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1 INTRODUCTION

1 Introduction

1.1 Banach spaces

Definition 1. Let X be a vector space over R (or C) equipped with a norm || · || : X → [0,∞). It
means, that

• There are operations + : X ×X → X and · : R ×X → X with the usual properties.

• The function || · || satisfies
(1) ||x|| = 0 if, and only if,1 x = 0,
(2) ||αx|| = |α| · ||x|| for all α ∈ R (or all α ∈ C) and all x ∈ X,
(3) ||x+ y|| ≤ ||x|| + ||y|| for all x, y ∈ X.

If X is complete2, it is called a Banach space.

Remark 1. We shall write ||x||X or ||x|X|| to emphasise the space X in the notation.

Remark 2. We recall the most classical Banach spaces

• Rn,Cn, ℓnp (R), ℓnp (C) with 1 ≤ p ≤ ∞,

• ℓp, c0, c00 with 1 ≤ p ≤ ∞,

• Lp([0, 1]), Lp(Ω), C(Ω) with 1 ≤ p ≤ ∞.

Remark 3. The most important concepts of functional analysis are

• completeness,

• duality,

• convexity,

• compactness.

Completeness shall be used only very rarely in this text.

1.2 Duality and convexity

Definition 2. Let X,Y be two Banach spaces.

• f : X → Y is linear, iff
f(αx+ βy) = αf(x) + βf(y)

for all α, β ∈ R (or C) and all x, y ∈ X.

• If f : X → Y is linear, it is continuous, iff there exists a real number M > 0, such that

||f(x)||Y ≤M ||x||X

for all x ∈ X.

• If Y = R (or Y = C) and f : X → Y is linear and continuous, then it is called functional.

1This shall be sometimes abbreviated as “iff” for short
2i.e. every Cauchy sequence is convergent
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1.2 Duality and convexity

• L(X,Y ) = {f : X → Y, f is linear and continuous}.

• X ′ = L(X,R) or X ′ = L(X,C), respectively, is the dual space of X.

Remark 4. • L(X,Y ) is complete with respect to the operator norm

||f |L(X,Y )|| = sup
x 6=0

||f(x)||Y
||x||X

= sup
x∈X:||x||=1

||f(x)||Y .

Especially,

||f |X ′|| = sup
x 6=0

|f(x)|
||x||X

= sup
x∈X:||x||=1

|f(x)|.

• The supremum above may not be attained, cf. Exercise 2.

• It is usual to identify the dual space with some other well known space. For example, (ℓ1)
′ = ℓ∞,

cf. Exercise 3. In this sense, we have

(ℓp)
′ = ℓp′ , where

1

p
+

1

p′
= 1, 1 ≤ p <∞.

Let us recall, that (ℓm∞)′ = ℓm1 , but (ℓ∞)′ 6= ℓ1, cf. Exercise 8.

• The operators may be composed in the usual way, i.e.

S ∈ L(X,Y ), T ∈ L(Y,Z) =⇒ T ◦ S ∈ L(X,Z)

and
||T ◦ S|L(X,Z)|| ≤ ||T |L(Y,Z)|| · ||S|L(X,Y )||.

Definition 3. Let X be a vector space.

a) A set M ⊂ X is called convex, iff

∀x, y ∈M ∀λ : 0 ≤ λ ≤ 1 λx+ (1 − λ)y ∈M.

b) Let M ⊂ X be convex and let f : M → R be an arbitrary function. Then f is convex, iff

∀x, y ∈M ∀λ : 0 ≤ λ ≤ 1 f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y).

c) Let M ⊂ X. Then we define the convex hull of M by

conv M =
⋂

K⊃M
K convex

K.

Remark 5. • Convexity is defined only algebraically. No topology or norm is assumed on X and
no continuity of f is necessary.

• Let X be a Banach space and let

BX = {x ∈ X : ||x||X ≤ 1}

be its closed unit ball. Then BX is convex.
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1 INTRODUCTION

Definition 4. a) Let X be a vector space and let || · || : X → [0,∞) with
(1) ||x|| = 0 if, and only if, x = 0,
(2) ||αx|| = |α| · ||x|| for all α ∈ R (or all α ∈ C) and all x ∈ X,
(3) ||x+ y|| ≤ C(||x|| + ||y||) for some C ≥ 1 and all x, y ∈ X.

Then || · || is called a quasi-norm and X is a quasi-normed space. If X is even complete in this
quasi-norm, it is called also a quasi-Banach space.

b) Let X be a vector space and let || · || : X → [0,∞) with
(1) ||x|| = 0 if, and only if, x = 0,
(2) ||αx|| = |α| · ||x|| for all α ∈ R (or all α ∈ C) and all x ∈ X,
(3) ||x+ y||p ≤ ||x||p + ||y||p for some 0 < p ≤ 1 and all x, y ∈ X.

Then || · || is called a p-norm and X is a p-normed space. If X is even complete in this p-norm, it is
called also a p-Banach space.

Example 1. Let us consider the space Lp([0, 1]) with 0 < p < 1. This is a space of (equivalence classes
of) measurable functions on [0, 1], equipped with a mapping

||f |Lp([0, 1])|| =

(∫ 1

0
|f(x)|pdx

)1/p

.

• Then it holds

||f + g|Lp([0, 1])||p =

∫ 1

0
|f(x) + g(x)|pdx ≤

∫ 1

0
|f(x)|p + |g(x)|pdx

= ||f |Lp([0, 1])||p + ||g|Lp([0, 1])||p.

Here, we used the first inequality from Exercise 5a) with a = |f(x)| and b = |g(x)|. Hence, || · ||
is a p-norm.

• On the other hand, we get

||f + g|Lp([0, 1])|| =

(∫ 1

0
|f(x) + g(x)|pdx

)1/p

≤
(∫ 1

0
|f(x)|p + |g(x)|pdx

)1/p

=

(∫ 1

0
|f(x)|pdx+

∫ 1

0
|g(x)|pdx

)1/p

=
(
||f |Lp([0, 1])||p + ||g|Lp([0, 1])||p

)1/p

≤ 21/p−1
(
||f |Lp([0, 1])|| + ||g|Lp([0, 1])||

)
.

Here, we have used the second inequality from Exercise 5b) with a = ||f |Lp([0, 1])|| and b =
||g|Lp([0, 1])||. Hence || · || is also a quasi-norm.

Next theorem shows, that this behaviour is no coincidence.

Theorem 5. a) Let X be a p-Banach space. Then X is also a quasi-Banach space with C = 21/p−1.

b) Let X be a quasi-Banach space with the quasi-norm || · ||. Then there is a 0 < p ≤ 1 and a p-norm
|| · ||p, which is equivalent 3 to || · ||.

3This means, that there are constants c1 and c2 such that c1||x|| ≤ ||x||p ≤ c2||x|| for all x ∈ X. The topologies
induced by equivalent quasi-norms are identical.
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1.2 Duality and convexity

Proof. The proof of a) copies the proof given in Example 1.

||f + g|| ≤
(
||f ||p + ||g||p

)1/p ≤ [21−p(||f || + ||g||)p]1/p = 21/p−1
(
||f || + ||g||

)
.

The proof of b) is the essential part.

Let C denote the constant from the triangle inequality for || · ||. We put C0 = 2C ≥ 2.

We define p through Cp0 = 2 (i.e. 0 < p ≤ 1) and put

||f ||p = inf
f=f1+···+fm

(
||f1||p + · · · + ||fm||p

)1/p
.

The infimum runs over all decompositions f = f1 + · · · + fm.

It remains to prove, that || · ||p has all the properties of a p-norm. This is unfortunately a bit technical.
We start with the following observation.

Step 1. We prove through induction, that

||f1 + · · · + fm|| ≤ max
1≤j≤m

(Cj0 ||fj ||). (1.1)

• The case m = 2 is trivial.

||f1 + f2|| ≤ C(||f1|| + ||f2||) ≤ max(C0||f1||, C0||f2||) ≤ max(C0||f1||, C2
0 ||f2||).

• The step m− 1 → m follows.

||f1 + . . . + fm|| ≤ C(||f1|| + ||f2 + · · · + fm||) ≤ max(C0||f1||, C0||f2 + · · · + fm||)
≤ max(C0||f1||, C0 max(C0||f2||, C2

0 ||f3||, . . . , Cm−1
0 ||fm||))

= max(C0||f1||, C2
0 ||f2||, C3

0 ||f3||, . . . , Cm0 ||fm||)).

Step 2. We show, that || · ||pp is subadditiv, i.e.

||f + g||pp ≤ ||f ||pp + ||g||pp.

Let f = f1 + · · · + fm and g = g1 + · · · + gn, such that

||f ||p ≥ (1 − ε)(||f1||p + · · · + ||fm||p)1/p and ||g||p ≥ (1 − ε)(||g1||p + · · · + ||gn||p)1/p,

where ε > 0 is arbitrary. Then f + g = f1 + · · · + fm + g1 + · · · + gn and

||f + g||p ≤ (||f1||p + · · · + ||fm||p + ||g1||p + · · · + ||gn||p)1/p ≤
[( ||f ||p

1 − ε

)p

+

( ||g||p
1 − ε

)p]1/p

.

Hence

||f + g||pp ≤
1

(1 − ε)p
(
||f ||pp + ||g||pp

)

and we let ε→ 0.

It follows trivially, that ||αf ||p = |α| · ||f ||p and ||f ||p ≤ ||f ||. We show, that there is a constant A ≥ 1,
such that

||f || ≤ A||f ||p, f ∈ X. (1.2)
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1 INTRODUCTION

This inequality proves, that || · || and || · ||p are equivalent and gives as a byproduct, that ||f ||p = 0 if,
and only if, f = 0.

Step 3. Proof of (1.2).

We show by induction, that

||f1 + · · · + fm|| ≤ C0(N(f1)
p + · · · +N(fm)p)1/p, (1.3)

where

N(f) =

{

0, if f = 0,

Ck0 , if Ck−1
0 < ||f || ≤ Ck0 , k ∈ Z.

From (1.3) follows (1.2) immediately. If f = f1 + · · · + fm, then

||f || = ||f1 + · · · + fm|| ≤ C0(N(f1)
p + · · · +N(fm)p)1/p

≤ C0((C0||f1||)p + · · · + (C0||fm||)p)1/p = C2
0 (||f1||p + · · · + ||fm||p)1/p

and we may consider the infimum over f = f1 + · · · + fm.

• The proof of (1.3) for m = 1 is simple:

||f1|| ≤ N(f1) ≤ C0(N(f1)
p)1/p.

• The proof of m→ m+ 1 in (1.3).

We assume, that ||f1|| ≥ · · · ≥ ||fm+1||. If all N(fj), j = 1, . . . ,m + 1 are different, then we get
by (1.1)

||f1 + · · · + fm+1|| ≤ max
1≤j≤m+1

(Cj0 ||fj ||)

and

Cj0 ||fj|| ≤ C0N(f1) ≤ C0(N(f1)
p + · · · +N(fm)p)1/p.

If N(fj) = N(fj+1) = C l0 for some 1 ≤ j ≤ m and some l ∈ Z, then

||fj + fj+1|| ≤ C0 max(||fj ||, ||fj+1||) ≤ C l+1
0 .

Hence

N(fj + fj+1)
p ≤ C

(l+1)p
0 = 2l+1 = 2l + 2l = N(fj)

p +N(fj+1)
p.

Finally, we get by induction assumption

||f1 + · · · + fm+1|| = ||f1 + · · · + fj−1 + (fj + fj+1) + fj+2 + · · · + fm+1||

≤ C0

(

N(f1)
p + · · · +N(fj−1)

p +N(fj + fj+1)
p +N(fj+2)

p + · · · +N(fm+1)
p

)1/p

≤ C0

(

N(f1)
p + · · · +N(fm+1)

p

)1/p

.
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1.3 Compactness and entropy numbers

1.3 Compactness and entropy numbers

Definition 6. Let X be a Banach space, or a p-Banach space or a quasi-Banach space.

a) M ⊂ X is open, iff ∀x ∈M ∃ε > 0 : B(x, ε) = {y ∈ X : ||x− y||X < ε} ⊂M.

b) K ⊂ X is compact, iff ∀{Mα}α∈I ,Mα open with
⋃

α∈I

Mα ⊃ K there exists a finite subsystem

{a1, . . . , αn} ⊂ I with

n⋃

i=1

Mαi ⊃ K.

c) T ∈ L(X,Y ) is compact, iff TBX ⊂ Y is compact.

Let K ⊂ X be compact. Then4 for every ε > 0, there are finitely many points x1, . . . , xn, such that

n⋃

i=1

B(xi, ε) ⊃ K.

Of course, the number of points n(ε) grows, as ε → 0. The concept of dyadic entropy numbers works
with the inverse function, i.e. we ask, how large balls do we need to take to cover the set K with only
n of them.

Definition 7. Let X,Y be two quasi-Banach spaces and let T ∈ L(X,Y ). The sequence

en(T ) = inf{ε > 0 : ∃y1, . . . , y2n−1 : T (BX) ⊂
2n−1
⋃

i=1

B(yi, ε)}, n ∈ N,

is called the sequence of entropy numbers of the operator T .

Remark 6. We shall sometimes write yi + εBY or BY (yi, ε) instead of B(yi, ε).

The following theorem summarises the basic properties of entropy numbers.

Theorem 8. Let X,Y,Z be three quasi-Banach spaces, let S, T ∈ L(X,Y ) and let R ∈ L(Y,Z). Then
it holds:

(i) ||T |L(X,Y )|| ≥ e1(T ) ≥ e2(T ) ≥ · · · ≥ 0.
(ii) en(T ) → 0, iff T is compact.
(iii) ||T |L(X,Y )|| = e1(T ) if Y is a Banach space5

(iv) ∀n1, n2 ∈ N holds en1+n2−1(R ◦ S) ≤ en1
(R)en2

(S).
(v) If Y is a p-Banach space, then

epn1+n2−1(S + T ) ≤ epn1
(S) + epn2

(T ).

Proof. (i) The inequality ej(T ) ≥ ej+1(T ) follows directly from the Definition 7. We write ||T || instead
of ||T |L(X,Y )|| for short. The inequality ||T || ≥ e1(T ) follows from

T (BX) ⊂ B(0, ||T ||) ⊂ Y.

4cf. Exercise 7a)
5cf. Exercise 10b.
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1 INTRODUCTION

(iii) If Y is a Banach space and e1(T ) < ||T ||, then there exist some real number 0 < a < ||T || and
some y ∈ Y , such that

T (BX) ⊂ B(y, a),

i.e.

||Tx− y||Y ≤ a

for all x ∈ BX . Then for every x ∈ BX we obtain

||Tx||Y ≤
∣
∣
∣
∣
Tx

2
+
y

2

∣
∣
∣
∣
Y

+
∣
∣
∣
∣
Tx

2
− y

2

∣
∣
∣
∣
Y

=
1

2
||T (−x) − y||Y +

1

2
||Tx− y||Y ≤ a,

hence ||T || ≤ a, which is a contradiction.

(ii) follows from Exercise 10a.

(iv) Let

R(BY ) ⊂
2n1−1
⋃

j=1

zj + (en1
(R) + ε)BZ ,

S(BX) ⊂
2n2−1

⋃

i=1

yi + (en2
(S) + ε)BY .

Then

(R ◦ S)BX = R(S(BX)) ⊂ R

(2n2−1

⋃

i=1

yi + (en2
(S) + ε)BY

)

=
2n2−1

⋃

i=1

R(yi) + (en2
(S) + ε)R(BY )

⊂
2n2−1

⋃

i=1

2n1−1

⋃

j=1

R(yi) + (en2
(S) + ε)zj

︸ ︷︷ ︸

vi,j

+(en1
(T ) + ε)(en2

(S) + ε)BZ

=
2n2−1

⋃

i=1

2n1−1

⋃

j=1

vi,j + (en1
(T ) + ε)(en2

(S) + ε)BZ .

Altogether, (R◦S)(BX) may be covered by 2n1−1+n2−1 = 2(n1+n2−1)−1 balls in Z with radius (en1
(T )+

ε)(en2
(S) + ε). Finally, we let ε→ 0.

(v) follows similarly. Let

S(BX) ⊂
2n1−1

⋃

i=1

yi + (en1
(S) + ε)BY ,

T (BX) ⊂
2n2−1

⋃

j=1

zj + (en2
(T ) + ε)BY .
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1.4 Entropy numbers of id : ℓmp → ℓmq

Then6

(S + T )(BX) ⊂ S(BX) + T (BX) ⊂
(2n1−1
⋃

i=1

yi + (en1
(S) + ε)BY

)

+

(2n2−1
⋃

j=1

zj + (en2
(T ) + ε)BY

)

⊂
2n1−1

⋃

i=1

2n2−1

⋃

j=1

(yi + zj) +
[
(en1

(S) + ε)BY + (en2
(T ) + ε)BY

]

⊂
2n1−1
⋃

i=1

2n2−1
⋃

j=1

(yi + zj) +
[
(en1

(S) + ε)p + (en2
(T ) + ε)p

]1/p
BY .

We have used Exercise 9 in the last step. Finally, we let ε→ 0 and observe, that

en(S + T ) ≤ [en1
(S)p + en2

(T )p]1/p

for n with n− 1 = n1 − 1 + n2 − 1.

1.4 Entropy numbers of id : ℓ
m
p → ℓ

m
q

Up to very special cases (which we shall investigate in detail later on), the exact calculation of entropy
numbers is almost impossible. Hence, we shall deal with estimates from above and below, which differ
only through some constants, i.e. in formulas of the type

en(T ) ≈ n−1, n ∈ N,

which means, that there are two positive constants c1 and c2, such that

c1 n
−1 ≤ en(T ) ≤ c2n

−1, n ∈ N.

The most simple case, which demonstrate many of the significant properties of entropy numbers, is
the operator

id : ℓmp (R) → ℓmq (R),

where 0 < p, q ≤ ∞ and m ∈ N. We are interested in estimates of en(T ) in the sense described above,
but with c1 and c2 independent of n and m (but possibly depending on p and q).

Let us mention7, that

en(id : ℓmp (C) → ℓmq (C)) ≈ en(id : ℓ2mp (R) → ℓ2mq (R)), n,m ∈ N,

with constants of equivalence independent of n and m, but possibly depending on p and q. This
somehow justifies our interest in real vector spaces.

We start with simple cases, it means with

Example 2. id : ℓm∞ → ℓm∞.

Step 1. Estimate from above.

We denote by B = Bℓm∞(R) = [−1, 1]m the unit ball of ℓm∞(R).

6We denote by A + B = {a + b : a ∈ A, b ∈ B}
7cf. Exercise 16
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1 INTRODUCTION

We consider the sets

Ak,m =

{

−2k − 1

2k
,−2k − 3

2k
, . . . ,− 1

2k
,

1

2k
, . . . ,

2k − 1

2k

}m

, k,m ∈ N.

Simple calculation shows, that Ak,m has
(

2k − 1 + (2k − 1) + 2

2

)m

= 2k·m

elements. Furthermore,

[−1, 1] ⊂
⋃

x∈Ak,1

x+
1

2k
[−1, 1],

and generally

B =
⋃

x∈Ak,m

x+
1

2k
B.

This implies, that

ekm+1(id : ℓm∞(R) → ℓm∞(R)) ≤ 1

2k
.

So, if n ∈ N may be written as n = km+ 1, then

en(id) ≤
1

2k
=

1

2
n−1

m

=
21/m

2n/m
≤ 2 · 2−n/m.

The same estimate follows for all n by standard arguments, namely monotonicity. Let us describe this
in detail. Let

k0m+ 1
︸ ︷︷ ︸

n0

< n < (k0 + 1)m+ 1
︸ ︷︷ ︸

n1=n0+m

(1.4)

for some k0 ≥ 1. Then

en(id) ≤ en0
(id) ≤ 2 · 2−n0/m = 2 · 2−

n1−m
m ≤ 2 · 2−n−m

m = 4 · 2−n/m.
Finally, we consider 1 ≤ n ≤ m, which cannot be expressed in the form given by (1.4). But for these
n’s we obtain trivially

en(id) ≤ 1 ≤ 2 · 2−n/m ≤ 4 · 2−n/m, 1 ≤ n ≤ m.

Step 2. Estimate from below.

We use volume arguments, which shall be very useful also later on. Let us assume, that

B ⊂
2n−1

⋃

j=1

yj + εB.

It means that
vol B = 2m ≤ 2n−1εm · vol B = 2m+n−1εm.

Hence
ε ≥ 2

1−n
m ≥ 2−n/m.

Hence, we got
2−n/m ≤ en(id : ℓm∞(R) → ℓm∞(R)) ≤ 4 · 2−n/m, n,m ∈ N. (1.5)

Let us mention, that even in this case, we got only estimates from above and from below, which differ
by the constant 4.

11



1.4 Entropy numbers of id : ℓmp → ℓmq

The second simple case, namely en(id : ℓm1 (R) → ℓm1 (R)) is postponed to the Exercise 11.

To be able to apply the volume arguments also in other (less trivial) situations, we shall need the
Gamma function8

Γ(s) =

∫ ∞

0
e−tts−1ds, s > 0.

Theorem 9. Let 0 < p, q ≤ ∞.

a) Then

vol Bℓmp (R) = 2m · Γ
(
1/p + 1

)m

Γ
(
m/p+ 1

) , m ∈ N.

b) Then

en(id : ℓmp (R) → ℓmq (R)) ≥ 2
1−n
m · Γ

(
1/p + 1

)

Γ
(
1/q + 1

) ·
[

Γ
(
m/q + 1

)

Γ
(
m/p+ 1

)

]1/m

≈ 2−n/m

[

Γ
(
m/q + 1

)

Γ
(
m/p+ 1

)

]1/m

with constants of equivalence independent of m and n, but depending on p and q.

c) Then

en(id : ℓmp (R) → ℓmq (R)) & 2−n/mm1/q−1/p.

Proof. Step 1. Proof of a)

We have

vol Bℓmp (R) = 2m vol (Bℓmp (R) ∩ [0,∞)m) = 2m
∫

1 dx,

where the last integral goes over all x = (x1, . . . , xm) with x1 ≥ 0, . . . , xm ≥ 0 and xp1 + · · · + xpm ≤ 1.

Through the substitution tj = xpj , dtj = pxp−1
j dxj , this is equal to

(
2

p

)m ∫ m∏

j=1

t
1/p−1
j dt,

where the last integral goes over all t = (t1, . . . , tm) with t1 ≥ 0, . . . , tm ≥ 0 and t1 + · · ·+ tm ≤ 1. This
integral may be evaluated by induction, cf. Exercise 13, and this finishes the proof of a).

Step 2. Proof of b)

Let Bℓmp (R) be covered by 2n−1 ε-balls in ℓmq (R) metric. Then

vol Bℓmp (R) ≤ 2n−1εmvol Bℓmq (R).

Hence,

ε ≥ 2
1−n
m

[
vol Bℓmp (R)

vol Bℓmq (R)

]1/m

.

This, together with a) gives b).

Step 3. Proof of c)

8cf. Exercise 12 for further information about Gamma (and Beta) function.
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1 INTRODUCTION

In view of b), it is enough to prove that

2−n/m

[

Γ
(
m/q + 1

)

Γ
(
m/p + 1

)

]1/m

& 2−n/mm1/q−1/p,

i.e.
[

Γ
(
m/q + 1

)

Γ
(
m/p+ 1

)

]1/m

& m1/q−1/p, m ∈ N. (1.6)

We shall use the Stirling formula9

Γ(x) ≈ 1√
x
·
(
x

e

)x

, x ≥ 1.

Then

LHS (1.6) ≈
( m

p + 1
m
q + 1

) 1

2m

︸ ︷︷ ︸

I

·
[(

m
q + 1

)m
q

+1

(
m
p + 1

)m
p

+1

]1/m

︸ ︷︷ ︸

II

· e−(m
q

+1)· 1

m
+(m

p
+1)· 1

m
︸ ︷︷ ︸

III=e−1/q+1/p≈1

.

First, we deal with I. Let us observe, that for m = 1, I is equal to

[
(1 + p)q

(1 + q)p

]1/2

and for m → ∞, I

goes to 1. Hence, I ≈ 1.

We rewrite II as

II =

(
m

q

)1/q+1/m

·
(
m

p

)−1/p−1/m

·
[(

1 +
q

m

)m
q

+1
]1/m

·
[(

1 +
p

m

)m
p

+1
]−1/m

︸ ︷︷ ︸

≈1,again using limits

≈ m1/q−1/p · q−1/q · p1/p · (p/q)1/m ≈ m1/q−1/p.

1.4.1 Remark to interpolation theory

Let F be a linear operator with following properties:

F : L2(R
d) → L2(R

d), (1.7)

F : L1(R
d) → L∞(Rd). (1.8)

Intuitively, it should follow that

F : Lp(R
d) → Lp′(R

d), 1 ≤ p ≤ 2,
1

p
+

1

p′
= 1.

This is really the case and is the main subject of the so-called interpolation theory 10.

9The proof of this classical result goes beyond the scope of this script and we reffer to [3, Section 96, page 510] for
details.

10In Jena, a lecture with exactly this title is sometimes offered by PD. D. D. Haroske.
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1.4 Entropy numbers of id : ℓmp → ℓmq

Example 3. a) A prominent example of such an operator is given by the Fourier transform

F(f)(ξ) =
1

(2π)d/2

∫

Rd

f(x)e−ix·ξ dx.

Then (1.7) follows from the famous Parseval identity

||f |L2(R
d)|| = ||Ff |L2(R

d)||

and (1.8) follows almost trivially

|F(f)(ξ)| ≤ 1

(2π)d/2

∫

Rd

|f(x)|dx =
||f |L1(R

d)||
(2π)d/2

.

b) Another famous application of the interpolation theory is the convolution operator.

Let f ∈ L1(R
d) and put

Mf (g)(x) =

∫

Rd

f(x− y)g(y)dy.

Then we get

||Mf (g)|L1(R
d)|| =

∫

Rd

∣
∣Mf (g)(x)

∣
∣dx ≤

∫

Rd

∫

Rd

|f(x− y)g(y)|dydx =

∫

Rd

|g(y)|
∫

Rd

|f(x− y)|dx
︸ ︷︷ ︸

R

Rd |f(x)|dx

dy

=

∫

Rd

|f(x)|dx ·
∫

Rd

|g(y)|dy = ||f |L1(R
d)|| · ||g|L1(R

d)||.

And similarly,

||Mf (g)|L∞(Rd)|| ≤ sup
x∈Rd

∫

Rd

|f(x− y)g(y)|dy ≤ sup
x∈Rd

sup
z∈Rd

|g(z)|
∫

Rd

|f(x− y)|dy

= ||g|L∞(Rd)|| · ||f |L1(R
d)||.

Hence

||Mf : L1(R
d) → L1(R

d)|| ≤ ||f |L1(R
d)|| and ||Mf : L∞(Rd) → L∞(Rd)|| ≤ ||f |L1(R

d)||.

By interpolation theory it follows, that

||Mf : Lp(R
d) → Lp(R

d)|| ≤ ||f |L1(R
d)||, 1 ≤ p ≤ ∞.

Theorem 10. Let X be a quasi-Banach space, Y a vector space and let T : X → Y. Let Y0, Y1 ⊂ Y

be two p-Banach spaces with 0 < p ≤ 1, let 0 < θ < 1 and let Yθ ⊂ Y be a quasi-Banach space with
T ∈ L(X,Y0 ∩ Y1), where ||y|Y0 ∩ Y1|| = max(||y||Y0

, ||y||Y1
). If

||y|Yθ|| ≤ ||y|Y0||1−θ · ||y|Y1||θ, y ∈ Y0 ∩ Y1 ⊂ Yθ, (1.9)

then

en0+n1−1(T : X → Yθ) ≤ 21/pe1−θn0
(T : X → Y0) · eθn1

(T : X → Y1), n0, n1 ∈ N.

14



1 INTRODUCTION

Proof. Let a = (1 + ε)en0
(T : X → Y0) and b = (1 + ε)en1

(T : X → Y1). It means, that there are
y1, . . . , y2n0−1 ∈ Y0 such that for every x ∈ BX there is a j ∈ {1, . . . , 2n0−1} with ||Tx− yj ||Y0

≤ a. We
consider the sets

Bj = {x ∈ BX : ||Tx− yj||Y0
≤ a} ⊂ BX , j = 1, . . . , 2n0−1.

Obviously,

BX =
2n0−1

⋃

j=1

Bj .

We can map each set Bj by T and cover in Y1. So, there are points z1
j , . . . , z

2n1−1

j ∈ Y1 such that for

every x ∈ Bj there is i ∈ {1, . . . , 2n1−1} such that ||Tx− zij ||Y1
≤ b.

If zij would lie in T (Bj) ⊂ Y0 ∩ Y1 ⊂ Yθ, then we could use the calculation

||Tx− zij ||pYθ
≤ ||Tx− zij ||

p(1−θ)
Y0

︸ ︷︷ ︸

≤(||Tx−yj||
p
Y0

+||yj−zi
j ||

p
Y0

)1−θ≤(ap+||yj−T (T−1zi
j)||

p
Y0

)1−θ≤(2ap)1−θ

· ||Tx− zij ||pθY1
︸ ︷︷ ︸

≤bpθ

.

Unfortunately, this is not necessarily the case. Hence, we choose

wij ∈ BY1
(zij , b) ∩ T (Bj).

We may assume, that this is always possible. If not, then we just leave out zij, because BY1
(zij , b) does

not help with covering T (Bj).

So, to every x ∈ BX , we find j ∈ {1, . . . , 2n0−1} with x ∈ Bj and then i ∈ {1, . . . , 2n1−1} such that

||Tx− wij||pY1
≤ ||Tx− zij ||pY1

+ ||zij − wij||pY1
≤ 2bp,

but also

||Tx− wij ||pY0
≤ ||Tx− yj||pY0

+ ||yj − wij ||pY0
≤ 2ap,

hence

||Tx− wij ||Yθ
≤ ||Tx− wij ||1−θY0

· ||Tx− wij ||θY1
≤ 21/pa1−θbθ.

Finally, we let ε→ 0.

Theorem 11. Let X be a vector space and let X0,Xθ,X1 ⊂ X with 0 < θ < 1 and Xθ ⊂ X0 +X1.
11

We define the so-called Peetre interpolation K-functional by

K(t, x) = inf{||x0||X0
+ t||x1||X1

: x = x0 + x1, x0 ∈ X0, x1 ∈ X1}, x ∈ Xθ, t > 0.

Let T : D(T ) ⊂ X → Y , where Y is a p-Banach space, and let T ∈ L(X0, Y ) and T ∈ L(X1, Y ). If

t−θK(t, x) ≤ ||x||Xθ
, t > 0, x ∈ Xθ, (1.10)

then also T ∈ L(Xθ, Y ) and

en0+n1−1(T : Xθ → Y ) ≤ 21/pe1−θn0
(T : X0 → Y ) · eθn1

(T : X1 → Y ), n0, n1 ∈ N.

11This means, that every element x ∈ Xθ may be written as x = x0 + x1, where x0 ∈ X0 and x1 ∈ X1.
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1.4 Entropy numbers of id : ℓmp → ℓmq

Proof. The boundedness of T as an operator from Xθ into Y follows easily. Let us take x ∈ BXθ
and

ε > 0. Then there are x0 ∈ X0 and x1 ∈ X1 such that x = x0 + x1 and ||x0||X0
+ ||x1||X1

≤ (1 + ε) -
just choose t = 1 in (1.10). The we have

||Tx||pY ≤ ||Tx0||p + ||Tx1||p ≤ (1 + ε) [||T |L(X0, Y )||p + ||T |L(X1, Y )||p] ,

hence (if we let ε→ 0)

||T |L(Xθ, Y )|| ≤ [||T |L(X0, Y )||p + ||T |L(X1, Y )||p]1/p .

Let

a = en0
(T : X0 → Y ), b = en1

(T : X1 → Y ), t = b/a.

Let x ∈ BXθ
. Then there are x0 ∈ X0 and x1 ∈ X1 such that

||x0||X0
+ t · ||x1||X1

≤ (1 + ε)K(t, x) ≤ (1 + ε)tθ||x||Xθ
≤ (1 + ε)tθ.

Let y1, . . . , y2n0−1 ∈ Y be a (1 + ε)a net for T (BX0
) in Y and let z1, . . . , z2n1−1 ∈ Y be a (1 + ε)b net

for T (BX1
) in Y . Hence, there are j and k, such that

∣
∣
∣
∣

∣
∣
∣
∣

Tx0

(1 + ε)tθ
− yj

∣
∣
∣
∣

∣
∣
∣
∣
Y

≤ (1 + ε)a and

∣
∣
∣
∣

∣
∣
∣
∣

Tx1

(1 + ε)tθ−1
− zk

∣
∣
∣
∣

∣
∣
∣
∣
Y

≤ (1 + ε)b.

We estimate

||Tx− (1 + ε)tθyj − (1 + ε)tθ−1zk||pY ≤ ||Tx0 − (1 + ε)tθyj||pY + ||Tx1 − (1 + ε)tθ−1zk||pY
≤ [(1 + ε)2atθ]p + [(1 + ε)2btθ−1]p = 2(1 + ε)2p[a1−θbθ]p,

i.e.

||Tx− (1 + ε)tθyj − (1 + ε)tθ−1zk||Y ≤ 21/p(1 + ε)2a1−θbθ.

We observe, that the set
{
(1 + ε)tθyj + (1 + ε)tθ−1zk

}

j,k

forms a 21/p(1 + ε)2a1−θbθ net for T (BXθ
) in Y with cardinality 2n0−1+n1−1.

Remark 7. • In a typical situation, Y in Theorem 10 and X in Theorem 11 may be taken to be
the space of all sequences or all measurable functions, respectively.

• Theorem 10 deals with interpolation on the target space. A following diagram is somtimes useful.

Y0

ր

T : X → Yθ

ց

Y1

The assumption (1.9) follows usualy with the help of Hölder’s inequality, cf. Exercise 17.
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• Theorem 11 deals with interpolation on the source space, this time with following diagram.

T : X0

ց

T : Xθ → Y

ր

T : X1

The assumption (1.10) is usualy more difficult to verify, cf. Exercise 18.

• Although the interpolation theory usually deals with interpolation on both (i.e. source and
target) space side simultaneuously, there is no12 analog of Theorem 10 and Theorem 11 for this
situation. That would correspond to the diagram

T : X0 → Y0

T : Xθ → Yθ

T : X1 → Y1.

1.4.2 Entropy numbers of id : ℓm1 → ℓm∞

The main purpose of this section is to prove following

Theorem 12. Let m,n ∈ N. Then

en(id : ℓm1 (R) → ℓm∞(R)) ≈







1, if 1 ≤ n ≤ log2m,

log
(

m
n

+1
)

n , if log2m ≤ n ≤ m,

2−n/mm−1, if m ≤ n,

where the constants of equivalence do not depend on m or n.

Proof. Step 1. 1 ≤ n ≤ log2m.

The estimate from above is trivial and follows from Theorem 8 (or just the fact, that Bℓm
1
⊂ Bℓm∞ .)

Also the estimate from below is simple. Let us consider the canonical unit vectors

ej = (ej1, . . . , e
j
m), j = 1, . . . ,m,

where

eji =

{

1, if i = j,

0, otherwise.

As ||ej − ek||∞ = 1 if j 6= k, each ℓm∞-ball with radius strictly smaller than 1/2 contains (at most) one
of these points. Hence, if n ≤ log2m (i.e. 2n ≤ m), then we need ℓm∞ balls of radius at least 1/2 ≈ 1
to cover Bℓm

1
.

Step 2. log2m ≤ n ≤ m.

12To be exact, there is some partial progress in this area connected mainly with the names of M. Cwikel, F. Cobos,
T. Kühn and others, but the full solution is still missing.
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1.4 Entropy numbers of id : ℓmp → ℓmq

Let
Ak,m = {(t1, . . . , tm) ∈ Z

m : ||t||1 ≤ k}, k,m ∈ N.

The number of elements of Ak,m may be estimated from above by (cf. Exercises 14 c and 15)

#Ak,m ≤ 132k · #{(t0, t1, . . . , tm) ∈ N
m+1
0 , t0 + · · · + tm = k} = 142k

(
k +m

k

)

≤ (2e)k ·
(
k +m

k

)k

.

Furthermore,

Bℓm
1
⊂

⋃

t∈Ak,m

t

k
+

1

k
Bℓm∞ .

To prove this inclusion, we consider to each x ∈ Bℓm
1

an element x̃ = (x̃1, . . . , x̃m) with

x̃i = sgn(xi) ·
1

k
· ⌊k|xi|⌋15, i = 1, . . . ,m.

Then ||xi − x̃i||∞ ≤ 1/k and kx̃ ∈ Ak,m.

So, if

2n−1 ≥ (2e)k
(

1 +
m

k

)k

=⇒ en(id : ℓm1 (R) → ℓm∞(R)) ≤ 1

k
. (1.11)

According to Exercise 19 a) there exists a constant c > 0, such that if

k ≤ cn
[

log2

(
1 +

m

n

)]−1
, (1.12)

then
n

k
≥ log2

(
12
(
1 +

m

k

))
,

hence
2

n
k ≥ 12

(
1 +

m

k

)

and this again implies that

2n/k−1/k ≥ 2e
(
1 +

m

k

)

from which the assumption of (1.11) follows. Hence, the conclusion of (1.11) holds for all k with (1.12).
Choosing the k as big as possible finishes the proof of the estimate from above.

To prove the estimate from below, we estimate the number of elements of Ak,m from below by

# Ak,m ≥ #{(t0, t1, . . . , tm) ∈ N
m+1
0 , t0 + · · · + tm = k} =

(
k +m

k

)

≥
(
k +m

k

)k

.

So,

2n−1 ≤
(

1 +
m

k

)k
=⇒ en(id : ℓm1 (R) → ℓm∞(R)) ≥ 1

2k
. (1.13)

From Exercise 19 b) we know, that there is a constant c′ > 0, such that if

k ≥ c′n
[

log2

(

1 +
m

n

)]−1
, (1.14)

13if t0 + · · · + tm = k, then at most k of t′js are different from zero. The factor 2k corresponds to all possible signs.
14Just consider m + k points on the real line and all the ways, in which you can scratch m of them. Then t0 is the

number of points before the first hole, t1 the number of points between the first and the second hole, aso.
15By ⌊a⌋ we denote the integer part of a real number a, i.e. ⌊a⌋ ≤ a < ⌊a⌋ + 1.
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then

n ≤ k log2

(

1 +
m

k

)

,

which further implies

2n−1 ≤ 2n ≤
(

1 +
m

k

)k
.

So, every k with (1.14) satisfies also the conclusion of (1.13). Taking the smallest k possible finishes
the proof.

Step 3. m ≤ n.

The estimate from below follows by volume arguments given in Theorem 9. We give the proof for the
estimate from above.

We use the estimate of the number of elements of Ak,m

# Ak,m ≤ 2m#{(t0, t1, . . . , tm) ∈ N
m+1
0 , t0 + · · · + tm = k} ≤ 2m

(
k +m

m

)

≤ (2e)m
(

1 +
k

m

)m
.

Then we have

2n−1 ≥ (2e)m
(

1 +
k

m

)m
=⇒ en(id : ℓm1 (R) → ℓm∞(R)) ≤ 1

k
. (1.15)

Let n ≥ 5m. Then 2n/m−4 ≥ 2 and 2n/m−4 − 1 ≥ 2n/m−5. So, if

k

m
≤ 2n/m−5 ≤ 2n/m−4 − 1 ≤ 2n/m−1/m−3 − 1,

we get
(

1 +
k

m

)m
≤ 2n−12−3m ≤ (2e)−m2n−1

and the conclusion of (1.15) follows. If m ≤ n ≤ 5m, the estimate follows by monotonicity.

Step 4. We give an alternative proof of the estimate from above for m ≤ n.

Let 0 < r < 1 and let Kr be a maximal set of points from Bℓm
1

, such that the mutual ℓm∞-distance of
every two different points is greater then r. This means

• Kr = {y1, . . . , yN} ⊂ Bℓm
1

,

• ||yi − yj||∞ > r for every i 6= j,

• for all y ∈ Bℓm
1

there is an i ∈ {1, . . . , N} with ||y − yi||∞ ≤ r.

Let us observe, that if z ∈ Bℓm∞ , then

||yj + rz||1 ≤ ||yj ||1 + r||z||1 ≤ ||yj ||1 + rm||z||∞ ≤ 1 + rm,

which means, that
N⋃

j=1

yj + rBℓm∞ ⊂ (1 + rm)Bℓm
1
.

Furthermore, if i 6= j, then

yi +
r

2
Bℓm∞ ∩ yj +

r

2
Bℓm∞ = ∅.
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1.4 Entropy numbers of id : ℓmp → ℓmq

This follows by contradiction; if yi + zi = yj + zj , with zi and zj from
r

2
Bℓm∞ , then ||yi − yj||∞ =

||zi − zj||∞ ≤ r, which is a contradiction with properties of the set Kr.

Comparing the volumes, we obtain

N ·
(r

2

)m
· vol Bℓm∞ ≤ (1 + rm)mvol Bℓm

1
,

hence

N ≤ 2m(1 + rm)m

rmm!
. (1.16)

This leads to implication

N ≤ 2n−1 =⇒ en(id : ℓm1 (R) → ℓm∞(R)) ≤ r. (1.17)

According to (1.16), this is the case, if

2n/m−1/m ≥
(1

r
+m

)

· 1
m
√
m!

≈
(1

r
+m

)

· 1

m
.

So, if m ≤ n, we may put 1
r ≈ m 2n/m, which finishes the proof.

1.4.3 Extension to arbitrary p and q

Also this section has only one main aim, namely

Theorem 13. a) Let m,n ∈ N and 0 < q ≤ p ≤ ∞. Then

en(id : ℓmp (R) → ℓmq (R)) ≈ m1/q−1/p · 2−n/m ≈
{

m1/q−1/p, if n ≤ m,

m1/q−1/p2−n/m, if m ≤ n,

where the constants of equivalence do not depend on m or n.

b) Let m,n ∈ N and 0 < p ≤ q ≤ ∞. Then

en(id : ℓmp (R) → ℓmq (R)) ≈







1, if 1 ≤ n ≤ log2m,
[

log
(

m
n

+1
)

n

]1/p−1/q

, if log2m ≤ n ≤ m,

m1/q−1/p2−n/m, if m ≤ n,

where the constants of equivalence do not depend on m or n.

Proof. 16

a) The estimate from below follows from Theorem 9. The estimate from above for n ≤ m follows by

en(id : ℓmp (R) → ℓmq (R)) ≤ ||id : ℓmp (R) → ℓmq (R)|| = m1/q−1/p.

We give the estimate from above for n ≥ m and p = q. It copies the Step 4. of the proof of Theorem
12.

16Full proof may be comming in some appendix...
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Let again 0 < r < 1 and let Kr = {y1, . . . , yN} be a maximal set from Bℓmp with mutual ℓmp -distance of
points greater then r. We obtain again

N⋃

j=1

yj + rBℓmp ⊂ 2Bℓmp

and

yi +
r

2
Bℓmp ∩ yj +

r

2
Bℓmp = ∅, i 6= j.

Comparison of volumes leads to

N ·
(r

2

)m
vol Bℓmp ≤ 2mvol Bℓmp ,

i.e. Nrm ≤ 4m. Hence if

r ≥ 8

2n/m
≥ 4

2(n−1)/m
,

we get 2n−1 ≥ (4/r)m ≥ N and en(id : ℓmp → ℓmp ) ≤ r and the result follows.

If 0 < q ≤ p ≤ ∞, then

en(id : ℓmp (R) → ℓmq (R)) ≤ en(id : ℓmp (R) → ℓmp (R)) · e1(id : ℓmp (R) → ℓmq (R))
︸ ︷︷ ︸

≤||id:ℓmp (R)→ℓmq (R)||=m1/q−1/p

. 2−n/mm1/q−1/p.

b) Let 0 < p ≤ q ≤ ∞.

The estimate from above for 1 ≤ n ≤ log2m follows again by Bℓmp ⊂ Bℓmq . The estimate from below

follows by considering the canonical unit vectors e1, . . . , em.

If log2m ≤ n ≤ m, we give the proof only for the Banach space setting, i.e. 1 ≤ p ≤ q ≤ ∞.

The estimate from above follows by interpolation

en(id : ℓmp (R) → ℓm∞(R)) ≤ e1−θn (id : ℓm1 (R) → ℓm∞(R)) · eθ1(id : ℓm∞(R) → ℓm∞(R))

.




log
(

1 + m
n

)

n





1−θ

· 1θ =




log
(

1 + m
n

)

n





1/p

,

where
1

p
=

1 − θ

1
+

θ

∞ .

Then we interpolate on the target side

en(id : ℓmp (R) → ℓmq (R)) ≤ e1−θ1 (id : ℓmp (R) → ℓmp (R)) · eθn(id : ℓmp (R) → ℓm∞(R))

.




log2

(

1 + m
n

)

n





θ/p

=




log2

(

1 + m
n

)

n





1/p−1/q

,
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with
1

q
=

1 − θ

p
+

θ

∞ .

We skip the proof of the estimate from below. It is based on combinatorial arguments, quite similar
to the case p = 1, q = ∞.

If m ≤ n, the estimate from below is supplied by Theorem 9. The estimate from above follows similarly
to the part a). We refer its proof into the Exercise 20.

1.5 Eigenvalues and Carl-Triebel inequality

We restrict ourselves to the Banach space setting in this section. The generalisation to the quasi-Banach
spaces may be found in the book [1].

Let X be a complex Banach space and let T ∈ K(X,X) = K(X). Then the spectrum of T is defined as

σ(T ) = {λ ∈ C : (T − λI) is not boundedly invertible}.

Here, I is the identity mapping I : X → X and we say, that (T − λI) is boundedly invertible if

• (T − λI)−1 exists, i.e. (T − λI) must be injective and surjective, and

• (T − λI)−1 is boudned, i.e. (T − λI)−1 ∈ L(X,X).

If for some λ ∈ C, there is a 0 6= x ∈ X, such that Tx = λx, then (T − λI) is not injective and hence
λ ∈ σ(T ). Such a λ is called eigenvalue and the corresponding x is called eigenvector . But in general,
not all the elements of σ(T ) are eigenvalues, cf. Exercise 21.

We recall briefly the Riesz-Schauder theory of compact operators.

If T ∈ K(X), then

• σ(T ) is countable,

• for all ε > 0, there are only finitely many λ ∈ σ(T ) with |λ| ≥ ε,

• 0 ∈ σ(T ),

• if λ ∈ σ(T ) \ {0}, then λ is an eigenvalue and

• it has finite multiplicity.

We discuss in a bigger detail the notion of multiplicity of an eigenvalue. The geometrical multiplicity
is defined as

dim ker (T − λI)

and denotes the dimension of the space of eigenvectors associated to λ. The so-called algebraic multi-
plicity is defined as

dim

∞⋃

k=1

ker (T − λI)k

and is always bigger than (or equal to) the geometrical multiplicity. We refer to Exercise 24b.

According to the Riesz-Schauder theory, we may assign to each T ∈ K(X) a sequence of all its
eigenvalues

|λ1(T )| ≥ |λ2(T )| ≥ · · · ≥ 0,
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where each eigenvalue is repeated with its algebraic multiplicity. If T has only finitely many eigenvalues,
fill the rest of the sequence with zeros.

Theorem 14. Let X be a complex Banach space and let T ∈ K(X). We re-order the eigenvalues, as
described above. Then

|λn(T )| ≤
( n∏

j=1

|λj(T )|
)1/n

≤ inf
k∈N

2
k
2n ek(T ) ≤

√
2en(T ). (1.18)

Proof. We give the proof in the most significant case, when all the eigenvalues are simple. The full
proof may be found for example in the book [2].

So, take n ∈ N and |λ1(T )| ≥ |λ2(T )| ≥ · · · ≥ |λn(T )| ≥ 0. Then there are linearly independent
x1, . . . , xn ∈ X such that Txj = λxj, j = 1, . . . , n. We define M = span(x1, . . . , xn). Then dim M = n
and T (M) = M.

Let us take x ∈M , i.e. x =

n∑

j=1

γjxj with γj ∈ C, j = 1, . . . , n and Tx =

n∑

j=1

γjλjxj .

We define an operator J : M → Cn, which assigns to each x ∈M the coefficients γ1, . . . , γn, i.e.

Jx =






γ1
...
γn




 and J−1 : C

n →M, J−1






γ1
...
γn




 =

n∑

j=1

γjxj.

Then Tx = J−1TnJx for every x ∈M , where

Tn =








λ1 0 . . . 0
0 λ2 . . . 0
...

. . .
...

0 . . . 0 λn







.

Unfortunately, we wish to apply volume arguments and in this context, R2n seems to be more suitable
space then Cn.

Hence, we define J : M → R2n and J−1 : R2n →M by

Jx =










Re(γ1)
Im(γ1)

...
Re(γn)
Im(γn)










and J
−1










α1

β1
...
αn
βn










=
n∑

j=1

(αj + iβj)xj,

where Re(z) denotes the real part of a complex number z ∈ C and Im(z) its imaginary part. Then
Tx = J−1TnJx for all x ∈M , where

Tn =














Re(λ1) −Im(λ1) 0 0 . . . 0 0
Im(λ1) Re(λ1) 0 0 . . . 0 0

0 0 Re(λ2) −Im(λ2) . . . 0 0
0 0 Im(λ2) Re(λ2) . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . Re(λn) −Im(λn)
0 0 0 0 . . . Im(λn) Re(λn)














,
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while

Tx =

n∑

j=1

(Re(λj) + i Im(λj))(Re(γj) + i Im(λj))xj

=

n∑

j=1

{
Re(λj)Re(γj) − Im(λj)Im(γj) + i (Re(λj)Im(λj) + Im(λj)Re(λj))

}
xj.

We define a measure µ on M by

µ(K) = vol
(

J(K)
)

for all K ⊂M , for which J(K) ⊂ R2n is Lebesgue-measurable. 17

With the help of the notation introduced so far, the proof becomes simple.

For every K ⊂M , we get
JT (K) = JJ

−1
TnJ(K) = Tn(J(K)),

hence

µ(T (K)) = vol (JT (K)) = vol (Tn(J(K)))

= det (Tn) · vol (J(K))

=

∣
∣
∣
∣

Re(λ1) −Im(λ1)
Im(λ1) Re(λ1)

∣
∣
∣
∣
·
∣
∣
∣
∣

Re(λ2) −Im(λ2)
Im(λ2) Re(λ2)

∣
∣
∣
∣
· · ·
∣
∣
∣
∣

Re(λn) −Im(λn)
Im(λn) Re(λn)

∣
∣
∣
∣
· µ(K)

=

( n∏

j=1

|λj |2
)

· µ(K).

Let us mention, that this formula (with a slightly more technical proof, which uses the Jordan canonical
form of T ) holds also for eigenvalues with higher multiplicity.

Let k ∈ N and let

T (BX) ⊂
2k−1

⋃

j=1

yj + εBX ,

where ε > ek(T ) is arbitrary. Then

T (BX ∩M) ⊂
2k−1

⋃

j=1

(yj + εBX) ∩M.

If (yj + εBX) ∩ M = ∅, then we may leave out this j. Otherwise, we find zj ∈ M , such that
yj + εBX ⊂ zj + 2εBX . Then

T (BX ∩M) ⊂
2k−1
⋃

j=1

(zj + 2εBX) ∩M =

2k−1
⋃

j=1

zj + 2ε(BX ∩M).

Comparing the µ-volumes, we obtain

( n∏

j=1

|λj |2
)

· µ(Bx ∩M) = µ(T (BX ∩M)) ≤ 2k−1µ(2ε(BX ∩M)) = 2k−1 · (2ε)2n · µ(BX ∩M).

17Of course, vol denotes the Lebesgue measure on R
2n.
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Dividing by µ(BX ∩M) and taking the 2n-root, we get

n

√
√
√
√

n∏

j=1

|λj | = 2n

√
√
√
√

n∏

j=1

|λj |2n ≤ 2
k−1

2n · 2ε ≤ 2 · 2 k
2n · ε.

As we may take ε arbitrarily close to ek(T ), we get

n

√
√
√
√

n∏

j=1

|λj| ≤ 2 · 2 k
2n · ek(T ).

We use the so-called Carl’s trick to improve the constant, namely we apply the obtained result to T r

and k′ = kr and take r → ∞. This leads to

n

√
√
√
√

n∏

j=1

|λj(T )|r = n

√
√
√
√

n∏

j=1

|λj(T r)| ≤ 2 · 2 kr
2n erk(T

r) ≤ 2 · 2 kr
2n erk(T ).

Taking the 1/r power gives

n

√
√
√
√

n∏

j=1

|λj(T )| ≤ 21/r · 2 k
2n · ek(T )

and we let r → ∞ to finish the proof.

1.6 Applications of entropy numbers

In this section, we describe two of the possible applications of compactness and entropy numbers. This
concerns the area of signal processing and the spectral theory of partial differential equations.

1.6.1 Applications to signal processing

Let T : X → Y be compact, let n ∈ N and let ε > en(T : X → Y ). Then

T (BX) ⊂
2n−1

⋃

j=1

yj + εBY .

This means, that for every x ∈ BX , there is a j ∈ {1, . . . , 2n−1} with ||Tx− yj||Y ≤ ε.

We may define a mapping

f : BX → {1, . . . , 2n−1}, f(x) = j with ||Tx− yj||Y ≤ ε.

If there are more j′s with this property, we choose one of them arbitrarily. This means, that

• ||x− yf(x)||Y ≤ ε for all x ∈ X,

• we need only n− 1 bits to specify f(x).
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1.6 Applications of entropy numbers

This may be used in an obvious way. If A and B are two different people or places and we want to
transfer the information about an element x ∈ BX and are ready to accept accuracy ε > 0, then we
need to transfer only n−1 bits, where en(T ) ≤ ε. The price for this is, that both A and B has to know
in advance the “lexicon” y1, . . . , y2n−1 .

We demonstrate this idea in connections with image processing. In this case, x =
(
xi,j
)N

i,j=1
∈ RN2

,

where N ≈ 1000. For example, xi,j ∈ [−1, 1] may give the gray scala going from xi,j = −1 (black)
to xi,j = 1 (white). To deal with colorful pictures, we need the same approach for all the three
RGB-channels, i.e. m = 3N2.

It is a central observation of image processing, that expressing the vector x = {xi,j}Ni,j=1 ∈ ℓN
2

2 in a

different orthonormal system leads to an element {yi,j}Ni,j=1 with the same ℓN
2

2 norm, but (usually)

with essentially smaller ℓN
2

p norm, where p ≤ 2 (usually even p << 1). This means, that only few of
the coefficients are large and many of them are very small, cf. Picture 1.

We return to this orthonormal system later on, but show immediately, what it means for further
processing of the image. Using n bits of information, we may decode the element y ∈ ℓN

2

2 with the
ℓN

2

2 -error smaller or equal to

||y||
ℓN2
p

· en(id : ℓN
2

p (R) → ℓN
2

2 (R)) . ||y||
ℓN2
p

·
[

log2

(
1 + N2

n

)

n

]1/p−1/2

,

where we have assumed that

log2N
2 ≤ n ≤ N2, i.e. 2 · log2 1024 = 20 ≤ n ≤ 10242,

which is definitely the typical case. We observe, that

• The success of the compression depends on the picture - “simple” picture is supposed to have
||y||

ℓN2
p

small also for p << 1 small.

• The decay of the error is surprisingly fast and improves with p getting smaller, for example (up
to the logarithmical factor) n−2 for p = 2/5.

1.6.2 Haar bases

We return to the construction of the orthonormal system, which (at least for “simple” pictures) should
lead to smaller ℓp-quasi-norms.

First, we construct a Haar basis on [−1, 1]d. We start with d = 1 and set

h0
0(t) = 1, t ∈ [−1, 1]

and

h0
1(t) =







0, if |t| > 1,

1, if − 1 ≤ t ≤ 0,

−1, if 0 < t ≤ 1.

The function h0
0 is usually called father wavelet and the function h0

1 is called mother wavelet . All the
other vectors of the Haar basis are derived from the mother wavelet by

hij(t) = h0
1(2

j−1t+ 2j−1 − (2i+ 1)), j ∈ {2, 3, . . . }, i ∈ {0, 1, . . . , 2j−1 − 1}.
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It is easy to see, that

{hij} with j = i = 0 or j ∈ {1, 2, 3, . . . }, i ∈ {0, 1, . . . , 2j−1 − 1}

are mutualy orthogonal. So, after a proper normalisation, we obtain an orthonormal basis in L2([−1, 1]).

If d > 1, the situation becomes more interesting. There are namely two ways, how to generalise this
construction to higher dimensions. The first is to consider the tensor products.

Let ϕ1(t), . . . , ϕd(t) ∈ L2([−1, 1]). Then we set

(ϕ1 ⊗ · · · ⊗ ϕd)(t1, . . . , td) = ϕ1(t1) . . . ϕ
d(td), (t1, . . . , td) ∈ [−1, 1]d.

The following lemma then provides the way to construct an orthonormal basis in higher dimensions.

Lemma 15. Let

{ϕij}, j ∈ N0

be for each i = 1, . . . , d an orthonormal basis of L2([−1, 1]). Then

{ϕ1
j1 ⊗ · · · ⊗ ϕdjd}, j = (j1, . . . , jd) ∈ N

d
0

is an orthonormal basis of L2([−1, 1]d).

We leave the proof of this lemma to the Exercises.

The second construction works with several mother wavelets. We present the main idea in d = 2. We
set

h0(t1, t2) = 1, −1 ≤ t1, t2 ≤ 1

and

h1,1(t1, t2) =







−1, if 0 ≤ t1 ≤ 1, |t2| ≤ 1,

1, if − 1 ≤ t1 < 0, |t2| ≤ 1,

0, elsewhere,

h1,2(t1, t2) =







−1, if 0 ≤ t2 ≤ 1, |t1| ≤ 1,

1, if − 1 ≤ t2 < 0, |t1| ≤ 1,

0, elsewhere,

h1,3(t1, t2) =







−1, if − 1 ≤ t1 < 0,−1 ≤ t2 < 0,

−1, if 0 ≤ t1 ≤ 1, 0 ≤ t2 ≤ 1,

1, if − 1 ≤ t1 < 0, 0 ≤ t2 ≤ 1,

1, if − 1 ≤ t2 < 0, 0 ≤ t1 ≤ 1,

0, elsewhere.

This definition is motivated by the observation, that the matrices

(
1 1
1 1

)

,

(
−1 −1
1 1

)

,

(
1 −1
1 −1

)

,

(
1 −1
−1 1

)

form an orthogonal basis of R2×2.
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1.6 Applications of entropy numbers

The other wavelets are again produced from the mother wavelets, namely by the formula

hi1,i2j,k (t1, t2) = h1,k(2
j−1(t1, t2) + (2j−1 − (2i1 + 1), 2j−1 − (2i2 + 1))),

where
j ∈ {2, 3, . . . }, i1, i2 ∈ {0, 1, . . . , 2j−1 − 1}, k ∈ {1, 2, 3}.

We put also h0,0
1,1 = h1,1, h

0,0
1,2 = h1,2, h

0,0
1,3 = h1,3. Now the orthogonal basis in L2([−1, 1]2) is

{h0} ∪ {hi1,i2j,k }i1,i2,j,k, with j ∈ {1, 2, 3, . . . }, i1, i2 ∈ {0, 1, . . . , 2j−1 − 1}, k ∈ {1, 2, 3}.

Both these constructions may be directly generalised to sequence spaces. For example, for R4×4 we
consider the father-matrix and three mother-matrices







1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1






,







−1 −1 −1 −1
−1 −1 −1 −1
1 1 1 1
1 1 1 1






,







1 1 −1 −1
1 1 −1 −1
1 1 −1 −1
1 1 −1 −1






,







1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1







together with






−1 −1 0 0
1 1 0 0
0 0 0 0
0 0 0 0






,







0 0 −1 −1
0 0 1 1
0 0 0 0
0 0 0 0






,







0 0 0 0
0 0 0 0
−1 −1 0 0
1 1 0 0






,







0 0 0 0
0 0 0 0
0 0 −1 −1
0 0 1 1







and further 2 × 4 matrices for the other two mother wavelets, i.e. alltogether 16 matrices.

Remark 8. Surprisingly enough, the second approach (based on several mother wavelets rather than
on tensor constructions) is easier to handle and is usualy used in the literature.

1.6.3 Applications to PDE’s

In this section, we present applications to (partial) differential equations, which are based on the Carl-
Triebel inequality (1.18). First, we show on one example the importance of eigenvalues in mathematical
physics.

Let

• Ω ⊂ R2 be a C∞ domain,

• Γ = ∂Ω,

• p(x) be the external force,

• v ∈ C2(Ω) trΓv = 0 be the elongation of the membrane fixed on Γ and caused by the force p(x),

• F be the surface described by v(x), i.e. F = {(x1, x2, x3) : v(x1, x2) = x3}.

We denote by ∆F = |F |−|Ω| the enlargement of the area caused by the force p. The resulting function
v is given by an interplay between the force p and the inner force of the membrane (which depends on
∆F ). This idea is mirrored in the corresponding potential

J(v) = ∆F −
∫

Ω
p(x)v(x)dx =

∫

Ω

√

1 +

(
∂v

∂x1
(x)

)2

+

(
∂v

∂x2
(x)

)2

︸ ︷︷ ︸

→|F |

− 1
︸︷︷︸

→|Ω|

−p(x)v(x)dx.
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If both the partial derivatives are small, we may use the formula
√

1 + x ≈ 1 + x
2 and get

J(v) ≈ J̃(v) =

∫

Ω

1

2
|∇v(x)|2 − p(x)v(x)dx.

We are looking for a function v, where the potential J̃(v) is minimal. If ϕ is an arbitrary smooth
function (for example ϕ ∈ C2

0 (Ω) or ϕ ∈ C∞
0 (Ω)), then it must hold

J̃(v + εϕ) ≥ J̃(v), ε ∈ R.

This leads to

0 =
d

dε
J̃(v + εϕ)

∣
∣
∣
∣
ε=0

=
d

dε

(∫

Ω

1

2
|∇v(x) + ε∇ϕ(x)|2 − p(x)(v(x) + εϕ(x))dx

)

=
d

dε

(∫

Ω

1

2
|∇v(x)|2 − p(x)v(x)dx + ε

∫

Ω

( ∂v

∂x1
· ∂ϕ
∂x1

+
∂v

∂x2
· ∂ϕ
∂x2

)
− p(x)ϕ(x)dx

+
ε2

2

∫

Ω
|∇ϕ(x)|2dx

)∣
∣
∣
∣
ε=0

= 0 +

∫

Ω
(∇v)(x) · (∇ϕ)(x) − p(x)ϕ(x)dx + 0

This means, that ∫

Ω
(∇v)(x) · (∇ϕ)(x) − p(x)ϕ(x)dx = 0

for every ϕ from (let us say) C∞
0 (Ω). Using the Green’s theorem, this is equivalent to

∫

Ω
ϕ(x)(−∆v(x) − p(x))dx = 0

and as this is supposed to hold for every ϕ, we arrive to the Dirichlet problem

∆v(x) = −p(x), x ∈ Ω, (1.19)

v
∣
∣
∂Ω

= 0.

The solution of (1.19) is sometimes called stationary solution. It means, that if the membrane is in
this stage and does not move (position is equal to v, velocity is equal to zero), then the combined
action of the external force p and the action of the internal force caused by tension in F cancel each
other. Or we may put it other way: if the surface F is described by v, then action of the tension of F
is the same as the action of an external force p(x) given by p(x) = ∆v(x).18

Now we consider, that the membrane oscilates (hence v = v(x, t) depends also on the time t > 0) and
there is no external force p. The tension of the surfaces gives the surface acceleration

m(x) · ∂
2v(x, t)

∂t2
,

where m(x) is the mass density (which we shall put equal to 1 for simplicity).

This leads to the equation

∆xv(x, t) =
∂2v(x, t)

∂t2
.

18Note the plus sign!
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1.6 Applications of entropy numbers

We look first for solutions of the type

v(x, t) = eiλtu(x),

where

• λ is the main and only time frequency of this solution,

• u(x) is its amplitude at the point x ∈ Ω,

• u(x) = 0 for all x ∈ ∂Ω.

This leads immediately to
eiλt∆u(x) = −λ2eiλtu(x),

i.e.
∆u(x) = −λ2u(x), u

∣
∣
∂Ω

= 0. (1.20)

The general solution is then a linear combination of these particular solutions uλ(x)e
iλx. The ad-

dmisible λ’s (also those λ’s for which a particular solution of (1.20) exists) are called eigenfrequencies.

Remark 9. For Ω = B(0, 1) (and some other special domains) we may solve the problem explicitly.
For general domains it is impossible. Nevertheless, one would still like to compute/estimate the
eigenfrequencies.

When dealing with this question, we may immediately observe two problems.

First problem.

The operators
d2 : L2([−1, 1]) → L2([−1, 1]), d2(u) = u′′

or
D2 : L2(Ω) → L2(Ω), D2(u) = ∆u

are not even boudned (and hence very far from being compact).

A huge portion of functional analysis is therefore devoted to the study of unbounded operators. These
are operators defined on a subspace of some Banach space X with values in the same space. For
example

T : dom(T ) ⊂ L2([−1, 1]) → L2([−1, 1]),

where
dom(T ) = {f ∈ C2([−1, 1]) : f(−1) = f ′(−1) = 0}

and
Tf = f ′′ ∈ C([−1, 1]) ⊂ L2([−1, 1]).

If Tf(x) = f ′′(x) = g(x), we get f ′(x) =
∫ x
−1 g(t)dt and

f(x) =

∫ x

−1

∫ u

−1
g(t)dtdu =

∫ x

−1
g(t)

∫ x

t
1dudt =

∫ x

−1
g(t) · (x− t)dt.

This means, that

(T−1g)(x) =

∫ x

−1
g(t) · (x− t)dt, T−1 : L2([−1, 1]) → L2([−1, 1])

30



1 INTRODUCTION

is the inverse of T and the domain of T may be enlarged to

dom′(T ) := {f ∈ L2([−1, 1]) : ∃g ∈ L2([−1, 1]) with T−1g = f}.

One observes that

• The eigenvalues λ of T are the reciprocal values of eigenvalues of T−1,

• T−1 is compact.

At this stage, one may apply Carl-Triebel inequality to T−1.

Second problem.

The second problem is that we were (almost) able to calculate the entropy numbers of id : ℓmp (R) →
ℓmq (C), but to estimate the entropy numbers of T , we need some information about function spaces.
Obviously, it would be very useful to find some way, how to transfer our results about sequence space
to function spaces. The most simple example of such an approach are the Fourier series in L2([−π, π]).

The set

B =

{
1√
2π
,

1√
π

cosnx,
1√
π

sinnx

}∞

n=1

is an orthonormal basis of L2(−π, π). This means, that

(f, g) =

∫ π

−π
f(x)g(x)dx = 0

for all f, g ∈ B, f 6= g and (f, f) = 1 for all f ∈ B.

Let f be a measurable function on (−π, π). Then f ∈ L2(−π, π) if, and only if, there are two sequences
{an}∞n=0 ∈ ℓ2 and {bn}∞n=0 ∈ ℓ2, such that

f(x) =
a0√
2π

+

∞∑

n=1

an
cosnx√

π
+ bn

sinnx√
π
,

with convergence in L2(−π, π) and

||f |L2(−π, π)|| =

(
∞∑

n=0

a2
n +

∞∑

n=1

b2n

)1/2

=
(
||a|ℓ2||2 + ||b|ℓ2||2

)1/2
.

In the same way, one may consider the system

B1 =

{

1√
2π
,

cosnx
√

(1 + n2)π
,

sinnx
√

(1 + n2)π

}∞

n=1

.

This is an orthonormal base in the first order Sobolev space

W 1
2 (−π, π) = {f ∈ AC(−π, π) : f, f ′ ∈ L2(−π, π)}

equipped with the scalar product

(f, g)W 1
2

=

∫ π

−π
f(x)g(x) + f ′(x)g′(x)dx.
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1.6 Applications of entropy numbers

Again, f ∈W 1
2 (−π, π) if, and only if, there exist two sequences {αn}∞n=0 ∈ ℓ2 and {βn}∞n=0, such that

f(x) =
α0√
2π

+
∞∑

n=1

αn
cosnx

√

(1 + n2)π
+ βn

sinnx
√

(1 + n2)π

with convergence in W 1
2 (−π, π).

Using the fact, that B and B′ differ only by constant, we get

an =
αn√

1 + n2
, bn =

βn√
1 + n2

.

Hence,

||f |W 1
2 (−π, π)|| =

(
∞∑

n=0

α2
n +

∞∑

n=1

β2
n

)1/2

=

(
∞∑

n=0

(1 + n2)a2
n +

∞∑

n=1

(1 + n2)b2n

)1/2

.

Remark 10. • This may be generalised to define

||f |W s
2 (−π, π)|| :=






f ∈ L2(−π, π) :

(

a2
0 +

∞∑

n=1

(1 + n2)s(a2
n + b2n)

)1/2

<∞






.

for arbitrary s ≥ 0.

• For p 6= 2 goes everything wrong. Especially Lp 6= {f : (
∑
apn + bpn)

1/p
<∞}.

• One may proceed very similar (using tensor products) for W s
2 ((−π, π)d), but W s

2 (Ω) needs es-
sentially new ideas.

• The embedding id : W 1
2 (−π, π) → L2(−π, π) is compact, cf. Exercise 26c.

We show, how we may use our results obtained so far, to estimate the entropy numbers of

en(id : W 1
2 (−π, π) → L2(−π, π)), n ∈ N.

We denote by

S0 : L2(−π, π) → ℓ2(Z)

the operator, which assigns to each f its Fourier coefficients in the base B, i.e.

(S0f)(n) =







∫ π

−π

1√
2π

· f(x)dx, for n = 0,
∫ π

−π

cosnx√
π

f(x)dx, for n ∈ N,
∫ π

−π

sinnx√
π
f(x)dx, for − n ∈ N,

and by

S1 : W 1
2 (−π, π) → ℓ2(Z)
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a similar operator with respect to B′, i.e.

(S1f)(n) =
(S0f)(n)√

1 + n2
=







∫ π

−π

1√
2π

· f(x)dx, for n = 0,
∫ π

−π

cosnx
√

(1 + n2)π
f(x)dx, for n ∈ N,

∫ π

−π

sinnx
√

(1 + n2)π
f(x)dx, for − n ∈ N.

Hence, we have a following commutative diagrams

W 1
2 (−π, π)

id−−−−→ L2(−π, π)

S1


y

x

(S0)−1

ℓ2(Z)
D−−−−→ ℓ2(Z),

W 1
2 (−π, π)

id−−−−→ L2(−π, π)

(S1)−1
x





yS0

ℓ2(Z)
D−−−−→ ℓ2(Z),

where the diagonal operator D : ℓ2(Z) → ℓ2(Z) is defined as

D({xn}n∈Z) =

{
xn√

1 + n2

}

n∈Z

.

The first diagram leads to

en(id) = en((S
0)−1 ◦D ◦ S1) ≤ ||(S0)−1|L(ℓ2(Z), L2(−π, π))|| · en(D) · ||S1|L(W 1

2 (−π, π), ℓ2(Z))||
= en(D)

and the second to

en(D) = en(S
0 ◦ id ◦ (S1)−1) ≤ ||S0|L(L2(−π, π), ℓ2(Z))|| · en(id) · ||(S1)−1|L(ℓ2(Z),W 1

2 (−π, π))||
= en(id),

hence en(D) = en(id).

We shall consider the (notationaly simpler) operator D′ : ℓ2(N) → ℓ2(N) defined by

D′({xn}n∈N) =
{xn
n

}

n∈N

and show, that en(D
′) ≈ 1

n . We split D′ = Dn +Dn, where

Dn({xn}n∈N) =
(x1

1
,
x2

2
, . . . ,

xn
n
, 0, 0, . . .

)

, Dn = D′ −Dn.

The estimate from below follows very quickly

en(D
′) ≥ en(Dn) ≥

1

n
· en(id : ℓn2 → ℓn2 ) ≈ 1

n
,

where we used Theorem 13 in the last step.

For the estimate from above, we use first

en(D
′) ≤ en(Dn) + ||Dn|| ≤ en(Dn) +

1

n
.
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1.6 Applications of entropy numbers

To estimate en(Dn) from above, we assume, that n = 2m,m ∈ N and split Dn into dyadic blocks
Dn = ∆1 + ∆2 + · · · + ∆m, where

∆1 : {xn}n∈N →
(x1

1
,
x2

2
, 0, 0, . . .

)

,

∆2 : {xn}n∈N →
(

0, 0,
x3

3
,
x4

4
, 0, 0, . . .

)

,

∆3 : {xn}n∈N →
(

0, 0, 0, 0,
x5

5
,
x6

6
,
x7

7
,
x8

8
, 0, 0, . . .

)

,

∆4 : {xn}n∈N →
(

0, . . . , 0,
x9

9
, . . . ,

x16

16
, 0, 0, . . .

)

,

...

∆m : {xn}n∈N →
(

0, . . . , 0,
x2m−1+1

2m−1 + 1
, . . . ,

x2m

2m
, 0, 0, . . .

)

,

and use the subaditivity of entropy numbers, i.e.

ecn(Dn) ≤ en1
(∆1) + en2

(∆2) + · · · + enm(∆m).

We need to choose the natural numbers n1, . . . nm so, that

m∑

j=1

nj ≤ c 2m

and
m∑

j=1

enj (∆j) ≤ c′
1

2m
.

Let us choose nj = (1 + ε)(m − j + 1)2j−1, j = 1, . . . ,m.19 Then it holds (ε > 0 is fixed and does not
tend to zero):

m∑

j=1

nj = (1 + ε)

m∑

j=1

(m− j + 1)2j−1 =
l=m−j+1(1 + ε)

m∑

l=1

l2m−l+1 = (1 + ε)2m+1
m∑

l=1

l2−l ≤ c(1 + ε)2m

and by Theorem 13

m∑

j=1

enj (∆j) ≤ en1
(id : ℓ22 → ℓ22) +

m∑

j=2

enj(id : ℓ2
j−1

2 → ℓ2
j−1

2 )

2j−1

≤ c
m∑

j=1

2−nj/2
j−1 · 1

2j−1
= c

m∑

j=1

2−(1+ε)(m−j)−j+1

= c′ 2−(1+ε)m
m∑

j=1

2jε ≈ 2−m.

This proves, that ecn(Dn) ≤ c′/n for some two absolute constants c, c′ > 0 and n = 2m,m ∈ N. The
rest follows by monotonicity arguments.

19Let us first ignore the fact, that with this choice the numbers nj are not natural.
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2 APPROXIMATION, GELFAND AND KOLMOGOROV NUMBERS

Remark 11. The technical problem, that nj must be natural numbers may be overcomed in two ways.
The first is to take the integer part of (1 + ε)(m− j+ 1)2j−1. The second is to define ex(T ) for all real
x > 1 by ex(T ) = e⌊x⌋(T ). We do not go into (rather technical) details.

Finally, we show, how we may use the entropy numbers of embeddings of function spaces to estimate
the entropy numbers (and eigenvalues) of some differential operators.

Let d : dom d ⊂ L2(−π, π) → L2(−π, π) be given by

dom d = {f ∈ AC(−π, π) : f, f ′ ∈ L2(−π, π), f(−π) = 0} = {f ∈W 1
2 (−π, π) : f(−π) = 0},

(df)(t) = f ′(t), t ∈ (−π, π).

As d is unbouded, we estimate the entropy numbers of its (compact) inverse operator

(d−1f)(x) =

∫ x

−π
f(t)dt, d−1 : L2(−π, π) → dom (d) ⊂ L2(−π, π).

We use the following diagram

L2(−π, π)
d−1

−−−−−−−→ L2(−π, π)
ցd−1 idր

W 1
2 (−π, π)

and get

en(d
−1 : L2 → L2) ≤ ||d−1 : L2 → W 1

2 || · en(id : W 1
2 → L2) ≤ c/n, n ∈ N.

The estimate from below follows by

{f ∈W 1
2 (−π, π) : f(−π) = 0} id−−−−−−→ L2(−π, π)

ցd d−1ր

L2(−π, π)

and

c/n ≤ en(id : W 1
2 → L2) ≤ ||d : W 1

2 → L2|| · en(d−1 : L2 → L2), n ∈ N.

Combined with Carl-Triebel inequality, this implies the estimates of eigenvalues of d−1 from above,
hence estimates of eigenvalues of d from below.

2 Approximation, Gelfand and Kolmogorov numbers

This section is devoted to other ways, how to measure and describe compactness. Unfortunately,
there are too many of them and a detailed treatment would clearly go beyond the scope of this script.
Therefore, we concentrate on three of them, which seem to be most useful in approximation theory,
namely approximation, Gelfand and Kolmogorov numbers.

2.1 s-numbers

The general theory of s-numbers was created and developped by Pietsch in [4] and [5]. We quote
(almost literarily) the Definition 2.2.1 from [5].
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2.2 Approximation numbers

Definition 16. A rule
s : T → {sn(T )}∞n=1,

which assigns to every operator a scalar sequence, is said to be an s-scale if the following conditions
are satisfied:

(i) ||T |L(X,Y )|| = s1(T ) ≥ s2(T ) ≥ s3(T ) ≥ · · · ≥ 0 for T ∈ L(X,Y ),

(ii) sm+n−1(S + T ) ≤ sm(S) + sn(T ) for all S, T ∈ L(X,Y ),

(iii) sn(T1TT0) ≤ ||T0|| · sn(T ) · ||T1|| for T0 ∈ L(X0,X), T ∈ L(X,Y ) and T1 ∈ L(Y, Y1),

(iv) if rank T < n, then sn(T ) = 0,

(v) sn(id : ℓn2 → ℓn2 ) = 1.

Remark 12. (i) For T ∈ L(X,Y ), we denote by rank T = dim T (X) the dimension of its range. If
rank T <∞, then T is called finite dimensional.

(ii) Of course, in this definition areX and Y assumed to be Banach spaces. We generalize this definition
to suit also quasi-Banach spaces. Also the property (iii) shall be slightly generalized.

(iii) It is the property (iv), what excludes the entropy numbers of being s-numbers. This lead Pietsch
in [4, Chapter 12] to replace the axioms (i)-(v) with a different set of axioms leading to the so-called
pseudo s-functions. We omit any details.

Definition 17. Let X,Y,Z be three quasi-Banach spaces and let Y be a p-Banach space with 0 <
p ≤ 1. The rule s : T → {sn(T )}∞n=1 is called an s-function, if

(i) ||T |L(X,Y )|| ≥ s1(T ) ≥ s2(T ) ≥ s3(T ) ≥ · · · ≥ 0 for all T ∈ L(X,Y ),

(ii) spm+n−1(S + T ) ≤ spm(S) + spn(T ) for all S, T ∈ L(X,Y ),

(iii) sm+n−1(R ◦ T ) ≤ sm(R) · sn(T ) for R ∈ L(Y,Z) and T ∈ L(X,Y ),

(iv) if rank T < n, then sn(T ) = 0,

(v) sn(id : ℓn2 → ℓn2 ) = 1.

Furthermore, we call sn(T ) then n-th s-number of T .

2.2 Approximation numbers

The most important s-numbers are the approximation numbers.

Definition 18. Let X,Y be two quasi-Banach spaces and let T ∈ L(X,Y ). Then we set

an(T ) = inf{||T −A|L(X,Y )|| : A ∈ L(X,Y ), rank A < n}.

Theorem 19. The approximation numbers an form an s-function.

Proof. The proof of (i) is immediate. Let us just recall, that the operator A ∈ L(X,Y ) defined as
Ax = 0 for all x ∈ X has the range {0} ∈ Y , which (according to the usual definition) has dimension
0.
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2 APPROXIMATION, GELFAND AND KOLMOGOROV NUMBERS

Also the proof of (ii) follows by standard technique. Let ε > 0 and let A,B ∈ L(X,Y ) be such, that

||S −A|L(X,Y )|| ≤ (1 + ε)am(S), ||T −B|L(X,Y )|| ≤ (1 + ε)an(T ).

Then

||S −A+ T −B|L(X,Y )||p = sup
x∈BX

||(S −A)x+ (T −B)x||pY

≤ sup
x∈BX

||(S −A)x||pY + sup
x∈BX

||(T −B)x||pY

≤ ||S −A|L(X,Y )||p + ||T −B|L(X,Y )||p
≤ (1 + ε)p {apm(S) + apn(T )}

Finally, we recall from linear algebra, that rank (A+B) ≤ m− 1 + n− 1.

To prove (iii), let again ε > 0 and A ∈ L(X,Y ), B ∈ L(Y,Z) be such, that

||T −A|L(X,Y )|| ≤ (1 + ε)an(T ), ||R −B|L(Y,Z)|| ≤ (1 + ε)am(R).

Then

||R ◦ T−(R ◦ A−B ◦A+B ◦ T )|L(X,Z)|| = ||(R−B) ◦ (T −A)|L(X,Z)||
≤ ||R−B|L(Y,Z)|| · ||T −A|L(X,Y )|| ≤ (1 + ε)2an(T )am(R).

Let us also remark, that rank [(R −B) ◦A+B ◦ T ] < m+ n− 1.

The proof of (iv) is trivial, as well as the proof of

an(id : ℓn2 → ℓn2 ) ≤ 1.

Finally, the lower estimate follows from the following Lemma.

Lemma 20. Let X be a quasi-Banach space with dim(X) ≥ n. Then an(id : X → X) = 1.

Proof. Let an(id : X → X) < 1. Then there is an operator A ∈ L(X,X), such that

||id−A|L(X,X)|| < 1 and rank A < n.

Then the Neumann series20 of A = id − (id − A) shows, that A must be invertible. Hence dim X =
rank A < n.

Another interesting property is that an are actually the largest s-numbers.

Theorem 21. The approximation numbers yield the largest s-function.

Proof. Let T ∈ L(X,Y ) and let n ∈ N be fixed. Then for every ε > 0 there is an operator A ∈ L(X,Y ),
such that

||T −A|L(X,Y )|| < (1 + ε)an(T ) and rank A < n.

Then, for an arbitrary s-function s, it follows for suitable 0 < p ≤ 1

spn(T ) ≤ ||T −A|L(X,Y )||p + spn(A) ≤ (1 + ε)papn(T ).

20cf. Exercise 27
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2.2 Approximation numbers

Remark 13. (i) It is very well known, that the identity on every infinite-dimensional Banach space is
not compact. This is true also for quasi-Banach spaces - the reader may consult [1].

(ii) The relation between the set of all compact linear operators from X to Y (denoted by K(X,Y ))
and all continuous linear operators L(X,Y ) may be very interesting. We quote (without proof) the
Pitt theorem, which states that for 1 ≤ q < p <∞ the following identity is true: L(ℓp, ℓq) = K(ℓp, ℓq).
Hence, every bounded operator from ℓp into ℓq is also compact. Also L(c0, ℓq) = K(c0, ℓq).

(iii) If an(T ) → 0, then T is compact, cf. Exercise 26. It was one of the most famous open problems,
if also the converse is true. The counterexample was constructed by P. Enflo (and awarded live goose
in Warsaw by Mazur). Nevertheless, the counterexample is very sophisticated and for “usual” spaces
the converse is really true. Nevertheless, there are also exceptions. For example, if H is a separable
Hilbert space, then L(H) does not have the approximation property.

Theorem 22. Let X be a Banach space and Y a separable Banach space. If there is a sequence
{Sn}∞n=1 ⊂ L(Y ) of finite-dimensional operators, such that

lim
n→∞

Sny = y

for every y ∈ Y , then F(X,Y ) = K(X,Y ).

Proof. Let T ∈ K(X,Y ). Then SnT ∈ F(X,Y ) and it is enough to show, that

||SnT − T |L(X,Y )|| → 0.

According to the Theorem of Banach-Steinhaus, there is a K ∈ R, such that supn ||Sn|L(X,Y )|| ≤
K <∞.

Let ε > 0 be arbitrary and let {y1, . . . , yr} ⊂ Y be such that

T (BX) ⊂
r⋃

j=1

yj + εBY .

Then there is an N ∈ N, such that ||Snyj − yj||Y < ε for all j = 1, . . . , r and all n ≥ N. This leads to

||SnTx− Tx||Y ≤ ||Sn(Tx− yj)||Y + ||Snyj − yj||Y + ||yj − Tx||Y ≤ Kε+ ε+ ε = (K + 2)ε

for all x ∈ BX , all n ≥ N and appropriately chosen j ∈ {1, . . . , r}.

Remark 14. (i) The assumption of this theorem is satisfied for example for the spaces Y = c0, Y =
ℓp, Y = Lp([0, 1]) with 1 ≤ p <∞ or Y = C([0, 1]).

Theorem 23. Let 0 < p ≤ ∞ and let σ = (σ1, σ2, . . . ) with σ1 ≥ σ2 ≥ · · · ≥ 0 be a non-increasing
sequence. We define the diagonal operator Dσ as

Dσ : ℓp → ℓp, Dσx = (σ1x1, σ2x2, . . . ).

Then

an(Dσ) = σn, n ∈ N.
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2 APPROXIMATION, GELFAND AND KOLMOGOROV NUMBERS

Proof. Step 1. Estimate from above

Let n ∈ N. We denote by Dn−1
σ the (n− 1)th sectional operator

Dn−1
σ x = (σ1x1, . . . , σn−1xn−1, 0, 0, . . . ).

Then

an(Dσ) ≤ ||Dσ −Dn−1
σ |L(ℓp, ℓp)|| = σn.

Step 2. Estimate from below

For the estimate from below, we use the following operators

D(n)
σ : ℓnp → ℓnp , D(n)

σ x = (σ1x1, σ2x2, . . . , σn−1xn−1, σnxn),

Inp : ℓnp → ℓnp , Inp (x1, . . . , xn) = (x1, . . . , xn),

Jn : ℓnp → ℓp, Jn(x1, . . . , xn) = (x1, . . . , xn, 0, 0, . . . ),

Pn : ℓp → ℓnp , Pn(x1, . . . , xn, xn+1, . . . ) = (x1, x2, . . . , xn).

We may assume, that σn 6= 0 - otherwise, there is nothing to prove. Then we may calculate

1 ≤ an(I
n
p ) = an((D

(n)
σ )−1 ◦D(n)

σ ) ≤ ||(D(n)
σ )−1|| · an(D(n)

σ )

= σ−1
n an(D

(n)
σ ) = σ−1

n an(Pn ◦Dσ ◦ Jn) ≤ σ−1
n · ||Pn|| · an(Dσ) · ||Jn|| = σ−1

n · an(Dσ).

2.3 Gelfand and Kolmogorov numbers

In this section we define the Gelfand and Kolmogorov numbers, prove their basic properties and study
their relation to approximation numbers.

Definition 24. Let X,Y be two quasi-Banach spaces and let T ∈ L(X,Y ).

(i) We define the n-th Gelfand number of the operator T as

cn(T ) = inf{||T ◦ JXM |L(M,Y )|| : M ⊂ X, codim M < n},

where JXM : M → X denotes the canonical embedding of a subspace M ⊂ X into X.

(ii) We define the n-th Kolmogorov number of the operator T as

dn(T ) = inf{||QYN ◦ T |L(X,Y/N)|| : N ⊂ Y, dim N < n},

where QYN : Y → Y/N is the quotient map.

Remark 15. (i) On many occasions, one uses an equivalent definition of cn, namely

cn(T ) = inf
M⊂X

codim M<n

sup
x∈M

||x||X≤1

||Tx||Y .

(ii) The quotient space Y/N is the space of cosets y = {y − z : z ∈ N} equipped with the quotient
(quasi-)norm

||y|Y/N || = inf{||y − z||Y : z ∈ N}.
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The quotient map QYN is defined as QYNy = y.

Using this terminology, we may rewrite the definition of Kolmogorov numbers as

dn(T ) = inf
N⊂Y

dim N<n

sup
x∈X

||x||X≤1

||Tx|Y/N || = inf
N⊂Y

dim N<n

sup
x∈X

||x||X≤1

inf
z∈N

||Tx− z||Y .

(iii) Observe, that all the structures used so far (canonical embedding, quotient space, quotient map-
ping) are well definied also for quasi-Banach spaces. Nevertheless, if X and/or Y are Banach spaces,
then there are numerous equivalent definitions of Gelfand and Kolmogorov numbers. We shall see
some of them later on.

(iv) The definition of approximation numbers was based on a linear approximation of an operator T on
the whole space X. Both the Gelfand as well as the Kolmogorov numbers involve certain nonlinearity
(which shall be discussed later in the Exercises) and therefore the following proposition should not be
really surprising.

Proposition 25. Let X and Y be two quasi-Banach spaces and let T ∈ L(X,Y ). Then

cn(T ) ≤ an(T ) and dn(T ) ≤ an(T ) for all n ∈ N.

Proof. Let ε > 0 be arbitrary and let A ∈ L(X,Y ) be such, that ||T −A|L(X,Y )|| < (1+ ε)an(T ) and
rank A < n.

Step 1. dn(T ) ≤ an(T ).

We put N = A(X). Then dim N = rank A < n and

dn(T ) ≤ sup
x∈BX

inf
y∈N

||Tx− y||Y ≤ sup
x∈BX

||Tx−Ax||Y = ||T −A|L(X,Y )|| ≤ (1 + ε)an(T ).

Step 2. cn(T ) ≤ an(T ).

We put M = kern A = {x ∈ X : Ax = 0}. Then we have

cn(T ) ≤ sup
x∈kern A
||x||X≤1

||Tx||Y = sup
x∈kern A
||x||X≤1

||Tx−Ax||Y ≤ ||T −A|L(X,Y )|| ≤ (1 + ε)an(T ).

The last thing, which one has to consider is to show, that codim M < n. We postpone this (rather
algebraic) proof to the Exercise 28.

Theorem 26. The Gelfand numbers as well as the Kolmogorov numbers form an s-function.

Proof. Step 1. Gelfand numbers

The proof of (i) follows from the observation, that the only space M ⊂ X with codim M < 1 is the
space X itself. And then

c1(T ) = sup
x∈BX

||Tx||Y = ||T |L(X,Y )||.

The proof of the property cj(T ) ≥ cj+1(T ) for all j ∈ N is trivial.

To prove (ii) we take ε > 0 arbitrary and find

M1 ⊂ X with codim M1 < m : x ∈M1 =⇒ ||Sx||Y ≤ (1 + ε)cm(S)||x||X ,
M2 ⊂ X with codim M2 < n : x ∈M2 =⇒ ||Tx||Y ≤ (1 + ε)cn(T )||x||X .

40



2 APPROXIMATION, GELFAND AND KOLMOGOROV NUMBERS

Then we obtain

||(S + T )x||pY ≤ ||Sx||pY + ||Tx||pY ≤ (1 + ε)p||x||pX (cpm(S) + cpn(T ))

for all x ∈M1 ∩M2 - a subspace of X with codimension smaller then m+ n− 1.

The proof of (iii) follows similarly.

M1 ⊂ X with codim M1 < n : x ∈M1 =⇒ ||Tx||Y ≤ (1 + ε)cn(T )||x||X ,
M2 ⊂ Y with codim M2 < m : y ∈M2 =⇒ ||Ry||Z ≤ (1 + ε)cm(R)||y||Y .

Then
||R(Tx)||Z ≤ (1 + ε)cm(R)||Tx||Y ≤ (1 + ε)2cm(R)cn(T )||x||X

for all x ∈ X with x ∈ M1 and Tx ∈ M2, i.e. for all x ∈ M1 ∩ T−1(M2) - a subspace of X with
codimension smaller then m+ n− 1, cf. Exercise 28.

To (iv): if rank T < n, then codim kern T < n and T |kern T = 0, hence cn(T ) = 0.

Finally (v) follows from Lemma 27.

Step 2. Kolmogorov numbers

The only subspace N ⊂ Y with dim N < 1 is the space {0} ⊂ Y. Hence

d1(T ) = sup
x∈BX

||Tx− 0||Y = ||T |L(X,Y )||.

The inequality dj(T ) ≥ dj+1(T ), j ∈ N is again trivial and the proof of (i) is therefore complete.

To prove (ii) we take ε > 0 arbitrary and find

N1 ⊂ Y with dim N1 < m : x ∈ X =⇒ ∃y1 ∈ N1 : ||Sx− y1||Y ≤ (1 + ε)dm(S)||x||X ,
N2 ⊂ Y with dim N2 < n : x ∈ X =⇒ ∃y2 ∈ N2 : ||Tx− y2||Y ≤ (1 + ε)dn(T )||x||X .

Take x ∈ X and find corresponding y1 and y2 as described above. Then we obtain

||(S + T )x− y1 − y2||pY ≤ ||Sx− y1||pY + ||Tx− y2||pY ≤ (1 + ε)p||x||pX (dpm(S) + dpn(T )) .

Here, y = y1 + y2 ∈ N1 +N2 - a subspace of Y with dimension smaller then m+ n− 1.

The proof of (iii) follows similarly.

N1 ⊂ Y with dim N1 < n : x ∈ X =⇒ ∃y ∈ N1 : ||Tx− y||Y ≤ (1 + ε)dn(T )||x||X ,
N2 ⊂ Z with dim N2 < m : y ∈ Y =⇒ ∃z ∈ N2 : ||Ry − z||Z ≤ (1 + ε)dm(R)||y||Y .

Let us take x ∈ X. We find y to Tx as described above and z to R(Tx − y) instead of Ry. Then we
may estimate

||R(Tx) −R(y) − z||Z = ||R(Tx− y) − z||Z ≤ (1 + ε)dm(R)||Tx− y||Y ≤ (1 + ε)2dm(R)dn(T )||x||X ,

where R(y) + z ∈ R(N1) +N2 - a subspace of Z with dimension smaller then m+ n− 1.

To (iv): if rank T < n, then dim T (X) < n

dn(T ) ≤ sup
x∈BX

inf
y∈T (x)

||Tx− y||Y = 0.

Finally (v) follows from Lemma 27.
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Lemma 27. Let X be a quasi-Banach space with dim(X) ≥ n. Then cn(id : X → X) = dn(id : X →
X) = 1.

Proof. Let n ∈ N and let X be a space with dim X ≥ n.

Step 1. Gelfand numbers

Let M ⊂ X be a subspace of X with codimension smaller then n. Then M 6= {0}. Hence

cn(id : X → X) = inf
M⊂X

codim M<n

sup
x∈M

||x||X≤1

||id(x)||Y ≥ 1.

Step 2. Kolmogorov numbers

Let ε > 0 and let N ⊂ X with dim N < n. Then N 6= X and accordning to the Riesz’s lemma, there
is an xN,ε ∈ X \N , such that ||xN,ε||X = 1 and ||xN,ε − y||X ≥ 1

1+ε for all y ∈ N. Hence

dn(T ) ≥ inf
N⊂Y

dim N<n

inf
y∈N

||TxN,ε − y|| ≥ 1

1 + ε
.

Theorem 28. a) Let X and Y be two Banach spaces and let T ∈ L(X,Y ). Then T is compact if, and
only if, cn(T ) → 0,

b) Let X and Y be two quasi-Banach spaces and let T ∈ L(X,Y ). Then T is compact if, and only if,
dn(T ) → 0.

Proof. Step 1. Gelfand numbers

Let T be compact, i.e. for every ε > 0

T (BX) ⊂
J⋃

j=1

yj + εBY (2.1)

for suitable J ∈ N and {y1, . . . , yJ} ∈ Y.

According to the Hahn-Banach Theorem, there are functionals βj ∈ Y ′, such that

|βj(yj)| = ||yj ||Y and ||βj ||Y ′ = 1, j = 1, . . . , J.

We define αj ∈ X ′ by αj(x) = βj(T (x)), j = 1, . . . , J and M = {x ∈ X : αj(x) = 0 for all j = 1, . . . , J}.
Then,21

for x ∈M with ||x||X ≤ 1 and an appropriate j ∈ {1, . . . , J},

||Tx||Y ≤ ||Tx−yj ||Y +||yj ||Y ≤ ε+|βj(yj)| ≤ ε+|βj(Tx−yj)|+|βj(Tx)| ≤ ε+||βj ||Y ′ ·||Tx−yj ||Y ≤ 2ε.

Conversely, let cn(T ) → 0. Then for every ε > 0, there are J ∈ N and α1, . . . , αJ ∈ X ′ such that for
every

x ∈M =

J⋂

j=1

kern αj = {x ∈ X : α1(x) = · · · = αJ(x) = 0}

21A detailed investigation of the next line show, that ||yj ||Y < ε, which seems to be in contradiction with (2.1), but
this holds only for those yj ’s, which play a role in covering of T (M).
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the following inequality holds

||Tx||Y ≤ ε||x||X .
We show, that this implies, that T ′ is compact (and hence also T ).

Let β ∈ BY ′ . Then T ′β ∈ X ′ and (according to the Hahn-Banach Theorem), there is a functional
θ ∈ X ′ such that θ(x) = T ′β(x) for every x ∈M and

||θ||X′ = sup
x∈BX

|θ(x)| = sup
x∈M

||x||X≤1

|θ(x)| = sup
x∈M

||x||X≤1

|(T ′β)(x)| = sup
x∈M

||x||X≤1

|β(Tx)| ≤ ||β||Y ′ · sup
x∈M

||x||X≤1

||Tx|| ≤ ε.

We define M̃ = Lin(α1, . . . , αJ ) ⊂ X ′. As (θ − T ′β)(x) = 0 for all x ∈ M , we conclude, that
θ − T ′β ∈ M̃. Hence, T ′β = (T ′β − θ) + θ ∈ M̃ + εBX′ .

This holds for all β ∈ BY ′ , hence

T ′(BY ′) ⊂ M̃ + εBX′ .

But if T ′β = m̃+ εχ with m̃ ∈ M̃ and χ ∈ BX′ , then

||m̃||X′ ≤ ||T ′β||X′ + ε||χ||X′ ≤ ||T ′|L(Y ′,X ′)|| · ||β||Y ′ + ε.

Hence even

T ′(BY ′) ⊂ ||T ′|L(Y ′,X ′)||BX′ ∩ M̃ + εBX′ .

The set ||T ′|L(Y ′,X ′)||BX′ ∩ M̃ is a bounded set in a finite-dimensional space M̃ and may be covered
like

||T ′|L(Y ′,X ′)||BX′ ∩ M̃ ⊂
K⋃

k=1

γk + εBX′ ,

which leads to

T ′(BY ′) ⊂
K⋃

k=1

γk + 2εBX′ .

Step 2. Kolmogorov numbers

Let T be compact, i.e. for every ε > 0

T (BX) ⊂
J⋃

j=1

yj + εBY

for suitable J ∈ N and {y1, . . . , yJ} ∈ Y. Put N = Lin(y1, . . . , yJ).

Then

dJ+1(T ) ≤ sup
x∈BX

inf
y∈N

||Tx− y||Y ≤ sup
x∈BX

inf
j=1,...,J

||Tx− yj||Y ≤ ε.

Let on the other hand dn(T ) → 0. Then for every ε > 0 there is a finite-dimensional subspace N ⊂ Y ,
such that

sup
x∈BX

inf
y∈N

||Tx− y||Y < ε.

This may be rewritten as

T (BX) ⊂ N + εBY .
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But if Tx = y + εz with y ∈ N and z ∈ BY , then

||y||pY ≤ ||Tx||pY + εp

for a suitable 0 < p ≤ 1. Hence also

T (BX) ⊂ N ∩ (||T |L(X,Y )||p + εp)1/pBY + εBY .

The set N ∩ (||T |L(X,Y )||p + εp)1/pBY is a bounded set in finite-dimensional quasi-Banach space N
and may be therefore covered

N ∩ (||T |L(X,Y )||p + εp)1/pBY ⊂
m⋃

j=1

zj + εBY

for appropriate m ∈ N and z1, . . . , zm ∈ N. Hence

T (BX) ⊂
m⋃

j=1

zj + 21/p−1εBY

and T is compact.

When dealing with Hilbert spaces, the situation is usually much simpler - some (or even all) of the
s-numbers coincide.

Theorem 29. Let X and Y be two quasi-Banach spaces and let T ∈ L(X,Y ).

a) If X is even a Hilbert space, then cn(T ) = an(T ).

b) If Y is even a Hilbert space, then dn(T ) = an(T ).

c) If both X and Y are Hilbert spaces, then cn(T ) = dn(T ) = an(T ).

Proof. Of course, c) is a simple corollary of a) and b).

Step 1. Gelfand numbers

Let n ∈ N and ε > 0 be arbitrary. Then there is a subspace M ⊂ X with codim M < n, such that

x ∈M =⇒ ||Tx||Y ≤ (1 + ε)cn(T )||x||X .

We define the space M⊥ = {y ∈ X :< x, y >X= 0 for all x ∈ M} of all elements orthogonal to
the all elements of M . Finally, we denote by PM⊥ the orthogonal projection of X onto M⊥ and set
A = T ◦ PM⊥ .

Then

an(T ) ≤ ||T −A|L(X,Y )|| = sup
x∈BX

||Tx−Ax||Y = sup
x∈BX

||Tx− T (PM⊥x)||Y

= sup
x∈BX

||T (x− PM⊥x
︸ ︷︷ ︸

∈M

)||Y ≤ (1 + ε)cn(T ) sup
x∈BX

||x− PM⊥x||X ≤ (1 + ε)cn(T ).

Finally, we let ε→ 0.

Step 2. Kolmogorov numbers
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Let n ∈ N and ε > 0 be arbitrary. Then there is a subspace N ⊂ Y with dim N < n, such that

x ∈ X =⇒ inf
y∈N

||Tx− y||Y ≤ (1 + ε)dn(T )||x||X .

We set A = PNT , where PN is again the orthogonal projection, this time of Y onto N . Then

an(T ) ≤ ||T −A|L(X,Y )|| = sup
x∈BX

||Tx−Ax||Y = sup
x∈BX

||Tx− PN (Tx)||Y

= sup
x∈BX

inf
y∈N

||Tx− y||Y ≤ (1 + ε)dn(T )

and we let again ε→ 0.

Also the relation of interpolation theory to Gelfand and Kolmogorov numbers is easily seen.

Theorem 30. Let X, T , Y0, Yθ, Y1 ⊂ Y, 0 < p ≤ 1 and 0 < θ < 1 satisfy all the assumptions of
Theorem 10. Then

cn0+n1−1(T : X → Yθ) ≤ c1−θn0
(T : X → Y0) · cθn1

(T : X → Y1), n0, n1 ∈ N.

Proof. Let M0,M1 ⊂ X be two subspaces of X with

codim M0 < n0 and x ∈M0 =⇒ ||Tx||Y0
≤ (1 + ε)cn0

(T : X → Y0)||x||X ,
codim M1 < n1 and x ∈M1 =⇒ ||Tx||Y1

≤ (1 + ε)cn1
(T : X → Y1)||x||X .

Put M = M0 ∩M1. Then codim M < n0 + n1 − 1 and for x ∈M

||Tx||Yθ
≤ ||Tx||1−θY0

· ||Tx||θY1
≤ (1 + ε)||x||Xc1−θn0

(T : X → Y0)c
θ
n1

(T : X → Y1)

and the result follows.

Theorem 31. Let X0,Xθ,X1 ⊂ X, T , Y , 0 < p ≤ 1 and 0 < θ < 1 satisfy all the assumptions of
Theorem 11. Then

dn0+n1−1(T : Xθ → Y ) ≤ 21/pd1−θ
n0

(T : X0 → Y ) · dθn1
(T : X1 → Y ), n0, n1 ∈ N.

Proof. Let us abbreviate dn0
= dn0

(T : X0 → Y ) and dn1
= dn1

(T : X1 → Y )

Let N0, N1 ⊂ Y be two subspaces of Y with

dim N0 < n0 and x ∈ X0 =⇒ inf
y∈N0

||Tx− y||Y ≤ (1 + ε)dn0
||x||X0

,

dim N1 < n1 and x ∈ X1 =⇒ inf
y∈N1

||Tx− y||Y ≤ (1 + ε)dn1
||x||X1

.

Put N = N0 +N1. Then dim N < n0 + n1 − 1. Let x ∈ X and t > 0 to be chosen later on. Then we
find x0 ∈ X0 and x1 ∈ X1 such that

x = x0 + x1 and ||x0||X0
+ t||x1||X1

≤ tθ||x||Xθ

and y0 ∈ N0 and y1 ∈ N1, such that

||Tx0 − y0||Y ≤ (1 + ε)dn0
||x0||X0

and ||Tx1 − y1||Y ≤ (1 + ε)dn1
||x1||X1

.

Finally, we arrive at

||Tx− (y0 + y1)||pY ≤ ||Tx0 − y0||pY + ||Tx1 − y1||pY ≤ (1 + ε)(dpn0
||x0||pX0

+ dpn1
||x1||pX1

)

≤ (1 + ε)(dpn0
tpθ||x||pXθ

+ dpn1
tp(θ−1)||x||pXθ

) ≤ 2dp(1−θ)n0
dpθn1

||x||pXθ
,

where we have chosen t = dn1
/dn0

. From this, the result follows.
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2.3.1 Duality

In this section, we consider the relation between cn(T ) and dn(T
′) (and briefly also between an(T ) and

an(T
′)). Some of the main ideas were already hidden in the proof of Theorem 28, but here we are

going to discuss the concept of duality and its connection to s-numbers in detail.

In this whole section we assume X and Y to be Banach spaces, so that we can

• work with X ′ and Y ′,

• apply the Hahn-Banach theorem,

• consider the dual operator T ′ ∈ L(Y ′,X ′) for every T ∈ L(X,Y ).

Let us recall the basic facts from functional analysis about duality.

If X and Y are two Banach spaces and T ∈ L(X,Y ), then we define T ′ ∈ L(Y ′,X ′) by

[T ′(ϕ)](x) = ϕ(T (x))

for every ϕ ∈ Y ′ and x ∈ X. It is quite simple to see, that with this definition the operator T ′ is really
linear and bounded (even with ||T |L(X,Y )|| = ||T ′|L(Y ′,X ′)||). According to Schauder’s theorem we
know, that T is compact if, and only if, T ′ is compact.

If X is a Banach space and X ′ is its dual space, then we denote by X ′′ the second dual space. The
canonical embedding of X into X ′′ is defined as

εX : X → X ′′, εX(x)(ϕ) = ϕ(x)

for every x ∈ X and ϕ ∈ X ′. If εX is even an isomporhism of X onto X ′′, then X is called reflexive.

Definition 32. Let X be a Banach space and X ′ be its dual space.

a) If L ⊂ X is a subspace of X, we define

L⊥ = {ϕ ∈ X ′ : ϕ(x) = 0 for all x ∈ L}.

b) If M ⊂ X ′ is a subspace of X ′, we define

M⊥ = {x ∈ X : ϕ(x) = 0 for all ϕ ∈M}.

Both L⊥ and M⊥ are called annihilators.

Theorem 33. Let X,X ′, L and M be as above. Then

(L⊥)⊥ = L, (M⊥)⊥ = M ω∗ .

Here L stands for the closure of L and M ω∗ is the so-called weak-star closure of M .

Proof. Step 1. (L⊥)⊥ = L.

a) Let x ∈ L and let ϕ ∈ L⊥. As ϕ(L) = 0 and ϕ is continuous, then also ϕ(x) = 0. Hence ϕ(x) = 0
for all ϕ ∈ L⊥, which means, that x ∈ (L⊥)⊥.

b) Let x 6∈ L. According to the Hahn-Banach Theorem, there is a ϕ ∈ X ′, such that ϕ(L) = 0 and
ϕ(x) 6= 0. Hence, x 6∈ (L⊥)⊥.
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Step 2. L⊥ is weak-star closed in X ′ for all subspaces L ⊂ X.

Let us recall, that the set O ⊂ X ′ is weak-star open if, and only if,

∀ϕ ∈ O ∃ ε > 0 ∃x1, . . . , xn ∈ X : {ψ ∈ X ′ : |ψ(xi) − ϕ(xi)| < ε for all i = 1, . . . , n} ⊂ O.

Of course, a set C ⊂ X ′ is weak-star closed if, and only if, its complement is weak-star open, i.e.

∀ϕ 6∈ C ∃ ε > 0 ∃x1, . . . , xn ∈ X : {ψ ∈ X ′ : |ψ(xi) − ϕ(xi)| < ε for all i = 1, . . . , n} ∩ C = ∅.

So, let us take ϕ 6∈ L⊥. Then there is x0 ∈ L, such that 0 < |ϕ(x0)| =: ε and we observe that

{ψ ∈ X ′ : |ψ(x0) − ϕ(x0)| < ε} ∩ L⊥ = ∅.

Hence, L⊥ is weak-star closed.

Step 3. M ω∗ ⊂ (M⊥)⊥

Obviuously, M ⊂ (M⊥)⊥. But the later set is weak-star closed (cf. Step 2.) and the inclusion follows.

Step 4. (M⊥)⊥ ⊂M ω∗

Let ϕ 6∈M ω∗ . Then we may apply the Hahn-Banach Theorem with respect to the weak-star topology
on X ′ and find Ψ ∈ (X ′, ω∗)′, such that Ψ(ϕ) 6= 0 and Ψ(M ω∗

) = 0. It is a standard fact from
functional analysis, that (X ′, ω∗)′ = εX(X) ⊂ X ′′. Hence Ψ may be represented by an x ∈ X with
ϕ(x) 6= 0 and ψ(x) = 0 for all ψ ∈M ω∗ - especially x ∈M⊥. Hence ϕ 6∈ (M⊥)⊥.

The relation between annihilators and approximation theory is given in the following fundamental
Lemma.

Lemma 34. a) Let X be a Banach space, x ∈ X and let L ⊂ X be a subspace of X. Then

inf
y∈L

||x− y||X = max{|ϕ(x)| : ϕ ∈ L⊥, ||ϕ||X′ ≤ 1}. (2.2)

b) Let X be a Banach space, X ′ its dual space, let M ⊂ X ′ be a weak-star closed subspace and let
ϕ ∈ X ′. Then

min
ψ∈M

||ϕ − ψ||X′ = sup{|ϕ(x)| : x ∈M⊥, ||x||X ≤ 1}. (2.3)

Proof. a) We may assume, that L is closed - i.e. both sides of (2.2) do not change, if we replace L by
L. If x ∈ L, then there is nothing to prove. So, we may also assume, that x 6∈ L.

Let L̃ = lin{L, x} ⊂ X. It means, that every element ω ∈ L̃ may be written (in a unique way) as
ω = λx+ y, where λ ∈ R and y ∈ L.
Let ϕ : L̃→ R be linear and continuous, such that ϕ(L) = 0, ϕ(x) > 0 and ||ϕ||(L̃)′ = 1.

Then for every ε > 0 there is zε ∈ L̃, such that

||zε||X = 1 and ϕ(zε) ≥ (1 − ε)||ϕ||(L̃)′ = 1 − ε.

We decompose zε = λεx+ yε. Then ϕ(zε) = λεϕ(x) + ϕ(yε) = λεϕ(x) > 1 − ε.

∥
∥
∥
∥
x+

yε
λε

∥
∥
∥
∥
X

=

∥
∥
∥
∥

zε
λε

∥
∥
∥
∥
X

=
1

|λε|
· ||zε||X =

1

λε
≤ ϕ(x)

1 − ε
.
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And the result follows by

inf
y∈L

||x− y||X ≤ inf
0<ε<1

∥
∥
∥
∥
x+

yε
λε

∥
∥
∥
∥
≤ inf

0<ε<1

ϕ(x)

1 − ε
= ϕ(x).

To prove the second inequality in (2.2), we calculate for arbitrary y ∈ L:

||x− y||X = sup
ϕ∈BY ′

|ϕ(x− y)| ≥ sup
ϕ∈L⊥

||ϕ||Y ′≤1

|ϕ(x− y)| = sup
ϕ∈L⊥

||ϕ||Y ′≤1

|ϕ(x)|.

Let us remark, that it also follows from the proof, that the maximum on the right hand side of (2.2)
is attained - namely by the ϕ constructed above.

b) Let M ⊂ X ′, ϕ ∈ X ′ and let M ⊂ X ′ be a weak-star closed subspace of X ′.

It follows from Theorem 33, that

θ ∈ X ′ : θ ∈M ⇔ θ(M⊥) = 0.

We put
a := sup{|ϕ(x)| : x ∈M⊥, ||x||X ≤ 1} <∞.

Then
||ϕ − ψ||X′ = sup

x∈BX

|ϕ(x) − ψ(x)| ≥ sup
x∈M⊥

||x||X≤1

|ϕ(x)| = a

holds for all ψ ∈M and hence also for the infimum.

On the other hand, we apply Hahn-Banach Theorem to obtain ψ ∈ X ′ with

ψ(x) = ϕ(x) for all x ∈M and ||ψ||X′ = a.

We put θ = ϕ− ψ. Then θ(M⊥) = 0 and hence θ ∈M. But also

||ϕ − θ||X′ = ||ψ||X′ = a.

Hence the minimum on the left-hand side of (2.3) is attained (in θ).

Theorem 35. Let X,Y be two Banach spaces and T ∈ L(X,Y ).

a) Then
cn(T ) = dn(T

′) (2.4)

and
cn(T

′) ≤ dn(T ). (2.5)

b) If T is even compact, then
cn(T

′) ≥ dn(T ). (2.6)

Proof. Step 1. Proof of (2.4)

Let M ⊂ X be a subspace of X with codim X < n. We set N = M⊥. Then N⊥ = (M⊥)⊥ = M and

sup
x∈M

||x||X≤1

||Tx||Y = sup
x∈M

||x||X≤1

sup
ϕ∈Y ′

||ϕ||Y ′≤1

|ϕ(Tx)| = sup
ϕ∈Y ′

||ϕ||Y ′≤1

sup
x∈M

||x||X≤1

|(T ′ϕ)(x)|

= sup
ϕ∈Y ′

||ϕ||Y ′≤1

sup
x∈N⊥

||x||X≤1

|(T ′ϕ)(x)| = sup
ϕ∈Y ′

||ϕ||Y ′≤1

sup
ψ∈N

||T ′ϕ− ψ||X′ .
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Taking infimum over all M finishes the proof.

Step 2. Proof of (2.5)

Let us recall, that

dn(T ) = inf
N⊂Y

dim N<n

sup
x∈BX

inf
y∈N

||Tx− y||Y ,

cn(T
′) = inf

M⊂Y ′

codim M<n

sup
ϕ∈M

||ϕ||Y ′≤1

||T ′ϕ||X′ = inf
M⊂Y ′

codim M<n

sup
ϕ∈M

||ϕ||Y ′≤1

sup
x∈BX

|ϕ(Tx)|.

Now let ε > 0. Then there is a subspace N ⊂ Y with dim N < n, such that

∀x ∈ BX ∃ y ∈ N : ||Tx− y||Y ≤ (1 + ε)dn(T ). (2.7)

We put M = N⊥ and fix x ∈ BX and y ∈ N according to (2.7) and obtain

sup
ϕ∈N⊥

||ϕ||Y ′≤1

sup
x∈BX

|ϕ(Tx)| = sup
ϕ∈N⊥

||ϕ||Y ′≤1

sup
x∈BX

|ϕ(Tx− y)| ≤ sup
ϕ∈N⊥

||ϕ||Y ′≤1

sup
x∈BX

|||ϕ||Y ′ · ||Tx− y||X ≤ (1 + ε)dn(T ).

Hence cn(T
′) ≤ (1 + ε)dn(T ) and we let ε→ 0 to finish the proof.

Step 3. Proof of (2.6).

This is the most complicated step. If X and Y would be reflexive, then the proof would be trivial,
because then dn(T ) = dn(T

′′) ≤ cn(T
′). If this is not the case, we use the principle of local reflexivity.

Lemma 36. Let Y be a Banach space and let M ⊂ Y ′′ be a finite-dimensional subspace of Y ′′. Then
for every ε > 0 there exists R ∈ L(M,Y ), such that ||R|L(M,Y )|| < 1 + ε and RεY y = y for all y ∈ Y
with εY y ∈M.

We now come back to the proof of (2.6).

We already know, that cn(T
′) = dn(T

′′). So, it is enough to prove, that dn(T
′′) ≥ dn(T ).

Let ε > 0. Then there is a subspace N ⊂ Y ′′ with dim N < n, such that

inf
y∈N

||T ′′x− y||Y ′′ < (1 + ε)dn(T
′′). (2.8)

Let {x1, . . . , xk} ⊂ X be such that {Tx1, . . . , Txn} is an ε-net for T (BX). Let M ⊂ Y ′′ be the span
of N and {εY (Tx1), . . . , εY (Txk)} and let R ∈ L(M,Y ) be the mapping from the principle of local
reflexivity, i.e.

||R|L(M,Y )|| < 1 + ε and RεY (Txi) = Txi, i = 1, . . . , k.

Finally, let L = R(N) ⊂ Y be a subspace of Y with dimension smaller than n.

According to (2.8), we find z1, . . . , zk ∈ N , such that

||T ′′(εXxi) − zi||Y ′′ < dn(T
′′).

Altogether, we get for all i = 1, . . . , k

inf
y∈L

||Txi − y||Y = inf
y∈L

||RεY (Txi) − y||Y = inf
y∈L

||R(T ′′εXxi) − y||Y

≤ ||R(T ′′εXxi) −R(zi)||Y ≤ ||R|L(M,Y )|| · ||T ′′εXxi − zi||Y ′′

≤ (1 + ε)2dn(T
′′).
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If x ∈ BX , we get for appropriate i = 1, . . . , k

inf
y∈L

||Tx− y||Y ≤ ||Tx− Txi||Y + inf
y∈L

||Txi − y||Y ≤ ε+ (1 + ε)2dn(T
′′)

and the result follows.

Remark 16. The inequality (2.6) does not hold for arbitrary linear operators. The classical coun-
terexample is the identity id : ℓ1 → c0 with id′ : ℓ1 → ℓ∞. It may be shown, that dn(id) = 1 and
cn(id

′) = 1/2 for all n = 2, 3, . . . .

Theorem 37. Let X and Y be two Banach spaces and let T ∈ K(X,Y ). Then

an(T ) = an(T
′), n ∈ N.

Proof. We prove only the easy part, namely an(T
′) ≤ an(T ). The proof of the reverse inequality uses

again the principle of local reflexivity and resembles the proof of Theorem 35.

Let P ∈ L(X,Y ) with rank P < n. We consider P ′ ∈ L(Y ′,X ′) defined, as usually, by

(P ′ϕ)(x) = ϕ(Px), x ∈ X, ϕ ∈ Y ′.

Then

||T ′ − P ′|L(Y ′,X ′)|| = sup
ϕ∈BY ′

||(T ′ − P ′)(ϕ)||X′ = sup
ϕ∈BY ′

sup
x∈BX

|[(T ′ − P ′)(ϕ)](x)|

= sup
ϕ∈BY ′

sup
x∈BX

|ϕ((T ′ − P ′)(x))| ≤ sup
ϕ∈BY ′

sup
x∈BX

||ϕ||Y ′ · ||(T − P )(x)||Y

≤ sup
x∈BX

||(T − P )(x)||Y = ||T − P |L(X,Y )||.

Taking the infimum over all P ’s finishes the proof.

2.4 Approximation, Gelfand and Kolmogorov numbers of id : ℓ
m
p → ℓ

m
q

Theorem 38. Let 0 < p ≤ ∞ and let σ = (σ1, σ2, . . . ) with σ1 ≥ σ2 ≥ · · · ≥ 0 be a non-increasing
sequence. We define the diagonal operator Dσ as

Dσ : ℓp → ℓp, Dσx = (σ1x1, σ2x2, . . . ).

Then

cn(Dσ) = dn(Dσ) = σn, n ∈ N.

Proof. The proof follows the same pattern as the proof of Theorem 23.

2.4.1 Extreme points and the Krein-Milman theorem

Definition 39. Let X be a vector space and let K ⊂ X be convex. Then

a) F ⊂ K is called side, if F is convex and it holds

x1, x2 ∈ K, 0 < λ < 1, λx1 + (1 − λ)x2 ∈ F =⇒ x1, x2 ∈ F.
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b) x ∈ K is called extreme point, if {x} ⊂ K is a side of K. In other words, if

x1, x2 ∈ K, 0 < λ < 1, λx1 + (1 − λ)x2 = x =⇒ x1 = x2 = x

holds.

The set of all extreme points of K is denoted as Ext K.

Theorem 40. Let X be a Banach space.22 Let K ⊂ X be compact, convex and non-empty. Then

a) Ext K 6= ∅,
b) K = conv Ext K.

Proof. Let F denotes the set of all closed, non-empty sides of K. Then the following holds:

• F 6= ∅, while K ∈ F ,

• if {Fα}α∈A ⊂ F is a subsystem of F with Fα ⊂ Fα′ or Fα ⊃ Fα′ for every α,α′ ∈ A, then
⋂

α∈A

Fα ∈ F ,

• F is inductively ordered with respect to inclusion.

According to The Lemma of Zorn, there is a minimal element F0 ∈ F .

We show, that F0 consists of only one point.

Let x0, y0 ∈ F0 with x0 6= y0. Then (Hahn-Banach!) there is an x′ ∈ X ′, such that

Re x′(x0) < Re x′(y0).

Then the set

F1 = {x ∈ F0 : Re x′(x) = sup
y∈F0

Re x′(y)}

is non-empty (F0 is compact and x′ is continuous). Further is F1 closed and a side of F0 and hence
also of K, i.e. F1 ∈ F . But x0 6∈ F1 - which is a contradiction with minimality of F0.

To prove b), put

K1 = conv Ext K. (2.9)

Then K1 ⊂ K is closed (and hence also compact) and (according to a) also non-empty. If K 6= K1,
then there are x ∈ K \K1, ε > 0 and (Hahn-Banach!) x′ ∈ X ′, such that

Re x′(x) ≤ Re x′(x0) − ε for all x ∈ K1.

We consider

F = {x ∈ K : Re x′(x) = sup
y∈K

Re x′(y)}.

Then one may show as above, that F is a closed, non-empty side in K. According to a), Ext F 6= ∅.
Because of Ext F ⊂ Ext K, there is an e ∈ Ext K with e 6∈ K1, which is a contradiction with (2.9).

22The theorem holds also for locally convex Hausdorff spaces(with the same proof), which enables to apply the statement
also to weak topologies.
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Lemma 41. Let N be a subspace of ℓm∞ with codim N < n. Then there exists x = (x1, . . . , xm) ∈ N ,
such that ||x||∞ = 1 and #{k : |xk| = 1} ≥ m− n+ 1.

Proof. Let x be an extreme point of Bℓm∞ ∩N. Let

K := {k : |xk| = 1} and M := {y ∈ ℓm∞ : yk = 0 for k ∈ K}.

Clearly #K+dim M = m. Suppose, that #K ≤ m−n. Then dim M ≥ n and therefore M ∩N 6= {0}.
Hence, there is an y ∈M ∩N with ||y||∞ = 1.

As

δ := 1 − max{|xk| : k 6∈ K} > 0,

it follows, that x± δy ∈ Bℓm∞ ∩N . Hence, x cannot be an extreme point, which is a contradiction.

Lemma 42. Let 0 < q < p ≤ ∞. If |xn+1| ≤ min(|x1|, . . . , |xn|), then







n+1∑

j=1

|xj|q






1/q







n+1∑

j=1

|xj |p






1/p
≥







n∑

j=1

|xj |q






1/q







n∑

j=1

|xj |p






1/p
.

Proof. Let

α =







n∑

j=1

|xj |p






1/p

and β =







n∑

j=1

|xj |q






1/q

.

As p > q, we have
∣
∣
∣
∣

xj
xn+1

∣
∣
∣
∣

q

≤
∣
∣
∣
∣

xj
xn+1

∣
∣
∣
∣

p

for all j = 1, . . . , n.

Summing over j = 1, . . . , n gives
(

β

|xn+1|

)q

≤
(

α

|xn+1|

)p

.

and
(

1 +

( |xn+1|
β

)q)p/q

≥ 1 +

( |xn+1|
β

)q

≥ 1 +

( |xn+1|
α

)p

.

Finally, we get







n+1∑

j=1

|xj|q






1/q







n+1∑

j=1

|xj |p






1/p
=

(βq + |xn+1|q)1/q
(αp + |xn+1|p)1/p

=
β(1 + |xn+1|q/βq)1/q
α(1 + |xn+1|p/αp)1/p

≥ β

α
.
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Theorem 43. Let 0 < q ≤ p ≤ ∞. Then

an(id : ℓmp → ℓmq ) = cn(id : ℓmp → ℓmq ) = (m− n+ 1)1/q−1/p.

If 1 ≤ q ≤ p ≤ ∞, then also

dn(id : ℓmp → ℓmq ) = (m− n+ 1)1/q−1/p.

Proof. For the estimate from above, we consider the operator

Pn−1 : ℓmp → ℓmq , Pn−1(x1, . . . , xm) = (x1, . . . , xn−1, 0, . . . ).

This shows, that

cn(id : ℓmp → ℓmq ) ≤ an(id : ℓmp → ℓmq ) ≤ ||id − Pn−1|L(ℓmp , ℓ
m
q )|| = (m− n+ 1)1/q−1/p.

The estimate from below is the tricky part. Let M ⊂ ℓmp be a subspace with codim M < n. Then
Lemma 41 implies the existence of x = (x1, . . . , xm) with ||x||∞ = 1 and #{k : |xk| = 1} ≥ m− n+ 1.
Then we get by Lemma 42

||id : M → ℓmq || ≥
||x||q
||x||p

=





m∑

j=1

|xj |q




1/q





m∑

j=1

|xj |p




1/p
≥




∑

j∈K

|xj |q




1/q




∑

j∈K

|xj |p




1/p
≥ (m− n+ 1)1/q−1/p,

hence

cn(id : ℓmp → ℓmq ) ≥ (m− n+ 1)1/q−1/p.

If p = ∞, only notational changes are necessary.

The result for the Kolmogorov numbers then follows by duality.

Definition 44. Let H1 and H2 be two (separable) complex Hilbert spaces and let T ∈ L(H1,H2).
Further let {ui}i∈I be an orthonormal basis of H1. Then the Hilbert-Schmidt norm of T is defined as

||T |S|| =

(
∑

i∈I

||Tui||2H2

)1/2

.

Remark 17. The Hilbert-Schmidt norm does not depend on the choice of the orthonormal basis {ui}i∈I ,
cf. Exercises 33.

Theorem 45. Stechkin 1954.

an(id : ℓm1 → ℓm2 ) =

(
m− n+ 1

m

)1/2

for n = 1, . . . ,m.

Proof. Step 1. Estimate from below.

Let

L ∈ L(ℓm1 , ℓ
m
2 ) with rank L < n.
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Let P ∈ L(ℓm2 , ℓ
m
2 ) be the orthogonal projection of ℓm2 onto the orthogonal complement of the range of

L, i.e. kern P = L(ℓm2 ).

Then ||P |S||2 ≥ m− n+ 1 and
m∑

k=1

||Pek|ℓm2 ||2 ≥ m− n+ 1,

where {ek}mk=1 are the canonical unit vectors of Rm.

Finally,

||id− L|L(ℓm1 , ℓ
m
2 )|| ≥ ||P (id − L)|L(ℓm1 , ℓ

m
2 )|| ≥ max{||Pek|ℓm2 || : k = 1, . . . ,m} ≥

(
m− n+ 1

m

)1/2

.

Step 2. Estimate from above.

According to the Theorem 29, we have

an(id : ℓm1 → ℓm2 ) = dn(id : ℓm1 → ℓm2 ) = inf{||id − P ◦ id|L(ℓm1 , ℓ
m
2 )|| : rank P < n},

where the infimum runs over all projections with rank P < n.

Using the fact, that

||A|L(ℓm1 , ℓ
m
2 )|| = max

j=1,...,m
||Aej ||2,

we may rewrite this as

an(id : ℓm1 → ℓm2 ) = inf{ max
j=1,...,m

||(id − P ◦ id)ej ||2 : rank P < n}.

Finally, using orthogonality of P , we get

an(id : ℓm1 → ℓm2 ) = inf{ max
j=1,...,m

(1 − ||Pej ||22)1/2 : rank P < n}. (2.10)

The proof is then easily finished with the help of

Lemma 46. Let 1 ≤ n ≤ m and {πj}mj=1 with

m∑

j=1

π2
j = n and 0 ≤ πj ≤ 1 for j = 1, . . . ,m.

Then there is an orthogonal projection P : ℓm2 → ℓm2 with rank P = n and

||Pej ||2 = πj, for all j = 1, . . . ,m.

It is enough to choose π2
j = n−1

m and (2.10) becomes

an(id : ℓm1 → ℓm2 ) ≤ max
j=1,...,m

(1 − ||Pej ||22)1/2 =

(
m− n+ 1

m

)1/2

.

We return to the proof of Lemma 46.
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Proof. The proof goes by induction over n. If n = 1, then we set

Py =< x, y > x,

where x = (π1, π2, . . . , πm). Then rank P = 1 and

||Pej ||22 = | < x, ej > |2 · ||x||22 = π2
j , j = 1, . . . ,m.

We suppose, that the assertion has been proved for some n and consider the sequence

1 ≥ π1 ≥ · · · ≥ πm ≥ 0 with
m∑

j=1

π2
j = n+ 1.

Then there exists a natural number k (which we shall fix for the rest of the proof), such that

k∑

j=1

π2
j ≤ 1 <

k+1∑

j=1

π2
j .

We define

σi =







πi, i = 1, . . . , k − 1


1 −
k−1∑

j=1

π2
j





1/2

, i = k,





k+1∑

j=1

π2
j − 1





1/2

, i = k + 1,

πi, i = k + 2, . . . ,m.

Then
k∑

j=1

σ2
j = 1 and

m∑

j=k+1

σ2
j =

m∑

j=1

π2
j − 1 = n.

Hence, there is an orthogonal projection P with rank P = n and

||Pej ||22 = 0 if j = 1, . . . , k and ||Pej ||22 = σ2
j if j = k + 1, . . . ,m.

We define

x0 = (σ1, . . . , σk, 0, . . . , 0) ∈ R
m and P0y :=< x0, y > x0 + Py.

Then

• ||x0||2 = 1,

• Px0 = 0,

• P0 is an orthogonal projection,

• rank P0 = n+ 1,

• ||P0ei||22 = σ2
i for i = 1, 2, . . . ,m.
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For 0 ≤ α ≤ 1, we define the orthonormal sequence {ui}mi=1 by

uαi =







ei, i = 1, . . . , k − 1

(1 − α2)1/2ek + αek+1, i = k,

−αek + (1 − α2)1/2ek+1, i = k + 1,

ei, i = k + 2, . . . ,m.

Hence,

u0
i =







ei, i = 1, . . . , k − 1

ek, i = k,

ek+1, i = k + 1,

ei, i = k + 2, . . . ,m,

and u1
i =







ei, i = 1, . . . , k − 1

ek+1, i = k,

−ek, i = k + 1,

ei, i = k + 2, . . . ,m

and uαi represents a continuous way between these two extrema.

As

(
(1 − α2)1/2 α

−α (1 − α2)1/2

)

·
(

(1 − α2)1/2 −α
α (1 − α2)1/2

)

=

(
1 0
0 1

)

,

(
(1 − α2)1/2 −α

α (1 − α2)1/2

)

·
(

(1 − α2)1/2 α

−α (1 − α2)1/2

)

=

(
1 0
0 1

)

,

we see, that the operator

Uαy :=

m∑

i=1

< ei, y > uαi

is unitary. It follows, that if Pα = U∗
αP0Uα,

23 then

< x− Pαx, Pαy > =< x− U∗
αP0Uαx,U

∗
αP0Uαy >=< Uαx− UαU

∗
αP0Uαx,UαU

∗
αP0Uαy >

=< Uαx− P0Uαx, P0Uαy >= 0.

Hence, Pα is an orthogonal projection for every 0 ≤ α ≤ 1. Furthermore, we have

• ||Pαei||22 = σ2
i = π2

i for all i = 1, . . . , k − 1 and i = k + 2, . . . ,m and all 0 ≤ α ≤ 1,

• ||P0ek||22 = σ2
k,

• ||P1ek||22 = σ2
k+1,

• σ2
k ≥ π2

k ≥ π2
k+1 ≥ σ2

k+1.

Since ||Pαek||22 depends continuously on α, there is an α̃ ∈ [0, 1] with ||Pα̃ek||22 = π2
k, which implies also

||Pα̃ek+1||22 = π2
k+1. Hence Pα̃ is the desired projection.

Theorem 47.

an(id : ℓ1 → c0) = 1 for n = 1, 2, . . . .

23Note, that P0 according to this new definition coincides with the P0 defined above.
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Proof. The estimate from above is trivial. For the estimate from below, we consider an arbitrary
A ∈ F(ℓ1, c0). Then A is compact and

A(Bℓ1) ⊂
N⋃

j=1

yj + εBc0

for every ε > 0 and suitable N ∈ N and y1, . . . , yN ∈ c0.

We choose an n ∈ N, so that |yjn| < ε for all j = 1, . . . , N. Then for some j′ we have ||Aen− yj
′||∞ ≤ ε

and hence

||id −A|L(ℓ1, c0)|| ≥ ||(id−A)en||∞ ≥ |1 − (Aen)n| ≥ |1 − yj
′

n | − |yj′n − (Aen)n| ≥ 1 − 2ε.

This proves, that
||id−A|L(ℓ1, c0)|| ≥ 1.

Theorem 48.

an(id : ℓ1 → ℓ∞) = 1/2 for n = 2, . . . .

Proof. Let

A0y :=
x

2
·

∞∑

i=1

xiyi,

where x = (1, 1, 1, . . . ). Then rank A0 = 1 and

||id−A|L(ℓ1, ℓ∞)|| =
1

2
.

To prove the estimate from below, we suppose, that there is an A ∈ F(ℓ1, ℓ∞), such that

||id−A|L(ℓ1, ℓ∞)|| = sup
j,k∈N

|(ej −Aej)k| < 1/2.

But the estimate

||Aej −Aek||∞ ≥ |(Aej)k − (Aek)k| = |1 − (Aej)k − (1 − (Aek)k)| ≥ 1 − |(Aej)k| − |1 − (Aek)k|
≥ 1 − 2||id−A|L(ℓ1, ℓ∞)|| > 0.

Hence A(Bℓ1) is not precompact in ℓ∞, which is a contradiction.

Next, we consider the approximation numbers of id : ℓm1 → ℓm∞. We start with the following simple
observation

||id −A|L(ℓm1 , ℓ
m
∞)|| = max

j=1,...,m
||(id −A)ej ||∞ = max

j,k=1,...,m
|ej,k − (Aej)k| = max

j,k=1,...,m
|δjk −Ak,j|.

The last expression is to be minimalised through all matrices A = (Ai,j)
m
i,j=1 with rank A < n.

The following lemma describes an easy way, how to produce a (symmetric) matrix A with small rank.

Lemma 49. Let 1 ≤ n ≤ m and let x1, . . . , xm ∈ Rn. Then the matrix

A = (Ai,j)
m
i,j=1 with Ai,j =< xi, xj >

has rank A ≤ n.
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Proof. Let y = (y1, . . . , ym) ∈ Rm and write

Ay =
m∑

i=1

m∑

j=1

< xi, xj > yjei =
m∑

i=1

m∑

j=1

n∑

k=1

xi,kxj,k < y, ej > ei =
n∑

k=1

< y,
m∑

j=1

xj,kej >
m∑

i=1

xi,kei

=

n∑

k=1

< y,χk > χk,

where χk =
m∑

j=1

xj,kej ∈ R
m.

So, for the estimate of an(id : ℓm1 → ℓm∞) we need to construct m vectors x1, . . . , xm in Rn, such that

• ||xi||2 = 1, i.e. (xi, xi) = 1 for all i = 1, . . . ,m,

• | < xi, xj > | is as small as possible for i 6= j.

We shall give two such constructions. One probabilistic, based on Khintchine’s inequalities and another
explicit, based on polynmials on GF (p).

Lemma 50. Khintchine’s Inequality Let

rn(t) = sign sin(2nπt), n ∈ N, t ∈ [0, 1].

Then for every 1 ≤ p <∞, there are two constants Ap and Bp, such that

Ap

(
m∑

n=1

|an|2
)1/2

≤
(
∫ 1

0

∣
∣
∣
∣
∣

m∑

n=1

anrn(t)

∣
∣
∣
∣
∣

p

dt

)1/p

≤ Bp

(
m∑

n=1

|an|2
)1/2

for every m ∈ N and all a1, . . . , am ∈ R.

Proof. See [HHZ, pp. 205-206].

Remark 18. a) Let us remark (without proof), that Bp ≤ ([p/2] + 1)1/2.

b) The Khintchine’s inequality may be rewritten using sums. Then it reads

Ap

(
m∑

n=1

|an|2
)1/2

≤




1

2m

∑

e∈{−1,+1}m

|< a, e >|p dt





1/p

≤ Bp

(
m∑

n=1

|an|2
)1/2

for every m ∈ N and every a ∈ Rm.

Lemma 51. There are x1, . . . , xm ∈ ℓn2 such that ||xi||2 = 1 for all i = 1, 2, . . . ,m and

|(xi, xj)| ≤ 2

[
log2m

n

]1/2

for i 6= j.
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Proof. If m ≤ n, then we may take an orthonormal family (x1, . . . , xm) ⊂ Rn. Let us suppose, that
m ≥ n and that the result has already been proved for this m. Then

m∑

i=1

∑

e∈{−1,+1}n

| < xi, e > |p ≤ Bp
pm2n.

Hence, at least for one e ∈ {−1,+1}n,
m∑

i=1

| < xi, e > |p ≤ Bp
pm.

We put xm+1 := n−1/2e. Hence ||xm+1||2 = 1 and

| < xi, xm+1 > | ≤ Bpm
1/pn−1/2 for i = 1, 2, . . . ,m.

By choosing p := log2m, we obtain

| < xi, xm+1 > | ≤ 2

[
log2m

n

]1/2

for i = 1, 2, . . . ,m.

Lemma 52. Let 0 < λ < 1. Then there is a constant cλ > 0, such that for every mλ ≤ n ≤ m, there
are m unit vectors x1, x2, . . . , xm in ℓn2 , such that

|(xi, xj)| ≤
cλ
n1/2

, i 6= j.

Proof. Let p be a prime number and let GF (p) be the Galois field, i.e. the set {0, 1, . . . , p−1} equipped
with addition and multiplication modulo p. Let k ∈ N and let Pk denotes all the polynomes over GF (p)
with degree smaller or equal k. For every π ∈ Pk, we define a vector

xπ ∈ ℓp22 , xπi,j =

{

1 if π(i) = j,

0 otherwise.

Hence

• ||xπ||2 =
√
p for every π ∈ Pk,

• |(xπ, xσ)| ≤ k for all π, σ ∈ Pk with π 6= σ,

• one obtains #Pk = pk+1 vectors.

Hence the system {
xπ√
p

}

π∈Pk

has all the desired properties for

n = p2, λ =
2

k + 1
, m = pk+1, cλ = k.
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Using the vectors of Lemma 51 and Lemma 52, respectively, one proves

Theorem 53. a)

an(id : ℓm1 → ℓm∞) ≤ 3

[
log2(m+ 1)

n

]1/2

, n = 1, . . . ,m.

b) Let 0 < λ < 1. Then there is a cλ > 0, such that

an(id : ℓm1 → ℓm∞) ≤ cλ
n1/2

, mλ ≤ n ≤ m.

Proof. Step 1. Proof of a)

Let x1, . . . , xn be the vectors constructed in Lemma 51 and define A = {Ai,j}mi,j=1 = {< xi, xj >}mi,j=1.
Then

an+1(id : ℓm1 → ℓm∞) ≤ ||id−A|L(ℓm1 , ℓ
m
∞)|| ≤ 2

[
log2m

n

]1/2

≤ 3

[
log2(m+ 1)

n+ 1

]1/2

.

Step 2. Proof of b) follows in the same way.
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open, 8
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