Harmonic Analysis

LECTURE SCRIPT

Dr. J. Vybiral

May 1, 2014

Contents

1 Basic concepts 2
1.1 Approximation of identity 2
1.2 Maximal operator 4
2 Interpolation 9
2.1 Marcinkiewicz interpolation theorems 9
2.2 Riesz-Thorin interpolation theorem 10
3 Weighted inequalities 13
3.1 Calderón-Zygmund decomposition 13
3.2 First inequality 13
3.3 The Muckenhaupt A_{p} condition 14
3.4 Strong-type inequalities 17
4 Hilbert transform 20
4.1 Hilbert Transform 20
4.2 Connection to complex analysis 23
4.3 Connection to Fourier series 24
4.4 Connection to maximal operator 25
$5 H^{1}$ and $B M O$ 26
$5.1 \quad H^{1}$ - atomic 26
5.2 BMO 27
5.3 Connection to Hilbert transform 28
5.4 Interpolation with $B M O$ and good- λ-inequality 29
5.5 John-Nirenberg inequality 31
6 Singular integrals 33
6.1 Riesz transforms 33
6.2 Riesz potentials 35
6.3 Calderón-Zygmund operators 37
7 Special role of $p=2$ 38
7.1 Khintchine inequality 38
7.2 Littlewood-Paley Theory 40
Literature 45

1 Basic concepts

1.1 Approximation of identity

We denote by \mathbb{R}^{n} the n-dimensional Euclidean space. Its open subsets $\Omega \subset \mathbb{R}^{n}$ are called domains.

Theorem 1.1.1. Let $\Omega \subset \mathbb{R}^{n}$ be a domain. The set of continuous functions with compact support contained in Ω is dense in $L_{p}(\Omega), 1 \leq p<\infty$.

Proof. We shall need two facts from measure theory.
i) Lebesgue measure λ in \mathbb{R}^{n} is regular, i.e. $\lambda(A)=\inf \{\lambda(G): G \supset A, G$ open $\}$.
ii) The space of step functions, i.e. the linear span of the set $\left\{\chi_{A}: A \subset \Omega, A\right.$ measurable $\}$, is dense in $L_{p}(\Omega)$ for every $1 \leq p<\infty$.

We first consider bounded open sets $\Omega_{j} \subset \Omega, j \in \mathbb{N}$, such that $\Omega_{j} \subset \overline{\Omega_{j}} \subset \Omega_{j+1} \subset \Omega$ and $\bigcup_{j=1}^{\infty} \Omega_{j}=\Omega .{ }^{1}$ Let us take $f \in L_{p}(\Omega)$. Then $f \chi_{\Omega_{j}} \rightarrow f$ in $L_{p}(\Omega)$ and we may restrict ourselves to $f \in L_{p}(\Omega)$ with compact support in Ω. Due to the second property of the Lebesgue measure, this function may be approximated by a step function $\sum_{k=1}^{K} \varrho_{k} \chi_{A_{k}}$ with $A_{k} \subset \operatorname{supp} f$. So, it is enough to approximate characteristic functions χ_{B} with \bar{B} compact in Ω. Using the first property of the Lebesgue measure, we may restrict ourselves to bounded open sets $G \subset \bar{G} \subset \Omega$. Then the sequence of functions $x \rightarrow \max (0,1-k \operatorname{dist}(x, G))$ gives the desired approximation.

Lemma 1.1.2. Let $f \in L_{p}\left(\mathbb{R}^{n}\right), 1 \leq p<\infty$. Then $f(\cdot+h) \rightarrow f(\cdot)$ in $L_{p}\left(\mathbb{R}^{n}\right)$ if $h \rightarrow 0$.
Proof. If f is continuous with compact support, then the result follows by uniform continuity of f and the Lebesgue dominated convergence theorem. If $f \in L_{p}\left(\mathbb{R}^{n}\right)$, we may find for every $t>0$ a continuous function g with compact support such that $\|f-g\|_{p}<t$. Then

$$
\begin{aligned}
\|f(\cdot+h)-f(\cdot)\|_{p} & \leq\|f(\cdot+h)-g(\cdot+h)\|_{p}+\|g(\cdot+h)-g(\cdot)\|_{p}+\|g(\cdot)-f(\cdot)\|_{p} \\
& \leq 2 t+\|g(\cdot+h)-g(\cdot)\|_{p}
\end{aligned}
$$

and the conclusion follows.
Theorem 1.1.3. The family of functions $\left(K_{\varepsilon}\right)_{\varepsilon>0} \subset L_{1}\left(\mathbb{R}^{n}\right)$ is called the approximation of identity, if
(K1) $\int_{\mathbb{R}^{n}}\left|K_{\varepsilon}(x)\right| d x \leq C<\infty$ for all $\varepsilon>0$,
(K2) $\int_{\mathbb{R}^{n}} K_{\varepsilon}(x) d x=1$ for all $\varepsilon>0$,
(K3) $\lim _{\varepsilon \rightarrow 0^{+}} \int_{|x|>\delta}\left|K_{\varepsilon}(x)\right| d x=0$ for all $\delta>0$.
Then
i) If $K \in L_{1}\left(\mathbb{R}^{n}\right)$ with $\int_{\mathbb{R}^{n}} K(x) d x=1$, then $K_{\varepsilon}(x)=\varepsilon^{-n} K(x / \varepsilon)$ is an approximation of identity.

[^0]ii) If $\left(K_{\varepsilon}\right)_{\varepsilon>0}$ is an approximation of the identity, then ${ }^{2}$
$$
\lim _{\varepsilon \rightarrow 0^{+}}\left\|K_{\varepsilon} * f-f\right\|_{p}=0
$$
for every $1 \leq p<\infty$ and $f \in L_{p}\left(\mathbb{R}^{n}\right)$.
Proof. (i) Let $K \in L_{1}\left(\mathbb{R}^{n}\right)$ with $\int_{\mathbb{R}^{n}} K(x) d x=1$. Then we get immediately
$\varepsilon^{-n} \int_{\mathbb{R}^{n}} K(x / \varepsilon) d x=\int_{\mathbb{R}^{n}} K(x) d x=1 \quad$ and $\quad \varepsilon^{-n} \int_{\mathbb{R}^{n}}|K(x / \varepsilon)| d x=\int_{\mathbb{R}^{n}}|K(x)| d x=\|K\|_{1}<\infty$.
As for the third point, we have
$$
\int_{|x|>\delta}\left|K_{\varepsilon}(x)\right| d x=\int_{|y|>\delta / \varepsilon}|K(y)| d y \rightarrow 0
$$
as $\varepsilon \rightarrow 0^{+}$, due to the Lebesgue dominated convergence theorem.
(ii) We calculate for $p>1$ and its conjugated index p^{\prime} with $1 / p+1 / p^{\prime}=1$ using Hölder's inequality ${ }^{3}$ (if $p=1$, the calculation becomes slightly simpler)
\[

$$
\begin{aligned}
\left\|K_{\varepsilon} * f-f\right\|_{p}^{p} & =\int_{\mathbb{R}^{n}}\left|\left(K_{\varepsilon} * f\right)(x)-f(x)\right|^{p} d x=\int_{\mathbb{R}^{n}}\left|\int_{\mathbb{R}^{n}} K_{\varepsilon}(y) f(x-y) d y-f(x)\right|^{p} d x \\
& =\int_{\mathbb{R}^{n}}\left|\int_{\mathbb{R}^{n}} K_{\varepsilon}(y)[f(x-y)-f(x)] d y\right|^{p} d x \\
& \leq \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}\left|K_{\varepsilon}(y)\right|^{1 / p+1 / p^{\prime}} \cdot|f(x-y)-f(x)| d y\right)^{p} d x \\
& \leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}\left|K_{\varepsilon}(y)\right| \cdot|f(x-y)-f(x)|^{p} d y \cdot\left(\int_{\mathbb{R}^{n}}\left|K_{\varepsilon}(y)\right| d y\right)^{p / p^{\prime}} d x \\
& \leq C^{p / p^{\prime}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}\left|K_{\varepsilon}(y)\right| \cdot|f(x-y)-f(x)|^{p} d y d x \\
& =C^{p / p^{\prime}} \int_{\mathbb{R}^{n}}\left|K_{\varepsilon}(y)\right| \cdot\|f(\cdot-y)-f(\cdot)\|_{p}^{p} d y \\
& \leq C^{p / p^{\prime}}\left\{\int_{|y| \leq \delta}\left|K_{\varepsilon}(y)\right| \cdot\|f(\cdot-y)-f(\cdot)\|_{p}^{p} d y+2^{p}\|f\|_{p}^{p} \int_{|y|>\delta}\left|K_{\varepsilon}(y)\right| d y\right\}
\end{aligned}
$$
\]

for every $\delta>0$. Using (K3) and previous Lemma, we obtain the conclusion of the theorem.

Definition 1.1.4. Let $\Omega \subset \mathbb{R}^{n}$ be a domain. Then $C_{c}^{\infty}(\Omega)$ denotes the set of infinitelydifferentiable functions compactly supported in Ω.

It is easy to show (but not completely trivial) that this class is actually non-empty. One example is the famous function

$$
f(x)= \begin{cases}\exp \left(-\frac{1}{1-|x|^{2}}\right), & \text { if }|x| \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Theorem 1.1.5. $C_{c}^{\infty}(\Omega)$ is dense in $L_{p}(\Omega)$ for every $1 \leq p<\infty$ and every domain $\Omega \subset \mathbb{R}^{n}$.

[^1]Proof. Let $f \in L_{p}(\Omega)$. First, we approximate f by a continuous and compactly supported g (i.e. $\|f-g\|_{p} \leq h$) and then consider the functions $\omega_{\varepsilon} * g$, where $\omega_{\varepsilon}(x)=\varepsilon^{-n} \omega(x / \varepsilon)$ and $\omega \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ has compact support and $\int \omega=1$. It follows that $\omega_{\varepsilon} * g \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ (the support property is clear, the differentiability follows by taking differences and limits, use Lebesgue's dominated convergence theorem). Together with the formula $\left\|\omega_{\varepsilon} * g-g\right\|_{p} \rightarrow 0$, the conclusion follows.

1.2 Maximal operator

For $x \in \mathbb{R}^{n}$ and $r>0$, we denote by $B(x, r)$ the ball in \mathbb{R}^{n} with center at x and radius r, i.e. $B(x, r)=\left\{y \in \mathbb{R}^{n}:|x-y|<r\right\}$.

Let f be a locally integrable function on \mathbb{R}^{n}. Then we define the Hardy-Littlewood maximal operator of f by

$$
M f(x)=\sup _{r>0} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y
$$

Here stands $|B(x, r)|$ for the Lebesgue measure of $B(x, r)$.
Let us note, that maximal operator is not linear, but is sub-linear, i.e.

$$
\begin{aligned}
M(f+g)(x) & =\sup _{r>0} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)+g(y)| d y \\
& \leq \sup _{r>0} \frac{1}{|B(x, r)|}\left(\int_{B(x, r)}|f(y)| d y+\int_{B(x, r)}|g(y)| d y\right) \\
& \leq(M f)(x)+(M g)(x) .
\end{aligned}
$$

Simple modifications include cubic centered maximal operator

$$
M^{\prime} f(x)=\sup _{Q} \frac{1}{|Q|} \int_{x+Q}|f(y)| d y
$$

cubic non-centered maximal operator

$$
M^{\prime \prime} f(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}|f(y)| d y
$$

where the supremum runs over all cubes Q containing x, and the dyadic maximal operator M_{d}, when the supremum is taken over all dyadic cubes containing x. These are cubes of the type $2^{k}\left(q+[0,1)^{n}\right)$, where $k \in \mathbb{Z}$ and $q \in \mathbb{Z}^{n}$.

We shall study the mapping properties of the operator M in the frame of Lebesgue spaces $L_{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \infty$. If $f \in L_{\infty}\left(\mathbb{R}^{n}\right)$, then

$$
\frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y \leq \frac{\|f\|_{\infty}}{|B(x, r)|} \int_{B(x, r)} 1 d y=\|f\|_{\infty}
$$

holds for every $x \in \mathbb{R}^{n}$ and every $r>0$ and $\|M f\|_{\infty} \leq\|f\|_{\infty}$ follows. To deal with other p 's, we need some more notation first.

Let $f \in L_{1}\left(\mathbb{R}^{n}\right)$ and let $\alpha>0$. Then

$$
\begin{aligned}
\alpha \cdot\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>\alpha\right\}\right| & =\int_{\left\{x \in \mathbb{R}^{n}:|f(x)|>\alpha\right\}} \alpha d y \\
& \leq \int_{\left\{x \in \mathbb{R}^{n}:|f(x)|>\alpha\right\}}|f(y)| d y \leq \int_{\mathbb{R}^{n}}|f(y)| d y=\|f\|_{1} .
\end{aligned}
$$

The set of measurable functions f on \mathbb{R}^{n} with

$$
\|f\|_{1, w}:=\sup _{\alpha>0} \alpha \cdot\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>\alpha\right\}\right|<\infty
$$

is denoted by $L_{1, w}\left(\mathbb{R}^{n}\right)$ and called weak L_{1}. We have just shown that $L_{1}\left(\mathbb{R}^{n}\right) \hookrightarrow L_{1, w}\left(\mathbb{R}^{n}\right)$. Let us mention that $\|\cdot\|_{1, w}$ is not a norm, but it still satisfies

$$
\begin{aligned}
\|f+g\|_{1, w} & =\sup _{\alpha>0} \alpha \cdot\left|\left\{x \in \mathbb{R}^{n}:|f(x)+g(x)|>\alpha\right\}\right| \\
& \leq \sup _{\alpha>0} \alpha\left(\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>\alpha / 2\right\}\right|+\left|\left\{x \in \mathbb{R}^{n}:|g(x)|>\alpha / 2\right\}\right|\right) \\
& =2 \sup _{\alpha>0} \alpha / 2 \cdot\left(\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>\alpha / 2\right\}\right|+\left|\left\{x \in \mathbb{R}^{n}:|g(x)|>\alpha / 2\right\}\right|\right) \\
& \leq 2\left(\|f\|_{1, w}+\|g\|_{1, w}\right) .
\end{aligned}
$$

Finally, we observe, that the function $x \rightarrow \frac{1}{\|x\|^{n}} \in L_{1, w}\left(\mathbb{R}^{n}\right) \backslash L_{1}\left(\mathbb{R}^{n}\right)$.
The main aim of this section is to prove the following theorem.
Theorem 1.2.1. Let f be a measurable function on \mathbb{R}^{n}. Then
i) If $f \in L_{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \infty$, then the function $M f$ is finite almost everywhere.
ii) If $f \in L_{1}\left(\mathbb{R}^{n}\right)$, then $M f \in L_{1, w}\left(\mathbb{R}^{n}\right)$ and

$$
\|M f\|_{1, w} \leq A\|f\|_{1},
$$

where A is a constant which depends only on the dimension (i.e. $A=5^{n}$ will do).
iii) If $f \in L_{p}\left(\mathbb{R}^{n}\right)$ with $1<p \leq \infty$, then $M f \in L_{p}\left(\mathbb{R}^{n}\right)$ and

$$
\|M f\|_{p} \leq A_{p}\|f\|_{p},
$$

where A_{p} depends only on p and dimension n.
The proof is based on the following covering lemma.
Lemma 1.2.2. Let E be a measurable subset of \mathbb{R}^{n}, which is covered by the union of a family of balls (B^{j}) with uniformly bounded diameter. Then from this family we can select a disjoint subsequence, $B_{1}, B_{2}, B_{3}, \ldots$, such that

$$
\sum_{k}\left|B_{k}\right| \geq C|E| .
$$

Here C is a positive constant that depends only on the dimension $n ; C=5^{-n}$ will do.
Proof. We describe first the choice of B_{1}, B_{2}, \ldots. We choose B_{1} so that it is essentially as large as possible, i.e.

$$
\operatorname{diam}\left(B_{1}\right) \geq \frac{1}{2} \sup _{j} \operatorname{diam}\left(B^{j}\right)
$$

The choice of B_{1} is not unique, but that shall not hurt us.
If $B_{1}, B_{2}, \ldots, B_{k}$ were already chosen, we take again B_{k+1} disjoint with B_{1}, \ldots, B_{k} and again nearly as large as possible, i.e.

$$
\operatorname{diam}\left(B_{k+1}\right)>\frac{1}{2} \sup \left\{\operatorname{diam}\left(B^{j}\right): B^{j} \text { disjoint with } B_{1}, \ldots, B_{k}\right\}
$$

In this way, we get a sequence $B_{1}, B_{2}, \ldots, B_{k}, \ldots$ of balls. It can be also finite, if there were no balls B^{j} disjoint with $B_{1}, B_{2}, \ldots, B_{k}$.

If $\sum_{k}\left|B_{k}\right|=\infty$, then the conclusion of lemma is satisfied and we are done. If $\sum_{k}\left|B_{k}\right|<$ ∞, we argue as follows.

We denote by B_{k}^{*} the ball with the same center as B_{k} and diameter five times as large. We claim that

$$
\bigcup_{k} B_{k}^{*} \supset E,
$$

which then immediately gives that $|E| \leq \sum_{k}\left|B_{k}^{*}\right|=5^{n} \sum_{k}\left|B_{k}\right|$.
We shall show that $\bigcup_{k} B_{k}^{*} \supset B^{j}$ for every j. This is clear if B^{j} is one of the balls in the preselected sequence. If it is not the case, we obtain $\operatorname{diam}\left(B_{k}\right) \rightarrow 0\left(\right.$ as $\left.\sum_{k}\left|B_{k}\right|<\infty\right)$ and we choose the first k with $\operatorname{diam}\left(B_{k+1}\right)<\frac{1}{2} \operatorname{diam}\left(B^{j}\right)$. That means, that B^{j} must intersect one of the balls B_{1}, \ldots, B_{k}, say $B_{k_{0}}$. Obvious geometric arguments (based on the inequality $\left.\operatorname{diam}\left(B_{k_{0}}\right) \geq 1 / 2 \cdot \operatorname{diam}\left(B^{j}\right)\right)$ then give that $B^{j} \subset B_{k_{0}}^{*}$. This finishes the proof.

Proof. (of Theorem 1.2.1). Let $\alpha>0$ and let us consider $E_{\alpha}:=\left\{x \in \mathbb{R}^{n}: M f(x)>\alpha\right\}$. From the definition of M we obtain, that for every $x \in E_{\alpha}$, there is a ball B_{x} centered at x such that

$$
\int_{B_{x}}|f(y)| d y>\alpha\left|B_{x}\right| .
$$

Hence, we get $\left|B_{x}\right|<\|f\|_{1} / \alpha$ and $\cup_{x \in E_{\alpha}} B_{x} \supset E_{\alpha}$ and the balls $\left(B_{x}\right)_{x \in E_{\alpha}}$ satisfy the assumptions of Lemma 1.2.2. Using this covering lemma, we get a sequence of disjoint balls $\left(B_{k}\right)_{k}$, such that

$$
\sum_{k}\left|B_{k}\right| \geq C\left|E_{\alpha}\right| .
$$

We therefore obtain

$$
\|f\|_{1} \geq \int_{\cup_{k} B_{k}}|f(y)| d y=\sum_{k} \int_{B_{k}}|f|>\alpha \sum_{k}\left|B_{k}\right| \geq \alpha C\left|E_{\alpha}\right|,
$$

which may be rewritten as $\sup _{\alpha>0} \alpha \cdot\left|E_{\alpha}\right|=\|M f\|_{1, w} \leq \frac{1}{C}\|f\|_{1}$.
This proves the first assertion of the theorem for $p=1$ and the second assertion.
We now consider $1<p<\infty$. The proof follows from the information on the endpoints, i.e. from

$$
\|M f\|_{1, w} \leq C\|f\|_{1} \quad \text { and } \quad\|M f\|_{\infty} \leq\|f\|_{\infty} .
$$

Let $\alpha>0$ and put $f_{1}(x):=f(x)$ if $|f(x)|>\alpha / 2$ and $f_{1}(x):=0$ otherwise. Due to $|f(x)| \leq\left|f_{1}(x)\right|+\alpha / 2$, we have also $M f(x) \leq M f_{1}(x)+\alpha / 2$ and also

$$
\left\{x \in \mathbb{R}^{n}: M f(x)>\alpha\right\} \subset\left\{x \in \mathbb{R}^{n}: M f_{1}(x)>\alpha / 2\right\} .
$$

Due to the second part of the theorem

$$
\begin{aligned}
\left|E_{\alpha}\right| & =\left|\left\{x \in \mathbb{R}^{n}: M f(x)>\alpha\right\}\right| \leq\left|\left\{x \in \mathbb{R}^{n}: M f_{1}(x)>\alpha / 2\right\}\right| \leq \frac{2 A}{\alpha}\left\|f_{1}\right\|_{1} \\
& =\frac{2 A}{\alpha} \int_{\left\{x \in \mathbb{R}^{n}:|f(x)|>\alpha / 2\right\}}|f(y)| d y .
\end{aligned}
$$

We use the information of the size of the level sets of $M f$ to estimate the L_{p}-norm of $M f$.

$$
\begin{aligned}
\|M f\|_{p}^{p} & =\int_{\mathbb{R}^{n}} M f(x)^{p} d x=\int_{0}^{\infty}\left|\left\{x \in \mathbb{R}^{n}: M f(x)^{p}>\alpha\right\}\right| d \alpha \\
& =\int_{0}^{\infty}\left|\left\{x \in \mathbb{R}^{n}: M f(x)>\alpha^{1 / p}\right\}\right| d \alpha \\
& =p \int_{0}^{\infty} \beta^{p-1}\left|\left\{x \in \mathbb{R}^{n}: M f(x)>\beta\right\}\right| d \beta \\
& \leq p \int_{0}^{\infty} \beta^{p-1}\left(\frac{2 A}{\beta} \int_{\left\{x \in \mathbb{R}^{n}:|f(x)|>\beta / 2\right\}}|f(y)| d y\right) d \beta \\
& =2 A p \int_{\mathbb{R}^{n}}|f(y)| \int_{0}^{2|f(y)|} \beta^{p-2} d \beta d y=\frac{2 A p}{p-1} \int_{\mathbb{R}^{n}}|f(y)| \cdot|2 f(y)|^{p-1} d y \\
& =\frac{2^{p} A p}{p-1} \int_{\mathbb{R}^{n}}|f(y)|^{p} d y
\end{aligned}
$$

where we used Fubini's theorem and the substitution $\beta:=\alpha^{1 / p}$ with $d \alpha=p \beta^{p-1} d \beta$. This gives the first and the third statement of the theorem with

$$
A_{p}=2\left(\frac{5^{n} p}{p-1}\right)^{1 / p}, \quad 1<p<\infty
$$

Corollary 1.2.3. (Lebesgue's differentiation theorem)

Let f be locally integrable on \mathbb{R}^{n}. Then

$$
\lim _{r \rightarrow 0} \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) d y=f(x)
$$

holds for almost every $x \in \mathbb{R}^{n}$.
Proof. We may cover the set of "bad" points
$\left\{x \in \mathbb{R}^{n}: \lim _{r \rightarrow 0} \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) d y\right.$ does not exist or $\left.\lim _{r \rightarrow 0} \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) d y \neq f(x)\right\}$
by

$$
\bigcup_{k=1}^{\infty}\left\{x \in \mathbb{R}^{n}: \limsup _{r \rightarrow 0} \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) d y-f(x)>\frac{1}{k}\right\}
$$

united with

$$
\bigcup_{k=1}^{\infty}\left\{x \in \mathbb{R}^{n}: \liminf _{r \rightarrow 0} \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) d y-f(x)<-\frac{1}{k}\right\} .
$$

It is therefore enough to show, that each of these sets has measure zero. Let us fix $k \in \mathbb{N}$ and decompose $f=g+h$, where $g \in C\left(\mathbb{R}^{n}\right)$ and $\|h\|_{1} \leq t, t>0$.

Obviously,

$$
\lim _{r \rightarrow 0} \frac{1}{|B(x, r)|} \int_{B(x, r)} g(y) d y=g(x), \quad x \in \mathbb{R}^{n}
$$

which implies

$$
\begin{aligned}
\{x & \left.\in \mathbb{R}^{n}: \limsup _{r \rightarrow 0} \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) d y-f(x)>\frac{1}{k}\right\} \\
& =\left\{x \in \mathbb{R}^{n}: \limsup _{r \rightarrow 0} \frac{1}{|B(x, r)|} \int_{B(x, r)} h(y) d y-h(x)>\frac{1}{k}\right\} \\
& \subset\left\{x \in \mathbb{R}^{n}: M h(x)>\frac{1}{2 k}\right\} \cup\left\{x \in \mathbb{R}^{n}:|h(x)|>\frac{1}{2 k}\right\}
\end{aligned}
$$

The measure of the first set is smaller than $2 k A\|h\|_{1}$ and the measure of the second is smaller than $2 k\|h\|_{1}$. As $\|h\|_{1}$ might be chosen arbitrary small, the measure of the original set is zero. The same argument works for liminf instead of limsup as well.

Theorem 1.2.4. Let φ be a function which is non-negative, radial, decreasing (as function on $(0, \infty))$ and integrable. Then

$$
\sup _{t>0}\left|\varphi_{t} * f(x)\right| \leq\|\varphi\|_{1} M f(x)
$$

where again $\varphi_{t}(x)=t^{-n} \varphi(x / t), x \in \mathbb{R}^{n}$.
Proof. Let in addition φ be a simple function. Then it can be written as

$$
\varphi(x)=\sum_{j=1}^{k} a_{j} \chi_{B_{r_{j}}}(x)
$$

with $a_{j}>0$ and $r_{j}>0$. Then

$$
\varphi * f(x)=\sum_{j=1}^{k} a_{j}\left|B_{r_{j}}\right| \frac{1}{\left|B_{r_{j}}\right|} \chi_{B_{r_{j}}} * f(x) \leq\|\varphi\|_{1} M f(x)
$$

since $\|\varphi\|_{1}=\sum_{j} a_{j}\left|B_{r_{j}}\right|$. As any normalized dilation of φ satisfies the same assumptions and has the same integral, it satisfies also the same inequality. Finally, any function satisfying the hypotheses of the Theorem can be approximated monotonically from below by a sequence of simple radial functions. This finishes the proof.

Last theorem can be easily reformulated as a statement about boundedness of certain sublinear operator. Let φ be as in Theorem 1.2.4 and let Φ be the following operator

$$
\Phi(f)(x):=\sup _{t>0}\left|\left(\varphi_{t} * f\right)(x)\right|
$$

Then $\Phi: L_{1}\left(\mathbb{R}^{n}\right) \rightarrow L_{1, w}\left(\mathbb{R}^{n}\right)$ and $\Phi: L_{p}\left(\mathbb{R}^{n}\right) \rightarrow L_{p}\left(\mathbb{R}^{n}\right)$ for $1<p \leq \infty$. For example, if $f \in L_{1}\left(\mathbb{R}^{n}\right)$, we obtain

$$
\|\Phi(f)\|_{1, w} \leq\|\varphi\|_{1} \cdot\|M f\|_{1, w} \leq C\|\varphi\|_{1} \cdot\|f\|_{1}
$$

(and similarly for $1<p \leq \infty$).

2 Interpolation

We shall present two basic interpolation theorems, the Riesz-Thorin interpolation theorem and Marcinkiewicz interpolation theorem.

2.1 Marcinkiewicz interpolation theorems

The operator T mapping measurable functions to measurable functions is called sub-linear, if

$$
\begin{aligned}
\left|T\left(f_{0}+f_{1}\right)(x)\right| & \leq\left|T f_{0}(x)\right|+\left|T f_{1}(x)\right|, \\
|T(\lambda f)(x)| & =|\lambda| \cdot|T f(x)|, \quad \lambda \in \mathbb{C} .
\end{aligned}
$$

Let (X, μ) and (Y, ν) be measure spaces and let T be a sub-linear operator mapping $L_{p}(X, \mu)$ into a space of measurable functions on (Y, ν). We say that T is strong type (p, q) if it is bounded from $L_{p}(X, \mu)$ into $L_{q}(Y, \nu)$. We say, that it is of weak type (p, q), $q<\infty$, if

$$
\|T f\|_{q, w}:=\sup _{\lambda>0} \lambda \cdot \nu^{1 / q}(\{y \in Y:|T f(y)|>\lambda\}) \leq C\|f\|_{p}, \quad f \in L_{p}(X, \mu)
$$

i.e. if $T: L_{p}(X, \mu) \rightarrow L_{q, w}(Y, \nu)$.

Theorem 2.1.1. (Marcinkiewicz interpolation theorem)
Let (X, μ) and (Y, ν) be measure spaces, $1 \leq p_{0}<p_{1} \leq \infty$, and let T be a sublinear operator from $L_{p_{0}}(X, \mu)+L_{p_{1}}(X, \mu)$ to the measurable functions on Y that is weak $\left(p_{0}, p_{0}\right)$ type and weak $\left(p_{1}, p_{1}\right)$ type. Then T is strong (p, p) for $p_{0}<p<p_{1}$.
Proof. Let $\lambda>0$ be given and let $f \in L_{p}(X, \mu)$. Then we decompose f into $f=f_{0}+f_{1}$ with

$$
\begin{aligned}
& f_{0}=f \chi_{\{x:|f(x)|>\lambda\}} \\
& f_{1}=f \chi_{\{x:|f(x)| \leq \lambda\}}
\end{aligned}
$$

The case $p_{1}=\infty$ appeared implicitly already in the proof of the boundedness of HardyLittlewood maximal operator, so we suppose that $p_{1}<\infty$. Then we have

$$
\nu(\{y \in Y:|T f(y)|>\lambda\}) \leq \nu\left(\left\{y \in Y:\left|T f_{0}(y)\right|>\lambda / 2\right\}\right)+\nu\left(\left\{y \in Y:\left|T f_{1}(y)\right|>\lambda / 2\right\}\right)
$$

and

$$
\nu\left(\left\{y \in Y:\left|T f_{i}(y)\right|>\lambda / 2\right\}\right) \leq\left(\frac{2 A_{i}}{\lambda}\left\|f_{i}\right\|_{p_{i}}\right)^{p_{i}}, \quad i=0,1
$$

We combine them to get

$$
\begin{aligned}
\|T f\|_{p}^{p}= & p \int_{0}^{\infty} \lambda^{p-1} \nu(\{x:|T f(x)|>\lambda\}) d \lambda \\
\leq & p \int_{0}^{\infty} \lambda^{p-1-p_{0}}\left(2 A_{0}\right)^{p_{0}} \int_{x:|f(x)|>\lambda}|f(x)|^{p_{0}} d \mu d \lambda \\
& +p \int_{0}^{\infty} \lambda^{p-1-p_{1}}\left(2 A_{1}\right)^{p_{1}} \int_{x:|f(x)| \leq \lambda}|f(x)|^{p_{1}} d \mu d \lambda \\
= & p\left(2 A_{0}\right)^{p_{0}} \int_{X}|f(x)|^{p_{0}} \int_{0}^{|f(x)|} \lambda^{p-1-p_{0}} d \lambda d \mu \\
& +p\left(2 A_{1}\right)^{p_{1}} \int_{X}|f(x)|^{p_{1}} \int_{|f(x)|}^{\infty} \lambda^{p-1-p_{1}} d \lambda d \mu \\
= & C\|f\|_{p}^{p}
\end{aligned}
$$

2.2 Riesz-Thorin interpolation theorem

Following theorem belongs also to the classical heart of interpolation theory.
Theorem 2.2.1. (Riesz-Thorin Interpolation)
Let (X, μ) and (Y, ν) be two maesure spaces. Let $1 \leq p_{0}, p_{1}, q_{0}, q_{1} \leq \infty$, and for $0<\theta<1$ define p and q by

$$
\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}} \quad \text { and } \quad \frac{1}{q}=\frac{1-\theta}{q_{0}}+\frac{\theta}{q_{1}} .
$$

If T is a linear(!) operator from $L_{p_{0}}(X)+L_{p_{1}}(X)$ to $L_{q_{0}}(Y)+L_{q_{1}}(Y)$, such that

$$
\|T f\|_{q_{0}} \leq M_{0}\|f\|_{p_{0}} \quad \text { for } f \in L_{p_{0}}(X)
$$

and

$$
\|T f\|_{q_{1}} \leq M_{1}\|f\|_{p_{1}} \quad \text { for } f \in L_{p_{1}}(X)
$$

then

$$
\|T f\|_{q} \leq M_{0}^{1-\theta} M_{1}^{\theta}\|f\|_{p} \quad \text { for } f \in L_{p}(X) .
$$

Remark 2.2.2. In this version, the theorem only holds for function spaces of complexvalued functions. In the real case, an additional factor 2 is necessary.

Proof. If $p_{0}=p_{1}$, then the theorem collapses to Hölder's inequality. Hence, we consider only $p_{0} \neq p_{1}$ and by symmetry, $p_{0}<p_{1}$. This forces p to be finite. By multiplying μ, ν and/or T with some constants, we may assume that $M_{0}=M_{1}=1$. By Hölder's inequality, we get

$$
\begin{equation*}
\left|\int_{Y}(T f) g d \nu\right| \leq\|T f\|_{q_{0}} \cdot\|g\|_{q_{0}^{\prime}} \leq\|f\|_{p_{0}} \cdot\|g\|_{q_{0}^{\prime}}, \quad f \in L_{p_{0}}(X), \quad g \in L_{q_{0}^{\prime}}(Y) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\int_{Y}(T f) g d \nu\right| \leq\|T f\|_{q_{1}} \cdot\|g\|_{q_{1}^{\prime}} \leq\|f\|_{p_{1}} \cdot\|g\|_{q_{1}^{\prime}}, \quad f \in L_{p_{1}}(X), \quad g \in L_{q_{1}^{\prime}}(Y) . \tag{2.2}
\end{equation*}
$$

Then we claim that

$$
\begin{equation*}
\left|\int_{Y}(T f) g d \nu\right| \leq\|f\|_{p} \cdot\|g\|_{q^{\prime}} \tag{2.3}
\end{equation*}
$$

for all f, g simple functions with finite measure support. To see this, we first normalize $\|f\|_{p}=\|g\|_{q^{\prime}}=1$ and write $f=|f| \operatorname{sgn}(f)$ and $g=|g| \operatorname{sgn}(g)$. Then we define

$$
F(s):=\int_{Y}\left(T\left[|f|^{(1-s) p / p_{0}+s p / p_{1}} \operatorname{sgn}(f)\right]\right)\left[|g|^{(1-s) q^{\prime} / q_{0}^{\prime}+s q^{\prime} / q_{1}^{\prime}} \operatorname{sgn}(g)\right] d \nu
$$

with $q^{\prime} / q_{0}^{\prime}=q^{\prime} / q_{1}^{\prime}=1$ if $q_{0}^{\prime}=q_{1}^{\prime}=q^{\prime}=\infty$. We observe (by the linearity of T) that F is holomorphic function in s of at most exponential growth. We observe that
i) $F(\theta)=\int_{Y}(T f) g d \nu$,
ii) $|F(0+i t)| \leq 1$, by (2.1),
iii) $|F(1+i t)| \leq 1$, by (2.2).

The claim then follows by
Theorem 2.2.3. (Lindelöf's Three-Lines Theorem) Let $s \mapsto F(s)$ be a holomorphic function on the strip $S:=\{\sigma+i t: 0 \leq \sigma \leq 1 ; t \in \mathbb{R}\}$, which obeys the bound

$$
|F(\sigma+i t)| \leq A \exp (\exp ((\pi-\delta) t))
$$

for all $\sigma+i t \in S$ and some constants $A, \delta>0$. Suppose also that $|F(0+i t)| \leq B_{0}$ and $|F(1+i t)| \leq B_{1}$ for all $t \in \mathbb{R}$. Then we have $|F(\theta+i t)| \leq B_{0}^{1-\theta} B_{1}^{\theta}$ for all $0 \leq \theta \leq 1$ and $t \in \mathbb{R}$.

To extend (2.3) to general functions f and g, one takes $f \in L_{p}(X)$ (keeping g simple with finite measure support) by decomposing f into a bounded function and a function of finite measure support, approximating the former in $L_{p}(X) \cap L_{p_{1}}(X)$ by simple functions of finite measure support, and approximating the latter in $L_{p}(X) \cap L_{p_{0}}(X)$ by simple functions of finite measure support, and taking limits using (2.1), (2.2) to justify the passage to the limit. One can then also allow arbitrary $g \in L_{q^{\prime}}(Y)$ by using the monotone convergence theorem. The claim now follows from the duality between $L_{q_{1}}(Y)$ and $L_{q_{1}^{\prime}}(Y)$.

Proof. of Theorem 2.2.3:

We shall assume first that F is bounded on S. Define holomorpic functions

$$
G(s)=F(s)\left(B_{0}^{1-s} B_{1}^{s}\right)^{-1} \quad \text { and } \quad G_{n}(s)=G(s) e^{\left(s^{2}-1\right) / n}
$$

Since F is bounded on the closed unit strip and $B_{0}^{1-s} B_{1}^{s}$ is bounded from below, we conclude that G is bounded by some constant M on the closed strip. Also, G is bounded by one on its boundary. Since

$$
\left|G_{n}(x+i y)\right| \leq M e^{-y^{2} / n} e^{\left(x^{2}-1\right) / n} \leq M e^{-y^{2} / n}
$$

we deduce that $G_{n}(x+i y)$ converges to zero uniformly in $0 \leq x \leq 1$ as $|y| \rightarrow \infty$. Select $y(n)>0$ such that for $|y| \geq y(n),\left|G_{n}(x+i y)\right| \leq 1$ uniformly in $x \in[0,1]$. By the maximum principle we obtain that $\left|G_{n}(s)\right| \leq 1$ in the rectangle $[0,1] \times[-y(n), y(n)]$; hence $\left|G_{n}(s)\right| \leq 1$ everywhere in the closed strip. Letting $n \rightarrow \infty$, we conclude that $|G(s)| \leq 1$ in the closed strip.

The case of a general function F is then done in a similar way by considering

$$
F(s)\left(B_{0}^{1-s} B_{1}^{s}\right)^{-1} G_{\varepsilon}(s) G_{\varepsilon}(1-s) \quad \text { and } \quad G_{\varepsilon}(s)=\exp (\varepsilon i \exp (i[\pi-\delta / 2] s+\delta / 4))
$$

Riesz-Thorin theorem has two straightforward applications. From properties of the Fourier transform $\mathcal{F}: L_{1}\left(\mathbb{R}^{n}\right) \rightarrow L_{\infty}\left(\mathbb{R}^{n}\right)$ and $\mathcal{F}: L_{2}\left(\mathbb{R}^{n}\right) \rightarrow L_{2}\left(\mathbb{R}^{n}\right)$, both with norm 1 , we deduce the Hausdorff- Young inequality $\|\mathcal{F} f\|_{p^{\prime}} \leq\|f\|_{p}$ for every $1 \leq p \leq 2$.

The second application deals with convolution operator. Let $g \in L_{1}\left(\mathbb{R}^{n}\right)$ be a given function and let $\Phi_{g}(f)=f * g$. The (easy) estimates $\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1}$ and $\| f *$ $g\left\|_{\infty} \leq\right\| f\left\|_{\infty}\right\| g \|_{1}$ show, that $\Phi_{g}: L_{1}\left(\mathbb{R}^{n}\right) \rightarrow L_{1}\left(\mathbb{R}^{n}\right)$ and $\Phi_{g}: L_{\infty}\left(\mathbb{R}^{n}\right) \rightarrow L_{\infty}\left(\mathbb{R}^{n}\right)$. By Riesz-Thorin interpolation, we get also $\Phi_{g}: L_{p}\left(\mathbb{R}^{n}\right) \rightarrow L_{p}\left(\mathbb{R}^{n}\right)$ for any $1<p<\infty$, i.e. $\|f * g\|_{p} \leq\|f\|_{p}\|g\|_{1}$.

Next, we consider the convolution operator $\Psi_{f}(g)=f * g$. We have just proven that $\Psi_{f}: L_{1}\left(\mathbb{R}^{n}\right) \rightarrow L_{p}\left(\mathbb{R}^{n}\right)$ for any $f \in L_{p}\left(\mathbb{R}^{n}\right)$. The easy estimate (which follows at once
by Hölder's inequality) $\|f * g\|_{\infty} \leq\|f\|_{p}\|g\|_{p^{\prime}}$ for $1 \leq p \leq \infty$ then gives $\Psi_{f}: L_{p^{\prime}}\left(\mathbb{R}^{n}\right) \rightarrow$ $L_{\infty}\left(\mathbb{R}^{n}\right)$. By Riesz-Thorin Theorem, we obtain the Young's inequality, which states that

$$
\|f * g\|_{r} \leq\|f\|_{p} \cdot\|g\|_{q}
$$

with $1 / r+1=1 / p+1 / q$. Indeed, let $1<q<p^{\prime}$, then we define $0<\theta<1$ by

$$
\frac{1}{q}=\frac{1-\theta}{1}+\frac{\theta}{p^{\prime}}, \quad \text { i.e. } \frac{1}{q}=1-\frac{\theta}{p} .
$$

Then $\Psi_{f}: L_{r}\left(\mathbb{R}^{n}\right) \rightarrow L_{q}\left(\mathbb{R}^{n}\right)$, where

$$
\frac{1}{r}=\frac{1-\theta}{p}+\frac{\theta}{\infty}=\frac{1}{p}-\frac{\theta}{p}=\frac{1}{p}+\frac{1}{q}-1
$$

3 Weighted inequalities

3.1 Calderón-Zygmund decomposition

The aim of this is to present the decomposition method of Calderón and Zygmund. In its simple form, it was already used in the proof of boundedness of the maximal operator M.

Theorem 3.1.1. Given a function f, which is integrable and non-negative, and given a positive number λ, there exists a sequence ${ }^{4}\left(Q_{j}\right)$ of disjoint dyadic cubes such that
i) $f(x) \leq \lambda$ for almost every $x \notin \bigcup_{j} Q_{j}$;
ii) $\left|\bigcup_{j} Q_{j}\right| \leq \frac{1}{\lambda}\|f\|_{1}$;
iii) $\lambda<\frac{1}{\left|Q_{j}\right|} \int_{Q_{j}} f \leq 2^{n} \lambda$.

Proof. We denote by \mathcal{Q}_{k} the collection of dyadic cubes with side length $2^{-k}, k \in \mathbb{Z}$. Furthermore, we define

$$
E_{k} f(x)=\sum_{Q \in \mathcal{Q}_{k}}\left(\frac{1}{|Q|} \int_{Q} f\right) \chi_{Q}(x)
$$

We define also

$$
\Omega_{k}:=\left\{x \in \mathbb{R}^{n}: E_{k} f(x)>\lambda \text { and } E_{j} f(x) \leq \lambda \text { if } j<k\right\}
$$

That is, $x \in \Omega_{k}$ if k is the smallest index with $E_{k} f(x)>\lambda$. Observe, that if $E_{k} f(x)>\lambda$ for at least one index $k \in \mathbb{Z}$, the integrability of f implies $E_{k} f(x) \rightarrow 0$ for $k \rightarrow-\infty$, and the smallest index k with $E_{k} f(x)>\lambda$ always exists. The sets Ω_{k} are clearly disjoint and each can be written as the union of cubes in \mathcal{Q}_{k}. Together, these cubes form the system $\left(Q_{j}\right)$.

This gives the third statement of the theorem. The first follows by Lebesgue differentiation theorem: indeed, $E_{k} f(x) \leq \lambda$ for all $k \in \mathbb{Z}$ implies $f(x) \leq \lambda$ at almost every such point. The second follows just by

$$
\left|\bigcup_{j} Q_{j}\right|=\sum_{j}\left|Q_{j}\right| \leq \frac{1}{\lambda} \sum_{j} \int_{Q_{j}} f \leq \frac{1}{\lambda}\|f\|_{1}
$$

3.2 First inequality

Theorem 3.2.1. If w is a non-negative, measurable function and $1<p<\infty$, then there exists a constant C_{p} such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}[M f(x)]^{p} w(x) d x \leq C_{p} \int_{\mathbb{R}^{n}}|f(x)|^{p} M w(x) d x \tag{3.1}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\int_{\{x: M f(x)>\lambda\}} w(x) d x \leq \frac{C}{\lambda} \int_{\mathbb{R}^{n}}|f(x)| M w(x) d x \tag{3.2}
\end{equation*}
$$

[^2]Proof. We shall show that

$$
\begin{equation*}
\|M f\|_{L_{\infty}(w)} \leq\|f\|_{L_{\infty}(M w)} \tag{3.3}
\end{equation*}
$$

and that the weak-type estimate (3.2) holds. The rest then follows by Marcinkiewicz interpolation theorem.

For (3.3), we argue as follows. If $M w(x)=0$ for any x, then $w(x)=0$ a.e. and there is nothing to prove. Therefore, we may assume that $M w(x)>0$. Let $a>\|f\|_{L_{\infty}(M w)}$. Then

$$
\int_{\{x:|f(x)|>a\}} M w(x) d x=0,
$$

and so $\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>a\right\}\right|=0$ and $|f(x)| \leq a$ a.e. Therefore $M f(x) \leq a$ a.e. and $\|M f\|_{L_{\infty}(w)} \leq a$. This gives (3.3).

To show (3.2), we may assume that f is non-negative and integrable (If $f \in L_{1}(M w)$, then $f \chi_{B(0, j)}$ is a monotone sequence of integrable functions converging to f.) Let $\left(Q_{j}\right)$ be the Calderón-Zygmund decomposition of f at height $\lambda>0$.

Let $x \notin \bigcup_{j} 2 Q_{j}$, and let Q be any cube centered at x. Let $l(Q)$ denote the side length of Q. Take $k \in \mathbb{Z}$ with $2^{-(k+1)} \leq l(Q)<2^{-k}$. Then Q intersects $m \leq 2^{n}$ dyadic cubes in \mathcal{Q}_{k}, which we denote R_{1}, \ldots, R_{m}. As $x \notin \bigcup_{j} 2 Q_{j}$, none of the cubes R_{1}, \ldots, R_{m} is contained in any of the Q_{j} 's. By the construction of the Calderón-Zygmund decomposition, the average of f on each R_{i} is at most λ. Hence we obtain

$$
\frac{1}{|Q|} \int_{Q} f=\frac{1}{|Q|} \sum_{i=1}^{m} \int_{Q \cap R_{i}} f \leq \frac{1}{|Q|} \sum_{i=1}^{m} \frac{2^{-k n}}{\left|R_{i}\right|} \int_{R_{i}} f \leq 2^{n} m \lambda \leq 4^{n} \lambda .
$$

Therefore,

$$
\begin{equation*}
\left\{x \in \mathbb{R}^{n}: M^{\prime} f(x)>4^{n} \lambda\right\} \subset \bigcup_{j} 2 Q_{j} \tag{3.4}
\end{equation*}
$$

and we obtain

$$
\begin{aligned}
\int_{\left\{x: M^{\prime} f(x)>4^{n} \lambda\right\}} w(x) d x & \leq \sum_{j} \int_{2 Q_{j}} w(x) d x \\
& =\sum_{j} 2^{n}\left|Q_{j}\right| \frac{1}{\left|2 Q_{j}\right|} \int_{2 Q_{j}} w(x) d x \\
& \leq \frac{2^{n}}{\lambda} \sum_{j} \int_{Q_{j}} f(y)\left(\frac{1}{\left|2 Q_{j}\right|} \int_{2 Q_{j}} w(x) d x\right) d y \\
& \leq \frac{2^{n} C}{\lambda} \int_{\mathbb{R}^{n}} f(y) M^{\prime \prime} w(y) d y .
\end{aligned}
$$

Since $M^{\prime \prime} w \approx M^{\prime} w \approx M w$, we get (3.2).
Let us observe that if $M w(x) \leq C w(x)$, then the inequalities (3.1) and (3.2) simplify to boundedness of M on weighted spaces. This will be the starting point of the study of weighted spaces.

3.3 The Muckenhaupt A_{p} condition

If $1 \leq p<\infty$ and w is a non-negative measurable function on \mathbb{R}^{n}, then we denote by

$$
\begin{equation*}
L_{p}(w)=\left\{f:\|f\|_{L_{p}(w)}=\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x\right)^{1 / p}<\infty\right\} \tag{3.5}
\end{equation*}
$$

the weighted Lebesgue spaces. To avoid trivialities, it is good to assume that $w>0$ a.e. and that w is locally integrable.

In this section, we shall denote by M the non-centered cubic maximal operator, earlier denoted by $M^{\prime \prime}$.

We are looking for necessary and sufficient conditions on w, such that

$$
\begin{equation*}
M: L_{p}(w) \rightarrow L_{p}(w), \tag{3.6}
\end{equation*}
$$

or in the weak form

$$
\begin{equation*}
M: L_{p}(w) \rightarrow L_{p, w}(w) . \tag{3.7}
\end{equation*}
$$

Let us assume first, that (3.7) holds, i.e.

$$
\begin{equation*}
w\left(\left\{x \in \mathbb{R}^{n}: M f(x)>\lambda\right\}\right) \leq \frac{C}{\lambda^{p}} \int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x \tag{3.8}
\end{equation*}
$$

for every $\lambda>0$.
Let $f \geq 0$ and let Q be a cube with $f(Q)=\int_{Q} f>0$. Take $0<\lambda<f(Q) /|Q|$. Then $Q \subset\left\{x \in \mathbb{R}^{n}: M\left(f \chi_{Q}\right)(x)>\lambda\right\}$ and (3.8) implies

$$
\begin{equation*}
w(Q) \leq \frac{C}{\lambda^{p}} \int_{Q}|f(x)|^{p} w(x) d x . \tag{3.9}
\end{equation*}
$$

As this holds for all the λ 's as above, we get

$$
\begin{equation*}
w(Q)\left(\frac{f(Q)}{|Q|}\right)^{p} \leq C \int_{Q}|f|^{p} w . \tag{3.10}
\end{equation*}
$$

If $S \subset Q$ is a measurable subset, we take $f=\chi_{S}$ and obtain the necessary condition for (3.8),

$$
\begin{equation*}
w(Q)\left(\frac{|S|}{|Q|}\right)^{p} \leq C w(S) \quad \text { for all cubes } Q \quad \text { and for all } S \subset Q . \tag{3.11}
\end{equation*}
$$

Let us interupt now with two short conclusions.

1. The weight w is either identically 0 or $w>0$ a.e. - just consider S to be a bounded set of positive measure with $w=0$ on S.
2. The weight w is either locally integrable, or identically infinite. If $w(Q)=\infty$, then the same is true for any larger cube, and therefore also for every bounded set S.

We want to further simplify (3.11). We shall distinguish two cases, $p=1$ and $p>1$.
Case 1: $p=1$
In this case, (3.11) becomes

$$
\frac{w(Q)}{|Q|} \leq C \frac{w(S)}{|S|}
$$

Choosing $S_{\varepsilon}:=\left\{x \in Q: w(x) \leq \varepsilon+\operatorname{essinf}_{y \in Q} w(y)\right\}$, we get $w(Q) /|Q| \leq C\left(\operatorname{essinf}_{y \in Q} w(y)+\right.$ $\varepsilon)$ for every $\varepsilon>0$, i.e.

$$
\frac{w(Q)}{|Q|} \leq C \operatorname{essinf}_{y \in Q} w(y)
$$

or equivalently

$$
\begin{equation*}
\frac{w(Q)}{|Q|} \leq C w(x), \quad \text { a.e. } x \in Q \tag{3.12}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
M w(x) \leq C w(x), \quad \text { a.e. } x \in \mathbb{R}^{n} . \tag{3.13}
\end{equation*}
$$

This is the so-called A_{1} condition. Clearly, (3.13) implies (3.12). The converse follows by considering (the countably many) cubes with rational vertices.

Case 2: $1<p<\infty$
We put $f=w^{1-p^{\prime}} \chi_{Q}$ into (3.10) and obtain

$$
w(Q)\left(\frac{1}{|Q|} \int_{Q} w^{1-p^{\prime}}\right)^{p} \leq C \int_{Q} w^{1-p^{\prime}}
$$

or equivalently

$$
\begin{equation*}
\left(\frac{1}{|Q|} \int_{Q} w\right)\left(\frac{1}{|Q|} \int_{Q} w^{1-p^{\prime}}\right)^{p-1} \leq C \tag{3.14}
\end{equation*}
$$

As we do not know a-priori that $w^{1-p^{\prime}}$ is locally integrable, we take first $f=\min \left(w^{1-p^{\prime}}, n\right)$ and pass to the limit $n \rightarrow \infty$. Only after that, we conclude from (3.14) that $w^{1-p^{\prime}}$ is really locally integrable. Condition (3.14) was introduced by Muckenhaupt and is called A_{p} condition (i.e. we write $w \in A_{p}$ if w satisfies (3.14) for all cubes Q).

Theorem 3.3.1. Let $1 \leq p<\infty$. Then the weak (p, p) inequality

$$
\begin{equation*}
w\left(\left\{x \in \mathbb{R}^{n}: M f(x)>\lambda\right\}\right) \leq \frac{C}{\lambda^{p}} \int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x, \quad \lambda>0 \tag{3.15}
\end{equation*}
$$

holds if and only if $w \in A_{p}$.
Proof. The necessity follows from the discussion just given.
The case $p=1$ follows directly from Theorem 3.2.1.
If $p>1, w \in A_{p}$ and a function f is given, then we show (3.10). By Hölder's inequality

$$
\begin{aligned}
\left(\frac{1}{|Q|} \int_{Q}|f|\right)^{p} & =\left(\frac{1}{|Q|} \int_{Q}|f| w^{1 / p} w^{-1 / p}\right)^{p} \\
& \leq\left(\frac{1}{|Q|} \int_{Q}^{\left.|f|^{p} w\right)\left(\frac{1}{|Q|} \int_{Q} w^{1-p^{\prime}}\right)^{p-1}}\right. \\
& \leq C\left(\frac{1}{|Q|} \int_{Q}|f|^{p} w\right) \cdot \frac{|Q|}{w(Q)} .
\end{aligned}
$$

Therefore, also (3.10) is true and (3.11) also follows.
We may again assume that f is non-negative and integrable. Considering the CalderónZygmund decomposition of f at height $4^{-n} \lambda$, we get again

$$
\left\{x \in \mathbb{R}^{n}: M f(x)>\lambda\right\} \subset \bigcup_{j} 3 Q_{j},
$$

as in (3.4), where the 3 is used due to the non-centered maximal operator. Then, putting this all together,

$$
\begin{aligned}
w\left(\left\{x \in \mathbb{R}^{n}: M f(x)>\lambda\right\}\right) & \leq \sum_{j} w\left(3 Q_{j}\right) \leq C 3^{n p} \sum_{j} w\left(Q_{j}\right) \\
& \leq C 3^{n p} \sum_{j}\left(\frac{\left|Q_{j}\right|}{f\left(Q_{j}\right)}\right)^{p} \int_{Q_{j}}|f|^{p} w \leq C 3^{n p}\left(\frac{4^{n}}{\lambda}\right)^{p} \int_{\mathbb{R}^{n}}|f|^{p} w .
\end{aligned}
$$

Here, the second inequality follows from (3.11), the third from (3.10) and the fourth from the properties of the Calderón-Zygmund decomposition $\left(Q_{j}\right)_{j}$.

Proposition 3.3.2. i) $A_{p} \subset A_{q}$ for $1 \leq p<q$.
ii) $w \in A_{p}$ if and only if $w^{1-p^{\prime}} \in A_{p^{\prime}}$.
iii) If $w_{0}, w_{1} \in A_{1}$ then $w_{0} w_{1}^{1-p} \in A_{p}$.

Proof. (i) If $p=1$ then

$$
\left(\frac{1}{|Q|} \int_{Q} w^{1-q^{\prime}}\right)^{q-1} \leq \operatorname{esssup}_{x \in Q} w(x)^{-1}=\left(\operatorname{essinf}_{x \in Q} w(x)\right)^{-1} \leq C\left(\frac{w(Q)}{|Q|}\right)^{-1}
$$

If $p>1$ then this follows immediately from Hölder's inequality.
(ii) The $A_{p^{\prime}}$ condition for $w^{1-p^{\prime}}$ is

$$
\left(\frac{1}{|Q|} \int_{Q} w^{1-p^{\prime}}\right)\left(\frac{1}{|Q|} \int_{Q} w^{\left(1-p^{\prime}\right)(1-p)}\right)^{p^{\prime}-1} \leq C,
$$

and since $\left(p^{\prime}-1\right)(p-1)=1$, the left-hand side is the A_{p} condition raised to the power $p^{\prime}-1$.
(iii) We need to prove that

$$
\begin{equation*}
\left(\frac{1}{|Q|} \int_{Q} w_{0} w_{1}^{1-p}\right)\left(\frac{1}{|Q|} \int_{Q} w_{0}^{1-p^{\prime}} w_{1}\right)^{p^{\prime}-1} \leq C \tag{3.16}
\end{equation*}
$$

By the A_{1} condition, for a.e. $x \in Q$ and $i=0,1$,

$$
w_{i}(x)^{-1} \leq \operatorname{esssup}_{x \in Q} w_{i}(x)^{-1}=\left(\operatorname{essinf}_{x \in Q} w_{i}(x)\right)^{-1} \leq C\left(\frac{w_{i}(Q)}{|Q|}\right)^{-1}
$$

We substitute this into (3.16) for the negative powers and get the desired inequality.

3.4 Strong-type inequalities

Theorem 3.4.1. Let $1<p<\infty$. Then M is bounded on $L_{p}(w)$ if and only if $w \in A_{p}$.
Proof. If M is of strong (p, p) type, then it is also of weak (p, p) type, and therefore $w \in A_{p}$.
Let on the other hand $w \in A_{p}$. We shall show that there exists $q<p$ with $w \in A_{q}$. Then M is of weak (q, q) type and M is of strong (∞, ∞) type, as $L_{\infty}(w)=L_{\infty}(w(E)=0$ if and only if $|E|=0$). The result then follows by Marcinkiewicz interpolation theorem.

The existence of such a q is a consequence of
Theorem 3.4.2. (Reverse Hölder's Inequality) Let $w \in A_{p}, 1 \leq p<\infty$. Then there exist constants C and $\varepsilon>0$ depending only on p and the A_{p} constant of w, such that for any cube Q

$$
\begin{equation*}
\left(\frac{1}{|Q|} \int_{Q} w^{1+\varepsilon}\right)^{1 /(1+\varepsilon)} \leq \frac{C}{|Q|} \int_{Q} w . \tag{3.17}
\end{equation*}
$$

The name comes from the fact that the reverse of (3.17) is a consequence of Hölder's inequality.

Proof. The proof uses the following
Fact: Let $w \in A_{p}, 1 \leq p<\infty$. Then for every $0<\alpha<1$, there exists $0<\beta<1$, such that for every cube Q and $S \subset Q$ with $|S| \leq \alpha|Q|$ also $w(S) \leq \beta w(Q)$ holds.
To prove the fact, just replace S by $Q \backslash S$ in (3.11) to get

$$
w(Q)\left(1-\frac{|S|}{|Q|}\right)^{p} \leq C(w(Q)-w(S))
$$

If $|S| \leq \alpha|Q|$, we get the statement with $\beta=1-C^{-1}(1-\alpha)^{p}$.
Fix a cube Q and form Calderón-Zygmund decompositions of w with respect to Q at heights $w(Q) /|Q|=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{k}<\ldots$; we will fix the λ_{k} 's below.

We get a family $\left\{Q_{k, j}\right\}$ of cubes with

$$
\begin{aligned}
w(x) & \leq \lambda_{k} \text { if } x \notin \Omega_{k}=\bigcup_{j} Q_{k, j}, \\
\lambda_{k} & <\frac{1}{\left|Q_{k, j}\right|} \int_{Q_{k, j}} w \leq 2^{n} \lambda_{k} .
\end{aligned}
$$

By construction $\Omega_{k+1} \subset \Omega_{k}$ and $Q_{k, j_{0}} \cap \Omega_{k+1}$ is the union of cubes $Q_{k+1, i}$. Therefore

$$
\left|Q_{k, j_{0}} \cap \Omega_{k+1}\right|=\sum_{i}\left|Q_{k+1, i}\right| \leq \frac{1}{\lambda_{k+1}} \sum_{i} \int_{Q_{k+1, i}} w \leq \frac{1}{\lambda_{k+1}} \int_{Q_{k, j_{0}}} w \leq \frac{2^{n} \lambda_{k}}{\lambda_{k+1}}\left|Q_{k, j_{0}}\right| .
$$

Fix $0<\alpha<1$ and put $\lambda_{k}:=\left(2^{n} \alpha^{-1}\right)^{k} w(Q) /|Q|$, i.e. $2^{n} \lambda_{k} / \lambda_{k+1}=\alpha$. Then $\left|Q_{k, j_{0}} \cap \Omega_{k+1}\right| \leq$ $\alpha\left|Q_{k, j_{0}}\right|$ and (by the Fact) $w\left(Q_{k, j_{0}} \cap \Omega_{k+1}\right) \leq \beta w\left(Q_{k, j_{0}}\right)$.

We sum on the level k and get $w\left(\Omega_{k+1}\right) \leq \beta w\left(\Omega_{k}\right)$, i.e. $w\left(\Omega_{k}\right) \leq \beta^{k} w\left(\Omega_{0}\right)$ and by the same argument $\left|\Omega_{k}\right| \leq \alpha^{k}\left|\Omega_{0}\right|$.
Therefore,

$$
\begin{aligned}
\frac{1}{|Q|} \int_{Q} w^{1+\varepsilon} & =\frac{1}{|Q|} \int_{Q \backslash \Omega_{0}} w^{1+\varepsilon}+\frac{1}{|Q|} \sum_{k=0}^{\infty} \int_{\Omega_{k} \backslash \Omega_{k+1}} w^{1+\varepsilon} \\
& \leq \lambda_{0}^{\varepsilon} \frac{w(Q)}{|Q|}+\frac{1}{|Q|} \sum_{k=0}^{\infty} \lambda_{k+1}^{\varepsilon} w\left(\Omega_{k}\right) \\
& \leq \lambda_{0}^{\varepsilon} \frac{w(Q)}{|Q|}+\frac{1}{|Q|} \sum_{k=0}^{\infty}\left(2^{n} \alpha^{-1}\right)^{(k+1) \varepsilon} \lambda_{0}^{\varepsilon} \beta^{k} w\left(\Omega_{0}\right) .
\end{aligned}
$$

Choose $\varepsilon>0$ with $\left(2^{n} \alpha^{-1}\right)^{\varepsilon} \beta<1$; then the series converges and the last term is bounded by $C \lambda_{0}^{\varepsilon} w(Q) /|Q|$. Since $\lambda_{0}=w(Q) /|Q|$, the proof is finished.

Proposition 3.4.3. i) $A_{p}=\bigcup_{q<p} A_{q}, 1<p<\infty$.
ii) If $w \in A_{p}, 1 \leq p<\infty$, then there exists $\varepsilon>0$ such that $w^{1+\varepsilon} \in A_{p}$.
iii) If $w \in A_{p}, 1 \leq p<\infty$, then there exists $\delta>0$ such that given a cube Q and $S \subset Q$,

$$
\frac{w(S)}{w(Q)} \leq C\left(\frac{|S|}{|Q|}\right)^{\delta} .
$$

The last condition is called A_{∞}. With this notation, (i) holds also for $p=\infty$.

Proof. (i) Let $w \in A_{p}$. Then by Proposition 3.3.2, we get that $w^{1-p^{\prime}} \in A_{p^{\prime}}$ and by Reverse Hölder's inequality

$$
\left(\frac{1}{|Q|} \int_{Q} w^{\left(1-p^{\prime}\right)(1+\varepsilon)}\right)^{1 /(1+\varepsilon)} \leq \frac{C}{|Q|} \int_{Q} w^{1-p^{\prime}}
$$

for all cubes Q and some $\varepsilon>0$. Fix q with $q^{\prime}-1=\left(p^{\prime}-1\right)(1+\varepsilon)$. Then $q<p$ and we get

$$
\begin{aligned}
\left(\frac{1}{|Q|} \int_{Q} w\right)\left(\frac{1}{|Q|} \int_{Q} w^{1-q^{\prime}}\right)^{q-1} & \leq\left(\frac{1}{|Q|} \int_{Q} w\right)\left(\frac{C}{|Q|} \int_{Q} w^{1-p^{\prime}}\right)^{(1+\varepsilon)(q-1)} \\
& =\left(\frac{1}{|Q|} \int_{Q} w\right)\left(\frac{C}{|Q|} \int_{Q} w^{1-p^{\prime}}\right)^{p-1} \leq C^{\prime}
\end{aligned}
$$

by $w \in A_{p}$ and $(1+\varepsilon)(q-1)=p-1$. This implies that $w \in A_{q}$.
(ii) If $p>1$, then we choose $\varepsilon>0$ small enough, so that both w and $w^{1-p^{\prime}}$ satisfy the Reverse Hölder's inequality with ε. We get from the A_{p} condition

$$
\left(\frac{1}{|Q|} \int_{Q} w^{1+\varepsilon}\right)\left(\frac{1}{|Q|} \int_{Q} w^{(1+\varepsilon)\left(1-p^{\prime}\right)}\right)^{p-1} \leq C\left(\frac{1}{|Q|} \int_{Q} w\right)^{1+\varepsilon}\left(\frac{C^{\prime}}{|Q|} \int_{Q} w^{1-p^{\prime}}\right)^{(1+\varepsilon)(p-1)} \leq C^{\prime \prime} .
$$

If $p=1$, we get

$$
\frac{1}{|Q|} \int_{Q} w^{1+\varepsilon} \leq C\left(\frac{1}{|Q|} \int_{Q} w\right)^{1+\varepsilon} \leq C^{\prime} w(x)^{1+\varepsilon}, \quad \text { for a.e. } x \in Q \text {. }
$$

(iii) Fix $S \subset Q$ and suppose that w satisfies the Reverse Hölder's Inequality with $\varepsilon>0$. Then (by Hölder's inequality!)

$$
w(S)=\int_{Q} \chi_{S} w \leq\left(\int_{Q} w^{1+\varepsilon}\right)^{1 /(1+\varepsilon)}|S|^{\varepsilon /(1+\varepsilon)} \leq C w(Q)\left(\frac{|S|}{|Q|}\right)^{\varepsilon /(1+\varepsilon)} .
$$

Hence, we may choose $\delta=\varepsilon /(1+\varepsilon)=1 /(1+\varepsilon)^{\prime}$.

4 Hilbert transform

One of the main objects of harmonic analysis are singular integrals, from which the most important is the Hilbert transform.

4.1 Hilbert Transform

The Hilbert transform of a measurable function f on \mathbb{R} is defined as

$$
H f(x)=\frac{1}{\pi} \int_{\mathbb{R}} \frac{f(x-y)}{y} d y
$$

As the integral does not converge absolutely, it has to be interpreted in an appropriate limiting sense, which uses its cancellation property, i.e.

$$
H f(x)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{\pi} \int_{y:|y|>\varepsilon} \frac{f(x-y)}{y} d y
$$

With this definition, $H f(x)$ makes sense for all smooth functions, especially for $f \in \mathscr{S}(\mathbb{R})$. 5

If we define the distribution

$$
\text { p.v. } \frac{1}{x}(\varphi):=\lim _{\varepsilon \rightarrow 0^{+}} \int_{x:|x|>\varepsilon} \frac{\varphi(x)}{x} d x, \quad \varphi \in \mathscr{S}(\mathbb{R})
$$

then $H f:=\frac{1}{\pi}$ p.v. $\frac{1}{x} * f$. This formula suggests that we look for the Fourier transform of $H f$. Therefore, we regularize $1 / x$. This can be done using complex distributions $\frac{1}{\pi(x \pm i \varepsilon)}$ and letting $\varepsilon \rightarrow 0$ or (and that is what we shall do) by defining

$$
Q_{t}(x):=\frac{1}{\pi} \cdot \frac{x}{t^{2}+x^{2}}
$$

Obviously, $\lim _{t \rightarrow 0} Q_{t}(x)=\frac{1}{\pi x}$ holds pointwise and, as we shall show below, also in $\mathscr{S}^{\prime}(\mathbb{R})$. As

$$
\begin{aligned}
\mathcal{F}^{-1}\left(\operatorname{sgn}(x) e^{-a|x|}\right)(\xi) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \operatorname{sgn}(x) e^{-a|x|} \cdot e^{i x \xi} d x \\
& =\frac{1}{\sqrt{2 \pi}}\left\{-\int_{-\infty}^{0} e^{x(a+i \xi)} d x+\int_{0}^{\infty} e^{x(-a+i \xi)} d x\right\} \\
& =\frac{1}{\sqrt{2 \pi}}\left\{\frac{-1}{a+i \xi}+\frac{1}{a-i \xi}\right\}=\sqrt{\frac{2}{\pi}} \cdot \frac{i \xi}{a^{2}+\xi^{2}},
\end{aligned}
$$

we obtain

$$
\widehat{Q}_{t}(\xi)=\frac{-i}{\sqrt{2 \pi}} \operatorname{sgn}(\xi) e^{-t|\xi|}
$$

we have also $\lim _{t \rightarrow 0} \widehat{Q}_{t}(\xi)=-i \operatorname{sgn}(\xi) / \sqrt{2 \pi}$. As this convergence is uniform on compact sets, it holds also in $\mathscr{S}^{\prime}(\mathbb{R})$. Finally, due to the continuity of Fourier transform, we obtain

$$
\left(\frac{1}{\pi} \text { p.v. } \frac{1}{x}\right)^{\wedge}=\left[\lim _{t \rightarrow 0} Q_{t}\right]^{\wedge}=\lim _{t \rightarrow 0} \widehat{Q}_{t}=\frac{-i \operatorname{sgn}(\cdot)}{\sqrt{2 \pi}}
$$

[^3]Theorem 4.1.1. In $\mathscr{S}^{\prime}(\mathbb{R})$,

$$
\lim _{t \rightarrow 0} Q_{t}(x)=\frac{1}{\pi} \text { p.v. } \frac{1}{x} .
$$

Proof. For each $\varepsilon>0$, the functions $\psi_{\varepsilon}(x)=x^{-1} \chi_{\{y:|y|>\varepsilon\}}(x)$ are bounded and define tempered distributions with $\lim _{\varepsilon \rightarrow 0^{+}} \psi_{\varepsilon}=$ p.v. $\frac{1}{x}$. Therefore, it is enough to show that

$$
\lim _{t \rightarrow 0}\left(\pi Q_{t}-\psi_{t}\right)=0
$$

in $\mathscr{S}^{\prime}(\mathbb{R})$. This follows by

$$
\begin{aligned}
\left(\pi Q_{t}-\psi_{t}\right)(\varphi) & =\int_{\mathbb{R}} \frac{x \varphi(x)}{t^{2}+x^{2}} d x-\int_{x:|x|>t} \frac{\varphi(x)}{x} d x \\
& =\int_{x:|x|<t} \frac{x \varphi(x)}{t^{2}+x^{2}} d x+\int_{x:|x|>t}\left(\frac{x}{t^{2}+x^{2}}-\frac{1}{x}\right) \varphi(x) d x \\
& =\int_{x:|x|<1} \frac{x \varphi(x t)}{1+x^{2}} d x-\int_{x:|x|>1} \frac{\varphi(t x)}{x\left(1+x^{2}\right)} d x
\end{aligned}
$$

for $\varphi \in \mathscr{S}(\mathbb{R})$. As $t \rightarrow 0$, we apply Lebesgue dominated convergence theorem and use the symmetry of the integrands to conclude, that the limit is zero.

Summarizing, one defines the Hilbert transform $H f$ for $f \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ by any of these formulas:

$$
\begin{aligned}
H f & =\frac{1}{\pi} \text { p.v. } \frac{1}{x} * f, \\
H f & =\lim _{t \rightarrow 0} Q_{t} * f, \\
(H f)^{\wedge}(\xi) & =-i \operatorname{sgn}(\xi) \hat{f}(\xi) .
\end{aligned}
$$

Using the third expression, we can extend the definition of H to $L_{2}(\mathbb{R})$ and it holds

$$
\begin{aligned}
\|H f\|_{2} & =\left\|(H f)^{\wedge}\right\|_{2}=\|-i \operatorname{sgn}(\cdot) \hat{f}\|_{2}=\|\hat{f}\|_{2}=\|f\|_{2}, \\
H(H f) & =\left(-i \operatorname{sgn}(\cdot)(H f)^{\wedge}\right)^{\vee}=\left((-i \operatorname{sgn}(\cdot))^{2} \hat{f}\right)^{\vee}=(-\hat{f})^{\vee}=-f, \\
\langle H f, H g\rangle & =\langle f, g\rangle, \quad \text { by polarization, } \\
\int H f \cdot g & =-\int f \cdot H g,
\end{aligned}
$$

where the last identity follows from

$$
\langle H f, g\rangle=\left\langle(H f)^{\wedge}, \hat{g}\right\rangle=\langle-i \operatorname{sgn}(\cdot) \hat{f}, \hat{g}\rangle=\langle\hat{f}, \operatorname{sgn}(\cdot) \hat{g}\rangle=\left\langle\hat{f},-(H g)^{\wedge}\right\rangle=-\langle f, H g\rangle
$$

and the simple fact that $\overline{H g}=H \bar{g}$.
Theorem 4.1.2. For $f \in \mathscr{S}(\mathbb{R})$, the following is true.
(i) (Kolmogorov) H is weak type (1,1),

$$
\|H f\|_{1, w} \leq C\|f\|_{1}, \quad \text { i.e. } \quad|\{x \in \mathbb{R}:|H f(x)|>\lambda\}| \leq \frac{C}{\lambda}\|f\|_{1}, \quad \lambda>0, f \in L_{1}\left(\mathbb{R}^{n}\right) .
$$

(ii) (M. Riesz) H is of strong type (p, p) for every $1<p<\infty$, i.e.

$$
\|H f\|_{p} \leq C_{p}\|f\|_{p} .
$$

Proof. Step 1.: We show the weak type $(1,1)$ by exploiting Theorem 3.1.1. Let f be non-negative and let $\lambda>0$, then Theorem 3.1.1 gives a sequence of disjoint intervals $\left(I_{j}\right)$, such that

$$
\begin{gathered}
f(x) \leq \lambda \text { for a.e. } x \notin \Omega=\bigcup_{j} I_{j}, \\
|\Omega| \leq \frac{1}{\lambda}\|f\|_{1}, \\
\lambda<\frac{1}{\left|I_{j}\right|} \int_{I_{j}} f \leq 2 \lambda .
\end{gathered}
$$

Given this decomposition of \mathbb{R}, we decompose f into "good" and "bad" part defined by

$$
g(x)=\left\{\begin{array}{l}
f(x), \quad x \notin \Omega, \\
\frac{1}{\left|I_{j}\right|} \int_{I_{j}} f, \quad x \in I_{j}, \quad b(x)=\sum_{j} b_{j}(x)=\sum_{j}\left(f(x)-\frac{1}{\left|I_{j}\right|} \int_{I_{j}} f\right) \chi_{I_{j}}(x) ~
\end{array}\right.
$$

Then $g(x) \leq 2 \lambda$ almost everywhere, and b_{j} is supported on I_{j} and has zero integral. Since $H f=H g+H b$, we have

$$
|\{x \in \mathbb{R}:|H f(x)|>\lambda\}| \leq|\{x \in \mathbb{R}:|H g(x)|>\lambda / 2\}|+|\{x \in \mathbb{R}:|H b(x)|>\lambda / 2\}| .
$$

We estimate the first term using the L_{2}-boundedness of H by
$|\{x \in \mathbb{R}:|H g(x)|>\lambda / 2\}| \leq \frac{4}{\lambda^{2}} \int_{\mathbb{R}}|H g(x)|^{2} d x=\frac{4}{\lambda^{2}} \int_{\mathbb{R}} g(x)^{2} d x \leq \frac{8}{\lambda} \int_{\mathbb{R}} g(x) d x=\frac{8}{\lambda} \int_{\mathbb{R}} f(x) d x$.
Let $2 I_{j}$ be the interval with the same center as I_{j} and twice the length. Let $\Omega^{*}=\bigcup_{j} 2 I_{j}$. Then $\left|\Omega^{*}\right| \leq 2|\Omega|$ and

$$
\begin{aligned}
|\{x \in \mathbb{R}:|H b(x)|>\lambda / 2\}| & \leq\left|\Omega^{*}\right|+\left|\left\{x \notin \Omega^{*}:|H b(x)|>\lambda / 2\right\}\right| \\
& \leq \frac{2}{\lambda}\|f\|_{1}+\frac{2}{\lambda} \int_{\mathbb{R} \backslash \Omega^{*}}|H b(x)| d x .
\end{aligned}
$$

As $|H b(x)| \leq \sum_{j}\left|H b_{j}(x)\right|$, it is enough to show that

$$
\sum_{j} \int_{\mathbb{R} \backslash 2 I_{j}}\left|H b_{j}(x)\right| d x \leq C\|f\|_{1} .
$$

Denote the center of I_{j} by c_{j} and use that b_{j} has zero integral to get

$$
\begin{aligned}
\int_{\mathbb{R} \backslash 2 I_{j}}\left|H b_{j}(x)\right| d x & =\int_{\mathbb{R} \backslash 2 I_{j}}\left|\int_{I_{j}} \frac{b_{j}(y)}{x-y} d y\right| d x \\
& =\int_{\mathbb{R} \backslash 2 I_{j}}\left|\int_{I_{j}} b_{j}(y)\left(\frac{1}{x-y}-\frac{1}{x-c_{j}}\right) d y\right| d x \\
& \leq \int_{I_{j}}\left|b_{j}(y)\right|\left(\int_{\mathbb{R} \backslash 2 I_{j}} \frac{\left|y-c_{j}\right|}{|x-y| \cdot\left|x-c_{j}\right|} d x\right) d y \\
& \leq \int_{I_{j}}\left|b_{j}(y)\right|\left(\int_{\mathbb{R} \backslash 2 I_{j}} \frac{\left|I_{j}\right|}{\left|x-c_{j}\right|^{2}} d x\right) d y
\end{aligned}
$$

The last inequality follows from $\left|y-c_{j}\right|<\left|I_{j}\right| / 2$ and $|x-y|>\left|x-c_{j}\right| / 2$. The inner integral equals 2 , so

$$
\sum_{j} \int_{\mathbb{R} \backslash 2 I_{j}}\left|H b_{j}(x)\right| d x \leq 2 \sum_{j} \int_{I_{j}}\left|b_{j}(y)\right| d y \leq 4\|f\|_{1}
$$

Our proof of the weak $(1,1)$ inequality is for non-negative f, but this is sufficient since an arbitrary real function can be decomposed into its positive and negative parts, and a complex function into its real and imaginary parts.

Step 2.: Since H is weak type $(1,1)$ and strong type $(2,2)$, it is also strong type (p, p) for $1<p<2$. If $p>2$, we apply duality, i.e.

$$
\begin{aligned}
\|H f\|_{p} & =\sup \left\{\left|\int_{\mathbb{R}} H f \cdot g\right|:\|g\|_{p^{\prime}} \leq 1\right\} \\
& =\sup \left\{\left|\int_{\mathbb{R}} f \cdot H g\right|:\|g\|_{p^{\prime}} \leq 1\right\} \\
& \leq\|f\|_{p} \cdot \sup \left\{\|H g\|_{p^{\prime}}:\|g\|_{p^{\prime}} \leq 1\right\} \leq C_{p^{\prime}}\|f\|_{p}
\end{aligned}
$$

The strong (p, p) inequality is false if $p=1$ or $p=\infty$; this can easily be seen if we let $f=\chi_{[0,1]}$. Then

$$
H f(x)=\frac{1}{\pi} \log \left|\frac{x}{x-1}\right|
$$

and $H f$ is neither integrable nor bounded.

4.2 Connection to complex analysis

Let D be the (open) unit disc of the complex plane, i.e. $D=\{z \in \mathbb{C}:|z|<1\}$ and let $\partial D=\{z \in \mathbb{C}:|z|=1\}$ be its boundary. If $f \in L_{2}(\partial D)$ is a real-valued function, then the Cauchy integral

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial D} \frac{f(\xi)}{\xi-z} d \xi, \quad z \in D
$$

defines a holomorphic function on D. There are two main questions connected with this construction:
i) In which sense are the values of f on ∂D also the boundary values of f defined on the whole D ? Or, equivalently, in which sense do the functions $f_{r}(\varphi):=\operatorname{Re}\left(f\left(r e^{i \varphi}\right)\right), \varphi \in$ $[0,2 \pi]$ converge to f if $r \rightarrow 1^{-}$.
ii) How do the imaginary parts of the functions $\varphi \rightarrow f\left(r e^{i \varphi}\right)$ look like, do they also converge to some other function f^{\dagger} on ∂D, and how does f^{\dagger} depend on f ?

The study of the first question leads to Poisson formula and approximations of identity. The study of the second question is closely connected to Hilbert transform. Indeed, let u, v be two real-valued functions of two real variables be defined by

$$
(u+i v)(r, \varphi)=f\left(r e^{i \varphi}\right)=\frac{1}{2 \pi i} \int_{\partial D} \frac{f(\xi)}{\xi-r e^{i \varphi}} d \xi .
$$

Then

$$
\begin{aligned}
v(r, \varphi) & =\operatorname{Im}\left(\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(e^{i t}\right)}{e^{i t}-r e^{i \varphi}} i e^{i t} d t\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i t}\right) \operatorname{Im}\left(\frac{e^{i t}}{e^{i t}-r e^{i \varphi}}\right) d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i t}\right) \operatorname{Im}\left(\frac{1}{1-r e^{i(\varphi-t)}}\right) d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i t}\right) \operatorname{Im}\left(\frac{1}{1-r \cos (\varphi-t)-i r \sin (\varphi-t)}\right) d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i t}\right) \frac{r \sin (\varphi-t)}{1+r^{2}-2 r \cos (\varphi-t)} d t .
\end{aligned}
$$

If we now let $r \rightarrow 1^{+}$, we obtain the function

$$
\begin{aligned}
\varphi & \rightarrow \frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i t}\right) \frac{\sin (\varphi-t)}{2(1-\cos (\varphi-t))} d t=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i t}\right) \frac{2 \sin ((\varphi-t) / 2) \cos ((\varphi-t) / 2)}{4 \sin ^{2}((\varphi-t) / 2)} d t \\
& =\frac{1}{4 \pi} \int_{0}^{2 \pi} f\left(e^{i t}\right) \cot \left(\frac{\varphi-t}{2}\right) d t .
\end{aligned}
$$

Considering this function as a periodic variable on $[0,2 \pi]$, we obtain that

$$
f^{\dagger}(\varphi)=\frac{1}{4 \pi} \int_{0}^{2 \pi} f(t) \cot \left(\frac{\varphi-t}{2}\right) d t
$$

Finally, using Taylor's series, one obtains that $\cot (\alpha)$ behaves like $1 / \alpha$ for α close to zero. The answer to the question (ii) posed above is therefore, that f^{\dagger} is (up to higher order terms) the Hilbert transform of f.

4.3 Connection to Fourier series

We use the complex notation of Fourier series, i.e.

$$
f \approx t \rightarrow \sum_{j \in \mathbb{Z}} \hat{f}(j) e^{i j t}, \quad \hat{f}(j)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) e^{-i j t} d t
$$

Let $\operatorname{sgn}(x)$ be defined as 1 for $x>0$, as 0 or $x=0$ and as -1 for $x<0$. Then the Hilbert transform on $\mathbb{T}=\mathbb{R} /(2 \pi \mathbb{Z})$ is defined as

$$
H f=\sum_{j \in \mathbb{Z}} h_{j} \hat{f}(j) e^{i j t}, \quad h_{j}=-i \operatorname{sgn}(j) .
$$

Naturally, we define the operator of the N th partial sum as

$$
S_{N}(f)=\sum_{|j| \leq N} \hat{f}(j) e^{i j t}=\sum_{j \in \mathbb{Z}} \chi_{[-N, N]}(j) \hat{f}(j) e^{i j t}
$$

and the projections

$$
P_{N}(f)=\hat{f}(N) e^{i N t} .
$$

We combine the formulas

$$
\chi_{[-N, N]}(j)=\frac{1}{2}[\operatorname{sgn}(j+N)-\operatorname{sgn}(j-N)]+\frac{1}{2}\left[\chi_{\{N\}}(j)+\chi_{\{-N\}}(j)\right]
$$

with

$$
\begin{aligned}
\sum_{j \in \mathbb{Z}} \operatorname{sgn}(j+N) \hat{f}(j) e^{i j t} & =\sum_{j \in \mathbb{Z}} \operatorname{sgn}(j) \hat{f}(j-N) e^{i(j-N) t}=i e^{-i N t} \sum_{j \in \mathbb{Z}}(-i) \operatorname{sgn}(j) \hat{f}(j-N) e^{i j t} \\
& =i e^{-i N t} \sum_{j \in \mathbb{Z}} h_{j}\left(f \cdot e^{i N \cdot}\right)^{\wedge}(j) e^{i j t}=i e^{-i N t} H\left[e^{i N \cdot} \cdot f\right](t)
\end{aligned}
$$

to obtain a reformulation of $S_{N} f$ into

$$
S_{N} f=i e^{-i N \cdot} H\left[e^{i N \cdot} f\right]-i e^{i N \cdot} H\left[e^{-i N \cdot} f\right]+\frac{1}{2}\left[P_{N} f+P_{-N} f\right] .
$$

If now $f \in L_{p}(\mathbb{T})$, then the boundedness of H on $L_{p}(\mathbb{T})$ implies that also $S_{N} f \in L_{p}(\mathbb{T})$ for $1<p<\infty$. Actually it follows that $\left\|S_{N} f\right\|_{p} \leq c_{p}\|f\|_{p}$ with c_{p} independent on N and that $S_{N} f \rightarrow f$ for all trigonometric polynomials, which are actually dense in $L_{p}(\mathbb{T})$. It follows that $\left\|S_{N} f-f\right\|_{p} \rightarrow 0$ for all $f \in L_{p}(\mathbb{T})$. Indeed, let $f \in L_{p}(\mathbb{T})$ and let g be a trigonometric polynomial with $\|f-g\|_{p} \leq \varepsilon$. Let N be the degree of g. Then it follows for every $M \geq N$ that

$$
\left\|S_{M} f-f\right\|_{p}=\left\|S_{M} f-S_{M} g+g-f\right\|_{p} \leq\left\|S_{M}(f-g)\right\|_{p}+\|f-g\|_{p} \leq\left(c_{p}+1\right) \varepsilon
$$

4.4 Connection to maximal operator

Let us state (without proof, cf. Fourier Analysis of Javier Duoandikoetxea, page 56) the following result, called Cotlar's inequality.

Lemma 4.1. If $f \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ then $H^{*} f(x) \leq M(H f)(x)+C M f(x)$, where $H^{*} f(x)=$ $\sup _{\varepsilon>0}\left|H_{\varepsilon} f(x)\right|$ and $H_{\varepsilon} f(x)=\frac{1}{\pi} \int_{|y|>\varepsilon} \frac{f(x-y)}{y} d y$.

$5 H^{1}$ and $B M O$

$5.1 \quad H^{1}$ - atomic

Let $\varphi \in \mathscr{S}(\mathbb{R})$. Then $H \varphi \in L_{1}(\mathbb{R})$ if, and only if, $\int_{\mathbb{R}} \varphi=0$. We show only one direction, the other resembles the proof of Theorem 5.1.3. Let $\varphi \in L_{1}(\mathbb{R})$ and $H \varphi \in L_{1}(\mathbb{R})$. Then, by basic properties of the Fourier transform, $\hat{\varphi}$ and $(H \varphi)^{\wedge}=-i \operatorname{sgn}(\cdot) \hat{\varphi}$ are both continuous. Obviously, this is only possible if $\hat{\varphi}(0)=0$.

We shall define a subspace of $L_{1}(\mathbb{R})$, which will be mapped by H into $L_{1}(\mathbb{R})$. As this space plays the same role also for other singular integrals on \mathbb{R}^{n}, we define the space for general $n \in \mathbb{N}$.
Definition 5.1.1. An atom is a complexed-valued function defined on \mathbb{R}^{n}, which is supported on a cube Q and satisfies

$$
\int_{Q} a(x) d x=0 \quad \text { and } \quad\|a\|_{\infty} \leq \frac{1}{|Q|} .
$$

Observe, that this implies that $\|a\|_{1} \leq|Q| \cdot\|a\|_{\infty} \leq 1$.
Definition 5.1.2. The atomic space $H_{\mathrm{at}}^{1}\left(\mathbb{R}^{n}\right)$ is defined by

$$
H_{\mathrm{at}}^{1}\left(\mathbb{R}^{n}\right)=\left\{\sum_{j} \lambda_{j} a_{j}: a_{j} \text { atoms, } \lambda_{j} \in \mathbb{C}, \sum_{j}\left|\lambda_{j}\right|<\infty\right\}
$$

and normed by

$$
\left\|f \mid H_{\mathrm{at}}^{1}\left(\mathbb{R}^{n}\right)\right\|=\inf \left\{\sum_{j}\left|\lambda_{j}\right|: f=\sum_{j} \lambda_{j} a_{j}\right\} .
$$

We state (without the quite easy proof), that this expression is really a norm and that $H_{\mathrm{at}}^{1}\left(\mathbb{R}^{n}\right)$ is really a Banach space. Furthermore, the atomic decomposition converges in $L_{1}\left(\mathbb{R}^{n}\right)$ and $H_{\text {at }}^{1}\left(\mathbb{R}^{n}\right)$ is a subspace of $L_{1}\left(\mathbb{R}^{n}\right)$. Both these statements follow easily from

$$
\left\|\sum_{j} \lambda_{j} a_{j}\right\|_{1} \leq \sum_{j}\left|\lambda_{j}\right| \cdot\left\|a_{j}\right\|_{1} \leq \sum_{j}\left|\lambda_{j}\right| .
$$

Theorem 5.1.3. Let $n=1$.
(i) There exists a constant $C>0$, such that for every atom a,

$$
\|H a\|_{1} \leq C .
$$

(ii) $H: H_{\mathrm{at}}^{1}(\mathbb{R}) \rightarrow L_{1}(\mathbb{R})$.

Proof. (i) Since $a \in L_{2}(\mathbb{R}), H a$ is well defined and we get for Q^{*} co-centric with Q and length 2 times larger

$$
\int_{Q^{*}}|H a(x)| d x \leq\left|Q^{*}\right|^{1 / 2}\left(\int_{Q^{*}}|H a(x)|^{2} d x\right)^{1 / 2} \leq C|Q|^{1 / 2}\left(\int_{Q}|a(x)|^{2} d x\right)^{1 / 2} \leq C
$$

Using that a has zero average, we get for c_{Q} the center of Q and of Q^{*}

$$
\begin{aligned}
\int_{\mathbb{R} \backslash Q^{*}}|H a(x)| d x & =\frac{1}{\pi} \int_{\mathbb{R} \backslash Q^{*}}\left|\int_{Q} \frac{a(y)}{x-y} d y\right| d x \\
& \leq \int_{\mathbb{R} \backslash Q^{*}}\left|\int_{Q}\left[\frac{1}{x-y}-\frac{1}{x-c_{Q}}\right] a(y) d y\right| d x \\
& \leq \int_{Q} \int_{\mathbb{R} \backslash Q^{*}}\left|\frac{1}{x-y}-\frac{1}{x-c_{Q}}\right| d x \cdot|a(y)| d y \leq C .
\end{aligned}
$$

(ii) Follows directly from (i) and the definition of $H_{\mathrm{at}}^{1}(\mathbb{R})$.

5.2 BMO

Hilbert transform acts rather badly on $L_{\infty}(\mathbb{R})$. Not only is H unbounded on $L_{\infty}(\mathbb{R})$, it can not be easily defined on a dense subset of $L_{\infty}(\mathbb{R})$. The definition

$$
H f(y)=\frac{1}{\pi} \int_{\mathbb{R}} \frac{f(x)}{y-x} d x
$$

runs for $f \in L_{\infty}(\mathbb{R})$ into troubles for x near y and x near infinity. If we look onto differences, the situation changes to

$$
H f(y)-H f\left(y^{\prime}\right)=\frac{1}{\pi} \int_{\mathbb{R}} f(x)\left(\frac{1}{y-x}-\frac{1}{y^{\prime}-x}\right) d x .
$$

This improves the situation for x near infinity, as $1 /(x-y)-1 /\left(x-y^{\prime}\right)=O\left(1 / x^{2}\right)$ in this case.

We say that f and g are equivalent modulo a constant if $f(x)=g(x)+C$ for some (complex) constant C and almost every $x \in \mathbb{R}$. Given $f \in L_{\infty}(\mathbb{R})$ and $y \in \mathbb{R}$, then we take an open interval $B \subset \mathbb{R}$ with center at zero containing y. Then $f \chi_{B} \in L_{2}(\mathbb{R})$ and we define $H f(y)$ to be

$$
\begin{equation*}
H f(y):=H\left(f \chi_{B}\right)(y)+\frac{1}{\pi} \int_{\mathbb{R} \backslash B} f(x)\left(\frac{1}{y-x}+\frac{1}{x}\right) d x . \tag{5.1}
\end{equation*}
$$

The first term is defined by the L_{2} definition of H, the integral in the second term converges absolutely. The definition depends on B, but choosing another interval $B^{\prime} \supset B$ with the center at the origin leads to a difference

$$
\begin{aligned}
& H\left(f \chi_{B}\right)(y)+\frac{1}{\pi} \int_{\mathbb{R} \backslash B} f(x)\left(\frac{1}{y-x}+\frac{1}{x}\right) d x-H\left(f \chi_{B^{\prime}}\right)(y)-\frac{1}{\pi} \int_{\mathbb{R} \backslash B^{\prime}} f(x)\left(\frac{1}{y-x}+\frac{1}{x}\right) d x \\
& =H\left(f \chi_{B}-f \chi_{B^{\prime}}\right)(y)+\frac{1}{\pi} \int_{B^{\prime} \backslash B} f(x)\left(\frac{1}{y-x}+\frac{1}{x}\right) d x \\
& =-H\left(f \chi_{B^{\prime} \backslash B}\right)(y)+\frac{1}{\pi} \int_{B^{\prime} \backslash B} f(x)\left(\frac{1}{y-x}+\frac{1}{x}\right) d x=\frac{1}{\pi} \int_{B^{\prime} \backslash B} \frac{f(x)}{x} d x,
\end{aligned}
$$

which does not depend on y. This defines $H f$ modulo constant for $f \in L_{\infty}(\mathbb{R})$. Of course, such a definition does not allow to measure $H f$ in the usual norms, as L_{p}. Instead of that, we need a space of functions defined modulo constants.

Definition 5.2.1. (Bounded mean oscillation). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ be a function defined modulo a constant. The $B M O$ (or Bounded Mean Oscillation) norm of f is defined

$$
\left\|\left.f\left|B M O\left(\mathbb{R}^{n}\right) \|:=\sup _{B} \frac{1}{|B|} \int_{B}\right| f-\frac{1}{|B|} \int_{B} f \right\rvert\,\right.
$$

where B ranges over all balls. Note that

$$
\int_{B}\left|f-\frac{1}{|B|} \int_{B} f\right|=\int_{B}\left|f(y)-\frac{1}{|B|} \int_{B} f(x) d x\right| d y=\frac{1}{|B|} \int_{B}\left|\int_{B}(f(y)-f(x)) d x\right| d y
$$

if one shifts f by a constant, the $B M O$ norm is unchanged, so this norm is well-defined for functions defined modulo constants. We denote by $B M O\left(\mathbb{R}^{n}\right)$ the space of all functions with finite $B M O$ norm.

Example 5.2.2. Let $f(x)=\operatorname{sgn}(x)$. Let $|y|<a$. We take $B=(-a, a)$ and apply the definition of $H f$ as presented above. This gives (for $y>0$)

$$
\begin{aligned}
\pi H f(y) & =\text { p.v. } \int_{-a}^{a} \frac{\operatorname{sgn}(x)}{y-x} d x+\int_{(-\infty,-a) \cup(a, \infty)} \operatorname{sgn}(x)\left(\frac{1}{y-x}+\frac{1}{x}\right) d x \\
& =\lim _{\varepsilon \rightarrow 0^{+}}\left(\int_{(-a, a) \backslash(y-\varepsilon, y+\varepsilon)} \frac{\operatorname{sgn}(x)}{y-x} d x\right) \underbrace{\int_{-\infty}^{-a}\left(\frac{1}{x}-\frac{1}{x-y}\right) d x}_{-\ln \frac{a}{a+y}}+\underbrace{\int_{a}^{\infty}\left(\frac{1}{x}-\frac{1}{x-y}\right) d x}_{=\left.\ln \frac{x}{x-y}\right|_{x=a} ^{x=\infty}=-\ln \frac{a}{a-y}} \\
& =\lim _{\varepsilon \rightarrow 0^{+}}\left(\int_{-a}^{0} \frac{1}{x-y} d x-\int_{0}^{y-\varepsilon} \frac{1}{x-y} d x-\int_{y+\varepsilon}^{a} \frac{1}{x-y}\right)-\ln \frac{a}{a+y}-\ln \frac{a}{a-y} \\
& =\lim _{\varepsilon \rightarrow 0^{+}}\left(\ln \frac{y}{a+y}+\ln \frac{y}{\varepsilon}-\ln \frac{a-y}{\varepsilon}\right)-\ln \frac{a}{a+y}-\ln \frac{a}{a-y} \\
& =2 \ln y-2 \ln a .
\end{aligned}
$$

If $y<0$, similar calculation applies as well. Hence, $\pi H f(y)=2 \ln |y|-2 \ln a$. Hence, ignoring the constant,

$$
H(\operatorname{sgn} x)=\frac{2}{\pi} \ln |x|
$$

Let us observe, that

$$
\frac{1}{|B|} \int_{B}\left|f-\frac{1}{|B|} \int_{B} f\right| \approx \inf _{c \in \mathbb{R}} \frac{1}{|B|} \int_{B}|f-c|
$$

holds for every ball B with universal constants. Indeed, the left-hand side is obviously larger than the right hand side. On the other hand, we get as well

$$
\begin{aligned}
\frac{1}{|B|} \int_{B}\left|f-\frac{1}{|B|} \int_{B} f\right| & \leq \frac{1}{|B|} \int_{B}|f-c|+\frac{1}{|B|} \int_{B}\left|c-\frac{1}{|B|} \int_{B} f\right| \\
& =\frac{1}{|B|} \int_{B}|f-c|+\frac{1}{|B|} \int_{B}\left|\frac{1}{|B|} \int_{B}(c-f)\right| \\
& \leq \frac{1}{|B|} \int_{B}|f-c|+\frac{1}{|B|} \int_{B}\left(\frac{1}{|B|} \int_{B}|c-f|\right) \\
& =\frac{2}{|B|} \int_{B}|f-c|
\end{aligned}
$$

5.3 Connection to Hilbert transform

Theorem 5.3.1. (H maps $L_{\infty}(\mathbb{R})$ into $B M O(\mathbb{R})$)
Let $f \in L_{\infty}(\mathbb{R})$. Then

$$
\|H f \mid B M O(\mathbb{R})\| \lesssim\|f\|_{\infty}
$$

Proof. Due to the observation above, it is enough to show that for every ball B, there is a constant $c=c(B)$ such that

$$
\frac{1}{|B|} \int_{B}|H f-c| \lesssim\|f\|_{\infty}
$$

Similarly to (5.1), we define $H f(x)$ for $x \in B$ to be
$H f(x)=H\left(f \chi_{2 B}\right)(x)+H\left(f \chi_{\mathbb{R} \backslash 2 B}\right)(x)=H\left(f \chi_{2 B}\right)(x)+\frac{1}{\pi} \int_{y: y \notin 2 B} f(y)\left(\frac{1}{x-y}-\frac{1}{\gamma-y}\right) d y$,
where $2 B$ is a ball with the same center as B, but twice the radius and γ is the center of B. With this definition of $H f$, we can actually take $c=0$.

First we get

$$
\begin{aligned}
\frac{1}{|B|} \int_{B}\left|H\left(f \chi_{2 B}\right)\right| & \leq \frac{1}{|B|}\left(\int_{B}\left|H\left(f \chi_{2 B}\right)\right|^{2}\right)^{1 / 2} \cdot\left(\int_{B} 1\right)^{1 / 2} \\
& \leq \frac{1}{\sqrt{|B|}}\left(\int_{2 B}|f|^{2}\right)^{1 / 2} \leq \frac{\|f\|_{\infty}}{\sqrt{|B|}} \sqrt{|2 B|} \lesssim\|f\|_{\infty}
\end{aligned}
$$

This deals with the "local" part of $H f$. For the "global" part, observe that for $x \in B$ we have

$$
\pi H\left(f \chi_{\mathbb{R} \backslash 2 B}\right)(x)=\int_{y: y \notin 2 B} f(y)\left(\frac{1}{x-y}-\frac{1}{\gamma-y}\right) d y
$$

and

$$
\begin{aligned}
& \frac{1}{|B|} \int_{B}\left|\int_{\mathbb{R} \backslash 2 B} f(y)\left(\frac{1}{x-y}-\frac{1}{\gamma-y}\right) d y\right| d x \\
& \quad \leq \frac{1}{|B|} \int_{B} \int_{\mathbb{R} \backslash 2 B}\left|f(y)\left(\frac{1}{x-y}-\frac{1}{\gamma-y}\right)\right| d y d x \\
& \quad \leq \frac{\|f\|_{\infty}}{|B|} \int_{B} \int_{\mathbb{R} \backslash 2 B}\left|\frac{1}{x-y}-\frac{1}{\gamma-y}\right| d y d x
\end{aligned}
$$

By shifting, we may assume, that $\gamma=0, B=(-a, a)$ and $2 B=(-2 a, 2 a)$. We estimate

$$
\frac{1}{2 a} \int_{0}^{a} \int_{2 a}^{\infty} \frac{x}{|y(x-y)|} d y d x \leq \frac{1}{2 a} \int_{0}^{a} x d x \int_{2 a}^{\infty} \frac{1}{|y(y-a)|} d y \leq \frac{a}{4} \int_{2 a}^{\infty} \frac{1}{(y-a)^{2}} d y \leq c
$$

(and similarly for the remaining parts). Altogether, this gives

$$
\frac{1}{|B|} \int_{B}\left|H\left(f \chi_{\mathbb{R} \backslash 2 B}\right)\right| \lesssim\|f\|_{\infty}
$$

Adding the two facts, we obtain the claim.

5.4 Interpolation with $B M O$ and good- λ-inequality

When proving that the Hardy-Littlewood maximal operator M is bounded on $L_{p}\left(\mathbb{R}^{n}\right), 1<$ $p \leq \infty$, we used interpolation. As M is not bounded on $L_{1}\left(\mathbb{R}^{n}\right)$, we needed to replace this by weak boundedness of M. This was still sufficient for the interpolation argument (as described by the Marcinkiewicz theorem). Hilbert transform is not bounded on $L_{\infty}\left(\mathbb{R}^{n}\right)$, but in the same spirit, we can hope that for the interpolation to work, this could be replaced by weaker information at the endpoint. This is indeed the case.

Theorem 5.4.1. Let T be a linear operator which is bounded on $L_{p_{0}}\left(\mathbb{R}^{n}\right)$ for some $1<$ $p_{0}<\infty$, and bounded from $L_{\infty}\left(\mathbb{R}^{n}\right)$ into $B M O\left(\mathbb{R}^{n}\right)$. Then T is bounded on $L_{p}\left(\mathbb{R}^{n}\right)$ for all $p_{0}<p<\infty$.

The proof of this statement is based on the so-called good- λ inequality. We use the notation M_{d} for the dyadic maximal operator and

$$
M^{\#} f(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right|
$$

where $f_{Q}=\frac{1}{|Q|} \int_{Q} f$ denotes the average of f over Q.

Lemma 5.4.2. If $f \in L_{p_{0}}\left(\mathbb{R}^{n}\right)$ for some $p_{0}, 1 \leq p_{0}<\infty$, then

$$
\left|\left\{x \in \mathbb{R}^{n}: M_{d} f(x)>2 \lambda, M^{\#} f(x) \leq \gamma \lambda\right\}\right| \leq 2^{n} \gamma\left|\left\{x \in \mathbb{R}^{n}: M_{d} f(x)>\lambda\right\}\right| .
$$

for all $\gamma>0$ and $\lambda>0$.
Proof. We may assume that f is non-negative and that $\gamma>0$ and $\lambda>0$ are fixed. We form the Calderón-Zygmund decomposition of f at height λ. Then the set $\left\{x \in \mathbb{R}^{n}\right.$: $\left.M_{d} f(x)>\lambda\right\}$ can be written as the union of disjoint, maximal dyadic cubes. Let Q be one of these cubes. Then it is enough to prove that

$$
\begin{equation*}
\left|\left\{x \in Q: M_{d} f(x)>2 \lambda, M^{\#} f(x) \leq \gamma \lambda\right\}\right| \leq 2^{n} \gamma|Q| . \tag{5.2}
\end{equation*}
$$

Let \tilde{Q} be the dyadic cube, which contains Q whose sides are twice that long. Since Q was maximal, $f_{\tilde{Q}} \leq \lambda$. If $x \in Q$ and $M_{d} f(x)>2 \lambda$, then also $M_{d}\left(f \chi_{Q}\right)(x)>2 \lambda$. Hence, for such x 's,

$$
M_{d}\left(\left(f-f_{\tilde{Q}}\right) \chi_{Q}\right)(x) \geq M_{d}\left(f \chi_{Q}\right)(x)-f_{\tilde{Q}}>\lambda .
$$

By the weak $(1,1)$ inequality for M_{d} (which actually holds with norm 1, although we did not prove that), we get

$$
\begin{aligned}
\mid\left\{x \in Q: M_{d}\left(\left(f-f_{\tilde{Q}}\right) \chi_{Q}\right)(x)\right. & >\lambda\} \left.\left|\leq \frac{1}{\lambda} \int_{Q}\right| f(x)-f_{\tilde{Q}} \right\rvert\, d x \\
& \leq \frac{2^{n}|Q|}{\lambda} \cdot \frac{1}{|\tilde{Q}|} \int_{\tilde{Q}}\left|f(x)-f_{\tilde{Q}}\right| d x \leq \frac{2^{n}|Q|}{\lambda} \inf _{x \in Q} M^{\#} f(x) .
\end{aligned}
$$

If the left-hand side of (5.2) is zero, there is nothing to prove. Otherwise there is an $x \in Q$ with $M^{\#} f(x) \leq \gamma \lambda$ and (5.2) follows.

Of course, $M_{d} f(x) \leq C M^{\#} f(x)$ is not true in general. But it holds at least in L_{p}-norm.
Lemma 5.4.3. If $1<p_{0} \leq p<\infty$ and $f \in L_{p_{0}}\left(\mathbb{R}^{n}\right)$, then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} M_{d} f(x)^{p} \leq C \int_{\mathbb{R}^{n}} M^{\#} f(x)^{p} d x . \tag{5.3}
\end{equation*}
$$

Proof. For $N>0$, we get

$$
\begin{aligned}
I_{N} & =\int_{0}^{N} p \lambda^{p-1}\left|\left\{x \in \mathbb{R}^{n}: M_{d} f(x)>\lambda\right\}\right| d \lambda=2^{p} \int_{0}^{N / 2} p \lambda^{p-1}\left|\left\{x \in \mathbb{R}^{n}: M_{d} f(x)>2 \lambda\right\}\right| d \lambda \\
& \leq 2^{p} \int_{0}^{N / 2} p \lambda^{p-1}\left(\left|\left\{x \in \mathbb{R}^{n}: M_{d} f(x)>2 \lambda, M^{\#} f(x) \leq \gamma \lambda\right\}\right|+\left|\left\{x \in \mathbb{R}^{n}: M^{\#} f(x)>\gamma \lambda\right\}\right|\right) d \lambda \\
& \leq 2^{p+n} \gamma I_{N}+\frac{2^{p}}{\gamma^{p}} \int_{0}^{\gamma N / 2} p \lambda^{p-1}\left|\left\{x \in \mathbb{R}^{n}: M^{\#} f(x)>\lambda\right\}\right| d \lambda .
\end{aligned}
$$

Now we choose $\gamma>0$ such that $2^{p+n} \gamma=1 / 2$, and get

$$
I_{N} \leq \frac{2^{p+1}}{\gamma^{p}} \int_{0}^{\gamma N / 2} p \lambda^{p-1}\left|\left\{x \in \mathbb{R}^{n}: M^{\#} f(x)>\lambda\right\}\right| d \lambda
$$

This step is only justified, if $I_{N}<\infty$. This follows from the fact, that $f \in L_{p_{0}}\left(\mathbb{R}^{n}\right)$ implies $M_{d} f \in L_{p_{0}}\left(\mathbb{R}^{n}\right)$ and

$$
I_{N} \leq \frac{p}{p_{0}} N^{p-p_{0}} \int_{0}^{N} p_{0} \lambda^{p_{0}-1}\left|\left\{x \in \mathbb{R}^{n}: M_{d} f(x)>\lambda\right\}\right| d \lambda<\infty .
$$

If the right hand side of (5.3) is infinite, there is nothing to prove. If it is finite, we let $N \rightarrow \infty$ and (5.3) follows.

Proof. of Theorem 5.4.1: The composition $M^{\#} \circ T$ is a sublinear operator. It is bounded on $L_{p_{0}}\left(\mathbb{R}^{n}\right)$, and on $L_{\infty}\left(\mathbb{R}^{n}\right)$, as

$$
\left\|M^{\#}(T f)\right\|_{\infty}=\left\|T f \mid B M O\left(\mathbb{R}^{n}\right)\right\| \leq C\|f\|_{\infty}
$$

By Marcinkiewicz theorem, it is bounded on $L_{p}\left(\mathbb{R}^{n}\right), p_{0}<p<\infty$.
Now let $f \in L_{p}\left(\mathbb{R}^{n}\right)$ with compact support. Then $f \in L_{p_{0}}\left(\mathbb{R}^{n}\right)$ and so $T f \in L_{p_{0}}\left(\mathbb{R}^{n}\right)$. We apply Lemma 5.4.3 to $T f$ and due to $|T f(x)| \leq M_{d}(T f)(x)$ a.e., we get

$$
\int_{\mathbb{R}^{n}}|T f(x)|^{p} d x \leq \int_{\mathbb{R}^{n}} M_{d}(T f)(x)^{p} d x \leq C \int_{\mathbb{R}^{n}}\left[M^{\#}(T f)(x)\right]^{p} d x \leq C \int_{\mathbb{R}^{n}}|f(x)|^{p} d x
$$

5.5 John-Nirenberg inequality

On the example of $\log (1 /|x|)$ we have seen that $B M O\left(\mathbb{R}^{n}\right)$ contains also unbounded functions. On the interval $(-a, a)$, its average is $1-\log a$ and for $\lambda>1$, the set of x 's with

$$
|\log (1 /|x|)-(1-\log a)|>\lambda
$$

has measure $2 a e^{-\lambda-1}$, i.e. is exponentially small. This is the case for all unbounded functions from $B M O\left(\mathbb{R}^{n}\right)$.
Theorem 5.5.1. (John-Nirenberg inequality)
Let $f \in B M O\left(\mathbb{R}^{n}\right)$. Then there exist constants C_{1} and C_{2}, depending only on the dimension, such that given any cube Q in \mathbb{R}^{n} and any $\lambda>0$,

$$
\left|\left\{x \in Q:\left|f(x)-f_{Q}\right|>\lambda\right\}\right| \leq C_{1} \exp \left(-C_{2} \lambda /\left\|f \mid B M O\left(\mathbb{R}^{n}\right)\right\|\right)|Q|
$$

Proof. As the inequality is homogeneous, we may assume that $\left\|f \mid B M O\left(\mathbb{R}^{n}\right)\right\|=1$, hence

$$
\frac{1}{|Q|} \int_{Q}\left|f(x)-f_{Q}\right| d x \leq 1
$$

We form the Calderón-Zygmund decomposition of $\left|f-f_{Q}\right|$ with respect to Q at height 2 . This gives us a family of cubes $\left\{Q_{1, j}\right\}$ such that

$$
2<\frac{1}{\left|Q_{1, j}\right|} \int_{Q_{1, j}}\left|f(x)-f_{Q}\right| d x \leq 2^{n+1}
$$

and $\left|f(x)-f_{Q}\right| \leq 2$ if $x \notin \bigcup_{j} Q_{1, j}$. In particular,

$$
\sum_{j}\left|Q_{1, j}\right| \leq \frac{1}{2} \int_{Q}\left|f(x)-f_{Q}\right| d x \leq \frac{1}{2}|Q|
$$

and

$$
\left|f_{Q_{1, j}}-f_{Q}\right|=\left|\frac{1}{\left|Q_{1, j}\right|} \int_{Q_{1, j}}\left(f(x)-f_{Q}\right) d x\right| \leq 2^{n+1}
$$

On each cube $Q_{1, j}$ we form the Calderón-Zygmund decomposition of $\left|f-f_{Q_{1, j}}\right|$ at height 2. We obtain a family of cubes $\left\{Q_{1, j, k}\right\}$ with

$$
\begin{gathered}
\left|f_{Q_{1, j, k}}-f_{Q_{1, j}}\right| \leq 2^{n+1} \\
\left|f(x)-f_{Q_{1, j}}\right| \leq 2 \text { if } x \in Q_{1, j} \backslash \bigcup_{k} Q_{1, j, k} \\
\sum_{k}\left|Q_{1, j, k}\right| \leq \frac{1}{2}\left|Q_{1, j}\right|
\end{gathered}
$$

Collect all the cubes $\left\{Q_{1, j, k}\right\}$ into one sequence $\left\{Q_{2, j}\right\}$. Then we have $\sum_{j}\left|Q_{2, j}\right| \leq 1 / 4|Q|$ and if $x \notin \bigcup_{j} Q_{2, j}$

$$
\left|f(x)-f_{Q}\right| \leq\left|f(x)-f_{Q_{1, j}}\right|+\left|f_{Q_{1, j}}-f_{Q}\right| \leq 2+2^{n+1} \leq 2 \cdot 2^{n+1} .
$$

Repeat this process indefinitely. We get for each N a family of cubes $\left\{Q_{N, j}\right\}$ with

$$
\left|f(x)-f_{Q}\right| \leq N \cdot 2^{n+1}, \quad \text { if } x \notin \bigcup_{j} Q_{N, j}
$$

and $\sum_{j}\left|Q_{N, j}\right| \leq 2^{-N}|Q|$. Fix $\lambda>2^{n+1}$ and let N be such that $N 2^{n+1} \leq \lambda<(N+1) 2^{n+1}$. Then

$$
\left|\left\{x \in Q:\left|f(x)-f_{Q}\right|>\lambda\right\}\right| \leq \sum_{j}\left|Q_{N, j}\right| \leq \frac{1}{2^{N}}|Q|=e^{-N \log 2}|Q| \leq e^{-C_{2} \lambda}|Q|,
$$

where $C_{2}=(\log 2) / 2^{n+2}$.
If $\lambda<2^{n+1}$, then $C_{2} \lambda<\log (\sqrt{2})$ and

$$
\left|\left\{x \in Q:\left|f(x)-f_{Q}\right|>\lambda\right\}\right| \leq|Q| \leq e^{\log (\sqrt{2})-C_{2} \lambda}|Q|=\sqrt{2} e^{-C_{2} \lambda}|Q|,
$$

hence $C_{1}=\sqrt{2}$.

6 Singular integrals

Hilbert transform is the most important example of the so-called singular integrals. Its n-dimensional analogue are the Riesz transforms.

6.1 Riesz transforms

Riesz transforms are defined as

$$
\begin{equation*}
R_{j} f(x)=c_{n} \text { p.v. } \int_{\mathbb{R}^{n}} \frac{y_{j}}{\|y\|^{n+1}} f(x-y) d y, \quad 1 \leq j \leq n \tag{6.1}
\end{equation*}
$$

where

$$
c_{n}=\Gamma\left(\frac{n+1}{2}\right) \pi^{-\frac{n+1}{2}}
$$

The constants c_{n} are chosen to have

$$
\begin{equation*}
\left(R_{j} f\right)^{\wedge}(\xi)=-i \frac{\xi_{j}}{\|\xi\|} \hat{f}(\xi) \tag{6.2}
\end{equation*}
$$

which quickly implies also

$$
\sum_{j=1}^{n} R_{j}^{2}=-I
$$

To prove (6.2), we use the technique of homogeneous functions.
A function f is homogeneous of degree $a \in \mathbb{R}$ if for any $x \in \mathbb{R}^{n}$ and any $\lambda>0$

$$
f(\lambda x)=\lambda^{a} f(x)
$$

To extend this notion also to distributions, let first f be a homogeneous function of degree a and we calculate

$$
\int_{\mathbb{R}^{n}} f(x) \varphi(x) d x=\lambda^{-a} \int_{\mathbb{R}^{n}} f(\lambda x) \varphi(x) d x=\lambda^{-a} \int_{\mathbb{R}^{n}} f(x) \varphi(x / \lambda) \frac{d x}{\lambda^{n}}
$$

We therefore say that $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is homogeneous of degree $a \in \mathbb{R}$, if for every $\varphi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$

$$
T\left(\varphi_{\lambda}\right)=\lambda^{a} T(\varphi)
$$

where $\varphi_{\lambda}(\cdot)=\lambda^{-n} \varphi(\cdot / \lambda)$.
Proposition 6.1. If T is a homogeneous distribution of degree a, then its Fourier transform is homogeneous of degree $-n-a$.

Proof. Indeed, we have

$$
\hat{T}\left(\varphi_{\lambda}\right)=T\left(\left(\varphi_{\lambda}\right)^{\wedge}\right)=T(\hat{\varphi}(\lambda \cdot))=\lambda^{-n} T\left((\hat{\varphi})_{\lambda^{-1}}\right)=\lambda^{-n-a} T(\hat{\varphi})=\lambda^{-n-a} \hat{T}(\varphi)
$$

This proposition allows us to calculate easily the Fourier transform of $f(x)=\|x\|^{-a}$ for $0<a<n$. Since f is rotationally invariant and homogeneous of degree $-a, \hat{f}$ is also rotationally invariant and homogeneous of degree $a-n$, i.e.

$$
\hat{f}(\xi)=c_{a, n}\|\xi\|^{a-n}
$$

To find the constants $c_{a, n}$, we calculate for $n / 2<a<n$

$$
\int_{\mathbb{R}^{n}} e^{-\|x\|^{2} / 2}\|x\|^{-a} d x=\int_{\mathbb{R}^{n}}\left(e^{-\|x\|^{2} / 2}\right)^{\wedge}(\xi)\left(\|x\|^{-a}\right)^{\wedge}(\xi) d \xi=c_{a, n} \int_{\mathbb{R}^{n}} e^{-\|\xi\|^{2} / 2}\|\xi\|^{a-n} d \xi
$$

Using polar coordinates, we obtain

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} e^{-\|x\|^{2} / 2}\|x\|^{b} d x & =\omega_{n-1} \int_{0}^{\infty} e^{-r^{2} / 2} r^{b+n-1} d r=2^{\frac{b+n}{2}-1} \omega_{n-1} \int_{0}^{\infty} e^{-s} s^{\frac{b+n}{2}-1} d s \\
& =2^{\frac{b+n}{2}-1} \omega_{n-1} \Gamma\left(\frac{b+n}{2}\right)
\end{aligned}
$$

where ω_{n-1} is the area of the n-dimensional unit sphere. Hence

$$
c_{a, n}=\frac{2^{\frac{n-a}{2}-1} \Gamma((n-a) / 2)}{2^{\frac{a}{2}-1} \Gamma(a / 2)}=2^{\frac{n}{2}-a} \cdot \frac{\Gamma((n-a) / 2)}{\Gamma(a / 2)} .
$$

By the inversion formula, the same holds also for $0<a<n / 2$ and by taking the limit also for $a=n / 2$.

Finally, the Fourier transform of the Riesz transform follows from the distributional formula

$$
\frac{\partial}{\partial x_{j}}\|x\|^{-n+1}=(1-n) \text { p.v. } \frac{x_{j}}{\|x\|^{n+1}},
$$

which gives

$$
\begin{aligned}
\left(\text { p.v. } \frac{x_{j}}{\|x\|^{n+1}}\right)^{\wedge}(\xi) & =\frac{1}{1-n}\left(\frac{\partial}{\partial x_{j}}\|x\|^{-n+1}\right)^{\wedge}(\xi)=\frac{i \xi_{j}}{1-n}\left(\|x\|^{-n+1}\right)^{\wedge}(\xi) \\
& =\frac{i \xi_{j}}{1-n} \frac{2^{1-\frac{n}{2}} \Gamma(1 / 2)}{\Gamma((n-1) / 2)}\|\xi\|^{-1}=\frac{-i 2^{-n / 2} \sqrt{\pi}}{\Gamma\left(\frac{n+1}{2}\right)} \cdot \frac{\xi_{j}}{\|\xi\|}
\end{aligned}
$$

Formula (6.2) then follows by this, and by taking the $(2 \pi)^{n / 2}$ factor into account, which appears in the formula for Fourier transform of convolutions.
Theorem 6.1.1. The Riesz transforms are bounded on $L_{p}\left(\mathbb{R}^{n}\right)$ for $1<p<\infty$.
Proof. The proof writes the Riesz transforms as a linear (integral) combination of directional one-dimensional Hilbert transforms and then uses the boundedness of H on $L_{p}(\mathbb{R})$.

$$
\begin{aligned}
R_{j} f(x) & =c_{n} \lim _{\varepsilon \rightarrow 0} \int_{\|y\|>\varepsilon} \frac{y_{j}}{\|y\|^{n+1}} f(x-y) d y=c_{n} \lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{\infty} \int_{r \mathbb{S}^{n-1}} \frac{y_{j}}{\|y\|^{n+1}} f(x-y) d y d r \\
& =c_{n} \lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{\infty} \int_{\mathbb{S}^{n-1}} z_{j} f(x-r z) d z \frac{d r}{r}=\frac{c_{n}}{2} \lim _{\varepsilon \rightarrow 0} \int_{\mathbb{S}^{n-1}} z_{j} \int_{|r|>\varepsilon} f(x-r z) \frac{d r}{r} d z \\
& =\frac{c_{n} \pi}{2} \int_{\mathbb{S}^{n-1}} z_{j} H_{z} f(x) d z,
\end{aligned}
$$

where

$$
H_{z} f(x)=\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0} \int_{|r|>\varepsilon} f(x-r z) \frac{d r}{r}=H(f(\bar{x}+\cdot z))\left(x_{1}\right),
$$

if $x=x_{1} z+\bar{x}, x_{1} \in \mathbb{R}$ and $\bar{x} \perp z$. We observe first, that H_{z} is bounded on $L_{p}\left(\mathbb{R}^{n}\right)$ for every $z \in \mathbb{R}^{n}$. Indeed,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left|H_{z} f(x)\right|^{p} d x & =\int_{z^{\perp}} \int_{\mathbb{R}}\left|H_{z} f\left(x_{1} z+\bar{x}\right)\right|^{p} d x_{1} d \bar{x}=\int_{z^{\perp}} \int_{\mathbb{R}}\left|H(f(\bar{x}+\cdot z))\left(x_{1}\right)\right|^{p} d x_{1} d \bar{x} \\
& \leq C_{p}^{p} \int_{z^{\perp}} \int_{\mathbb{R}}\left|f\left(\bar{x}+x_{1} z\right)\right|^{p} d x_{1} d \bar{x}=C_{p}^{p}\|f\|_{p}^{p} .
\end{aligned}
$$

Combining these two steps, we obtain

$$
\left\|R_{j} f\right\|_{p} \leq \frac{c_{n} \pi}{2} \int_{\mathbb{S}^{n-1}}\left|z_{j}\right| \cdot\left\|H_{z} f\right\|_{p} d z \leq \frac{c_{n} \pi C_{p}\|f\|_{p}}{2} \int_{\mathbb{S}^{n-1}}\left|z_{j}\right| d z
$$

6.2 Riesz potentials

If $\varphi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$, then $(-\Delta \varphi)^{\wedge}(\xi)=\|\xi\|^{2} \hat{\varphi}(\xi)$. The fractional Laplace operator may then be defined as

$$
\left((-\Delta)^{a / 2} \varphi\right)^{\wedge}(\xi)=\|\xi\|^{a} \hat{\varphi}(\xi)
$$

We define

$$
I_{a}(f)=(-\Delta)^{-a / 2}(f), \quad 0<a<n
$$

i.e.

$$
I_{a} f(x)=\frac{1}{\gamma_{a}} \int_{\mathbb{R}^{n}} \frac{f(y)}{\|x-y\|^{n-a}} d y
$$

where

$$
\gamma_{a}=\pi^{n / 2-a} \frac{\Gamma(a / 2)}{\Gamma((n-a) / 2)} .
$$

Let $\Lambda_{\delta}(f)(x)=f(\delta x)$, then

$$
\Lambda_{\delta^{-1}} I_{a} \Lambda_{\delta}=\delta^{-a} I_{a}, \quad\left\|\Lambda_{\delta}(f)\right\|_{p}=\delta^{-n / p}\|f\|_{p} . \quad\left\|\Lambda_{\delta^{-1}} I_{a}(f)\right\|_{q}=\delta^{n / q}\left\|I_{a}(f)\right\|_{q}
$$

If $\left\|I_{a} f\right\|_{q} \leq C\|f\|_{p}$ is true, then we get by

$$
\begin{aligned}
\left\|I_{a}\left(\Lambda_{\delta} f\right)\right\|_{q} & =\left\|\Lambda_{\delta}\left(\delta^{-a} I_{a} f\right)\right\|_{q}=\delta^{-a}\left\|\Lambda_{\delta} I_{a} f\right\|_{q} \\
& =\delta^{-a}\left\|I_{a} f\right\|_{q} \delta^{-n / q} \leq C \delta^{-a-n / q}\|f\|_{p}=\delta^{-a-n / q+n / p}\left\|\Lambda_{\delta} f\right\|_{p}
\end{aligned}
$$

that

$$
\begin{equation*}
\frac{1}{q}=\frac{1}{p}-\frac{a}{n} \tag{6.3}
\end{equation*}
$$

Theorem 6.2.1. Let $0<a<n, 1 \leq p<n / a$ and define q by (6.3). Then $\left\|I_{a} f\right\|_{q} \leq C\|f\|_{p}$ for $p>1$ and $\left\|I_{a} f\right\|_{q, w} \leq C\|f\|_{p}$ for $p=1$.

Proof. We give a proof, which is based on the following inequality due to Hedberg (1972):

$$
\begin{equation*}
I_{a} f(x) \leq C_{a}\|f\|_{p}^{a p / n} \cdot M f(x)^{1-a p / n} \tag{6.4}
\end{equation*}
$$

This inequality implies for $p>1$

$$
\left\|I_{a} f\right\|_{q} \leq C_{a}\|f\|_{p}^{a p / n}\left\|(M f)^{1-a p / n}\right\|_{q}=C_{a}\|f\|_{p}^{a p / n}\|M f\|_{p}^{1-a p / n} \lesssim\|f\|_{p},
$$

and the weak bound follows for $p=1$ in the same manner. To show (6.4), we argue as follows.

Fix $x \in \mathbb{R}^{n}$ and split (for $A>0$ to be chosen later on)

$$
\gamma_{a} I_{a} f(x)=\int_{y:\|x-y\| \leq A} \frac{f(y)}{\|x-y\|^{n-a}} d y+\int_{y:\|x-y\|>A} \frac{f(y)}{\|x-y\|^{n-a}} d y .
$$

We apply Theorem 1.2.4 to the first integral

$$
\begin{align*}
\int_{y:\|x-y\| \leq A} \frac{f(y)}{\|x-y\|^{n-a}} d y & \leq C \int_{y:\|x-y\| \leq A} \frac{d y}{\|x-y\|^{n-a}} \cdot M f(x) \tag{6.5}\\
& \leq C^{\prime} \int_{0}^{A} r^{-(n-a)} r^{n-1} d r \cdot M f(x)=C^{\prime \prime} A^{a} \cdot M f(x) .
\end{align*}
$$

The second part may be estimated by Hölder's inequality as follows

$$
\begin{align*}
\int_{y:\|x-y\|>A} \frac{f(y)}{\|x-y\|^{n-a}} d y & \leq C\|f\|_{p} \cdot\left(\int_{y:\|x-y\|>A}\|x-y\|^{(a-n) p^{\prime}} d y\right)^{1 / p^{\prime}} \tag{6.6}\\
& \leq C^{\prime}\left(\int_{A}^{\infty} r^{n-1} r^{(a-n) p^{\prime} d r}\right)^{1 / p^{\prime}} \\
& \leq C^{\prime \prime}\|f\|_{p} \cdot A^{\left((a-n) p^{\prime}+n\right) / p^{\prime}}=C^{\prime \prime}\|f\|_{p} \cdot A^{a-n+n / p^{\prime}}=C^{\prime \prime}\|f\|_{p} A^{a-n / p}
\end{align*}
$$

Choosing A in such a way, that (6.5) and (6.6) coincide, we get $A=\left(\|f\|_{p} / M f(x)\right)^{p / n}$ and (6.4) follows.

Definition 6.2.2. Let $k \in \mathbb{N}_{0}$ and let $1 \leq p \leq \infty$. Then the Sobolev space $W_{p}^{k}\left(\mathbb{R}^{n}\right)$ is the set of all functions from $L_{p}\left(\mathbb{R}^{n}\right)$, such that all its (distributional) derivatives up to order k belong to $L_{p}\left(\mathbb{R}^{n}\right)$.

Theorem 6.2.3. (Sobolev's embedding theorem) Let $k \in \mathbb{N}, 1 \leq p \leq \infty$ and $1 / q=$ $1 / p-k / n$.
(i) If $q<\infty$, i.e. $p<n / k$, then $W_{p}^{k}\left(\mathbb{R}^{n}\right) \hookrightarrow L_{q}\left(\mathbb{R}^{n}\right)$.
(ii) If $q=\infty$. i.e. $p=n / k$, then the restriction of any $f \in W_{p}^{k}\left(\mathbb{R}^{n}\right)$ to a compact subset of \mathbb{R}^{n} belongs to $L_{r}\left(\mathbb{R}^{n}\right)$ for any $r<\infty$.
(iii) If $p>n / k$, then every $f \in W_{p}^{k}\left(\mathbb{R}^{n}\right)$ can be modified on a set of measure zero so that the resulting function is continuous.

Proof. For a direct proof, we refer to the book of Stein, Chapter 5. Let us sketch the proof using Riesz transforms and potentials.

$$
\left(R_{j}\left(\frac{\partial}{\partial x_{j}} f\right)\right)^{\wedge}(\xi)=\frac{\xi_{j}^{2}}{\|\xi\|} \hat{f}(\xi)
$$

and

$$
\begin{equation*}
f=I_{1}\left(\sum_{j=1}^{n} R_{j}\left(\frac{\partial}{\partial x_{j}} f\right)\right) . \tag{6.7}
\end{equation*}
$$

We deal with $k=1$, higher order follow by iteration. Let $f \in W_{p}^{1}\left(\mathbb{R}^{n}\right)$.
Let $1<p<n$. Then all $\partial f / \partial x_{j}$ belong to $L_{p}\left(\mathbb{R}^{n}\right)$ and their Riesz transforms $R_{j}\left(\partial f / \partial x_{j}\right)$ belong also to $L_{p}\left(\mathbb{R}^{n}\right)$. Finally, I_{1} maps $L_{p}\left(\mathbb{R}^{n}\right)$ into $L_{q}\left(\mathbb{R}^{n}\right)$. This gives the proof of (i) for $1<p<\infty$. We leave out the proof for $p=1$.

For the proof of (ii), we consider only ηf, where η is a smooth function with compact support. We apply (6.7) to ηf, which (together with its first order derivatives) belongs not only to $L_{p}\left(\mathbb{R}^{n}\right)$ but also to all $L_{s}\left(\mathbb{R}^{n}\right), 1<s<p=n$. Riesz transforms R_{j} then map these to $L_{s}\left(\mathbb{R}^{n}\right)$ again, and the Riesz potential I_{1} then maps the outcome into $L_{r}\left(\mathbb{R}^{n}\right)$ for $1 / r-1 / s-1 / n$, i.e. into every $L_{r}\left(\mathbb{R}^{n}\right), r<\infty$. The proof of (iii) is again left out.

6.3 Calderón-Zygmund operators

These are convolutions with kernel K, which might have a singularity at origin.
Theorem 6.3.1. (Calderón-Zygmund) Let $K \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ be a tempered distribution, which is associated to a locally integrable function on $\mathbb{R}^{n} \backslash\{0\}$ and satisfies
(CZ1) $\quad|\hat{K}(\xi)| \leq A, \quad \xi \in \mathbb{R}^{n}$,
(CZ2) $\int_{\|x\|_{2} \geq 2\|y\|_{2}}|K(x-y)-K(x)| d x \leq B, \quad y \in \mathbb{R}^{n}$.
Then, for $1<p<\infty$,

$$
\|K * f\|_{p} \leq C_{p}\|f\|_{p} \quad \text { and } \quad\|K * f\|_{1, w} \leq C\|f\|_{1} .
$$

The proof copies very much the proof of the same statement for the Hilbert transform, and we leave out the details.

The condition (CZ2) is sometimes called Hörmander condition. By the help of mean value theorem, it is satisfied for example if

$$
\|\nabla K(x)\|_{2} \leq \frac{C}{\|x\|_{2}^{n+1}}, \quad x \neq 0 .
$$

An important and non-trivial generalisation of the theory of singular integrals is given by considering the vector-valued analogues. By this, we mean the following.

- H, \tilde{H} are (complex) Hilbert spaces.
- For $0<p<\infty, L_{p}\left(\mathbb{R}^{n} \rightarrow H\right)$ is the set of measurable functions $f: \mathbb{R}^{n} \rightarrow H$, such that $\int_{\mathbb{R}^{n}}\|f(x)\|_{H}^{p} d x<\infty$.
- Let $K: \mathbb{R}^{n} \rightarrow \mathscr{L}(H, \tilde{H})$. Then $T f(x)=\int_{\mathbb{R}^{n}} K(y) f(x-y) d y$ takes values in \tilde{H}.
- Under same (just appropriately interpreted) conditions as above, T is bounded from $L_{p}\left(\mathbb{R}^{n} \rightarrow H\right)$ into $L_{p}\left(\mathbb{R}^{n} \rightarrow \tilde{H}\right)$. Especially, the gradient condition above is still valid in this case.

7 Special role of $p=2$

7.1 Khintchine inequality

We denote by

$$
r_{n}(t):=\operatorname{sign} \sin \left(2^{n} \pi t\right), \quad t \in[0,1], n \in \mathbb{N}_{0} .
$$

the Rademacher functions.
The system $\left(r_{n}\right)_{n=0}^{\infty}$ forms an orthonormal system in $L_{2}(0,1)$, but it is not a basis (consider i.e. the function $f(t)=1-2 t$).
Theorem 7.1.1. Let $p \in[1, \infty)$. Then there are positive constants A_{p} and B_{p} such that

$$
A_{p}\left(\sum_{n=1}^{m}\left|a_{n}\right|^{2}\right)^{1 / 2} \leq\left(\int_{0}^{1}\left|\sum_{n=1}^{m} a_{n} r_{n}(t)\right|^{p} d t\right)^{1 / p} \leq B_{p}\left(\sum_{n=1}^{m}\left|a_{n}\right|^{2}\right)^{1 / 2}
$$

holds for every $m \in \mathbb{N}$ and every sequence of real numbers a_{1}, \ldots, a_{m}.
Proof. By A_{p} and B_{p} we denote the best possible constants (which are actually known, but we shall derive slightly weaker estimates). Furthermore, orthogonality of Rademacher functions gives immediately $A_{2}=B_{2}=1$. Finally, due to monotonicity of the L_{p}-norms, we have $A_{r} \leq A_{p}$ and $B_{r} \leq B_{p}$ for $r \leq p$.

So, it is enough to show that $A_{1}>0$ and $B_{2 k}<\infty$ for all $k \in \mathbb{N}$.
We start with $B_{2 k}$. Let us observe that

$$
\begin{aligned}
E:=\int_{0}^{1}\left|\sum_{n=1}^{m} a_{n} r_{n}(t)\right|^{2 k} d t & =\int_{0}^{1}\left(\sum_{n=1}^{m} a_{n} r_{n}(t)\right)^{2 k} d t \\
& =\sum_{|\alpha|=2 k} \frac{(2 k)!}{\alpha_{1}!\ldots \alpha_{m}!} a_{1}^{\alpha_{1}} \ldots a_{m}^{\alpha_{m}} \int_{0}^{1} r_{1}^{\alpha_{1}}(t) \ldots r_{m}^{\alpha_{m}}(t) d t \\
& =\sum_{|\alpha|=k} \frac{(2 k)!}{\left(2 \alpha_{1}\right)!\ldots\left(2 \alpha_{m}\right)!} a_{1}^{2 \alpha_{1}} \ldots a_{m}^{2 \alpha_{m}} \int_{0}^{1} r_{1}^{2 \alpha_{1}}(t) \ldots r_{m}^{2 \alpha_{m}}(t) d t \\
& =\sum_{|\alpha|=k} \frac{(2 k)!}{\left(2 \alpha_{1}\right)!\ldots\left(2 \alpha_{m}\right)!} a_{1}^{2 \alpha_{1}} \ldots a_{m}^{2 \alpha_{m}},
\end{aligned}
$$

where we have used the multinomial theorem (a generalisation of the binomial theorem to a bigger number of summands) and the fact that

$$
\int_{0}^{1} r_{1}^{\alpha_{1}}(t) \ldots r_{m}^{\alpha_{m}}(t) d t
$$

is equal to zero if some of the α_{i} 's is odd and equal to 1 if all of them are even.
Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{N}_{0}^{m}$ be integers with $|\alpha|=k$, then

$$
2^{k} \alpha_{1}!\ldots \alpha_{m}!=\left(2^{\alpha_{1}} \alpha_{1}!\right) \ldots\left(2^{\alpha_{m}} \alpha_{m}!\right) \leq\left(2 \alpha_{1}\right)!\ldots\left(2 \alpha_{m}\right)!.
$$

This implies

$$
\begin{aligned}
E & \leq \frac{(2 k)!}{2^{k} k!} \sum_{|\alpha|=k} \frac{k!}{\alpha_{1}!\ldots \alpha_{m}!} a_{1}^{2 \alpha_{1}} \ldots a_{m}^{2 \alpha_{m}} \\
& =\frac{(2 k)!}{2^{k} k!}\left(\sum_{n=1}^{m}\left|a_{n}\right|^{2}\right)^{k}=\frac{(2 k)!}{2^{k} k!}\|a\|_{2}^{2 k}
\end{aligned}
$$

and

$$
E^{1 /(2 k)} \leq\left(\frac{(2 k)!}{2^{k} k!}\right)^{1 /(2 k)}\|a\|_{2}
$$

Hence, the statement holds with ${ }^{6}$

$$
B_{2 k}:=\left(\frac{(2 k)!}{2^{k} k!}\right)^{1 /(2 k)}
$$

Finally, we have to show the existence of $A_{1}>0$. We proceed by a nice duality trick using the (already proven) first part of this theorem.

Let $f(t):=\sum_{n=1}^{m} a_{n} r_{n}(t)$. By Hölder's inequality for $p=3 / 2$ and $p^{\prime}=3$, we have

$$
\begin{aligned}
\int_{0}^{1}|f(t)|^{2} d t & =\int_{0}^{1}|f(t)|^{2 / 3} \cdot|f(t)|^{4 / 3} d t \leq\left(\int_{0}^{1}|f(t)| d t\right)^{2 / 3} \cdot\left(\int_{0}^{1}|f(t)|^{4}\right)^{1 / 3} \\
& \leq\left(\int_{0}^{1}|f(t)| d t\right)^{2 / 3} B_{4}^{4 / 3} \cdot\|a\|_{2}^{4 / 3}=\left(\int_{0}^{1}|f(t)| d t\right)^{2 / 3} B_{4}^{4 / 3} \cdot\|f\|_{2}^{4 / 3}
\end{aligned}
$$

Therefore,

$$
\left(\int_{0}^{1}|f(t)| d t\right)^{2 / 3} \geq B_{4}^{-4 / 3}\left(\int_{0}^{1}|f(t)|^{2} d t\right)^{1 / 3}
$$

that is

$$
\int_{0}^{1}|f(t)| d t \geq B_{4}^{-2}\left(\int_{0}^{1}|f(t)|^{2} d t\right)^{1 / 2}=B_{4}^{-2}\|a\|_{2}
$$

Hence, $A_{1} \geq B_{4}^{-2}$.
Remark 7.1.2. Stochastic reformulation of Khintchine's inequalities sounds as follows. Let $\varepsilon_{i}, i=1, \ldots, m$ be independent variables with $\mathbb{P}\left(\varepsilon_{i}=1\right)=1 / 2$ and $\mathbb{P}\left(\varepsilon_{i}=-1\right)=1 / 2$. Let $1 \leq p<\infty$. Then there are constants A_{p}, B_{p} such that for every $a_{1}, \ldots, a_{m} \in \mathbb{R}^{7}$

$$
A_{p}\|a\|_{2} \leq\left(\mathbb{E}\left|\sum_{i=1}^{m} a_{i} \varepsilon_{i}\right|^{p}\right)^{1 / p} \leq B_{p}\|a\|_{2}
$$

Choosing p large enough, this estimate gives very quickly the so-called tail bound estimates on sum of independent Rademacher variables, i.e. the assymptotic estimates of

$$
\mathbb{P}\left(\left|\sum_{i=1}^{m} a_{i} \varepsilon_{i}\right|>t\right)
$$

for $t \rightarrow \infty$.
We use this reformulation of Khintchine's inequalities to give another proof of Theorem 7.1.1.

Proof. (of the upper estimate in Theorem 7.1.1).
We normalize to $\|a\|_{2}=1$. Then

$$
\mathbb{E} \exp \left(\sum_{i=1}^{m} a_{i} \varepsilon_{i}\right)=\mathbb{E} \prod_{i=1}^{m} \exp \left(a_{i} \varepsilon_{i}\right)=\prod_{i=1}^{m} \mathbb{E} \exp \left(a_{i} \varepsilon_{i}\right)=\prod_{i=1}^{m} \cosh \left(a_{i}\right)
$$

[^4]Using Taylor's expansion, one obtains $\cosh \left(a_{j}\right) \leq \exp \left(a_{j}^{2} / 2\right)$. Hence,

$$
\mathbb{E} \exp \left(\sum_{i=1}^{m} a_{i} \varepsilon_{i}\right) \leq \prod_{i=1}^{m} \exp \left(a_{i}^{2} / 2\right) \lesssim 1
$$

and by Markov's inequality

$$
\begin{aligned}
\mathbb{P}\left(\sum_{i=1}^{m} a_{i} \varepsilon_{i}>\lambda\right) & =\mathbb{P}\left(\exp \left(\sum_{i=1}^{m} a_{i} \varepsilon_{i}\right)>\exp (\lambda)\right)=\mathbb{P}\left(\exp \left(\sum_{i=1}^{m} a_{i} \varepsilon_{i}-\lambda\right)>1\right) \\
& \leq \mathbb{E} \exp \left(\sum_{i=1}^{m} a_{i} \varepsilon_{i}-\lambda\right) \lesssim e^{-\lambda} .
\end{aligned}
$$

By symmetry of ε_{i} 's, we get also $\mathbb{P}\left(\left|\sum_{i=1}^{m} a_{i} \varepsilon_{i}\right|>\lambda\right) \lesssim e^{-\lambda}$. The rest then follows by distributional representation of the L_{p}-norm.

Khintchine's inequalities have an interesting application in operator theory. Let $1 \leq$ $p<\infty$ and let $T: L_{p}\left(\mathbb{R}^{n}\right) \rightarrow L_{p}\left(\mathbb{R}^{n}\right)$ be a bounded linear operator. Then

$$
\begin{equation*}
\left\|\left(\sum_{j=0}^{N}\left|T f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p} \leq c_{p}\left\|\left(\sum_{j=0}^{N}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p}, \tag{7.1}
\end{equation*}
$$

where the constant c_{p} depends only on p and $\|T\|$.
The proof follows by considering Rademacher functions r_{1}, \ldots, r_{N} and

$$
\begin{aligned}
\left\|\left(\sum_{j=0}^{N}\left|T f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p}^{p} & =\int_{\mathbb{R}^{n}}\left(\sum_{j=1}^{N}\left|\left(T f_{j}\right)(x)\right|^{2}\right)^{p / 2} d x \leq c \int_{\mathbb{R}^{n}}\left(\int_{0}^{1}\left|\sum_{j=1}^{N} T f_{j}(x) r_{j}(t)\right|^{p} d t\right)^{p / p} d x \\
& =c \int_{0}^{1} \int_{\mathbb{R}^{n}}\left|\sum_{j=1}^{N} T f_{j}(x) r_{j}(t)\right|^{p} d x d t=c \int_{0}^{1} \int_{\mathbb{R}^{n}}\left|T\left(\sum_{j=1}^{N} f_{j} r_{j}(t)\right)(x)\right|^{p} d x d t \\
& \leq c\|T\|^{p} \int_{0}^{1} \int_{\mathbb{R}^{n}}\left|\sum_{j=1}^{N} f_{j}(x) r_{j}(t)\right|^{p} d x d t \leq c^{\prime} \int_{\mathbb{R}^{n}}\left(\sum_{j=1}^{N}\left|f_{j}(x)\right|^{2}\right)^{p / 2} d x \\
& =c_{p}^{p}\left\|\left(\sum_{j=0}^{N}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p}^{p} .
\end{aligned}
$$

By letting $N \rightarrow \infty$, the same result holds also for infinite sums.

7.2 Littlewood-Paley Theory

Let $\left\{I_{j}\right\}$ be a sequence of intervals on the real line, finite or infinite, and let $\left\{S_{j}\right\}$ be the sequence of operators defined by $\left(S_{j} f\right)^{\wedge}(\xi)=\chi_{I_{j}}(\xi) \hat{f}(\xi)$. Later on, we shall concentrate on the dyadic decomposition of \mathbb{R} (strictly speaking of $\mathbb{R} \backslash\{0\}$) given by

$$
\begin{equation*}
I_{j}=\left(-2^{j+1},-2^{j}\right] \cup\left[2^{j}, 2^{j+1}\right), \quad j \in \mathbb{Z} . \tag{7.2}
\end{equation*}
$$

Furthermore, we denote $S_{j}^{*}=S_{j-1}+S_{j}+S_{j+1}$. Let us observe that this implies $S_{j}^{*} S_{j}=$ $S_{j} S_{j}^{*}=S_{j}$.

Finally, we adopt this concept also to smooth dyadic decompositions. Let $\psi \in \mathscr{S}(\mathbb{R})$ be non-negative, have support in $1 / 2 \leq\|\xi\|_{2} \leq 4$ and be equal to 1 on $1 \leq\|\xi\|_{2} \leq 2$. Then we define

$$
\psi_{j}(\xi)=\psi\left(2^{-j} \xi\right) \quad \text { and } \quad\left(\tilde{S}_{j} f\right)^{\wedge}(\xi)=\psi_{j}(\xi) \hat{f}(\xi), \quad \xi \in \mathbb{R}
$$

Theorem 7.2.1. (Littlewood-Paley Theory) Let $1<p<\infty$.
i) Then there exist two constants $C_{p}>c_{p}>0$, such that

$$
c_{p}\|f\|_{p} \leq\left\|\left(\sum_{j}\left|S_{j} f\right|^{2}\right)^{1 / 2}\right\|_{p} \leq C_{p}\|f\|_{p}
$$

The same holds for S_{j}^{*}.
ii) There exists a constant $C_{p}>0$ such that

$$
\left\|\left(\sum_{j}\left|\tilde{S}_{j} f\right|^{2}\right)^{1 / 2}\right\|_{p} \leq C_{p}\|f\|_{p}
$$

iii) Finally, if $\sum_{j}\left|\psi\left(2^{-j} \xi\right)\right|^{2}=1$, then there is also a constant $c_{p}>0$, such that

$$
c_{p}\|f\|_{p} \leq\left\|\left(\sum_{j}\left|\tilde{S}_{j} f\right|^{2}\right)^{1 / 2}\right\|_{p} .
$$

Proof. Step 1.
We know, that $\left(S_{j} f\right)^{\wedge}=\chi_{I_{j}} \hat{f}$, where I_{j} was defined by (7.2). We define

$$
I_{j}^{-}:=\left(-2^{j+1},-2^{j}\right], \quad I_{j}^{+}:=\left[2^{j}, 2^{j+1}\right), \quad j \in \mathbb{Z}
$$

and split $S_{j}=S_{j}^{-}+S_{j}^{+}$, where $\left(S_{j}^{-} f\right)^{\wedge}=\chi_{I_{j}^{-}} \hat{f}$ and $\left(S_{j}^{+} f\right)^{\wedge}=\chi_{I_{j}^{+}} \hat{f}$.
We observe, that

$$
\chi_{I_{j}^{+}}(x)=\frac{1}{2}\left(\operatorname{sgn}\left(x-2^{j}\right)-\operatorname{sgn}\left(x-2^{j+1}\right)\right) \quad \text { for (almost) all } x \in \mathbb{R},
$$

and

$$
S_{j}^{+} f=\left(\chi_{I_{j}^{+}} \hat{f}\right)^{\vee}=\frac{1}{2}\left(\left(\operatorname{sgn}\left(\cdot-2^{j}\right) \hat{f}\right)^{\vee}-\left(\operatorname{sgn}\left(\cdot-2^{j+1}\right) \hat{f}\right)^{\vee}\right) .
$$

Finally, we write

$$
\operatorname{sgn}\left(\xi-2^{j}\right) \hat{f}(\xi)=\tau_{2 j}\left[\operatorname{sgn}(\xi) \hat{f}\left(\xi+2^{j}\right)\right]=\tau_{2^{j}}\left[\operatorname{sgn}(\xi) \cdot \tau_{-2^{j}} \hat{f}(\xi)\right],
$$

leading to

$$
\begin{aligned}
\left(\operatorname{sgn}\left(\xi-2^{j}\right) \hat{f}(\xi)\right)^{\vee} & =M_{2^{j}}\left(\operatorname{sgn} \cdot \tau_{-2^{j}} \hat{f}\right)^{\vee}=(2 \pi)^{-1 / 2} \cdot M_{2^{j}}\left(\operatorname{sgn}(\cdot)^{\vee} *\left(\tau_{-2^{j}} \hat{f}\right)^{\vee}\right) \\
& =(2 \pi)^{-1 / 2} M_{2^{j}}\left(\frac{\sqrt{2 \pi}}{-i}\left(\frac{1}{\pi} p \cdot v \cdot \frac{1}{x}\right) * M_{-2^{j}} f\right) \\
& =i M_{2^{j}}\left(\left(\frac{1}{\pi} p \cdot v \cdot \frac{1}{x}\right) * M_{-2^{j}} f\right) \\
& =i M_{2^{j}} H M_{-2^{j}} f .
\end{aligned}
$$

Using the boundedness of H on $L_{p}(\mathbb{R})$ for $1<p<\infty$, we immediately obtain that $\left\|S_{j} f\right\|_{p} \leq c\|f\|_{p}$, and the same is true also for S_{j}^{+}and S_{j}^{-}.

Step 2.
We combine Step 1. with (7.1) to obtain

$$
\begin{aligned}
\left\|\left(\sum_{j \in \mathbb{Z}}\left|S_{j}^{+} f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p} & \leq \frac{1}{2}\left\{\left\|\left(\sum_{j \in \mathbb{Z}}\left|\left(\operatorname{sgn}\left(\xi-2^{j}\right) \hat{f}_{j}(\xi)\right)^{\vee}\right|^{2}\right)^{1 / 2}\right\|_{p}+\left\|\left(\sum_{j \in \mathbb{Z}}\left|\left(\operatorname{sgn}\left(\xi-2^{j+1}\right) \hat{f}_{j}(\xi)\right)^{\vee}\right|^{2}\right)^{1 / 2}\right\|_{p}\right\} \\
& \leq \frac{1}{2}\left\{\left\|\left(\sum_{j \in \mathbb{Z}}\left|M_{2^{j}} H M_{-2^{j}} f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p}+\ldots\right\} \\
& =\frac{1}{2}\left\{\left\|\left(\sum_{j \in \mathbb{Z}}\left|H M_{-2^{j}} f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p}+\ldots\right\} \\
& \leq c_{p}\left\{\left\|\left(\sum_{j \in \mathbb{Z}}\left|M_{-2^{j}} f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p}+\ldots\right\}=c_{p}^{\prime}\left\|\left(\sum_{j \in \mathbb{Z}}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p}
\end{aligned}
$$

The same holds of course for S_{j}^{-}and, therefore, also for S_{j}.
Step 3.
This, together with the identity $S_{j}=S_{j} \tilde{S}_{j}$ implies

$$
\left\|\left(\sum_{j \in \mathbb{Z}}\left|S_{j} f\right|^{2}\right)^{1 / 2}\right\|_{p}=\left\|\left(\sum_{j \in \mathbb{Z}}\left|S_{j} \tilde{S}_{j} f\right|^{2}\right)^{1 / 2}\right\|_{p} \leq\left\|\left(\sum_{j \in \mathbb{Z}}\left|\tilde{S}_{j} f\right|^{2}\right)^{1 / 2}\right\|_{p} .
$$

Step 4.
This shows, that the second inequality in part (i) of the theorem follows from (ii). Therefore, we prove (ii) now.

Let $\hat{\Psi}=\psi$ and $\Psi_{j}(x)=2^{j} \Psi\left(2^{j} x\right)$. Then $\hat{\Psi}_{j}=\psi_{j}$ and $\tilde{S}_{j} f=\Psi_{j} * f$. It is enough to prove that the vector-valued mapping

$$
f \rightarrow\left(\tilde{S}_{j} f\right)_{j}
$$

is bounded from L_{p} to $L_{p}\left(\ell_{2}\right)$. If $p=2$, this follows by Plancherel theorem:

$$
\left\|\left(\sum_{j}\left|\tilde{S}_{j} f\right|^{2}\right)^{1 / 2}\right\|_{2}^{2}=\int_{\mathbb{R}} \sum_{j}\left|\psi_{j}(\xi)\right|^{2} \cdot|\hat{f}(\xi)|^{2} d \xi \leq 3\|f\|_{2}^{2}
$$

The proof for $p \neq 2$ is an application of the vector-valued Calderón-Zygmund theory, and especially the Hörmander's condition for vector-valued singular integrals.

Let us first give the notation. Let $H=\mathbb{C}$ and $\tilde{H}=\ell_{2}(\mathbb{Z})$. This means that H is just one-dimensional Hilbert space and \tilde{H} is the ℓ_{2} space of sequences indexed by integers. Then $L_{p}(\mathbb{R} \rightarrow H)=L_{p}(\mathbb{R} \rightarrow \mathbb{C})$ is just the usual $L_{p}(\mathbb{R})$ space of complex-valued functions. And $L_{p}(\mathbb{R} \rightarrow \tilde{H})$ is a space of functions $g: \mathbb{R} \rightarrow \ell_{2}(\mathbb{Z})$. Each $g(x)$ is then a sequence $\left(\ldots, g_{-1}(x), g_{0}(x), g_{1}(x), \ldots\right)$ and the $L_{p}(\mathbb{R} \rightarrow \tilde{H})$ norm of g is given by

$$
\begin{aligned}
\left\|g \mid L_{p}(\mathbb{R} \rightarrow \tilde{H})\right\| & =\left\|\left(g_{j}\right)_{j \in \mathbb{Z}} \mid L_{p}(\mathbb{R} \rightarrow \tilde{H})\right\|=\left(\int_{\mathbb{R}}\left\|\left(g_{j}(x)\right)_{j \in \mathbb{Z}}\right\|_{\tilde{H}}^{p} d x\right)^{1 / p} \\
& =\left(\int_{\mathbb{R}}\left(\sum_{j \in \mathbb{Z}}\left|g_{j}(x)\right|^{2}\right)^{p / 2} d x\right)^{1 / p}=\left\|\left(\sum_{j \in \mathbb{Z}}\left|g_{j}(x)\right|^{2}\right)^{1 / 2}\right\|_{p}
\end{aligned}
$$

Now, we define a vector-valued Calderón-Zygmund operator T based on a kernel K. We need $K(x) \in \mathcal{L}(H, \tilde{H})=\mathcal{L}\left(\mathbb{C}, \ell_{2}(\mathbb{Z})\right)$ for every $x \in \mathbb{R}$. Therefore, we first characterize the elements of $\mathcal{L}\left(\mathbb{C}, \ell_{2}(\mathbb{Z})\right)$. As the source space is one-dimensional, it is easy to see that each element $Z \in \mathcal{L}\left(\mathbb{C}, \ell_{2}(\mathbb{Z})\right)$ is given by

$$
Z(\lambda)=\lambda \cdot z
$$

for some $z \in \ell_{2}(\mathbb{Z})$. We therefore define

$$
K(x): \lambda \rightarrow \lambda \cdot\left(\ldots, \Psi_{-1}(x), \Psi_{0}(x), \Psi_{1}(x), \ldots\right) .
$$

Without giving the formal detail on vector-valued integration, we get

$$
\begin{aligned}
T f(x) & =\int_{\mathbb{R}} K(y) f(x-y) d y=\int_{\mathbb{R}} f(x-y) \cdot\left(\ldots, \Psi_{-1}(y), \Psi_{0}(y), \Psi_{1}(y), \ldots\right) d y \\
& =\left(\ldots, \int_{\mathbb{R}} f(x-y) \Psi_{-1}(y) d y, \int_{\mathbb{R}} f(x-y) \Psi_{0}(y) d y, \int_{\mathbb{R}} f(x-y) \Psi_{1}(y) d y, \ldots\right) \\
& =\left(\ldots, \Psi_{-1} * f(x), \Psi_{0} * f(x), \Psi_{1} * f(x), \ldots\right) \\
& =\left(\ldots, \tilde{S}_{-1} f, \tilde{S}_{0} f, \tilde{S}_{1} f, \ldots\right)=" K * f(x) " .
\end{aligned}
$$

When we show, that Calderón-Zygmund theorem can be applied, this will give

$$
\left\|T f \mid L_{p}\left(\mathbb{C} \rightarrow \ell_{2}(Z)\right)\right\| \leq C\|f\|_{p}
$$

Due to what we said before, this is exactly the inequality in (ii).
So, we are left with verifying the two conditions ($C Z 1$) and ($C Z 2$). The first one is equivalent to showing that

$$
\left(\ldots, \hat{\Psi}_{-1}(\xi), \hat{\Psi}_{0}(\xi), \hat{\Psi}_{1}(\xi), \ldots\right)=\left(\ldots, \psi_{-1}(\xi), \psi_{0}(\xi), \psi_{1}(\xi), \ldots\right)
$$

is uniformly bounded in $\ell_{2}(\mathbb{Z})$ for every $\xi \in \mathbb{R}$. But that follows easily from the support properties of the functions ψ_{j}.

To verify the second, we need to show that

$$
\left\|\Psi_{j}^{\prime}(x)\right\|_{\ell_{2}} \leq C|x|^{-2}, \quad x \in \mathbb{R}
$$

Using that $\Psi \in \mathscr{S}(\mathbb{R})$, we obtain

$$
\begin{aligned}
\left(\sum_{j \in \mathbb{Z}}\left|\Psi_{j}^{\prime}(x)\right|^{2}\right)^{1 / 2} & \leq \sum_{j \in \mathbb{Z}}\left|\Psi_{j}^{\prime}(x)\right|=\sum_{j} 2^{2 j}\left|\Psi^{\prime}\left(2^{j} x\right)\right| \leq C \sum_{j \in \mathbb{Z}} 2^{2 j} \min \left(1,\left(2^{j}|x|\right)^{-3}\right) \\
& =C \sum_{j: 2^{j}|x| \leq 1} \cdots+C \sum_{j: 2^{j}|x|>1} \cdots \\
& =C \sum_{j: 2^{j}|x| \leq 1} 2^{2 j}+C \sum_{j: 2^{j}|x|>1} 2^{2 j}\left(2^{j}|x|\right)^{-3} \leq \frac{C^{\prime}}{|x|^{2}}
\end{aligned}
$$

Step 5.
Finally, we prove the first inequality in part (i) and part (iii) of the theorem. Surprisingly enough, they follow quite quickly from previous steps and duality.

The identity

$$
\begin{equation*}
\left\|\left(\sum_{j \in \mathbb{Z}}\left|S_{j} f\right|^{2}\right)^{1 / 2}\right\|_{2}=\|f\|_{2} \tag{7.3}
\end{equation*}
$$

follows by Plancherel's theorem and, by polarization, also

$$
\int_{\mathbb{R}} \sum_{j} S_{j} f \cdot \overline{S_{j} g}=\int_{\mathbb{R}} f \bar{g}
$$

follows. Using this, and the first part of the theorem for p^{\prime} with $1 / p+1 / p^{\prime}=1$ allows the following estimate.

$$
\begin{aligned}
\|f\|_{p} & =\sup \left\{\left|\int_{\mathbb{R}} f \bar{g}\right|:\|g\|_{p^{\prime}} \leq 1\right\} \\
& =\sup \left\{\left|\int_{\mathbb{R}} \sum_{j} S_{j} f \cdot \overline{S_{j} g}\right|:\|g\|_{p^{\prime}} \leq 1\right\} \\
& \leq \sup \left\{\left\|\left(\sum_{j \in \mathbb{Z}}\left|S_{j} f\right|^{2}\right)^{1 / 2}\right\|_{p} \cdot\left\|\left(\sum_{j \in \mathbb{Z}}\left|S_{j} g\right|^{2}\right)^{1 / 2}\right\|_{p^{\prime}}:\|g\|_{p^{\prime}} \leq 1\right\} \\
& \leq c_{p}\left\|\left(\sum_{j \in \mathbb{Z}}\left|S_{j} f\right|^{2}\right)^{1 / 2}\right\|_{p}
\end{aligned}
$$

Part (iii) of the theorem follows in exactly the same way - the assumption of the theorem gives exactly the identity (7.3).

References

[1] W. Rudin, Functional Analysis, McGraw-Hill, 1991.
[2] D. Werner, Funktionalanalysis, 7. Aufl., Springer, 2011.
[3] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J., 1970.
[4] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32. Princeton University Press, Princeton, N.J., 1971.
[5] H. Triebel, Higher analysis, University Books for Mathematics, Johann Ambrosius Barth Verlag GmbH, Leipzig, 1992.
[6] L. Grafakos, Classical Fourier analysis, Second edition, Graduate Texts in Mathematics, 249. Springer, New York, 2008.
[7] L. Grafakos, Modern Fourier analysis, Second edition, Graduate Texts in Mathematics, 250. Springer, New York, 2009.
[8] J. Duoandikoetxea, Fourier analysis, Graduate Studies in Mathematics 29, American Mathematical Society, 2000.

[^0]: ${ }^{1}$ For example the sets $\Omega_{j}:=\{x \in \Omega:|x|<j$ and $\operatorname{dist}(x, \partial \Omega)>1 / j\}$ will do.

[^1]: ${ }^{2}(f * g)(x)=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y=\int_{\mathbb{R}^{n}} f(y) g(x-y) d y$ is the convolution of f and g.
 ${ }^{3} \int f g \leq \int|f g| \leq\left(\int|f|^{p}\right)^{1 / p}\left(\int|g|^{p^{\prime}}\right)^{1 / p^{\prime}}$

[^2]: ${ }^{4}$ possibly finite, or even empty

[^3]: ${ }^{5}$ Observe, that the restriction to $n=1$ is both natural and essential for the cancellation property. Furthermore, from now on, we shall denote the Fourier transform of a function f also by the more usual \widehat{f}.

[^4]: ${ }^{6}$ By Stirling's formula, one can show quite easily that $B_{2 k}$ grows as $\sqrt{2 k}$ for $k \rightarrow \infty$.
 ${ }^{7}$ Also $a_{1}, \ldots, a_{m} \in \mathbb{C}$ can be considered with slightly modified proof.

