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Harmonic Analysis

1 Basic concepts

1.1 Approximation of identity

We denote by R™ the n-dimensional Euclidean space. Its open subsets (2 C R™ are called
domains.

Theorem 1.1.1. Let  C R™ be a domain. The set of continuous functions with compact
support contained in Q is dense in Ly(£2), 1 < p < oo.

Proof. We shall need two facts from measure theory.
i) Lebesgue measure A in R™ is regular, i.e. A(A) = inf{\(G) : G D A, Gopen}.

ii) The space of step functions, i.e. the linear span of the set {x4 : A C Q, A measurable},
is dense in L, () for every 1 < p < oo.

We first consider bounded open sets €; C €2, j € N, such that Q; C Q_] C Q1 CQand
U521 = Q.! Let us take f € L,y(€Q). Then fxo, = f in L,(Q) and we may restrict
ourselves to f € L,(2) with compact support in Q. Due to the second property of the

Lebesgue measure, this function may be approximated by a step function Zle 0k X A, With
Ay, C supp f. So, it is enough to approximate characteristic functions y g with B compact in
Q). Using the first property of the Lebesgue measure, we may restrict ourselves to bounded
open sets G C G C Q. Then the sequence of functions » — max(0, 1 — kdist(z, G)) gives
the desired approximation. O

Lemma 1.1.2. Let f € L,(R"),1 <p < oo. Then f(-+ h) — f(-) in L,(R™) if h — 0.

Proof. If f is continuous with compact support, then the result follows by uniform con-
tinuity of f and the Lebesgue dominated convergence theorem. If f € L,(R"), we may
find for every ¢ > 0 a continuous function g with compact support such that || f —g||, < .
Then

[FCH+R) = FOllp <IFC+R) =gC+M)lp +1lgC + ) = gC)llp + lg(-) = FOlp
<2t +lg(- +h) = 9()llp

and the conclusion follows. O

Theorem 1.1.3. The family of functions (K;)e>o C L1(R"™) is called the approximation
of identity, if

(K1) [gn |Ke(x)|de < C < oo for all e > 0,
(K2) [gn Ko(x)dz =1 for all e >0,

(K3) lim,_,+ f|$|>6 |K:(z)|dx =0 for all § > 0.
Then

i) If K € Li(R™) with [p, K(x)dx =1, then K.(x) = e "K(x/e) is an approzimation
of identity.

'For example the sets Q; := {x € Q: |z| < j and dist(x, Q) > 1/} will do.
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i) If (K.)e>0 is an approzimation of the identity, then?
li K. f— =0
Jim | K+ f = £
for every 1 <p < oo and f € L,(R™).
Proof. (i) Let K € L(R") with [p, K(z)dz = 1. Then we get immediately
e " K(x/e)dx = K(z)dx =1 and 5_"/ |K(x/e)|dx = / |K(x)|dz = ||K]1 < cc.
Rn Rn Rn Rn

As for the third point, we have

[ i@l = [ Ky o
|z|>0 ly|>d/e

as € — 0T, due to the Lebesgue dominated convergence theorem.
(ii) We calculate for p > 1 and its conjugated index p’ with 1/p + 1/p’ = 1 using
Holder’s inequality® (if p = 1, the calculation becomes slightly simpler)

1Ko f = fl = [ e ) = sl = [ | [ K@= )dy = f(@)| do
- [ Rl - - @i ds
Up+l/p" \ fle — 0) — f(x px
< [ ([ mwren s — - i)
p/p
<[ [l - s@pa ([ smi)
<o [ [ 1)1 - 0) - fe)Pdyds
=o' [ V)] 15— 0) - 1Oy
p/p' . ) — F()|P Pl £|P
<C {/|y§5|K€(y)| 1f(—wv) f()llpdy+2\|f\|p/|y>5lKe(y)|dy}

for every 6 > 0. Using (K3) and previous Lemma, we obtain the conclusion of the
theorem. H

Definition 1.1.4. Let Q C R™ be a domain. Then C2°(2) denotes the set of infinitely-
differentiable functions compactly supported in 2.

It is easy to show (but not completely trivial) that this class is actually non-empty.
One example is the famous function

fla) = {GXP<‘1—22>’ it fol <1,

0, otherwise.

Theorem 1.1.5. C°(Q) is dense in L,(Q) for every 1 < p < oo and every domain
Q C R

2(fx9) (@) = [on f(z —y)g(y)dy = fan f(y)g(xz — y)dy is the convolution of f and g.
g < [Ifal < (JIFYP(S gl )"
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Proof. Let f € L,(Q). First, we approximate f by a continuous and compactly supported
g (ie. ||f —gllp < h) and then consider the functions w, * g, where w.(z) = ¢ "w(z/¢)
and w € C2°(R™) has compact support and [ w = 1. It follows that w, * g € C°(R™) (the
support property is clear, the differentiability follows by taking differences and limits, use
Lebesgue’s dominated convergence theorem). Together with the formula ||w.*g—g||, — 0,
the conclusion follows. O

1.2 Maximal operator

For z € R™ and r > 0, we denote by B(x,r) the ball in R with center at x and radius r,
ie. B(x,r)={yeR": |z —y| <r}.

Let f be a locally integrable function on R™. Then we define the Hardy-Littlewood
mazximal operator of f by

M f(x) =su )|d
@) = s oy [ 1wy

Here stands |B(z,7)| for the Lebesgue measure of B(z, 7).
Let us note, that maximal operator is not linear, but is sub-linear, i.e.

1
MU +9)@) =510 50 Lo

1
< SUD ] ( /B . |f(y)|dy + /B . !g(y)\dy>
< (Mf)(x) + (Mg)(x).

Simple modifications include cubic centered mazimal operator

|f(y) + g(y)|dy

M) = s [ 15l
Q|
cubic non-centered maximal operator
M" f(z) = sup / |f(y)ldy,
Q)

Q>z

where the supremum runs over all cubes () containing x, and the dyadic mazimal operator
My, when the supremum is taken over all dyadic cubes containing x. These are cubes of
the type 2¥(¢ +[0,1)"), where k € Z and ¢ € Z".

We shall study the mapping properties of the operator M in the frame of Lebesgue
spaces L,(R™), 1 <p <oo. If f € Lo(R"), then

| Ml
O < B0 S

|B(£C, T)| B(z,r)
holds for every z € R™ and every r > 0 and | M f||cc < ||f|lco follows. To deal with other

p’s, we need some more notation first.
Let f € L1(R™) and let a > 0. Then

a-|{ﬂ:€]R”:|f(x)|>a}|:/ ady
{zeR™:|f(z)|>a}

= dy < duy — .
< /{meRn:f@)'M}uwn v [ 1r@lds =161

ldy = ||l
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The set of measurable functions f on R™ with
1fllw = supac- [{z € R™: |f(@)] > a}] < o0
a>

is denoted by L1 ,,(R"™) and called weak Li. We have just shown that L;(R™) < Ly ,,(R"™).
Let us mention that | - [|1,, is not a norm, but it still satisfies

1+ 9ll1w = supa- {z € R : [f(z) + g()] > a}]

<swa (e € R @) > a/2)] + o € R loa) > a/2}])

—2supa/2- (Ifo € s ()] > /2 + {z € B lg(o)| > a/2}]
<2l + gl

Finally, we observe, that the function x — Ln € L1 ,(R")\ L1 (R"™).
The main aim of this section is to provthxlr‘Je following theorem.
Theorem 1.2.1. Let f be a measurable function on R™. Then
i) If f € L,(R™), 1 < p < oo, then the function M f is finite almost everywhere.
i) If f € Li(R™), then M f € L1, (R"™) and
M fll1w < Allflh,

where A is a constant which depends only on the dimension (i.e. A = 5" will do).
iii) If f € L,(R™) with 1 < p < oo, then M f € L,(R™) and

1M fllp < Apll fllps

where A, depends only on p and dimension n.
The proof is based on the following covering lemma.

Lemma 1.2.2. Let E be a measurable subset of R™, which is covered by the union of a
family of balls (B?) with uniformly bounded diameter. Then from this family we can select
a disjoint subsequence, B1, Ba, B3, ..., such that

> Bl = C|E|.
k

Here C is a positive constant that depends only on the dimension n; C = 57" will do.

Proof. We describe first the choice of By, Ba,.... We choose Bj so that it is essentially
as large as possible, i.e.
1 A
diam(By) > 5 Sup diam(B7).
J

The choice of Bj is not unique, but that shall not hurt us.
If By, B, ..., By were already chosen, we take again By disjoint with B1, ..., By and
again nearly as large as possible, i.e.

1 . .
diam(By41) > 3 sup{diam(B”) : B’ disjoint with Bj,..., By}.
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In this way, we get a sequence By, Bo,...,By,... of balls. It can be also finite, if there
were no balls B7 disjoint with By, Ba, ..., By.
If Y, |Bx| = oo, then the conclusion of lemma is satisfied and we are done. If ), |By| <
oo, we argue as follows.
We denote by B; the ball with the same center as By, and diameter five times as large.
We claim that
UBioE
k
which then immediately gives that |E| <, |Bf| = 5" >, | Bkl
We shall show that |J, Bf D BJ for every j. This is clear if B7 is one of the balls in
the preselected sequence. If it is not the case, we obtain diam(By) — 0 (as ), | B| < 00)
and we choose the first & with diam(Byy1) < diam(B7). That means, that B’ must

intersect one of the balls By, ..., By, say By,. Obvious geometric arguments (based on
the inequality diam(By,) > 1/2 - diam(B7)) then give that B/ C Bj . This finishes the
proof. O

Proof. (of Theorem 1.2.1). Let o > 0 and let us consider E, := {z € R" : M f(x) > a}.
From the definition of M we obtain, that for every x € E,, there is a ball B, centered at
x such that

/ FW)ldy > a|Byl.

x

Hence, we get |Bg| < ||f|li/a and Uzep,B: O E, and the balls (B;)zecp, satisfy the
assumptions of Lemma 1.2.2. Using this covering lemma, we get a sequence of disjoint
balls (By)k, such that

> Bkl = C|Ea|.
k

We therefore obtain
1= [ 1wldy=Y [ 171> a3 1Bil = aC|E)
Uy B k By k

which may be rewritten as sup,so @ - [Eo| = [|M f|l10 < & f]1-

This proves the first assertion of the theorem for p = 1 and the second assertion.

We now consider 1 < p < oo. The proof follows from the information on the endpoints,
i.e. from

[Mflliw < Clflly and  [[Mflloc < [|floo-

Let a > 0 and put fi(z) := f(z) if |f(x)| > «/2 and fi(x) := 0 otherwise. Due to
|f(z)] < |fi(z)] + /2, we have also M f(z) < M fi(x) + /2 and also

{r eR": Mf(x)>a} C{xeR": Mfi(z) > «a/2}.

Due to the second part of the theorem

A
|Eal = {z € R": Mf(z) > a}| < {z e R" : M fi(z) > a/2}] < 2;Hfﬂll
2A

= |f(y)|dy.
QO J{zeRn:|f(x)|>a/2}
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We use the information of the size of the level sets of M f to estimate the L,-norm of M f.

HMng = /R" M f(z)Pdx = /OOO\{JU eER": Mf(z)P > a}|da

= /OO {z e R" : M f(z) > a'/P}|da
0
—p [P w € R 5 M f(a) > B)ldd
0

0 2A
< p—1 [ 227 d d
ST ( : /{xew:|f<m>>m2}‘f(y)‘ y> 5

FW)] - [2f ()P~ dy

207)| 94
= 2Ap/ \f(y)\/o BP2dBdy = pfp

1 Jn
2Ap

Pd
2 | Irwray.

where we used Fubini’s theorem and the substitution 3 := o!/? with dow = pBP~1df. This

gives the first and the third statement of the theorem with

5np 1/p
A, =2 1 .
P <p—1> LonPhE

Corollary 1.2.3. (Lebesgue’s differentiation theorem)
Let f be locally integrable on R™. Then

7!1—r>1(1)|er|/mr = f(@)

holds for almost every x € R"™.

Proof. We may cover the set of “bad” points

1
zeR": lim —— f(y)dy does not exist or h
{ P 1B S

by

1 r—0

united with

U {xER":liminf; fy)dy — f(x)
k=1

r—0 ‘B(xv T)’ B(z,r)

1

G{xeR”:limsup 337'|/mr y)dy — f(x) >

—0 |B(CE T)| B(z,r)
)

f(y)dy # f(ﬂf)}

It is therefore enough to show, that each of these sets has measure zero. Let us fix k € N
and decompose f = g+ h, where g € C(R") and |||y <t,t>0.

Obviously,
1

lim ——— 9(y)dy = g(x), x eR",

r—0 |B(CE T)| B(z,r)
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which implies

RN S _ 1
{xER .hI:l:élp |B(ﬂ:,7’)|/3(m7r)f(y)dy fz) > k}

1 1
= xER":limsupi/ h(y)dy — h(x) > —
{ PP B S " T 7

C{xeR":Mh(x)>%}U{xel&":]h(m)\>%}.

The measure of the first set is smaller than 2kA|/hl|; and the measure of the second is
smaller than 2k||h||;. As ||h||1 might be chosen arbitrary small, the measure of the original

set is zero. The same argument works for lim inf instead of lim sup as well.
O

Theorem 1.2.4. Let ¢ be a function which is non-negative, radial, decreasing (as function
on (0,00)) and integrable. Then

sup [p  f(2)] < [llltM [ (),
>0

where again @i(x) =t "p(x/t),x € R™.

Proof. Let in addition ¢ be a simple function. Then it can be written as

k
o(x) = > ajxm, (@),
j=1

with a; > 0 and r; > 0. Then

k
05 (@) = D0 ay\B g, + £(e) < el M S (@),
j=1 K

since [[p|[1 = >_;a;|By;[. As any normalized dilation of ¢ satisfies the same assumptions
and has the same integral, it satisfies also the same inequality. Finally, any function
satisfying the hypotheses of the Theorem can be approximated monotonically from below
by a sequence of simple radial functions. This finishes the proof. O

Last theorem can be easily reformulated as a statement about boundedness of certain
sublinear operator. Let ¢ be as in Theorem 1.2.4 and let ® be the following operator

P(f)(x) = sup|(p * f)(x)].

t>0

Then ® : L1(R™) = Ly ,(R™) and @ : L,(R") — L,(R") for 1 < p < co. For example, if
f € Li(R™), we obtain

121w < llplly - 1M fll1w < Cllpll - [1£]12

(and similarly for 1 < p < o).



2 Interpolation

We shall present two basic interpolation theorems, the Riesz-Thorin interpolation theorem
and Marcinkiewicz interpolation theorem.

2.1 Marcinkiewicz interpolation theorems

The operator 7' mapping measurable functions to measurable functions is called sub-linear,
if
T(fo+ f)(@)] < |T fo(z)| + [T fi(x)],
ITAf) (@) = Al - |ITf(z)l, reC.

Let (X, p) and (Y, ) be measure spaces and let T be a sub-linear operator mapping
L,(X,p) into a space of measurable functions on (Y,v). We say that T is strong type
(p,q) if it is bounded from L, (X, u) into Ly(Y,v). We say, that it is of weak type (p, q),
q < oo, if

1T fllgw = ilirow\ Iy e Y TF) > M) < Clfllps f € Ly(X, p),

Le. if T': Lpy(X, ) = Lg (Y, v).

Theorem 2.1.1. (Marcinkiewicz interpolation theorem,)

Let (X,p) and (Y,v) be measure spaces, 1 < py < p1 < oo, and let T be a sublinear
operator from Ly, (X, i)+ Ly, (X, ) to the measurable functions on'Y that is weak (po, po)
type and weak (p1,p1) type. Then T is strong (p,p) for po < p < p1.

Proof. Let A > 0 be given and let f € L,(X,u). Then we decompose f into f = fo + fi
with

Jo = IX{ai|f ()5}
fr = PXqep)<ay-

The case p; = oo appeared implicitly already in the proof of the boundedness of Hardy-
Littlewood maximal operator, so we suppose that p; < co. Then we have

v({y e Y o [Tf(y)l > A}) <v({y e Y [Th(y) > A/2}) +v({y € Y : [T fi(y)| > A/2})
and

Ai e
oy ¥ TR > V2 < (B0 ) =0

We combine them to get
ITHIE = p /O N u({e < [T ()] > AP)dA
<p / PP (24)P0 / F(@)[PodudA
0 | f(x)| >N

ip / 1P (24,01 / [ (@)[P dpd
x| f(2)| <A

0
|f (@)
= s [ U@ [ g
X 0

o [ @ [ et
X [f(z)]
—clfle.
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2.2 Riesz-Thorin interpolation theorem

Following theorem belongs also to the classical heart of interpolation theory.

Theorem 2.2.1. (Riesz-Thorin Interpolation)
Let (X, ) and (Y,v) be two maesure spaces. Let 1 < pg,p1,qo,q1 < 00, and for 0 < 6 <1

define p and q by
1 1-6 0 1 1-6 6
- = +— and - = + —.
p Do b1 q 40 T
If T is a linear(!) operator from Ly, (X) 4 Ly, (X) to Lg,(Y) + Lg, (Y), such that

HTfH(IO < MOHprO for f € LPO(X)

and
1T fllgy < Millfllp,  for f € Ly, (X),

then
ITfllg < My~ MY||fllp  for f € Ly(X).

Remark 2.2.2. In this version, the theorem only holds for function spaces of complex-
valued functions. In the real case, an additional factor 2 is necessary.

Proof. If pg = p1, then the theorem collapses to Holder’s inequality. Hence, we consider
only pg # p1 and by symmetry, pg < p1. This forces p to be finite. By multiplying u, v
and/or T with some constants, we may assume that My = M; = 1. By Hoélder’s inequality,

we get
‘/y(Tf)ng SNTfllgo - lgllgy < 1 fllpo - llglleys € Lpo(X), g € Ly (Y) (2.1)
and
‘/Y(Tf)gdv <NTfllgy - Nlgllg < W llpw - Ngllgs  f € Lpy(X), g€ Ly (Y).  (22)
Then we claim that
[ aa] <171, sl (23)

for all f,g simple functions with finite measure support. To see this, we first normalize
1£lp = llglly = 1 and write £ = |f[sgn(/f) and g = |g| sgn(g). Then we define

F(s) = /Y(T[!f | plrotop/ensgn(f)))[|g| "~ /460G sgn(g)]dv

with ¢'/q), = ¢'/¢} = 1 if ¢{ = ¢} = ¢’ = 0o. We observe (by the linearity of T') that F is
holomorphic function in s of at most exponential growth. We observe that

i) F(0) = [y (Tf)gdv,
ii) |[F(0+it)] <1, by (2.1),

10
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i) |F(1+t)] <1, by (2.2).
The claim then follows by

Theorem 2.2.3. (Lindel6f’s Three-Lines Theorem) Let s — F(s) be a holomorphic
function on the strip S := {0+ it : 0 < o < 1;t € R}, which obeys the bound

|F(0 +it)| < Aexp(exp((m — d)t))

for all o+ it € S and some constants A,6 > 0. Suppose also that |F(0+it)] < By and
|F(1+it)| < By for allt € R. Then we have |F(0 +it)| < By °BY for all0 <0 <1 and
teR.

To extend (2.3) to general functions f and g, one takes f € L,(X) (keeping g simple
with finite measure support) by decomposing f into a bounded function and a function of
finite measure support, approximating the former in L,(X) N Ly, (X) by simple functions
of finite measure support, and approximating the latter in L,(X) N L,,(X) by simple
functions of finite measure support, and taking limits using (2.1), (2.2) to justify the
passage to the limit. One can then also allow arbitrary g € Ly(Y) by using the monotone
convergence theorem. The claim now follows from the duality between Ly, (Y) and Ly (V).

]

Proof. of Theorem 2.2.3:
We shall assume first that F' is bounded on S. Define holomorpic functions

G(s) = F(s)(BY*B)™ and  Gy(s) = G(s)el~D/n

Since F' is bounded on the closed unit strip and Bé_SB‘f is bounded from below, we
conclude that G is bounded by some constant M on the closed strip. Also, G is bounded
by one on its boundary. Since

(Gl + iy)| < Me¥"/mel@* D/ < ppev'/n,

we deduce that G, (z + iy) converges to zero uniformly in 0 < z <1 as |y| — oco. Select
y(n) > 0 such that for |y| > y(n), |Gn(xz + iy)| < 1 uniformly in = € [0,1]. By the
maximum principle we obtain that |G, (s)] < 1 in the rectangle [0,1] x [—y(n),y(n)];
hence |G, (s)| < 1 everywhere in the closed strip. Letting n — oo, we conclude that
|G(s)| <1 in the closed strip.

The case of a general function F'is then done in a similar way by considering

F(s)(By *B;) 'Ge(5)Ge(1 —s) and G.(s) = exp(ciexp(i[r — 6/2]s + 6/4)).
O

Riesz-Thorin theorem has two straightforward applications. From properties of the
Fourier transform F : L1 (R") — Loo(R™) and F : La(R™) — Lo(R™), both with norm 1,
we deduce the Hausdorff-Young inequality || F f|l,y < |/ fl|p for every 1 <p < 2.

The second application deals with convolution operator. Let g € Li(R™) be a given
function and let ®,(f) = f * g. The (easy) estimates ||f * g|li < | fll1llgl[r and | f *
9llee < | fllscllgllr show, that @, : Li(R") — Li(R") and &y : Loo(R™) — L(R™). By
Riesz-Thorin interpolation, we get also ®, : L,(R™) — L,(R") for any 1 < p < oo, i.e.
1S+ gllp < [ fllpllgll1-

Next, we consider the convolution operator W¢(g) = f * g. We have just proven that
Vs Li(R") = L,(R™) for any f € L,(R"™). The easy estimate (which follows at once

11
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by Hélder’s inequality) || f * gllco < || flpllgllyy for 1 < p < oo then gives Wy : Ly (R™) —
Lo (R™). By Riesz-Thorin Theorem, we obtain the Young’s inequality, which states that
1 gllr <1 f1lp - lgllg

with 1/r+1=1/p+ 1/q. Indeed, let 1 < g < p’, then we define 0 < § < 1 by
1 1-0 ¢ 1 0

- —_— — ie. —=1——.

+ —,
q 1 4 q P

Then Wy : L. (R") — Lg(R™), where

12



3 Weighted inequalities

3.1 Calderén-Zygmund decomposition

The aim of this is to present the decomposition method of Calderén and Zygmund. In its
simple form, it was already used in the proof of boundedness of the maximal operator M.

Theorem 3.1.1. Given a function f, which is integrable and non-negative, and given a
positive number X, there exists a sequence® (Qj) of disjoint dyadic cubes such that

i) f(x) < X for almost every x ¢ U Qj;

J
i U] < 510
J

1
i) A < —— <2\
‘QJ‘ Qj

Proof. We denote by Q;, the collection of dyadic cubes with side length 27% k € Z.
Furthermore, we define

Bif)= 3 (ﬁ /Q f) Yal@).

QeQy
We define also

Qp={zxeR": Epf(x) >Xand E;f(x) < \if j <k}

That is, = € Q if k is the smallest index with Ejf(z) > X. Observe, that if Eyf(z) > A
for at least one index k € Z, the integrability of f implies E} f(z) — 0 for K — —oo, and
the smallest index k with Ejf(x) > X always exists. The sets Qj, are clearly disjoint and
each can be written as the union of cubes in Q. Together, these cubes form the system

(@)

This gives the third statement of the theorem. The first follows by Lebesgue differen-
tiation theorem: indeed, Fyf(x) < A for all k € Z implies f(z) < A at almost every such
point. The second follows just by

1 1
(LJJQJ\ - ;w - ;;/ij < SISl

3.2 First inequality

Theorem 3.2.1. If w is a non-negative, measurable function and 1 < p < oo, then there
exists a constant C), such that

| rr@preis < ¢, [ 1r@priru)ds, (3.1)
Furthermore,

/ w(z)dr < ¢ |f(x)| Mw(z)dz. (3.2)
(@M f(z)>A)} A Jre

4possibly finite, or even empty

13



Harmonic Analysis

Proof. We shall show that
IMfN Loy S N oo (1) (3.3)

and that the weak-type estimate (3.2) holds. The rest then follows by Marcinkiewicz
interpolation theorem.

For (3.3), we argue as follows. If Mw(x) = 0 for any x, then w(z) = 0 a.e. and there
is nothing to prove. Therefore, we may assume that Mw(x) > 0. Let a > | fll1.(mw)-

Then
/ Muw(x)dx =0,
{z:| f(2)|>a}

and so [{z € R" : |f(x)] > a}| = 0 and |f(z)| < a a.e. Therefore M f(z) < a a.e. and
M £ o (w) < a. This gives (3.3).

To show (3.2), we may assume that f is non-negative and integrable (If f € Li(Mw),
then fxp(,) is @ monotone sequence of integrable functions converging to f.) Let (Q;)
be the Calderén-Zygmund decomposition of f at height A > 0.

Let x & Uj 2Q);, and let @ be any cube centered at x. Let I(Q) denote the side length of
Q. Take k € Z with 2= 1) < [(Q) < 27%. Then Q intersects m < 2" dyadic cubes in Qy,
which we denote Ry,...,Ry,. Asz & Uj 2()j, none of the cubes Ry,..., R,, is contained
in any of the @Q;’s. By the construction of the Calderén-Zygmund decomposition, the
average of f on each R; is at most A\. Hence we obtain

1 /f ! i/ Fe 2 F < 2MmA < 4"\
— = — < — < 2"mA < .
1Ql Jo Ql = Jonr, QI = |Ri| Jg
Therefore,
{z eR": M'f(x) > 4"2} | 2@, (3.4)
j

and we obtain

w(z)dr < / w(x)dx
x/{az:M’f(x)>4")\} ZJ: 2Q;

O L

2m 1
<53 /Q 1) (g / |, vl dy

2nC
A

<

fly)M"w(y)dy.
Rn

Since M"w ~ M'w ~ Mw, we get (3.2). O

Let us observe that if Mw(x) < Cw(z), then the inequalities (3.1) and (3.2) simplify
to boundedness of M on weighted spaces. This will be the starting point of the study of
weighted spaces.

3.3 The Muckenhaupt A, condition

If 1 <p < oo and w is a non-negative measurable function on R”, then we denote by
1/p
Lyw) = {1 Iflley0 = ([ 1f@Pw@yz) " < oo} (35)
RTL

14



8 Weighted inequalities

the weighted Lebesgue spaces. To avoid trivialities, it is good to assume that w > 0 a.e.
and that w is locally integrable.

In this section, we shall denote by M the non-centered cubic maximal operator, earlier
denoted by M”.

We are looking for necessary and sufficient conditions on w, such that
M : L,(w) — Ly(w), (3.6)
or in the weak form
M : L,(w) = Lp(w). (3.7)
Let us assume first, that (3.7) holds, i.e.

C

w(fr € B Mf(@) > 0) < 5 /[R 1 (2)]Poo(a)da (3.9)

for every A > 0.
Let f > 0 and let @ be a cube with f(Q) = fo > 0. Take 0 < A < f(Q)/|Q|. Then
Q C{z eR": M(fxg)(xz) > A} and (3.8) implies

w(@ < 3 [ 1P (39)
As this holds for all the \’s as above, we get
@)\

w@(fg)) <c [ 1 (3.10)

If S C @ is a measurable subset, we take f = xg and obtain the necessary condition for
(3.5,
[ST\P
w(Q) (@) < Cw(S) for all cubes @ and for all S C Q. (3.11)

Let us interupt now with two short conclusions.
1. The weight w is either identically 0 or w > 0 a.e. - just consider S to be a bounded set
of positive measure with w = 0 on S.
2. The weight w is either locally integrable, or identically infinite. If w(Q) = oo, then the
same is true for any larger cube, and therefore also for every bounded set S.
We want to further simplify (3.11). We shall distinguish two cases, p =1 and p > 1.
Case 1: p=1
In this case, (3.11) becomes

w(@) _ ~w(S)
<C .
Q| |5
Choosing S¢ := {z € Q : w(z) < e+essinfycqu(y)}, we get w(Q)/|Q] < C(essinfycqu(y)+
g) for every £ > 0, i.e.

w@) < Cessinfycqu(y),
Q)
or equivalently
% < Cw(z), ae z€Q, (3.12)
or equivalently
Muw(z) < Cw(z), a.e. zeR" (3.13)

15



Harmonic Analysis

This is the so-called A; condition. Clearly, (3.13) implies (3.12). The converse follows by
considering (the countably many) cubes with rational vertices.

Case 2: 1 <p < o0

We put f = w' " xq into (3.10) and obtain

o [ < [,

(@ o) G o) < a10

As we do not know a-priori that w!# is locally integrable, we take first f = min(wlfp/,n)
and pass to the limit n — oco. Only after that, we conclude from (3.14) that w'™? is really
locally integrable. Condition (3.14) was introduced by Muckenhaupt and is called A,
condition (i.e. we write w € A, if w satisfies (3.14) for all cubes Q).

or equivalently

Theorem 3.3.1. Let 1 < p < oo. Then the weak (p,p) inequality

w{z eR" : M f(z) > \}) < %/ |f (z)Pw(x)dz, A>0 (3.15)
R

holds if and only if w € Ay.

Proof. The necessity follows from the discussion just given.
The case p = 1 follows directly from Theorem 3.2.1.
If p>1, we A, and a function f is given, then we show (3.10). By Hélder’s inequality

(ﬁ/nyy)p (ﬁ/@\f\wl/pwl/p)p
1 » 1 —p p—1
@ J ) G )

1 » Q|
SC(@/QW w)m

Therefore, also (3.10) is true and (3.11) also follows.
We may again assume that f is non-negative and integrable. Considering the Calderén-
Zygmund decomposition of f at height 47"\, we get again

IN

{z eR": Mf(z) > A} | J3Q;,
i

as in (3.4), where the 3 is used due to the non-centered maximal operator. Then, putting
this all together,

w({z € R": Mf(x) > A}) <> w(3Q;) < C3™ Y w(Q))
J J

< csnp;( JJ%’J‘,))” /Q RUEE e ($) [ i

Here, the second inequality follows from (3.11), the third from (3.10) and the fourth from
the properties of the Calderén-Zygmund decomposition (Q;);. O

16



8 Weighted inequalities

Proposition 3.3.2. i) A, C Ay for1 <p<gq.
ii) w e Ay if and only if wl? e Ay
ii1) If wo, w1 € Ay then wowifp €A,

Proof. (i) If p =1 then

If p > 1 then this follows immediately from Hoélder’s inequality.
(ii) The A, condition for w!™? s

(@) ) e

and since (p’ — 1)(p — 1) = 1, the left-hand side is the A, condition raised to the power

p —1.
(iii) We need to prove that

(1 ot ) (i [ o) < 310

By the A; condition, for a.e. x € Q and i =0, 1,

wi(z) " < esssuperwi(ac)*l = (eSSinfmesz‘(x)> - < C<w|ié;|2)>_1.

We substitute this into (3.16) for the negative powers and get the desired inequality.
O

3.4 Strong-type inequalities

Theorem 3.4.1. Let 1 < p < co. Then M is bounded on Ly(w) if and only if w € A,.

Proof. If M is of strong (p, p) type, then it is also of weak (p, p) type, and therefore w € A,.

Let on the other hand w € A,. We shall show that there exists ¢ < p with w € A,.
Then M is of weak (g, q) type and M is of strong (0o, 00) type, as Loo(w) = Loo (w(E) =0
if and only if | E| = 0). The result then follows by Marcinkiewicz interpolation theorem. [

The existence of such a ¢ is a consequence of

Theorem 3.4.2. (Reverse Holder’s Inequality) Let w € A, 1 < p < co. Then there
exist constants C' and € > 0 depending only on p and the A, constant of w, such that for

any cube Q)
1/ 1+5)
(e )" = e (317

The name comes from the fact that the reverse of (3.17) is a consequence of Holder’s
inequality.

17



Harmonic Analysis

Proof. The proof uses the following

Fact: Let w € Ay, 1 < p < oco. Then for every 0 < a < 1, there exists 0 < § < 1, such
that for every cube @ and S C @ with |S| < «|Q] also w(S) < fw(Q) holds.

To prove the fact, just replace S by @ \ S in (3.11) to get

[ST\P
w(Q —— ) <C(w(Q)—w(S)).
@(1-g) = Cw@ - w(s)
If |S| < a|Q|, we get the statement with 3 =1 — C~1(1 — a)P.
Fix a cube @ and form Calderén-Zygmund decompositions of w with respect to @ at
heights w(Q)/|Q] = Ao < A1 < -+ < A\ < ...; we will fix the A\g’s below.
We get a family {Q ;} of cubes with

w(z) < Ay if o & = Qy,
J

1
A < 7 w < 2" \g.
Q.1 Qk,j

By construction ;1 C € and Q. j, N k41 is the union of cubes Qx41,;. Therefore

_ 2N
Qk,jo N Qpy1| = Qry1,i] < / < / < Q. jol-
’ Jo + ’ Z‘ + ‘ )\ Z Qk+lz )\k+1 Qk,jo )\k Jo

Fix 0 < o < 1 and put A := (2o ) w(Q)/|Q|, i.e. 2"\g/Ars1 = a. Then Q. joN Q41| <
O"Qk,Jo‘ and (by the FaCt) (Qk‘Jo N Q1) < 57”(@1&‘7]'0)'

We sum on the level k£ and get w(Q41) < fw(Q), i.e. w() < BFw(Qp) and by the
same argument || < o¥|Qq.
Therefore,

(e e]

1
wite £ 2 / wite
|Q|/ |Q| A\ Q| kzo 2\t

0 !Q\ a4 ZA’”“‘)

€w(Q) no—1 (k:+1 €\ Ean(Q
Q] |@|22 07w (E).

Choose € > 0 with (2"a~1)*3 < 1; then the series converges and the last term is bounded
by CAjw(Q)/|Q|. Since Ao = w(Q)/|Q/|, the proof is finished. O

Proposition 3.4.3. i) 4, =J,., A 1 <p<oco.
i) If w e Ap,1 < p < oo, then there exists € > 0 such that wlte Ap.

iii) If w e Ay, 1 < p < oo, then there exists 6 > 0 such that given a cube Q and S C @,

w(s) _ /18
w(@Q = C(!Q\)

The last condition is called A,,. With this notation, (i) holds also for p = oo.

18



8 Weighted inequalities

Proof. (i) Let w € A,. Then by Proposition 3.3.2, we get that w? e A, and by Reverse

Holder’s inequality
<L / w(l,p/>(1+€)>1/<1+€> <& / 1P
QI Jg Rl Jg

for all cubes @ and some ¢ > 0. Fix ¢ with ¢/ —1 = (p’ = 1)(1+¢). Then ¢ < p and we get

1 1 AN 1 (1+5 1)
(@/Q@(@/le < (@/Q ]Q\/ -
1
:(ﬁ/Qw @/lepp <

by w € A, and (1 +¢)(¢ —1) = p— 1. This implies that w € A,.
(ii) If p > 1, then we choose € > 0 small enough, so that both w and w'~P" satisfy the
Reverse Holder’s inequality with e. We get from the A, condition

1 / 1+4e 1 / (14€)(1—p) / 1+€ 17 A (1+e)(p—1) "
— [ w — [ w < C p <"
(|Q| Q ><|Q| Q > |Q| |Q| )

If p=1, we get

!Q\/ !Q\/ 1+6<C’()1+5, for a.e. z € Q.

(iii) Fix S C @ and suppose that w satisfies the Reverse Holder’s Inequality with £ > 0.
Then (by Hélder’s inequality!)

1/(1+ 1+
w(S) _ / Ysw < </ w1+€> /( 8)’5’6/(1+€) < Cw(Q)<@)E/( 8).
Q Q Q|

Hence, we may choose § =¢/(1+¢)=1/(1+¢)". O
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4 Hilbert transform

One of the main objects of harmonic analysis are singular integrals, from which the most
important is the Hilbert transform.
4.1 Hilbert Transform

The Hilbert transform of a measurable function f on R is defined as

Hf(z) = %/RWC@.

As the integral does not converge absolutely, it has to be interpreted in an appropriate
limiting sense, which uses its cancellation property, i.e.

e—0t T Yy

.1 flz—y)
H = lim — —dy.
/) /y:|y>€ ’

With this definition, H f(x) makes sense for all smooth functions, especially for f € .7 (R).
5

If we define the distribution
1 : p(z)
V.— = 1 —d R
Py x(@) EL%I‘F /m:|m|>€ x TP y( ),

1 1
then Hf := —p.v.— x f. This formula suggests that we look for the Fourier transform of
77 x

H f. Therefore, we regularize 1/x. This can be done using complex distributions
and letting e — 0 or (and that is what we shall do) by defining

1
m(xtie)

1 x
T t2 42

Qt(.%') =

Obviously, lim;_q Qt(x) = —Wlm holds pointwise and, as we shall show below, also in Y’(R).
As
1 || — L |z | izg
F (sgn(zx)e 4* = sgn(x)e Y. s dy
( g ( ) )(5) o | g ( )

1 0 ) o) )
_ L[ sterigy / o(~atie) }
e x + e dx
vV 27(' { /—oo 0

1 —1 1 2 i
_\/ﬂ{a+i£+a—i£}_ T a2+ €2

we obtain

V2r

we have also limy_,o Q;(¢) = —isgn(¢)/v/27r. As this convergence is uniform on compact
sets, it holds also in .%/(R). Finally, due to the continuity of Fourier transform, we obtain

Qu(€) = —= sgn(&)e e,

1 1\" N .~ —isgn()
<;P-V-5> = [}g% Q" = %E}%Qt = W

®Observe, that the restriction to n = 1 is both natural and essential for the cancellation property.
Furthermore, from now on, we shall denote the Fourier transform of a function f also by the more usual

f
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4 Hilbert transform

Theorem 4.1.1. In .'(R),

1 1
lim Q(z) = gt 2 o

t—0

Proof. For each ¢ > 0, the functions ¢ (z) = xilx{y:‘ybe}(x) are bounded and define
tempered distributions with lim,_ o+ ¢, = p.v.%. Therefore, it is enough to show that

lg% (mQ¢ — ) =0

in .’/(R). This follows by

(7Qr — ) () = /R 02) gy / ~| l>t@dx

12 + g2 x

zp(x) / x 1>
/x:x<t t? 4 2 ’ x|z >t <t2 +a22 =z (,O(.%') v

[ ety [ s,
x:|z|<1 1+ 22 x|z >1 1‘(1 + 12)

for ¢ € S(R). Ast — 0, we apply Lebesgue dominated convergence theorem and use the
symmetry of the integrands to conclude, that the limit is zero. O

0, ORI |
t—0 7 z

| 7|
—t)¢| ' (R) —isgn(")
Q™ =~V

Summarizing, one defines the Hilbert transform H f for f € #(R™) by any of these
formulas:

1 1

Hf =—pv.—x f,
T

Hf =lmQ; * f,
t—0

(Hf)"(&) = —isgn(&) ().
Using the third expression, we can extend the definition of H to La(R) and it holds
IHFllz = [(EHHM2 = Il = isgn(-)fllz = 1/l = [1f]2.

H(Hf) = (—isgn(-)(Hf)")" = ((=isgn())* /)" = (=) = -1,
(Hf,Hg) = (f,g), by polarization,

/Hf g——/f-Hg,

where the last identity follows from
and the simple fact that Hg = Hg.

Theorem 4.1.2. For f € /(R), the following is true.
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Harmonic Analysis

(i) (Kolmogorov) H is weak type (1,1),

C
I fllw < Cllflly, - de Ro € ReJHf(@)] > A <l flln, A>0,f € Li(RY).

(i) (M. Riesz) H s of strong type (p,p) for every 1 < p < oo, i.e.

1 fllp < Cpll flp-

Proof. Step 1.: We show the weak type (1,1) by exploiting Theorem 3.1.1. Let f be
non-negative and let A > 0, then Theorem 3.1.1 gives a sequence of disjoint intervals (I;),
such that

f(x)g)\fora.e.x¢Q:U[j7
J

1
192 < Sl

1
A<—/f§2)\.
‘Ij‘ I;

Given this decomposition of R, we decompose f into “good” and “bad” part defined by

f(z), =&Q, 1
0= LT g e b(x)=zbj(x)=z<f(w)—m f) 1, (o)
I; J !

|15 j L

Then g(z) < 2\ almost everywhere, and b; is supported on I; and has zero integral. Since
Hf = Hg+ Hb, we have

Hx e R:|Hf(x)] > A} < {x eR:|Hg(x)| > A2} + [{z € R: |Hb(z)| > \/2}|.
We estimate the first term using the Lo-boundedness of H by
4 9 4 9 8 8
(o eR: [Hy(x)| > M2} < = [ |Hg@)2de = = | g@)2dw < = [ g()de =~ | f(x)da.
)\2 R )\2 R A R A R

Let 21; be the interval with the same center as I; and twice the length. Let Q* = (J, 21;.
Then |Q*] < 2|Q2| and

{z e R:[Hb(z)| > A/2}| <[]+ {2 ¢ QO : [Hb(x)] > A/2}]

2 2
SRSy BMEICTE

As [Hb(z)| < >, [Hbj(x)], it is enough to show that

3 / \Hb;())dx < C| £
= JR\2L
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4 Hilbert transform

Denote the center of I; by ¢; and use that b; has zero integral to get

[l [ ][ 20,
R\21; R\2[; [JI; T — Y
1 1
L ()
R\21, |/ I; r—y T—¢G
<[l [ =)
I; R\21, |z =yl |z — ¢l
I
< [l [ ar)a
I; R\21, |z — ¢

The last inequality follows from |y —c¢;| < |I;|/2 and |x —y| > |v—¢;|/2. The inner integral

equals 2, so
> [ @i <2y [ bl < 4l
T JR\2L FRREY

Our proof of the weak (1,1) inequality is for non-negative f, but this is sufficient since
an arbitrary real function can be decomposed into its positive and negative parts, and a
complex function into its real and imaginary parts.

Step 2.: Since H is weak type (1, 1) and strong type (2,2), it is also strong type (p,p)
for 1 <p <2 If p>2 we apply duality, i.e.

V], = sup{\ / Hf-g‘ Naly < 1}

—su{| [ 1| ol <1

< fllp - sup {1 Hglly : lglly <1} < Cpll£llp-

dx

O

The strong (p, p) inequality is false if p = 1 or p = oo; this can easily be seen if we let

J = X[o,1]- Then
1
Hf(z) = —log

™

x
x—1’

and H f is neither integrable nor bounded.

4.2 Connection to complex analysis

Let D be the (open) unit disc of the complex plane, i.e. D = {z € C: |z| < 1} and let
0D = {z € C: |z| = 1} be its boundary. If f € Ly(0D) is a real-valued function, then the

Cauchy integral
1 f(§)
f(Z)—ﬁ/aDg_Zd& z€D,

defines a holomorphic function on D. There are two main questions connected with this
construction:

i) In which sense are the values of f on D also the boundary values of f defined on the
whole D? Or, equivalently, in which sense do the functions f,(¢) := Re(f(re¥)), ¢ €
[0, 27] converge to fif r — 17.
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Harmonic Analysis

ii) How do the imaginary parts of the functions ¢ — f(re’?) look like, do they also
converge to some other function fT on D, and how does fT depend on f?

The study of the first question leads to Poisson formula and approximations of identity.
The study of the second question is closely connected to Hilbert transform. Indeed, let
u, v be two real-valued functions of two real variables be defined by

(u +iv)(r, @) = f(re') = L/ L@.d{.

2wy Jop € — e

Then

271'2 eit — rety 2 eit — rety

o(r, ) = Im(L /027r Mieitdt) _ L 02” f(eit)lm<L)dt

1 1
- 271' f( ) <1 — reile—t) >dt
1 1
T o f( *)m <1—rcos(go—t)—irsin(gp—t))dt
1 2“ it rsin(e —t)
T or fe )1+r2—27"cos(<p—t)dt'

If we now let » — 17, we obtain the function

1 et gy L[ ey 2enlle =D enlle 0/,

o f( ) 2(1 — Cos(go - t))dt o 4sin?((¢ —t)/2)

» =

/ f(e® cot )dt

Considering this function as a periodic variable on [0, 27], we obtain that
1 21

—t

Fle) =

Finally, using Taylor’s series, one obtains that cot(a) behaves like 1/a for v close to zero.
The answer to the question (ii) posed above is therefore, that flis (up to higher order
terms) the Hilbert transform of f.

4.3 Connection to Fourier series
We use the complex notation of Fourier series, i.e.
~ts S0 o) =5 |
’ 27

JEZL

2w »
f(t)e Yiat.

Let sgn(x) be defined as 1 for x > 0, as 0 or x = 0 and as —1 for z < 0. Then the
Hilbert transform on T = R/(27Z) is defined as

Hf = hif(j)e", h; =—isgn(j).
JEL
Naturally, we define the operator of the Nth partial sum as

= Z F()et = ZX =, () f (e

l7I<N JEL
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4 Hilbert transform

and the projections R '
Py(f) = f(N)e™.

We combine the formulas

Xow () = glsen(G + N) = sen(i — N)] + 3 [xn) () + xi-m ()]
with
S sgn(j + NI = 3 sen(j)f(G — N)e0=N = eV S (i) sgn(5) 1 — N)elt
JEZ JEZ JEZ
_ let Z h ) ijt _ 7iNtH[6iN- . f](t)
JEZ

to obtain a reformulation of Sy f into
Snf=ie” M H[eN f] —ie'™ Hle™™ f] + [PNf+P—Nf]-

If now f € L,(T), then the boundedness of H on L,(T) implies that also Sy f € L,(T)
for 1 < p < co. Actually it follows that ||Sn fl, < ¢,||fll, with ¢, independent on N and
that Syf — f for all trigonometric polynomials, which are actually dense in L,(T). It
follows that ||Syf — fll, — 0 for all f € L,(T). Indeed, let f € L,(T) and let g be a
trigonometric polynomial with ||f — g||, < e. Let N be the degree of g. Then it follows
for every M > N that

1Saf = Fllp = 158 f = Smg + 9 = Fllp < 150 (f = 9o + I = gllp < (e + De.

4.4 Connection to maximal operator

Let us state (without proof, cf. Fourier Analysis of Javier Duoandikoetxea, page 56) the
following result, called Cotlar’s inequality.

Lemma 4.1. If f € (R") then H f(z) < M(Hf)(z) + CMf(x), where H*f(x) =
Sup.~q |Hef(x)| and Ho f (x) = G y)dy

™ Jy|>e
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5 H!'and BMO

5.1 H'- atomic

Let ¢ € S(R). Then Hy € Li(R) if, and only if, [ ¢ = 0. We show only one direction,
the other resembles the proof of Theorem 5.1.3. Let ¢ € L1(R) and Hp € Li(R). Then, by
basic properties of the Fourier transform, ¢ and (Hp)" = —isgn(-)@ are both continuous.
Obviously, this is only possible if ¢(0) = 0.

We shall define a subspace of Lj(R), which will be mapped by H into Li(R). As this
space plays the same role also for other singular integrals on R", we define the space for
general n € N.

Definition 5.1.1. An atom is a complexed-valued function defined on R™, which is sup-
ported on a cube ) and satisfies

/a(:n)d:v:() and |aljco <
Q

Observe, that this implies that |lall; < |Q|- ||al|c < 1.
Definition 5.1.2. The atomic space HL (R") is defined by

1
QI

HL(R") = Z)\jaj : aj atoms, \j € (C,Z |\j| < o0
J J

and normed by
If 1 Ha (R™)I| = inf ¢ >~ [\l f =D Ajay
J J

We state (without the quite easy proof), that this expression is really a norm and that
HL(R") is really a Banach space. Furthermore, the atomic decomposition converges in
Ly (R™) and HL (R™) is a subspace of L;(R™). Both these statements follow easily from

1> Xaglh <D0 1 llaglh < Y0 IAl-
i i i

Theorem 5.1.3. Let n = 1.

(i) There exists a constant C > 0, such that for every atom a,
[Hal1 < C.

(ii) H : HY(R) — L1(R).

Proof. (i) Since a € La(R), Ha is well defined and we get for Q* co-centric with ¢ and
length 2 times larger

1/2 1/2
| Ha@)ds < @2 (/ \Ha(x)\?dm) < QY (/ \a(m)Pdw) <c
Q* Q* Q

Using that a has zero average, we get for cg the center of ) and of Q*

/ |Ha(z)|dx = l/ / Mdy
R\Q* TR VT Y
1 1
< / / [ - } a(y)dy‘ dx
R\Q* Q xTr — y xTr — CQ

S
R \ *

1
T—Y T—cQ

dx

d - |a(y)|dy < C.
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5 H' and BMO

(ii) Follows directly from (i) and the definition of H} (R). O

5.2 BMO

Hilbert transform acts rather badly on L. (R). Not only is H unbounded on L. (R), it
can not be easily defined on a dense subset of Ly, (R). The definition

@),

RY —Z

Hf(y)=%

runs for f € Lo (R) into troubles for z near y and x near infinity. If we look onto
differences, the situation changes to

HiG) - HI6) = 3 [ ) (2 - ) ae

This improves the situation for x near infinity, as 1/(z —y) — 1/(x —¢') = O(1/2?) in this
case.

We say that f and g are equivalent modulo a constant if f(x) = g(x) + C for some
(complex) constant C' and almost every = € R. Given f € Ly (R) and y € R, then we
take an open interval B C R with center at zero containing y. Then fxp € L2(R) and we
define H f(y) to be

Hf(y) = H(fxs)(y) + % /R\B f(x) <y i ~t i) dz. (5.1)

The first term is defined by the Lo definition of H, the integral in the second term converges
absolutely. The definition depends on B, but choosing another interval B’ > B with the
center at the origin leads to a difference

Hw 7 [ 1@ ( L) H ) - 2 [ ()
= Hpx - o)+ [ 1) (g

H (X)) + - /B SO0 i) =t [

which does not depend on y. This defines H f modulo constant for f € Lo (R). Of course,
such a definition does not allow to measure H f in the usual norms, as L,. Instead of that,
we need a space of functions defined modulo constants.

Definition 5.2.1. (Bounded mean oscillation). Let f : R™ — C be a function defined
modulo a constant. The BMO (or Bounded Mean Oscillation) norm of f is defined

)

1
IFIBMOR™)[| := SUp

where B ranges over all balls. Note that

/Bf‘ﬁ/Bf‘:/ny B [, e

if one shifts f by a constant, the BM O norm is unchanged, so this norm is well-defined
for functions defined modulo constants. We denote by BM O(R"™) the space of all functions
with finite BM O norm.

dy = f(z))dx| dy
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Harmonic Analysis

Example 5.2.2. Let f(z) = sgn(x). Let |y| < a. We take B = (—a,a) and apply the
definition of H f as presented above. This gives (for y > 0)

@ 1 1
THf(y) = p.v./ sen(x )d +/ sgn(x) ( + —) dx
—a Y= (—00,—a)U(a,00) y—T Z

lim / L;n(lﬂ)daz —/ (l— ! >dm—|—/ (l— ! >daz
e=0t \ J(—a,a)\(y—eyte) Y~ 7 —co \T T Y a \T T-—y

a
—In a+y =In

0 —& a -
1 Y 1 1
= lim (/ dx—/ dm—/ >—ln “ —1In ¢
e=0t \J—qg T — Y 0 r—y y+e T —Y a+y a—y

= lim (In y —i—lny—lna_y —1In a4 —1In ¢
e—0t a—+y € € a—+y a—y

=2lny —2lna.

If y < 0, similar calculation applies as well. Hence, 7H f(y) = 2In |y| — 2Ina. Hence,
ignoring the constant,

2
H(sgnz) = —1In|z|.
T

f‘ﬁ/gf‘ inf 7 [V =

holds for every ball B with universal constants. Indeed, the left-hand side is obviously
larger than the right hand side. On the other hand, we get as well

s '+|B| ‘ﬁ/Bf‘
= [V i i e )
SEL“‘C‘*@/B(@L‘C‘J”D
g 1=l

5.3 Connection to Hilbert transform

Theorem 5.3.1. (H maps Lo (R) into BMO(R))
Let f € Loo(R). Then

Let us observe, that

1H FIBMO®R)| S [1floo-

Proof. Due to the observation above, it is enough to show that for every ball B, there is
a constant ¢ = ¢(B) such that

—cl <
7 | VE =l S 1

Similarly to (5.1), we define H f(z) for z € B to be

Hf(z) = H(fx28)(@)+H (fxr\25)(x) = H(fXQB)(x)J% / won 1) <m i y ﬁ) w
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5 H' and BMO

where 2B is a ball with the same center as B, but twice the radius and + is the center of
B. With this definition of H f, we can actually take ¢ = 0.
First we get

%/B’H(wa)’Sﬁ(/B\H(fXQB)P)l/Z'</Bl>1/2

< ([ i) < Ve <
~ VIBl \J2B VBl -
This deals with the “local” part of H f. For the “global” part, observe that for z € B we
have ) )
mH(fx af=/“ fy< ————)@
Psan@ = [ 16 (575575
and

dx

01 e (55 555)
01 0 (55555 )

r—y 7Y
Ml [ ]
1Bl JB R\2B

1 1
By shifting, we may assume, that v =0, B = (—a,a) and 2B = (—2a,2a). We estimate

— —— | dydzx.
1 /“/oo T 1 /a /‘x’ 1 a/‘x’ 1
— ——dydxr < — xdx ——dy < - ———dy <c
2a Jo Jou ly(z—1y)l 2a J, 2 Yy —a)l 4 Joa (y—a)?

Ty Y-y
(and similarly for the remaining parts). Altogether, this gives

1
& /B H(Fxies)] < 1F o

Adding the two facts, we obtain the claim. O

5.4 Interpolation with BMO and good-)-inequality

When proving that the Hardy-Littlewood maximal operator M is bounded on L,(R™),1 <
p < oo, we used interpolation. As M is not bounded on L;(R™), we needed to replace this
by weak boundedness of M. This was still sufficient for the interpolation argument (as
described by the Marcinkiewicz theorem). Hilbert transform is not bounded on L (R"™),
but in the same spirit, we can hope that for the interpolation to work, this could be
replaced by weaker information at the endpoint. This is indeed the case.

Theorem 5.4.1. Let T be a linear operator which is bounded on L,,(R™) for some 1 <
po < 00, and bounded from Loo(R™) into BMO(R"™). Then T is bounded on L,(R™) for
all po < p < .

The proof of this statement is based on the so-called good-\ inequality. We use the
notation My, for the dyadic maximal operator and

where fo = @1‘ fQ f denotes the average of f over Q.
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Harmonic Analysis

Lemma 5.4.2. If f € L, (R™) for some pg,1 < py < oo, then
{2 € ™ : Myf () > 20, M f(2) < 1A} < 2'y|{w € B™ : Maf(z) > A},
for all v > 0 and A > 0.

Proof. We may assume that f is non-negative and that v > 0 and A > 0 are fixed. We
form the Calderén-Zygmund decomposition of f at height A. Then the set {x € R" :
Myf(z) > A} can be written as the union of disjoint, maximal dyadic cubes. Let @ be
one of these cubes. Then it is enough to prove that

{z € Q: Maf(zx) > 2)\, M7 f(z) < yA} < 2°9]Q). (5.2)

Let Q be the dyadic cube, which contains @ whose sides are twice that long. Since Q was
maximal, f5 < A If 2 € @ and Myf(x) > 2, then also M4(fxq)(z) > 2A. Hence, for
such z’s,

Ma((f = fa)xQ)(x) > Ma(fxq)(x) — fg >
By the weak (1,1) inequality for My (which actually holds with norm 1, although we did
not prove that), we get

€ Q2 Mallf ~ fpra)w) > A < [ 170) ~ Syl

Q1 Qs
T /wa) folde < T8 inf M (o).

If the left-hand side of (5.2) is zero, there is nothing to prove. Otherwise there is an = € @
with M7 f(z) < v\ and (5.2) follows. O

Of course, My f(x) < CM# f(x) is not true in general. But it holds at least in L,-norm.
Lemma 5.4.3. If1 <py <p < oo and f € Ly,(R"), then
Myf(z)P < C | M#*f(x)Pda. (5.3)
R” R”
Proof. For N > 0, we get

N N/2
Iy = / PN {z € R™ - Myf(z) > AMd = 2p/ PNz € RY: My f(z) > 2\}|dA
0 0

N/2
<2 [ o (o € B Maf(0) > 20 M S (0) S 00|+ [{o € BT M¥ f(2) > 22 )
0
op  YN/2
< oPagy 4 %/ pAPU{z € R : M# f(z) > A}|d).
0
Now we choose v > 0 such that 2PT"y = 1/2, and get

op+1  yN/2
p /O PN {z € R™ . M# f(z) > A}

In <

This step is only justified, if Iy < oo. This follows from the fact, that f € L,,(R") implies
Muf € Ly, (R™) and

N
Iy < £Nppo/ poAP T H{z € R™ : Myf(z) > A}|dA < oco.
0

Po
If the right hand side of (5.3) is infinite, there is nothing to prove. If it is finite, we let
N — oo and (5.3) follows. O
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5 H' and BMO

Proof. of Theorem 5.4.1: The composition M# o T is a sublinear operator. It is bounded
on Ly, (R™), and on L (R"), as

1M (T f)lloo = ITFIBMORY)|| < Cl|f|oc-

By Marcinkiewicz theorem, it is bounded on L,(R"), pg < p < 0.
Now let f € L,(R™) with compact support. Then f € L, (R") and so T'f € L,,(R").
We apply Lemma 5.4.3 to T'f and due to |T'f(z)| < My(Tf)(x) a.e., we get

[ rr@pds< [ wmrpepa<c [ ptan@ra <c [ apd,
Rn Rn Rn Rn

O

5.5 John-Nirenberg inequality

On the example of log(1/|z|) we have seen that BMO(R™) contains also unbounded func-
tions. On the interval (—a,a), its average is 1 — loga and for A > 1, the set of z’s with

[log(1/]x[) — (1 —loga)| > A
has measure 2ae !, ie. is exponentially small. This is the case for all unbounded
functions from BMO(R"™).

Theorem 5.5.1. (John-Nirenberg inequality)
Let f € BMO(R™). Then there exist constants Cy and Co, depending only on the dimen-
siom, such that given any cube @ in R™ and any A > 0,

{z € Q:[f(x) — fol > A}| < Crexp(=C2)/| fIBMOR)[)IQ.
Proof. As the inequality is homogeneous, we may assume that || f|BMO(R")|| = 1, hence

1
o /Q (@) — fglde < 1.

We form the Calderén-Zygmund decomposition of |f — fg| with respect to @ at height 2.
This gives us a family of cubes {Q1 ;} such that

- 1
’Ql,j’ Q1,5

and |f(x) — fol < 2ifx ¢ Uj Q1,;- In particular,

1 1
BEFE 3 ], /@)~ faldr < 5101

2 |f(z) — foldx < 27+

and
1

— n+1
Gl Jo, 710) = fabe| <27

\fo.; — fol = ‘

On each cube @1,; we form the Calderén-Zygmund decomposition of |f — fq, ;| at height
2. We obtain a family of cubes {Q1 ;x} with

|fQ1,j,k - le,j| < 2n+1’
(@) = fou,l <2if z € Qui\ [ Qujm
k

1
D Qi < 1@l
k
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Collect all the cubes {Q1,j} into one sequence {Q2,;}. Then we have 3, |Q2,;| < 1/4|Q)
and if z ¢ |J; Q2

\f(2) = fol <1f(x) = fou,l+|fo., — fol <2+2F < 2.2nFh

Repeat this process indefinitely. We get for each N a family of cubes {Qn ;} with

[f(z) = fol <N -2"H1 ifa ¢ UQN,j
J

and >, [Qn,;] < 27N|Q|. Fix A > 2""! and let N be such that N2""1 < X\ < (N +1)27+L,
Then

e € Q17— fal > Ml < 1wl < g 1Q1 = V0220l < Q)
J

where Cy = (log 2)/2"2.
If A < 2"! then Co\ < log(v/2) and

o € Q: |f(x) — fol > A} < Q| < #VD=CA|Q| = v2e=C2|Q),

hence C; = /2. O
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6 Singular integrals

Hilbert transform is the most important example of the so-called singular integrals. Its
n-dimensional analogue are the Riesz transforms.

6.1 Riesz transforms

Riesz transforms are defined as

Rif(e) = cupv. | s f@—ydy. 1<j<n. (6.1)
where +1
n _n+tl
cn—F< 5 )7‘(’ 2 .
The constants ¢,, are chosen to have
ey &g
(R; f) (&) = B (), (6.2)

which quickly implies also
n
2
> Ri=-1I
j=1

To prove (6.2), we use the technique of homogeneous functions.
A function f is homogeneous of degree a € R if for any z € R™ and any A > 0

fz) = A"f(x).

To extend this notion also to distributions, let first f be a homogeneous function of degree
a and we calculate

Fap)dr =X [ foa)pde =3 [ o/ .
Rn Rn Rn

We therefore say that T' € ./ (R™) is homogeneous of degree a € R, if for every ¢ € . (R"™)
T(px) = X*T(p),
where () = A~ (/).

Proposition 6.1. If T is a homogeneous distribution of degree a, then its Fourier trans-
form is homogeneous of degree —n — a.

Proof. Indeed, we have

T(0x) = T((#2)) = T($(N) = A"T((§)r-1) = A" °T(9) = A" T ().
O

This proposition allows us to calculate easily the Fourier transform of f(z) = ||z||~®
for 0 < a < mn. Since f is rotationally invariant and homogeneous of degree —a, f is also
rotationally invariant and homogeneous of degree a — n, i.e.

f(g) = ca,nHS”a_n-
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To find the constants ¢, 5, we calculate for n/2 < a <n

[t gl = [ (e R ) (€ = con [ eI e
Rn Rn Rn

Using polar coordinates, we obtain

2 o0 2 b4+n o0 b+n
/ e~ I12IP72) )b dz = wn_l/ e 2Tl gy — 27 lwn_l/ e ~lds
R" 0 0

)

where w,,_1 is the area of the n-dimensional unit sphere. Hence

(n=a)/2) _yno T(n—a)/2)
2517 (a/2) I(a/2)

By the inversion formula, the same holds also for 0 < a < n/2 and by taking the limit
also for a = n/2.

Finally, the Fourier transform of the Riesz transform follows from the distributional
formula P

Oz

b+n

=22 71wn,1I’(

Can =

Ty
(1 — TL) p.V.W,

||| =
which gives

<p H ﬁfLJ’,l)/\(g): L (8,@]H ||—n+1> (5): 1ifj (HxH_n—H)/\(é)

_ & 21721(1/2) el = —i2"2m &
ozl

1-nT((n—-1)/2)
Formula (6.2) then follows by this, and by taking the (27)™? factor into account, which
appears in the formula for Fourier transform of convolutions.

Theorem 6.1.1. The Riesz transforms are bounded on L,(R™) for 1 < p < oo.

Proof. The proof writes the Riesz transforms as a linear (integral) combination of direc-
tional one-dimensional Hilbert transforms and then uses the boundedness of H on L,(R).

R;f(x) = ¢, lim —— f(x — y)dy = ¢, hm / / — y)dydr
’ e=0 J||y||>e HyH el r§n—1 HyH"“
—Cnil_%/ /Sn1zj x—rz)dz—:gil_)n% Snl H>Efx—7°z)
= cn—ﬂ/ z;iH. f(x)dz
2 Sn—1
where ) i
H.f(z) = — lim fla —rz)—— = H(f(@ + 2))(21),

T e—0 |r|>e

ifz =212+7, 1 € Rand T L z. We observe first, that H, is bounded on L,(R") for
every z € R™. Indeed,

/Rn ]Hzf(x)\pdx:/Zl/]R]Hzf(xlz—l—f)]pdxldf:/ZL/R]H(f(f—i—-z))(xl)]pdxldf
<q [ [l@+apdnds =iy
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6 Singular integrals

Combining these two steps, we obtain

Cn T enmCy|| f]]
R fllp < g lzi| - | H: fllpdz < “ 5 & |zj|dz.
Sn71 Snfl

6.2 Riesz potentials

If o € .Z(R"), then (—Ap)"(€) = ||€]|>3(€). The fractional Laplace operator may then be
defined as

(=2)"20)" (&) = I€12(©)-

We define
L(f) = (=A)""2(f), 0<a<n,
i.e. )
1 Yy
a ———dy,
i@ = [ sy
where

_ 7_(_n/2fa F(G/Q)
T T((n—a)/2)

Let As(f)(x) = f(0x), then
As-1Labs =6 Loy |As(Nllp =PI fllp 1051 La(Hllg = 8" La(f)lg-
If || Iofllg < C| fllp is true, then we get by

Ha(As )llg = 186007 Laf)llg = 67l AsLafllq
= 50| Laf N80 < COTO | flp = 6P| A f

that
= (6.3)

Theorem 6.2.1. Let0 < a <n, 1 <p < n/a and define q by (6.3). Then ||Iof|lq < C| fllp
Jorp>1 and ||Iofllqw < Cl|f[lp for p=1.

Proof. We give a proof, which is based on the following inequality due to Hedberg (1972):
Lof(x) < Call FIgP™ - M f () =oP/™, (6.4)
This inequality implies for p > 1
Iafllg < Call FIIG ™ IM )= g = Call AP IMF 1l ™ S 11F lps

and the weak bound follows for p = 1 in the same manner. To show (6.4), we argue as
follows.
Fix x € R™ and split (for A > 0 to be chosen later on)

Yalof(® /| 1) dy+/| L)_dy-

o—yl<a lz = ylI"~e ylla—yl>a llz =yl
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We apply Theorem 1.2.4 to the first integral

f) dy
To—yre™=¢ g M 6.5
/yillzvyIISA Jo =yl : /y:||my||§A |z =yl /@) (6.5)

A
< C,/ r= (e dp M f () = C" A" - M f ().
0

The second part may be estimated by Holder’s inequality as follows

f Yy a—n)p' 1/p,
/ LYy <, (/ o =yl ay) (6.6)
yille—yl>a lT =yl yille—yl[>A

< C”(/Aoo rnflr(a*n)p’dr) /v’

< O£l - AT = O £, - APV = O £, AT

Choosing A in such a way, that (6.5) and (6.6) coincide, we get A = (|| f|l,/M f(x))P/™
and (6.4) follows. O

Definition 6.2.2. Let k£ € Ny and let 1 < p < oco. Then the Sobolev space W;(R”) is the
set of all functions from L,(R™), such that all its (distributional) derivatives up to order
k belong to L,(R™).

Theorem 6.2.3. (Sobolev’s embedding theorem) Let k € N, 1 < p < oo and 1/q =
1/p—k/n.

(i) If ¢ < oo, i.e. p <n/k, then W;“(R") — Ly(R™).

(i1) If ¢ = co. i.e. p=mn/k, then the restriction of any f € W;(R”) to a compact subset
of R™ belongs to L.(R™) for any r < oc.

(iii) If p > n/k, then every f € W;“(R”) can be modified on a set of measure zero so that
the resulting function is continuous.

Proof. For a direct proof, we refer to the book of Stein, Chapter 5. Let us sketch the proof
using Riesz transforms and potentials.

A 2
(R(521)) " © = pfc©
and

f=1 (g";lgj(a% 7). 67)

We deal with £ = 1, higher order follow by iteration. Let f € VVp1 (R™).

Let 1 < p < n. Then all 0f/0x; belong to L,(R™) and their Riesz transforms
R;(0f/0xj) belong also to L,(R™). Finally, I maps L,(R") into Ls(R™). This gives
the proof of (i) for 1 < p < oo. We leave out the proof for p = 1.

For the proof of (ii), we consider only nf, where 7 is a smooth function with compact
support. We apply (6.7) to nf, which (together with its first order derivatives) belongs
not only to L,(R™) but also to all L,(R"), 1 < s < p = n. Riesz transforms R; then map
these to Lg(R™) again, and the Riesz potential I; then maps the outcome into L, (R™) for
1/r —1/s —1/n, i.e. into every L,(R™), r < co. The proof of (iii) is again left out. O
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6 Singular integrals

6.3 Calderén-Zygmund operators

These are convolutions with kernel K, which might have a singularity at origin.

Theorem 6.3.1. (Calderén-Zygmund) Let K € %' (R™) be a tempered distribution,
which is associated to a locally integrable function on R™\ {0} and satisfies

(CZ1) |K()| <A, ¢eR",
(CZQ)/ |K(x —y) — K(x)|de < B, yeR"
lzll2>2lyl2

Then, for 1 < p < oo,
1K fllp < Cpllfllp  and  [[K + fll1w < Cllflh

The proof copies very much the proof of the same statement for the Hilbert transform,
and we leave out the details.

The condition (CZ2) is sometimes called Hormander condition. By the help of mean
value theorem, it is satisfied for example if

C
VK ()2 < Tyl L #0
[P

An important and non-trivial generalisation of the theory of singular integrals is given
by considering the vector-valued analogues. By this, we mean the following.

e H, H are (complex) Hilbert spaces.

e For 0 < p < oo, Ly(R™ — H) is the set of measurable functions f : R" — H, such
that [p. ||f(2)|},de < co.

o Let K :R" — Z(H,H). Then Tf(z) = K (y)f(x — y)dy takes values in H.
R

e Under same (just appropriately interpreted) conditions as above, T" is bounded from
L,(R" — H) into L,(R™ — H). Especially, the gradient condition above is still valid
in this case.
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7 Special role of p =2

7.1 Khintchine inequality

We denote by
rn(t) := sign sin(2"xt), te€[0,1],n € Np.

the Rademacher functions.
The system (ry,)>2, forms an orthonormal system in L9(0,1), but it is not a basis
(consider i.e. the function f(t) =1 — 2t).

Theorem 7.1.1. Let p € [1,00). Then there are positive constants A, and B, such that

m 1/2 1| m p 1/p m 1/2
A, <Z |an|2> < </0 > anra(t) dt) < B, (Z |an|2>
n=1

n=1 n=1
holds for every m € N and every sequence of real numbers ay, ..., Gny.

Proof. By A, and B, we denote the best possible constants (which are actually known,
but we shall derive slightly weaker estimates). Furthermore, orthogonality of Rademacher
functions gives immediately As = By = 1. Finally, due to monotonicity of the L,-norms,
we have A, < A, and B, < B), for r < p.

So, it is enough to show that A; > 0 and Bg, < oo for all £ € N.

We start with Byy. Let us observe that

2%k L/ m 2%
ro(t)]  dt :/ <Z anrn(t)> dt
0 n=1
(2K om [ o a
= Z Wall...am’” o 'I"ll(t)'l"mm(t)dt
o el om!
2%)! !
— Z '( k) 'a%al .. a%f‘m / r%al (t)... rgf‘m (t)dt
it (2a1)! ... (2am)! 0
= Z (2k)! a2er | g2om
=k (201)! - (20)! ! "

where we have used the multinomial theorem (a generalisation of the binomial theorem to
a bigger number of summands) and the fact that

is equal to zero if some of the «;’s is odd and equal to 1 if all of them are even.
Let a = (ou,...,am) € N be integers with |a| = k, then

Karl.ap! = (2% ... (2% an,!) < (2a0)! .. (200,

This implies

(2k)! k! %0 2
E < i Zal... !all...ao‘

m

S (D n|2> = a3
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and

Hence, the statement holds with ©

2k)1\ /(2R
ng = <( ) ) .

2k k!

Finally, we have to show the existence of A1 > 0. We proceed by a nice duality trick
using the (already proven) first part of this theorem.
Let f(t) :=>_"" | anry(t). By Holder’s inequality for p = 3/2 and p’ = 3, we have

n=1

[1sra= [Copeorea s ([ o) - () ver)

1 2/3 1 2/3
g(/ If(t)ldt> Bi/‘”’-nau;*/‘”’:(/ If(t)ldt> BYS | I,
0 0

1/3

Therefore,
1 2/3 1 1/3
( / If(t)ldt> > gy ( / |f<t>|2dt> |
0 0

that is

! 2 ! 2 1/2 2

[ il = 5; ( JNIC) dt) — B?all.

Hence, A1 > B4_2. O

Remark 7.1.2. Stochastic reformulation of Khintchine’s inequalities sounds as follows.
Let ;,7 = 1,...,m be independent variables with P(¢; = 1) = 1/2 and P(g; = —1) = 1/2.
Let 1 < p < co. Then there are constants A,, B, such that for every ai,...,a;, € R 7

m p\ 1/p
> e ) < Byllall2.
i=1

Choosing p large enough, this estimate gives very quickly the so-called tail bound estimates
on sum of independent Rademacher variables, i.e. the assymptotic estimates of

(el

m
D s
i=1
We use this reformulation of Khintchine’s inequalities to give another proof of Theorem
7.1.1.

Apllallz < (E

for t — oo.

Proof. (of the upper estimate in Theorem 7.1.1).
We normalize to ||al|2 = 1. Then

m m m m
E exp <Z CLz‘Ei) = EHexp(aiai) = HEeXp(aiEi) = H cosh(a;).
=1 i=1 i=1

i=1

5By Stirling’s formula, one can show quite easily that By grows as v/2k for k — co.
"Also ai,...,am € C can be considered with slightly modified proof.
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Using Taylor’s expansion, one obtains cosh(a;) < exp(a? /2). Hence,

m m
o (3o ) < [Tomta <13
i=1 i=1

and by Markov’s inequality

P (i a;s; > A) =P <exp <i aiei> > exp(A)) =P (exp (i a;g; — A) > 1)
i=1 i=1 i=1

m
< Eexp (Z a;g; — A) < e

i=1

m

D s
i=1
distributional representation of the L,-norm.

By symmetry of g;’s, we get also P ( > A) < e~*. The rest then follows by

Khintchine’s inequalities have an interesting application in operator theory. Let 1 <
p < oo and let T': L,(R") — L,(R™) be a bounded linear operator. Then

(S mse) | <al (S n7)”
j=0 Jj=0

where the constant ¢, depends only on p and ||T°]].
The proof follows by considering Rademacher functions rq,...,ry and

N N\ 1/2 p/p
(jZOITij) /(ZITfJ SRCE S (/ IZTf] ryerar)” da
—c/ / ZTfj @)t ypdxdt—c/ /n\T ijrj )) @) dedt
<epre [ \;fxxm(t)rpdmdt <[ (; @R
_ <§;|fj|2)1/2 p

P

< ¢ ; (7.1)

p

p

By letting N — oo, the same result holds also for infinite sums.

7.2 Littlewood-Paley Theory

Let {I;} be a sequence of intervals on the real line, finite or infinite, and let {S;} be the
sequence of operators defined by (S;f)"(§) = xu, (£)f(£) Later on, we shall concentrate
on the dyadic decomposition of R (strictly speaking of R\ {0}) given by

I = (-2 2|y 27,27y jeZ. (7.2)

Furthermore, we denote S}‘ = S;_1+5j + Sj41. Let us observe that this implies S}‘Sj =
SjSJ’-‘ = 5j.
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7 Special role of p = 2

Finally, we adopt this concept also to smooth dyadic decompositions. Let ¢ € . (R)
be non-negative, have support in 1/2 < ||€||2 < 4 and be equal to 1 on 1 < ||£||2 < 2. Then
we define

¥i(§) =927 and ($;)"(€) = ;(O)f(€), €€R
Theorem 7.2.1. (Littlewood-Paley Theory) Let 1 < p < co.

i) Then there exist two constants Cp > ¢, > 0, such that

(Z rijr2> "

< Gl fllp-
p

el fllp <

J

The same holds for S} .

ii) There ezists a constant Cp > 0 such that
1/2
()
J

iii) Finally, ifz 1W(279E)|> = 1, then there is also a constant ¢, > 0, such that
J

1/2
(Z |55 f !2>
J
Proof. Step 1.

We know, that (S;f)" = X[J.f, where I; was defined by (7.2). We define

< Cpll 1y
p

ol fllp <

p

— . (_oitl _oj + . [gi 9itly
ID = (=27 20, D=2, e

and split Sj = S; + S}, where (S; /)" = X;-f and (SFH" = X+ f-
J J
We observe, that

(sgn(z — 27) —sgn(z — 2/T1))  for (almost) all z € R,

NN

X[f(x) =

and

((sen(- = 2) /)" = (sen(- — 27 f)").

N | —

SHf=0 )Y =

Finally, we write

sgn(& —27) f(€) = raslsgn(€) F(€ + 2)] = s [sen(€) - 70 F(E)],

leading to

N

(sgn(§ — 2j)f(§))v = M,; (sgn 'szjf)v = (277)71/2 - My; (Sgn(')v * (szjf)v)
= (271')*1/2M2j <@ (lpv%> * Myf)

™

= 1My, <<%pvi> * M_ij>

— ’L.MQj HM_Q]’ f
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Using the boundedness of H on L,(R) for 1 < p < oo, we immediately obtain that
I1S; fllp < ¢l fllp, and the same is true also for S;.L and S
Step 2.

We combine Step 1. with (7.1) to obtain
/ N / A R /
‘ (Sisyrl) | <3 { (X Ismnte — 217500 P) ||+ |[(3 lisemie — 27 fen )
JEL P JEL P JEL p
< % { <Z ’szHMfyfj‘Q) v +...
JEL P
;{<§:HM2nyﬂ +...
JEL P
/ /
<o (S pnP) )|+ b= (S 1sP)
JEL p JEL p

The same holds of course for S; and, therefore, also for Sj.
Step 3. .
This, together with the identity S; = 5;5; implies

‘(Z\ijﬁ)m (S 1s,50) "
Step 4.

jEL =
This shows, that the second inequality in part (i) of the theorem follows from (ii). There-
fore, we prove (ii) now. .
Let ¥ = ¢ and W;(x) = 29U (27z). Then ¥; = 1; and S;f = ¥, * f. It is enough to
prove that the vector-valued mapping

(Sis.2)"]

JEZL

<

p p p

f = (8:);
is bounded from L, to L,(¢3). If p = 2, this follows by Plancherel theorem:

(o)

The proof for p # 2 is an application of the vector-valued Calderén-Zygmund theory, and
especially the Hoérmander’s condition for vector-valued singular integrals.

Let us first give the notation. Let H = C and H = f5(Z). This means that H is
just one-dimensional Hilbert space and H is the (5 space of sequences indexed by integers.
Then L,(R — H) = L,(R — C) is just the usual L,(R) space of complex-valued functions.
And L,(R — H) is a space of functions g : R — f5(Z). Each g(z) is then a sequence
(.y9-1(x),g0(x),g1(x),...) and the L,(R — H) norm of g is given by

2

- / SO - 1f(€)[2de < 3] £
2 J

9| Lp(R = H)|| = ||(g;)jez|Ly(R = H)| = (/R !!(gj(w))jez\\%dw>l/p

- (f(Slate) )" - [ (o)
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7 Special role of p = 2

Now, we define a vector-valued Calderén-Zygmund operator 7' based on a kernel K. We
need K (z) € L(H,H) = L(C,{5(Z)) for every = € R. Therefore, we first characterize the
elements of £(C, ¢3(Z)). As the source space is one-dimensional, it is easy to see that each
element Z € L(C,¢5(Z)) is given by

ZA) =Xz
for some z € l2(Z). We therefore define
K@) : A= X-(..,¥_1(x),¥Yo(z), V1(z),...).

Without giving the formal detail on vector-valued integration, we get

Tf) = [ K@@=y = [ 7o) (o Uoal) Yol 12(0). ... )y
= (oo [ S =0¥sdy. [ 1= 9oy, [ Fa =9y

:<”WQL¢*f@L@0*f@%W1*f@%”.>
- <...,§_1f,50f,§1f,...) — 7K« f(z)".
When we show, that Calderén-Zygmund theorem can be applied, this will give
1T fILp(C = La(2))] < C[flp-

Due to what we said before, this is exactly the inequality in (ii).
So, we are left with verifying the two conditions (CZ1) and (CZ2). The first one is
equivalent to showing that

(' ) \11—1(5)7 @0(5)7 \Pl(g)? s ) = ( e 7¢—1(§)7¢0(§)7¢1(§)7 s )

is uniformly bounded in ¢5(Z) for every £ € R. But that follows easily from the support
properties of the functions ;.
To verify the second, we need to show that

15 (@)lle, < Clz| ™%, z€R.

Using that ¥ € .(R), we obtain

1/2
(@) < (W) =D 2¥ (W (202)| < C Y 2% min(1, (2]2]) %)
JET JET j JEZ
—C Z 4 C Z
§:29|z|<1 J:20|z|>1
A - c’
=C > 240 ) 292t < =
j:27|z|<1 ji29|x|>1 |$|

Step 5.
Finally, we prove the first inequality in part (i) and part (iii) of the theorem. Surprisingly
enough, they follow quite quickly from previous steps and duality.
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The identity

(Z \ij\2>1/2

JEZ.

= [I£1l2 (7.3)
2

follows by Plancherel’s theorem and, by polarization, also
[ Ssit-55= [ 13
R R

follows. Using this, and the first part of the theorem for p’ with 1/p+1/p’ =1 allows the
following estimate.

1l = sup{\ / fﬁ‘ Naly < 1}

— sup /stjf-% ol <1
J

<o d | (S1sirP) | (S isiol) | gl <1
JEZ P JEZ P’
Scp <Z|S]f|2>1/2 ‘
JEL P

Part (iii) of the theorem follows in exactly the same way - the assumption of the theorem
gives exactly the identity (7.3). O
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