt{p}}\right\}_{\pi \in \mathcal{P}_{k}}
$$

has all the desired properties for

$$
n=p^{2}, \quad \lambda=\frac{2}{k+1}, \quad m=p^{k+1}, \quad c_{\lambda}=k .
$$

Using the vectors of Lemma 51 and Lemma 52, respectively, one proves
Theorem 53. a)

$$
a_{n}\left(i d: \ell_{1}^{m} \rightarrow \ell_{\infty}^{m}\right) \leq 3\left[\frac{\log _{2}(m+1)}{n}\right]^{1 / 2}, \quad n=1, \ldots, m
$$

b) Let $0<\lambda<1$. Then there is a $c_{\lambda}>0$, such that

$$
a_{n}\left(i d: \ell_{1}^{m} \rightarrow \ell_{\infty}^{m}\right) \leq \frac{c_{\lambda}}{n^{1 / 2}}, \quad m^{\lambda} \leq n \leq m .
$$

Proof. Step 1. Proof of a)
Let x_{1}, \ldots, x_{n} be the vectors constructed in Lemma 51 and define $A=\left\{A_{i, j}\right\}_{i, j=1}^{m}=\left\{<x_{i}, x_{j}>\right\}_{i, j=1}^{m}$. Then

$$
a_{n+1}\left(i d: \ell_{1}^{m} \rightarrow \ell_{\infty}^{m}\right) \leq\left\|i d-A \mid \mathcal{L}\left(\ell_{1}^{m}, \ell_{\infty}^{m}\right)\right\| \leq 2\left[\frac{\log _{2} m}{n}\right]^{1 / 2} \leq 3\left[\frac{\log _{2}(m+1)}{n+1}\right]^{1 / 2}
$$

Step 2. Proof of b) follows in the same way.

Index

p-norm, 5
s-scale, 36
annihilator, 46
Carl's trick, 25
convex hull, 4
Dirichlet problem, 29
eigenfrequency, 30
eigenvalue, 22
algebraic multiplicity, 22
geometrical multiplicity, 22
eigenvector, 22
entropy numbers, 8
Fourier transform, 14
function
convex, 4
functional, 3
Peetre interpolation, 15
Galois field, 59
Gelfand numbers, 39
Kolmogorov numbers, 39
norm, 3
Hilbert-Schmidt, 53
numbers
approximation, 36
operator
compact, 8
convolution, 14
diagonal, 33, 38, 50
linear, 3
linear and continuous, 3
norm, 4
sectional, 38
unbounded, 30
point
extreme, 51
principle of local reflexivity, 49
quasi-norm, 5
set
compact, 8
convex, 4
open, 8
side, 50
space
p-normed, 5
p-Banach, 5
Banach, 3
dual, 4
quasi-Banach, 5
quasi-normed, 5
second dual, 46
spectrum, 22
stationary solution, 29
theorem
Pitt's, 38
Schauder's, 46
theory
interpolation, 13
Riesz-Schauder, 22
unit ball, 4
wavelet
father, 26
mother, 26

References

[1] D. E. Edmunds and H. Triebel, Function spaces, entropy numbers, differential operators, Cambridge University Press, 1996.
[2] D. D. Haroske and H. Triebel, Distributions, Sobolev spaces, elliptic equations, EMS Publishing House, 2008.
[3] H. Heuser, Lehrbuch der Analysis, Teil 1, 6. Auflage, B. G. Teubner Stuttgart 1989.
[4] A. Pietsch, Operator ideals, Deutsch. Verlag Wiss., Berlin, 1978; North-Holland, Amsterdam-London-New York-Tokyo, 1980.
[5] A. Pietsch, Eigenvalues and s-numbers, Cambridge University Press, 1987, Cambridge.

[^0]: ${ }^{1}$ This shall be sometimes abbreviated as "iff" for short
 ${ }^{2}$ i.e. every Cauchy sequence is convergent

[^1]: ${ }^{3}$ This means, that there are constants c_{1} and c_{2} such that $c_{1}\|x\| \leq\|x\|_{p} \leq c_{2}\|x\|$ for all $x \in X$. The topologies induced by equivalent quasi-norms are identical.

[^2]: ${ }^{4}$ cf. Exercise 7a)
 ${ }^{5} \mathrm{cf}$. Exercise 10b.

[^3]: ${ }^{6}$ We denote by $A+B=\{a+b: a \in A, b \in B\}$
 ${ }^{7}$ cf. Exercise 16

[^4]: ${ }^{8}$ cf. Exercise 12 for further information about Gamma (and Beta) function.

[^5]: ${ }^{9}$ The proof of this classical result goes beyond the scope of this script and we reffer to [3, Section 96, page 510] for details.
 ${ }^{10}$ In Jena, a lecture with exactly this title is sometimes offered by PD. D. D. Haroske.

[^6]: ${ }^{11}$ This means, that every element $x \in X_{\theta}$ may be written as $x=x_{0}+x_{1}$, where $x_{0} \in X_{0}$ and $x_{1} \in X_{1}$.

[^7]: ${ }^{12}$ To be exact, there is some partial progress in this area connected mainly with the names of M. Cwikel, F. Cobos, T. Kühn and others, but the full solution is still missing.

[^8]: ${ }^{13}$ if $t_{0}+\cdots+t_{m}=k$, then at most k of $t_{j}^{\prime} s$ are different from zero. The factor 2^{k} corresponds to all possible signs.
 ${ }^{14}$ Just consider $m+k$ points on the real line and all the ways, in which you can scratch m of them. Then t_{0} is the number of points before the first hole, t_{1} the number of points between the first and the second hole, aso.
 ${ }^{15} \mathrm{By}\lfloor a\rfloor$ we denote the integer part of a real number a, i.e. $\lfloor a\rfloor \leq a<\lfloor a\rfloor+1$.

[^9]: ${ }^{16}$ Full proof may be comming in some appendix...

[^10]: ${ }^{17}$ Of course, vol denotes the Lebesgue measure on $\mathbb{R}^{2 n}$.

[^11]: ${ }^{18}$ Note the plus sign!

[^12]: ${ }^{19}$ Let us first ignore the fact, that with this choice the numbers n_{j} are not natural.

[^13]: ${ }^{20}$ cf. Exercise 27

[^14]: ${ }^{21} \mathrm{~A}$ detailed investigation of the next line show, that $\left\|y_{j}\right\|_{Y}<\varepsilon$, which seems to be in contradiction with (2.1), but this holds only for those y_{j} 's, which play a role in covering of $T(M)$.

[^15]: ${ }^{22}$ The theorem holds also for locally convex Hausdorff spaces(with the same proof), which enables to apply the statement also to weak topologies.

[^16]: ${ }^{23}$ Note, that P_{0} according to this new definition coincides with the P_{0} defined above.

