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1 Introduction: Gambler's ruin

The �rst part of this text follows quite closely [3]. We start the study of Markov processes
by a motivating example, which will introduce the notation used, the questions studied and
the methods used for the solution of these problems.

We consider the following game. Two players (for simplicity called �Player A� and
�Player B�) play repeatedly a certain game (like chess). Each time Player A wins, he gets
one dollar from Player B and vice versa, if Player B wins, he gets one dollar from Player
A. After that they repeat the game (for example, they start another chess game with a
new board). The rounds played are independent of each other. In the beginning, they
have a pot of S dollars. The probability, that Player A wins one round is p, 0 < p < 1.
The probability, that Player B wins, is q = 1− p. If one or the other player has no dollars
left (meaning that the other player has S dollars), the game stops and the player with no
money left is ruined.

The last parameter, which we need to describe the initial state of the game, is the
money Player A and Player B have in the beginning. We denote by X0 the initial amount
of money of Player A, Player B then starts with S−X0 dollars. The game is then described
by the input parameters (S,X0, p, q), where S ≥ 0 and 0 ≤ X0 ≤ S are integers, 0 < p < 1
and q = 1− p.

To describe the whole game, it seems to be natural to denote by Xn the amount of
dollars, which the Player A has after n rounds. Every time, the game (i.e., the series of the
rounds) is played, Xn would have a di�erent value, even if all the parameters (S,X0, p, q)
are the same. Therefore, Xn is a random variable, taking values in the range {0, 1, . . . , S}.
This notation allows us to reformulate the rules of the game.

� If 1 ≤ k ≤ S − 1 and n ≥ 0, then

P(Xn+1 = k + 1|Xn = k) = p and P(Xn+1 = k + 1|Xn = k) = q.

� The game stops after n rounds, if n is the smallest integer, for which Xn = 0 (A is
ruined) or Xn = S (B is ruined).

� Each series of rounds would have a di�erent (random) length, which would lead to an
unpleasant e�ect, that sometimes Xn would be de�ned and sometimes not. To avoid
this confusion, we de�ne Xn+1 = 0 if Xn = 0 and Xn+1 = S if Xn = S, i.e.

P(Xn+1 = 0|Xn = 0) = 1 and P(Xn+1 = S|Xn = S) = 1.

The questions, which we might be interested in, can be (very informally) divided into
two groups, local and global ones. By a local question, we mean a question, which can be
answered by knowing the distribution of Xn for one n (or a small number of n's). These
include for example

� To �nd the distribution of Xn for one �xed n (i.e., what is the probability that Player
A has k dollars after n rounds);

� To �nd the expected amount of dollars Player A has after n rounds, etc.
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The global questions require the knowledge of a wide range of Xn's. They include the
(arguably more interesting) questions

� What is the probability, that A gets ruined?

� What is the mean time before one of the players get ruined?

� If in the beginning Player A has more money then Player B, what is the probability
that it stays so during the whole game, i.e., that Xn ≥ S −Xn for all n ≥ 0?

Indeed, to answer if the game stopped after n rounds, we need to know more than just the
value of Xn: If Xn = 0, we know that it stopped after ` ≤ n rounds and if Xn 6= 0, we only
know that it did not stop after the �rst n rounds.

Remark 1. Before we dive into the analysis of Gambler's ruin, let us make a remark on the
independence of random variables. The random variables X0, X1, X2, . . . are in general not
independent. Indeed, if we know, that Xn = k for some n ≥ 0 and 1 ≤ k ≤ S − 1, then
Xn+1 ∈ {k−1, k+1} and ifXn = 0 for some n then, necessarily, Xn+1 = 0. Nevertheless, the

rounds of the game are assumed to be independent. Therefore, we could de�ne independent
random variables

Sn =

{
+1 with probability p

−1 with probability q

to be the reward obtained by Player A in the n-th round. Then

Xn = X0 + S1 + · · ·+ Sn (1.1)

holds, but only until the game stops. Therefore, (1.1) is rather problematic - its validity is
restricted to small n's and this restriction is essentially random.

1.1 Probability of ruin

We want to calculate the probability, that Player A gets ruined, if the initial parameters of
the game (S,X0, p, q) are �xed. We exclude trivial cases

� If S = 0 or S = 1, then one or both players start with zero dollars and the game does
not even begin.

� If X0 = 0 or X0 = S, then A (or B) is ruined from the beginning - and the game
again does not start at all.

We shall therefore assume that S ≥ 2 and 1 ≤ X0 ≤ S − 1. Formally, we de�ne the event

of ruining Player A as

RA =

∞⋃
n=0

{Xn = 0} ,

i.e., Player A gets ruined if (and only if) there is some n ≥ 0 for which Xn = 0. We want
to get P(RA) as a function of (S,X0, p, q). We start with the simplest cases, which are
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S = 2: Then we assume that X0 = 1. In this case, the game always takes one round - if A
wins the only round, B gets ruined. If A looses the only round, A gets ruined. Hence

RA = {X1 = 0}

and P(RA) = q.

S = 3: We assume �rst that X0 = 1. In this case, we can count all possible ways, how A
can get ruined. A can loose the �rst game, i.e., X1 = 0. Or it can win, loose, and loose
again, i.e., {X1 = 2, X2 = 1, X3 = 0}. The loop of winning and loosing one round after
each other can be also longer and we get the decomposition

RA =

∞⋃
n=0

{X1 = 2, X2 = 1, . . . , X2n−1 = 2, X2n = 1, X2n+1 = 0} (1.2)

and

P(RA) =

∞∑
n=0

P({X1 = 2, X2 = 1, . . . , X2n−1 = 2, X2n = 1, X2n+1 = 0})

=
∞∑
n=0

(pq)nq =
q

1− pq
.

In the same way (K), we would obtain

P(RA) =
q2

1− pq

if X0 = 2.

For S ≥ 4 it seems rather infeasible (KK?) to enumerate all possible ways, how A can
get ruined (i.e., to obtain a disjoint decomposition of RA similar to (1.2)). Instead of that,
we denote

fS(k) = P(RA|X0 = k), 0 ≤ k ≤ S

and derive a system of S + 1 linear equations for fS(0), fS(1), . . . , fS(S). The �rst two
equations are trivial: fS(0) = 1 and fS(S) = 0.

Lemma 1.1. For all 1 ≤ k ≤ S − 1 it holds

P(RA|X0 = k) = p · P(RA|X0 = k + 1) + q · P(RA|X0 = k − 1).

Proof. We use the independence and divide all possible ways how to ruin Player A by the
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�rst step from X0 to X1.

P(RA|X0 = k) = P(RA, X1 = k + 1|X0 = k) + P(RA, X1 = k − 1|X0 = k)

=
P(RA, X1 = k + 1, X0 = k)

P(X0 = k)
· P(X1 = k + 1, X0 = k)

P(X1 = k + 1, X0 = k)

+
P(RA, X1 = k − 1, X0 = k)

P(X0 = k)
· P(X1 = k − 1, X0 = k)

P(X1 = k − 1, X0 = k)

= P(RA|X1 = k + 1, X0 = k) · P(X1 = k + 1|X0 = k)

+ P(RA|X1 = k − 1, X0 = k) · P(X1 = k − 1|X0 = k)

= p · P(RA|X1 = k + 1, X0 = k) + q · P(RA|X1 = k − 1, X0 = k)

= p · P(RA|X0 = k + 1) + q · P(RA|X0 = k − 1).

In the last step, we used the identity

P(RA|X1 = k + 1, X0 = k) = P(RA|X0 = k + 1),

which re�ects the fact that the development depends only on the last state, and not on
how this state was reached. We comment on this point also in Section 1.3.3.

By Lemma 1.1, we have the following system of S + 1 equations for (fS(k))Sk=0

fS(0) = 1, fS(S) = 0 (1.3)

fS(k) = pfS(k + 1) + qfS(k − 1), 1 ≤ k ≤ S − 1. (1.4)

We show that solving these equations leads to

fS(k) =
(q/p)k − (q/p)S

1− (q/p)S
, 0 ≤ k ≤ S if p 6= q

and

fS(k) =
S − k
S

, 0 ≤ k ≤ S if p = q = 1/2.

We proceed similarly as in the solution of ordinary di�erential equations with boundary
values. We �rst �nd two fundamental solutions of the system (1.4). Then we �nd a linear
combination of these two solutions, which satis�es also the boundary conditions (1.3). The
shortest way is to �expect� the solution in the form fS(k) = Cak - then (1.4) gives

Cak = fS(k) = pfS(k + 1) + qfS(k − 1) = pCak+1 + qCak−1

and, therefore, a = pa2 + q, i.e., 0 = pa2 − a+ q = p(a− 1)(a− q/p).

If p 6= q, then the two fundamental solutions are f1
S(k) = C1 and f2

S(k) = C2 · (q/p)k.
Finally, we set the constants in

fS(k) = C1 + C2 (q/p)k
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to ensure that

1 = fS(0) = C1 + C2 and 0 = fS(S) = C1 + C2(q/p)S ,

which gives

C2 ·
{

1− (q/p)S
}

= 1, C2 =
1

1− (q/p)S
, C1 = 1− C2, C1 =

−(q/p)S

1− (q/p)S
.

If p = q = 1/2, the general solution of (1.4) is fS(k) = C1 +C2 k and the result follows.

1.2 Mean playing time

Even if the parameters of the game (S,X0, p, q) are �xed, the game will stop after a di�erent
number of rounds. Actually, it can also happen that it never stops. Therefore we de�ne
the random variable

T := T0,S = inf{n ≥ 0 : Xn = 0 or Xn = S}.

Few remarks are in order:

� If the set {n ≥ 0 : Xn = 0 or Xn = S} is empty, then (by the properties of in�mum)
we get T = +∞.

� The range of T is therefore N0 ∪ {+∞} = {0, 1, 2, . . . ,+∞}.

� The notation T0,S suggests, that it is the time needed to reach the set of states {0, S},
but T0,S depends (of course) also on X0 and p.

Again, for S small, we can calculate the mean of T = T0,S directly. If S = 2 and X0 = 0
or X0 = 2, then T0,2 = 0 with probability 1 and also the mean time of each game is 0. If
X0 = 1, then T0,2 = 1 with probability 1 and its mean is also 1.

If S = 3 and X0 = 1 (cases X0 = 0 and X0 = 3 are again trivial, the case X0 = 1 is
similar to X0 = 2), then

P(T0,3 = 2k) = p2(pq)k−1, k ≥ 1,

P(T0,3 = 2k + 1) = q(pq)k, k ≥ 0.

And we can calculate directly (for X0 = 1)

E[T0,3] =

∞∑
k=1

2kP(T0,3 = 2k) +

∞∑
k=0

(2k + 1)P(T0,3 = 2k + 1)

= 2p2
∞∑
k=1

k(pq)k−1 + q

∞∑
k=0

(2k + 1)(pq)k

Using that
∞∑
n=1

nxn−1 =
1

(1− x)2
, |x| < 1,
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we get

E[T0,3] =
2p2

(1− pq)2
+ 2pq2

∞∑
k=1

k(pq)k−1 + q
∞∑
k=0

(pq)k

=
2p2

(1− pq)2
+

2pq2

(1− pq)2
+

q

1− pq
=

2p2 + 2pq2 + q(1− pq)
(1− pq)2

=
2p2 + q + pq2

(1− pq)2
.

Similarly (or by interchanging p and q and X0 and S −X0), we get for X0 = 2

E[T0,3] =
2q2 + p+ qp2

(1− pq)2
.

This approach seems to be again quite inconvenient (KK?) for S ≥ 4.

Lemma 1.2. For 1 ≤ k ≤ S − 1, it holds

E[T |X0 = k] = 1 + pE[T |X0 = k + 1] + q E[T |X0 = k − 1].

Proof. We calculate

E[T |X0 = k] =
∞∑
`=0

`P(T = `|X0 = k) =
∞∑
`=0

`
P(T = `,X0 = k)

P(X0 = k)

=
1

P(X0 = k)

∞∑
`=0

`
{
P(T = `,X1 = k + 1, X0 = k) + P(T = `,X1 = k − 1, X0 = k)

}
=

P(X1 = k + 1, X0 = k)

P(X0 = k)

∞∑
`=0

`
P(T = `,X1 = k + 1, X0 = k)

P(X1 = k + 1, X0 = k)

+
P(X1 = k − 1, X0 = k)

P(X0 = k)

∞∑
`=0

`
P(T = `,X1 = k − 1, X0 = k)

P(X1 = k − 1, X0 = k)

= P(X1 = k + 1 |X0 = k) · E[T = `|X1 = k + 1, X0 = k]

+ P(X1 = k − 1 |X0 = k) · E[T = `|X1 = k − 1, X0 = k]

= p · E[T = `|X1 = k + 1, X0 = k] + q · E[T = `|X1 = k − 1, X0 = k]

= p · (1 + E[T = `|X0 = k + 1]) + q · (1 + E[T = `|X0 = k − 1])

= 1 + pE[T |X0 = k + 1] + q E[T |X0 = k − 1].

We introduce again a vector of variables (h(k))Sk=0

h(k) = E [T |X0 = k], 0 ≤ k ≤ S.

By Lemma 1.2, we have the following equations

h(0) = E[T |X0 = 0] = 0, h(S) = E[T |X0 = S] = 0, (1.5)

h(k) = 1 + p h(k + 1) + q h(k − 1), 1 ≤ k ≤ S − 1. (1.6)
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The homogeneous equation corresponding to (1.6) has a solution C1 + C2(q/p)k, one par-
ticular solution of (1.6) can be found of the form k → C k, which leads to C = 1/(q − p)
(for p 6= q). Therefore, the general solution of (1.6) is

h(k) = C1 + C2(q/p)k +
k

q − p
.

Using the boundary conditions (1.5) we get

h(k) = E[T |X0 = k] =
1

q − p

(
k − S 1− rk

1− rS

)
, r = q/p. (1.7)

1.3 Additional material for Section 1

1.3.1 Measurability

1.3.2 Markov's identity

1.3.3 First step lemma - fractal approach

1.3.4 Alternative solutions

We use the relation p+ q = 1 to reformulate (1.6) as

p[h(k + 1)− h(k)]− q[h(k)− h(k − 1)] = −1.

We substitute d(k) = h(k + 1)− h(k), 0 ≤ k ≤ S − 1 and obtain a system of equations

S−1∑
k=0

d(k) =

S−1∑
k=0

[h(k + 1)− h(k)] = h(S)− h(0) = 0

and
pd(k)− qd(k − 1) = −1, 1 ≤ k ≤ S − 1.

We get, iteratively (p 6= q, r = q/p),

d(1) = −1

p
+
q

p
d(0),

d(2) = −1

p
+
q

p
d(1) = −1

p
− q

p2
+
q2

p2
d(0),

...

q(j) = −1

p

[
1 +

q

p
+
q2

p2
+ · · ·+ qj−1

pj−1

]
+

(
q

p

)j
d(0) = −1

p

1− rj

1− r
+ rj d(0).

Finally, we �nd d(0) from

0 =

S−1∑
k=0

d(k) = − 1

p(1− r)

S−1∑
k=0

(1− rk) + d(0)

S−1∑
k=0

rk

= − 1

p(1− q/p)

[
S − 1− rS

1− r

]
+ d(0)

1− rS

1− r
,

10



i.e.,

d(0) = h(1)− h(0) = h(1) =
1

p− q

[
S

1− r
1− rS

− 1

]
,

which is (1.7) for k = 1.

11



2 Markov chains with discrete time

De�nition 2.1. Let X = (Xn)∞n=0 be a sequence of random variables with countable (i.e.,
�nite or in�nite countable) state space S. Then X is called Markov chain with discrete time

if the distribution of Xn+1 depends only on Xn and, conditioned on Xn, does not depend
on X0, X1, . . . , Xn−1. In other words, it satis�es the Markov identity

P(Xn+1 = j|Xn = in, . . . , X1 = i1, X0 = i0) = P(Xn+1 = j|Xn = in) (2.1)

for all n ∈ N0 and all i0, i1, . . . , in, j ∈ S.

Few remarks are in order

1. The word chain refers to the fact, that the state space is countable; discrete time

denotes the fact, that the index set n ∈ N0 is discrete.

2. If in the Markov identity (2.1), the right-hand side is well-de�ned, i.e., if P(Xn =
in, . . . , X1 = i1, X0 = i0) > 0, then also P(Xn = in) > 0 and also the right-hand side
is well-de�ned. Therefore, we assume the validity of (2.1) only if P(Xn = in, . . . , X1 =
i1, X0 = i0) > 0 and (2.1) makes sense.

The distribution of a Markov chain is completely determined by the initial distribution
of X0 and by the rules of transition from Xn to Xn+1. To observe this, we calculate

P(Xn = in, . . . , X1 = i1, X0 = i0) =
P(Xn = in, . . . , X1 = i1, X0 = i0)

P(Xn−1 = in−1, . . . , X1 = i1, X0 = i0)
·

· P(Xn−1 = in−1, . . . , X1 = i1, X0 = i0)

P(Xn−2 = in−2, . . . , X1 = i1, X0 = i0)
· P(Xn−2 = in−2 . . . , X1 = i1, X0 = i0)

P(Xn−3 = in−3, . . . , X1 = i1, X0 = i0)
·

· · · P(X1 = i1, X0 = i0)

P(X0 = i0)
· P(X0 = i0)

= P(Xn = in|Xn−1 = in−1, . . . , X1 = i1, X0 = i0)·
· P(Xn−1 = in−1|Xn−2 = in−1, . . . , X1 = i1, X0 = i0)·
· P(Xn−2 = in−2|Xn−3 = in−3, . . . , X1 = i1, X0 = i0) · · ·P(X1 = i1|X0 = i0) · P(X0 = i0)

= P(Xn = in|Xn−1 = in−1) · P(Xn−1 = in−1|Xn−2 = in−2)·
· P(Xn−2 = in−2|Xn−3 = in−3) · · ·P(X1 = i1|X0 = i0) · P(X0 = i0).

We therefore introduce notation for the initial distribution of X and for the transition rules.
We assume that these rules do not depend on n, i.e., that the Markov chain is homogeneous
and

P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i)

for all n ∈ N0 and all i, j ∈ S (which we again interpret in the sense that if one of the sides
is de�ned, the other must be de�ned as well and the quantities are the same).

De�nition 2.2. Let X = (Xn)∞n=0 be a homogeneous Markov chain with state space S.

(i) Then the transition matrix of X is de�ned as

P = [Pi,j ]i,j∈S = [P(X1 = j|X0 = i)]i,j∈S .
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(ii) The initial distribution of X is de�ned as

ν` = P(X0 = `), ` ∈ S.

This allows us to rewrite the previous calculation as

P(Xn = in, . . . , X1 = i1, X0 = i0) = Pin−1,in · Pin−2,in−1 · · ·Pi0,i1 · νi0 .

The most important property of the transition matrix is that all its row sums are equal to
one. Indeed,∑

j∈S
Pi,j =

∑
j∈S

P(X1 = j|X0 = i) =
∑
j∈S

P(X1 = j,X0 = i)

P(X0 = i)

=
1

P(X0 = i)

∑
j∈S

P(X1 = j,X0 = i) =
1

P(X0 = i)
· P(X0 = i) = 1.

If p
(n)
` = P(Xn = `) is the distribution of Xn, then

p
(n+1)
k = P(Xn+1 = k) =

∑
j∈S

P(Xn+1 = k,Xn = j)

=
∑
j∈S

P(Xn+1 = k|Xn = j) · P(Xn = j) =
∑
j∈S

Pj,kp
(n)
j = [p(n)P ]k,

where we interpreted p(n) and p(n+1) as row vectors. This gives

p(n+1) = p(n)P.

We denote a state k ∈ S absorbing if Pk,k = 1. For gambler's ruin on {0, 1, . . . , S}, the

transition matrix is given by

P =



1 0 0 0 . . . 0
q 0 p 0 . . . 0
0 q 0 p . . . 0

...
...

0 0 . . . q 0 p
0 0 . . . 0 0 1


.

In the next chapter, we shall meet the random walk on Z, which is a sequence X =
(X0, X1, X2, . . . ) of random variables de�ned by

X0 = 0, Xn+1 =

{
Xn + 1 with probability 1/2,

Xn − 1 with probability 1/2.

13



Its transition matrix is an in�nite matrix (the state space is S = Z)

P =



. . .
. . .

... . . .
. . . 1/2 0 1/2 0 0 0 0 . . .
. . . 0 1/2 0 1/2 0 0 0 . . .
. . . 0 0 1/2 0 1/2 0 0 . . .
. . . 0 0 0 1/2 0 1/2 0 . . .
. . . 0 0 0 0 1/2 0 1/2 . . .

. . .
...

. . . . . .


.

2.1 Iterations

We could de�ne also higher-order transition matrices by

P (m) = [P
(m)
i,j ]i,j∈S = [P(Xm = j|X0 = i)]i,j∈S.

If, moreover, p
(n)
j = P(Xn = j) denotes the distribution of Xn, then we actually did prove

(or we would prove in a nearly the same way as before

p(n+1) = p(n) · P = p(n−1) · P 2 = . . . ,

p(n) = p(0) · Pn = ν · Pn,
p(n) = p(0) · P (n).

As this holds for arbitrary p(0) = ν, it follows that P (m) = Pm for all m ≥ 1. The notation
P (m) is therefore not necessary, we can just take powers of P , denoted by Pm.

From what we just showed, one can easily deduce the Chapman-Kolmogorov identity,
which states that

P (m+n) = P (m) · P (n) for all m,n ∈ N0.

As we shall encounter this identity on several other occasions as well, we give also a direct
proof

P
(m+n)
i,j = P(Xm+n = j|X0 = i) =

P(Xm+n = j,X0 = i)

P (X0 = i)

=
1

P (X0 = i)

∑
`∈S

P(Xm+n = j,Xn = `,X0 = i)

=
∑
`∈S

P(Xm+n = j,Xn = `,X0 = i)

P(Xn = `,X0 = i)
· P(Xn = `,X0 = i)

P (X0 = i)

=
∑
`∈S

P(Xm+n = j|Xn = `,X0 = i) · P(Xn = `|X0 = i)

=
∑
`∈S

P(Xm+n = j|Xn = `) · P(Xn = `|X0 = i)

=
∑
`∈S

P
(m)
`,j P

(n)
i,` = [P (n) · P (m)]i,j .

14



Similarly, we would prove P (m+n) = P (m) · P (n). Notationally, we would complement this
by setting P (0) = Id (the identity matrix).

2.2 Markov chains with two states

We can calculate Pn for chains with two states. This (rather straightforward) exercise has
some nice lessons to learn. So, let us take S = {0, 1} and a transition matrix between these
two states

P =

[
1− a a
b 1− b

]
.

This corresponds to a Markov chain

P(Xn+1 = 1|Xn = 0) = a, P(Xn+1 = 0|Xn = 0) = 1− a,
P(Xn+1 = 0|Xn = 1) = b, P(Xn+1 = 1|Xn = 1) = 1− b.

For a = b = 0, we have P = Id and Pn = Id. We exclude this case in what follows.

Lemma 2.3. Let n ∈ N. Then it holds

Pn =
1

a+ b

[
b+ a(1− a− b)n a− a(1− a− b)n
b− b(1− a− b)n a+ b(1− a− b)n

]
.

Proof. The proof could be done easily by mathematical induction. We would assume the
formula for Pn to be true, and by Pn+1 = P · Pn, we would get it also for n + 1. It also
holds for n = 1 and that would �nish the proof.

Instead of that, we use the singular value decomposition. Using the methods of linear
algebra, we see that P has eigenvalues λ1 = 1 and λ2 = 1 − a − b, and corresponding
eigenvectors v1 = [1, 1]T and v2 = [−a, b]T . Therefore, we can write

P =

[
1 −a
1 b

]
·
[
λ1 0
0 λ2

]
·


b

a+ b

a

a+ b

− 1

a+ b

1

a+ b

 = M ×D ×M−1.

This allows to write Pn = (M × D × M−1)n = M × Dn × M−1. Finally, we use that

Dn =

[
λn1 0
0 λn2

]
and obtain the formula for Pn.

The formula for Pn allows us to study the limiting behavior of Xn. We observe the
following

� If (a, b) = (0, 0), then Pn = Id and lim
n→∞

Pn = Id.

� If (a, b) = (1, 1), then P = P 3 = · · · = P 2n+1 =

[
1 0
0 1

]
and P 2 = P 4 = · · · = P 2n =[

0 1
1 0

]
and lim

n→∞
Pn does not exist.
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� If −1 < 1− (a+ b) < 1, then λn2 → 0 and

Pn →
[
1 −a
1 b

]
·
[
1 0
0 0

]
·


b

a+ b

a

a+ b

− 1

a+ b

1

a+ b

 =
1

a+ b

[
b a
b a

]
.

� If −1 < 1− (a+ b) < 1 (i.e., if (a, b) 6= (0, 0) and (a, b) 6= (1, 1)), then for every initial
distribution ν = [γ, 1−γ] we have after n steps the distribution of Xn equal to ν ·Pn,
which converges to

ν·Pn → ν· 1

a+ b

[
b a
b a

]
=

1

a+ b
[γb+ (1− γ)b, γa+ (1− γ)a] =

[
b

a+ b
,

a

a+ b

]
=: π.

We see, that no matter where the system starts, it always converges to the same
(uniquely de�ned) distribution π, which satis�es π = π · P. We call a distribution

vector π stationary if (and only if) it satis�es π = π · P . If the system is in this
distribution after n steps, it remains that also in the step n+1 and, therefore, forever
(i.e., for all m ≥ n).

� If (a, b) = (0, 0), then every distribution ν is stationary, lim
n→∞

ν ·Pn = ν exists, and it

depends on the initial distribution (actually, it is equal to the initial distribution).

� If (a, b) = (1, 1), then [1/2, 1/2] is the only stationary distribution. For every other
initial distribution ν, the limit lim

n→∞
ν · Pn does not exist.

2.3 Additional material

2.3.1 Stochastic matrices

Every transition matrix of a Markov chain on a given state space S satis�es two conditions

� 0 ≤ Pi,j ≤ 1 for all i, j ∈ S and

�

∑
j∈S

Pi,j = 1 for all i ∈ S.

On the other hand, these are the only general properties of transition matrices - this means,
that every matrix satisfying these two properties can arise as a transition matrix of some
Markov chain on S. Matrices with these two properties are sometimes called stochastic

matrices.

The set of stochastic matrices is easily seen to be convex, i.e., if P 0 and P 1 are two
stochastic matrices of the same dimension, than λP 0 + (1− λ)P 1 is also stochastic matrix
for all 0 ≤ λ ≤ 1. Therefore, it is a (closed) convex hull of its extreme points, which are
matrices, for which each row contains one entry equal to one and the others are equal to
zero.
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2.3.2 Chapman-Kolmogorov identities

2.3.3 In�nite transition matrices

If S is in�nite, say S = N0 for simplicity, then

P = [Pi,j ]i,j∈N0 = [P(X1 = j|X0 = i)]∞i,j=0

is formally an in�nite matrix. It can be also easily mathematically formalized as an linear
operator acting on `1.

Let us recall, that the space `1 is de�ned as the set of all in�nite absolutely summable
sequences, i.e.

`1 =

x = (x0, x1, x2, . . . ) : ‖x‖1 =
∞∑
j=0

|xj | <∞

 .

Using this notation, ‖ · ‖1 is a norm and (`1, ‖ · ‖1) is a Banach space. We observe that
densities of random variables X with values in N0 can be identi�ed with those elements
of `1, which have unit norm and all entries non-negative. This means, that they lie in the
unit sphere of `1 and in the cone of non-negative sequences, which is de�ned by

C = {x = (x0, x1, x2, . . . ) : xj ≥ 0 for all j ∈ N0}.

Let now P = [Pi,j ]
∞
i,j=0 be a double-indexed set of real numbers, which corresponds to

some in�nite transition matrix. Then Pi,j ≥ 0 for all i, j ∈ N0 and
∞∑
j=0

Pi,j = 1 for all

i ∈ N0. We can now de�ne/prove the following

� If x ∈ `1 is arbitrary, we de�ne

[P (x)]` = [xP ]` =
∞∑
k=0

xkPk,l.

� This series indeed converges as we see easily from∣∣∣∣∣
∞∑
k=0

xkPk,l

∣∣∣∣∣ ≤
∞∑
k=0

|xk| = ‖x‖1.

� P maps boundedly `1 into `1

‖P (x)‖1 =
∞∑
`=0

|[P (x)]`| =
∞∑
`=0

∣∣∣∣∣
∞∑
k=0

xkPk,`

∣∣∣∣∣ ≤
∞∑
`=0

∞∑
k=0

|xkPk,`|

=

∞∑
k=0

|xk|
∞∑
`=0

|Pk,`| =
∞∑
k=0

|xk| = ‖x‖1.

� If x is non-negative, the previous inequality becomes identity. Hence, P maps distri-
butions into distributions.
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3 Random walks

We now review the second example of a Markov chain with discrete time, the so-called
Random walks. We start with a rather general de�nition.

De�nition 3.1. Let X1, X2, . . . be a sequence of independent random variables with values
in Rd, d ≥ 1. Then

S0 = 0 = (0, . . . , 0) and Sn := X1 + · · ·+Xn for n ≥ 1

is called a d-dimensional random walk with steps X1, X2, . . . .

We start with a (much) simpler case, namely when d = 1 and Xi's are (Rademacher)
random variables with values −1,+1.

De�nition 3.2. The simple random walk on Z is a random process with S0 = 0 and
Sn = X1 + · · ·+Xn, where X1, X2, . . . are independent random variables with distribution
(0 < p < 1)

P(Xi = 1) = p and P(Xi = −1) = q = 1− p.

We call the simple random walk on Z symmetric if p = q = 1/2.

Some parameters of the simple random walk can be calculated directly

� E[Xn] = −1 · q + 1 · p = p− q,

� Var[Xn] = E[Xn−EXn]2 = E[Xn]2−(EXn)2 = 1−(p−q)2 = (p+q)2−(p−q)2 = 4pq

� E[Sn] = nE[Xn] = n(p− q),

� Var[Sn] = nVar[X1] = 4npq.

3.1 Distribution of Sn

Using rather simple combinatorics, we can �nd the distribution of Sn. First, we observe
that |Sn| ≤ n - after doing n steps of length one we can not get beyond n or below −n.
Next observation is that the simple random walk preserves parity. Indeed, S2n is always
an even number and S2n+1 is odd.

To calculate P(S2n = 2k) for −n ≤ k ≤ n, we count the steps of the random walk. If
it does a steps to the right, b steps to the left and, after that, S2n = 2k, then we have
a + b = 2n and a − b = 2k, which gives a = n + k and b = n − k. In how many ways this
can happen?

If p = q = 1/2, we can proceed by just counting all the possibilities. The random vector
(X1, . . . , X2n) ∈ {−1,+1}2n has 22n possible values. If there should be n+k ones and n−k

minus ones in this vector, we have

(
2n

n+ k

)
possibilities and

P(S2n = 2k) = 2−2n ·
(

2n

n+ k

)
.
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If p 6= q, then the 22n possible outcomes of (X1, . . . , X2n) do not have the same probability.
We �x the positions of n+k ones (the remaining indices will be occupied by -1) and obtain

P(S2n = 2k) =

(
2n

n+ k

)
pn+kqn−k, −n ≤ k ≤ n.

Similarly, we obtain

P(S2n+1 = 2k + 1) =

(
2n+ 1

n+ k + 1

)
pn+k+1qn−k, −n ≤ k ≤ n.

With this, we essentially characterized the local properties of a random walk.

3.2 First return to the origin

We shall again study some of the global characteristics - namely (again) the �rst time when
certain states are reached. This time we will be interested in the �rst time of return to the
origin, i.e., of the �rst non-zero n ∈ N with Sn = 0. We de�ne

T r0 := inf{n ∈ N : Sn = 0}.

If there is no positive integer n with Xn = 0, then T r0 = ∞. We want to calculate the
distribution and the mean value (and possibly also variance and other parameters) of T r0 .
We put g(n) = P(T r0 = n). Simple cases include g(2n+ 1) = P(T r0 = 2n+ 1) = 0 for every
n ∈ N0, g(2) = P(T r0 = 2) = 2pq, g(4) = P(T r0 = 4) = 2p2q2.

We derive again a system of equations for g(n). Let us denote

h(2n) = P(S2n = 0) =

(
2n

n

)
pnqn

as already calculated before. Naturally, g(2n) ≤ h(2n).

Lemma 3.3. For n ≥ 1, the convolution identity holds

h(n) =

n−2∑
k=0

g(n− k)h(k).

Together with g(1) = 0, g(2) = 2pq, g(3) = 0 and g(4) = 2p2q2, Lemma 3.3 applied to
n = 1, . . . , N gives a system of equations for (g(n))Nn=1. Also note that adding the terms
with k = n− 1 and k = n means adding g(1)h(n− 1) = 0 and g(0)h(n) = 0, i.e., we could
rewrite the identity also as

h(n) =

n∑
k=0

g(n− k)h(k).

Proof. We decompose the event Sn = 0 by the last-but-one return to zero, i.e.,

{Sn = 0} =

n−2⋃
k=0

{Sk = 0, Sk+1 6= 0, . . . , Sn−1 6= 0, Sn = 0}.
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This decomposition is disjoint and gives

h(n) = P(Sn = 0) =

n−2∑
k=0

P(Sk = 0, Sk+1 6= 0, . . . , Sn−1 6= 0, Sn = 0)

=
n−2∑
k=0

P(Sk+1 6= 0, . . . , Sn−1 6= 0, Sn = 0|Sk = 0) · P(Sk = 0)

=
n−2∑
k=0

P(S′1 6= 0, . . . , S′n−k−1 6= 0, S′n−k = 0|S′0 = 0) · P(Sk = 0)

=

n−2∑
k=0

P(T r0 = n− k) · P(Sk = 0) =

n−2∑
k=0

h(k)g(n− k).

In this calculation, we de�ned S′m = Sm+k, which is again a random walk under the
condition that Sk = 0.

We can solve the convolution identity using the method of the generating function. We
de�ne (whenever it converges, but 0 ≤ g(n) ≤ 1 and 0 ≤ h(n) ≤ 1 ensure that it holds at
least for |s| < 1)

G(s) :=
∞∑
n=0

sng(n),

H(s) :=
∞∑
k=0

skh(k).

Lemma 3.4. These functions satisfy H(s) = (1 − 4pqs2)−1/2 and G(s)H(s) = H(s) − 1
for 4pqs2 < 1.

Proof. We calculate

H(s) =
∞∑
k=0

skP(Sk = 0) =
∞∑
k=0

s2kP(S2k = 0) =
∞∑
k=0

s2k

(
2k

k

)
pkqk

=
∞∑
k=0

(pqs2)k
(2k)(2k − 1) . . . 3 · 2 · 1

[k!]2
=
∞∑
k=0

(pqs2)k22k k(k − 1/2) . . . 3/2 · 1 · 1/2
[k!]2

=
∞∑
k=0

(4pqs2)k
(k − 1/2) · (k − 3/2) . . . 3/2 · 1/2

k!

=
∞∑
k=0

(−4pqs2)k
(1/2− k) · (3/2− k) . . . (−3/2) · (−1/2)

k!
=

1√
1− 4pqs2

,

where we used the identity

(1 + x)α =
∞∑
n=0

(
α

n

)
xn =

∞∑
n=0

α · (α− 1) · · · (α− n+ 1)

n!
xn for |x| < 1.
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For the next step, we use the Cauchy-product of two power series and the convolution
identity

G(s)H(s) =

( ∞∑
n=1

sng(n)

)( ∞∑
k=0

skh(k)

)
=
∞∑
n=1

∞∑
k=0

sn+kg(n)h(k)

=
∞∑
k=0

∞∑
n=2

sn+kg(n)h(k) =
k �xed,`=n+k =

∞∑
k=0

∞∑
`=k+2

s`g(`− k)h(k)

=

∞∑
`=2

s`
`−2∑
k=0

g(`− k)h(k) =

∞∑
`=2

s`h(`) =

∞∑
`=0

s`h(`)− 1 = H(s)− 1.

Next we decompose G(s) = 1− 1

H(s)
= 1−

√
1− 4pqs2, 4pqs2 < 1, into a power series

and its coe�cients will be identi�ed as g(n)'s.

G(s) = 1− [1− 4pqs2]1/2 = 1−
∞∑
k=0

1

k!
(−4pqs2)k · (1/2− 0) · (1/2− 1) · · · · · (1/2− (k − 1))

= −
∞∑
k=1

1

k!
(−4pqs2)k · (1/2− 0) · (1/2− 1) · · · · · (1/2− (k − 1))

= −
∞∑
k=1

1

k!
(4pqs2)k · (0− 1/2) · (1− 1/2) · · · · · ((k − 1)− 1/2)

=
1

2

∞∑
k=1

1

k!
22kpkqks2k · (1− 1/2) · · · · · ((k − 1)− 1/2) =

∞∑
n=0

sng(n).

We see (and we actually knew that from the very beginning) that g(2k + 1) = 0 for all
k ∈ N. And (using a similar idea only the other way round as before)

g(2k) =
1

2
· (4pq)k

k!
(1− 1/2) · · · · · ((k − 1)− 1/2)

= (pq)k
22k

k!
· (1− 1/2) · 1 · (2− 1/2) · 2 · · · · · ((k − 1)− 1/2) · (k − 1)(k − 1/2) · k

k!
· 1

2(k − 1/2)

= (pq)k
(2k)!

[k!]2
· 1

2k − 1
=

1

2k − 1

(
2k

k

)
pkqk =

h(2k)

2k − 1
.

We can now calculate the probability of return to zero in �nite time. Indeed, if p 6= q,
we get 4pqs2 < 1 for s = 1 and

P(T r0 <∞) =
∞∑
k=0

P(T r0 = k) =

∞∑
k=0

g(k) = G(1) = 1− (1− 4pq)1/2 = 1− |p− q| = 2 min(p, q).

For p = q = 1/2, this follows from Abel's theorem for power series (details left to reader).
To summarize, for p = q = 1/2, we have P(T r0 < ∞) = 1 and P(T r0 = ∞) = 0. For p 6= q,
both these probabilities are strictly between 0 and 1.
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The mean of the �rst return time to the origin is in�nite as P(T r0 =∞) > 0 and

E[T r0 ] =
∞∑
k=0

k · P(T r0 = k) + (+∞) · P(T r0 =∞) = +∞.

If p = q = 1/2, then P(T r0 =∞) = 0 and

E[T r0 ] =

∞∑
k=0

k · P(T r0 = k) =

∞∑
k=0

2k · g(2k) =

∞∑
k=1

2k

2k − 1

(
2k

k

)
· 2−2k.

This series diverges (which can be found - for example - by Stirling's formula n! ≈√
2πn(n/e)n). (K) Is there a simpler way to deduce this? Consequently, E[T r0 ] = +∞

although P(T r0 < +∞) = 1. This means that T r0 is almost surely �nite, but with an in�nite
mean value.

If p 6= q, we can still try to compute E[T r0 |T r0 < +∞], i.e., the mean of those trajectories
which have �nite length.

E[T r0 |T r0 <∞] =
∞∑
n=0

n · P(T r0 = n)

P(T r0 <∞)
=

1

P(T r0 <∞)

∑
n=1

ng(n)

=
1

2 min(p, q)
·
∞∑
n=1

nsn−1g(n)

∣∣∣∣
s=1

=
G′(1)

2 min(p, q)

=
1

2 min(p, q)
· 4pqs√

1− 4pqs2

∣∣∣∣
s=1

=
2 max(p, q)

|p− q|
.

3.3 Sailor's parrot

We now consider the simple random walk in Zd, which is de�ned by its (independent) steps

P(Xj = ek) = P(Xj = −ek) =
1

2d
.

Here, ek, k = 1, . . . , d are the canonical vectors in Rd, which have 1 at the kth coordinate
and zero elsewhere. As usually, S0 = 0 and Sn = X1 + · · · + Xn for n ≥ 1. We plan to
study its long-time behavior, i.e., if and how many times it returns to zero, We de�ne

� N : the number of appearances at zero

N := #{n ∈ N0 : Sn = 0} ≥ 1.

� τ : the �rst time of return to zero

τ := inf{n ≥ 1 : Sn = 0}.

Again, if Sn 6= 0 for all n ≥ 1, we put τ = +∞.

Observe that N = 1 and τ = +∞ both describe the fact, that the random walk never
returned to zero., i.e., {N = 1} = {τ = +∞}.
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De�nition 3.5. We call the random walk recurrent, if P(N = +∞) = 1, i.e., if it almost
surely returns to 0 in�nitely many times. We call the random walk transient, if P(N <
+∞) = 1, i.e., if the random walk almost surely returns to zero �nitely many times and
then it stops to appear that forever.

In general, it is not clear, that nothing between P(N = +∞) = 1 (recurrent) and
P(N = +∞) = 0 (transient) exists. It will follow later and requires a proof.

Lemma 3.6. For n ≥ 1 it holds that P(N = n) = P(τ = +∞) · P(τ <∞)n−1.

Proof. First, we show that

P(N = n+ 1) = P(N = n) · P(τ < +∞). (3.1)

We shall exploit that by the return to zero at time k ≥ 2, the random walk splits into two
parts. The �rst one is (Sn)kn=0 and has S0 = 0 = Sk, the other one is the in�nite part
(Sn)∞n=k = (Sk+j)

∞
j=0. Conditioned on the event Sk = 0, these two parts are independent.

We denote the second part by S′, i.e., S′j = Sk+j . The symbol N ′ is de�ned similarly as
N , but corresponding to S′, i.e., N ′ = #{j ≥ 0 : Sk+j = 0} = #{j ≥ 0 : S′j = 0} = N − 1.

If N = n + 1 ≥ 2, then (at least) one return to zero appeared, and τ is �nite. We
therefore obtain

P(N = n+ 1) =
∞∑
k=1

P(N = n+ 1, τ = k) =
∞∑
k=1

P(N ′ = n, τ = k)

=
∞∑
k=1

P(N ′ = n) · P(τ = k) = P(N ′ = n)
∞∑
k=1

P(τ = k)

= P(N = n) · P(τ < +∞)

as N and N ′ are equidistributed. This �nishes the proof of (3.1).

The proof of the lemma is then �nished by induction. Indeed, n = 1 is clear from
P(N = 1) = P(τ = +∞). Observe here, that P(τ <∞) is always positive - we can always
make one step in some direction and then return back already in the second step. Also the
induction step is easy:

P(N = n+ 1) = P(N = n) · P(τ <∞) = P(τ = +∞) · P(τ <∞)n−1 · P(τ <∞)

= P(τ = +∞) · P(τ <∞)n.

As a corollary, we obtain that every random walk (in every dimension) is either recur-
rent, or transient.

Corollary 3.7. Every random walk is either recurrent, or transient.

Proof. If P(τ = +∞) = 0, then (by the previous lemma) P(N = n) = 0 for all n ≥ 1 and

P(N < +∞) =

∞∑
n=1

P(N = n) = 0,
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i.e., P (N = +∞) = 1 and the random walk is recurrent.

If, on the other hand, P(τ = +∞) > 0, then (using that P(τ < +∞) < 1)

P(N < +∞) =
∞∑
n=1

P(N = n) =
∞∑
n=1

P(τ = +∞) · P(τ <∞)n−1

= P(τ = +∞) · 1

1− P(τ < +∞)
= 1,

and the random walk is transient.

There is a �simple� criterion, which can help us to decide in which dimension the simple
random walk is recurrent and when it is transient.

Lemma 3.8. The simple random walk in Zd is transient if, and only if E[N ] < ∞ and it

is recurrent if, and only if, E[N ] = +∞.

Roughly speaking, being transient and N having �nite mean both tell, that we do not
return to the origin too often. But it is not clear (but it follows from this lemma), that
these two statements are actually equivalent.

Proof. By de�nition, we have

E[N ] =
∞∑
n=1

n · P(N = n) +∞ · P(N = +∞),

where we (as usually) de�ne 0 · ∞ = 0.

If E[N ] is �nite, then necessarily P(N = +∞) = 0 and the random walk is transient.
On the other hand, if P(N = +∞) = 0, then

E[N ] =

∞∑
n=1

n · P(N = n) =

∞∑
n=1

n · P(τ = +∞) · P(τ <∞)n−1

= P(τ = +∞)
∞∑
n=1

n · P(τ <∞)n−1 =
P(τ = +∞)

[1− P(τ < +∞)]2
=

1

P(τ = +∞)
< +∞.

In this calculation, we used (actually two times) that if P(N = +∞) = 0, then P(N <
+∞) = 1 and by the previous lemma also P(τ = +∞) > 0, i.e., P(τ < +∞) < 1.

We have shown that the random walk is transient if, and only if, E[N ] < +∞. By simple
logic, also the opposites of these two statements are equivalent, which together with the
previous corollary �nishes the proof.

Lemma 3.9. If the simple random walk in Zd has steps X1, X2, . . . and if we denote

ϕ(α) = E[eiα·X1 ] = E[cos(α ·X1) + i sin(α ·X1)] for α ∈ Rd, then

E[N ] = lim
t→1−

∫
[−π,π]d

1

1− tϕ(ξ)
· dξ

(2π)d
.
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Proof. For d = 1, we have

1

2π

∫ π

−π
eimθdθ =

1

2π

∫ π

−π
(cos(mθ) + i sin(mθ))dθ =

{
1, if m = 0,

0, if m ∈ Z \ {0}.

For general d ≥ 2 we get

1

(2π)d

∫
[−π,π]d

eim·ξdξ =

d∏
j=1

1

2π

∫ π

−π
eimjξjdξj =

{
1, if m = (0, . . . , 0),

0, if m ∈ Zd \ {(0, . . . , 0)}.

We now plug in for m the value of the random walk after n steps, i.e., we put m := Sn and
obtain

1

(2π)d

∫
[−π,π]d

eiSn·ξdξ =

{
1, if Sn = (0, . . . , 0),

0, if Sn ∈ Zd \ {(0, . . . , 0)}.

Let χ be the indicator random variable of the set Sn = 0, i.e., χ = 1 if Sn = 0 and χ = 0

otherwise. Then we interchange the order of integration (we have a bounded function on a
�nite measure space)

P(Sn = 0) = E[χ] = E

[
1

(2π)d

∫
[−π,π]d

eiSn·ξdξ

]
=

1

(2π)d

∫
[−π,π]d

E[eiSn·ξ]dξ

=
1

(2π)d

∫
[−π,π]d

E[eiX1·ξ+iX2·ξ+···+iXn·ξ]dξ

=
1

(2π)d

∫
[−π,π]d

E[eiX1·ξ · eiX2·ξ · · · · · eiXn·ξ]dξ

=
1

(2π)d

∫
[−π,π]d

E[eiX1·ξ] · E[eiX2·ξ] · · · · · E[eiXn·ξ]dξ

=
1

(2π)d

∫
[−π,π]d

ϕ(ξ)ndξ.

We �x t ∈ [0, 1), multiply this calculation by tn and sum up (which means that we actually
produce the generating function) and obtain

∞∑
n=0

tnP(Sn = 0) =

∞∑
n=0

tn

(2π)d

∫
[−π,π]d

ϕ(ξ)ndξ

=
1

(2π)d

∫
[−π,π]d

∞∑
n=0

[tϕ(ξ)]ndξ =
1

(2π)d

∫
[−π,π]d

1

1− tϕ(ξ)
dξ,

where we used that |tϕ(ξ)| = |tE[eiξ·X1 ]| ≤ tE|eiξ·X1 | = t < 1.

If now t→ 1−, then the left-hand side converges to

∞∑
n=0

P(Sn = 0) =
∞∑
n=0

E[χ{Sn=0}] = E

( ∞∑
n=0

χ{Sn=0}

)
= E[N ].
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Finally, we can show that the simple random walk is recurrent for some d's and transient
for the others. The theorem is sometimes interpreted as the following saying:

A drunken man will always �nd his way home but his drunken parrot may get lost

forever.

Theorem 3.10. The simple random walk is recurrent for d = 1 and d = 2 and is transient

for d ≥ 3.

Proof. For simple random walk in Zd, we have P(X1 = ±ek) = 1
2d and, therefore,

ϕ(α) = E[eiα·X ] =
eiα1 + e−iα1 + eiα2 + e−iα2 + · · ·+ eiαd + e−iαd

2d

=
cos(α1) + · · ·+ cos(αd)

d
.

We see, that the only point where 1 − tϕ(ξ) → 0 for ξ ∈ [−π, π]d and t → 1− is ξ = 0
(where ϕ(ξ) = 1).

We use some elementary analysis to show that

lim
t→1−

∫
[−π,π]d

dξ

1− tϕ(ξ)

is in�nite if d = 1, 2 and �nite for d ≥ 3. We can reduce the domain of integration from
[−π, π]d to (say) [−π/2, π/2]d as the function is bounded elsewhere.

First, we rewrite 1 − cos(x) = 2 sin2(x/2) and use the estimate 2x/π ≤ sinx ≤ x for
x ∈ [0, π/2]. Hence, [x/π]2 ≤ [sin(x/2)]2 ≤ [x/2]2 and 2x2/π2 ≤ 1− cos(x) ≤ x2/2. Finally,

1− tϕ(ξ) = 1− t+ t · (1− cos(ξ1)) + · · ·+ (1− cos(ξd))

d


≥ 1− t+

t

d
· 2‖ξ‖22
π2

,

≤ 1− t+
t

2d
· ‖ξ‖22.

If d = 1, 2, we therefore get

1

1− tϕ(ξ)
≥ 1

1− t+ t
2d · ‖ξ‖

2
2

≥ 1

1− t+ 1
2d · ‖ξ‖

2
2

↗ 2d

‖ξ‖22
.

And for d ≥ 3 we obtain

1

1− tϕ(ξ)
≤ 1

1− t+ t
d ·

2‖ξ‖22
π2

≤ π2d

2t‖ξ‖22
.

Finally, we use that
∫
‖ξ‖−2

2 dξ does not converge around zero for d = 1, 2 and converges at
the origin for d ≥ 3.

3.4 Additional material

3.5 Details to the convolution identity

3.5.1 Elementary proof of g(2k) = h(2k)/(2k − 1)
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4 First step analysis

We wish to elaborate on the method of the analysis of the �rst step of a Markov chain and
make it a powerful general approach to solve a number of typical problems.

4.1 Probability of hitting a subset

Let X = (Xn)∞n=0 be a Markov chain with the state space S. Let A ⊂ S. We denote by TA
the �rst time, when X reaches A, i.e.,

TA = inf{n ∈ N0 : Xn ∈ A}.

If X0 = k and k ∈ A, then TA = 0. If, on the other hand, the chain never reaches A, i.e.,
if the set {n ∈ N0 : Xn ∈ A} is empty, then we de�ne TA = +∞.

First, we discuss the probability that the set A is ever reached if we start in ` ∈ S,
i.e., the (conditional) probability that TA < +∞ if X0 = `. We denote this quantity by
t(`) := P(TA < +∞|X0 = `). If ` ∈ A, then TA = 0 and t(`) = P(TA < +∞|X0 = `) = 1.
If ` 6∈ A, then we calculate

t(`) = P(TA < +∞|X0 = `) =
∑
m∈S

P(TA < +∞, X1 = m|X0 = `)

=
∑
m∈S

P(TA < +∞, X1 = m,X0 = `)

P(X1 = m,X0 = `)
· P(X1 = m,X0 = `)

P(X0 = `)

=
∑
m∈S

P(TA < +∞|X1 = m,X0 = `) · P`,m =
∑
m∈S

P`,mt(m)

=
∑
m∈A

P`,m +
∑
m6∈A

P`,mt(m),

which gives a system of linear equations for (t(`))`∈S or, better said, for (t(`))`6∈A.

In a similar way, we can investigate, which is the �rst state from A, which gets reached
by X. We therefore de�ne

g`(k) := P(TA < +∞, XTA = `|X0 = k), ` ∈ A.

This is the probability, that A is reached and - when it is reached - X enters A through `.
Again, if k ∈ A, the question is simple and we get

g`(k) =

{
1 if k = ` ∈ A,
0 if k ∈ A, k 6= `.

(4.1)

If k ∈ S \A, then we need at least one step to reach A. Therefore

g`(k) = P(TA < +∞, XTA = `|X0 = k) =
∑
m∈S

P(TA < +∞, XTA = `,X1 = m|X0 = k)

=
∑
m∈S

P(TA < +∞, XTA = `|X1 = m,X0 = k)P(X1 = m|X0 = k) (4.2)

=
∑
m∈S

Pk,mg`(m) for ` ∈ A, k 6∈ A.
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Hence, for every ` ∈ A, the vector g` = (g`(k))k∈S satis�es the previous two sets of equations
(4.1) and (4.2). The solution of this system depends of course on the transition matrix P .

Furthermore, we get (for all k ∈ S)

1 = P(TA = +∞|X0 = k) +
∑
`∈A

P(TA < +∞, XTA = `|X0 = k)

= P(TA = +∞|X0 = k) +
∑
`∈A

g`(k).

4.2 Mean time of absorption

Next, we shall discuss, how long it takes until we reach A ⊂ S. We denote

h(k) = hA(k) = E[TA|X0 = k].

If k ∈ A, then TA = 0 and hA(k) = 0. If k 6∈ A, then we have to make at least one step
before reaching A. Therefore,

hA(k) = E[TA|X0 = k] =
∑
`∈S

P(X1 = `|X0 = k) · [1 + E[TA|X0 = `]]

=
∑
`∈S

P(X1 = `|X0 = k) +
∑
`∈S

P(X1 = `|X0 = k) · E[TA|X0 = `]

= 1 +
∑
`∈S

Pk,`hA(`).

This gives the system of equations

hA(k) = 1 +
∑
`∈S

Pk,`hA(`), k ∈ S \A,

hA(`) = 0, ` ∈ A.

4.3 Time of the �rst return

Again, if j ∈ S, we de�ne the �rst non-zero time, when j is reached

T rj = inf{n ≥ 1 : Xn = j}.

This is again a random variable with values in {1, 2, . . . }∪{+∞}. If X0 6= j, then T rj = T{j}
in the sense of the previous section. Now we denote (and we keep(!) this notation for later
use as well)

µj(i) := E[T rj |X0 = i], i, j ∈ S.
By the �rst-step analysis, we get again

µj(i) := E[T rj |X0 = i] = 1× P(X1 = j|X0 = i) +
∑

`∈S,` 6=j
P(X1 = `|X0 = i)[1 + E[T rj |X0 = `]]

= Pi,j +
∑

`∈S,` 6=j
Pi,`[1 + E[T rj |X0 = `]] = 1 +

∑
`∈S,` 6=j

Pi,`µj(`).
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4.4 The number of returns

The �rst-step analysis is a robust method, which can be (sometimes with some modi�-
cations) used to answer many di�erent questions about Markov chains. In this part, we
discuss the number of returns of a Markov chain to some (�xed) state i ∈ S. Warning: the
results of this part will be very important in the subsequent classi�cation of states and in
the study of limiting behavior of Markov chains.

For i ∈ S, we de�ne
Ri := #{n ≥ 1 : Xn = i},

the number of returns of the Markov chain X = (Xn)∞n=0 to the state i. Again, this is a
random variable with values in {0, 1, . . . }∪ {+∞}. We are interested in the expected value
of this random variable, given that the initial state is given. This means, that we would
like to study

E[Rj |X0 = i] for i, j ∈ S.

Before we come to that, we need some tools. First, we de�ne

pi,j := P(T rj < +∞|X0 = i)

= P(Xn = j for some n ≥ 1|X0 = i)

the probability of the event, that the process ever reaches j if it started in i. The calculation
of pi,j is rather involved. For that sake, we decompose the event {∃n ≥ 1 : Xn = j} into
disjoint subset by the �rst arrival to j

pi,j = P(Xn = j for some n ≥ 1|X0 = i) (4.3)

=
∞∑
n=1

P(Xn = j,Xn−1 6= j, . . . , X1 6= j,X0 = i|X0 = i)︸ ︷︷ ︸
=:f

(n)
i,j

=
∞∑
n=1

f
(n)
i,j .

Note, that it is not really the ��rst-step analysis� but more something like �the analysis of

the �rst return�. Few facts about f
(n)
i,j are easy to observe, namely

� f
(n)
i,j = P(T rj = n|X0 = i), i.e., f

(n)
i,j is actually the distribution of the random variable

T rj conditioned to X0 = i,

� f
(0)
i,j = 0 for i 6= j and f

(0)
i,i = 1,

� f
(1)
i,j = Pi,j = P(X1 = j|X0 = i).
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To calculate f
(n)
i,j , one could build the following system of equations

[Pn]i,j := P(Xn = j|X0 = i) =
P(Xn = j,X0 = i)

P(X0 = i)

=
n∑
k=1

P(Xn = j,Xk = j,Xk−1 6= j, . . . , X1 6= j,X0 = i)

P(X0 = i)

· P(Xk = j,Xk−1 6= j, . . . , X1 6= j,X0 = i)

P(Xk = j,Xk−1 6= j, . . . , X1 6= j,X0 = i)

=
n∑
k=1

P(Xn = j|Xk = j,Xk−1 6= j, . . . , X1 6= j,X0 = i)

· P(Xk = j,Xk−1 6= j, . . . , X1 6= j|X0 = i)

=
n∑
k=1

P(Xn = j|Xk = j) · f (k)
i,j =

n∑
k=1

f
(k)
i,j [Pn−k]j,j .

At least in theory, we could now calculate f
(n)
i,j from this convolution identity and the initial

conditions and then we �nd pi,j by (4.3).

Let us assume for the moment, that we succeeded to �nd pi,j 's. How do they help us
to �nd the distribution of Ri's? Observe that Rj = m conditioned on X0 = i if the process
starts in i, then it arrives to j, next it returns to j (and that m − 1 times) and �nally it
leaves j and never comes back. Hence, for m ≥ 1,

P(Rj = m|X0 = i) = pi,j · pm−1
j,j · (1− pj,j).

Here, we used that every arrival to j splits the process into two parts, which are independent
conditioned on the fact, that we just reached j. If m = 0, we obtain

P(Rj = 0|X0 = i) = 1− pi,j .

We observe that

P(Rj < +∞|X0 = i) =
∞∑
m=0

P(Rj = m|X0 = i) = (1− pi,j) +
∞∑
m=1

pi,j · pm−1
j,j · (1− pj,j)

=


if pj,j = 1 : 1− pi,j ,

if pj,j < 1 : (1− pi,j) + pi,j · (1− pj,j)
∞∑
m=1

pm−1
j,j

= (1− pi,j) +
(1−pj,j)·pi,j

1−pj,j = 1.

Taking complements, we can reformulate this as

P(Rj = +∞|X0 = i) =

{
pi,j if pj,j = 1,

0 if pj,j < 1.

And specially, for i = j, we get

P(Ri < +∞|X0 = i) =

{
0 if pi,i = 1,

1 if pi,i < 1.
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and

P(Ri = +∞|X0 = i) =

{
1 if pi,i = 1,

0 if pi,i < 1.

Finally, we may calculate E[Rj |X0 = i]:

If pj,j = 1, we get P(Rj = +∞|X0 = i) = pi,j . Therefore, if pj,j = 1 and pi,j > 0, then
E[Rj |X0 = i] = +∞. And if pj,j = 1 and pi,j = 0, we obtain

E[Rj |X0 = i] =

∞∑
m=0

m · P(Rj = m|X0 = i)︸ ︷︷ ︸
=0

+(+∞) · P(Rj = +∞|X0 = i)︸ ︷︷ ︸
=0

= 0.

And if pj,j < 1, we get P(Rj = +∞|X0 = i) = 0 and

E[Rj |X0 = i] =

∞∑
m=0

m · P(Rj = m|X0 = i) + (+∞) · P(Rj = +∞|X0 = i)︸ ︷︷ ︸
=0

=

∞∑
m=0

m · pi,j · pm−1
j,j · (1− pj,j) = pi,j · (1− pj,j) ·

∞∑
m=1

m · pm−1
j,j︸ ︷︷ ︸

= 1
(1−pj,j)

2

=
pi,j

1− pj,j
.
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5 Classi�cation of states

We want to distinguish states according to their properties with respect to the Markov
chain. The main di�erence will be between states, which get visited repeatedly and states,
which are visited only rarely, i.e., �nitely many times. But before we come to that, we
exclude the cases, when some parts of the state space are essentially disjoint - there is no
possibility of changing from one group of states to the other group. One can think about
two not connected mazes. If a rat start in the �rst one, it will always stay there - and the
same is true for the other one.

Recall, that we already de�ned and used the following two notions.

(i) The state i ∈ S is absorbing if P(X1 = i|X0 = i) = 1.

(ii) The distribution π = [πj ]j∈S is called stationary if π = π · P.

5.1 Communicating states

We say that the state j ∈ S is accessible from i ∈ S if it is possible to travel from i to j in
a �nite time with positive probability. In other words, j is accessible from i, if there exists
n ≥ 0 such that

[Pn]i,j = P(Xn = j|X0 = i) > 0.

We denote this by i→ j. Note that (by choosing n = 0) we have i→ i for all i ∈ S.
If i → j and j → i, then we say that the states i and j communicate, and denote this

by i↔ j.
The binary relation ↔ satis�es

(i) Re�exivity: For all i ∈ S, we always have i↔ i (by choosing n = 0 above).

(ii) Symmetry: If i↔ j, then also j ↔ i.

(iii) Transitivity: If i↔ j and j ↔ k, then also i↔ k.

For the last property, note that if P(Xn = j|X0 = i) = a > 0 and P(Xm = k|X0 = j) =
b > 0, then

P(Xm+n = k|X0 = i) ≥ P(Xm+n = k,Xn = j|X0 = i) =
P(Xm+n = k,Xn = j,X0 = i)

P(X0 = i)

=
P(Xm+n = k,Xn = j,X0 = i)

P(Xn = j,X0 = i)
· P(Xn = j,X0 = i)

P(X0 = i)

= P(Xm+n = k|Xn = j,X0 = i) · P(Xn = j|X0 = i) = b · a > 0.

Relation satisfying these three properties is called equivalence and it allows to split the set
into equivalence classes A1, A2, . . . , which form a disjoint decomposition of S, i.e.,

(i) S = A1 ∪A2 ∪ . . . ;

(ii) Ap ∩Aq = ∅ if p 6= q;
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(iii) If i, j ∈ Ap for any �xed p, then i↔ j;

(iv) if i ∈ Ap, j ∈ Aq and p 6= q, then i 6↔ j.

The states communicate with each other if, and only if, they belong to the same class Ap.
If there is only one class of communicating states, we call the Markov chain irreducible.
Otherwise, it is called reducible.

5.2 Recurrent and transient states

De�nition 5.1. The state i ∈ S is called recurrent if

pi,i = P(T ri < +∞|X0 = i) = 1.

By the results of the �rst step analysis, this is equivalent to (recall that Ri is the number
of returns to i)

(i) P(∃n ∈ N : Xn = i|X0 = i) = 1,

(ii) E[Ri|X0 = i] = +∞,

(iii) P(Ri = +∞|X0 = i) = 1.

Theorem 5.2. State i ∈ S is recurrent if, and only if,

∞∑
n=1

[Pn]i,i = +∞.

Proof. Let i, j ∈ S. Then we calculate

E[Rj |X0 = i] = E

[ ∞∑
n=1

χ{Xn=j}|X0 = i

]
=
∞∑
n=1

E
[
χ{Xn=j}|X0 = i

]
=
∞∑
n=1

P(Xn = j|X0 = i) =
∞∑
n=1

[Pn]i,j .

Finally, we apply this calculation to i = j.

Theorem 5.3. If i ∈ S is a recurrent state, then every state j ∈ S, which communicates

with i, is also recurrent.

Proof. We assume that i 6= j. We know that i is recurrent and that i and j communicate.
Therefore, there exist a, b ≥ 1 such that

[P a]i,j > 0 and [P b]j,i > 0.

For n ≥ a+ b, we get

P(Xn = j|X0 = j) =
∑
`,m∈S

P(Xn = j|Xn−a = `) · P(Xn−a = `|Xb = m) · P(Xb = m|X0 = j)

≥ P(Xn = j|Xn−a = i) · P(Xn−a = i|Xb = i) · P(Xb = i|X0 = j)

= [P a]i,j · [Pn−a−b]i,i · [P b]j,i
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and

∞∑
n=a+b

[Pn]j,j ≥ [P a]i,j · [P b]j,i ·
∞∑

n=a+b

[Pn−a−b]i,i

= [P a]i,j · [P b]j,i ·
∞∑
n=0

[Pn]i,i = +∞.

By the previous theorem, this �nishes the proof.

The opposite of recurrent is transient.

De�nition 5.4. We call the state i ∈ S transient, if (and only if) it is not recurrent. By
the previous, the following statements are equivalent

� i ∈ S is transient,

� P(Ri = +∞|X0 = i) < 1,

� P(Ri = +∞|X0 = i) = 0,

� P(Ri < +∞|X0 = i) > 0,

� P(Ri < +∞|X0 = i) = 1,

� pi,i = P(T ri < +∞|X0 = i) = P(∃n ≥ 1 : Xn = i|X0 = i) < 1,

� P(T ri = +∞|X0 = i) > 0,

� E[Ri|X0 = i] < +∞,

�

∞∑
n=1

[Pn]i,i < +∞.

Clearly, if i ∈ S is transient and j communicates with i, then j is also transient.
Therefore, the communication classes can be divided into two groups - of classes, which
contain only recurrent states (recurrent classes) and classes, which contain only transient
states (transient classes). If S is �nite, then at least one class is recurrent.

Theorem 5.5. Let X = (Xn)∞n=0 be a Markov chain with �nite state space S. Then at

least one state is recurrent.

Proof. If j ∈ S is transient, then pj,j < 1 and we get for all i ∈ S

E[Rj |X0 = i] =

∞∑
n=0

n · P(Rj = n|X0 = i) = pi,j · (1− pj,j) ·
∞∑
n=1

n · (pj,j)n−1

=
pi,j

1− pj,j
< +∞.

Therefore, also

∞∑
n=0

[Pn]i,j = E[Rj |X0 = i] < +∞
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and, consequently, limn→∞[Pn]i,j = 0.1

If all j ∈ S would be transient, then we would get

0 =
∑
j∈S

lim
n→∞

[Pn]i,j = lim
n→∞

∑
j∈S

[Pn]i,j = lim
n→∞

1 = 1.

5.3 Positive recurrent and null recurrent states

If the state i ∈ S is recurrent, then pi,i = P(T ri < +∞|X0 = i) = 1 and T ri is almost surely
a �nite random variable. We therefore expect, that it returns from i to i over and over
again. Nevertheless, these returns might happen after a very long time.

De�nition 5.6. Let i ∈ S be a recurrent state. Then

� i ∈ S is positive recurrent, if µi(i) = E[T ri |X0 = i] < +∞ and

� i ∈ S is null recurrent, if µi(i) = E[T ri |X0 = i] = +∞.

Being positive recurrent or null recurrent is again a property of the whole communicating
class.

Theorem 5.7. Let i 6= j ∈ S be two communicating states. If i is positive recurrent, then

also j is positive recurrent.

The communicating classes therefore split into three groups - classes of transient states,
classes of positive recurrent states, and classes of null recurrent states.

Proof. Step 1.

Let i ∈ S be positive recurrent, i.e, µi(i) = E[T ri |X0 = i] < +∞. Let also n0 ≥ 1 denote
the smallest positive integer with [Pn0 ]i,j > 0. Then we show that also µi(j) = E[T ri |X0 =
j] < +∞. We calculate

+∞ > µi(i) = E[T ri |X0 = i] =
∞∑
n=1

n · P(T ri = n|X0 = i) =
∞∑
n=1

n · P(T ri = n,X0 = i)

P(X0 = i)

≥
∞∑
n=1

n · P(T ri = n,Xn0 = j,Xn0−1 6= i, . . . ,X1 6= i,X0 = i)

P(X0 = i)

· P(Xn0 = j,Xn0−1 6= i, . . . ,X1 6= i,X0 = i)

P(Xn0 = j,Xn0−1 6= i, . . . ,X1 6= i,X0 = i)

= E[T ri |Xn0 = j,Xn0−1 6= i, . . . ,X1 6= i,X0 = i] · P(Xn0 = j,Xn0−1 6= i, . . . ,X1 6= i|X0 = i)

= (n0 + E[T ri |X0 = j]) · P(Xn0 = j,Xn0−1 6= i, . . . ,X1 6= i|X0 = i)︸ ︷︷ ︸
>0

.

Hence, E[T ri |X0 = j] < +∞.
Step 2.

Let X0 = i and let {Ym : m ≥ 1} be independent copies of T ri (conditioned onto X0 = i).
We can obtain Ym's by setting

1Up to now, this holds also with S in�nite.
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� Y1 = inf{` ≥ 1 : X` = i} = T ri ,

� Y2 = inf{` ≥ 1 : XY1+` = i} - the time of the second return to i,

� Ym = inf{` ≥ 1 : XY1+···+Ym−1+` = i} - the time of the mth return to i, m ≥ 2.

� By the return to i, the chain X splits again into two parts, which are independent
(under the condition of the current state i). This means that Ym's are indeed inde-
pendent.

� E[Y`] = E[T ri |X0 = i] < +∞.

We de�ne

p = P(X visits j before it �rst returns to i|X0 = i)

≥ P(X1 6= i, . . . ,Xn0−1 6= i,Xn0 = j|X0 = i) > 0.

Anytime, when X returns to i, it has probability p > 0 that it �rst gets to j before it
returns to i. If N is the (random variable of the) number of returns to i before it �rst gets
to j, then N has geometric distribution with parameter p, i.e.,

P(N = k) = p(1− p)k, k ≥ 0.

For X0 = i we have T rj ≤ Y1 + · · ·+ YN+1 and E[T rj |X0 = i] ≤ E(N + 1) · E(Y ) < +∞.

Step 3.

Finally, we combine both the previous steps

E[T rj |X0 = j] ≤ E[T ri |X0 = j] + E[T rj |X0 = i] < +∞

(the length of a path from j to j is at most that long as its length from j to i and then
from i to j).

5.4 Periodic and aperiodic states

De�nition 5.8. For i ∈ S we de�ne the period of i as the greatest common divisor of the
set {n ≥ 1 : [Pn]i,i > 0}. If the period of i is one, we call i aperiodic. The chain is called
aperiodic if all its states are aperiodic.

If Pi,i > 0, then i is surely aperiodic. We do not de�ne the period of i if [Pn]i,i = 0 for
all n ≥ 1 (alternatively, we could de�ne the period to be zero).

Theorem 5.9. Every two communicating states have the same period.

Proof. We assume that i 6= j, i↔ j and we denote by d(i) and d(j) the period of i and j,
respectively. The path from i to i is possible with positive probability, therefore d(i) ≥ 1
and, similarly, d(j) ≥ 1. By de�nition, there are k, ` ≥ 1 such that

α = [P k]i,j > 0 and β = [P `]j,i > 0.
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Then [P k+l]i,i > 0 and, therefore, d(i)|(k + l).

Let now m ≥ 1 be arbitrary with [Pm]j,j > 0. Then also [Pm+k+`]i,i > 0 (with positive
probability, we can go from i to j in k steps, from j to j in m steps, and from j to i in `
steps). Therefore, d(i) divides also k+ `+m and, therefore, also m. We observe, that d(i)
is a common divisor of {m ≥ 1 : [Pm]j,j > 0}. But d(j) was the largest integer with this
property and, therefore, d(i) ≤ d(j). In the same way, we would prove d(j) ≤ d(i), which
�nishes the proof.
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6 Limiting behavior

This section composes the heart of the subject of Markov processes. For many researchers,
this is actually the reason, why we study Markov processes at all. Let us brie�y describe
the main aim of this section. In the optimal scenario, the stationary distribution π of a
Markov chain X = (Xn)∞n=0 would exist and be uniquely de�ned. And, furthermore, if we
start the Markov chain X in an arbitrary initial distribution p(0), the distribution of Xn

would converge to π in a long-term horizon. And, if we could wish for even more, it would
converge as fast as possible [2].

Unfortunately, this line can fail in several ways. For example, if the transition matrix
P is equal to identity, i.e., P = I, then every distribution π is a stationary distribution as
we always have π = πI. Hence, the uniqueness of stationary distribution can get lost. We
encountered even more examples, which contradict the previous scenario, when we studied
Markov processes with only two states.

6.1 Stationary distribution

Let us recall, that a stationary distribution of a Markov chain X = (Xn)∞n=0 with a state
space S is every (row) vector π = [πj ]j∈S, which satis�es π = π ·P , where P is the transition
matrix of X. It goes without saying, that we assume the entries of π to be non-negative
and summing to one.

We are interested in two crucial questions:

1. Does a stationary distribution always exist?

2. And (if yes) is it unique?

Unfortunately, the answer to both previous questions is negative in general. [(K) Show
that the random walk on Z does not have a stationary distribution for all 0 < p < 1, even
for p = 1/2!] And we have to pose some additional assumptions to get a positive answer.

Before we come to that, let us consider two simple concepts.

6.1.1 Random walk on a graph

Similarly to the random walk on Z, we de�ne a random walk on a graph. For that sake, we
recall few basic notions from graph theory. Let V = {1, . . . , N} be a �nite set (the vertices
of a graph) and let E ⊂ {{i, j} : 1 ≤ i < j ≤ N} be its edges. By deg(i) we denote the
degree of the vertex i ∈ V , i.e., the number of its neighbors

deg(i) = #{j : {i, j} ∈ E}.

We consider the following Markov chain. If Xn = i, then Xn+1 is equal to one of the
neighbors of i, with each of them having the same probability. This means, that we select
uniformly and independently on previous choices one of the edges going from i and follow
it to the next vertex. Formally,

Xn+1 = j

{
with probability 1

deg(i) if j is a neighbor of i,

with probability 0 if j is not a neighbor of i
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or

Pi,j = P (Xn+1 = j|Xn = i) =

{
1

deg(i) if j is a neighbor of i,

0 if j is not a neighbor of i.

It is quite easy to check (see also the next section) that the vector

π = [πi]i∈S =

[
deg(i)

2 ·#E

]
i∈S

is a stationary distribution. Indeed,

[π · P ]j =
∑
i∈S

πiPi,j =
∑
i∈S
{i,j}∈E

deg(i)

2 ·#E
· 1

deg(i)
=

1

2 ·#E
∑
i∈S
{i,j}∈E

1

=
deg(j)

2 ·#E
= πj .

Finally, we verify that π is indeed a distribution. Its entries are non-negative and∑
j∈S

πj =
1

2 ·#E
∑
j∈S

deg(j) = 1.

[(K) How is it with the uniqueness of this stationary distribution?]

6.1.2 Detailed balance equations

De�nition 6.1. We say that the distribution ν = [νj ]j∈S satis�es the detailed balance
equations, if for every i, j ∈ S it holds that

νiPi,j = νjPj,i.

Theorem 6.2. If ν satis�es the detailed balance equations, then ν is stationary.

Proof. The proof is straightforward. For every j ∈ S we have

(πP )j =
∑
i∈S

πiPi,j =
∑
i∈S

πjPj,i = πj
∑
i∈S

Pj,i = πj ,

i.e., π = π · P .

Remark 2. Previous theorem is only one implication (every distribution with detailed bal-
ance equations is stationary) and it can not be reversed. (K) Find a Markov chain X,
which has a stationary distribution, which does not satisfy the detailed balance equations.

Let us verify, that the stationary distribution of a random walk on a �nite graph could
have been found by detailed balance equations. Indeed, if i 6= j are not neighbors, then
Pi,j = Pj,i = 0 and the equations are satis�ed. If i and j are connected by an edge, then
we require that

πiPi,j =
πi

deg(i)
=

πj
deg(j)

= πjPj,i.

We observe, that we can ful�ll these equations by choosing πi = c · deg(i) and c = 2#E to
ensure that the entries of π sum up to one.
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Theorem 6.3. Let X = (Xn)∞n=0 be irreducible Markov chain.

a) If X has a stationary distribution π, then necessarily π is given by

πi =
1

µi(i)
, i ∈ S, (6.1)

where µi = E[T ri |X0 = i] is the mean time of return from i to i. This also means,

that π is uniquely determined and all states are positive recurrent.

b) On the other hand, if a Markov chain is irreducible and positive recurrent, then the

distribution π de�ned by (6.1) is the only stationary distribution.

Proof. The proof is quite long and we split it into several parts.
Step 1. We start with part a) and show that X is recurrent. Let π be a stationary
distribution of an irreducible Markov chain X. For contradiction, let us suppose that X is
transient. Then lim

n→∞
[Pn]i,j = 0 for all i, j ∈ S2. Hence

πj = [π · P ]j = [π · Pn]j = lim
n→∞

[π · Pn]j = lim
n→∞

∑
i∈S

πi[P
n]i,j

=
∑
i∈S

πi lim
n→∞

[Pn]i,j = 0

for all j ∈ S. Note, that here we used the Dominated convergence theorem (a.k.a. Lebesgue
limit theorem), with π = [πi]i∈S being the integrable majorant. This is a contradiction with
π being a distribution and, therefore, X is recurrent.

Step 2. We show that πi > 0 for every i ∈ S. Indeed, if for some i ∈ S it holds that
πi = 0, then we get

0 = πi =
∑
k∈S

πk[P
n]i,k ≥ πj [Pn]i,j

for all j ∈ S and all n ≥ 1. Now it is enough to choose some j ∈ S with πj > 0 and some
n ≥ 1 with [Pn]i,j > 0 (which is always possible, as i and j communicate).

Step 3. Next, we show that (6.1) holds if the assumptions of a) are satis�ed. Let X be
irreducible, with stationary distribution π. Then X is recurrent and we start it with the
initial distribution equal to π, i.e., p(0) = π. Then (knowing that T ri is �nite almost surely)

µi = E[T ri |X0 = i] =

∞∑
n=1

n · P(T ri = n|X0 = i) =

∞∑
n=1

P(T ri ≥ n|X0 = i)

=
∞∑
n=1

P(T ri ≥ n,X0 = i)

P(X0 = i)
.

For n ≥ 1, we get P(T ri ≥ 1, X0 = i) = P(X0 = i) = p
(0)
i = πi.

For n ≥ 2 we use the identity P(A∩B) = P(A)−P(A∩Bc) for the sets A = {Xm 6= i,m =

2See Theorem 5.5
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1, . . . , n− 1} and B = {X0 = i}. We obtain

P(T ri ≥ n,X0 = i) = P(X0 = i,X1 6= i, . . . ,Xn−1 6= i)

= P(X1 6= i, . . . ,Xn−1 6= i)− P(X0 6= i,X1 6= i, . . . ,Xn−1 6= i)

= P(X0 6= i, . . . ,Xn−2 6= i)− P(X0 6= i,X1 6= i, . . . ,Xn−1 6= i)

= αn−2 − αn−1,

where
αn = P(X0 6= i, . . . ,Xn 6= i) =: P(An).

Observe, that A0 ⊃ A1 ⊃ A2 ⊃ . . . and that

lim
n→∞

αn = lim
n→∞

P(An) = P

( ∞⋂
n=0

An

)
= P(Xm 6= i for all m ≥ 0) = 0

as X is recurrent (as well as all its states).3

We therefore have

µi =
∑
n≥1

P(T ri ≥ n,X0 = i)

πi
=
∑
n≥2

αn−2 − αn−1

πi
+
πi
πi
.

We multiply this identity by πi and obtain

µi · πi = πi +
∞∑
n=2

(αn−2 − αn−1) = πi + α0 − lim
n→∞

αn = P(X0 = i) + P(X0 6= i) = 1.

This �nishes the proof of a).

Step 4. We now prove the part b).

First, we assume that X is irreducible and positive recurrent. Then 0 < µi < +∞ for
all states i ∈ S and we can therefore de�ne

πi :=
1

µi
, i ∈ S.

With this choice, πi > 0 for all i ∈ S. To show that π is a stationary distribution, we have
to discuss two facts:

b1)
∑
j∈S

πj = 1,

b2) π = π · P .

Let Nj(n) denote the number of occurrences in j ∈ S in the �rst n steps of the Markov
chain, i.e,

Nj(n) := #{1 ≤ ` ≤ n : X` = j} =
n∑
`=1

χ{X`=j}.

3details?
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Then

E[Nj(n)|X0 = i] =
n∑
`=1

P(X` = j|X0 = i) =
n∑
`=1

[P `]i,j

and ∑
j∈S

1

n
· E[Nj(n)|X0 = i] =

1

n

∑
j∈S

n∑
`=1

[P `]i,j =
1

n

n∑
`=1

∑
j∈S

[Pn]i,j︸ ︷︷ ︸
=1

= 1.

We show that

lim
n→∞

1

n
E[Nj(n)|X0 = i] =

1

µj
for all i, j ∈ S. (6.2)

Then we get4 ∑
j∈S

πj =
∑
j∈S

1

µj
=
∑
j∈S

lim
n→∞

1

n
E[Nj(n)|X0 = i]

= lim
n→∞

∑
j∈S

1

n
E[Nj(n)|X0 = i] = lim

n→∞
1 = 1.

Step 5. Now we prove (6.2).
We denote by Tm the time of the m-th visit to j, i.e.,

Tm = min{n ≥ 1 : Nj(n) = m}.

Observe that TNj(n) ≤ n. Also, the random variables T2 − T1, T3 − T2, . . . , Tm − Tm−1 are
independent and equidistributed (and are independent copies of T rj conditioned on X0 = j.)
We get, by the law of large numbers, that

Tm
m

=
(Tm − Tm−1) + (Tm−1 − Tm−2) + · · ·+ (T2 − T1) + T1

m
→ µj = E[T rj |X0 = j].

Due to
TNj(n) ≤ n ≤ TNj(n)+1

we get
TNj(n)

Nj(n)
≤ n

Nj(n)
≤
TNj(n)+1

Nj(n)
· Nj(n) + 1

Nj(n) + 1
.

As Nj(n)→ +∞ as n→ +∞ (recall that X is positive recurrent), then we get

n

Nj(n)
→ µj and

Nj(n)

n
→ 1

µj
.

almost surely. Taking the mean value, (6.2) follows.

4We assume that S is �nite for this step and leave out the details for in�nite S.
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Step 6. Finally, we show that πj = 1/µj is stationary, i.e, we prove the condition b2).5

First, we calculate

∑
j∈S

1

n
· E[Nj(n)|X0 = i]Pj,k =

∑
j∈S

1

n

(
n∑

m=1

[Pm]i,j

)
Pj,k

=

n∑
m=1

1

n

∑
j∈S

[Pn]i,j · Pj,k =

n∑
m=1

[Pm+1]j,k

=
1

n

n+1∑
m=2

[Pm]i,k =
1

n

(
n+1∑
m=1

[Pm]i,k − Pi,k

)

=
1

n
{E[Nk(n+ 1)|X0 = i]− Pi,k} .

If we now pass to the limit n→∞ (and use that S is �nite), then we obtain∑
j∈S

1

µj
· Pj,k =

1

µk
.

6.2 Limiting distribution

De�nition 6.4. We say that X has a limiting distribution if the limit

lim
n→∞

P(Xn = j|X0 = i) = lim
n→∞

[Pn]i,j

exists for all i, j ∈ S and these limits form a distribution on S, i.e.,

∀i ∈ S :
∑
j∈S

lim
n→∞

P(Xn = j|X0 = i) = 1.

Further, we will assume that S is �nite.

Theorem 6.5. Let S be �nite. If for some i ∈ S the limits νj := lim
n→∞

[Pn]i,j exist for all

j ∈ S, then ν = (νj)j∈S is a stationary distribution.

Proof. We have ∑
j∈S

νj =
∑
j∈S

lim
n→∞

[Pn]i,j = lim
n→∞

∑
j∈S

[Pn]i,j = 1

and

νj = lim
n→∞

[Pn+1]i,j = lim
n→∞

∑
k∈S

[Pn]i,kPk,j =
∑
k∈S

lim
n→∞

[Pn]i,kPk,j

=
∑
k∈S

νkPk,j = [ν · P ]j .

5Again, only for S �nite.
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The following is one of the most important theorems about Markov chains - it studies
the relation between limiting and stationary distribution. Let us recall that by Theorem 6.3
we know that irreducible and positive recurrent Markov chain has an uniquely determined
stationary distribution.

Theorem 6.6. Let X = (Xn)∞n=0 be irreducible and aperiodic Markov chain and let us

assume that it has a stationary distribution π. Let P(X0 = j) = λj be an arbitrary distri-

bution. Then

P(Xn = j)→ πj

if n→∞ and this holds for every j ∈ S. In particular, we have that [Pn]i,j → πj for every
i ∈ S.

Proof. We use the coupling method.

� We consider Markov chain Y = (Yn)∞n=0 with the initial distribution P(Y0 = j) = πj
and the transition matrix P , i.e., with the same transition matrix as X.

� We take b ∈ S �xed and put T := inf{n ≥ 1 : Xn = Yn = b}. This means that T is a
random variable, which denotes the �rst time, when X and Y meet in b.

� We show that P(T < +∞) = 1. The process Wn := (Xn, Yn) is a Markov chain on
the state space S× S with transition matrix

P̃(i,k),(j,`) = Pi,j · Pk,`

and the initial distribution µi,k = λiπk (we assume that X and Y are independent on
each other).

� We shall use the statement6 that if Z is an irreducible aperiodic Markov chain on
a state space S, then for every u, v ∈ S there exists n0 ≥ 1 large enough such that
[Pn]u,v > 0 for every n ≥ n0.

� Therefore, for �xed i, k, j, ` ∈ S we have that

[P̃n](i,k),(j,`) = [Pn]i,j · [Pn]k,` > 0

for n large enough. And, consequently, W = (Wn)∞n=0 with the transition matrix P̃
is also aperiodic. It has a stationary distribution π̃(i,k) = πi · πk. This means that
W is positive recurrent. Hence,7 T is the time of the �rst passage of W through the
state (b, b) ∈ S and P(T < +∞) = 1.

� Let us de�ne

Zn =

{
Xn : n < T,

Yn : n ≥ T.

Essentially, Z starts as X and in the moment, when it meets Y in b, it changes from
X to Y .

6. . . which we (unfortunately) did not prove . . .
7We use that irreducible positive recurrent Markov chain visits a �xed state with probability 1 in a �nite

time.
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� As Y was started in the stationary distribution π, we have P(Yn = j) = P(Y0 = j) =
πj for every j ∈ S and every n ≥ 0. Furthermore, X and Z have the same initial
distribution λ and the same transition matrix P .

� We estimate

|P(Xn = j)− πj | = |P(Zn = j)− P(Yn = j)|
= |P(Zn = j, n < T ) + P(Zn = j, n ≥ T )

− P(Yn = j, n < T )− P(Yn = j, n ≥ T )|
= |P(Xn = j, n < T ) + P(Yn = j, n ≥ T )

− P(Yn = j, n < T )− P(Yn = j, n ≥ T )|
= |P(Xn = j, n < T )− P(Yn = j, n < T )| ≤ 2P(n < T )→ 0

as n tends to in�nity.
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7 Additional material and applications

In this section, we describe some additional material, which is closely connected to the
theory of Markov processes, including some applications of Markov processes.

7.1 Algebraic methods

Markov chain X is fully described by its transition matrix P and the initial distribution,
i.e., the distribution of X0, which we denote p(0). If the state space is �nite, say #S = n,
then P ∈ [0, 1]n×n ⊂ Rn×n and it seems quite intuitive, that we could use the methods of
linear algebra to study P and, indirectly, also of X.

First, let us observe that the vector e = [1, . . . , 1] is the right eigenvector of P with the
eigenvalue 1. Indeed, the identity

PeT = P


1
1
...
1

 =


1
1
...
1

 = eT

follows from the fact, that the row sum of P is one for every row. (K) Show, that - therefore
- there exists also a left eigenvector of P corresponding to the eigenvalue 1. If we denote
it π 6= 0, this means that π = π · P. If all the entries of π would be non-negative, then we
can re-normalize π by taking

1
n∑
j=1

πj

· (π1, . . . , πn)

and this is a stationary distribution.

The non-negativity of the entries of an eigenvector is the subject of the Perron-Frobenius
theorem. Its proof is slightly simpler if we assume that Ai,j > 0 instead of Ai,j ≥ 0.

Theorem 7.1. Let A ∈ Rn×n be a matrix with Ai,j > 0 for all 1 ≤ i, j ≤ n. Denote
% = maxj |λj | its spectral radius. Then % > 0 and it holds

1. % is an eigenvalue of A;

2. % has algebraic multiplicity 1, i.e., det(λI −A) has simple root in λ = %;

3. There exists an eigenvector ν corresponding to %, which has all its entries positive;

4. If λ 6= % is an eigenvalue of A, then |λ| < %;

5. If u is an eigenvector of A with positive entries, then u is a multiple of ν.

Proof. We shall present only the main ideas of the proof of some parts of the theorem.

� Let Ai,j > 0. Denote S := {x ∈ Rn : ‖x‖2 = 1, xj ≥ 0 for all 1 ≤ j ≤ n}. This
means that S is the part of the unit sphere in Rn, which consists of vectors with
non-negative entries. Or, in another way, it is the intersection of the unit sphere with
the cone of vectors with non-negative entries. Note, that it is compact.
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� For x ∈ S, Ax has (strictly) positive entries.

� De�ne

L(x) = min

{
(Ax)i
xi

, over i's with xi 6= 0

}
.

Note that L(x) is the largest α > 0 with αxi ≤ (Ax)i for all 1 ≤ i ≤ n.

� L is continuous on S and S is compact. Therefore, the maximal value of L on S
exists and we denote it by L(ν) = α. We show that α is an eigenvalue, ν is the
corresponding eigenvector and all its entries are (strictly) positive.

� Observe, that L(ν) = α means, that ανi ≤ (Aν)i, hence Aν − αν ≥ 0 (in all coordi-
nates). Let us assume, that Aν 6= αν. Then A(Aν − αν) > 0 and we can �nd ε > 0
small enough so that A(Aν − αν) > εAν.

Therefore, we have[
A

(
Aν

‖Aν‖2

)]
i

=
1

‖Aν‖2
(A(Aν))i >

α+ ε

‖Aν‖2
(Aν)i = (α+ ε)

(
Aν

‖Aν‖2

)
i

.

This means that L

(
Aν

‖Aν‖2

)
i

≥ α + ε, which is a contradiction with maximality of

the value of L in ν.

� As ν ≥ 0 (recall that ν ∈ S), then Aν > 0 and also ν > 0, i.e., all the coordinates of
ν are strictly positive.

� Next we show that % = α. Let µ ∈ C be an eigenvalue of A and let y ∈ Cn be a
corresponding eigenvector with ‖y‖2 = 1. Then

(µy)i = (Ay)i =
n∑
j=1

Ai,jyj

and it follows that

|µ| · |yi| ≤
n∑
j=1

Ai,j · |yj |.

This means that the vector z with zi = |yi| satis�es |µ|·zi ≤ (Az)i and that L(z) ≥ |µ|.
On the other hand, L(z) ≤ α and we obtain |µ| ≤ α. As α is an eigenvalue itself, we
get % = α.

This gives 1) and 3) in the statement of the theorem - and we leave out the rest.

Let us note that the theorem holds (with minor modi�cations) also for matrices A, for
which (Ak)i,j > 0 for all 1 ≤ i, j ≤ n.
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7.2 In this section, we present Google

The aim of this section is to give one prominent application of Markov processes, as it
appeared in [1]. This fundamental paper starts with a historical statement:

In this paper, we present Google, a prototype of a large-scale search engine

which makes heavy use of the structure present in hypertext.

Let us describe (very roughly) the main setting and ideas. We represent the World
Wide Web by oriented graph, where the vertices correspond to web pages and the edges
represent the links from a one page to another page.

Here comes a picture of a small WWW with 6 web pages:

The algorithm PageRank is based on the assumption, that important web pages link to
important web pages. We consider a random surfer, who starts from a random web page
and then continues randomly to further web pages according to the existing links. He/she
chooses randomly one of the links on the current webpage and follows this randomly chosen
link. In our example, the transition matrix would look like follows

P =



0 1/2 1/2 0 0 0
? ? ? ? ? ?

1/3 1/3 0 0 1/3 0
0 0 0 0 1/2 1/2
0 0 0 1/2 0 1/2
0 0 0 1 0 0

 .

Obviously, this idea has a number of problems. For example, it is not clear how to incorpo-
rate the second web page, which does not have any links to other web pages. There are (at
least) two ideas how to proceed. We could take the second line of P as (0 1 0 0 0 0), which
would make it an absorbing state. Essentially, the random surfer would get stuck on this
page. Or we could de�ne the second row of P as (1/6 1/6 1/6 1/6 1/6 1/6), which would
mean that the random surfer restarts and selects a random page of the model WWW.

The importance of a web page will be proportional to the time which the random surfer
spends on this page in a long run. We shall therefore �nd a stationary distribution π, i.e.,
we solve the equation π = π · P. Again, this idea might run into troubles. In our example,
there are no links from the block {4, 5, 6} to {1, 2, 3}. In some sense, the block {4, 5, 6}
is absorbing and the stationary distribution would be supported on {4, 5, 6}, making the
webpages 1, 2, and 3 unimportant. To eliminate this (and other) troubles, we assume that
the random surfer has a non-zero probability p = 1− α > 0 of restart, i.e., we put

P ′ = αP +
1− α
n

e eT ,
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where e = (1, 1, . . . , 1)T is the vector full of ones (and eeT is a rank-1 matrix full of ones).
In our example, with α = 0.9, we would obtain

P ′ =



1/60 28/60 28/60 1/60 1/60 1/60
1/6 1/6 1/6 1/6 1/6 1/6

19/60 19/60 1/60 1/60 19/60 1/60
1/60 1/60 1/60 1/60 28/60 28/60
1/60 1/60 1/60 28/60 1/60 28/60
1/60 1/60 1/60 55/60 1/60 1/60

 .

The importantce of a certan web page will then be given by the size of the corresponding
entry of the stationary distribution π′ with π′ = π′ · P ′. Under mild assumptions (satis�ed
for P ′), π′ is unique and has all entries positive. The solution of the equation π′ = π′ ·P ′ is
computationaly infeasible (as P ′ is an n× n matrix with n of the order 1010). But we can
approximate π′ iteratively. We start with an arbitrary distribution ν and calculate ν · P ′,
ν · (P ′)2, etc. The iterations are still computationally di�cult but already feasible (P ′ is a
sum of a simple matrix and a sparse matrix).

Finally, let us note that the speed of the convergence depends on the second eigenvalue
λ2 of P ′ (with the simple largest eigenvalue of P ′ being λ1 = 1). Indeed, the eigenvalues of
(P ′)r are λr1 = 1, λr2, etc. and the smaller is |λ2|, the smaller is also |λ2|r.

7.3 Markov Chain Monte Carlo (MCMC)

The next application of Markov processes is the so-called Markov Chain Monte Carlo

method. Before we come to that, we �rst recall the Monte Carlo method, which essen-
tially refers to a calculation of deterministic quantities by a randomized algorithm. As a
motivating example, we consider a (measurable) set Ω ⊂ [0, 1]d. We would like to calculate
|Ω|, the Lebesgue measure of Ω. We assume that

� The measure |Ω| =
∫

[0,1]d
χΩ(x)dx is di�cult to calculate directly,

� but for a �xed point x ∈ [0, 1]d, it is easy to decide if x ∈ Ω or x 6∈ Ω.

We approximate |Ω| =

∫
Ω

1dx =

∫
[0,1]d

χΩ(x)dx by
1

n

n∑
i=1

χΩ(xi), where xi ∈ [0, 1]d are

chosen independently a uniformly distributed at random.

If we de�ne the random variable X by

X = χΩ(x) =

{
1, if x ∈ Ω,

0, if x 6∈ Ω,

where x ∈ [0, 1]d is chosen uniformly distributed in [0, 1]d, then we essentially replaced X

by
1

n

n∑
j=1

Xj , where X1, . . . , Xn are independent copies of X.

49



The averge error of this algorithm is easily calculated

E

∣∣∣∣∣∣EX − 1

n

n∑
j=1

Xj

∣∣∣∣∣∣
2

= E

∣∣∣∣∣∣ 1n
n∑
j=1

(EX −Xj)

∣∣∣∣∣∣
2

=
1

n2
E

n∑
j,k=1

(EX −Xj)(EX −Xk)

=
1

n2

n∑
j=1

E(EX −Xj)
2 =

nσ2

n2
=
σ2

n
.

The average error of the algorithm (in the L2-sense) is therefore σ/
√
n, where σ2 = var(X)

and n is the number of repetitions used.

Let us give some examples of the Monte Carlo method

1. Calculation of π: Let Ω ⊂ [0, 1]2, where Ω = {(x1, x2) ∈ [0, 1]2 : x2
1 + x2

2 ≤ 1}. We
choose (x1, x2) ∈ [0, 1]2 randomly and uniformly distributed and de�ne

X =

{
1 if x ∈ Ω,

0 if x 6∈ Ω.

Then EX = |Ω| = π/4 can be approximated by 1
n

∑n
j=1Xj up to a precision of � 1√

n
.

2. Similarly, we can handle the Bu�on's needle problem. In this experiment, we let a
needle of an unit length fall down on a sheet of paper with parallel lines of unit mutual
distance. We are interested in the probability, that the needle crosses one of the lines.
If we denote by x ∈ [0, 1/2] the distance of the middle point of the needle from the
closest line and by α ∈ [0, π/2] the angle between the needle and the line, then x and
α are chosen uniformly and the set of parameters, where the needle intersects the line
is

B = {(x, α) ∈ [0, 1/2]× [0, π/4] : 0 ≤ x ≤ (sinα)/2}

and its measure is P(B) =
4

π

∫ π/2

0
(sinα)/2dα = 2/π.

3. Properties of random polygons (Sylvester, 1864): For a convex set K ⊂ R2, we
choose x1, . . . , x4 ∈ K independent and uniformly distributed over K. What is the
probability, that conv(x1, x2, x3, x4) is a triangle?

To answer the question it is enough to calculate the mean value of the area of
conv(x1, x2, x3). This leads to an integral of a function of six variables. For some K's
the exact value can be comupted analytically and is known, but for a general K it
can be approximated by the Monte Carlo method.

4. If we want to calculate the integral∫
Rd

f(x)ψ(x)dx,

where ψ(x) is a density on Rd, we can evaluate
1

n

n∑
j=1

f(xj), where xj 's a generated

randomly according to ψ. Then X = f(x) and EX =
∫
f(x)ψ(x)dx.
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To apply the Monte Carlo method, it is necessary to generate random samples according
to the given distribution. We produce a Markov chain, which will have the given distribution
as its stationary distribution, we initialize this chain in an arbitrary way and then we take
the value of Xn for some large n. Hence, for a given (large but �nite) set S and a given
distribution π on S, we look for a Markov chain X on state space S such that

� π is the stationary distribution of X,

� the distribution of Xn converges quickly to π if n→∞,

� and which might possibly satisfy also other conditions, i.e., that the step from Xn to
Xn+1 can be performed quickly.

We describe the so-called Metropolis algorithm. If π and S are given and if we already
have some Markov chain with (symmetric) transition matrix Ψ = (Ψx,y)x,y∈S. We modify
this Markov chain in such a way that its stationary distribution becomes π. We accept the
transition from x to y with probability a(x, y) and we refuse this transition (i.e., we stay
at x) with probability 1− a(x, y). We therefore de�ne

Px,y =

{
Ψx,ya(x, y), if y 6= x,

1−
∑

z:z 6=x Ψx,za(x, z), if y = x.

We choose a(x, y) to ensure that P and π satisfy the detailed balance equations. Con-
sequently, we will know that π is the stationary distribution of P . This means that we
require

π(x)Px,y = π(y)Py,x x 6= y

and, equivalently
π(x)Ψx,ya(x, y) = π(y)Ψy,xa(y, x), x 6= y.

Due to the symmetry of Ψ, this can be further simpli�ed to

π(x)a(x, y) = π(y)a(y, x), x 6= y.

We want to choose 0 ≤ a(x, y) ≤ 1 and 0 ≤ a(y, x) ≤ 1 as large as possible (small a(x, y)
reduces the speed of X and also its speed of convergence to π). Therefore, we de�ne

π(x)a(x, y) = π(y)a(y, x) = min(π(x), π(y)), x 6= y,

i.e.,

a(x, y) =
min(π(x), π(y))

π(x)
= min

(
1,
π(y)

π(x)

)
and

a(y, x) =
min(π(x), π(y))

π(y)
= min

(
1,
π(x)

π(y)

)
.

Altogther, we de�ne

Px,y =

Ψx,y min
(

1, π(y)
π(x)

)
, if y 6= x,

1−
∑

z:z 6=x Ψx,z min
(

1, π(y)
π(z)

)
, if y = x.

7.4 Ising model?

7.5 Strong Markov property
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