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Harmonic Analysis

1 Basic concepts

1.1 Approximation of identity

We denote by R
n the n-dimensional Euclidean space. Its open subsets Ω ⊂ R

n are called
domains.

Theorem 1.1.1. Let Ω ⊂ R
n be a domain. The set of continuous functions with compact

support contained in Ω is dense in Lp(Ω), 1 ≤ p <∞.

Proof. We shall need two facts from measure theory.

i) Lebesgue measure λ in R
n is regular, i.e. λ(A) = inf{λ(G) : G ⊃ A,G open}.

ii) The space of step functions, i.e. the linear span of the set {χA : A ⊂ Ω, Ameasurable},
is dense in Lp(Ω) for every 1 ≤ p <∞.

We first consider bounded open sets Ωj ⊂ Ω, j ∈ N, such that Ωj ⊂ Ωj ⊂ Ωj+1 ⊂ Ω and⋃∞
j=1Ωj = Ω.1 Let us take f ∈ Lp(Ω). Then fχΩj → f in Lp(Ω) and we may restrict

ourselves to f ∈ Lp(Ω) with compact support in Ω. Due to the second property of the

Lebesgue measure, this function may be approximated by a step function
∑K

k=1 ̺kχAk
with

Ak ⊂ supp f. So, it is enough to approximate characteristic functions χB withB compact in
Ω. Using the first property of the Lebesgue measure, we may restrict ourselves to bounded
open sets G ⊂ G ⊂ Ω. Then the sequence of functions x → max(0, 1 − k dist(x,G)) gives
the desired approximation.

Lemma 1.1.2. Let f ∈ Lp(R
n), 1 ≤ p <∞. Then f(·+ h) → f(·) in Lp(R

n) if h→ 0.

Proof. If f is continuous with compact support, then the result follows by uniform con-
tinuity of f and the Lebesgue dominated convergence theorem. If f ∈ Lp(R

n), we may
find for every t > 0 a continuous function g with compact support such that ‖f − g‖p < t.
Then

‖f(·+ h)− f(·)‖p ≤ ‖f(·+ h)− g(·+ h)‖p + ‖g(· + h)− g(·)‖p + ‖g(·) − f(·)‖p
≤ 2t+ ‖g(· + h)− g(·)‖p

and the conclusion follows.

Theorem 1.1.3. The family of functions (Kε)ε>0 ⊂ L1(R
n) is called the approximation

of identity, if

(K1)
∫
Rn |Kε(x)|dx ≤ C <∞ for all ε > 0,

(K2)
∫
Rn Kε(x)dx = 1 for all ε > 0,

(K3) limε→0+
∫
|x|>δ |Kε(x)|dx = 0 for all δ > 0.

Then

i) If K ∈ L1(R
n) with

∫
Rn K(x)dx = 1, then Kε(x) = ε−nK(x/ε) is an approximation

of identity.

1For example the sets Ωj := {x ∈ Ω : |x| < j and dist(x, ∂Ω) > 1/j} will do.
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1 Basic concepts

ii) If (Kε)ε>0 is an approximation of the identity, then2

lim
ε→0+

‖Kε ∗ f − f‖p = 0

for every 1 ≤ p <∞ and f ∈ Lp(R
n).

Proof. (i) Let K ∈ L1(R
n) with

∫
Rn K(x)dx = 1. Then we get immediately

ε−n

∫

Rn

K(x/ε)dx =

∫

Rn

K(x)dx = 1 and ε−n

∫

Rn

|K(x/ε)|dx =

∫

Rn

|K(x)|dx = ‖K‖1 <∞.

As for the third point, we have
∫

|x|>δ
|Kε(x)|dx =

∫

|y|>δ/ε
|K(y)|dy → 0

as ε→ 0+, due to the Lebesgue dominated convergence theorem.
(ii) We calculate for p > 1 and its conjugated index p′ with 1/p + 1/p′ = 1 using

Hölder’s inequality3 (if p = 1, the calculation becomes slightly simpler)

‖Kε ∗ f − f‖pp =
∫

Rn

|(Kε ∗ f)(x)− f(x)|pdx =

∫

Rn

∣∣∣∣
∫

Rn

Kε(y)f(x− y)dy − f(x)

∣∣∣∣
p

dx

=

∫

Rn

∣∣∣∣
∫

Rn

Kε(y)[f(x− y)− f(x)]dy

∣∣∣∣
p

dx

≤
∫

Rn

(∫

Rn

|Kε(y)|1/p+1/p′ · |f(x− y)− f(x)|dy
)p

dx

≤
∫

Rn

∫

Rn

|Kε(y)| · |f(x− y)− f(x)|pdy ·
(∫

Rn

|Kε(y)|dy
)p/p′

dx

≤ Cp/p′
∫

Rn

∫

Rn

|Kε(y)| · |f(x− y)− f(x)|pdydx

= Cp/p′
∫

Rn

|Kε(y)| · ‖f(· − y)− f(·)‖ppdy

≤ Cp/p′

{∫

|y|≤δ
|Kε(y)| · ‖f(· − y)− f(·)‖ppdy + 2p‖f‖pp

∫

|y|>δ
|Kε(y)|dy

}

for every δ > 0. Using (K3) and previous Lemma, we obtain the conclusion of the
theorem.

Definition 1.1.4. Let Ω ⊂ R
n be a domain. Then C∞

c (Ω) denotes the set of infinitely-
differentiable functions compactly supported in Ω.

It is easy to show (but not completely trivial) that this class is actually non-empty.
One example is the famous function

f(x) =

{
exp
(
− 1

1−|x|2
)
, if |x| ≤ 1,

0, otherwise.

Theorem 1.1.5. C∞
c (Ω) is dense in Lp(Ω) for every 1 ≤ p < ∞ and every domain

Ω ⊂ R
n.

2(f ∗ g)(x) =
∫
Rn

f(x− y)g(y)dy =
∫
Rn

f(y)g(x− y)dy is the convolution of f and g.
3
∫
fg ≤

∫
|fg| ≤ (

∫
|f |p)1/p(

∫
|g|p′)1/p′

3



Harmonic Analysis

Proof. Let f ∈ Lp(Ω). First, we approximate f by a continuous and compactly supported
g (i.e. ‖f − g‖p ≤ h) and then consider the functions ωε ∗ g, where ωε(x) = ε−nω(x/ε)
and ω ∈ C∞

c (Rn) has compact support and
∫
ω = 1. It follows that ωε ∗ g ∈ C∞

c (Rn) (the
support property is clear, the differentiability follows by taking differences and limits, use
Lebesgue’s dominated convergence theorem). Together with the formula ‖ωε∗g−g‖p → 0,
the conclusion follows.

1.2 Maximal operator

For x ∈ R
n and r > 0, we denote by B(x, r) the ball in R

n with center at x and radius r,
i.e. B(x, r) = {y ∈ R

n : |x− y| < r}.
Let f be a locally integrable function on R

n. Then we define the Hardy-Littlewood
maximal operator of f by

Mf(x) = sup
r>0

1

|B(x, r)|

∫

B(x,r)
|f(y)|dy.

Here stands |B(x, r)| for the Lebesgue measure of B(x, r).
Let us note, that maximal operator is not linear, but is sub-linear, i.e.

M(f + g)(x) = sup
r>0

1

|B(x, r)|

∫

B(x,r)
|f(y) + g(y)|dy

≤ sup
r>0

1

|B(x, r)|

(∫

B(x,r)
|f(y)|dy +

∫

B(x,r)
|g(y)|dy

)

≤ (Mf)(x) + (Mg)(x).

Simple modifications include cubic centered maximal operator

M ′f(x) = sup
Q

1

|Q|

∫

x+Q
|f(y)|dy,

cubic non-centered maximal operator

M ′′f(x) = sup
Q∋x

1

|Q|

∫

Q
|f(y)|dy,

where the supremum runs over all cubes Q containing x, and the dyadic maximal operator
Md, when the supremum is taken over all dyadic cubes containing x. These are cubes of
the type 2k(q + [0, 1)n), where k ∈ Z and q ∈ Z

n.
We shall study the mapping properties of the operator M in the frame of Lebesgue

spaces Lp(R
n), 1 ≤ p ≤ ∞. If f ∈ L∞(Rn), then

1

|B(x, r)|

∫

B(x,r)
|f(y)|dy ≤ ‖f‖∞

|B(x, r)|

∫

B(x,r)
1dy = ‖f‖∞

holds for every x ∈ R
n and every r > 0 and ‖Mf‖∞ ≤ ‖f‖∞ follows. To deal with other

p’s, we need some more notation first.
Let f ∈ L1(R

n) and let α > 0. Then

α · |{x ∈ R
n : |f(x)| > α}| =

∫

{x∈Rn:|f(x)|>α}
αdy

≤
∫

{x∈Rn:|f(x)|>α}
|f(y)|dy ≤

∫

Rn

|f(y)|dy = ‖f‖1.
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The set of measurable functions f on R
n with

‖f‖1,w := sup
α>0

α · |{x ∈ R
n : |f(x)| > α}| <∞

is denoted by L1,w(R
n) and called weak L1. We have just shown that L1(R

n) →֒ L1,w(R
n).

Let us mention that ‖ · ‖1,w is not a norm, but it still satisfies

‖f + g‖1,w = sup
α>0

α · |{x ∈ R
n : |f(x) + g(x)| > α}|

≤ sup
α>0

α

(
|{x ∈ R

n : |f(x)| > α/2}| + |{x ∈ R
n : |g(x)| > α/2}|

)

= 2 sup
α>0

α/2 ·
(
|{x ∈ R

n : |f(x)| > α/2}| + |{x ∈ R
n : |g(x)| > α/2}|

)

≤ 2(‖f‖1,w + ‖g‖1,w).

Finally, we observe, that the function x→ 1

‖x‖n ∈ L1,w(R
n) \ L1(R

n).

The main aim of this section is to prove the following theorem.

Theorem 1.2.1. Let f be a measurable function on R
n. Then

i) If f ∈ Lp(R
n), 1 ≤ p ≤ ∞, then the function Mf is finite almost everywhere.

ii) If f ∈ L1(R
n), then Mf ∈ L1,w(R

n) and

‖Mf‖1,w ≤ A‖f‖1,

where A is a constant which depends only on the dimension (i.e. A = 5n will do).

iii) If f ∈ Lp(R
n) with 1 < p ≤ ∞, then Mf ∈ Lp(R

n) and

‖Mf‖p ≤ Ap‖f‖p,

where Ap depends only on p and dimension n.

The proof is based on the following covering lemma.

Lemma 1.2.2. Let E be a measurable subset of Rn, which is covered by the union of a
family of balls (Bj) with uniformly bounded diameter. Then from this family we can select
a disjoint subsequence, B1, B2, B3, . . . , such that

∑

k

|Bk| ≥ C|E|.

Here C is a positive constant that depends only on the dimension n; C = 5−n will do.

Proof. We describe first the choice of B1, B2, . . . . We choose B1 so that it is essentially
as large as possible, i.e.

diam(B1) ≥
1

2
sup
j

diam(Bj).

The choice of B1 is not unique, but that shall not hurt us.
If B1, B2, . . . , Bk were already chosen, we take again Bk+1 disjoint with B1, . . . , Bk and

again nearly as large as possible, i.e.

diam(Bk+1) >
1

2
sup{diam(Bj) : Bj disjoint with B1, . . . , Bk}.
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In this way, we get a sequence B1, B2, . . . , Bk, . . . of balls. It can be also finite, if there
were no balls Bj disjoint with B1, B2, . . . , Bk.

If
∑

k |Bk| = ∞, then the conclusion of lemma is satisfied and we are done. If
∑

k |Bk| <
∞, we argue as follows.

We denote by B∗
k the ball with the same center as Bk and diameter five times as large.

We claim that ⋃

k

B∗
k ⊃ E,

which then immediately gives that |E| ≤
∑

k |B∗
k| = 5n

∑
k |Bk|.

We shall show that
⋃

k B
∗
k ⊃ Bj for every j. This is clear if Bj is one of the balls in

the preselected sequence. If it is not the case, we obtain diam(Bk) → 0 (as
∑

k |Bk| <∞)
and we choose the first k with diam(Bk+1) <

1
2diam(Bj). That means, that Bj must

intersect one of the balls B1, . . . , Bk, say Bk0 . Obvious geometric arguments (based on
the inequality diam(Bk0) ≥ 1/2 · diam(Bj)) then give that Bj ⊂ B∗

k0
. This finishes the

proof.

Proof. (of Theorem 1.2.1). Let α > 0 and let us consider Eα := {x ∈ R
n : Mf(x) > α}.

From the definition of M we obtain, that for every x ∈ Eα, there is a ball Bx centered at
x such that ∫

Bx

|f(y)|dy > α|Bx|.

Hence, we get |Bx| < ‖f‖1/α and ∪x∈EαBx ⊃ Eα and the balls (Bx)x∈Eα satisfy the
assumptions of Lemma 1.2.2. Using this covering lemma, we get a sequence of disjoint
balls (Bk)k, such that ∑

k

|Bk| ≥ C|Eα|.

We therefore obtain

‖f‖1 ≥
∫

∪kBk

|f(y)|dy =
∑

k

∫

Bk

|f | > α
∑

k

|Bk| ≥ αC|Eα|,

which may be rewritten as supα>0 α · |Eα| = ‖Mf‖1,w ≤ 1
C ‖f‖1.

This proves the first assertion of the theorem for p = 1 and the second assertion.

We now consider 1 < p <∞. The proof follows from the information on the endpoints,
i.e. from

‖Mf‖1,w ≤ C‖f‖1 and ‖Mf‖∞ ≤ ‖f‖∞.

Let α > 0 and put f1(x) := f(x) if |f(x)| > α/2 and f1(x) := 0 otherwise. Due to
|f(x)| ≤ |f1(x)|+ α/2, we have also Mf(x) ≤Mf1(x) + α/2 and also

{x ∈ R
n :Mf(x) > α} ⊂ {x ∈ R

n :Mf1(x) > α/2}.

Due to the second part of the theorem

|Eα| = |{x ∈ R
n :Mf(x) > α}| ≤ |{x ∈ R

n :Mf1(x) > α/2}| ≤ 2A

α
‖f1‖1

=
2A

α

∫

{x∈Rn:|f(x)|>α/2}
|f(y)|dy.
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We use the information of the size of the level sets of Mf to estimate the Lp-norm of Mf .

‖Mf‖pp =

∫

Rn

Mf(x)pdx =

∫ ∞

0
|{x ∈ R

n :Mf(x)p > α}|dα

=

∫ ∞

0
|{x ∈ R

n :Mf(x) > α1/p}|dα

= p

∫ ∞

0
βp−1|{x ∈ R

n :Mf(x) > β}|dβ

≤ p

∫ ∞

0
βp−1

(
2A

β

∫

{x∈Rn:|f(x)|>β/2}
|f(y)|dy

)
dβ

= 2Ap

∫

Rn

|f(y)|
∫ 2|f(y)|

0
βp−2dβdy =

2Ap

p− 1

∫

Rn

|f(y)| · |2f(y)|p−1dy

=
2pAp

p− 1

∫

Rn

|f(y)|pdy,

where we used Fubini’s theorem and the substitution β := α1/p with dα = pβp−1dβ. This
gives the first and the third statement of the theorem with

Ap = 2

(
5np

p− 1

)1/p

, 1 < p <∞.

Corollary 1.2.3. (Lebesgue’s differentiation theorem)
Let f be locally integrable on R

n. Then

lim
r→0

1

|B(x, r)|

∫

B(x,r)
f(y)dy = f(x)

holds for almost every x ∈ R
n.

Proof. We may cover the set of “bad” points

{
x ∈ R

n : lim
r→0

1

|B(x, r)|

∫

B(x,r)
f(y)dy does not exist or lim

r→0

1

|B(x, r)|

∫

B(x,r)
f(y)dy 6= f(x)

}

by
∞⋃

k=1

{
x ∈ R

n : lim sup
r→0

1

|B(x, r)|

∫

B(x,r)
f(y)dy − f(x) >

1

k

}

united with

∞⋃

k=1

{
x ∈ R

n : lim inf
r→0

1

|B(x, r)|

∫

B(x,r)
f(y)dy − f(x) < −1

k

}
.

It is therefore enough to show, that each of these sets has measure zero. Let us fix k ∈ N

and decompose f = g + h, where g ∈ C(Rn) and ‖h‖1 ≤ t, t > 0.

Obviously,

lim
r→0

1

|B(x, r)|

∫

B(x,r)
g(y)dy = g(x), x ∈ R

n,

7
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which implies

{
x ∈ R

n : lim sup
r→0

1

|B(x, r)|

∫

B(x,r)
f(y)dy − f(x) >

1

k

}

=

{
x ∈ R

n : lim sup
r→0

1

|B(x, r)|

∫

B(x,r)
h(y)dy − h(x) >

1

k

}

⊂
{
x ∈ R

n :Mh(x) >
1

2k

}
∪
{
x ∈ R

n : |h(x)| > 1

2k

}
.

The measure of the first set is smaller than 2kA‖h‖1 and the measure of the second is
smaller than 2k‖h‖1. As ‖h‖1 might be chosen arbitrary small, the measure of the original
set is zero. The same argument works for lim inf instead of lim sup as well.

Theorem 1.2.4. Let ϕ be a function which is non-negative, radial, decreasing (as function
on (0,∞)) and integrable. Then

sup
t>0

|ϕt ∗ f(x)| ≤ ‖ϕ‖1Mf(x),

where again ϕt(x) = t−nϕ(x/t), x ∈ R
n.

Proof. Let in addition ϕ be a simple function. Then it can be written as

ϕ(x) =

k∑

j=1

ajχBrj
(x),

with aj > 0 and rj > 0. Then

ϕ ∗ f(x) =
k∑

j=1

aj |Brj |
1

|Brj |
χBrj

∗ f(x) ≤ ‖ϕ‖1Mf(x),

since ‖ϕ‖1 =
∑

j aj |Brj |. As any normalized dilation of ϕ satisfies the same assumptions
and has the same integral, it satisfies also the same inequality. Finally, any function
satisfying the hypotheses of the Theorem can be approximated monotonically from below
by a sequence of simple radial functions. This finishes the proof.

Last theorem can be easily reformulated as a statement about boundedness of certain
sublinear operator. Let ϕ be as in Theorem 1.2.4 and let Φ be the following operator

Φ(f)(x) := sup
t>0

|(ϕt ∗ f)(x)|.

Then Φ : L1(R
n) → L1,w(R

n) and Φ : Lp(R
n) → Lp(R

n) for 1 < p ≤ ∞. For example, if
f ∈ L1(R

n), we obtain

‖Φ(f)‖1,w ≤ ‖ϕ‖1 · ‖Mf‖1,w ≤ C‖ϕ‖1 · ‖f‖1

(and similarly for 1 < p ≤ ∞).

8



2 Interpolation

We shall present two basic interpolation theorems, the Riesz-Thorin interpolation theorem
and Marcinkiewicz interpolation theorem.

2.1 Marcinkiewicz interpolation theorems

The operator T mapping measurable functions to measurable functions is called sub-linear,
if

|T (f0 + f1)(x)| ≤ |Tf0(x)|+ |Tf1(x)|,
|T (λf)(x)| = |λ| · |Tf(x)|, λ ∈ C.

Let (X,µ) and (Y, ν) be measure spaces and let T be a sub-linear operator mapping
Lp(X,µ) into a space of measurable functions on (Y, ν). We say that T is strong type
(p, q) if it is bounded from Lp(X,µ) into Lq(Y, ν). We say, that it is of weak type (p, q),
q <∞, if

‖Tf‖q,w := sup
λ>0

λ · ν1/q({y ∈ Y : |Tf(y)| > λ}) ≤ C‖f‖p, f ∈ Lp(X,µ),

i.e. if T : Lp(X,µ) → Lq,w(Y, ν).

Theorem 2.1.1. (Marcinkiewicz interpolation theorem)
Let (X,µ) and (Y, ν) be measure spaces, 1 ≤ p0 < p1 ≤ ∞, and let T be a sublinear
operator from Lp0(X,µ)+Lp1(X,µ) to the measurable functions on Y that is weak (p0, p0)
type and weak (p1, p1) type. Then T is strong (p, p) for p0 < p < p1.

Proof. Let λ > 0 be given and let f ∈ Lp(X,µ). Then we decompose f into f = f0 + f1
with

f0 = fχ{x:|f(x)|>λ},

f1 = fχ{x:|f(x)|≤λ}.

The case p1 = ∞ appeared implicitly already in the proof of the boundedness of Hardy-
Littlewood maximal operator, so we suppose that p1 <∞. Then we have

ν({y ∈ Y : |Tf(y)| > λ}) ≤ ν({y ∈ Y : |Tf0(y)| > λ/2}) + ν({y ∈ Y : |Tf1(y)| > λ/2})
and

ν({y ∈ Y : |Tfi(y)| > λ/2}) ≤
(
2Ai

λ
‖fi‖pi

)pi

, i = 0, 1.

We combine them to get

‖Tf‖pp = p

∫ ∞

0
λp−1ν({x : |Tf(x)| > λ})dλ

≤ p

∫ ∞

0
λp−1−p0(2A0)

p0

∫

x:|f(x)|>λ
|f(x)|p0dµdλ

+ p

∫ ∞

0
λp−1−p1(2A1)

p1

∫

x:|f(x)|≤λ
|f(x)|p1dµdλ

= p(2A0)
p0

∫

X
|f(x)|p0

∫ |f(x)|

0
λp−1−p0dλdµ

+ p(2A1)
p1

∫

X
|f(x)|p1

∫ ∞

|f(x)|
λp−1−p1dλdµ

= C‖f‖pp.

9
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2.2 Riesz-Thorin interpolation theorem

Following theorem belongs also to the classical heart of interpolation theory.

Theorem 2.2.1. (Riesz-Thorin Interpolation)
Let (X,µ) and (Y, ν) be two maesure spaces. Let 1 ≤ p0, p1, q0, q1 ≤ ∞, and for 0 < θ < 1
define p and q by

1

p
=

1− θ

p0
+

θ

p1
and

1

q
=

1− θ

q0
+
θ

q1
.

If T is a linear(!) operator from Lp0(X) + Lp1(X) to Lq0(Y ) + Lq1(Y ), such that

‖Tf‖q0 ≤M0‖f‖p0 for f ∈ Lp0(X)

and

‖Tf‖q1 ≤M1‖f‖p1 for f ∈ Lp1(X),

then

‖Tf‖q ≤M1−θ
0 Mθ

1 ‖f‖p for f ∈ Lp(X).

Remark 2.2.2. In this version, the theorem only holds for function spaces of complex-
valued functions. In the real case, an additional factor 2 is necessary.

Proof. If p0 = p1, then the theorem collapses to Hölder’s inequality. Hence, we consider
only p0 6= p1 and by symmetry, p0 < p1. This forces p to be finite. By multiplying µ, ν
and/or T with some constants, we may assume thatM0 =M1 = 1. By Hölder’s inequality,
we get

∣∣∣∣
∫

Y
(Tf)gdν

∣∣∣∣ ≤ ‖Tf‖q0 · ‖g‖q′0 ≤ ‖f‖p0 · ‖g‖q′0 , f ∈ Lp0(X), g ∈ Lq′
0
(Y ) (2.1)

and

∣∣∣∣
∫

Y
(Tf)gdν

∣∣∣∣ ≤ ‖Tf‖q1 · ‖g‖q′1 ≤ ‖f‖p1 · ‖g‖q′1 , f ∈ Lp1(X), g ∈ Lq′
1
(Y ). (2.2)

Then we claim that ∣∣∣∣
∫

Y
(Tf)gdν

∣∣∣∣ ≤ ‖f‖p · ‖g‖q′ (2.3)

for all f, g simple functions with finite measure support. To see this, we first normalize
‖f‖p = ‖g‖q′ = 1 and write f = |f | sgn(f) and g = |g| sgn(g). Then we define

F (s) :=

∫

Y
(T [|f |(1−s)p/p0+sp/p1 sgn(f)])[|g|(1−s)q′/q′

0
+sq′/q′

1 sgn(g)]dν

with q′/q′0 = q′/q′1 = 1 if q′0 = q′1 = q′ = ∞. We observe (by the linearity of T ) that F is
holomorphic function in s of at most exponential growth. We observe that

i) F (θ) =
∫
Y (Tf)gdν,

ii) |F (0 + it)| ≤ 1, by (2.1),

10



2 Interpolation

iii) |F (1 + it)| ≤ 1, by (2.2).

The claim then follows by

Theorem 2.2.3. (Lindelöf ’s Three-Lines Theorem) Let s 7→ F (s) be a holomorphic
function on the strip S := {σ + it : 0 ≤ σ ≤ 1; t ∈ R}, which obeys the bound

|F (σ + it)| ≤ A exp(exp((π − δ)t))

for all σ + it ∈ S and some constants A, δ > 0. Suppose also that |F (0 + it)| ≤ B0 and
|F (1 + it)| ≤ B1 for all t ∈ R. Then we have |F (θ + it)| ≤ B1−θ

0 Bθ
1 for all 0 ≤ θ ≤ 1 and

t ∈ R.

To extend (2.3) to general functions f and g, one takes f ∈ Lp(X) (keeping g simple
with finite measure support) by decomposing f into a bounded function and a function of
finite measure support, approximating the former in Lp(X) ∩ Lp1(X) by simple functions
of finite measure support, and approximating the latter in Lp(X) ∩ Lp0(X) by simple
functions of finite measure support, and taking limits using (2.1), (2.2) to justify the
passage to the limit. One can then also allow arbitrary g ∈ Lq′(Y ) by using the monotone
convergence theorem. The claim now follows from the duality between Lq1(Y ) and Lq′

1
(Y ).

Proof. of Theorem 2.2.3:
We shall assume first that F is bounded on S. Define holomorpic functions

G(s) = F (s)(B1−s
0 Bs

1)
−1 and Gn(s) = G(s)e(s

2−1)/n

Since F is bounded on the closed unit strip and B1−s
0 Bs

1 is bounded from below, we
conclude that G is bounded by some constant M on the closed strip. Also, G is bounded
by one on its boundary. Since

|Gn(x+ iy)| ≤Me−y2/ne(x
2−1)/n ≤Me−y2/n,

we deduce that Gn(x + iy) converges to zero uniformly in 0 ≤ x ≤ 1 as |y| → ∞. Select
y(n) > 0 such that for |y| ≥ y(n), |Gn(x + iy)| ≤ 1 uniformly in x ∈ [0, 1]. By the
maximum principle we obtain that |Gn(s)| ≤ 1 in the rectangle [0, 1] × [−y(n), y(n)];
hence |Gn(s)| ≤ 1 everywhere in the closed strip. Letting n → ∞, we conclude that
|G(s)| ≤ 1 in the closed strip.

The case of a general function F is then done in a similar way by considering

F (s)(B1−s
0 Bs

1)
−1Gε(s)Gε(1− s) and Gε(s) = exp(εi exp(i[π − δ/2]s + δ/4)).

Riesz-Thorin theorem has two straightforward applications. From properties of the
Fourier transform F : L1(R

n) → L∞(Rn) and F : L2(R
n) → L2(R

n), both with norm 1,
we deduce the Hausdorff-Young inequality ‖Ff‖p′ ≤ ‖f‖p for every 1 ≤ p ≤ 2.

The second application deals with convolution operator. Let g ∈ L1(R
n) be a given

function and let Φg(f) = f ∗ g. The (easy) estimates ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1 and ‖f ∗
g‖∞ ≤ ‖f‖∞‖g‖1 show, that Φg : L1(R

n) → L1(R
n) and Φg : L∞(Rn) → L∞(Rn). By

Riesz-Thorin interpolation, we get also Φg : Lp(R
n) → Lp(R

n) for any 1 < p < ∞, i.e.
‖f ∗ g‖p ≤ ‖f‖p‖g‖1.

Next, we consider the convolution operator Ψf (g) = f ∗ g. We have just proven that
Ψf : L1(R

n) → Lp(R
n) for any f ∈ Lp(R

n). The easy estimate (which follows at once

11
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by Hölder’s inequality) ‖f ∗ g‖∞ ≤ ‖f‖p‖g‖p′ for 1 ≤ p ≤ ∞ then gives Ψf : Lp′(R
n) →

L∞(Rn). By Riesz-Thorin Theorem, we obtain the Young’s inequality, which states that

‖f ∗ g‖r ≤ ‖f‖p · ‖g‖q

with 1/r + 1 = 1/p + 1/q. Indeed, let 1 < q < p′, then we define 0 < θ < 1 by

1

q
=

1− θ

1
+
θ

p′
, i.e.

1

q
= 1− θ

p
.

Then Ψf : Lr(R
n) → Lq(R

n), where

1

r
=

1− θ

p
+

θ

∞ =
1

p
− θ

p
=

1

p
+

1

q
− 1.

12



3 Weighted inequalities

3.1 Calderón-Zygmund decomposition

The aim of this is to present the decomposition method of Calderón and Zygmund. In its
simple form, it was already used in the proof of boundedness of the maximal operator M .

Theorem 3.1.1. Given a function f , which is integrable and non-negative, and given a
positive number λ, there exists a sequence4 (Qj) of disjoint dyadic cubes such that

i) f(x) ≤ λ for almost every x 6∈
⋃

j

Qj;

ii)
∣∣∣
⋃

j

Qj

∣∣∣ ≤ 1

λ
‖f‖1;

iii) λ <
1

|Qj |

∫

Qj

f ≤ 2nλ.

Proof. We denote by Qk the collection of dyadic cubes with side length 2−k, k ∈ Z.
Furthermore, we define

Ekf(x) =
∑

Q∈Qk

(
1

|Q|

∫

Q
f

)
χQ(x).

We define also

Ωk := {x ∈ R
n : Ekf(x) > λ and Ejf(x) ≤ λ if j < k}

That is, x ∈ Ωk if k is the smallest index with Ekf(x) > λ. Observe, that if Ekf(x) > λ
for at least one index k ∈ Z, the integrability of f implies Ekf(x) → 0 for k → −∞, and
the smallest index k with Ekf(x) > λ always exists. The sets Ωk are clearly disjoint and
each can be written as the union of cubes in Qk. Together, these cubes form the system
(Qj).

This gives the third statement of the theorem. The first follows by Lebesgue differen-
tiation theorem: indeed, Ekf(x) ≤ λ for all k ∈ Z implies f(x) ≤ λ at almost every such
point. The second follows just by

∣∣∣
⋃

j

Qj

∣∣∣ =
∑

j

|Qj | ≤
1

λ

∑

j

∫

Qj

f ≤ 1

λ
‖f‖1.

3.2 First inequality

Theorem 3.2.1. If w is a non-negative, measurable function and 1 < p <∞, then there
exists a constant Cp such that

∫

Rn

[Mf(x)]pw(x)dx ≤ Cp

∫

Rn

|f(x)|pMw(x)dx. (3.1)

Furthermore, ∫

{x:Mf(x)>λ}
w(x)dx ≤ C

λ

∫

Rn

|f(x)|Mw(x)dx. (3.2)

4possibly finite, or even empty

13
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Proof. We shall show that
‖Mf‖L∞(w) ≤ ‖f‖L∞(Mw) (3.3)

and that the weak-type estimate (3.2) holds. The rest then follows by Marcinkiewicz
interpolation theorem.

For (3.3), we argue as follows. If Mw(x) = 0 for any x, then w(x) = 0 a.e. and there
is nothing to prove. Therefore, we may assume that Mw(x) > 0. Let a > ‖f‖L∞(Mw).
Then ∫

{x:|f(x)|>a}
Mw(x)dx = 0,

and so |{x ∈ R
n : |f(x)| > a}| = 0 and |f(x)| ≤ a a.e. Therefore Mf(x) ≤ a a.e. and

‖Mf‖L∞(w) ≤ a. This gives (3.3).
To show (3.2), we may assume that f is non-negative and integrable (If f ∈ L1(Mw),

then fχB(0,j) is a monotone sequence of integrable functions converging to f .) Let (Qj)
be the Calderón-Zygmund decomposition of f at height λ > 0.

Let x 6∈ ⋃j 2Qj , and let Q be any cube centered at x. Let l(Q) denote the side length of

Q. Take k ∈ Z with 2−(k+1) ≤ l(Q) < 2−k. Then Q intersects m ≤ 2n dyadic cubes in Qk,
which we denote R1, . . . , Rm. As x 6∈

⋃
j 2Qj , none of the cubes R1, . . . , Rm is contained

in any of the Qj’s. By the construction of the Calderón-Zygmund decomposition, the
average of f on each Ri is at most λ. Hence we obtain

1

|Q|

∫

Q
f =

1

|Q|

m∑

i=1

∫

Q∩Ri

f ≤ 1

|Q|

m∑

i=1

2−kn

|Ri|

∫

Ri

f ≤ 2nmλ ≤ 4nλ.

Therefore,

{x ∈ R
n :M ′f(x) > 4nλ} ⊂

⋃

j

2Qj (3.4)

and we obtain
∫

{x:M ′f(x)>4nλ}
w(x)dx ≤

∑

j

∫

2Qj

w(x)dx

=
∑

j

2n|Qj|
1

|2Qj |

∫

2Qj

w(x)dx

≤ 2n

λ

∑

j

∫

Qj

f(y)
( 1

|2Qj |

∫

2Qj

w(x)dx
)
dy

≤ 2nC

λ

∫

Rn

f(y)M ′′w(y)dy.

Since M ′′w ≈M ′w ≈Mw, we get (3.2).

Let us observe that if Mw(x) ≤ Cw(x), then the inequalities (3.1) and (3.2) simplify
to boundedness of M on weighted spaces. This will be the starting point of the study of
weighted spaces.

3.3 The Muckenhaupt Ap condition

If 1 ≤ p <∞ and w is a non-negative measurable function on R
n, then we denote by

Lp(w) =
{
f : ‖f‖Lp(w) =

(∫

Rn

|f(x)|pw(x)dx
)1/p

<∞
}

(3.5)
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3 Weighted inequalities

the weighted Lebesgue spaces. To avoid trivialities, it is good to assume that w > 0 a.e.
and that w is locally integrable.

In this section, we shall denote byM the non-centered cubic maximal operator, earlier
denoted by M ′′.

We are looking for necessary and sufficient conditions on w, such that

M : Lp(w) → Lp(w), (3.6)

or in the weak form

M : Lp(w) → Lp,w(w). (3.7)

Let us assume first, that (3.7) holds, i.e.

w({x ∈ R
n :Mf(x) > λ}) ≤ C

λp

∫

Rn

|f(x)|pw(x)dx (3.8)

for every λ > 0.
Let f ≥ 0 and let Q be a cube with f(Q) =

∫
Q f > 0. Take 0 < λ < f(Q)/|Q|. Then

Q ⊂ {x ∈ R
n :M(fχQ)(x) > λ} and (3.8) implies

w(Q) ≤ C

λp

∫

Q
|f(x)|pw(x)dx. (3.9)

As this holds for all the λ’s as above, we get

w(Q)
(f(Q)

|Q|
)p

≤ C

∫

Q
|f |pw. (3.10)

If S ⊂ Q is a measurable subset, we take f = χS and obtain the necessary condition for
(3.8),

w(Q)
( |S|
|Q|
)p

≤ Cw(S) for all cubes Q and for all S ⊂ Q. (3.11)

Let us interupt now with two short conclusions.
1. The weight w is either identically 0 or w > 0 a.e. - just consider S to be a bounded set
of positive measure with w = 0 on S.
2. The weight w is either locally integrable, or identically infinite. If w(Q) = ∞, then the
same is true for any larger cube, and therefore also for every bounded set S.

We want to further simplify (3.11). We shall distinguish two cases, p = 1 and p > 1.
Case 1: p = 1
In this case, (3.11) becomes

w(Q)

|Q| ≤ C
w(S)

|S| .

Choosing Sε := {x ∈ Q : w(x) ≤ ε+essinfy∈Qw(y)}, we get w(Q)/|Q| ≤ C(essinfy∈Qw(y)+
ε) for every ε > 0, i.e.

w(Q)

|Q| ≤ Cessinfy∈Qw(y),

or equivalently
w(Q)

|Q| ≤ Cw(x), a.e. x ∈ Q, (3.12)

or equivalently

Mw(x) ≤ Cw(x), a.e. x ∈ R
n. (3.13)
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This is the so-called A1 condition. Clearly, (3.13) implies (3.12). The converse follows by
considering (the countably many) cubes with rational vertices.

Case 2: 1 < p <∞
We put f = w1−p′χQ into (3.10) and obtain

w(Q)
( 1

|Q|

∫

Q
w1−p′

)p
≤ C

∫

Q
w1−p′ ,

or equivalently ( 1

|Q|

∫

Q
w
)( 1

|Q|

∫

Q
w1−p′

)p−1
≤ C. (3.14)

As we do not know a-priori that w1−p′ is locally integrable, we take first f = min(w1−p′ , n)
and pass to the limit n→ ∞. Only after that, we conclude from (3.14) that w1−p′ is really
locally integrable. Condition (3.14) was introduced by Muckenhaupt and is called Ap

condition (i.e. we write w ∈ Ap if w satisfies (3.14) for all cubes Q).

Theorem 3.3.1. Let 1 ≤ p <∞. Then the weak (p, p) inequality

w({x ∈ R
n :Mf(x) > λ}) ≤ C

λp

∫

Rn

|f(x)|pw(x)dx, λ > 0 (3.15)

holds if and only if w ∈ Ap.

Proof. The necessity follows from the discussion just given.
The case p = 1 follows directly from Theorem 3.2.1.
If p > 1, w ∈ Ap and a function f is given, then we show (3.10). By Hölder’s inequality

( 1

|Q|

∫

Q
|f |
)p

=
( 1

|Q|

∫

Q
|f |w1/pw−1/p

)p

≤
( 1

|Q|

∫

Q
|f |pw

)( 1

|Q|

∫

Q
w1−p′

)p−1

≤ C
( 1

|Q|

∫

Q
|f |pw

)
· |Q|
w(Q)

.

Therefore, also (3.10) is true and (3.11) also follows.
We may again assume that f is non-negative and integrable. Considering the Calderón-

Zygmund decomposition of f at height 4−nλ, we get again

{x ∈ R
n :Mf(x) > λ} ⊂

⋃

j

3Qj ,

as in (3.4), where the 3 is used due to the non-centered maximal operator. Then, putting
this all together,

w({x ∈ R
n :Mf(x) > λ}) ≤

∑

j

w(3Qj) ≤ C3np
∑

j

w(Qj)

≤ C3np
∑

j

( |Qj |
f(Qj)

)p ∫

Qj

|f |pw ≤ C3np
(4n
λ

)p ∫

Rn

|f |pw.

Here, the second inequality follows from (3.11), the third from (3.10) and the fourth from
the properties of the Calderón-Zygmund decomposition (Qj)j .
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Proposition 3.3.2. i) Ap ⊂ Aq for 1 ≤ p < q.

ii) w ∈ Ap if and only if w1−p′ ∈ Ap′ .

iii) If w0, w1 ∈ A1 then w0w
1−p
1 ∈ Ap.

Proof. (i) If p = 1 then

( 1

|Q|

∫

Q
w1−q′

)q−1
≤ esssupx∈Qw(x)

−1 =
(
essinfx∈Qw(x)

)−1
≤ C

(w(Q)

|Q|
)−1

.

If p > 1 then this follows immediately from Hölder’s inequality.
(ii) The Ap′ condition for w1−p′ is

( 1

|Q|

∫

Q
w1−p′

)( 1

|Q|

∫

Q
w(1−p′)(1−p)

)p′−1
≤ C,

and since (p′ − 1)(p − 1) = 1, the left-hand side is the Ap condition raised to the power
p′ − 1.
(iii) We need to prove that

( 1

|Q|

∫

Q
w0w

1−p
1

)( 1

|Q|

∫

Q
w1−p′

0 w1

)p′−1
≤ C. (3.16)

By the A1 condition, for a.e. x ∈ Q and i = 0, 1,

wi(x)
−1 ≤ esssupx∈Qwi(x)

−1 =
(
essinfx∈Qwi(x)

)−1
≤ C

(wi(Q)

|Q|
)−1

.

We substitute this into (3.16) for the negative powers and get the desired inequality.

3.4 Strong-type inequalities

Theorem 3.4.1. Let 1 < p <∞. Then M is bounded on Lp(w) if and only if w ∈ Ap.

Proof. IfM is of strong (p, p) type, then it is also of weak (p, p) type, and therefore w ∈ Ap.

Let on the other hand w ∈ Ap. We shall show that there exists q < p with w ∈ Aq.
ThenM is of weak (q, q) type andM is of strong (∞,∞) type, as L∞(w) = L∞ (w(E) = 0
if and only if |E| = 0). The result then follows by Marcinkiewicz interpolation theorem.

The existence of such a q is a consequence of

Theorem 3.4.2. (Reverse Hölder’s Inequality) Let w ∈ Ap, 1 ≤ p <∞. Then there
exist constants C and ε > 0 depending only on p and the Ap constant of w, such that for
any cube Q

( 1

|Q|

∫

Q
w1+ε

)1/(1+ε)
≤ C

|Q|

∫

Q
w. (3.17)

The name comes from the fact that the reverse of (3.17) is a consequence of Hölder’s
inequality.
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Proof. The proof uses the following
Fact: Let w ∈ Ap, 1 ≤ p < ∞. Then for every 0 < α < 1, there exists 0 < β < 1, such
that for every cube Q and S ⊂ Q with |S| ≤ α|Q| also w(S) ≤ βw(Q) holds.
To prove the fact, just replace S by Q \ S in (3.11) to get

w(Q)
(
1− |S|

|Q|
)p

≤ C(w(Q)− w(S)).

If |S| ≤ α|Q|, we get the statement with β = 1− C−1(1− α)p.

Fix a cube Q and form Calderón-Zygmund decompositions of w with respect to Q at
heights w(Q)/|Q| = λ0 < λ1 < · · · < λk < . . . ; we will fix the λk’s below.

We get a family {Qk,j} of cubes with

w(x) ≤ λk if x 6∈ Ωk =
⋃

j

Qk,j,

λk <
1

|Qk,j|

∫

Qk,j

w ≤ 2nλk.

By construction Ωk+1 ⊂ Ωk and Qk,j0 ∩ Ωk+1 is the union of cubes Qk+1,i. Therefore

|Qk,j0 ∩ Ωk+1| =
∑

i

|Qk+1,i| ≤
1

λk+1

∑

i

∫

Qk+1,i

w ≤ 1

λk+1

∫

Qk,j0

w ≤ 2nλk
λk+1

|Qk,j0 |.

Fix 0 < α < 1 and put λk := (2nα−1)kw(Q)/|Q|, i.e. 2nλk/λk+1 = α. Then |Qk,j0∩Ωk+1| ≤
α|Qk,j0 | and (by the Fact) w(Qk,j0 ∩ Ωk+1) ≤ βw(Qk,j0).

We sum on the level k and get w(Ωk+1) ≤ βw(Ωk), i.e. w(Ωk) ≤ βkw(Ω0) and by the
same argument |Ωk| ≤ αk|Ω0|.
Therefore,

1

|Q|

∫

Q
w1+ε =

1

|Q|

∫

Q\Ω0

w1+ε +
1

|Q|

∞∑

k=0

∫

Ωk\Ωk+1

w1+ε

≤ λε0
w(Q)

|Q| +
1

|Q|

∞∑

k=0

λεk+1w(Ωk)

≤ λε0
w(Q)

|Q| +
1

|Q|

∞∑

k=0

(2nα−1)(k+1)ελε0β
kw(Ω0).

Choose ε > 0 with (2nα−1)εβ < 1; then the series converges and the last term is bounded
by Cλε0w(Q)/|Q|. Since λ0 = w(Q)/|Q|, the proof is finished.

Proposition 3.4.3. i) Ap =
⋃

q<pAq, 1 < p <∞.

ii) If w ∈ Ap, 1 ≤ p <∞, then there exists ε > 0 such that w1+ε ∈ Ap.

iii) If w ∈ Ap, 1 ≤ p <∞, then there exists δ > 0 such that given a cube Q and S ⊂ Q,

w(S)

w(Q)
≤ C

( |S|
|Q|
)δ
.

The last condition is called A∞. With this notation, (i) holds also for p = ∞.
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Proof. (i) Let w ∈ Ap. Then by Proposition 3.3.2, we get that w1−p′ ∈ Ap′ and by Reverse
Hölder’s inequality

( 1

|Q|

∫

Q
w(1−p′)(1+ε)

)1/(1+ε)
≤ C

|Q|

∫

Q
w1−p′

for all cubes Q and some ε > 0. Fix q with q′− 1 = (p′− 1)(1+ ε). Then q < p and we get

( 1

|Q|

∫

Q
w
)( 1

|Q|

∫

Q
w1−q′

)q−1
≤
( 1

|Q|

∫

Q
w
)( C

|Q|

∫

Q
w1−p′

)(1+ε)(q−1)

=
( 1

|Q|

∫

Q
w
)( C

|Q|

∫

Q
w1−p′

)p−1
≤ C ′

by w ∈ Ap and (1 + ε)(q − 1) = p− 1. This implies that w ∈ Aq.
(ii) If p > 1, then we choose ε > 0 small enough, so that both w and w1−p′ satisfy the
Reverse Hölder’s inequality with ε. We get from the Ap condition

( 1

|Q|

∫

Q
w1+ε

)( 1

|Q|

∫

Q
w(1+ε)(1−p′)

)p−1
≤ C

( 1

|Q|

∫

Q
w
)1+ε( C ′

|Q|

∫

Q
w1−p′

)(1+ε)(p−1)
≤ C ′′.

If p = 1, we get

1

|Q|

∫

Q
w1+ε ≤ C

( 1

|Q|

∫

Q
w
)1+ε

≤ C ′w(x)1+ε, for a.e. x ∈ Q.

(iii) Fix S ⊂ Q and suppose that w satisfies the Reverse Hölder’s Inequality with ε > 0.
Then (by Hölder’s inequality!)

w(S) =

∫

Q
χSw ≤

(∫

Q
w1+ε

)1/(1+ε)
|S|ε/(1+ε) ≤ Cw(Q)

( |S|
|Q|
)ε/(1+ε)

.

Hence, we may choose δ = ε/(1 + ε) = 1/(1 + ε)′.
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4 Hilbert transform

One of the main objects of harmonic analysis are singular integrals, from which the most
important is the Hilbert transform.

4.1 Hilbert Transform

The Hilbert transform of a measurable function f on R is defined as

Hf(x) =
1

π

∫

R

f(x− y)

y
dy.

As the integral does not converge absolutely, it has to be interpreted in an appropriate
limiting sense, which uses its cancellation property, i.e.

Hf(x) = lim
ε→0+

1

π

∫

y:|y|>ε

f(x− y)

y
dy.

With this definition, Hf(x) makes sense for all smooth functions, especially for f ∈ S (R).
5

If we define the distribution

p.v.
1

x
(ϕ) := lim

ε→0+

∫

x:|x|>ε

ϕ(x)

x
dx, ϕ ∈ S (R),

then Hf :=
1

π
p.v.

1

x
∗ f. This formula suggests that we look for the Fourier transform of

Hf. Therefore, we regularize 1/x. This can be done using complex distributions 1
π(x±iε)

and letting ε→ 0 or (and that is what we shall do) by defining

Qt(x) :=
1

π
· x

t2 + x2
.

Obviously, limt→0Qt(x) =
1
πx holds pointwise and, as we shall show below, also in S ′(R).

As

F−1(sgn(x)e−a|x|)(ξ) =
1√
2π

∫ ∞

−∞
sgn(x)e−a|x| · eixξdx

=
1√
2π

{
−
∫ 0

−∞
ex(a+iξ)dx+

∫ ∞

0
ex(−a+iξ)dx

}

=
1√
2π

{ −1

a+ iξ
+

1

a− iξ

}
=

√
2

π
· iξ

a2 + ξ2
,

we obtain

Q̂t(ξ) =
−i√
2π

sgn(ξ)e−t|ξ|,

we have also limt→0 Q̂t(ξ) = −i sgn(ξ)/
√
2π. As this convergence is uniform on compact

sets, it holds also in S ′(R). Finally, due to the continuity of Fourier transform, we obtain

(
1

π
p.v.

1

x

)∧
= [lim

t→0
Qt]

∧ = lim
t→0

Q̂t =
−i sgn(·)√

2π
.

5Observe, that the restriction to n = 1 is both natural and essential for the cancellation property.
Furthermore, from now on, we shall denote the Fourier transform of a function f also by the more usual
f̂ .
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4 Hilbert transform

Theorem 4.1.1. In S ′(R),

lim
t→0

Qt(x) =
1

π
p.v.

1

x
.

Proof. For each ε > 0, the functions ψε(x) = x−1χ{y:|y|>ε}(x) are bounded and define

tempered distributions with limε→0+ ψε = p.v. 1x . Therefore, it is enough to show that

lim
t→0

(πQt − ψt) = 0

in S ′(R). This follows by

(πQt − ψt)(ϕ) =

∫

R

xϕ(x)

t2 + x2
dx−

∫

x:|x|>t

ϕ(x)

x
dx

=

∫

x:|x|<t

xϕ(x)

t2 + x2
dx+

∫

x:|x|>t

(
x

t2 + x2
− 1

x

)
ϕ(x)dx

=

∫

x:|x|<1

xϕ(xt)

1 + x2
dx−

∫

x:|x|>1

ϕ(tx)

x(1 + x2)
dx

for ϕ ∈ S (R). As t→ 0, we apply Lebesgue dominated convergence theorem and use the
symmetry of the integrands to conclude, that the limit is zero.

Qt
S ′(R)−−−−→
t→0

1
πp.v.

1
x

F
y F

y
−i√
2π

sgn(ξ)e−t|ξ| S ′(R)−−−−→
t→0

−i sgn(·)√
2π

,

Summarizing, one defines the Hilbert transform Hf for f ∈ S (Rn) by any of these
formulas:

Hf =
1

π
p.v.

1

x
∗ f,

Hf = lim
t→0

Qt ∗ f,

(Hf)∧(ξ) = −i sgn(ξ)f̂(ξ).

Using the third expression, we can extend the definition of H to L2(R) and it holds

‖Hf‖2 = ‖(Hf)∧‖2 = ‖ − i sgn(·)f̂‖2 = ‖f̂‖2 = ‖f‖2,
H(Hf) = (−i sgn(·)(Hf)∧)∨ = ((−i sgn(·))2f̂)∨ = (−f̂)∨ = −f,

〈Hf,Hg〉 = 〈f, g〉, by polarization,∫
Hf · g = −

∫
f ·Hg,

where the last identity follows from

〈Hf, g〉 = 〈(Hf)∧, ĝ〉 = 〈−i sgn(·)f̂ , ĝ〉 = 〈f̂ , sgn(·)ĝ〉 = 〈f̂ ,−(Hg)∧〉 = −〈f,Hg〉

and the simple fact that Hg = Hg.

Theorem 4.1.2. For f ∈ S (R), the following is true.

21



Harmonic Analysis

(i) (Kolmogorov) H is weak type (1, 1),

‖Hf‖1,w ≤ C‖f‖1, i.e. |{x ∈ R : |Hf(x)| > λ}| ≤ C

λ
‖f‖1, λ > 0, f ∈ L1(R

n).

(ii) (M. Riesz) H is of strong type (p, p) for every 1 < p <∞, i.e.

‖Hf‖p ≤ Cp‖f‖p.

Proof. Step 1.: We show the weak type (1, 1) by exploiting Theorem 3.1.1. Let f be
non-negative and let λ > 0, then Theorem 3.1.1 gives a sequence of disjoint intervals (Ij),
such that

f(x) ≤ λ for a.e. x 6∈ Ω =
⋃

j

Ij ,

|Ω| ≤ 1

λ
‖f‖1,

λ <
1

|Ij |

∫

Ij

f ≤ 2λ.

Given this decomposition of R, we decompose f into “good” and “bad” part defined by

g(x) =




f(x), x 6∈ Ω,
1

|Ij |

∫

Ij

f, x ∈ Ij,
b(x) =

∑

j

bj(x) =
∑

j

(
f(x)− 1

|Ij |

∫

Ij

f

)
χIj(x).

Then g(x) ≤ 2λ almost everywhere, and bj is supported on Ij and has zero integral. Since
Hf = Hg +Hb, we have

|{x ∈ R : |Hf(x)| > λ}| ≤ |{x ∈ R : |Hg(x)| > λ/2}| + |{x ∈ R : |Hb(x)| > λ/2}|.

We estimate the first term using the L2-boundedness of H by

|{x ∈ R : |Hg(x)| > λ/2}| ≤ 4

λ2

∫

R

|Hg(x)|2dx =
4

λ2

∫

R

g(x)2dx ≤ 8

λ

∫

R

g(x)dx =
8

λ

∫

R

f(x)dx.

Let 2Ij be the interval with the same center as Ij and twice the length. Let Ω∗ =
⋃

j 2Ij .
Then |Ω∗| ≤ 2|Ω| and

|{x ∈ R : |Hb(x)| > λ/2}| ≤ |Ω∗|+ |{x 6∈ Ω∗ : |Hb(x)| > λ/2}|

≤ 2

λ
‖f‖1 +

2

λ

∫

R\Ω∗

|Hb(x)|dx.

As |Hb(x)| ≤∑j |Hbj(x)|, it is enough to show that

∑

j

∫

R\2Ij
|Hbj(x)|dx ≤ C‖f‖1.
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4 Hilbert transform

Denote the center of Ij by cj and use that bj has zero integral to get

∫

R\2Ij
|Hbj(x)|dx =

∫

R\2Ij

∣∣∣∣∣

∫

Ij

bj(y)

x− y
dy

∣∣∣∣∣ dx

=

∫

R\2Ij

∣∣∣∣∣

∫

Ij

bj(y)

(
1

x− y
− 1

x− cj

)
dy

∣∣∣∣∣ dx

≤
∫

Ij

|bj(y)|
(∫

R\2Ij

|y − cj |
|x− y| · |x− cj|

dx

)
dy

≤
∫

Ij

|bj(y)|
(∫

R\2Ij

|Ij |
|x− cj |2

dx

)
dy

The last inequality follows from |y−cj | < |Ij |/2 and |x−y| > |x−cj|/2. The inner integral
equals 2, so ∑

j

∫

R\2Ij
|Hbj(x)|dx ≤ 2

∑

j

∫

Ij

|bj(y)|dy ≤ 4‖f‖1.

Our proof of the weak (1, 1) inequality is for non-negative f , but this is sufficient since
an arbitrary real function can be decomposed into its positive and negative parts, and a
complex function into its real and imaginary parts.

Step 2.: Since H is weak type (1, 1) and strong type (2, 2), it is also strong type (p, p)
for 1 < p < 2. If p > 2, we apply duality, i.e.

‖Hf‖p = sup

{∣∣∣∣
∫

R

Hf · g
∣∣∣∣ : ‖g‖p′ ≤ 1

}

= sup

{∣∣∣∣
∫

R

f ·Hg
∣∣∣∣ : ‖g‖p′ ≤ 1

}

≤ ‖f‖p · sup
{
‖Hg‖p′ : ‖g‖p′ ≤ 1

}
≤ Cp′‖f‖p.

The strong (p, p) inequality is false if p = 1 or p = ∞; this can easily be seen if we let
f = χ[0,1]. Then

Hf(x) =
1

π
log

∣∣∣∣
x

x− 1

∣∣∣∣ ,

and Hf is neither integrable nor bounded.

4.2 Connection to complex analysis

Let D be the (open) unit disc of the complex plane, i.e. D = {z ∈ C : |z| < 1} and let
∂D = {z ∈ C : |z| = 1} be its boundary. If f ∈ L2(∂D) is a real-valued function, then the
Cauchy integral

f(z) =
1

2πi

∫

∂D

f(ξ)

ξ − z
dξ, z ∈ D,

defines a holomorphic function on D. There are two main questions connected with this
construction:

i) In which sense are the values of f on ∂D also the boundary values of f defined on the
whole D? Or, equivalently, in which sense do the functions fr(ϕ) := Re(f(reiϕ)), ϕ ∈
[0, 2π] converge to f if r → 1−.
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Harmonic Analysis

ii) How do the imaginary parts of the functions ϕ → f(reiϕ) look like, do they also
converge to some other function f † on ∂D, and how does f † depend on f?

The study of the first question leads to Poisson formula and approximations of identity.
The study of the second question is closely connected to Hilbert transform. Indeed, let
u, v be two real-valued functions of two real variables be defined by

(u+ iv)(r, ϕ) = f(reiϕ) =
1

2πi

∫

∂D

f(ξ)

ξ − reiϕ
dξ.

Then

v(r, ϕ) = Im
( 1

2πi

∫ 2π

0

f(eit)

eit − reiϕ
ieitdt

)
=

1

2π

∫ 2π

0
f(eit)Im

( eit

eit − reiϕ

)
dt

=
1

2π

∫ 2π

0
f(eit)Im

( 1

1− rei(ϕ−t)

)
dt

=
1

2π

∫ 2π

0
f(eit)Im

( 1

1− r cos(ϕ− t)− ir sin(ϕ− t)

)
dt

=
1

2π

∫ 2π

0
f(eit)

r sin(ϕ− t)

1 + r2 − 2r cos(ϕ− t)
dt.

If we now let r → 1+, we obtain the function

ϕ→ 1

2π

∫ 2π

0
f(eit)

sin(ϕ− t)

2(1 − cos(ϕ− t))
dt =

1

2π

∫ 2π

0
f(eit)

2 sin((ϕ− t)/2) cos((ϕ − t)/2)

4 sin2((ϕ− t)/2)
dt

=
1

4π

∫ 2π

0
f(eit) cot

(ϕ− t

2

)
dt.

Considering this function as a periodic variable on [0, 2π], we obtain that

f †(ϕ) =
1

4π

∫ 2π

0
f(t) cot

(ϕ− t

2

)
dt.

Finally, using Taylor’s series, one obtains that cot(α) behaves like 1/α for α close to zero.
The answer to the question (ii) posed above is therefore, that f † is (up to higher order
terms) the Hilbert transform of f .

4.3 Connection to Fourier series

We use the complex notation of Fourier series, i.e.

f ≈ t→
∑

j∈Z
f̂(j)eijt, f̂(j) =

1

2π

∫ 2π

0
f(t)e−ijtdt.

Let sgn(x) be defined as 1 for x > 0, as 0 or x = 0 and as −1 for x < 0. Then the
Hilbert transform on T = R/(2πZ) is defined as

Hf =
∑

j∈Z
hj f̂(j)e

ijt, hj = −i sgn(j).

Naturally, we define the operator of the Nth partial sum as

SN (f) =
∑

|j|≤N

f̂(j)eijt =
∑

j∈Z
χ[−N,N ](j)f̂ (j)e

ijt
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4 Hilbert transform

and the projections
PN (f) = f̂(N)eiNt.

We combine the formulas

χ[−N,N ](j) =
1

2

[
sgn(j +N)− sgn(j −N)

]
+

1

2

[
χ{N}(j) + χ{−N}(j)

]

with

∑

j∈Z
sgn(j +N)f̂(j)eijt =

∑

j∈Z
sgn(j)f̂(j −N)ei(j−N)t = ie−iNt

∑

j∈Z
(−i) sgn(j)f̂(j −N)eijt

= ie−iNt
∑

j∈Z
hj(f · eiN ·)̂ (j)eijt = ie−iNtH[eiN · · f ](t)

to obtain a reformulation of SNf into

SNf = ie−iN ·H[eiN ·f ]− ieiN ·H[e−iN ·f ] +
1

2
[PNf + P−Nf ].

If now f ∈ Lp(T), then the boundedness of H on Lp(T) implies that also SNf ∈ Lp(T)
for 1 < p < ∞. Actually it follows that ‖SNf‖p ≤ cp‖f‖p with cp independent on N and
that SNf → f for all trigonometric polynomials, which are actually dense in Lp(T). It
follows that ‖SNf − f‖p → 0 for all f ∈ Lp(T). Indeed, let f ∈ Lp(T) and let g be a
trigonometric polynomial with ‖f − g‖p ≤ ε. Let N be the degree of g. Then it follows
for every M ≥ N that

‖SMf − f‖p = ‖SMf − SMg + g − f‖p ≤ ‖SM (f − g)‖p + ‖f − g‖p ≤ (cp + 1)ε.

4.4 Connection to maximal operator

Let us state (without proof, cf. Fourier Analysis of Javier Duoandikoetxea, page 56) the
following result, called Cotlar’s inequality.

Lemma 4.1. If f ∈ S (Rn) then H∗f(x) ≤ M(Hf)(x) + CMf(x), where H∗f(x) =

supε>0 |Hεf(x)| and Hεf(x) =
1
π

∫
|y|>ε

f(x−y)
y dy.
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5 H1 and BMO

5.1 H1 - atomic

Let ϕ ∈ S (R). Then Hϕ ∈ L1(R) if, and only if,
∫
R
ϕ = 0. We show only one direction,

the other resembles the proof of Theorem 5.1.3. Let ϕ ∈ L1(R) andHϕ ∈ L1(R). Then, by
basic properties of the Fourier transform, ϕ̂ and (Hϕ)∧ = −i sgn(·)ϕ̂ are both continuous.
Obviously, this is only possible if ϕ̂(0) = 0.

We shall define a subspace of L1(R), which will be mapped by H into L1(R). As this
space plays the same role also for other singular integrals on R

n, we define the space for
general n ∈ N.

Definition 5.1.1. An atom is a complexed-valued function defined on R
n, which is sup-

ported on a cube Q and satisfies
∫

Q
a(x)dx = 0 and ‖a‖∞ ≤ 1

|Q| .

Observe, that this implies that ‖a‖1 ≤ |Q| · ‖a‖∞ ≤ 1.

Definition 5.1.2. The atomic space H1
at(R

n) is defined by

H1
at(R

n) =




∑

j

λjaj : aj atoms, λj ∈ C,
∑

j

|λj | <∞





and normed by

‖f |H1
at(R

n)‖ = inf




∑

j

|λj | : f =
∑

j

λjaj



 .

We state (without the quite easy proof), that this expression is really a norm and that
H1

at(R
n) is really a Banach space. Furthermore, the atomic decomposition converges in

L1(R
n) and H1

at(R
n) is a subspace of L1(R

n). Both these statements follow easily from

‖
∑

j

λjaj‖1 ≤
∑

j

|λj | · ‖aj‖1 ≤
∑

j

|λj|.

Theorem 5.1.3. Let n = 1.
(i) There exists a constant C > 0, such that for every atom a,

‖Ha‖1 ≤ C.

(ii) H : H1
at(R) → L1(R).

Proof. (i) Since a ∈ L2(R), Ha is well defined and we get for Q∗ co-centric with Q and
length 2 times larger

∫

Q∗

|Ha(x)|dx ≤ |Q∗|1/2
(∫

Q∗

|Ha(x)|2dx
)1/2

≤ C|Q|1/2
(∫

Q
|a(x)|2dx

)1/2

≤ C.

Using that a has zero average, we get for cQ the center of Q and of Q∗
∫

R\Q∗

|Ha(x)|dx =
1

π

∫

R\Q∗

∣∣∣∣
∫

Q

a(y)

x− y
dy

∣∣∣∣ dx

≤
∫

R\Q∗

∣∣∣∣
∫

Q

[
1

x− y
− 1

x− cQ

]
a(y)dy

∣∣∣∣ dx

≤
∫

Q

∫

R\Q∗

∣∣∣∣
1

x− y
− 1

x− cQ

∣∣∣∣ dx · |a(y)|dy ≤ C.
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5 H1 and BMO

(ii) Follows directly from (i) and the definition of H1
at(R).

5.2 BMO

Hilbert transform acts rather badly on L∞(R). Not only is H unbounded on L∞(R), it
can not be easily defined on a dense subset of L∞(R). The definition

Hf(y) =
1

π

∫

R

f(x)

y − x
dx

runs for f ∈ L∞(R) into troubles for x near y and x near infinity. If we look onto
differences, the situation changes to

Hf(y)−Hf(y′) =
1

π

∫

R

f(x)

(
1

y − x
− 1

y′ − x

)
dx.

This improves the situation for x near infinity, as 1/(x− y)− 1/(x− y′) = O(1/x2) in this
case.

We say that f and g are equivalent modulo a constant if f(x) = g(x) + C for some
(complex) constant C and almost every x ∈ R. Given f ∈ L∞(R) and y ∈ R, then we
take an open interval B ⊂ R with center at zero containing y. Then fχB ∈ L2(R) and we
define Hf(y) to be

Hf(y) := H(fχB)(y) +
1

π

∫

R\B
f(x)

(
1

y − x
+

1

x

)
dx. (5.1)

The first term is defined by the L2 definition ofH, the integral in the second term converges
absolutely. The definition depends on B, but choosing another interval B′ ⊃ B with the
center at the origin leads to a difference

H(fχB)(y) +
1

π

∫

R\B
f(x)

(
1

y − x
+

1

x

)
dx−H(fχB′)(y)− 1

π

∫

R\B′

f(x)

(
1

y − x
+

1

x

)
dx

= H(fχB − fχB′)(y) +
1

π

∫

B′\B
f(x)

(
1

y − x
+

1

x

)
dx

= −H(fχB′\B)(y) +
1

π

∫

B′\B
f(x)

(
1

y − x
+

1

x

)
dx =

1

π

∫

B′\B

f(x)

x
dx,

which does not depend on y. This defines Hf modulo constant for f ∈ L∞(R). Of course,
such a definition does not allow to measure Hf in the usual norms, as Lp. Instead of that,
we need a space of functions defined modulo constants.

Definition 5.2.1. (Bounded mean oscillation). Let f : Rn → C be a function defined
modulo a constant. The BMO (or Bounded Mean Oscillation) norm of f is defined

‖f |BMO(Rn)‖ := sup
B

1

|B|

∫

B

∣∣∣∣f − 1

|B|

∫

B
f

∣∣∣∣

where B ranges over all balls. Note that
∫

B

∣∣∣∣f − 1

|B|

∫

B
f

∣∣∣∣ =
∫

B

∣∣∣∣f(y)−
1

|B|

∫

B
f(x)dx

∣∣∣∣ dy =
1

|B|

∫

B

∣∣∣∣
∫

B
(f(y)− f(x))dx

∣∣∣∣ dy

if one shifts f by a constant, the BMO norm is unchanged, so this norm is well-defined
for functions defined modulo constants. We denote by BMO(Rn) the space of all functions
with finite BMO norm.
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Example 5.2.2. Let f(x) = sgn(x). Let |y| < a. We take B = (−a, a) and apply the
definition of Hf as presented above. This gives (for y > 0)

πHf(y) = p.v.

∫ a

−a

sgn(x)

y − x
dx+

∫

(−∞,−a)∪(a,∞)
sgn(x)

(
1

y − x
+

1

x

)
dx

= lim
ε→0+

(∫

(−a,a)\(y−ε,y+ε)

sgn(x)

y − x
dx

)
−
∫ −a

−∞

(
1

x
− 1

x− y

)
dx

︸ ︷︷ ︸
− ln a

a+y

+

∫ ∞

a

(
1

x
− 1

x− y

)
dx

︸ ︷︷ ︸
=ln x

x−y

∣∣x=∞

x=a
=− ln a

a−y

= lim
ε→0+

(∫ 0

−a

1

x− y
dx−

∫ y−ε

0

1

x− y
dx−

∫ a

y+ε

1

x− y

)
− ln

a

a+ y
− ln

a

a− y

= lim
ε→0+

(
ln

y

a+ y
+ ln

y

ε
− ln

a− y

ε

)
− ln

a

a+ y
− ln

a

a− y

= 2 ln y − 2 ln a.

If y < 0, similar calculation applies as well. Hence, πHf(y) = 2 ln |y| − 2 ln a. Hence,
ignoring the constant,

H(sgnx) =
2

π
ln |x|.

Let us observe, that

1

|B|

∫

B

∣∣∣∣f − 1

|B|

∫

B
f

∣∣∣∣ ≈ inf
c∈R

1

|B|

∫

B
|f − c|

holds for every ball B with universal constants. Indeed, the left-hand side is obviously
larger than the right hand side. On the other hand, we get as well

1

|B|

∫

B

∣∣∣∣f − 1

|B|

∫

B
f

∣∣∣∣ ≤
1

|B|

∫

B
|f − c|+ 1

|B|

∫

B

∣∣∣∣c−
1

|B|

∫

B
f

∣∣∣∣

=
1

|B|

∫

B
|f − c|+ 1

|B|

∫

B

∣∣∣∣
1

|B|

∫

B
(c− f)

∣∣∣∣

≤ 1

|B|

∫

B
|f − c|+ 1

|B|

∫

B

(
1

|B|

∫

B
|c− f |

)

=
2

|B|

∫

B
|f − c| .

5.3 Connection to Hilbert transform

Theorem 5.3.1. (H maps L∞(R) into BMO(R))
Let f ∈ L∞(R). Then

‖Hf |BMO(R)‖ . ‖f‖∞.

Proof. Due to the observation above, it is enough to show that for every ball B, there is
a constant c = c(B) such that

1

|B|

∫

B
|Hf − c| . ‖f‖∞.

Similarly to (5.1), we define Hf(x) for x ∈ B to be

Hf(x) = H(fχ2B)(x)+H(fχR\2B)(x) = H(fχ2B)(x)+
1

π

∫

y:y 6∈2B
f(y)

(
1

x− y
− 1

γ − y

)
dy,
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where 2B is a ball with the same center as B, but twice the radius and γ is the center of
B. With this definition of Hf , we can actually take c = 0.

First we get

1

|B|

∫

B
|H(fχ2B)| ≤

1

|B|

(∫

B
|H(fχ2B)|2

)1/2

·
(∫

B
1

)1/2

≤ 1√
|B|

(∫

2B
|f |2

)1/2

≤ ‖f‖∞√
|B|
√

|2B| . ‖f‖∞.

This deals with the “local” part of Hf . For the “global” part, observe that for x ∈ B we
have

πH(fχR\2B)(x) =
∫

y:y 6∈2B
f(y)

(
1

x− y
− 1

γ − y

)
dy

and

1

|B|

∫

B

∣∣∣∣∣

∫

R\2B
f(y)

(
1

x− y
− 1

γ − y

)
dy

∣∣∣∣∣ dx

≤ 1

|B|

∫

B

∫

R\2B

∣∣∣∣f(y)
(

1

x− y
− 1

γ − y

)∣∣∣∣ dydx

≤ ‖f‖∞
|B|

∫

B

∫

R\2B

∣∣∣∣
1

x− y
− 1

γ − y

∣∣∣∣ dydx.

By shifting, we may assume, that γ = 0, B = (−a, a) and 2B = (−2a, 2a). We estimate

1

2a

∫ a

0

∫ ∞

2a

x

|y(x− y)|dydx ≤ 1

2a

∫ a

0
xdx

∫ ∞

2a

1

|y(y − a)|dy ≤ a

4

∫ ∞

2a

1

(y − a)2
dy ≤ c

(and similarly for the remaining parts). Altogether, this gives

1

|B|

∫

B
|H(fχR\2B)| . ‖f‖∞.

Adding the two facts, we obtain the claim.

5.4 Interpolation with BMO and good-λ-inequality

When proving that the Hardy-Littlewood maximal operatorM is bounded on Lp(R
n), 1 <

p ≤ ∞, we used interpolation. As M is not bounded on L1(R
n), we needed to replace this

by weak boundedness of M . This was still sufficient for the interpolation argument (as
described by the Marcinkiewicz theorem). Hilbert transform is not bounded on L∞(Rn),
but in the same spirit, we can hope that for the interpolation to work, this could be
replaced by weaker information at the endpoint. This is indeed the case.

Theorem 5.4.1. Let T be a linear operator which is bounded on Lp0(R
n) for some 1 <

p0 < ∞, and bounded from L∞(Rn) into BMO(Rn). Then T is bounded on Lp(R
n) for

all p0 < p <∞.

The proof of this statement is based on the so-called good-λ inequality. We use the
notation Md for the dyadic maximal operator and

M#f(x) = sup
Q∋x

1

|Q|

∫

Q
|f − fQ|,

where fQ = 1
|Q|
∫
Q f denotes the average of f over Q.
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Lemma 5.4.2. If f ∈ Lp0(R
n) for some p0, 1 ≤ p0 <∞, then

|{x ∈ R
n :Mdf(x) > 2λ,M#f(x) ≤ γλ}| ≤ 2nγ|{x ∈ R

n :Mdf(x) > λ}|.

for all γ > 0 and λ > 0.

Proof. We may assume that f is non-negative and that γ > 0 and λ > 0 are fixed. We
form the Calderón-Zygmund decomposition of f at height λ. Then the set {x ∈ R

n :
Mdf(x) > λ} can be written as the union of disjoint, maximal dyadic cubes. Let Q be
one of these cubes. Then it is enough to prove that

|{x ∈ Q :Mdf(x) > 2λ,M#f(x) ≤ γλ}| ≤ 2nγ|Q|. (5.2)

Let Q̃ be the dyadic cube, which contains Q whose sides are twice that long. Since Q was
maximal, fQ̃ ≤ λ. If x ∈ Q and Mdf(x) > 2λ, then also Md(fχQ)(x) > 2λ. Hence, for
such x’s,

Md((f − fQ̃)χQ)(x) ≥Md(fχQ)(x) − fQ̃ > λ.

By the weak (1, 1) inequality for Md (which actually holds with norm 1, although we did
not prove that), we get

|{x ∈ Q :Md((f − fQ̃)χQ)(x) > λ}| ≤ 1

λ

∫

Q
|f(x)− fQ̃|dx

≤ 2n|Q|
λ

· 1

|Q̃|

∫

Q̃
|f(x)− fQ̃|dx ≤ 2n|Q|

λ
inf
x∈Q

M#f(x).

If the left-hand side of (5.2) is zero, there is nothing to prove. Otherwise there is an x ∈ Q
with M#f(x) ≤ γλ and (5.2) follows.

Of course,Mdf(x) ≤ CM#f(x) is not true in general. But it holds at least in Lp-norm.

Lemma 5.4.3. If 1 < p0 ≤ p <∞ and f ∈ Lp0(R
n), then

∫

Rn

Mdf(x)
p ≤ C

∫

Rn

M#f(x)pdx. (5.3)

Proof. For N > 0, we get

IN =

∫ N

0
pλp−1|{x ∈ R

n :Mdf(x) > λ}|dλ = 2p
∫ N/2

0
pλp−1|{x ∈ R

n :Mdf(x) > 2λ}|dλ

≤ 2p
∫ N/2

0
pλp−1

(
|{x ∈ R

n :Mdf(x) > 2λ,M#f(x) ≤ γλ}|+ |{x ∈ R
n :M#f(x) > γλ}|

)
dλ

≤ 2p+nγIN +
2p

γp

∫ γN/2

0
pλp−1|{x ∈ R

n :M#f(x) > λ}|dλ.

Now we choose γ > 0 such that 2p+nγ = 1/2, and get

IN ≤ 2p+1

γp

∫ γN/2

0
pλp−1|{x ∈ R

n :M#f(x) > λ}|dλ.

This step is only justified, if IN <∞. This follows from the fact, that f ∈ Lp0(R
n) implies

Mdf ∈ Lp0(R
n) and

IN ≤ p

p0
Np−p0

∫ N

0
p0λ

p0−1|{x ∈ R
n :Mdf(x) > λ}|dλ <∞.

If the right hand side of (5.3) is infinite, there is nothing to prove. If it is finite, we let
N → ∞ and (5.3) follows.
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5 H1 and BMO

Proof. of Theorem 5.4.1: The composition M# ◦ T is a sublinear operator. It is bounded
on Lp0(R

n), and on L∞(Rn), as

‖M#(Tf)‖∞ = ‖Tf |BMO(Rn)‖ ≤ C‖f‖∞.

By Marcinkiewicz theorem, it is bounded on Lp(R
n), p0 < p <∞.

Now let f ∈ Lp(R
n) with compact support. Then f ∈ Lp0(R

n) and so Tf ∈ Lp0(R
n).

We apply Lemma 5.4.3 to Tf and due to |Tf(x)| ≤Md(Tf)(x) a.e., we get
∫

Rn

|Tf(x)|pdx ≤
∫

Rn

Md(Tf)(x)
pdx ≤ C

∫

Rn

[M#(Tf)(x)]pdx ≤ C

∫

Rn

|f(x)|pdx.

5.5 John-Nirenberg inequality

On the example of log(1/|x|) we have seen that BMO(Rn) contains also unbounded func-
tions. On the interval (−a, a), its average is 1− log a and for λ > 1, the set of x’s with

| log(1/|x|) − (1− log a)| > λ

has measure 2ae−λ−1, i.e. is exponentially small. This is the case for all unbounded
functions from BMO(Rn).

Theorem 5.5.1. (John-Nirenberg inequality)
Let f ∈ BMO(Rn). Then there exist constants C1 and C2, depending only on the dimen-
sion, such that given any cube Q in R

n and any λ > 0,

|{x ∈ Q : |f(x)− fQ| > λ}| ≤ C1 exp(−C2λ/‖f |BMO(Rn)‖)|Q|.

Proof. As the inequality is homogeneous, we may assume that ‖f |BMO(Rn)‖ = 1, hence

1

|Q|

∫

Q
|f(x)− fQ|dx ≤ 1.

We form the Calderón-Zygmund decomposition of |f − fQ| with respect to Q at height 2.
This gives us a family of cubes {Q1,j} such that

2 <
1

|Q1,j|

∫

Q1,j

|f(x)− fQ|dx ≤ 2n+1

and |f(x)− fQ| ≤ 2 if x 6∈ ⋃j Q1,j. In particular,

∑

j

|Q1,j | ≤
1

2

∫

Q
|f(x)− fQ|dx ≤ 1

2
|Q|,

and

|fQ1,j − fQ| =
∣∣∣ 1

|Q1,j|

∫

Q1,j

(f(x)− fQ)dx
∣∣∣ ≤ 2n+1.

On each cube Q1,j we form the Calderón-Zygmund decomposition of |f − fQ1,j | at height
2. We obtain a family of cubes {Q1,j,k} with

|fQ1,j,k
− fQ1,j | ≤ 2n+1,

|f(x)− fQ1,j | ≤ 2 if x ∈ Q1,j \
⋃

k

Q1,j,k,

∑

k

|Q1,j,k| ≤
1

2
|Q1,j |.
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Collect all the cubes {Q1,j,k} into one sequence {Q2,j}. Then we have
∑

j |Q2,j | ≤ 1/4|Q|
and if x 6∈ ⋃j Q2,j

|f(x)− fQ| ≤ |f(x)− fQ1,j |+ |fQ1,j − fQ| ≤ 2 + 2n+1 ≤ 2 · 2n+1.

Repeat this process indefinitely. We get for each N a family of cubes {QN,j} with

|f(x)− fQ| ≤ N · 2n+1, if x 6∈
⋃

j

QN,j

and
∑

j |QN,j| ≤ 2−N |Q|. Fix λ > 2n+1 and let N be such that N2n+1 ≤ λ < (N+1)2n+1.
Then

|{x ∈ Q : |f(x)− fQ| > λ}| ≤
∑

j

|QN,j| ≤
1

2N
|Q| = e−N log 2|Q| ≤ e−C2λ|Q|,

where C2 = (log 2)/2n+2.
If λ < 2n+1, then C2λ < log(

√
2) and

|{x ∈ Q : |f(x)− fQ| > λ}| ≤ |Q| ≤ elog(
√
2)−C2λ|Q| =

√
2e−C2λ|Q|,

hence C1 =
√
2.
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6 Singular integrals

Hilbert transform is the most important example of the so-called singular integrals. Its
n-dimensional analogue are the Riesz transforms.

6.1 Riesz transforms

Riesz transforms are defined as

Rjf(x) = cn p.v.

∫

Rn

yj
‖y‖n+1

f(x− y)dy, 1 ≤ j ≤ n, (6.1)

where

cn = Γ
(n+ 1

2

)
π−

n+1

2 .

The constants cn are chosen to have

(Rjf )̂ (ξ) = −i ξj‖ξ‖ f̂(ξ), (6.2)

which quickly implies also
n∑

j=1

R2
j = −I.

To prove (6.2), we use the technique of homogeneous functions.

A function f is homogeneous of degree a ∈ R if for any x ∈ R
n and any λ > 0

f(λx) = λaf(x).

To extend this notion also to distributions, let first f be a homogeneous function of degree
a and we calculate

∫

Rn

f(x)ϕ(x)dx = λ−a

∫

Rn

f(λx)ϕ(x)dx = λ−a

∫

Rn

f(x)ϕ(x/λ)
dx

λn
.

We therefore say that T ∈ S ′(Rn) is homogeneous of degree a ∈ R, if for every ϕ ∈ S (Rn)

T (ϕλ) = λaT (ϕ),

where ϕλ(·) = λ−nϕ(·/λ).

Proposition 6.1. If T is a homogeneous distribution of degree a, then its Fourier trans-
form is homogeneous of degree −n− a.

Proof. Indeed, we have

T̂ (ϕλ) = T ((ϕλ)̂ ) = T (ϕ̂(λ·)) = λ−nT ((ϕ̂)λ−1) = λ−n−aT (ϕ̂) = λ−n−aT̂ (ϕ).

This proposition allows us to calculate easily the Fourier transform of f(x) = ‖x‖−a

for 0 < a < n. Since f is rotationally invariant and homogeneous of degree −a, f̂ is also
rotationally invariant and homogeneous of degree a− n, i.e.

f̂(ξ) = ca,n‖ξ‖a−n.
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To find the constants ca,n, we calculate for n/2 < a < n
∫

Rn

e−‖x‖2/2‖x‖−adx =

∫

Rn

(e−‖x‖2/2)∧(ξ)(‖x‖−a)∧(ξ)dξ = ca,n

∫

Rn

e−‖ξ‖2/2‖ξ‖a−ndξ.

Using polar coordinates, we obtain
∫

Rn

e−‖x‖2/2‖x‖bdx = ωn−1

∫ ∞

0
e−r2/2rb+n−1dr = 2

b+n
2

−1ωn−1

∫ ∞

0
e−ss

b+n
2

−1ds

= 2
b+n
2

−1ωn−1Γ
(b+ n

2

)
,

where ωn−1 is the area of the n-dimensional unit sphere. Hence

ca,n =
2

n−a
2

−1Γ((n − a)/2)

2
a
2
−1Γ(a/2)

= 2
n
2
−a · Γ((n − a)/2)

Γ(a/2)
.

By the inversion formula, the same holds also for 0 < a < n/2 and by taking the limit
also for a = n/2.

Finally, the Fourier transform of the Riesz transform follows from the distributional
formula

∂

∂xj
‖x‖−n+1 = (1− n) p.v.

xj
‖x‖n+1

,

which gives
(
p.v.

xj
‖x‖n+1

)∧
(ξ) =

1

1− n

( ∂

∂xj
‖x‖−n+1

)∧
(ξ) =

iξj
1− n

(‖x‖−n+1)∧(ξ)

=
iξj

1− n

21−
n
2 Γ(1/2)

Γ((n − 1)/2)
‖ξ‖−1 =

−i2−n/2√π
Γ
(
n+1
2

) · ξj‖ξ‖ .

Formula (6.2) then follows by this, and by taking the (2π)n/2 factor into account, which
appears in the formula for Fourier transform of convolutions.

Theorem 6.1.1. The Riesz transforms are bounded on Lp(R
n) for 1 < p <∞.

Proof. The proof writes the Riesz transforms as a linear (integral) combination of direc-
tional one-dimensional Hilbert transforms and then uses the boundedness of H on Lp(R).

Rjf(x) = cn lim
ε→0

∫

‖y‖>ε

yj
‖y‖n+1

f(x− y)dy = cn lim
ε→0

∫ ∞

ε

∫

rSn−1

yj
‖y‖n+1

f(x− y)dydr

= cn lim
ε→0

∫ ∞

ε

∫

Sn−1

zjf(x− rz)dz
dr

r
=
cn
2

lim
ε→0

∫

Sn−1

zj

∫

|r|>ε
f(x− rz)

dr

r
dz

=
cnπ

2

∫

Sn−1

zjHzf(x)dz,

where

Hzf(x) =
1

π
lim
ε→0

∫

|r|>ε
f(x− rz)

dr

r
= H(f(x+ ·z))(x1),

if x = x1z + x, x1 ∈ R and x ⊥ z. We observe first, that Hz is bounded on Lp(R
n) for

every z ∈ R
n. Indeed,

∫

Rn

|Hzf(x)|pdx =

∫

z⊥

∫

R

|Hzf(x1z + x)|pdx1dx =

∫

z⊥

∫

R

|H(f(x+ ·z))(x1)|pdx1dx

≤ Cp
p

∫

z⊥

∫

R

|f(x+ x1z)|pdx1dx = Cp
p‖f‖pp.
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Combining these two steps, we obtain

‖Rjf‖p ≤
cnπ

2

∫

Sn−1

|zj | · ‖Hzf‖pdz ≤ cnπCp‖f‖p
2

∫

Sn−1

|zj |dz.

6.2 Riesz potentials

If ϕ ∈ S (Rn), then (−∆ϕ)∧(ξ) = ‖ξ‖2ϕ̂(ξ). The fractional Laplace operator may then be
defined as

((−∆)a/2ϕ)∧(ξ) = ‖ξ‖aϕ̂(ξ).

We define

Ia(f) = (−∆)−a/2(f), 0 < a < n,

i.e.

Iaf(x) =
1

γa

∫

Rn

f(y)

‖x− y‖n−a
dy,

where

γa = πn/2−a Γ(a/2)

Γ((n− a)/2)
.

Let Λδ(f)(x) = f(δx), then

Λδ−1IaΛδ = δ−aIa, ‖Λδ(f)‖p = δ−n/p‖f‖p. ‖Λδ−1Ia(f)‖q = δn/q‖Ia(f)‖q.

If ‖Iaf‖q ≤ C‖f‖p is true, then we get by

‖Ia(Λδf)‖q = ‖Λδ(δ
−aIaf)‖q = δ−a‖ΛδIaf‖q

= δ−a‖Iaf‖qδ−n/q ≤ Cδ−a−n/q‖f‖p = δ−a−n/q+n/p‖Λδf‖p

that
1

q
=

1

p
− a

n
. (6.3)

Theorem 6.2.1. Let 0 < a < n, 1 ≤ p < n/a and define q by (6.3). Then ‖Iaf‖q ≤ C‖f‖p
for p > 1 and ‖Iaf‖q,w ≤ C‖f‖p for p = 1.

Proof. We give a proof, which is based on the following inequality due to Hedberg (1972):

Iaf(x) ≤ Ca‖f‖ap/np ·Mf(x)1−ap/n. (6.4)

This inequality implies for p > 1

‖Iaf‖q ≤ Ca‖f‖ap/np ‖(Mf)1−ap/n‖q = Ca‖f‖ap/np ‖Mf‖1−ap/n
p . ‖f‖p,

and the weak bound follows for p = 1 in the same manner. To show (6.4), we argue as
follows.

Fix x ∈ R
n and split (for A > 0 to be chosen later on)

γaIaf(x) =

∫

y:‖x−y‖≤A

f(y)

‖x− y‖n−a
dy +

∫

y:‖x−y‖>A

f(y)

‖x− y‖n−a
dy.
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We apply Theorem 1.2.4 to the first integral

∫

y:‖x−y‖≤A

f(y)

‖x− y‖n−a
dy ≤ C

∫

y:‖x−y‖≤A

dy

‖x− y‖n−a
·Mf(x) (6.5)

≤ C ′
∫ A

0
r−(n−a)rn−1dr ·Mf(x) = C ′′Aa ·Mf(x).

The second part may be estimated by Hölder’s inequality as follows

∫

y:‖x−y‖>A

f(y)

‖x− y‖n−a
dy ≤ C‖f‖p ·

(∫

y:‖x−y‖>A
‖x− y‖(a−n)p′dy

)1/p′
(6.6)

≤ C ′
(∫ ∞

A
rn−1r(a−n)p′dr

)1/p′

≤ C ′′‖f‖p ·A((a−n)p′+n)/p′ = C ′′‖f‖p ·Aa−n+n/p′ = C ′′‖f‖pAa−n/p

Choosing A in such a way, that (6.5) and (6.6) coincide, we get A = (‖f‖p/Mf(x))p/n

and (6.4) follows.

Definition 6.2.2. Let k ∈ N0 and let 1 ≤ p ≤ ∞. Then the Sobolev space W k
p (R

n) is the
set of all functions from Lp(R

n), such that all its (distributional) derivatives up to order
k belong to Lp(R

n).

Theorem 6.2.3. (Sobolev’s embedding theorem) Let k ∈ N, 1 ≤ p ≤ ∞ and 1/q =
1/p − k/n.

(i) If q <∞, i.e. p < n/k, then W k
p (R

n) →֒ Lq(R
n).

(ii) If q = ∞. i.e. p = n/k, then the restriction of any f ∈W k
p (R

n) to a compact subset
of Rn belongs to Lr(R

n) for any r <∞.

(iii) If p > n/k, then every f ∈W k
p (R

n) can be modified on a set of measure zero so that
the resulting function is continuous.

Proof. For a direct proof, we refer to the book of Stein, Chapter 5. Let us sketch the proof
using Riesz transforms and potentials.

(
Rj

( ∂

∂xj
f
))∧

(ξ) =
ξ2j
‖ξ‖ f̂(ξ)

and

f = I1

( n∑

j=1

Rj

( ∂

∂xj
f
))
. (6.7)

We deal with k = 1, higher order follow by iteration. Let f ∈W 1
p (R

n).
Let 1 < p < n. Then all ∂f/∂xj belong to Lp(R

n) and their Riesz transforms
Rj(∂f/∂xj) belong also to Lp(R

n). Finally, I1 maps Lp(R
n) into Lq(R

n). This gives
the proof of (i) for 1 < p <∞. We leave out the proof for p = 1.

For the proof of (ii), we consider only ηf , where η is a smooth function with compact
support. We apply (6.7) to ηf , which (together with its first order derivatives) belongs
not only to Lp(R

n) but also to all Ls(R
n), 1 < s < p = n. Riesz transforms Rj then map

these to Ls(R
n) again, and the Riesz potential I1 then maps the outcome into Lr(R

n) for
1/r − 1/s − 1/n, i.e. into every Lr(R

n), r <∞. The proof of (iii) is again left out.
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6 Singular integrals

6.3 Calderón-Zygmund operators

These are convolutions with kernel K, which might have a singularity at origin.

Theorem 6.3.1. (Calderón-Zygmund) Let K ∈ S ′(Rn) be a tempered distribution,
which is associated to a locally integrable function on R

n \ {0} and satisfies

(CZ1) |K̂(ξ)| ≤ A, ξ ∈ R
n,

(CZ2)

∫

‖x‖2≥2‖y‖2
|K(x− y)−K(x)|dx ≤ B, y ∈ R

n.

Then, for 1 < p <∞,

‖K ∗ f‖p ≤ Cp‖f‖p and ‖K ∗ f‖1,w ≤ C‖f‖1.

The proof copies very much the proof of the same statement for the Hilbert transform,
and we leave out the details.

The condition (CZ2) is sometimes called Hörmander condition. By the help of mean
value theorem, it is satisfied for example if

‖∇K(x)‖2 ≤ C

‖x‖n+1
2

, x 6= 0.

An important and non-trivial generalisation of the theory of singular integrals is given
by considering the vector-valued analogues. By this, we mean the following.

• H, H̃ are (complex) Hilbert spaces.

• For 0 < p < ∞, Lp(R
n → H) is the set of measurable functions f : Rn → H, such

that
∫
Rn ‖f(x)‖pHdx <∞.

• Let K : Rn → L (H, H̃). Then Tf(x) =

∫

Rn

K(y)f(x− y)dy takes values in H̃.

• Under same (just appropriately interpreted) conditions as above, T is bounded from
Lp(R

n → H) into Lp(R
n → H̃). Especially, the gradient condition above is still valid

in this case.
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7 Special role of p = 2

7.1 Khintchine inequality

We denote by
rn(t) := sign sin(2nπt), t ∈ [0, 1], n ∈ N0.

the Rademacher functions.
The system (rn)

∞
n=0 forms an orthonormal system in L2(0, 1), but it is not a basis

(consider i.e. the function f(t) = 1− 2t).

Theorem 7.1.1. Let p ∈ [1,∞). Then there are positive constants Ap and Bp such that

Ap

(
m∑

n=1

|an|2
)1/2

≤
(∫ 1

0

∣∣∣∣∣

m∑

n=1

anrn(t)

∣∣∣∣∣

p

dt

)1/p

≤ Bp

(
m∑

n=1

|an|2
)1/2

holds for every m ∈ N and every sequence of real numbers a1, . . . , am.

Proof. By Ap and Bp we denote the best possible constants (which are actually known,
but we shall derive slightly weaker estimates). Furthermore, orthogonality of Rademacher
functions gives immediately A2 = B2 = 1. Finally, due to monotonicity of the Lp-norms,
we have Ar ≤ Ap and Br ≤ Bp for r ≤ p.

So, it is enough to show that A1 > 0 and B2k <∞ for all k ∈ N.
We start with B2k. Let us observe that

E :=

∫ 1

0

∣∣∣∣∣

m∑

n=1

anrn(t)

∣∣∣∣∣

2k

dt =

∫ 1

0

(
m∑

n=1

anrn(t)

)2k

dt

=
∑

|α|=2k

(2k)!

α1! . . . αm!
aα1

1 . . . aαm
m

∫ 1

0
rα1

1 (t) . . . rαm
m (t)dt

=
∑

|α|=k

(2k)!

(2α1)! . . . (2αm)!
a2α1

1 . . . a2αm
m

∫ 1

0
r2α1

1 (t) . . . r2αm
m (t)dt

=
∑

|α|=k

(2k)!

(2α1)! . . . (2αm)!
a2α1

1 . . . a2αm
m ,

where we have used the multinomial theorem (a generalisation of the binomial theorem to
a bigger number of summands) and the fact that

∫ 1

0
rα1

1 (t) . . . rαm
m (t)dt

is equal to zero if some of the αi’s is odd and equal to 1 if all of them are even.
Let α = (α1, . . . , αm) ∈ N

m
0 be integers with |α| = k, then

2kα1! . . . αm! = (2α1α1!) . . . (2
αmαm!) ≤ (2α1)! . . . (2αm)!.

This implies

E ≤ (2k)!

2kk!

∑

|α|=k

k!

α1! . . . αm!
a2α1

1 . . . a2αm
m

=
(2k)!

2kk!

(
m∑

n=1

|an|2
)k

=
(2k)!

2kk!
‖a‖2k2
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7 Special role of p = 2

and

E1/(2k) ≤
(
(2k)!

2kk!

)1/(2k)

‖a‖2.

Hence, the statement holds with 6

B2k :=

(
(2k)!

2kk!

)1/(2k)

.

Finally, we have to show the existence of A1 > 0. We proceed by a nice duality trick
using the (already proven) first part of this theorem.

Let f(t) :=
∑m

n=1 anrn(t). By Hölder’s inequality for p = 3/2 and p′ = 3, we have

∫ 1

0
|f(t)|2dt =

∫ 1

0
|f(t)|2/3 · |f(t)|4/3dt ≤

(∫ 1

0
|f(t)|dt

)2/3

·
(∫ 1

0
|f(t)|4

)1/3

≤
(∫ 1

0
|f(t)|dt

)2/3

B
4/3
4 · ‖a‖4/32 =

(∫ 1

0
|f(t)|dt

)2/3

B
4/3
4 · ‖f‖4/32 .

Therefore, (∫ 1

0
|f(t)|dt

)2/3

≥ B
−4/3
4

(∫ 1

0
|f(t)|2dt

)1/3

,

that is ∫ 1

0
|f(t)|dt ≥ B−2

4

(∫ 1

0
|f(t)|2dt

)1/2

= B−2
4 ‖a‖2.

Hence, A1 ≥ B−2
4 .

Remark 7.1.2. Stochastic reformulation of Khintchine’s inequalities sounds as follows.
Let εi, i = 1, . . . ,m be independent variables with P(εi = 1) = 1/2 and P(εi = −1) = 1/2.
Let 1 ≤ p <∞. Then there are constants Ap, Bp such that for every a1, . . . , am ∈ R

7

Ap‖a‖2 ≤
(
E

∣∣∣∣∣

m∑

i=1

aiεi

∣∣∣∣∣

p)1/p

≤ Bp‖a‖2.

Choosing p large enough, this estimate gives very quickly the so-called tail bound estimates
on sum of independent Rademacher variables, i.e. the assymptotic estimates of

P

(∣∣∣∣∣

m∑

i=1

aiεi

∣∣∣∣∣ > t

)

for t→ ∞.

We use this reformulation of Khintchine’s inequalities to give another proof of Theorem
7.1.1.

Proof. (of the upper estimate in Theorem 7.1.1).
We normalize to ‖a‖2 = 1. Then

E exp

(
m∑

i=1

aiεi

)
= E

m∏

i=1

exp(aiεi) =

m∏

i=1

E exp(aiεi) =

m∏

i=1

cosh(ai).

6By Stirling’s formula, one can show quite easily that B2k grows as
√
2k for k → ∞.

7Also a1, . . . , am ∈ C can be considered with slightly modified proof.
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Harmonic Analysis

Using Taylor’s expansion, one obtains cosh(aj) ≤ exp(a2j/2). Hence,

E exp

(
m∑

i=1

aiεi

)
≤

m∏

i=1

exp(a2i /2) . 1,

and by Markov’s inequality

P

(
m∑

i=1

aiεi > λ

)
= P

(
exp

(
m∑

i=1

aiεi

)
> exp(λ)

)
= P

(
exp

(
m∑

i=1

aiεi − λ

)
> 1

)

≤ E exp

(
m∑

i=1

aiεi − λ

)
. e−λ.

By symmetry of εi’s, we get also P

(∣∣∣∣∣

m∑

i=1

aiεi

∣∣∣∣∣ > λ

)
. e−λ. The rest then follows by

distributional representation of the Lp-norm.

Khintchine’s inequalities have an interesting application in operator theory. Let 1 ≤
p <∞ and let T : Lp(R

n) → Lp(R
n) be a bounded linear operator. Then

∥∥∥∥∥
( N∑

j=0

|Tfj|2
)1/2

∥∥∥∥∥
p

≤ cp

∥∥∥∥∥
( N∑

j=0

|fj|2
)1/2

∥∥∥∥∥
p

, (7.1)

where the constant cp depends only on p and ‖T‖.
The proof follows by considering Rademacher functions r1, . . . , rN and

∥∥∥∥∥
( N∑

j=0

|Tfj|2
)1/2

∥∥∥∥∥

p

p

=

∫

Rn

( N∑

j=1

|(Tfj)(x)|2
)p/2

dx ≤ c

∫

Rn

(∫ 1

0
|

N∑

j=1

Tfj(x)rj(t)|pdt
)p/p

dx

= c

∫ 1

0

∫

Rn

|
N∑

j=1

Tfj(x)rj(t)|pdxdt = c

∫ 1

0

∫

Rn

|T
( N∑

j=1

fjrj(t)
)
(x)|pdxdt

≤ c‖T‖p
∫ 1

0

∫

Rn

|
N∑

j=1

fj(x)rj(t)|pdxdt ≤ c′
∫

Rn

( N∑

j=1

|fj(x)|2
)p/2

dx

= cpp

∥∥∥∥∥
( N∑

j=0

|fj|2
)1/2

∥∥∥∥∥

p

p

.

By letting N → ∞, the same result holds also for infinite sums.

7.2 Littlewood-Paley Theory

Let {Ij} be a sequence of intervals on the real line, finite or infinite, and let {Sj} be the

sequence of operators defined by (Sjf)
∧(ξ) = χIj(ξ)f̂(ξ). Later on, we shall concentrate

on the dyadic decomposition of R (strictly speaking of R \ {0}) given by

Ij = (−2j+1,−2j ] ∪ [2j , 2j+1), j ∈ Z. (7.2)

Furthermore, we denote S∗
j = Sj−1 + Sj + Sj+1. Let us observe that this implies S∗

jSj =
SjS

∗
j = Sj.
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7 Special role of p = 2

Finally, we adopt this concept also to smooth dyadic decompositions. Let ψ ∈ S (R)
be non-negative, have support in 1/2 ≤ ‖ξ‖2 ≤ 4 and be equal to 1 on 1 ≤ ‖ξ‖2 ≤ 2. Then
we define

ψj(ξ) = ψ(2−jξ) and (S̃jf)
∧(ξ) = ψj(ξ)f̂(ξ), ξ ∈ R.

Theorem 7.2.1. (Littlewood-Paley Theory) Let 1 < p <∞.

i) Then there exist two constants Cp > cp > 0, such that

cp‖f‖p ≤
∥∥∥∥∥

(
∑

j

|Sjf |2
)1/2∥∥∥∥∥

p

≤ Cp‖f‖p.

The same holds for S∗
j .

ii) There exists a constant Cp > 0 such that

∥∥∥∥∥

(
∑

j

|S̃jf |2
)1/2∥∥∥∥∥

p

≤ Cp‖f‖p.

iii) Finally, if
∑

j

|ψ(2−jξ)|2 = 1, then there is also a constant cp > 0, such that

cp‖f‖p ≤
∥∥∥∥∥

(
∑

j

|S̃jf |2
)1/2∥∥∥∥∥

p

.

Proof. Step 1.
We know, that (Sjf)

∧ = χIj f̂ , where Ij was defined by (7.2). We define

I−j := (−2j+1,−2j ], I+j := [2j , 2j+1), j ∈ Z

and split Sj = S−
j + S+

j , where (S−
j f)

∧ = χI−j
f̂ and (S+

j f)
∧ = χI+j

f̂ .

We observe, that

χI+j
(x) =

1

2

(
sgn(x− 2j)− sgn(x− 2j+1)

)
for (almost) all x ∈ R,

and

S+
j f = (χI+j

f̂)∨ =
1

2

(
(sgn(· − 2j)f̂)∨ − (sgn(· − 2j+1)f̂)∨

)
.

Finally, we write

sgn(ξ − 2j)f̂(ξ) = τ2j [sgn(ξ)f̂(ξ + 2j)] = τ2j [sgn(ξ) · τ−2j f̂(ξ)],

leading to

(sgn(ξ − 2j)f̂(ξ))∨ =M2j (sgn ·τ−2j f̂)
∨ = (2π)−1/2 ·M2j (sgn(·)∨ ∗ (τ−2j f̂)

∨)

= (2π)−1/2M2j

(√
2π

−i

(
1

π
p.v.

1

x

)
∗M−2jf

)

= iM2j

((
1

π
p.v.

1

x

)
∗M−2jf

)

= iM2jHM−2jf.
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Using the boundedness of H on Lp(R) for 1 < p < ∞, we immediately obtain that
‖Sjf‖p ≤ c‖f‖p, and the same is true also for S+

j and S−
j .

Step 2.
We combine Step 1. with (7.1) to obtain

∥∥∥∥∥
(∑

j∈Z
|S+

j fj|2
)1/2

∥∥∥∥∥
p

≤ 1

2





∥∥∥∥∥
(∑

j∈Z
|(sgn(ξ − 2j)f̂j(ξ))

∨|2
)1/2

∥∥∥∥∥
p

+

∥∥∥∥∥
(∑

j∈Z
|(sgn(ξ − 2j+1)f̂j(ξ))

∨|2
)1/2

∥∥∥∥∥
p





≤ 1

2





∥∥∥∥∥
(∑

j∈Z
|M2jHM−2jfj|2

)1/2
∥∥∥∥∥
p

+ . . .





=
1

2





∥∥∥∥∥
(∑

j∈Z
|HM−2jfj|2

)1/2
∥∥∥∥∥
p

+ . . .





≤ cp





∥∥∥∥∥
(∑

j∈Z
|M−2jfj|2

)1/2
∥∥∥∥∥
p

+ . . .



 = c′p

∥∥∥∥∥
(∑

j∈Z
|fj|2

)1/2
∥∥∥∥∥
p

.

The same holds of course for S−
j and, therefore, also for Sj .

Step 3.
This, together with the identity Sj = Sj S̃j implies

∥∥∥∥∥
(∑

j∈Z
|Sjf |2

)1/2
∥∥∥∥∥
p

=

∥∥∥∥∥
(∑

j∈Z
|SjS̃jf |2

)1/2
∥∥∥∥∥
p

≤
∥∥∥∥∥
(∑

j∈Z
|S̃jf |2

)1/2
∥∥∥∥∥
p

.

Step 4.
This shows, that the second inequality in part (i) of the theorem follows from (ii). There-
fore, we prove (ii) now.

Let Ψ̂ = ψ and Ψj(x) = 2jΨ(2jx). Then Ψ̂j = ψj and S̃jf = Ψj ∗ f. It is enough to
prove that the vector-valued mapping

f → (S̃jf)j

is bounded from Lp to Lp(ℓ2). If p = 2, this follows by Plancherel theorem:

∥∥∥∥∥

(
∑

j

|S̃jf |2
)1/2∥∥∥∥∥

2

2

=

∫

R

∑

j

|ψj(ξ)|2 · |f̂(ξ)|2dξ ≤ 3‖f‖22.

The proof for p 6= 2 is an application of the vector-valued Calderón-Zygmund theory, and
especially the Hörmander’s condition for vector-valued singular integrals.

Let us first give the notation. Let H = C and H̃ = ℓ2(Z). This means that H is
just one-dimensional Hilbert space and H̃ is the ℓ2 space of sequences indexed by integers.
Then Lp(R → H) = Lp(R → C) is just the usual Lp(R) space of complex-valued functions.
And Lp(R → H̃) is a space of functions g : R → ℓ2(Z). Each g(x) is then a sequence
(. . . , g−1(x), g0(x), g1(x), . . . ) and the Lp(R → H̃) norm of g is given by

‖g|Lp(R → H̃)‖ = ‖(gj)j∈Z|Lp(R → H̃)‖ =
(∫

R

‖(gj(x))j∈Z‖pH̃dx
)1/p

=
(∫

R

(∑

j∈Z
|gj(x)|2

)p/2
dx
)1/p

=

∥∥∥∥∥
(∑

j∈Z
|gj(x)|2

)1/2
∥∥∥∥∥
p

.
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Now, we define a vector-valued Calderón-Zygmund operator T based on a kernel K. We
need K(x) ∈ L(H, H̃) = L(C, ℓ2(Z)) for every x ∈ R. Therefore, we first characterize the
elements of L(C, ℓ2(Z)). As the source space is one-dimensional, it is easy to see that each
element Z ∈ L(C, ℓ2(Z)) is given by

Z(λ) = λ · z

for some z ∈ ℓ2(Z). We therefore define

K(x) : λ→ λ · (. . . ,Ψ−1(x),Ψ0(x),Ψ1(x), . . . ).

Without giving the formal detail on vector-valued integration, we get

Tf(x) =

∫

R

K(y)f(x− y)dy =

∫

R

f(x− y) · (. . . ,Ψ−1(y),Ψ0(y),Ψ1(y), . . . )dy

=
(
. . . ,

∫

R

f(x− y)Ψ−1(y)dy,

∫

R

f(x− y)Ψ0(y)dy,

∫

R

f(x− y)Ψ1(y)dy, . . .
)

=
(
. . . ,Ψ−1 ∗ f(x),Ψ0 ∗ f(x),Ψ1 ∗ f(x), . . .

)

=
(
. . . , S̃−1f, S̃0f, S̃1f, . . .

)
= ”K ∗ f(x)”.

When we show, that Calderón-Zygmund theorem can be applied, this will give

‖Tf |Lp(C → ℓ2(Z))‖ ≤ C‖f‖p.

Due to what we said before, this is exactly the inequality in (ii).

So, we are left with verifying the two conditions (CZ1) and (CZ2). The first one is
equivalent to showing that

(. . . , Ψ̂−1(ξ), Ψ̂0(ξ), Ψ̂1(ξ), . . . ) = (. . . , ψ−1(ξ), ψ0(ξ), ψ1(ξ), . . . )

is uniformly bounded in ℓ2(Z) for every ξ ∈ R. But that follows easily from the support
properties of the functions ψj .

To verify the second, we need to show that

‖Ψ′
j(x)‖ℓ2 ≤ C|x|−2, x ∈ R.

Using that Ψ ∈ S (R), we obtain


∑

j∈Z
|Ψ′

j(x)|2



1/2

≤
∑

j∈Z
|Ψ′

j(x)| =
∑

j

22j |Ψ′(2jx)| ≤ C
∑

j∈Z
22j min(1, (2j |x|)−3)

= C
∑

j:2j |x|≤1

· · ·+ C
∑

j:2j |x|>1

. . .

= C
∑

j:2j |x|≤1

22j +C
∑

j:2j |x|>1

22j(2j |x|)−3 ≤ C ′

|x|2 .

Step 5.
Finally, we prove the first inequality in part (i) and part (iii) of the theorem. Surprisingly
enough, they follow quite quickly from previous steps and duality.
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The identity ∥∥∥∥∥
(∑

j∈Z
|Sjf |2

)1/2
∥∥∥∥∥
2

= ‖f‖2 (7.3)

follows by Plancherel’s theorem and, by polarization, also

∫

R

∑

j

Sjf · Sjg =

∫

R

fg

follows. Using this, and the first part of the theorem for p′ with 1/p+1/p′ = 1 allows the
following estimate.

‖f‖p = sup

{∣∣∣∣
∫

R

fg

∣∣∣∣ : ‖g‖p′ ≤ 1

}

= sup





∣∣∣∣∣∣

∫

R

∑

j

Sjf · Sjg

∣∣∣∣∣∣
: ‖g‖p′ ≤ 1





≤ sup





∥∥∥∥∥
(∑

j∈Z
|Sjf |2

)1/2
∥∥∥∥∥
p

·
∥∥∥∥∥
(∑

j∈Z
|Sjg|2

)1/2
∥∥∥∥∥
p′

: ‖g‖p′ ≤ 1





≤ cp

∥∥∥∥∥
(∑

j∈Z
|Sjf |2

)1/2
∥∥∥∥∥
p

.

Part (iii) of the theorem follows in exactly the same way - the assumption of the theorem
gives exactly the identity (7.3).
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