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Chapter 1

Introduction to Stochastic Processes

In this chapter we present some basic results from the theoryof stochastic processes and investigate the
properties of some of the standard continuous-time stochastic processes. In Section 1.1 we give the definition
of a stochastic process. In Section 1.2 we present some properties of stationary stochastic processes. In
Section 1.3 we introduce Brownian motion and study some of its properties. Various examples of stochastic
processes in continuous time are presented in Section 1.4. The Karhunen-Loeve expansion, one of the most
useful tools for representing stochastic processes and random fields, is presented in Section 1.5. Further
discussion and bibliographical comments are presented in Section 1.6. Section 1.7 contains exercises.

1.1 Definition of a Stochastic Process

Stochastic processes describe dynamical systems whose time-evolution is of probabilistic nature. The pre-
cise definition is given below.1

Definition 1.1 (stochastic process). Let T be an ordered set,(Ω,F ,P) a probability space and(E,G) a
measurable space. A stochastic process is a collection of random variablesX = {Xt; t ∈ T} where, for
each fixedt ∈ T ,Xt is a random variable from(Ω,F ,P) to (E,G). Ω is known as the sample space, where
E is the state space of the stochastic processXt.

The setT can be either discrete, for example the set of positive integersZ+, or continuous,T = R+.
The state spaceE will usually beRd equipped with theσ-algebra of Borel sets.

A stochastic processX may be viewed as a function of botht ∈ T andω ∈ Ω.We will sometimes write
X(t),X(t, ω) or Xt(ω) instead ofXt. For a fixed sample pointω ∈ Ω, the functionXt(ω) : T 7→ E is
called a (realization, trajectory) of the processX.

Definition 1.2 (finite dimensional distributions). The finite dimensional distributions (fdd) of a stochastic
process are the distributions of theEk-valued random variables(X(t1),X(t2), . . . ,X(tk)) for arbitrary
positive integerk and arbitrary timesti ∈ T, i ∈ {1, . . . , k}:

F (x) = P(X(ti) 6 xi, i = 1, . . . , k)

with x = (x1, . . . , xk).

1The notation and basic definitions from probability theory that we will use can be found in Appendix B.

1



From experiments or numerical simulations we can only obtain information about the finite dimensional
distributions of a process. A natural question arises: are the finite dimensional distributions of a stochastic
process sufficient to determine a stochastic process uniquely? This is true for processes with continuous
paths2, which is the class of stochastic processes that we will study in these notes.

Definition 1.3. We say that two processesXt andYt are equivalent if they have same finite dimensional
distributions.

Gaussian stochastic processes

A very important class of continuous-time processes is thatof Gaussian processes which arise in many
applications.

Definition 1.4. A one dimensional continuous time Gaussian process is a stochastic process for which
E = R and all the finite dimensional distributions are Gaussian, i.e. every finite dimensional vector
(Xt1 ,Xt2 , . . . ,Xtk ) is a N (µk,Kk) random variable for some vectorµk and a symmetric nonnegative
definite matrixKk for all k = 1, 2, . . . and for all t1, t2, . . . , tk.

From the above definition we conclude that the finite dimensional distributions of a Gaussian continuous-
time stochastic process are Gaussian with probability distribution function

γµk,Kk
(x) = (2π)−n/2(detKk)

−1/2 exp

[
−1

2
〈K−1

k (x− µk),x− µk〉
]
,

wherex = (x1, x2, . . . xk).
It is straightforward to extend the above definition to arbitrary dimensions. A Gaussian processx(t) is

characterized by its mean

m(t) := Ex(t)

and the covariance (or autocorrelation) matrix

C(t, s) = E

((
x(t)−m(t)

)
⊗
(
x(s)−m(s)

))
.

Thus, the first two moments of a Gaussian process are sufficient for a complete characterization of the
process.

It is not difficult to simulate Gaussian stochastic processes on a computer. Given a random number
generator that generatesN (0, 1) (pseudo)random numbers, we can sample from a Gaussian stochastic pro-
cess by calculating the square root of the covariance. A simple algorithm for constructing a skeleton of a
continuous time Gaussian process is the following:

• Fix ∆t and definetj = (j − 1)∆t, j = 1, . . . N .

• SetXj := X(tj) and define the Gaussian random vectorXN =
{
XN

j

}N

j=1
. ThenXN ∼ N (µN , ΓN )

with µN = (µ(t1), . . . µ(tN )) andΓN
ij = C(ti, tj).

2In fact, all we need is the stochastic process to beseparableSee the discussion in Section 1.6.

2



• ThenXN = µN + ΛN (0, I) with ΓN = ΛΛT .

We can calculate the square root of the covariance matrixC either using the Cholesky factorization, via the
spectral decomposition ofC, or by using the singular value decomposition (SVD).

Examples of Gaussian stochastic processes

• Random Fourier series: letξi, ζi ∼ N (0, 1), i = 1, . . . N and define

X(t) =

N∑

j=1

(ξj cos(2πjt) + ζj sin(2πjt)) .

• Brownian motion is a Gaussian process withm(t) = 0, C(t, s) = min(t, s).

• Brownian bridge is a Gaussian process withm(t) = 0, C(t, s) = min(t, s)− ts.

• The Ornstein-Uhlenbeck process is a Gaussian process withm(t) = 0, C(t, s) = λ e−α|t−s| with
α, λ > 0.

1.2 Stationary Processes

In many stochastic processes that appear in applications their statistics remain invariant under time transla-
tions. Such stochastic processes are calledstationary. It is possible to develop a quite general theory for
stochastic processes that enjoy this symmetry property. Itis useful to distinguish between stochastic pro-
cesses for which all finite dimensional distributions are translation invariant (strictly stationary processes)
and processes for which this translation invariance holds only for the first two moments (weakly stationary
processes).

Strictly Stationary Processes

Definition 1.5. A stochastic process is called (strictly) stationary if allfinite dimensional distributions are
invariant under time translation: for any integerk and timesti ∈ T , the distribution of(X(t1),X(t2), . . . ,X(tk))

is equal to that of(X(s+t1),X(s+t2), . . . ,X(s+tk)) for anys such thats+ti ∈ T for all i ∈ {1, . . . , k}.
In other words,

P(Xt1+s ∈ A1,Xt2+s ∈ A2 . . . Xtk+s ∈ Ak) = P(Xt1 ∈ A1,Xt2 ∈ A2 . . . Xtk ∈ Ak), ∀s ∈ T.

Example 1.6. Let Y0, Y1, . . . be a sequence of independent, identically distributed random variables and
consider the stochastic processXn = Yn. ThenXn is a strictly stationary process (see Exercise 1). Assume
furthermore thatEY0 = µ < +∞. Then, by the strong law of large numbers, Equation (B.26), we have that

1

N

N−1∑

j=0

Xj =
1

N

N−1∑

j=0

Yj → EY0 = µ,

3



almost surely. In fact, theBirkhoff ergodic theoremstates that, for any functionf such thatEf(Y0) < +∞,
we have that

lim
N→+∞

1

N

N−1∑

j=0

f(Xj) = Ef(Y0), (1.1)

almost surely. The sequence of iid random variables is an example of an ergodic strictly stationary processes.

We will say that a stationary stochastic process that satisfies (1.1) isergodic. For such processes we
can calculate expectation values of observable,Ef(Xt) using a single sample path, provided that it is long
enough (N ≫ 1).

Example 1.7. LetZ be a random variable and define the stochastic processXn = Z, n = 0, 1, 2, . . . . Then
Xn is a strictly stationary process (see Exercise 2). We can calculate the long time average of this stochastic
process:

1

N

N−1∑

j=0

Xj =
1

N

N−1∑

j=0

Z = Z,

which is independent ofN and does not converge to the mean of the stochastic processesEXn = EZ

(assuming that it is finite), or any other deterministic number. This is an example of a non-ergodic processes.

Second Order Stationary Processes

Let
(
Ω,F ,P

)
be a probability space. LetXt, t ∈ T (with T = R or Z) be a real-valued random process

on this probability space with finite second moment,E|Xt|2 < +∞ (i.e. Xt ∈ L2(Ω,P) for all t ∈ T ).
Assume that it is strictly stationary. Then,

E(Xt+s) = EXt, s ∈ T, (1.2)

from which we conclude thatEXt is constant and

E((Xt1+s − µ)(Xt2+s − µ)) = E((Xt1 − µ)(Xt2 − µ)), s ∈ T, (1.3)

implies that thecovariance functiondepends on the difference between the two times,t ands:

C(t, s) = C(t− s).

This motivates the following definition.

Definition 1.8. A stochastic processXt ∈ L2 is called second-order stationary, wide-sense stationaryor
weakly stationary if the first momentEXt is a constant and the covariance functionE(Xt − µ)(Xs − µ)

depends only on the differencet− s:

EXt = µ, E((Xt − µ)(Xs − µ)) = C(t− s).

The constantµ is the expectation of the processXt. Without loss of generality, we can setµ = 0, since
if EXt = µ then the processYt = Xt − µ is mean zero. A mean zero process is called a centered process.
The functionC(t) is thecovariance(sometimes also called autocovariance) or theautocorrelation function
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of theXt. Notice thatC(t) = E(XtX0), whereasC(0) = EX2
t , which is finite, by assumption. Since we

have assumed thatXt is a real valued process, we have thatC(t) = C(−t), t ∈ R.

Let nowXt be a strictly stationary stochastic process with finite second moment. The definition of strict
stationarity implies thatEXt = µ, a constant, andE((Xt − µ)(Xs − µ)) = C(t − s). Hence, a strictly
stationary process with finite second moment is also stationary in the wide sense. The converse is not true,
in general. It is true, however, for Gaussian processes: since the first two moments of a Gaussian process are
sufficient for a complete characterization of the process, aGaussian stochastic process is strictly stationary
if and only if it is weakly stationary.

Example 1.9. Let Y0, Y1, . . . be a sequence of independent, identically distributed random variables and
consider the stochastic processXn = Yn. From Example 1.6 we know that this is a strictly stationary
process, irrespective of whetherY0 is such thatEY 2

0 < +∞. Assume now thatEY0 = 0 andEY 2
0 = σ2 <

+∞. ThenXn is a second order stationary process with mean zero and correlation functionR(k) = σ2δk0.
Notice that in this case we have no correlation between the values of the stochastic process at different times
n andk.

Example 1.10. Let Z be a single random variable and consider the stochastic processXn = Z, n =

0, 1, 2, . . . . From Example 1.7 we know that this is a strictly stationary process irrespective of whether
E|Z|2 < +∞ or not. Assume now thatEZ = 0, EZ2 = σ2. ThenXn becomes a second order stationary
process withR(k) = σ2. Notice that in this case the values of our stochastic process at different times are
strongly correlated.

We will see later in this chapter that for second order stationary processes, ergodicity is related to fast
decay of correlations. In the first of the examples above, there was no correlation between our stochastic
processes at different times and the stochastic process is ergodic. On the contrary, in our second example
there is very strong correlation between the stochastic process at different times and this process is not
ergodic.

Continuity properties of the covariance function are equivalent to continuity properties of the paths of
Xt in theL2 sense, i.e.

lim
h→0

E|Xt+h −Xt|2 = 0.

Lemma 1.11. Assume that the covariance functionC(t) of a second order stationary process is continuous
at t = 0. Then it is continuous for allt ∈ R. Furthermore, the continuity ofC(t) is equivalent to the
continuity of the processXt in theL2-sense.

Proof. Fix t ∈ R and (without loss of generality) setEXt = 0. We calculate:

|C(t+ h)− C(t)|2 = |E(Xt+hX0)− E(XtX0)|2 = E|((Xt+h −Xt)X0)|2

6 E(X0)
2
E(Xt+h −Xt)

2

= C(0)
(
EX2

t+h + EX2
t − 2E(XtXt+h)

)

= 2C(0)(C(0) − C(h)) → 0,

ash→ 0. Thus, continuity ofC(·) at0 implies continuity for allt.

5



Assume now thatC(t) is continuous. From the above calculation we have

E|Xt+h −Xt|2 = 2(C(0)− C(h)), (1.4)

which converges to0 ash → 0. Conversely, assume thatXt is L2-continuous. Then, from the above
equation we getlimh→0C(h) = C(0).

Notice that form (1.4) we immediately conclude thatC(0) > C(h), h ∈ R.
The Fourier transform of the covariance function of a secondorder stationary process always exists.

This enables us to study second order stationary processes using tools from Fourier analysis. To make the
link between second order stationary processes and Fourieranalysis we will use Bochner’s theorem, which
applies to all nonnegative functions.

Definition 1.12. A functionf(x) : R 7→ R is called nonnegative definite if

n∑

i,j=1

f(ti − tj)cic̄j > 0 (1.5)

for all n ∈ N, t1, . . . tn ∈ R, c1, . . . cn ∈ C.

Lemma 1.13.The covariance function of second order stationary processis a nonnegative definite function.

Proof. We will use the notationXc
t :=

∑n
i=1Xtici. We have.

n∑

i,j=1

C(ti − tj)cic̄j =

n∑

i,j=1

EXtiXtj cic̄j

= E




n∑

i=1

Xtici

n∑

j=1

Xtj c̄j


 = E

(
Xc

t X̄
c
t

)

= E|Xc
t |2 > 0.

Theorem 1.14. [Bochner] LetC(t) be a continuous positive definite function. Then there exists a unique
nonnegative measureρ onR such thatρ(R) = C(0) and

C(t) =

∫

R

eiωt ρ(dω) ∀t ∈ R. (1.6)

LetXt be a second order stationary process with autocorrelation functionC(t) whose Fourier transform
is the measureρ(dω). The measureρ(dω) is called thespectral measureof the processXt. In the following
we will assume that the spectral measure is absolutely continuous with respect to the Lebesgue measure on
R with densityS(ω), i.e. ρ(dω) = S(ω)dω. The Fourier transformS(ω) of the covariance function is called
thespectral densityof the process:

S(ω) =
1

2π

∫ ∞

−∞
e−itωC(t) dt. (1.7)

6



From (1.6) it follows that that the autocorrelation function of a mean zero, second order stationary process
is given by the inverse Fourier transform of the spectral density:

C(t) =

∫ ∞

−∞
eitωS(ω) dω. (1.8)

The autocorrelation function of a second order stationary process enables us to associate a timescale toXt,
thecorrelation timeτcor:

τcor =
1

C(0)

∫ ∞

0
C(τ) dτ =

1

E(X2
0 )

∫ ∞

0
E(XτX0) dτ.

The slower the decay of the correlation function, the largerthe correlation time is. Notice that when the
correlations do not decay sufficiently fast so thatC(t) is not integrable, then the correlation time will be
infinite.

Example 1.15. Consider a mean zero, second order stationary process with correlation function

C(t) = C(0)e−α|t| (1.9)

whereα > 0. We will write C(0) = D
α whereD > 0. The spectral density of this process is:

S(ω) =
1

2π

D

α

∫ +∞

−∞
e−iωte−α|t| dt

=
1

2π

D

α

(∫ 0

−∞
e−iωteαt dt+

∫ +∞

0
e−iωte−αt dt

)

=
1

2π

D

α

(
1

−iω + α
+

1

iω + α

)

=
D

π

1

ω2 + α2
.

This function is called theCauchyor the Lorentzdistribution. The correlation time is (we have that
R(0) = D/α)

τcor =

∫ ∞

0
e−αt dt = α−1.

A real-valued Gaussian stationary process defined onR with correlation function given by (1.9) is called
the stationaryOrnstein-Uhlenbeck process. We will study this stochastic process in detail in later chapters.
The Ornstein-Uhlenbeck processXt can be used as a model for the velocity of a Brownian particle.It is of
interest to calculate the statistics of the position of the Brownian particle, i.e. of the integral (we assume that
the Brownian particle starts at0)

Zt =

∫ t

0
Ys ds, (1.10)

The particle positionZt is a mean zero Gaussian process. Setα = D = 1. The covariance function ofZt is

E(ZtZs) = 2min(t, s) + e−min(t,s) + e−max(t,s) − e−|t−s| − 1. (1.11)

7



Ergodic properties of second-order stationary processes

Second order stationary processes have nice ergodic properties, provided that the correlation between values
of the process at different times decays sufficiently fast. In this case, it is possible to show that we can
calculate expectations by calculating time averages. An example of such a result is the following.

Proposition 1.16. Let{Xt}t>0 be a second order stationary process on a probability space(Ω, F , P) with
meanµ and covarianceC(t), and assume thatC(t) ∈ L1(0,+∞). Then

lim
T→+∞

E

∣∣∣∣
1

T

∫ T

0
Xs ds− µ

∣∣∣∣
2

= 0. (1.12)

For the proof of this result we will first need the following result, which is a property of symmetric
functions.

Lemma 1.17. LetR(t) be an integrable symmetric function. Then
∫ T

0

∫ T

0
C(t− s) dtds = 2

∫ T

0
(T − s)C(s) ds. (1.13)

Proof. We make the change of variablesu = t − s, v = t + s. The domain of integration in thet, s
variables is[0, T ] × [0, T ]. In theu, v variables it becomes[−T, T ] × [|u|, 2T − |u|]. The Jacobian of the
transformation is

J =
∂(t, s)

∂(u, v)
=

1

2
.

The integral becomes
∫ T

0

∫ T

0
R(t− s) dtds =

∫ T

−T

∫ 2T−|u|

|u|
R(u)J dvdu

=

∫ T

−T
(T − |u|)R(u) du

= 2

∫ T

0
(T − u)R(u) du,

where the symmetry of the functionC(u) was used in the last step.

Proof of Theorem 1.16.We use Lemma (1.17) to calculate:

E

∣∣∣∣
1

T

∫ T

0
Xs ds− µ

∣∣∣∣
2

=
1

T 2
E

∣∣∣∣
∫ T

0
(Xs − µ) ds

∣∣∣∣
2

=
1

T 2
E

∫ T

0

∫ T

0
(Xt − µ)(Xs − µ) dtds

=
1

T 2

∫ T

0

∫ T

0
C(t− s) dtds

=
2

T 2

∫ T

0
(T − u)C(u) du

6
2

T

∫ +∞

0

∣∣∣
(
1− u

T

)
C(u)

∣∣∣ du 6
2

T

∫ +∞

0
C(u) du→ 0,

8



using the dominated convergence theorem and the assumptionC(·) ∈ L1(0,+∞). Assume thatµ = 0

and define

D =

∫ +∞

0
C(t) dt, (1.14)

which, from our assumption onC(t), is a finite quantity.3 The above calculation suggests that, fort ≫ 1,
we have that

E

(∫ t

0
X(t) dt

)2

≈ 2Dt.

This implies that, at sufficiently long times, the mean square displacement of the integral of the ergodic
second order stationary processXt scales linearly in time, with proportionality coefficient2D. Let nowXt

be the velocity of a (Brownian) particle. The particle position Zt is given by (1.10). From our calculation
above we conclude that

EZ2
t = 2Dt.

where

D =

∫ ∞

0
C(t) dt =

∫ ∞

0
E(XtX0) dt (1.15)

is thediffusion coefficient. Thus, one expects that at sufficiently long times and under appropriate assump-
tions on the correlation function, the time integral of a stationary process will approximate a Brownian
motion with diffusion coefficientD. The diffusion coefficient is an example of a transport coefficient
and (1.15) is an example of the Green-Kubo formula: a transport coefficient can be calculated in terms of
the time integral of an appropriate autocorrelation function. In the case of the diffusion coefficient we need
to calculate the integral of the velocity autocorrelation function. We will explore this topic in more detail in
Chapter??.

Example 1.18. Consider the stochastic processes with an exponential correlation function from Exam-
ple 1.15, and assume that this stochastic process describesthe velocity of a Brownian particle. Since
C(t) ∈ L1(0,+∞) Proposition 1.16 applies. Furthermore, the diffusion coefficient of the Brownian particle
is given by ∫ +∞

0
C(t) dt = C(0)τ−1

c =
D

α2
.

Remark 1.19. LetXt be a strictly stationary process and letf be such thatE(f(X0))
2 < +∞. A calcula-

tion similar to the one that we did in the proof of Proposition1.16 enables to conclude that

lim
T→+∞

1

T

∫ T

0
f(Xs) ds = Ef(X0), (1.16)

in L2(Ω). In this case the autocorrelation function ofXt is replaced by

Cf (t) = E
[(
f(Xt)− Ef(X0)

)(
f(X0)− Ef(X0)

)]
.

3Notice however that we do not know whether it is nonzero. Thisrequires a separate argument.
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Settingf = f − Eπf we have:

lim
T→+∞

T Varπ

(
1

T

∫ T

0
f(Xt) dt

)
= 2

∫ +∞

0
Eπ(f(Xt)f(X0)) dt (1.17)

We calculate

Varπ

(
1

T

∫ T

0
f(Xt) dt

)
= Eπ

(
1

T

∫ T

0
f(Xt) dt

)2

=
1

T 2

∫ T

0

∫ T

0
Eπ

(
f(Xt)f(Xs)

)
dtds

=:
1

T 2

∫ T

0

∫ T

0
Rf (t, s) dtds

=
2

T 2

∫ T

0
(T − s)Rf (s) ds

=
2

T

∫ T

0

(
1− s

T

)
Eπ

(
f(Xs)f(X0)

)
ds,

from which (1.16) follows.

1.3 Brownian Motion

The most important continuous-time stochastic process is Brownian motion. Brownian motion is a process
with almost surely continuous paths and independent Gaussian increments. A processXt has independent
increments if for every sequencet0 < t1 < . . . tn the random variables

Xt1 −Xt0 , Xt2 −Xt1 , . . . ,Xtn −Xtn−1

are independent. If, furthermore, for anyt1, t2, s ∈ T and Borel setB ⊂ R

P(Xt2+s −Xt1+s ∈ B) = P(Xt2 −Xt1 ∈ B),

then the processXt has stationary independent increments.

Definition 1.20. A one dimensional standardBrownian motionW (t) : R+ → R is a real valued stochastic
process with a.s. continuous paths such thatW (0) = 0, it has independent increments and for every
t > s > 0, the incrementW (t) −W (s) has a Gaussian distribution with mean0 and variancet − s, i.e.
the density of the random variableW (t)−W (s) is

g(x; t, s) =
(
2π(t− s)

)− 1
2
exp

(
− x2

2(t− s)

)
; (1.18)

A standardd-dimensional standard Brownian motionW (t) : R+ → R
d is a vector ofd independent one-

dimensional Brownian motions:

W (t) = (W1(t), . . . ,Wd(t)),

10
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Figure 1.1: Brownian sample paths

whereWi(t), i = 1, . . . , d are independent one dimensional Brownian motions. The density of the Gaussian
random vectorW (t)−W (s) is thus

g(x; t, s) =
(
2π(t− s)

)−d/2
exp

(
− ‖x‖2
2(t− s)

)
.

Brownian motion is also referred to as theWiener process. If Figure 1.1 we plot a few sample paths of
Brownian motion.

As we have already mentioned, Brownian motion has almost surely continuous paths. More precisely, it
has a continuous modification: consider two stochastic processesXt andYt, t ∈ T , that are defined on the
same probability space(Ω,F ,P). The processYt is said to be a modification ofXt if P(Xt = Yt) = 1 for
all t ∈ T . The fact that there is a continuous modification of Brownianmotion follows from the following
result which is due to Kolmogorov.

Theorem 1.21. (Kolmogorov) LetXt, t ∈ [0,∞) be a stochastic process on a probability space(Ω,F ,P).
Suppose that there are positive constantsα andβ, and for eachT > 0 there is a constantC(T ) such that

E|Xt −Xs|α 6 C(T )|t− s|1+β , 0 6 s, t 6 T. (1.19)

Then there exists a continuous modificationYt of the processXt.

We can check that (1.19) holds for Brownian motion withα = 4 andβ = 1 using (1.18). It is possible
to prove rigorously the existence of the Wiener process (Brownian motion):

Theorem 1.22. (Wiener) There exists an almost surely continuous processWt with independent increments
such andW0 = 0, such that for eacht > 0 the random variableWt is N (0, t). Furthermore,Wt is almost
surely locally Ḧolder continuous with exponentα for anyα ∈ (0, 12).

11
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Figure 1.2: Sample paths of the random walk of lengthn = 50 andn = 1000.

Notice that Brownian paths are not differentiable.

We can construct Brownian motion through the limit of an appropriately rescaled random walk: let
X1, X2, . . . be iid random variables on a probability space(Ω,F ,P) with mean0 and variance1. Define
the discrete time stochastic processSn with S0 = 0, Sn =

∑
j=1Xj, n > 1. Define now a continuous time

stochastic process with continuous paths as the linearly interpolated, appropriately rescaled random walk:

W n
t =

1√
n
S[nt] + (nt− [nt])

1√
n
X[nt]+1,

where[·] denotes the integer part of a number. ThenW n
t converges weakly, asn → +∞ to a one dimen-

sional standard Brownian motion. See Figure 1.2.

An alternative definition of the one dimensional standard Brownian motion is that of a Gaussian stochas-
tic process on a probability space

(
Ω,F ,P

)
with continuous paths for almost allω ∈ Ω, and finite dimen-

sional distributions with zero mean and covarianceE(WtiWtj ) = min(ti, tj). One can then show that
Definition 1.20 follows from the above definition.

For thed-dimensional Brownian motion we have (see (B.7) and (B.8))

EW (t) = 0 ∀t > 0

and

E

(
(W (t)−W (s))⊗ (W (t)−W (s))

)
= (t− s)I, (1.20)

whereI denotes the identity matrix. Moreover,

E

(
W (t)⊗W (s)

)
= min(t, s)I. (1.21)

Although Brownian motion has stationary increments, it is not a stationary process itself Brownian motion

12



itself. The probability density of the one dimensional Brownian motion is

g(x, t) =
1√
2πt

e−x2/2t.

We can easily calculate all moments:

E(W (t)n) =
1√
2πt

∫ +∞

−∞
xne−x2/2t dx

=
{

1.3 . . . (n− 1)tn/2, n even,
0, n odd.

In particular, the mean square displacement of Brownian motion grows linearly in time.
Brownian motion is invariant under various transformations in time.

Proposition 1.23. LetWt denote a standard Brownian motion inR. Then,Wt has the following properties:

i. (Rescaling). For eachc > 0 defineXt =
1√
c
W (ct). Then(Xt, t > 0) = (Wt, t > 0) in law.

ii. (Shifting). For eachc > 0Wc+t −Wc, t > 0 is a Brownian motion which is independent ofWu, u ∈
[0, c].

iii. (Time reversal). DefineXt =W1−t −W1, t ∈ [0, 1]. Then(Xt, t ∈ [0, 1]) = (Wt, t ∈ [0, 1]) in law.

iv. (Inversion). LetXt, t > 0 defined byX0 = 0, Xt = tW (1/t). Then(Xt, t > 0) = (Wt, t > 0) in
law.

The equivalence in the above result holds in law and not in a pathwise sense. The proof of this proposi-
tion is left as an exercise.

We can also add a drift and change the diffusion coefficient ofthe Brownian motion: we will define a
Brownian motion with driftµ and varianceσ2 as the process

Xt = µt+ σWt.

The mean and variance ofXt are

EXt = µt, E(Xt − EXt)
2 = σ2t.

Notice thatXt satisfies the equation

dXt = µdt+ σ dWt.

This is an example of astochastic differential equation. We will study stochastic differential equations in
Chapters 3 and??.

1.4 Examples of Stochastic Processes

We present now a few examples of stochastic processes that appear frequently in applications.
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The Ornstein-Uhlenbeck process

The stationary Ornstein-Uhlenbeck process that was introduced earlier in this chapter can be defined through
the Brownian motion via a time change.

Lemma 1.24. LetW (t) be a standard Brownian motion and consider the process

V (t) = e−tW (e2t).

ThenV (t) is a Gaussian stationary process with mean0 and correlation function

R(t) = e−|t|. (1.22)

For the proof of this result we first need to show that time changed Gaussian processes are also Gaussian.

Lemma 1.25. LetX(t) be a Gaussian stochastic process and letY (t) = X(f(t)) wheref(t) is a strictly
increasing function. ThenY (t) is also a Gaussian process.

Proof. We need to show that, for all positive integersN and all sequences of times{t1, t2, . . . tN} the
random vector

{Y (t1), Y (t2), . . . Y (tN )} (1.23)

is a multivariate Gaussian random variable. Sincef(t) is strictly increasing, it is invertible and hence, there
existsi, i = 1, . . . N such thatsi = f−1(ti). Thus, the random vector (1.23) can be rewritten as

{X(s1), X(s2), . . . X(sN )},

which is Gaussian for allN and all choices of timess1, s2, . . . sN . HenceY (t) is also Gaussian.

Proof of Lemma 1.24.The fact thatV (t) is a mean zero process follows immediately from the fact that
W (t) is mean zero. To show that the correlation function ofV (t) is given by (1.22), we calculate

E(V (t)V (s)) = e−t−s
E(W (e2t)W (e2s)) = e−t−s min(e2t, e2s)

= e−|t−s|.

The Gaussianity of the processV (t) follows from Lemma 1.25 (notice that the transformation that gives
V (t) in terms ofW (t) is invertible and we can writeW (s) = s1/2V (12 ln(s))).

Brownian Bridge

We can modify Brownian motion so that the resulting processes is fixed at both ends. LetW (t) be a standard
one dimensional Brownian motion. We define the Brownian bridge (from0 to 0) to be the process

Bt =Wt − tW1, t ∈ [0, 1]. (1.24)

Notice thatB0 = B1 = 0. Equivalently, we can define the Brownian bridge to be the continuous Gaussian
process{Bt : 0 6 t 6 1} such that

EBt = 0, E(BtBs) = min(s, t)− st, s, t ∈ [0, 1]. (1.25)

14
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Figure 1.3: Sample paths and first (blue curve) and second (black curve) moment of the Brownian bridge.

Another, equivalent definition of the Brownian bridge is through an appropriate time change of the Brownian
motion:

Bt = (1− t)W

(
t

1− t

)
, t ∈ [0, 1). (1.26)

Conversely, we can write the Brownian motion as a time changeof the Brownian bridge:

Wt = (t+ 1)B

(
t

1 + t

)
, t > 0.

We can use the algorithm for simulating Gaussian processes to generate paths of the Brownian bridge process
and to calculate moments. In Figure 1.3 we plot a few sample paths and the first and second moments of
Brownian bridge.

Fractional Brownian Motion

The fractional Brownian motion is a one-parameter family ofGaussian processes whose increments are
correlated.

Definition 1.26. A (normalized) fractional Brownian motionWH
t , t > 0 with Hurst parameterH ∈ (0, 1)

is a centered Gaussian process with continuous sample pathswhose covariance is given by

E(WH
t W

H
s ) =

1

2

(
s2H + t2H − |t− s|2H

)
. (1.27)

The Hurst exponent controls the correlations between the increments of fractional Brownian motion as
well as the regularity of the paths: they become smoother asH increases.

Some of the basic properties of fractional Brownian motion are summarized in the following proposition.

Proposition 1.27. Fractional Brownian motion has the following properties.
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Figure 1.4: Sample paths of fractional Brownian motion for Hurst exponentH = 0.3 andH = 0.8 and first
(blue curve) and second (black curve) moment.

i. WhenH = 1
2 , W

1
2
t becomes the standard Brownian motion.

ii. WH
0 = 0, EWH

t = 0, E(WH
t )2 = |t|2H , t > 0.

iii. It has stationary increments andE(WH
t −WH

s )2 = |t− s|2H .

iv. It has the following self similarity property

(WH
αt , t > 0) = (αHWH

t , t > 0), α > 0, (1.28)

where the equivalence is in law.

The proof of these properties is left as an exercise. In Figure 1.4 we present sample plots and the first
two moments of the factional Brownian motion forH = 0.3 andH = 0.8. As expected, for larger values
of the Hurst exponent the sample paths are more regular.

1.5 The Karhunen-Loéve Expansion

Let f ∈ L2(D) whereD is a subset ofRd and let{en}∞n=1 be an orthonormal basis inL2(D). Then, it is
well known thatf can be written as a series expansion:

f =
∞∑

n=1

fnen,

where

fn =

∫

Ω
f(x)en(x) dx.
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The convergence is inL2(D):

lim
N→∞

∥∥∥∥∥f(x)−
N∑

n=1

fnen(x)

∥∥∥∥∥
L2(D)

= 0.

It turns out that we can obtain a similar expansion for anL2 mean zero process which is continuous in the
L2 sense:

EX2
t < +∞, EXt = 0, lim

h→0
E|Xt+h −Xt|2 = 0. (1.29)

For simplicity we will takeT = [0, 1]. LetR(t, s) = E(XtXs) be the autocorrelation function. Notice that
from (1.29) it follows thatR(t, s) is continuous in botht ands; see Exercise 20.

Let us assume an expansion of the form

Xt(ω) =

∞∑

n=1

ξn(ω)en(t), t ∈ [0, 1] (1.30)

where{en}∞n=1 is an orthonormal basis inL2(0, 1). The random variablesξn are calculated as

∫ 1

0
Xtek(t) dt =

∫ 1

0

∞∑

n=1

ξnen(t)ek(t) dt =
∞∑

n=1

ξnδnk = ξk,

where we assumed that we can interchange the summation and integration. We will assume that these
random variables are orthogonal:

E(ξnξm) = λnδnm,

where{λn}∞n=1 are positive numbers that will be determined later.

Assuming that an expansion of the form (1.30) exists, we can calculate

R(t, s) = E(XtXs) = E

( ∞∑

k=1

∞∑

ℓ=1

ξkek(t)ξℓeℓ(s)

)

=

∞∑

k=1

∞∑

ℓ=1

E (ξkξℓ) ek(t)eℓ(s)

=

∞∑

k=1

λkek(t)ek(s).

Consequently, in order to the expansion (1.30) to be valid weneed

R(t, s) =
∞∑

k=1

λkek(t)ek(s). (1.31)
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From equation (1.31) it follows that

∫ 1

0
R(t, s)en(s) ds =

∫ 1

0

∞∑

k=1

λkek(t)ek(s)en(s) ds

=
∞∑

k=1

λkek(t)

∫ 1

0
ek(s)en(s) ds

=
∞∑

k=1

λkek(t)δkn

= λnen(t).

Consequently, in order for the expansion (1.30) to be valid,{λn, en(t)}∞n=1 have to be the eigenvalues and
eigenfunctions of the integral operator whose kernel is thecorrelation function ofXt:

∫ 1

0
R(t, s)en(s) ds = λnen(t). (1.32)

To prove the expansion (1.30) we need to study the eigenvalueproblem for the integral operator

Rf :=

∫ 1

0
R(t, s)f(s) ds. (1.33)

We consider it as an operator fromL2[0, 1] to L2[0, 1]. We can show that this operator is selfadjoint and
nonnegative inL2(0, 1):

〈Rf, h〉 = 〈f,Rh〉 and 〈Rf, f〉 > 0 ∀ f, h ∈ L2(0, 1),

where〈·, ·〉 denotes theL2(0, 1)-inner product. It follows that all its eigenvalues are realand nonnegative.
Furthermore, it is a compact operator (if{φn}∞n=1 is a bounded sequence inL2(0, 1), then{Rφn}∞n=1 has
a convergent subsequence). The spectral theorem for compact, selfadjoint operators can be used to deduce
thatR has a countable sequence of eigenvalues tending to0. Furthermore, for everyf ∈ L2(0, 1) we can
write

f = f0 +

∞∑

n=1

fnen(t),

whereRf0 = 0 and{en(t)} are the eigenfunctions of the operatorR corresponding to nonzero eigenvalues
and where the convergence is inL2. Finally, Mercer’s Theorem states that forR(t, s) continuous on[0, 1]×
[0, 1], the expansion (1.31) is valid, where the series converges absolutely and uniformly.

Now we are ready to prove (1.30).

Theorem 1.28. (Karhunen-Lóeve). Let{Xt, t ∈ [0, 1]} be anL2 process with zero mean and continuous
correlation functionR(t, s). Let {λn, en(t)}∞n=1 be the eigenvalues and eigenfunctions of the operatorR
defined in(1.33). Then

Xt =

∞∑

n=1

ξnen(t), t ∈ [0, 1], (1.34)
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where

ξn =

∫ 1

0
Xten(t) dt, Eξn = 0, E(ξnξm) = λδnm. (1.35)

The series converges inL2 toX(t), uniformly int.

Proof. The fact thatEξn = 0 follows from the fact thatXt is mean zero. The orthogonality of the random
variables{ξn}∞n=1 follows from the orthogonality of the eigenfunctions ofR:

E(ξnξm) = E

∫ 1

0

∫ 1

0
XtXsen(t)em(s) dtds

=

∫ 1

0

∫ 1

0
R(t, s)en(t)em(s) dsdt

= λn

∫ 1

0
en(s)em(s) ds = λnδnm.

Consider now the partial sumSN =
∑N

n=1 ξnen(t).

E|Xt − SN |2 = EX2
t + ES2

N − 2E(XtSN )

= R(t, t) + E

N∑

k,ℓ=1

ξkξℓek(t)eℓ(t)− 2E

(
Xt

N∑

n=1

ξnen(t)

)

= R(t, t) +

N∑

k=1

λk|ek(t)|2 − 2E

N∑

k=1

∫ 1

0
XtXsek(s)ek(t) ds

= R(t, t)−
N∑

k=1

λk|ek(t)|2 → 0,

by Mercer’s theorem.

The Karhunen-oéve expansion is straightforward to apply to Gaussian stochastic processes. LetXt be a
Gaussian second order process with continuous covarianceR(t, s). Then the random variables{ξk}∞k=1 are
Gaussian, since they are defined through the time integral ofa Gaussian processes. Furthermore, since they
are Gaussian and orthogonal, they are also independent. Hence, for Gaussian processes the Karhunen-Loéve
expansion becomes:

Xt =
+∞∑

k=1

√
λkξkek(t), (1.36)

where{ξk}∞k=1 are independentN (0, 1) random variables.

Example 1.29.The Karhunen-Loéve Expansion for Brownian Motion. The correlation function of Brown-
ian motion isR(t, s) = min(t, s). The eigenvalue problemRψn = λnψn becomes

∫ 1

0
min(t, s)ψn(s) ds = λnψn(t).

19



Let us assume thatλn > 0 (we can check that0 is not an eigenvalue). Upon settingt = 0 we obtain
ψn(0) = 0. The eigenvalue problem can be rewritten in the form

∫ t

0
sψn(s) ds + t

∫ 1

t
ψn(s) ds = λnψn(t).

We differentiate this equation once: ∫ 1

t
ψn(s) ds = λnψ

′
n(t).

We sett = 1 in this equation to obtain the second boundary conditionψ′
n(1) = 0. A second differentiation

yields;

−ψn(t) = λnψ
′′
n(t),

where primes denote differentiation with respect tot. Thus, in order to calculate the eigenvalues and eigen-
functions of the integral operator whose kernel is the covariance function of Brownian motion, we need to
solve the Sturm-Liouville problem

−ψn(t) = λnψ
′′
n(t), ψ(0) = ψ′(1) = 0.

We can calculate the eigenvalues and (normalized) eigenfunctions are

ψn(t) =
√
2 sin

(
1

2
(2n − 1)πt

)
, λn =

(
2

(2n − 1)π

)2

.

Thus, the Karhunen-Loéve expansion of Brownian motion on[0, 1] is

Wt =
√
2

∞∑

n=1

ξn
2

(2n − 1)π
sin

(
1

2
(2n − 1)πt

)
. (1.37)

1.6 Discussion and Bibliography

The material presented in this chapter is very standard and can be found in any any textbook on stochastic
processes. Consult, for example [48, 47, 49, 32]. The proof of Bochner’s theorem 1.14 can be found in [50],
where additional material on stationary processes can be found. See also [48].

The Ornstein-Uhlenbeck process was introduced by Ornsteinand Uhlenbeck in 1930 as a model for the
velocity of a Brownian particle [101]. An early reference onthe derivation of formulas of the form (1.15)
is [99].

Gaussian processes are studied in [1]. Simulation algorithms for Gaussian processes are presented in [6].
Fractional Brownian motion was introduced in [64].

The spectral theorem for compact, selfadjoint operators that we used in the proof of the Karhunen-Loéve
expansion can be found in [84]. The Karhunen-Loéve expansion can be used to generate random fields, i.e.
a collection of random variables that are parameterized by aspatial (rather than temporal) parameterx.
See [29]. The Karhunen-Loéve expansion is useful in the development of numerical algorithms for partial
differential equations with random coefficients. See [92].
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We can use the Karhunen-Loéve expansion in order to study theL2-regularity of stochastic processes.
First, letR be a compact, symmetric positive definite operator onL2(0, 1) with eigenvalues and normalized
eigenfunctions{λk, ek(x)}+∞

k=1 and consider a functionf ∈ L2(0, 1) with
∫ 1
0 f(s) ds = 0. We can define

the one parameter family of Hilbert spacesHα through the norm

‖f‖2α = ‖R−αf‖2L2 =
∑

k

|fk|2λ−α.

The inner product can be obtained through polarization. This norm enables us to measure the regularity
of the functionf(t).4 Let Xt be a mean zero second order (i.e. with finite second moment) process with
continuous autocorrelation function. Define the spaceHα := L2((Ω, P ),Hα(0, 1)) with (semi)norm

‖Xt‖2α = E‖Xt‖2Hα =
∑

k

|λk|1−α. (1.38)

Notice that the regularity of the stochastic processXt depends on the decay of the eigenvalues of the integral
operatorR· :=

∫ 1
0 R(t, s) · ds.

As an example, consider theL2-regularity of Brownian motion. From Example 1.29 we know that
λk ∼ k−2. Consequently, from (1.38) we get that, in order forWt to be an element of the spaceHα, we
need that ∑

k

|λk|−2(1−α) < +∞,

from which we obtain thatα < 1/2. This is consistent with the Hölder continuity of Brownianmotion from
Theorem 1.22.5

1.7 Exercises

1. LetY0, Y1, . . . be a sequence of independent, identically distributed random variables and consider the
stochastic processXn = Yn.

(a) Show thatXn is a strictly stationary process.

(b) Assume thatEY0 = µ < +∞ andEY 2
0 = σ2 < +∞. Show that

lim
N→+∞

E

∣∣∣∣∣∣
1

N

N−1∑

j=0

Xj − µ

∣∣∣∣∣∣
= 0.

(c) Letf be such thatEf2(Y0) < +∞. Show that

lim
N→+∞

E

∣∣∣∣∣∣
1

N

N−1∑

j=0

f(Xj)− f(Y0)

∣∣∣∣∣∣
= 0.

4Think ofR as being the inverse of the Laplacian with periodic boundaryconditions. In this caseHα coincides with the standard
fractional Sobolev space.

5Notice, however, that Wiener’s theorem refers to a.s. Hölder continuity, whereas the calculation presented in this section is
aboutL2-continuity.
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2. LetZ be a random variable and define the stochastic processXn = Z, n = 0, 1, 2, . . . . Show thatXn is
a strictly stationary process.

3. LetA0, A1, . . . Am andB0, B1, . . . Bm be uncorrelated random variables with mean zero and variances
EA2

i = σ2i , EB
2
i = σ2i , i = 1, . . . m. Let ω0, ω1, . . . ωm ∈ [0, π] be distinct frequencies and define, for

n = 0,±1,±2, . . . , the stochastic process

Xn =
m∑

k=0

(
Ak cos(nωk) +Bk sin(nωk)

)
.

Calculate the mean and the covariance ofXn. Show that it is a weakly stationary process.

4. Let{ξn : n = 0,±1,±2, . . . } be uncorrelated random variables withEξn = µ, E(ξn −µ)2 = σ2, n =

0,±1,±2, . . . . Let a1, a2, . . . be arbitrary real numbers and consider the stochastic process

Xn = a1ξn + a2ξn−1 + . . . amξn−m+1.

(a) Calculate the mean, variance and the covariance function ofXn. Show that it is a weakly stationary
process.

(b) Setak = 1/
√
m for k = 1, . . . m. Calculate the covariance function and study the casesm = 1

andm→ +∞.

5. LetW (t) be a standard one dimensional Brownian motion. Calculate the following expectations.

(a) EeiW (t).

(b) Eei(W (t)+W (s)), t, s,∈ (0,+∞).

(c) E(
∑n

i=1 ciW (ti))
2, whereci ∈ R, i = 1, . . . n andti ∈ (0,+∞), i = 1, . . . n.

(d) Ee

[
i
(
∑n

i=1 ciW (ti)
)]

, whereci ∈ R, i = 1, . . . n andti ∈ (0,+∞), i = 1, . . . n.

6. LetWt be a standard one dimensional Brownian motion and define

Bt =Wt − tW1, t ∈ [0, 1].

(a) Show thatBt is a Gaussian process with

EBt = 0, E(BtBs) = min(t, s)− ts.

(b) Show that, fort ∈ [0, 1) an equivalent definition ofBt is through the formula

Bt = (1− t)W

(
t

1− t

)
.

(c) Calculate the distribution function ofBt.
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7. LetXt be a mean-zero second order stationary process with autocorrelation function

R(t) =

N∑

j=1

λ2j
αj
e−αj |t|,

where{αj , λj}Nj=1 are positive real numbers.

(a) Calculate the spectral density and the correlaction time of this process.

(b) Show that the assumptions of Theorem 1.16 are satisfied and use the argument presented in Sec-
tion 1.2 (i.e. the Green-Kubo formula) to calculate the diffusion coefficient of the processZt =∫ t
0 Xs ds.

(c) Under what assumptions on the coefficients{αj , λj}Nj=1 can you study the above questions in the
limit N → +∞?

8. Show that the position of a Brownian particle whose velocity is described by the stationary Ornstein-
Uhlenbeck process, Equation (1.10) is a mean zero Gaussian stochastic process and calculate the covari-
ance function.

9. Let a1, . . . an ands1, . . . sn be positive real numbers. Calculate the mean and variance ofthe random
variable

X =
n∑

i=1

aiW (si).

10. LetW (t) be the standard one-dimensional Brownian motion and letσ, s1, s2 > 0. Calculate

(a) EeσW (t).

(b) E
(
sin(σW (s1)) sin(σW (s2))

)
.

11. LetWt be a one dimensional Brownian motion and letµ, σ > 0 and define

St = etµ+σWt .

(a) Calculate the mean and the variance ofSt.

(b) Calculate the probability density function ofSt.

12. Prove proposition 1.23.

13. Use Lemma 1.24 to calculate the distribution function ofthe stationary Ornstein-Uhlenbeck process.

14. Calculate the mean and the correlation function of the integral of a standard Brownian motion

Yt =

∫ t

0
Ws ds.

15. Show that the process

Yt =

∫ t+1

t
(Ws −Wt) ds, t ∈ R,

is second order stationary.
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16. LetVt = e−tW (e2t) be the stationary Ornstein-Uhlenbeck process. Give the definition and study the
main properties of the Ornstein-Uhlenbeck bridge.

17. The autocorrelation function of the velocityY (t) a Brownian particle moving in a harmonic potential
V (x) = 1

2ω
2
0x

2 is

R(t) = e−γ|t|
(
cos(δ|t|) − 1

δ
sin(δ|t|)

)
,

whereγ is the friction coefficient andδ =
√
ω2
0 − γ2.

(a) Calculate the spectral density ofY (t).

(b) Calculate the mean square displacementE(X(t))2 of the position of the Brownian particleX(t) =∫ t
0 Y (s) ds. Study the limitt→ +∞.

18. Show the scaling property (1.28) of the fractional Brownian motion.

19. The Poisson process with intensityλ, denoted byN(t), is an integer-valued, continuous time, stochastic
process with independent increments satisfying

P[(N(t)−N(s)) = k] =
e−λ(t−s)

(
λ(t− s)

)k

k!
, t > s > 0, k ∈ N.

Use Theorem (1.21) to show that there does not exist a continuous modification of this process.

20. Show that the correlation function of a processXt satisfying (1.29) is continuous in botht ands.

21. LetXt be a stochastic process satisfying (1.29) andR(t, s) its correlation function. Show that the integral
operatorR : L2[0, 1] 7→ L2[0, 1] defined in (1.33),

Rf :=

∫ 1

0
R(t, s)f(s) ds,

is selfadjoint and nonnegative. Show that all of its eigenvalues are real and nonnegative. Show that
eigenfunctions corresponding to different eigenvalues are orthogonal.

22. LetH be a Hilbert space. An operatorR : H → H is said to be Hilbert–Schmidt if there exists a
complete orthonormal sequence{φn}∞n=1 in H such that

∞∑

n=1

‖Ren‖2 <∞.

LetR : L2[0, 1] 7→ L2[0, 1] be the operator defined in (1.33) withR(t, s) being continuous both int and
s. Show that it is a Hilbert-Schmidt operator.

23. LetXt a mean zero second order stationary process defined in the interval [0, T ] with continuous covari-
anceR(t) and let{λn}+∞

n=1 be the eigenvalues of the covariance operator. Show that

∞∑

n=1

λn = T R(0).
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24. Calculate the Karhunen-Loeve expansion for a second order stochastic process with correlation function
R(t, s) = ts.

25. Calculate the Karhunen-Loeve expansion of the Brownianbridge on[0, 1].

26. LetXt, t ∈ [0, T ] be a second order process with continuous covariance and Karhunen-Loéve expansion

Xt =

∞∑

k=1

ξkek(t).

Define the process
Y (t) = f(t)Xτ(t), t ∈ [0, S],

wheref(t) is a continuous function andτ(t) a continuous, nondecreasing function withτ(0) = 0, τ(S) =

T . Find the Karhunen-Loéve expansion ofY (t), in an appropriate weightedL2 space, in terms of the
KL expansion ofXt. Use this in order to calculate the KL expansion of the Ornstein-Uhlenbeck process.

27. Calculate the Karhunen-Loéve expansion of a centered Gaussian stochastic process with covariance func-
tionR(s, t) = cos(2π(t− s)).

28. Use the Karhunen-Loeve expansion to generate paths of

(a) the Brownian motion on[0, 1];

(b) the Brownian bridge on[0, 1];

(c) the Ornstein-Uhlenbeck on[0, 1].

Study computationally the convergence of the Karhunen-Lo´eve expansion for these processes. How
many terms do you need to keep in the expansion in order to calculate accurate statistics of these pro-
cesses? How does the computational cost compare with that ofthe standard algorithm for simulating
Gaussian stochastic processes?

29. (See [29].) Consider the Gaussian random fieldX(x) in R with covariance function

γ(x, y) = e−a|x−y| (1.39)

wherea > 0.

(a) Simulate this field: generate samples and calculate the first four moments.

(b) ConsiderX(x) for x ∈ [−L,L]. Calculate analytically the eigenvalues and eigenfunctions of the
integral operatorK with kernelγ(x, y),

Kf(x) =
∫ L

−L
γ(x, y)f(y) dy.

Use this in order to obtain the Karhunen-Loéve expansion for X. Plot the first five eigenfunctions
whena = 1, L = −0.5. Investigate (either analytically or by means of numericalexperiments) the
accuracy of the KL expansion as a function of the number of modes kept.
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(c) Develop a numerical method for calculating the first few eigenvalues and eigenfunctions ofK with
a = 1, L = −0.5. Use the numerically calculated eigenvalues and eigenfunctions to simulateX(x)

using the KL expansion. Compare with the analytical resultsand comment on the accuracy of the
calculation of the eigenvalues and eigenfunctions and on the computational cost.
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Chapter 2

Diffusion Processes

In this chapter we study some of the basic properties of Markov stochastic processes and, in particular,
of diffusion processes. In Section 2.1 we present various examples of Markov processes, in discrete and
continuous time. In Section 2.2 we give the precise definition of a Markov process. In Section 2.2 we
derive the Chapman-Kolmogorov equation, the fundamental equation in the theory of Markov processes. In
Section 2.3 we introduce the concept of the generator of a Markov process. In Section 2.4 we study ergodic
Markov processes. In Section 2.5 we introduce diffusion processes and we derive the forward and backward
Kolmogorov equations. Discussion and bibliographical remarks are presented in Section 2.6 and exercises
can be found in Section 2.7.

2.1 Examples of Markov processes

Roughly speaking, a Markov process is a stochastic process that retains no memory of where it has been in
the past: only the current state of a Markov process can influence where it will go next. A bit more precisely:
a Markov process is a stochastic process for which, given thepresent, the past and future are statistically
independent.

Perhaps the simplest example of a Markov process is that of a random walk in one dimension. Let
ξi, i = 1, . . . be independent, identically distributed mean zero and variance1 random variables. The one
dimensional random walk is defined as

XN =
N∑

n=1

ξn, X0 = 0.

Let i1, i2, . . . be a sequence of integers. Then, for all integersn andm we have that1

P(Xn+m = in+m|X1 = i1, . . . Xn = in) = P(Xn+m = in+m|Xn = in). (2.1)

In words, the probability that the random walk will be atin+m at timen +m depends only on its current
value (at timen) and not on how it got there.

1In fact, it is sufficient to takem = 1 in (2.1). See Exercise 1.
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The random walk is an example of adiscrete time Markov chain: We will say that a stochastic process
{Sn;n ∈ N} with state spaceS = Z is a discrete time Markov chain provided that the Markov property (2.1)
is satisfied.

Consider now a continuous-time stochastic processXt with state spaceS = Z and denote by{Xs, s 6

t} the collection of values of the stochastic process up to timet. We will say thatXt is a Markov processes
provided that

P(Xt+h = it+h|{Xs, s 6 t}) = P(Xt+h = it+h|Xt), (2.2)

for all h > 0. A continuous-time, discrete state space Markov process iscalled a continuous-time Markov
chain. A standard example of a continuous-time Markov chainis the Poisson process of rateλ with

P(Nt+h = j|Nt = i) =
{ 0 if j < i,

e−λs(λs)j−i

(j−i)! , if j > i.
(2.3)

Similarly, we can define a continuous-time Markov process with state space isR, as a stochastic process
whose future depends on its present state and not on how it gotthere:

P(Xt+h ∈ Γ|{Xs, s 6 t}) = P(Xt+h ∈ Γ|Xt) (2.4)

for all Borel setsΓ. In this book we will consider continuous-time Markov processes for which aconditional
probability densityexists:

P(Xt+h ∈ Γ|Xt = x) =

∫

Γ
p(y, t+ h|x, t) dy. (2.5)

Example 2.1. The Brownian motion is a Markov process with conditional probability density given by the
following formula

P(Wt+h ∈ Γ|Wt = x) =

∫

Γ

1√
2πh

exp

(
−|x− y|2

2h

)
dy. (2.6)

The Markov property of Brownian motion follows from the factthat it has independent increments.

Example 2.2. The stationary Ornstein-Uhlenbeck processVt = e−tW (e2t) is a Markov process with con-
ditional probability density

p(y, t|x, s) = 1√
2π(1 − e−2(t−s))

exp

(
−|y − xe−(t−s)|2
2(1− e−2(t−s))

)
. (2.7)

To prove (2.7) we use the formula for the distribution function of the Brownian motion to calculate, for
t > s,

P(Vt 6 y|Vs = x) = P(e−tW (e2t) 6 y|e−sW (e2s) = x)

= P(W (e2t) 6 ety|W (e2s) = esx)

=

∫ ety

−∞

1√
2π(e2t − e2s)

e
− |z−xes|2

2(e2t−e2s) dz

=

∫ y

−∞

1√
2πe2t(1− e−2(t−s))

e
− |ρet−xes|2

2(e2t(1−e−2(t−s)) dρ

=

∫ y

−∞

1√
2π(1− e−2(t−s))

e
− |ρ−x|2

2(1−e−2(t−s)) dρ.
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Consequently, the transition probability density for the OU process is given by the formula

p(y, t|x, s) =
∂

∂y
P(Vt 6 y|Vs = x)

=
1√

2π(1− e−2(t−s))
exp

(
−|y − xe−(t−s)|2
2(1− e−2(t−s))

)
.

The Markov property enables us to obtain an evolution equation for the transition probability for a
discrete-time or continuous-time Markov chain

P(Xn+1 = in+1|Xn = in), P(Xt+h = it+h|Xt = it), (2.8)

or for the transition probability density defined in (2.5). This equation is theChapman-Kolmogorov equa-
tion. Using this equation we can study the evolution of a Markov process.

We will be mostly concerned with time-homogeneous Markov processes, i.e. processes for which the
conditional probabilities are invariant under time shifts. For time-homogeneous discrete-time Markov chains
we have

P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i) =: pij.

We will refer to the matrixP = {pij} as the transition matrix. The transition matrix is a stochastic matrix,
i.e. it has nonnegative entries and

∑
j pij = 1. Similarly, we can define then-step transition matrix

Pn = {pij(n)} as
pij(n) = P(Xm+n = j|Xm = i).

We can study the evolution of a Markov chain through the Chapman-Kolmogorov equation:

pij(m+ n) =
∑

k

pik(m)pkj(n). (2.9)

Indeed, letµ(n)i := P(Xn = i). The (possibly infinite dimensional) vectorµ(n) determines the state of the
Markov chain at timen. From the Chapman-Kolmogorov equation we can obtain a formula for the evolution
of the vectorµ(n)

µ(n) = µ(0)Pn, (2.10)

wherePn denotes thenth power of the matrixP . Hence in order to calculate the state of the Markov chain
at timen what we need is the initial distributionµ0 and the transition matrixP . Componentwise, the above
equation can be written as

µ
(n)
j =

∑

i

µ
(0)
i πij(n).

Consider now a continuous-time Markov chain with transition probability

pij(s, t) = P(Xt = j|Xs = i), s 6 t.

If the chain is homogeneous, then

pij(s, t) = pij(0, t − s) for all i, j, s, t.
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In particular,

pij(t) = P(Xt = j|X0 = i).

The Chapman-Kolmogorov equation for a continuous-time Markov chain is

dpij
dt

=
∑

k

pik(t)gkj , (2.11)

where the matrixG is called thegeneratorof the Markov chain that is defined as

G = lim
h→0

1

h
(Ph − I),

with Pt denoting the matrix{pij(t)}. Equation (2.11) can also be written in matrix form:

dP

dt
= PtG.

Let nowµit = P(Xt = i). The vectorµt is the distribution of the Markov chain at timet. We can study its
evolution using the equation

µt = µ0Pt.

Thus, as in the case of discrete time Markov chains, the evolution of a continuous- time Markov chain is
completely determined by the initial distribution and transition matrix.

Consider now the case a continuous-time Markov process withcontinuous state space and with con-
tinuous paths. As we have seen in Example 2.1 the Brownian motion is such a process. The conditional
probability density of the Brownian motion (2.6) is the fundamental solution (Green’s function) of the dif-
fusion equation:

∂p

∂t
=

1

2

∂2p

∂y2
, lim

t→s
p(y, t|x, s) = δ(y − x). (2.12)

Similarly, the conditional distribution of the Ornstein-Uhlenbeck process satisfies the initial value problem

∂p

∂t
=
∂(yp)

∂y
+

1

2

∂2p

∂y2
, lim

t→s
p(y, t|x, s) = δ(y − x). (2.13)

The Brownian motion and the OU process are examples of adiffusion process: a continuous-time Markov
process with continuous paths. A precise definition will be given in Section 2.5, where we will also derive
evolution equations for the conditional probability density p(y, t|x, s) of an arbitrary diffusion process, the
forward Kolmogorov (Fokker-Planck) (2.54) and backward Kolmogorov (2.47) equations.

2.2 Markov Processes and the Chapman-Kolmogorov equation

In Section 2.1 we gave the definition of Markov process whose time is either discrete or continuous, and
whose state space is countable. We also gave several examples of Markov chains as well as of processes
whose state space is the real line. In this section we give theprecise definition of a Markov process with
t ∈ R+ and with state space isRd. We also introduce the Chapman-Kolmogorov equation.
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In order to give the definition of a Markov process we need to use the conditional expectation of the
stochastic process conditioned on all past values. We can encode all past information about a stochastic
process into an appropriate collection ofσ-algebras. Let(Ω,F , µ) denote a probability space and consider
a stochastic processX = Xt(ω) with t ∈ R+ and state space(Rd,B) whereB denotes the Borelσ-
algebra. We define theσ-algebra generated by{Xt, t ∈ R+}, denoted byσ(Xt, t ∈ R+), to be the
smallestσ-algebra such that the family of mappings{Xt, t ∈ R+} is a stochastic process with sample
space(Ω, σ(Xt, t ∈ R+)) and state space(Rd,B).2 In other words, theσ-algebra generated byXt is the
smallestσ-algebra such thatXt is a measurable function (random variable) with respect to it.

We define now a filtration on(Ω,F) to be a nondecreasing family{Ft, t ∈ R+} of sub-σ-algebras of
F :

Fs ⊆ Ft ⊆ F for s 6 t.

We setF∞ = σ(∪t∈TFt). The filtration generated by our stochastic processXt, whereXt is:

FX
t := σ (Xs; s 6 t) . (2.14)

Now we are ready to give the definition of a Markov process.

Definition 2.3. LetXt be a stochastic process defined on a probability space(Ω,F , µ) with values inRd

and letFX
t be the filtration generated by{Xt; t ∈ R+}. Then{Xt; t ∈ R+} is a Markov process provided

that

P(Xt ∈ Γ|FX
s ) = P(Xt ∈ Γ|Xs) (2.15)

for all t, s ∈ T with t > s, andΓ ∈ B(Rd).

We remark that the filtrationFX
t is generated by events of the form{ω|Xt1 ∈ Γ1, Xt2 ∈ Γ2, . . . Xtn ∈

Γn, } with 0 6 t1 < t2 < · · · < tn 6 t andΓi ∈ B(Rd). The definition of a Markov process is thus
equivalent to the hierarchy of equations

P(Xt ∈ Γ|Xt1 ,Xt2 , . . . Xtn) = P(Xt ∈ Γ|Xtn) a.s.

for n > 1 and0 6 t1 < t2 < · · · < tn 6 t with Γ ∈ B(E).
We also remark that it is sometimes possible to describe a non-Markovian processXt in terms of a

Markovian processYt in a higher dimensional state space. The additional variables that we introduce account
for the memory in theXt. This is possible when the non-Markovian process has finite memory that can be
represented by a finite number of additional degrees of freedom. We will use this approach in Chapter??
when we derive stochastic differential equations from deterministic dynamical systems with random initial
conditions, see Definition??.

As an example, consider a Brownian particle whose velocity is described by the stationary Ornstein-
Uhlenbeck processYt = e−tW (e2t), see (1.10) and (1.11). The particle position is given by theintegral of
the Ornstein-Uhlenbeck process

Xt = X0 +

∫ t

0
Ys ds.

2In later chapters we will also consider Markov processes with state space being the a subset ofR
d, for example the unit torus.
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The particle position depends on the past of the Ornstein-Uhlenbeck process and, consequently, is not a
Markov process. However, the joint position-velocity process{Xt, Yt} is. Its transition probability density
p(x, y, t|x0, y0) satisfies the forward Kolmogorov equation

∂p

∂t
= −p∂p

∂x
+

∂

∂y
(yp) +

1

2

∂2p

∂y2
.

The Chapman-Kolmogorov Equation

With every continuous-time Markov processXt
3 defined in a probability space(Ω,F ,P) and state space

(Rd,B) we can associate thetransition function

P (Γ, t|Xs, s) := P
[
Xt ∈ Γ|FX

s

]
,

for all t, s ∈ R+ with t > s and allΓ ∈ B(Rd). It is a function of4 arguments, the initial times and position
Xs and the final timet and the setΓ. The transition functionP (t,Γ|x, s) is, for fixedt, x s, a probability
measure onRd with P (t,Rd|x, s) = 1; it is B(Rd)-measurable inx, for fixed t, s, Γ and satisfies the
Chapman-Kolmogorov equation

P (Γ, t|x, s) =
∫

Rd

P (Γ, t|y, u)P (dy, u|x, s). (2.16)

for all x ∈ R
d, Γ ∈ B(Rd) ands, u, t ∈ R+ with s 6 u 6 t. Assume thatXs = x. SinceP

[
Xt ∈ Γ|FX

s

]
=

P [Xt ∈ Γ|Xs] we can write

P (Γ, t|x, s) = P [Xt ∈ Γ|Xs = x] .

The derivation of the Chapman-Kolmogorov equation is basedon the Markovian assumption and on prop-
erties of conditional probability. We can formally derive the Chapman-Kolmogorov equation as follows:
We use the Markov property, together with Equations (B.9) and (B.10) from Appendix B and the fact that
s < u ⇒ FX

s ⊂ FX
u to calculate:

P (Γ, t|x, s) := P(Xt ∈ Γ|Xs = x) = P(Xt ∈ Γ|FX
s )

= E(IΓ(Xt)|FX
s ) = E(E(IΓ(Xt)|FX

s )|FX
u )

= E(E(IΓ(Xt)|FX
u )|FX

s ) = E(P(Xt ∈ Γ|Xu)|FX
s )

= E(P(Xt ∈ Γ|Xu = y)|Xs = x)

=

∫

Rd

P (Γ, t|Xu = y)P (dy, u|Xs = x)

=:

∫

Rd

P (Γ, t|y, u)P (dy, u|x, s),

whereIΓ(·) denotes the indicator function of the setΓ. In words, the Chapman-Kolmogorov equation tells
us that for a Markov process the transition fromx at times to the setΓ at timet can be done in two steps:
first the system moves fromx to y at some intermediate timeu. Then it moves fromy to Γ at timet. In

3We always taket ∈ R+.
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order to calculate the probability for the transition fromx at times toΓ at timet we need to sum (integrate)
the transitions from all possible intermediate statesy.

The transition function and the initial distribution ofXt are sufficient to uniquely determine a Markov
process. In fact, a processXt is a Markov process with respect to its filtrationFX

t defined in (2.14) with
transition functionP (t, ·|s, ·) and initial distributionν (X0 ∼ ν) if and only if for all0 = t0 < t1 < · · · < tn
and bounded measurable functionsfj, j = 0, . . . N we have

Eν

n∏

j=0

fj(Xtj ) =

∫

Rd

f0(x0)ν(dx0)
n∏

j=1

∫

Rd

fj(xj)P (dxj , tj |xj−1, tj−1), (2.17)

, where we have used the notationEν to emphasize the dependence of the expectation on the initial dis-
tribution ν. The proof that a Markov process with transition functionP satisfies (2.17) follows from the
Chapman-Kolmogorov equation (2.16) and an induction argument. In other words, the finite dimensional
distributions ofXt are uniquely determined by the initial distribution and thetransition function:

P(X0 ∈ dx0, Xt1 ∈ dx1, . . . ,Xtn ∈ dxn) = ν(dx0)
n∏

j=1

P (dxj , tj |xj−1, tj−1). (2.18)

In this book we will consider Markov processes for which the transition function has a density with respect
to the Lebesgue measure:

P (Γ, t|x, s) =
∫

Γ
p(y, t|x, s) dy.

We will refer top(y, t|x, s) as thetransition probability density. It is a function of four arguments, the initial
position and timex, s and the final position and timey, t. For t = s we haveP (Γ, s|x, s) = IΓ(x). The
Chapman-Kolmogorov equation becomes:

∫

Γ
p(y, t|x, s) dy =

∫

Rd

∫

Γ
p(y, t|z, u)p(z, u|x, s) dzdy,

and, sinceΓ ∈ B(Rd) is arbitrary, we obtain the Chapman-Komogorov equation forthe transition probability
density:

p(y, t|x, s) =
∫

Rd

p(y, t|z, u)p(z, u|x, s) dz. (2.19)

When the transition probability density exists, and assuming that the initial distributionν has a densityρ,
we can writeP(X0 ∈ dx0, Xt1 ∈ dx1, . . . ,Xtn ∈ dxn) = p(x0, t0, . . . xn, tn)

∏n
j=0 dxj and we have

p(x0, t0, . . . xn, tn) = ρ(x0)
n∏

j=1

p(xj , tj |xj−1, tj−1). (2.20)

The above formulas simplify when the (random) law of evolution of the Markov processXt does not change
in time. In this case the conditional probability in (2.15) depends on the initial and final timet ands only
through their difference: we will say that a Markov process is time-homogeneousif the transition function
P (·, t|·, s) depends only on the difference between the initial and final time t− s:

P (Γ, t|x, s) = P (Γ, t− s|x, 0) =: P (t− s, x,Γ),
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for all Γ ∈ B(Rd) andx ∈ R
d. For time-homogeneous Markov processes with can fix the initial time,

s = 0. The Chapman-Kolmogorov equation for a time-homogeneous Markov process becomes

P (t+ s, x,Γ) =

∫

Rd

P (s, x, dz)P (t, z,Γ). (2.21)

Furthermore, formulas (2.17) and (2.18) become

Eν

n∏

j=0

fj(Xtj ) =

∫

Rd

f0(y0)µ(dy0)
n∏

j=1

∫

Rd

fj(yj)P (tj − tj−1, yj−1, dyj), (2.22)

and

P(X0 ∈ dx0, Xt1 ∈ dx1, . . . ,Xtn ∈ dxn) = ν(dx0)

n∏

j=1

P (tj − tj−1, yj−1, dyj),

(2.23)

respectively. Given the initial distributionν and the transition functionP (x, t,Γ) of a Markov processXt,
we can calculate the probability of findingXt in a setΓ at timet:

P(Xt ∈ Γ) =

∫

Rd

P (x, t,Γ)ν(dx).

Furthermore, for an observablef we can calculate the expectation using the formula

Eνf(Xt) =

∫

Rd

∫

Rd

f(x)P (t, x0, dx)ν(dx0). (2.24)

The Poisson process, defined in (2.3) is a homogeneous Markovprocess. Another example of a time-
homogenous Markov process is Brownian motion. The transition function is the Gaussian

P (t, x, dy) = γt,x(y)dy, γt,x(y) =
1√
2πt

exp

(
−|x− y|2

2t

)
. (2.25)

Let nowXt be time-homogeneous Markov process and assume that the transition probability density exists,
P (t, x,Γ) =

∫
Γ p(t, x, y) dy. The Chapman-Kolmogorov equationp(t, x, y) reads

p(t+ s, x, y) =

∫

Rd

p(s, x, z)p(t, z, y) dz. (2.26)

2.3 The Generator of a Markov Processes

LetXt denote a time-homogeneous Markov process. The Chapman-Kolmogorov equation (2.21) suggests
that a time-homogeneous Markov process can be described through a semigroup of operators, i.e. a one-
parameter family of linear operators with the properties

P0 = I, Pt+s = Pt ◦ Ps for all t, s > 0.
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Indeed, letP (t, ·, ·) be the transition function of a homogeneous Markov process and letf ∈ Cb(R
d), the

space of continuous bounded functions onR
d and define the operator

(Ptf)(x) := E(f(Xt)|X0 = x) =

∫

Rd

f(y)P (t, x, dy). (2.27)

This is a linear operator with

(P0f)(x) = E(f(X0)|X0 = x) = f(x)

which means thatP0 = I. Furthermore:

(Pt+sf)(x) =

∫

Rd

f(y)P (t+ s, x, dy) =

∫

Rd

∫

Rd

f(y)P (s, z, dy)P (t, x, dz)

=

∫

Rd

(∫

Rd

f(y)P (s, z, dy)

)
P (t, x, dz) =

∫

Rd

(Psf)(z)P (t, x, dz)

= (Pt ◦ Psf)(x).

Consequently:

Pt+s = Pt ◦ Ps.

The semigroupPt defined in (2.27) is an example of a Markov semigroup. We can study properties of a
time-homogeneous Markov processXt by studying properties of the Markov semigroupPt.

Let nowXt be a Markov process inRd and letPt denote the corresponding semigroup defined in (2.27).
We consider this semigroup acting on continuous bounded functions and assume thatPtf is also aCb(R

d)

function. We define byD(L) the set of allf ∈ Cb(E) such that the strong limit

Lf := lim
t→0

Ptf − f

t
(2.28)

exists. The operatorL : D(L) → Cb(R
d) is called the (infinitesimal) generator of the operator semigroup

Pt. We will also refer toL as the generator of the Markov processXt.

The semigroup property and the definition of the generator ofa Markov semigroup (2.28) imply that,
formally, we can write:

Pt = etL.

Consider the functionu(x, t) := (Ptf)(x) = E(f(Xt)|X0 = x) . We calculate its time derivative:

∂u

∂t
=

d

dt
(Ptf) =

d

dt

(
etLf

)

= L
(
etLf

)
= LPtf = Lu.

Furthermore,u(x, 0) = P0f(x) = f(x). Consequently,u(x, t) satisfies the initial value problem

∂u

∂t
= Lu, (2.29a)

u(x, 0) = f(x). (2.29b)
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Equation (2.29) is thebackward Kolmogorov equation. It governs the evolution of the expectation value of
an observablef ∈ Cb(R

d). At this level this is formal since we do not have a formula forthe generatorL
of the Markov semigroup. In the case where the Markov processis the solution of a stochastic differential
equation, then the generator is a second order elliptic differential operator and the backward Kolmogorov
equation becomes an initial value problem for a parabolic PDE. See Section 2.5 and Chapter 4.

As an example consider the Brownian motion in one dimension.The transition function is given
by (2.25), the fundamental solution of the heat equation in one dimension. The corresponding Markov
semigroup is the heat semigroupPt = exp

(
t
2

d2

dx2

)
. The generator of the one dimensional Brownian motion

is the one dimensional Laplacian12
d2

dx2 . The backward Kolmogorov equation is the heat equation

∂u

∂t
=

1

2

∂2u

∂x2
.

The Adjoint Semigroup

The semigroupPt acts on bounded continuous functions. We can also define the adjoint semigroupP ∗
t

which acts on probability measures:

P ∗
t µ(Γ) =

∫

Rd

P(Xt ∈ Γ|X0 = x) dµ(x) =

∫

Rd

P (t, x,Γ) dµ(x).

The image of a probability measureµ underP ∗
t is again a probability measure. The operatorsPt andP ∗

t are
(formally) adjoint in theL2-sense:

∫

R

Ptf(x) dµ(x) =

∫

R

f(x) d(P ∗
t µ)(x). (2.30)

We can, write
P ∗
t = etL

∗
, (2.31)

whereL∗ is theL2-adjoint of the generator of the process:
∫

Lfh dx =

∫
fL∗hdx.

LetXt be a Markov process with generatorXt withX0 ∼ µ and letP ∗
t denote the adjoint semigroup defined

in (2.31). We define
µt := P ∗

t µ. (2.32)

This is thelaw of the Markov process. An argument similar to the one used in the derivation of the backward
Kolmogorov equation (2.29) enables us to obtain an equationfor the evolution ofµt:

∂µt
∂t

= L∗µt, µ0 = µ.

Assuming that both the initial distributionµ and the law of the processµt have a density with respect to
Lebesgue measure,ρ0(·) andρ(t, ·), respectively, this equation becomes:

∂ρ

∂t
= L∗ρ, ρ(y, 0) = ρ0(y). (2.33)
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This is theforward Kolmogorovequation. When the initial conditions are deterministic,X0 = x, the initial
condition becomesρ0 = δ(x − y). As with the backward Kolmogorov equation (2.29) this equation is still
formal, still we do not have a formula for the adjointL∗ of the generator of the Markov processXt. In
Section 2.5 we will derive the forward and backward Kolmogorov equations and a formula for the generator
L for diffusion processes.

2.4 Ergodic Markov processes

In Sect. 1.2, we studied stationary stochastic processes, and we showed that such processes satisfy a form
of the law of large numbers, Theorem 1.16. In this section we introduce a class of Markov processes for
which the phase-space average, with respect to an appropriate probability measure, theinvariant measure
equals the long time average. Such Markov processes are called ergodic. Ergodic Markov processes are
characterized by the fact that an invariant measure, see Eq.(2.36) below, exists and is unique.

For the precise definition of an ergodic Markov process we require that all shift invariant sets, i.e. all
sets of the form(Xt1 ∈ Γ1,Xt2 ∈ Γ2, . . . ,Xtk ∈ Γk) that are invariant under time shifts, are trivial, i.e.
they have probability0 or 1. For our purposes it is more convenient to describe ergodic Markov processes
in terms of the properties of their generators and of the corresponding Markov semigroup.

We will consider a Markov processXt in R
d with generatorL and Markov semigroupPt. We will say

thatXt is ergodic provided that0 is a simple eigenvalue ofL or, equivalently, provided that the equation

Lg = 0 (2.34)

has only constant solutions. Consequently, we can study theergodic properties of a Markov processXt by
studying the null space of its generator. From (2.34), and using the definition of the generator of a Markov
process (2.28), we deduce that a Markov process is ergodic ifthe equation

Ptg = g, (2.35)

has only constant solutions for allt > 0. Using the adjoint semigroup, we can define aninvariant measure
as a probability measure that is invariant under the time evolution ofXt, i.e., a fixed point of the semigroup
P ∗
t :

P ∗
t µ = µ. (2.36)

This equation is theL2-adjoint of the equationPtg = g in (2.35). If there is a unique probability measure
satisfying (2.36), then the Markov process is ergodic (withrespect to the measureµ). Using this, we can
obtain an equation for the invariant measure in terms of the adjointL∗ of the generator, which is the generator
of the semigroupP ∗

t . Assume, for simplicity, that the measureµ has a densityρ with respect to Lebesgue
measure. We divide (2.36) byt and pass to the limit ast→ 0 to obtain

L∗ρ = 0. (2.37)

WhenXt is a diffusion process, this equation is thestationary Fokker–Planck equation. Equation (2.37),
which is the adjoint of (2.34), can be used to calculate the invariant distributionρ, i.e., the density of the
invariant measureµ.
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The invariant measure (distribution) governs the long-time dynamics of the Markov process. In particu-
lar, whenX0 ∼ µ0 initially, we have that

lim
t→+∞

P ∗
t µ0 = µ. (2.38)

Furthermore, the long-time average of an observablef converges to the equilibrium expectation with respect
to the invariant measure

lim
T→+∞

1

T

∫ T

0
f(Xs) ds =

∫
f(x)µ(dx).

This is the definition of an ergodic process that is quite often used in physics: the long-time average equals
the phase-space average.

If X0 is distributed according toµ, then so isXt for all t > 0. The resulting stochastic process, withX0

distributed in this way, is stationary; see Sect. 1.2.

Example 2.4.Brownian motion inRd is not an ergodic Markov process. On the other hand, if we consider it
in a bounded domain with appropriate boundary conditions, then it becomes an ergodic process. Consider
a one-dimensional Brownian motion on[0, 1], with periodic boundary conditions. The generator of this
Markov processL is the differential operatorL = 1

2
d2

dx2 , equipped with periodic boundary conditions on
[0, 1]. This operator is self-adjoint. The null spaces of bothL andL∗ comprise constant functions on[0, 1].
Both the backward Kolmogorov and the Fokker–Planck equation reduce to the heat equation

∂ρ

∂t
=

1

2

∂2ρ

∂x2
(2.39)

with periodic boundary conditions in[0, 1]. We can solve the heat equation(2.39)using Fourier analysis to
deduce that the solution converges to a constant at an exponential rate.

Example 2.5. The one-dimensional Ornstein–Uhlenbeck process is a Markov process with generator

L = −αx d
dx

+D
d2

dx2
.

The null space ofL comprises constants inx. Hence, it is an ergodic Markov process. In order to calculate
the invariant measure, we need to solve the stationary Fokker–Planck equation:

L∗ρ = 0, ρ > 0,

∫
ρ(x) dx = 1. (2.40)

We calculate theL2-adjoint ofL. Assuming thatf, h decay sufficiently fast at infinity, we have

∫

R

Lfh dx =

∫

R

[(
−αx df

dx

)
h+

(
D
d2f

dx2

)
h

]
dx

=

∫

R

[
f∂x(αxh) + f(D∂2xh)

]
dx =:

∫

R

fL∗hdx,

where

L∗h :=
d

dx
(axh) +D

d2h

dx2
.
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Figure 2.1: Sample paths of the Ornstein–Uhlenbeck process

We can calculate the invariant distribution by solving Eq.(2.40). The invariant measure of this process is
the Gaussian measure

µ(dx) =

√
α

2πD
exp

(
− α

2D
x2
)
dx.

If the initial condition of the Ornstein–Uhlenbeck processis distributed according to the invariant measure,
then the Ornstein–Uhlenbeck process is a stationary Gaussian process. LetXt denote the one-dimensional
Ornstein–Uhlenbeck process withX0 ∼ N (0,D/α). ThenXt is a mean-zero Gaussian second-order
stationary process on[0,∞) with correlation function

R(t) =
D

α
e−α|t|

and spectral density

f(x) =
D

π

1

x2 + α2
.

The Ornstein–Uhlenbeck process is the only real-valued mean-zero Gaussian second-order stationary Markov
process with continuous paths defined onR. This is the content of Doob’s theorem. See Exercise 6. A few
paths of the stationary Ornstein–Uhlenbeck process are presented in Fig. 2.1.

2.5 Diffusion processes and the forward and backward Kolmogorov equa-
tions

A Markov process consists of three parts: a drift, a random part and a jump process. A diffusion process is a
Markov process that has continuous sample paths (trajectories). Thus, it is a Markov process with no jumps.
A diffusion process can be defined by specifying its first two moments, together with the requirement that
there are no jumps. We start with the definition of a diffusionprocess in one dimension.
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Definition 2.6. A Markov processXt in R with transition functionP (Γ, t|x, s) is called a diffusion process
if the following conditions are satisfied.

i. (Continuity). For everyx and everyε > 0
∫

|x−y|>ε
P (dy, t|x, s) = o(t− s) (2.41)

uniformly overs < t.

ii. (Definition of drift coefficient). There exists a function b(x, s) such that for everyx and everyε > 0
∫

|y−x|6ε
(y − x)P (dy, t|x, s) = b(x, s)(t− s) + o(t− s). (2.42)

uniformly overs < t.

iii. (Definition of diffusion coefficient). There exists a functionΣ(x, s) such that for everyx and every
ε > 0 ∫

|y−x|6ε
(y − x)2P (dy, t|x, s) = Σ(x, s)(t− s) + o(t− s). (2.43)

uniformly overs < t.

In Definition 2.6 we truncated the domain of integration since do not know whether the first and second
moments ofXt are finite. If we assume that there exists aδ > 0 such that

lim
t→s

1

t− s

∫

Rd

|y − x|2+δP (dy, t|x, s) = 0, (2.44)

then we can extend the integration over the wholeR and use expectations in the definition of the drift and
the diffusion coefficient. Indeed, letk = 0, 1, 2 and notice that

∫

|y−x|>ε
|y − x|kP (dy, t|x, s) =

∫

|y−x|>ε
|y − x|2+δ |y − x|k−(2+δ)P (dy, t|x, s)

6
1

ε2+δ−k

∫

|y−x|>ε
|y − x|2+δP (dy, t|x, s)

6
1

ε2+δ−k

∫

Rd

|y − x|2+δP (dy, t|x, s).

Using this estimate together with (2.44) we conclude that:

lim
t→s

1

t− s

∫

|y−x|>ε
|y − x|kP (dy, t|x, s) = 0, k = 0, 1, 2.

This implies that Assumption (2.44) is sufficient for the sample paths to be continuous (k = 0) and for
the replacement of the truncated integrals in (2.42) and (2.43) by integrals overR (k = 1 andk = 2,
respectively).

Assuming that the first two moment exist, we can write the formulas for the drift and diffusion coeffi-
cients in the following form:

lim
t→s

E

(
Xt −Xs

t− s

∣∣∣Xs = x

)
= b(x, s) (2.45)
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and

lim
t→s

E

( |Xt −Xs|2
t− s

∣∣∣Xs = x

)
= Σ(x, s). (2.46)

The backward Kolmogorov equation

We can now use the definition of the diffusion process in orderto obtain an explicit formula for the generator
of a diffusion process and to derive a partial differential equation for the conditional expectationu(x, s) =
E(f(Xt)|Xs = x), as well as for the transition probability densityp(y, t|x, s). These are the backward and
forward Kolmogorov equations. We will derive these equations for one dimensional diffusion processes.
The extension to multidimensional diffusion processes is discussed later in this section. In the following we
will assume thatu(x, s) is a smooth function ofx ands.4

Theorem 2.7. (Kolmogorov) Letf(x) ∈ Cb(R) and let

u(x, s) := E(f(Xt)|Xs = x) =

∫
f(y)P (dy, t|x, s),

with t fixed. Assume furthermore that the functionsb(x, s), Σ(x, s) are smooth in bothx ands. Thenu(x, s)
solves the final value problem, fors ∈ [0, t],

−∂u
∂s

= b(x, s)
∂u

∂x
+

1

2
Σ(x, s)

∂2u

∂x2
, u(t, x) = f(x). (2.47)

Proof. First we notice that, the continuity assumption (2.41), together with the fact that the functionf(x) is
bounded imply that

u(x, s) =

∫

R

f(y)P (dy, t|x, s)

=

∫

|y−x|6ε
f(y)P (dy, t|x, s) +

∫

|y−x|>ε
f(y)P (dy, t|x, s)

6

∫

|y−x|6ε
f(y)P (dy, t|x, s) + ‖f‖L∞

∫

|y−x|>ε
P (dy, t|x, s)

=

∫

|y−x|6ε
f(y)P (dy, t|x, s) + o(t− s).

We add and subtract the final conditionf(x) and use the previous calculation to obtain:

u(x, s) =

∫

R

f(y)P (dy, t|x, s) = f(x) +

∫

R

(f(y)− f(x))P (dy, t|x, s)

= f(x) +

∫

|y−x|6ε
(f(y)− f(x))P (dy, t|x, s) +

∫

|y−x|>ε
(f(y)− f(x))P (dy, t|x, s)

(2.41)
= f(x) +

∫

|y−x|6ε
(f(y)− f(x))P (dy, t|x, s) + o(t− s).

4In fact, all we need is thatu ∈ C2,1(R× R+). This can be proved using our assumptions on the transition function, onf and
on the drift and diffusion coefficients.
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The final condition follows from the fact thatf(x) ∈ Cb(R) and the arbitrariness ofε.
Now we show thatu(s, x) solves the backward Kolmogorov equation (2.47). We use the Chapman-

Kolmogorov equation (2.16) to obtain

u(x, σ) =

∫

R

f(z)P (dz, t|x, σ) =
∫

R

∫

R

f(z)P (dz, t|y, ρ)P (dy, ρ|x, σ)

=

∫

R

u(y, ρ)P (dy, ρ|x, σ). (2.48)

We use Taylor’s theorem to obtain

u(z, ρ)− u(x, ρ) =
∂u(x, ρ)

∂x
(z − x) +

1

2

∂2u(x, ρ)

∂x2
(z − x)2(1 + αε), |z − x| 6 ε, (2.49)

where

αε = sup
ρ,|z−x|6ε

∣∣∣∣
∂2u(x, ρ)

∂x2
− ∂2u(z, ρ)

∂x2

∣∣∣∣ .

andlimε→0 αε = 0.
We combine now (2.48) with (2.49) to calculate

u(x, s)− u(x, s + h)

h
=

1

h

(∫

R

P (dy, s + h|x, s)u(y, s + h)− u(x, s+ h)

)

=
1

h

∫

R

P (dy, s + h|x, s)(u(y, s + h)− u(x, s + h))

=
1

h

∫

|x−y|<ε
P (dy, s + h|x, s)(u(y, s + h)− u(x, s)) + o(1)

=
∂u

∂x
(x, s + h)

1

h

∫

|x−y|<ε
(y − x)P (dy, s + h|x, s)

+
1

2

∂2u

∂x2
(x, s+ h)

1

h

∫

|x−y|<ε
(y − x)2P (dy, s+ h|x, s)(1 + αε) + o(1)

= b(x, s)
∂u

∂x
(x, s+ h) +

1

2
Σ(x, s)

∂2u

∂x2
(x, s+ h)(1 + αε) + o(1).

Equation (2.47) follows by taking the limitsε→ 0, h→ 0.

Notice that the backward Kolmogorov equation (2.47) is a final value problem for a partial differential
equation of parabolic type. For time-homogeneous diffusion processes, that is where the drift and the
diffusion coefficients are independent of time,b = b(x) andΣ = Σ(x), we can rewrite it as an initial
value problem. LetT = t−s and introduce the functionU(x, T ) = u(x, t−s). The backward Kolmogorov
equation now becomes

∂U

∂T
= b(x)

∂U

∂x
+

1

2
Σ(x)

∂2U

∂x2
, U(x, 0) = f(x). (2.50)

In the time-homogeneous case we can set the initial times = 0. We then have that the conditional expecta-
tion u(x, t) = E(f(Xt|X0 = x) is the solution to the initial value problem

∂u

∂t
= b(x)

∂u

∂x
+

1

2
Σ(x)

∂2u

∂x2
, u(x, 0) = f(x). (2.51)
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The differential operator that appears on the right hand side of (2.51) is the generator of the diffusion process
Xt. In this book we will use the backward Kolmogorov in the form (2.51).5

Assume now that the transition function has a densityp(y, t|x, s). In this case the formula foru(x, s)
becomes

u(x, s) =

∫

R

f(y)p(y, t|x, s) dy.

Substituting this in the backward Kolmogorov equation (2.47) we obtain

∫

R

f(y)

(
∂p(y, t|x, s)

∂s
+ Ls,xp(y, t|x, s)

)
= 0 (2.52)

where

Ls,x := b(x, s)
∂

∂x
+

1

2
Σ(x, s)

∂2

∂x2
.

Equation (2.52) is valid for arbitrary continuous bounded functionsf . COnsequently, from (2.52) we obtain
a partial differential equation for the transition probability density:

−∂p(y, t|x, s)
∂s

= b(x, s)
∂p(y, t|x, s)

∂x
+

1

2
Σ(x, s)

∂2p(y, t|x, s)
∂x2

. (2.53)

Notice that the variation is with respect to the ”backward” variablesx, s.

The forward Kolmogorov equation

Assume that the transition function has a density with respect to the Lebesgue measure which a smooth
function of its arguments

P (dy, t|x, s) = p(y, t|x, s) dy.

We can obtain an equation with respect to the ”forward” variablesy, t, the forward Kolmogorov or Fokker-
Planck equation.

Theorem 2.8.(Kolmogorov) Assume that conditions(2.41), (2.42), (2.43)are satisfied and thatp(y, t|·, ·), b(y, t), Σ(y, t)
are smooth functions ofy, t. Then the transition probability density is the solution tothe initial value prob-
lem

∂p

∂t
= − ∂

∂y
(b(t, y)p) +

1

2

∂2

∂y2
(Σ(t, y)p) , p(s, y|x, s) = δ(x − y). (2.54)

Proof. The initial condition follows from the definition of the transition probability densityp(y, t|x, s).
Fix now a functionf(y) ∈ C2

0(R). An argument similar to the one used in the proof of the backward
Kolmogorov equation gives

lim
h→0

1

h

(∫
f(y)p(y, s+ h|x, s) ds − f(x)

)
= b(x, s)

df

dx
(x) +

1

2
Σ(x, s)

d2f

dx2
(x), (2.55)

5The backward Kolmogorov equation can also be derived using Itô’s formula. See Chapter 3.
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where subscripts denote differentiation with respect tox. On the other hand
∫
f(y)

∂

∂t
p(y, t|x, s) dy =

∂

∂t

∫
f(y)p(y, t|x, s) dy

= lim
h→0

1

h

∫
(p(y, t+ h|x, s)− p(y, t|x, s)) f(y) dy

= lim
h→0

1

h

(∫
p(y, t+ h|x, s)f(y) dy −

∫
p(z, t|s, x)f(z) dz

)

= lim
h→0

1

h

(∫ ∫
p(y, t+ s|z, t)p(z, t|x, s)f(y) dydz −

∫
p(z, t|s, x)f(z) dz

)

= lim
h→0

1

h

(∫
p(z, t|x, s)

(∫
p(y, t+ h|z, t)f(y) dy − f(z)

))
dz

=

∫
p(z, t|x, s)

(
b(z, t)

df

dz
(z) +

1

2
Σ(z)

d2f

dz2
(z)

)
dz

=

∫ (
− ∂

∂z

(
b(z, t)p(z, t|x, s)

)
+

1

2

∂2

∂z2
(
Σ(z, t)p(z, t|x, s)

))
f(z) dz.

In the above calculation we used the Chapman-Kolmogorov equation. We have also performed two inte-
grations by parts and used the fact that, since the test function f has compact support, the boundary terms
vanish. Since the above equation is valid for every test function f the forward Kolmogorov equation fol-
lows.

Assume now that initial distribution ofXt is ρ0(x) and sets = 0 (the initial time) in (2.54). Define

p(y, t) :=

∫
p(y, t|x, 0)ρ0(x) dx. (2.56)

We multiply the forward Kolmogorov equation (2.54) byρ0(x) and integrate with respect tox to obtain the
equation

∂p(y, t)

∂t
= − ∂

∂y
(a(y, t)p(y, t)) +

1

2

∂2

∂y2
(b(y, t)p(t, y)) , (2.57)

together with the initial condition
p(y, 0) = ρ0(y). (2.58)

The solution of equation (2.57), provides us with the probability that the diffusion processXt, which initially
was distributed according to the probability densityρ0(x), is equal toy at timet. Alternatively, we can think
of the solution to (2.54) as the Green’s function for the partial differential equation (2.57). Using (2.57) we
can calculate the expectation of an arbitrary function of the diffusion processXt:

E(f(Xt)) =

∫ ∫
f(y)p(y, t|x, 0)p(x, 0) dxdy

=

∫
f(y)p(y, t) dy,

wherep(y, t) is the solution of (2.57).
The solution of the Fokker-Planck equation provides us withthe transition probability density. The

Markov property enables to calculate joint probability densities using Equation (2.20). For example, letXt
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denote a diffusion process withX0 ∼ π, let 0 = t0 < t1 · · · < tn and letf(x0, . . . , xn) a measurable
function. Denoting byEπ the expectation with respect toπ, we have

Eπf(Xt0 ,Xt1 , . . . Xtn) =

∫
. . .

∫
f(x0, . . . xn)π(x0) dx0

n∏

j=1

p(xj, tj |xj−1, tj−1)dxj . (2.59)

In particular, the autocorrelation function ofXt at timet and0 is given by the formula

C(t) := Eπ(XtX0) =

∫ ∫
yxp(y, t|x, 0)π(x) dxdy. (2.60)

Multidimensional Diffusion Processes

The backward and forward Kolmogorov equations can be derived for multidimensional diffusion processes
using the same calculations and arguments that were used in the proofs of Theorems 2.7 and 2.8. LetXt be
a diffusion process inRd. The drift and diffusion coefficients of a diffusion processin R

d are defined as:

lim
t→s

1

t− s

∫

|y−x|<ε
(y − x)P (dy, t|x, s) = b(x, s)

and

lim
t→s

1

t− s

∫

|y−x|<ε
(y − x)⊗ (y − x)P (dy, t|x, s) = Σ(x, s).

The drift coefficientb(x, s) is ad-dimensional vector field and the diffusion coefficientΣ(x, s) is ad × d

symmetric nonnegative matrix. The generator of ad dimensional diffusion process is

L = b(x, s) · ∇+
1

2
Σ(x, s) : ∇∇

=
d∑

j=1

bj(x, s)
∂

∂xj
+

1

2

d∑

i,j=1

Σij(x, s)
∂2

∂xi∂xj
.

Assuming that the first and second moments of the multidimensional diffusion process exist, we can write
the formulas for the drift vector and diffusion matrix as

lim
t→s

E

(
Xt −Xs

t− s

∣∣∣Xs = x

)
= b(x, s) (2.61)

and

lim
t→s

E

(
(Xt −Xs)⊗ (Xt −Xs)

t− s

∣∣∣Xs = x

)
= Σ(x, s). (2.62)

The backward and forward Kolmogorov equations for mutidimensional diffusion processes are

−∂u
∂s

= b(x, s) · ∇xu+
1

2
Σ(x, s) : ∇x∇xu, u(t, x) = f(x), (2.63)

and
∂p

∂t
= ∇y ·

(
−b(t,y)p +

1

2
∇y ·

(
Σ(t,y)p

))
, p(y, s|x, s) = δ(x − y). (2.64)
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As for one-dimensional time-homogeneous diffusion processes, the backward Kolmogorov equation for a
time-homogeneous multidimensional diffusion process canbe written as an initial value problem:

∂u

∂t
= Lu, u(x, 0) = f(x), (2.65)

for u(x, t) = E(f(Xt)|X0 = x). For time-homogeneous processes we can fix the initial times = 0 in the
forward Kolmogorov equation. Assuming furthermore thatX0 is a random variable with probability density
ρ0(x) the forward Kolmogorov equation becomes

∂p

∂t
= L∗p, p(x, 0) = ρ0(x), (2.66)

for the transition probability densityp(y, t). In this book we will use the forward and backward Kolmogorov
equations in the form (2.65) and (2.66).

2.6 Discussion and Bibliography

Markov chains in both discrete and continuous time are studied in [74, 98]. A standard reference on Markov
processes is [19]. The proof that the transition function and the initial distribution ofXt are sufficient to
uniquely determine a Markov process, Equation (2.17) can befound in [83, Prop. 1.4, Ch. III]. See also [19,
Thm 1.1, Ch. 4].

Operator semigroups are the main analytical tool for the study of diffusion processes, see for exam-
ple [60]. Necessary and sufficient conditions for an operator L to be the generator of a (contraction) semi-
group are given by the Hille-Yosida theorem [21, Ch. 7].

The spaceCb(E) is natural in a probabilistic context for the study of Markovsemigroups, but other
function spaces often arise in applications; in particularwhen there is a measureµ onE, the spacesLp(E;µ)

sometimes arise. We will quite often use the spaceL2(E;µ), whereµ is an invariant measure of the Markov
process. Markov semigroups can be extended from the space ofbounded continuous functions to the space
Lp(E;µ) for any p > 1. The proof of this result, which follows from Jensen’s inequality and the Hahn-
Banach theorem, can be found in [34, Prop 1.14].

The generator is frequently taken as the starting point for the definition of a homogeneous Markov
process. Conversely, letPt be acontraction semigroup(Let X be a Banach space andT : X → X a
bounded operator. ThenT is a contraction provided that‖Tf‖X 6 ‖f‖X ∀ f ∈ X), with D(Pt) ⊂ Cb(E),
closed. Then, under mild technical hypotheses, there is anE–valued homogeneous Markov process{Xt}
associated withPt defined through

E[f(X(t)|FX
s )] = Pt−sf(X(s))

for all t, s ∈ T with t > s andf ∈ D(Pt).
The argument used in the derivation of the forward and backward Kolmogorov equations goes back to

Kolmogorov’s original work. See [30] and [38]. A more modernapproach to the derivation of the forward
equation from the Chapman-Kolmogorov equation can be foundin [96, Ch. 1]. The connection between
Brownian motion and the corresponding Fokker-Planck equation which is the heat equation was made by
Einstein [18]. Many of the early papers on the theory of stochastic processes have been reprinted in [17].
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Early papers on Brownian motion, including the original papers by Fokker and by Planck, are available
fromhttp://www.physik.uni-augsburg.de/theo1/hanggi/History/BM-History.html.
Very interesting historical comments can also be found in [72] and [68].

We can also derive backward and forward Kolmogorov equations for continuous-time Markov processes
with jumps. For such processes, an additional nonlocal in space term (an integral operator) appears in the
Kolmogorov equations that accounts for the jumps.6 Details can be found in [28].

A diffusion process is characterized by the (almost sure) continuity of its paths and by specifying the first
two moments. A natural question that arises is whether othertypes of stochastic processes can be defined
by specifying a fixed number of moments higher than two. It turns out that this is not possible: we either
need to retain two or all (i.e. infinitely many) moments. Specifying a finite number of moments, greater
than two, leads to inconsistencies. This is the content of Pawula’s theorem . [77]. Example 2.4 can also be
found in [76, Ch. 6].

The duality between the backward and forward Kolmogorov equations, the duality between studying
the evolution of observables and states, is similar to the duality between the Heisenberg (evolution of ob-
servables) and Schrödinger (evolution of states) representations of quantum mechanics or the Koopman
(evolution of observables) and Frobenius-Perron (evolution of states) operators in the theory of dynamical
systems, i.e. on the duality between the study of the evolution of observables and of states. See [82, 52, 100].

2.7 Exercises

1. Let{Xn} be a stochastic process with state spaceS = Z. Show that it is a Markov process if and only if
for all n

P(Xn+1 = in+1|X1 = i1, . . . Xn = in) = P(Xn+1 = in+1|Xn = in).

2. Show that (2.6) is the solution of initial value problem (2.12) as well as of the final value problem

−∂p
∂s

=
1

2

∂2p

∂x2
, lim

s→t
p(y, t|x, s) = δ(y − x).

3. Use (2.7) to show that the forward and backward Kolmogorovequations for the OU process are

∂p

∂t
=

∂

∂y
(yp) +

1

2

∂2p

∂y2

and

−∂p
∂s

= −x∂p
∂x

+
1

2

∂2p

∂x2
.

4. LetW (t) be a standard one dimensional Brownian motion, letY (t) = σW (t) with σ > 0 and consider
the process

X(t) =

∫ t

0
Y (s) ds.

Show that the joint process{X(t), Y (t)} is Markovian and write down the generator of the process.

6The generator of a Markov process with jumps is necessarily nonlocal: a local (differential) operatorL corresponds to a Markov
process with continuous paths. See [96, Ch. 1].
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5. LetY (t) = e−tW (e2t) be the stationary Ornstein-Uhlenbeck process and considerthe process

X(t) =

∫ t

0
Y (s) ds.

Show that the joint process{X(t), Y (t)} is Markovian and write down the generator of the process.

6. (a) LetX, Y be mean zero Gaussian random variables withEX2 = σ2X , EY
2 = σ2Y and correlation

coefficientρ (the correlation coefficient isρ = E(XY )
σXσY

). Show that

E(X|Y ) =
ρσX
σY

Y.

(b) LetXt be a mean zero stationary Gaussian process with autocorrelation functionR(t). Use the
previous result to show that

E[Xt+s|Xs] =
R(t)

R(0)
X(s), s, t > 0.

(c) Use the previous result to show that the only stationary Gaussian Markov process with continuous
autocorrelation function is the stationary OU process.

7. Show that a Gaussian processXt is a Markov process if and only if

E(Xtn |Xt1 = x1, . . . Xtn−1 = xn−1) = E(Xtn |Xtn−1 = xn−1).

8. Prove equation (2.55).

9. Derive the initial value problem (2.57), (2.58).

10. Prove Theorems 2.7 and 2.8 for multidimensional diffusion processes.
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Chapter 3

Introduction to Stochastic Differential
Equations

In this chapter we study diffusion processes at the level of paths. In particular, we study stochastic differen-
tial equations driven by Gaussian white noise, defined formally as the derivative of Brownian motion. In Sec-
tion 3.1 we introduce stochastic differential equations. In Section 3.2 we introduce the Itô and Stratonovich
stochastic integrals. In Section 3.3 we present the conceptof a solution for a stochastic differential equation.
The generator, Itô’s formula and the connection with the Fokker-Planck equation are covered in Section 3.4.
Examples of stochastic differential equations are presented in Section 3.5. Lamperti’s transformation and
Girsanov’s theorem are discussed briefly in Section 3.6. Linear stochastic differential equations are studied
in Section 3.7. Bibliographical remarks and exercises can be found in Sections 3.8 and 3.9, respectively.

3.1 Introduction

We consider stochastic differential equations (SDEs) of the form

dX(t)

dt
= b(t, X(t)) + σ(t, X(t)) ξ(t), X(0) = x. (3.1)

whereX(t) ∈ R
d, b : [0, T ] × R

d 7→ R
d andσ : [0, T ] × R

d 7→ R
d×m. We use the notationξ(t) = dW

dt

to denote (formally) the derivative of Brownian motion inRm, i.e. the white noise process which is a
(generalized) mean zero Gaussian vector-valued stochastic process with autocorrelation function

E (ξi(t)ξj(s)) = δijδ(t − s), i, j = 1 . . . m. (3.2)

The initial conditionx can be either deterministic or a random variable which is independent of the Brownian
motionW (t), in which case there are two different, independent sourcesof randomness in (3.1). We will
use different notations for the solution of an SDE:

X(t), Xt or Xx
t .

The latter notation will be used when we want to emphasize thedependence of the solution of the initial
conditions.
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We will consider mostly autonomous SDEs, i.e. equations whose coefficients do not depend explicitly
on time. When we study stochastic resonance and Brownian motors in Sections?? and??, respectively,
it will be necessary to consider SDEs with time dependent coefficients. It is also often useful to consider
SDEs in bounded domains, for example in a box of sizeL, [0, L]d with periodic boundary conditions; see
Section?? on Brownian morion in periodic potentials.

The amplitude of the noise in (3.1) may be independent of the state of the system,σ(x) ≡ σ, a constant;
in this case we will say that the noise in (3.1) isadditive. When the amplitude of the noise depends on
the state of the system we will say that the noise in (3.1) ismultiplicative. In the modeling of physical
systems using stochastic differential equations additivenoise is usually due to thermal fluctuations whereas
multiplicative noise is due to noise in some control parameter.

Example 3.1. Consider the Landau-Stuart equation

dX

dt
= X(α−X2),

whereα is a parameter. Assume that this parameter fluctuates randomly in time or that we are uncertain
about its actual value. Modeling this uncertainty as white noise,α 7→ α + σξ we obtain the stochastic
Landau equation with multiplicative noise:

dXt

dt
= Xt(α −X2

t ) + σXt ξ(t). (3.3)

It is important to note that an equation of the form (3.3) is not sufficient to determine uniquely the
stochastic processXt: we also need to determine how we chose to interpret the noisein the equation, e.g.
whether the noise in (3.3) is Itô or Stratonovich. This is a separate modeling issue that we will address in
Section??.

Since the white noise processξ(t) is defined only in a generalized sense, equation (3.1) is onlyformal.
We will usually write it in the form

dX(t) = b(t, X(t)) dt + σ(t, X(t)) dW (t), (3.4)

together with the initial conditionX(0) = x, or, componentwise,

dXi(t) = bi(t, X(t)) dt +

m∑

j=1

σij(t, X(t)) dWj(t), j = 1, . . . , d, (3.5)

together with the initial conditions. In fact, the correct interpretation of the SDE (3.4) is as a stochastic
integral equation

X(t) = x+

∫ t

0
b(t, X(t)) dt +

∫ t

0
σ(t, X(t)) dW (t). (3.6)

Even when writing the SDE as an integral equation, we are still facing several mathematical difficulties.
First we need to give an appropriate definition of the stochastic integral

I(t) :=

∫ t

0
σ(t, X(t)) dW (t), (3.7)
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or, more generally,

I(t) :=

∫ t

0
h(t) dW (t), (3.8)

for a sufficiently large class of functions. Since Brownian motion is not of bounded variation, the inte-
gral (3.7) cannot be defined as a Riemann-Stieljes integral in a unique way. As we will see in the next
section, different Riemann-Stieljes approximations leadto different stochastic integrals that, in turn, lead to
stochastic differential equations with different properties.

After defining the stochastic integral in (3.6) we need to give a proper definition of a solution to an SDE.
In particular, we need to give a definition that takes into account the randomness due to the Brownian motion
and the initial conditions. Furthermore, we need to take into account the fact that, since Brownian motion is
not regular but only Hölder continuous with exponentα < 1/2, solutions to an SDE of the form (3.1) cannot
be very regular. As in the case of partial differential equations, there are different concepts of solution for
an SDE of the form (3.1).

After having given an appropriate definition for the stochastic integral and developed an existence and
uniqueness theory of solutions to SDEs, we would like to be able to calculate (the statistics of) functionals
of the solution to the SDE. LetX(t) be the solution of (3.4) and letf(t, x) be a sufficiently regular function
of t andx. We want to derive an equation for the function

z(t) = f(t,X(t)).

In the absence of noise we can easily obtain an equation forz(t) by using the chain rule. However, the
stochastic forcing in (3.1) and the lack of regularity of Brownian motion imply that the chain rule has to be
modified appropriately. This is, roughly speaking, due to the fact thatE(dW (t))2 = dt and, consequently,
second order differentials need to be kept when calculatingthe differential ofz(t). It turns out that whether
a correction to the chain rule from standard calculus is needed depends on how we interpret the stochastic
integral (3.7).

Furthermore, we would like to be able to calculate the statistics of solutions to SDEs. In Chapter 2 we
saw that we can calculate the expectation value of an observable

u(x, t) = E(f(Xx
t )|Xx

0 = x) (3.9)

by solving the backward Kolmogorov equation (2.47). In thischapter we will see that the backward Kol-
mogorov equation is a consequence of theItô’s formula, the chain rule ofItô stochastic calculus.

Quite often it is important to be able to evaluate the statistics of solutions to SDEs at appropriate random
times, the so calledstopping times. An example of a stopping time is thefirst exit timeof the solution of an
SDE of the form (3.1), which is defined as the first time the diffusionXx

t exits an open domainD ∈ R
d,

with x ∈ D:

τD = inf
t>0

{
Xt /∈ D

}
. (3.10)

The statistics of the first exit time will be needed in the calculation of the escape time of a diffusion process
from a metastable state, see Chapter??.

There is also an important modeling issue that we need to address: white noise is a stochastic process
with zero correlation time. As such, it can only be thought ofas an idealization of the noise that appears

51



in physical, chemical and biological systems. We are interested, therefore, in understanding the connection
between an SDE driven by white noise with equations where a more physically realistic noise is present.
The question then is whether an SDE driven by white noise (3.1) can be obtained from an equation driven
by noise with a non trivial correlation structure through anappropriate limiting procedure. We will see in
Section?? that it is possible to describe more general classes of noisewithin the framework of diffusion
processes, by adding additional variables. Furthermore, we can obtain the SDE (3.1) in the limit of zero
correlation time, and for an appropriate definition of the stochastic integral.

3.2 The Itô and Stratonovich Stochastic Integrals

In this section we define stochastic integrals of the form

I(t) =

∫ t

0
f(s) dW (s), (3.11)

whereW (t) is a standard one dimensional Brownian motion andt ∈ [0, T ]. We are interested in the case
where the integrand is a stochastic process whose randomness depends on the Brownian motionW (t)-think
of the stochastic integral in (3.6)-and, in particular, that it is adaptedto thefiltration Ft (see 2.14) generated
by the Brownian motionW (t), i.e. that it is anFt measurable function for allt ∈ [0, T ]. Roughly speaking,
this means that the integrand depends only the past history of the Brownian motion with respect to which
we are integrating in (3.11). Furthermore, we will assume that the random processf(·) is square integrable:

E

(∫ T

0
f(s)2 ds

)
<∞.

Our goal is to define the stochastic integralI(t) as theL2-limit of a Riemann sum approximation of (3.11).
To this end, we introduce a partition of the interval[0, T ] by settingtk = k∆t, k = 0, . . . K − 1 and
K∆t = t; we also define a parameterλ ∈ [0, 1] and set

τk = (1− λ)tk + λtk+1, k = 0, . . . K − 1. (3.12)

We define now stochastic integral as theL2(Ω) limit (Ω denoting the underlying probability space) of the
Riemann sum approximation

I(t) := lim
K→∞

K−1∑

k=0

f(τk) (W (tk+1)−W (tk)) . (3.13)

Unlike the case of the Riemann-Stieltjes integral when we integrate against a smooth deterministic function,
the result in (3.13) depends on the choice ofλ ∈ [0, 1] in (3.12). The two most common choices areλ = 0,
in which case we obtain theItô stochastic integral

II(t) := lim
K→∞

K−1∑

k=0

f(tk) (W (tk+1)−W (tk)) . (3.14)
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The second choice isλ = 1
2 , which leads to theStratonovich stochastic integral:

IS(t) := lim
K→∞

K−1∑

k=0

f

(
1

2
(tk + tk+1)

)
(W (tk+1)−W (tk)) . (3.15)

We will use the notation

IS(t) =

∫ t

0
f(s) ◦ dW (s),

to denote the Stratonovich stochastic integral. In generalthe Itô and Stratonovich stochastic integrals are
different. When the integrandf(t) depends on the Brownian motionW (t) throughX(t), the solution of the
SDE in (3.1), a formula exists for converting one stochasticintegral into another.

When the integrand in (3.14) is a sufficiently smooth function, then the stochastic integral is independent
of the parameterλ and, in particular, the Itô and Stratonovich stochastic integrals coincide.

Proposition 3.2. Assume that there existC, δ > 0 such that

E
(
f(t)− f(s)

)2
6 C|t− s|1+δ, 0 6 s, t 6 T. (3.16)

Then the Riemann sum approximation in(3.13)converges inL1(Ω) to the same value for allλ ∈ [0, 1].

The interested reader is invited to provide a proof of this proposition.

Example 3.3. Consider the Langevin equation (see Chapter??) with a space dependent friction coefficient:

mq̈t = −∇V (qt)− γ(qt)q̇t +
√

2γ(qt)Ẇt,

whereq denotes the particle position with massm. Writing the Langevin equation as a system of first order
SDEs we have

mdqt = pt dt, (3.17a)

dpt = −∇V (qt) dt− γ(qt)pt dt+
√

2γ(qt) dWt. (3.17b)

Assuming that the potential and the friction coefficients are smooth functions, the particle positionq is
a differentiable function of time.1 Consequently, according to Proposition 3.2, the Itô and Stratonovich
stochastic integrals in (3.17) coincide. This is not true inthe limit of small mass,m→ 0. See the Section??
and the discussion in Section 3.8.

The Itô stochastic integralI(t) is almost surely continuous int. As expected, it satisfies the linearity
property

∫ T

0

(
αf(t) + βg(t)

)
dW (t) = α

∫ T

0
f(t) dW (t) + β

∫ T

0
g(t) dW (t), α, β ∈ R

for all square integrable functionsf(t), g(t). Furthermore, the Itô stochastic integral satisfies theItô isome-
try

E

(∫ T

0
f(t) dW (t)

)2

=

∫ T

0
E|f(t)|2 dt, (3.18)

1In fact, it is aC1+α function of time, withα < 1/2.
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from which it follows that, for all square integrable functionsf, g,2

E

(∫ T

0
h(t) dW (t)

∫ T

0
g(s) dW (s)

)
= E

∫ T

0
h(t)g(t) dt.

The Itô stochastic integral is amartingale:

Definition 3.4. Let{Ft}t∈[0,T ] be a filtration defined on the probability space(Ω,F , µ) and let{Mt}t∈[0,T ]

adapted toFt withMt ∈ L1(0, T ). We say thatMt is anFt martingale if

E[Mt|Fs] = Ms ∀ t > s.

For the Itô stochastic integral we have

E

∫ t

0
f(s) dW (s) = 0 (3.19)

and

E

[∫ t

0
f(ℓ) dW (ℓ)|Fs

]
=

∫ s

0
f(ℓ) dW (ℓ) ∀ t > s, (3.20)

whereFs denotes the filtration generated byW (s). The quadratic variation of this martingale is

〈I〉t =
∫ t

0
(f(s))2 ds.

The proofs of all these properties and the study of the Riemann sum (3.13) proceed as follows: first, these
properties are proved for the simplest possible functions,namely step functions for which we can perform
explicit calculations using the properties of Brownian increments. Then, an approximation step is used to
show that square integrable functions can be approximated by step functions. The details of these calcula-
tions can be found in the references listed in Section 3.8.

The above ideas are readily generalized to the case whereW (t) is a standardd- dimensional Brownian
motion andf(t) ∈ R

m×d for eacht > 0. In the multidimensional case the Itô isometry takes the form

E|I(t)|2 =
∫ t

0
E|f(s)|2Fds, (3.21)

where| · |F denotes the Frobenius norm|A|F =
√
tr(ATA).

Whether we choose the Itô or Stratonovich interpretation of the stochastic integral in (3.6) is a modeling
issue that we will address later in Section??. Both interpretations have their advantages: the Itô stochastic
integral is a martingale and we can use the well developed theory of martingales to study its properties; in
particular, there are many inequalities and limit theoremsfor martingales that are very useful in the rigorous
study of qualitative properties of solutions to SDEs. On theother hand, the Stratonovich stochastic integral
leads to the standard Newton-Leibniz chain rule, as opposedto the Itô stochastic integral where a correction
to the Leibniz chain rule is needed. Furthermore, as we will see in Section??, SDEs driven by noise with
non-zero correlation time converge, in the limit as the correlation time tends to0, to the Stratonivich SDE.

2We use Itô isometry withf = h+ g.
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When the stochastic integral in (3.4) or (3.6) is an Itô integral we will refer to the SDE as anItô SDE, whereas
when it is a Stratonovich integral we will refer to the SDE as aStratonovich stochastic differential equation.
There are other interpretations of the stochastic integral, that arise in applications e.g. the Klimontovich
(kinetic) stochastic integral that corresponds to the choiceλ = 1 in (3.12).

An Itô SDE can be converted into a Stratonovich SDE and the other way around. This transformation in-
volves the addition (or subtraction) of a drift term. We calculate this correction to the drift in one dimension.
Consider the Itô SDE

dXt = b(Xt) dt+ σ(Xt) dWt. (3.22)

We want to write it in Stratonovich form:

dXt = b̂(Xt) dt+ σ̂(Xt) ◦ dWt. (3.23)

Let us calculate the Stratonovich stochastic integral in (3.23). We have, withα = 1
2 , and using the notation

∆Wj =W (tj+1)−W (tj) and similarly for∆Xj as well as a Taylor series expansion,
∫ t

0
σ̂(Xt) ◦ dWt ≈

∑

j

σ̂(X(j∆t+ α∆t))∆Wj

≈
∑

j

σ̂(X(j∆t))∆Wj + α
∑

j

dσ̂

dx
(X(j∆t))∆Xj ∆Wj

≈
∫ t

0
σ̂(X(t)) dW (t) + α

∑

j

dσ̂

dx
(X(j∆t))

(
b(Xj)∆tj + σ(Xj)∆Wj

)
∆Wj

≈
∫ t

0
σ̂(X(t)) dW (t) + α

∫ t

0

dσ̂

dx
(X(t))σ(X(t))dt. (3.24)

In the above calculation we have used the formulasE
(
∆t∆Wj

)
= 0 andE

(
∆Wj

)2
= ∆t; see Section 3.4.

This calculation suggests that the Stratonovich stochastic integral, when evaluated at the solution of the Itô
SDE (3.22), is equal to the Itô stochastic integral plus a drift correction. Notice that the above calculation
provides us with a correction for arbitrary choices of the parameterα ∈ [0, 1]. The above heuristic argument
can be made rigorous: we need to control the difference between

∫ t
0 σ̂(Xt) ◦ dWt and the righthand side

of (3.24) inL2(Ω); see Exercise 2.
Substituting (3.24) in the Stratonovich SDE (3.23) we obtain

dXt =
(
b̂(Xt) +

1

2

dσ̂

dx
(Xt)σ(Xt)

)
dt+ σ̂(Xt) dWt.

This is the Itô equation (3.22). Comparing the drift and thediffusion coefficients we deduce that

σ̂ = σ and b̂ = b− 1

2
σ′σ. (3.25)

Consequently, the Itô SDE
dXt = b(Xt) dt+ σ(Xt) dWt

is equivalent to the Stratonovich SDE

dXt =
(
b(Xt)−

1

2
σ′(Xt)σ(Xt)

)
dt+ σ(Xt) ◦ dWt
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Conversely, the Stratonovich SDE

dXt = b(Xt) dt+ σ(Xt) ◦ dWt

is equivalent to the Itô SDE

dXt =
(
b(Xt) +

1

2
σ′(Xt)σ(Xt)

)
dt+ σ(Xt) dWt.

The correction to the drift12σ
′σ is called theItô-to-Stratonovich correction. Similar formulas can be ob-

tained in arbitrary dimensions. The multidimensional ItôSDE

dXt = b(Xt) dt+ σ(Xt) dWt, (3.26)

whereb : Rd 7→ R
d andσ : Rd 7→ R

d×m can be transformed to the Stratonovich SDE

dXt = (b(Xt)− h(Xt)) dt+ σ(Xt) ◦ dWt, (3.27)

where the correction drifth is given by the formula

hi(x) =
1

2

d∑

j=1

m∑

k=1

σjk(x)
∂σik
∂xj

(x), i = 1, . . . , d. (3.28)

Conversely, the multidimensional Stratonovich SDE

dXt = b(Xt) dt+ σ(Xt) ◦ dWt, (3.29)

can be transformed into the Itô SDE

dXt = (b(Xt) + h(Xt)) dt+ σ(Xt) dWt, (3.30)

with h given by (3.28). The Itô-to-Stratonovich correction can be written in index-free notation:

h(x) =
1

2

[
∇ ·Σ(x)− (σ∇ · σT )(x)

]
, Σ = σσ

T . (3.31)

To see this, we first note that

(
∇ ·Σ

)
i
=
∑

k

∂σik

∂xk
=

d∑

k=1

m∑

ℓ=1

(
∂σiℓ
∂xk

σkℓ + σiℓ
∂σkℓ
∂xk

)
. (3.32)

On the other hand,

(
σ∇ · σT

)
i
=

d∑

k=1

m∑

ℓ=1

σiℓ
∂σkℓ
∂xk

. (3.33)

The equivalence between (3.31) and (3.28) follows upon subtracting (3.33) from (3.32). Notice also that we
can also write

h · ℓ = 1

2
σ
T : ∇

(
σ
T ℓ
)
, (3.34)

for all vectorsℓ ∈ R
d.

Notice that in order to be able to transform a Stratonovich SDE into and Itô SDE we need to assume
differentiability of the matrixσ, an assumption that is not necessary for the existence and uniqueness of
solutions to an SDE; see Section 3.3.
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3.3 Solutions of Stochastic Differential Equations

In this section we present, without proof, a basic existenceand uniqueness result for stochastic differential
equations of the form

dXt = b(t, Xt) dt+ σ(t, Xt) dWt, X(0) = x, (3.35)

whereb(·, ·) : [0, T ]×R
d → R

d andσ·, · : [0, T ]×R
d → R

d×n are measurable vector-valued and matrix-
valued functions, respectively, andWt denotes standard Brownian motion inRn. We assume that the initial
condition is a random variable which is independent of the Brownian motionWt. We will denote byFt the
filtration generated by the Brownian motionWt.

We will use the following concept of a solution to (3.35).

Definition 3.5. A processXt with continuous paths defined on the probability space(Ω,F , P ) is called a
strong solution to the SDE(3.35) if:

(i) Xt is almost surely continuous and adapted to the filtrationFt.

(ii) b(·, X·) ∈ L1((0, T );Rd) andσ(·, X·) ∈ L2((0, T );Rd×n) almost surely.

(iii) For every t > 0 the stochastic integral equation

Xt = x+

∫ t

0
b(s, Xs) ds+

∫ t

0
σ(s, Xs) dWs, X(0) = x (3.36)

holds almost surely.

The assumptions that we have to impose on the drift and diffusion coefficients in (3.35) so that a unique
strong solutions exists are similar to the Lipschitz continuity and linear growth assumptions that are familiar
from the existence and uniqueness theory of (deterministic) ordinary differential equations. In particular,
we make the following two assumptions on the coefficients: there exists a positive constantC such that, for
all x ∈ R

d andt ∈ [0, T ],

|b(t, x)| + |σ(t, x)|F 6 C
(
1 + |x|

)
(3.37)

and for allx, y ∈ R
d andt ∈ [0, T ]

|b(t, x) − b(t, y)|+ |σ(t, x)− σ(t, y)|F 6 C|x− y|, (3.38)

Notice that for globally Lipschitz vector and matrix fieldsb andσ (i.e. when (3.38) is satisfied), the linear
growth condition (3.37) is equivalent to the requirement that |b(t, 0)| and |σ(t, 0)|F are bounded for all
t > 0.

Under these assumptions aglobal, uniquesolution exists for the SDE (3.35). By uniqueness of strong
solutions we mean that, ifXt andYt are strong solutions to (3.35), then

Xt = Yt for all t almost surely.
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Theorem 3.6. Let b(·, ·) andσ(·, ·) satisfy Assumptions(3.37) and (3.38). Assume furthermore that the
initial conditionx is a random variable independent of the Brownian motionWt with

E|x|2 <∞.

Then the SDE(3.35)has a unique strong solutionXt with

E

[∫ t

0
|Xs|2 ds

]
<∞ (3.39)

for all t > 0.

Using Gronwall’s inequality we can also obtain a quantitative estimate in (3.39), as a function of the
second moment of the solution that increases exponentiallyin time.

The solution of the SDE (3.35) satisfies the Markov property and had continuous paths: it is a diffusion
process. In fact, solutions of SDEs are precisely the diffusion processes that we studied in Chapter 2.

The Stratonovich analogue of (3.35) is

dXt = b(t, Xt) dt+ σ(t, Xt) ◦ dWt, X(0) = x, (3.40)

As with the Itô SDE, the correct interpretation of (3.35) isin the sense of the integral equation

Xt = x+

∫ t

0
b(s, Xs) ds +

∫ t

0
σ(s, Xs) ◦ dWs, X(0) = x. (3.41)

Using the Itô-to-Stratonovich transformation (3.28), wecan write (3.40) as an Itô SDE and then use The-
orem 3.6 to prove existence and uniqueness of strong solutions. Notice, however, that for this we need to
assume differentiability of the diffusion matrixσ and that we need to check that conditions (3.37) and (3.38)
are satisfied for the modified drift in (3.30).

Just as with nonautonomous ordinary differential equations, it is possible to rewrite a stochastic differ-
ential equation with time dependent coefficients as a time-homogeneous equation by adding one additional
variable. Consider, for simplicity, the one dimensional equation

dXt = b(t,Xt) dt+ σ(t,Xt) dWt. (3.42)

We introduce the auxiliary variableτt to write (3.42) as the system of SDEs

dXt = b(τt,Xt) dt+ σ(τt,Xt) dWt, (3.43a)

dτt = dt. (3.43b)

Thus we obtain a system of two homogeneous stochastic differential equations for the variables(Xt, τt).
Notice that noise acts only in the equation forXt. The generator of the diffusion process(Xt, τt) (see
Section 3.4) is

L =
∂

∂τ
+ b(τ, x)

∂

∂x
+

1

2
σ2(τ, x)

∂2

∂x2
. (3.44)
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Quite often we are interested in studying the long time properties of the solution of a stochastic differential
equation. For this it is useful to rescale time so that we can focus on the long time scales. Using the scaling
property of Brownian motion, see Theorem 1.23,

W (ct) =
√
cW (t),

we have that, ifs = ct, then
dW

ds
=

1√
c

dW

dt
,

the equivalence being, of course, in law. Hence, if we scale time tos = ct, the SDE

dXt = b(Xt) dt+ σ(Xt) dWt

becomes

dXt =
1

c
b(Xt) dt+

1√
c
σ(Xt) dWt,

together with the initial conditionX0 = x. We will use such a change of the time scale when we study
Brownian motors in Section??.

3.4 Itô’s formula

In Chapter 2 we showed that to a diffusion processXt we can associate a second order differential operator,
the generator of the process. Consider the Itô stochastic differential equation

dXt = b(Xt) dt+ σ(Xt) dWt, (3.45)

where for simplicity we have assumed that the coefficients are independent of time.Xt is a diffusion process
with drift b(x) and diffusion matrix

Σ(x) = σ(x)σ(x)T . (3.46)

The generatorL is then defined as

L = b(x) · ∇+
1

2
Σ(x) : D2, (3.47)

whereD2 denotes the Hessian matrix. The generator can also be written as

L =
d∑

j=1

bj(x)
∂

∂xj
+

1

2

d∑

i,j=1

Σij
∂2

∂xi∂xj

Using now the generator we can write Itô’s formula . This formula enables us to calculate the rate of change
in time of functionsV : [0, T ]×R

d → R evaluated at the solution of anRd-valued SDE. First, recall that in
the absence of noise the rate of change ofV can be written as

d

dt
V (t, x(t)) =

∂V

∂t
(t, x(t)) +AV (t, x(t)), (3.48)
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wherex(t) is the solution of the ODĖx = b(x) andA denotes the (backward)Liouville operator

A = b(x) · ∇. (3.49)

Let nowXt be the solution of (3.45) and assume that the white noiseẆ is replaced by a smooth function
ζ(t). Then the rate of change ofV (t,Xt) is given by the formula

d

dt
V (t,Xt) =

∂V

∂t
(t,Xt) +AV (t,Xt) + 〈∇V (t,Xt), σ(Xt)ζ(t)〉 , (3.50)

This formula is no longer valid when the equation (3.45) is driven by white noise and not a smooth function.
In particular, the Leibniz formula (3.50) has to be modified by the addition of a drift term that accounts for
the lack of smoothness of the noise: the Liouville operatorA given by (3.49) in (3.50) has to be replaced by
the generatorL given by (3.47). We have already encountered this additional term in the previous chapter,
when we derived the backward Kolmogorov equation. Formallywe can write

d

dt
V (t,Xt) =

∂V

∂t
(t,Xt) + LV (t,Xt) +

〈
∇V (t,Xt), σ(Xt)

dW

dt

〉
,

The precise interpretation of the expression for the rate ofchange ofV is in integrated form.

Lemma 3.7. (Itô’s Formula ) Assume that the conditions of Theorem 3.6 hold. LetXt be the solution
of (3.45)and letV ∈ C2(Rd). Then the processV (Xt) satisfies

V (t,Xt) = V (X0) +

∫ t

0

∂V

∂s
(s,Xs) ds+

∫ t

0
LV (s,Xs) ds

+

∫ t

0
〈∇V (s,Xs), σ(Xs) dWs〉 . (3.51)

The presence of the additional term in the drift is not very surprising, in view of the fact that the Brownian
differential scales like the square root of the differential in time: E(dWt)

2 = dt. In fact, we can write Itô’s
formula in the form

d

dt
V (t,Xt) =

∂V

∂t
(t,Xt) + 〈∇V (t,Xt), Ẋt〉+

1

2
〈Ẋt,D

2V (t,Xt)Ẋt〉, (3.52)

or,

dV (t,Xt) =
∂V

∂t
dt+

d∑

i=1

∂V

∂xi
dXi +

1

2

d∑

i,j=1

∂2V

∂xi∂xj
dXidXj , (3.53)

where we have suppressed the argument(t,Xt) from the right hand side. When writing (3.53) we have used
the conventiondWi(t) dWj(t) = δij dt, dWi(t) dt = 0, i, j = 1, . . . d. Thus, we can think of (3.53) as a
generalization of Leibniz’ rule (3.50) where second order differentials are kept. We can check that, with the
above convention, Itô’s formula follows from (3.53).

The proof of Itô’s formula is essentially the same as the proof of the validity of the backward Kol-
mogorov equation that we presented in Chapter 2, Theorem 2.7. Conversely, after having proved Itô’s
formula, then the backward Kolmogorov and Fokker-Planck (forward Kolmogorov) equations follow as
corollaries. Letφ ∈ C2(Rd) and denote byXx

t the solution of (3.45) withXx
0 = x. Consider the function

u(x, t) = Eφ(Xx
t ) := E

(
φ(Xx

t )|Xx
0 = x

)
, (3.54)
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where the expectation is with respect to all Brownian driving paths. We take the expectation in (3.51), use
the martingale property of the stochastic integral, Equation (3.20), and differentiate with respect to time to
obtain the backward Kolmogorov equation

∂u

∂t
= Lu, (3.55)

together with the initial conditionu(x, 0) = φ(x). In this formal derivation we need to assume that the
expectationE and the generatorL commute; this can be justified since, as we have already seen,the ex-
pectation of a functional of the solution to the stochastic differential equation is given by the semigroup
generated byL: (Ptf)(x) = (etLf)(x) = Ef(Xx

t ).

The Feyman-Kac formula

Itô’s formula can be used in order to obtain a probabilisticdescription of solutions to more general partial
differential equations of parabolic type. LetXx

t be a diffusion process with driftb(·), diffusion Σ(·) =

σσT (·) and generatorL with Xx
0 = x and letf ∈ C2

0 (R
d) andV ∈ C(Rd), bounded from below. Then the

function

u(x, t) = E

(
e−

∫ t
0 V (Xx

s ) dsf(Xx
t )
)
, (3.56)

is the solution to the initial value problem

∂u

∂t
= Lu− V u, (3.57a)

u(0, x) = f(x). (3.57b)

To derive this result, we introduce the variableYt = exp
(
−
∫ t
0 V (Xs) ds

)
we rewrite the SDE forXt as

dXx
t = b(Xx

t ) dt+ σ(Xx
t ) dWt, Xx

0 = x, (3.58a)

dY x
t = −V (Xx

t ) dt, Y x
0 = 0. (3.58b)

The process{Xx
t , Y

x
t } is a diffusion process with generator

Lx,y = L − V (x)
∂

∂y
.

We can write

E

(
e−

∫ t
0 V (Xx

s ) dsf(Xx
t )
)
= E(φ(Xx

t , Y
x
t )),

whereφ(x, y) = f(x)ey. We apply now Itô’s formula to this function (or, equivalently, write the backward
Kolmogorov equation for the functionu(x, y) = E(φ(Xt, Yt))) to obtain (3.57).

The representation formula (3.56) for the solution of the initial value problem (3.57) is called the
Feynman-Kac formula. It is very useful both for the theoretical analysis of initial value problems for
parabolic PDEs of the form (3.57) as well as for their numerical solution using a Monte Carlo approach,
based on solving numerically (3.58). See Section??.
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Derivation of the Fokker-Planck Equation

Starting from Itô’s formula we can easily obtain the backward Kolmogorov equation (3.55). Using now
the backward Kolmogorov equation and the fact that the Fokker-Planck operator is theL2-adjoint of the
generator, we can obtain the Fokker-Planck (forward Kolmogorov) equation that we will study in detail in
Chapter 4. This line of argument provides us with an alternative, and perhaps simpler, derivation of the
forward and backward Kolmogorov equations to the one presented in Section 2.5.

The Fokker-Planck operator corresponding to the stochastic differential equation (3.45) reads

L∗· = ∇ ·
(
− b(x) ·+1

2
∇ ·
(
Σ ·
))
. (3.59)

We can derive this formula from the formula for the generatorL of Xt and two integrations by parts:
∫

Rd

Lfh dx =

∫

Rd

fL∗hdx,

for all f, h ∈ C2
0 (R

d).

Proposition 3.8. LetXt denote the solution of the Itô SDE(3.45)and assume that the initial conditionX0

is a random variable, independent of the Brownian motion driving the SDE, with densityρ0(x). Assume
that the law of the Markov processXt has a densityρ(x, t) ∈ C2,1(Rd × (0,+∞))3, thenρ is the solution
of the initial value problem for the Fokker-Planck equation

∂ρ

∂t
= L∗ρ for (x, t) ∈ R

d × (0,∞), (3.60a)

ρ = ρ0 for x ∈ R
d × {0}. (3.60b)

Proof. Let Eµ denote the expectation with respect to the product measure induced by the measureµ with
densityρ0 onX0 and the Wiener measure of the Brownian motion that is drivingthe SDE. Averaging over
the random initial conditions, distributed with densityρ0(x), we find

E
µφ(Xt) =

∫

Rd

φ(x, t)ρ0(x) dx

=

∫

Rd

(eLtφ)(x)ρ0(x) dx

=

∫

Rd

(eL
∗tρ0)(x)φ(x) dx.

But sinceρ(x, t) is the density ofXt we also have

E
µφ(Xt) =

∫

Rd

ρ(z, t)φ(x) dx.

Equating these two expressions for the expectation at timet we obtain
∫

Rd

(eL
∗tρ0)(x)φ(x) dx =

∫

Rd

ρ(x, t)φ(x) dx.

3This is the case, for example, when the SDE has smooth coefficients and the diffusion matrixΣ = σσT is strictly positive
definite.
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We use a density argument so that the identity can be extendedto all φ ∈ L2(Rd). Hence, from the above
equation we deduce that

ρ(x, t) =
(
eL

∗tρ0

)
(x).

Differentiation of the above equation gives (3.60a). Setting t = 0 gives the initial condition (3.60b).

The chain rule for Stratonovich equations

For a Stratonovich stochastic differential equations the rules of standard calculus apply:

Proposition 3.9. LetXt : R+ 7→ R
d be the solution of the Stratonovich SDE

dXt = b(Xt) dt+ σ(Xt) ◦ dWt, (3.61)

whereb : Rd 7→ R
d and σ : Rd 7→ R

d×d. Then the generator and Fokker-Planck operator ofXt are,
respectively:

L· = b · ∇ ·+1

2
σ
T : ∇(σT∇·) (3.62)

and
L∗· = ∇ ·

(
− b ·+1

2
σ∇ · (σT ·)

)
. (3.63)

Furthermore, the Newton-Leibniz chain rule applies.

Proof. We will use the summation convention and also use the notation ∂j for the partial derivative with
respect toxj. We use the formula for the Itô-to-Stratonovich correction, Equation (3.31), to write

L = bj∂j +
1

2
σjk∂jσik∂if +

1

2
σikσjk∂i∂jf

= bj∂jfj +
1

2
σjk∂j

(
σik∂if

)

= b · ∇+
1

2
σ
T : ∇

(
σ
T∇f

)
.

To obtain the formula for the Fokker-Planck operator, letf, h be twoC2
0 (R

d) functions. We perform two
integrations by parts to obtain

∫

Rd

σjk∂j
(
σik∂if

)
hdx =

∫

Rd

f∂i

(
σik∂j

(
σjkh

))
dx

=

∫

Rd

f∂i

(
σik

(
∇ ·
(
σ
Th
))

k

)
dx

=

∫

Rd

f∂i

(
σ · ∇ ·

(
σ
Th
))

i
dx

=

∫

Rd

f∇ ·
(
σ · ∇ ·

(
σ
Th
))
dx.

To show that the Stratonovich SDE satisfies the standard chain rule, leth : Rd 7→ R
d be an invertible map,

let y = h(x) and letx = h−1(y) =: g(y). Let J = ∇xh denote the Jacobian of the transformation. We
introduce the notation

b̂(y) = b(g(y)), σ̂(y) = σ(g(y)), Ĵ(y) = J(g(y)). (3.64)
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We need to show that, forYt = h(Xt),

dYt = Ĵ(Yt)
(
b̂(Yt) dt+ σ̂(Yt) ◦ dWt

)
. (3.65)

It is important to note that in this equation the (square rootof the) diffusion matrix iŝJ(y)σ̂(y). In particular,
the Stratonovich correction in (3.65) is (see (3.28))

bSℓ (y) =
1

2

(
Ĵjρσ̂ρk

)
(y)

∂
(
Ĵℓmσ̂mk

)

∂yj
(y), ℓ = 1, . . . d, (3.66)

or, using (3.31),

bS(y) =
1

2

[
∇ ·
(
ĴΣ̂ĴT

)
− Ĵσ̂∇ ·

(
σ̂
T ĴT

)]
(y).

To prove this, we first transform the Stratonovich SDE forXt into an Itô SDE using (3.31). We then apply
Itô’s formula to calculate

dYℓ =
(
Lhℓ

)
(Xt) dt+

(
∂ihℓσij

)
(Xt) dWj

= Jℓi(Xt)
(
bi(Xt) dt+ σij(Xt) dWj

)

+
1

2
σjk(Xt)∂j

(
σik(Xt)Jℓi(Xt)

)
dt, (3.67)

for ℓ = 1, . . . d. Equivalently, using (3.62),

dYt = ∇xh(Xt)
(
b(Xt) dt+ σ(Xt) dWt

)

+
1

2
σ
T (Xt) : ∇

(
σ
T (Xt)∇xh(Xt)

)
dt. (3.68)

Now we need to rewrite the righthand side of this equation as afunction ofy. This follows essentially from
the inverse function theorem, and in particular the fact that the Jacobian of the inverse transformation (from
y to x) is given by the inverse of the JacobianJ of the transformationy = h(x):

Ĵ(y) =
(
∇yg

)−1
.

In particular,
∇xf(x) = Ĵ(y)∇y f̂(y). (3.69)

For the first term, and using the notation (3.64), we have

∇xh(Xt)
(
b(Xt) dt+ σ(Xt) dWt

)
= Ĵ(Yt)

(
b̂(Yt) dt+ σ̂(Yt) dWt

)
.

Now we need to show that the second term on the righthand side of (3.67) is equal to the Stratonovich
correctionbS(y) in (3.65) that is given by (3.66). This follows by applying the chain rule (3.69) to the
righthand sider of (3.68) and using (3.34). Equivalently, using (3.67):

dYℓ = Ĵℓi(Yt)
(
b̂i(Yt) dt+ σ̂ij(Yt) dWj

)

+
1

2
Ĵjρσ̂ρk(Yt)∂j

(
σ̂ik(Yt)Ĵℓi(Xt)

)
dt

= Ĵℓi(Yt)
(
b̂i(Yt) dt+ σ̂ij(Yt) ◦ dWj

)
.
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3.5 Examples of Stochastic Differential Equations

Brownian Motion

We consider a stochastic differential equation with no drift and constant diffusion coefficient:

dXt =
√
2σ dWt, X0 = x, (3.70)

where the initial condition can be either deterministic or random, independent of the Brownian motionWt.
The solution is:

Xt = x+
√
2σWt.

This is just Brownian motion starting atx with diffusion coefficientσ.

Ornstein-Uhlenbeck Process

Adding a restoring force to (3.70) we obtain the SDE for the Ornstein-Uhlenbeck process that we have
already encountered:

dXt = −αXt dt+
√
2σ dWt, X(0) = x, (3.71)

where, as in the previous example, the initial condition canbe either deterministic or random, independent
of the Brownian motionWt. We solve this equation using the variation of constants formula:

Xt = e−αtx+
√
2σ

∫ t

0
e−α(t−s)dWs. (3.72)

We can use Itô’s formula to obtain equations for the momentsof the OU process.4 The generator is:

L = −αx d
dx

+ σ
d2

dx2
.

We apply Itô’s formula to the functionf(x) = xn to obtain:

dXn
t = LXn

t dt+
√
2σ

d

dx
Xn

t dW

= −αnXn
t dt+ σn(n− 1)Xn−2

t dt+ n
√
2σXn−1

t dW.

Consequently:

Xn
t = xn +

∫ t

0

(
−αnXn

t + σn(n− 1)Xn−2
t

)
dt+ n

√
2σ

∫ t

0
Xn−1

t dWt.

By taking the expectation in the above equation and using thefact that the stochastic integral is a martingale,
in particular (3.19), we obtain an equation for the momentsMn(t) = EXn

t of the OU process forn > 2:

Mn(t) =Mn(0) +

∫ t

0
(−αnMn(s) + σn(n− 1)Mn−2(s)) ds,

4In Section 4.2 we will redo this calculation using the Fokker-Planck equation.
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where we have considered random initial conditions distributed a according to a distributionρ0(x) with
finite moments.

A variant of the the SDE (3.71) is themean reverting Ornstein-Uhlenbeck process

dXt =
(
µ− αXt

)
dt+

√
2σ dWt, X(0) = x. (3.73)

We can use the variation of constants formula to solve this SDE; see exercise 7.

Geometric Brownian motion

(See also Section 4.2) Consider the following scalar linearSDE with multiplicative noise

dXt = µXt dt+ σXt dWt, X0 = x, (3.74)

where we use the Itô interpretation of the stochastic differential. The solution to this equation is known as
the geometric Brownian motion. We can think of it as a very simple model of population dynamics in a
fluctuating environment: We can obtain (3.74) from the exponential growth (or decay) model

dXt

dt
= µ(t)Xt. (3.75)

We assume that there are fluctuations (or uncertainty) in thegrowth rateµ(t). Modelling the uncertainty as
Gaussian white noise we can write

µ(t) = µ+ σξ(t), (3.76)

with ξ(t) denoting the white noise processdWt

dt . Substituting now (3.76) into (3.75) we obtain the SDE for
the geometric Brownian motion. The multiplicative noise in(3.74) is due to our lack of complete knowledge
of the growth parameterµ(t). This is a general feature in the modelling of physical, biological systems using
SDEs: multiplicative noise is quite often associated with fluctuations or uncertainty in the parameters of the
model.

The generator of the geometric Brownian motion is

L = µx
d

dx
+
σ2x2

2

d2

dx2
.

The solution of (3.74) is

X(t) = x exp

((
µ− σ2

2

)
t+ σW (t)

)
. (3.77)

To derive this formula, we apply Itô’s formula to the function f(x) = log(x):

d log(Xt) = L
(
log(Xt)

)
dt+ σx

d

dx
log(Xt) dWt

=

(
µXt

1

Xt
+
σ2X2

t

2

(
− 1

X2
t

))
dt+ σ dWt

=

(
µ− σ2

2

)
dt+ σ dWt.
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Consequently:

log

(
Xt

X0

)
=

(
µ− σ2

2

)
t+ σW (t),

from which (3.77) follows.
Notice that if we interpret the stochastic differential in (3.74) in the Stratonovich sense, then the solution

is no longer given by (3.77). To see this, first note that from (3.28) it follows that the Stratonovich SDE

dXt = µXt dt+ σXt ◦ dWt, X0 = x, (3.78)

is equivalent to the Itô SDE

dXt =

(
µ+

1

2
σ2
)
Xt dt+ σXt dWt, X0 = x. (3.79)

Consequently, from (3.77) and replacingµ with µ+ 1
2σ

2 we conclude that the solution of (3.78) is

X(t) = x exp(µt+ σW (t)). (3.80)

Comparing (3.77) with (3.80) we immediately see that the Itˆo and Stratonovich interpretations of the stochas-
tic integral lead to SDEs with different properties. For example, from (3.77) we observe that the noise
in (3.74) can change the qualitative behaviour of the solution: for µ > 0 the solution to the deterministic
equation (σ = 0) increases exponentially ast→ +∞, whereas for the solution of the stochastic equation, it
can be shown that it converges to0 with probability one, provided thatµ− σ2

2 ) < 0.
We now present a list of stochastic differential equations that appear in applications.

• The Cox-Ingersoll-Ross equation:

dXt = α(b−Xt) dt+ σ
√
Xt dWt, (3.81)

whereα, b, σ are positive constants.

• The stochastic Verhulst equation (population dynamics):

dXt = (λXt −X2
t ) dt+ σXt dWt. (3.82)

• Coupled Lotka-Volterra stochastic equations:

dXi(t) = Xi(t)


ai +

d∑

j=1

bijXj(t)


 dt+ σiXi(t) dWi(t). (3.83)

• Protein kinetics:

dXt = (α−Xt + λXt(1−Xt)) dt+ σXt(1−Xt) ◦ dWt. (3.84)

• Dynamics of a tracer particle (turbulent diffusion):

dXt = u(Xt, t) dt+ σ dWt, ∇ · u(x, t) = 0. (3.85)
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• Josephson junction (pendulum with friction and noise):

φ̈t = − sin(φt)− γφ̇t +
√

2γβ−1 Ẇt. (3.86)

• Noisy Duffing oscillator (stochastic resonance)

Ẍt = −βXt − αX3
t − γẊt +A cos(ωt) + σ Ẇt. (3.87)

• The stochastic heat equation that we can write formally as

∂tu = ∂2xu+ ∂tW (x, t), (3.88)

whereW (x, t) denotes an infinite dimensional Brownian motion. We can consider (3.88) on[0, 1]
with Dirichlet boundary conditions. We can representW (x, t) as a Fourier series:

W (x, t) =
+∞∑

k=1

ek(x)Wk(t), (3.89)

whereWk(t), k = 1, · · · + ∞ are one dimensional independent Brownian motions and{ek(x)}+∞
k=1

is the standard orthonormal basis inL2(0, 1) with Dirichlet boundary conditions, i.e.ek(x) =

sin(2πkx), k = 1, · · · +∞.

3.6 Lamperti’s Transformation and Girsanov’s Theorem

Stochastic differential equations with a nontrivial driftand multiplicative noise are hard to analyze, in par-
ticular in dimensions higher than one. In this section we present two techniques that enable us to map
equations with multiplicative noise to equations with additive noise, and to map equations with a noncon-
stant drift to equations with no drift and multiplicative noise. The first technique, Lamperti’s transformation
works mostly in one dimension, whereas the second technique, Girsanov’s theorem is applicable in arbi-
trary, even infinite, dimensions.

Lamperti’s transformation

For stochastic differential equations in one dimension it is possible to map multiplicative noise to additive
noise through a generalisation of the method that we used in order to obtain the solution of the equation for
geometric Brownian motion. Consider a one dimensional ItôSDE with multiplicative noise

dXt = b(Xt) dt+ σ(Xt) dWt. (3.90)

We ask whether there exists a transformationz = h(x) that maps (3.90) into an SDE with additive noise.
We apply Itô’s formula to obtain

dZt = Lh(Xt) dt+ h′(Xt)σ(Xt) dWt,
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whereL denotes the generator ofXt. In order to obtain an SDE with unit diffusion coefficient we need to
impose the condition

h′(x)σ(x) = 1,

from which we deduce that

h(x) =

∫ x

x0

1

σ(x)
dx, (3.91)

wherex0 is arbitrary. We have that

Lh(x) = b(x)

σ(x)
− 1

2
σ′(x).

Consequently, the transformed SDE has the form

dYt = bY (Yt) dt+ dWt (3.92)

with

bY (y) =
b(h−1(y))

σ(h−1(y))
− 1

2
σ′(h−1(y)).

This is called theLamperti transformation. As an application of this transformation, consider the Cox-
Ingersoll-Ross equation (3.81)

dXt = (µ − αXt) dt+ σ
√
Xt dWt, X0 = x > 0.

From (3.91) we deduce that

h(x) =
2

σ

√
x.

The generator of this process is

L = (µ− αx)
d

dx
+
σ2

2
x
d2

dx2
.

We have that

Lh(x) =
(µ
σ
− σ

4

)
x−1/2 − α

σ
x1/2.

The CIR equation becomes, forYt = 2
σ

√
Xt,

dYt =
(µ
σ
− σ

4

) 1√
Xt

dt− α

σ

√
Xt dt+ dWt

=

[(
2µ

σ2
− 1

2

)
1

Yt
− α

2
Yt

]
dt+ dWt.

Whenµ = σ2

4 the equation above becomes the Ornstein-Uhlenbeck processfor Yt.

Apart from being a useful tool for obtaining solutions to onedimensional SDEs with multiplicative
noise, it is also often used in statistical inference for SDEs. See Section??and the discussion in Section??.
Such a transformation does not exist for arbitrary SDEs in higher dimensions. In particular, it is not possible,
in general, to transform a multidimensional Itô SDE with multiplicative noise to an SDE with additive noise;
see Exercise 8.
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Girsanov’s theorem

Conversely, it is also sometimes possible to remove the drift term from an SDE and obtain an equation where
only (multiplicative) noise is present. Consider first the following one dimensional SDE:

dXt = b(Xt) dt+ dWt. (3.93)

We introduce the following functional ofXt

Mt = exp

(
−1

2

∫ t

0
b2(Xs) ds+

∫ t

0
b(Xs) dWs

)
. (3.94)

We can writeMt = e−Yt whereYt is the solution to the SDE

Mt = e−Yt , dYt =
1

2
b2(Xt) dt+ b(Xt) dWt, Y0 = 0. (3.95)

We can now apply Itô’s formula to obtain the equation

dMt = −Mtb(Xt) dWt. (3.96)

Notice that this is a stochastic differential equation without drift.
In fact, under appropriate conditions on the driftb(·), it is possible to show that the law of the process

Xt, denoted byP, which is a probability measure over the space of continuousfunctions, is absolutely
continuous with respect to the Wiener measurePW , the law of the Brownian motionWt. The Radon-
Nikodymderivative between these two measures is the inverse of the stochastic processMt given in (3.95):

dP

dPW
(Xt) = exp

(
1

2

∫ t

0
b2(Xs) ds +

∫ t

0
b(Xs) dWs

)
. (3.97)

This is a form ofGirsanov’s theorem. Using now equation (3.93) we can rewrite (3.97) as

dP

dPW
(Xt) = exp

(∫ t

0
b(Xs) dXs −

1

2

∫ t

0
|b(Xs)|2 ds

)
. (3.98)

The Girsanov transformation (3.96) or (3.98) enables us to ”compare” the processXt with the Brownian
motionWt. This is a very useful result when the drift functionb(·) in (3.93) is known up to parameters that
we want to estimate from observations. In this context, the Radon-Nikodym derivative in (3.98) becomes
the likelihood function. We will study the problem of maximum likelihood parameter estimation for SDEs
in Section??.

3.7 Linear Stochastic Differential Equations

In this section we study linear SDEs in arbitrary finite dimensions. LetA, Q ∈ Rd×d be positive definite
and positive semidefinite matrices, respectively and letW (t) be a standard Brownian motion inRd. We will
consider the SDE5

dX(t) = −AX(t) dt + σ dW (t), (3.99)

5We can also consider the case whereσ ∈ Rd×m with n 6= m, i.e. when the SDE is driven by anm dimensional Brownian
motion.
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or, componentwise,

dXi(t) = −
d∑

j=1

AijXj(t) +

d∑

j=1

σij dWj(t), i = 1, . . . d,

The initial conditionsX(0) = x can be taken to be either deterministic or random. The generator of the
Markov processX(t) is

L = −Ax · ∇+
1

2
Σ : D2,

whereΣ = σσT . The corresponding Fokker-Planck equation is

∂p

∂t
= ∇ · (Axp) + 1

2
∇ ·
(
Σ∇p

)
. (3.100)

The solution of (3.99) is

X(t) = e−Atx+

∫ t

0
e−A(t−s)σ dW (s). (3.101)

We use the fact that the stochastic integral is a martingale to calculate the expectation of the processX(t):

µ(t) := EX(t) = e−At
Ex.

To simplify the formulas below we will setµ(t) = 0. This is with no loss of generality, since we can define
the new processY (t) = X(t)− µ(t) that is mean zero.

We think ofX(t) ∈ R
d×1 as a column vector. Consequently,XT (t) ∈ R

1×n is a row vector. The
autocorrelation matrix is

R(t, s) = E(X(t)XT (s)) = E(X(t)⊗Xs).

Componentwise:
Rij(t, s) = E(Xi(t)Xj(s)).

We will denote the covariance matrix of the initial conditionsx byR0, ExxT =: R0.

Proposition 3.10. The autocorrelation matrix of the processX(t) is given by

R(t, s) = e−At

(
R0 +

∫ min(t,s)

0
eAρΣeA

T ρ dρ

)
e−AT s. (3.102)

Furthermore, the variance at timet, Σ(t) := R(t, t) satisfies the differential equation

dΣ(t)

dt
= −AΣ(t)− Σ(t)AT +Σ. (3.103)

The steady state varianceΣ∞ is the solution of the equation

AΣ∞ +Σ∞A
T = Σ. (3.104)

The solution to this equation is

Σ∞ =

∫ +∞

0
eAρΣeA

T ρ dρ (3.105)

The invariant distribution of(3.99)is Gaussian with mean0 and varianceΣ∞.
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Proof. We will use the notationSt = e−At andBt = QW (t). The solution (3.101) can be written in the
form

Xt = Stx+

∫ t

0
St−s dBs.

Consequently, and using the properties of the stochastic integral:

R(t, s) = E

(
(Stx)(Ssx)

T
)
+ E

∫ t

0

∫ s

0

(
St−ℓ dBℓ

)(
Ss−ρ dBρ

)T

=: StE(xx
T )Ss +

∫ t

0

∫ s

0
St−ℓQE

(
dWℓdW

T
ρ

)
QTST

s−ρ

= StR0Ss +

∫ t

0

∫ s

0
St−ℓQδ(ℓ− ρ)QTST

s−ρ dℓdρ

= StR0Ss +

∫ min(t,s)

0
St−ρΣS

T
s−ρ dρ

= e−At

(
R0 +

∫ min(t,s)

0
eAρΣeA

T ρ dρ

)
e−AT s.

From (3.102) it follows that, withΣt := R(t, t),

Σt = e−At

(
R0 +

∫ t

0
eAρΣeA

T ρ dρ

)
e−AT t. (3.106)

Upon differentiating this equation we obtain the equation for the variance:

dΣt

dt
= −AΣt − ΣtA

T +Σ,

with Σ0 = R0. We now set the left hand side of the above equation to0 to obtain the equation for the steady
state varianceΣ∞:

AΣ∞ +Σ∞A
T = Σ.

Equation (3.104) is an example of aLyapunov equation. WhenΣ is strictly positive definite then it is
possible to show that (3.105) is a well defined unique solution of (3.104); see Exercise 4. The situation
becomes more complicated whenΣ is positive semidefinite. See the discussion in Section 3.8.

We can use Proposition 3.10 us to solve the Fokker-Planck equation (3.100) with initial conditions

p(x, t|x0, 0) = δ(x− x0). (3.107)

The solution of (3.99) withX(0) = x0 deterministic is a Gaussian process with meanµ(t) = e−At and
varianceΣt given by (3.106). Consequently, the solution of the Fokker-Planck equation with initial condi-
tions (3.107):

p(x, t|x0, 0) =
1

(2π)n/2
√

det(Σ(t))
exp

(
−1

2

(
x− e−Atx0

)T
Σ−1(t)

(
x− e−Atx0

))
. (3.108)

This result can also be obtained by using the Fourier transform. See Exercise 6.
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3.8 Discussion and Bibliography

Stochastic differential equations and stochastic calculus are treated in many textbooks. See, for example [5,
25, 26, 42, 66, 75, 20] as well as [46, 83, 90, 91]. The reader isstrongly encouraged to study carefully
the proofs of the construction of the Itô integral, Itô’s formula and of the basic existence and uniqueness
theorem for stochastic differential equations from the above references.

In this book, we consider stochastic equations in finite dimensions. There is also a very well developed
theory of stochastic partial differential equations; see [78]. Proposition 3.2 is taken from [75, Exer. 3.10].
Theorem 3.6 is taken from [75] where the proof be found; see also [49, Ch. 21] and [79, Thm. 3.1.1].
The assumption that the drift and diffusion coefficient is globally Lipschitz can be weakened when a priori
bounds on the solution can be found. This is the case, for example, when aLyapunov functioncan be
constructed. See, e.g. [66]. Several examples of stochastic equations that can be solved analytically can be
found in [27].

The derivation of Itô’s formula is similar to the derivation of the backward Kolmogorov equation that
was presented in Chapter 2, in particular Theorem 2.7. The proof can be found in all of the books on
stochastic differential equations mentioned above. The Feynman-Kac formula, which his a generalization
of Itô’s formula, was first derived in the context of quantummechanics, providing a path integral solution to
the Schrödinger equation. Path integrals and functional integration are studied in detail in [94, 31].

The concept of the solution used in 3.6 is that of astrong solution. It is also possible to define weak
solutions of SDEs, in which case the Brownian motion that is driving the SDE (3.35) is not specified a
priori. Roughly speaking, the concept of a weak solution fora stochastic equation is related to the solution
of the corresponding Fokker-Planck equation, i.e. the law of the processXt. One could argue that in some
applications such as physics and chemistry the concept of a weak solution is more natural than that of a
strong solution, since in these applications one is usuallyinterested in probability distribution functions
rather than the actual paths of a diffusion process.

It is not very difficult to construct examples of stochastic differential equations that have weak but not
strong solutions. A standard example is that of theTanaka equation

dXt = sgn(Xt) dWt, (3.109)

wheresgn denotes the sign function. One can show that this equation has no strong solution (which is not
a big surprise, since the assumptions of Theorem 3.6 are not satisfied), but that it does have a unique weak
solution. See [75] for the details. The fact that (3.109) is solvable in the weak sense follows from the fact
that the Fokker-Planck equation for (3.109) is simply the heat equation, i.e. the Fokker-Planck equation for
Brownian motion. Hence, any Brownian motion is a weak solution of the Tanaka equation.

Itô’s formula also holds for a particular class of random times, the Markov orstopping times. Roughly
speaking, a stopping time is a random timeτ for which we can decide whether it has already occurred or
not based on the information that is available to us, i.e. thesolution of our stochastic differential equation
up to the present time.6 Let Xt be a diffusion process with generatorL, starting atx. We will denote the

6More precisely: Let{Ft} be a filtration. A functionτ Ω 7→ [0,+∞] is a called a (strict) stopping time with respect to{Ft}
provided that

{

ω ; τ (ω) 6 t
}

∈ Ft for all t > 0.
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expectation with respect to the law of this process byE
x. Let furthermoref ∈ C2

0 (R
d) and letτ be a

stopping time withEτ < +∞. Dynkin’s formulareads

E
xf(Xτ ) = f(x) + E

x
[ ∫ τ

0
Lf(Xs) ds

]
. (3.110)

The derivation of this formula and generalizations can be found in [75, Ch. 7, 8]. Dynkin’s formula and the
Feynman-Kac formula are very useful for deriving partial differential equations for interesting functionals
of the diffusion processXt. Details, in particular for diffusion processes in one dimension, can be found
in [47].

It is not possible, in general, to transform a stochastic differential equation with multiplicative noise to
one with additive noise in dimensions higher than one. In other words, the Lamperti transformation exists,
unless additional assumptions on the diffusion matrix are imposed, only in one dimension. Extensions of
this transformation to higher dimensions are discussed in [2]. See also Exercise 8.

Girsanov’s theorem is one of the fundamental results in stochastic analysis and is presented in all the
standard textbooks, e.g. [46, 83, 43]. A very detailed discussion of Girsanov’s theorem and of its connection
with the construction of the likelihood function for diffusion processes can be found in [56, Ch. 7]. A form
of Girsanov’s theorem that is very useful in statistical inference for diffusion processes is the following [51,
Sec. 1.1.4], [41, Sec. 1.12]: consider the two equations

dXt = b1(Xt) dt+ σ(Xt) dWt, X0 = x1, t ∈ [0, T ], (3.111a)

dXt = b2(Xt) dt+ σ(Xt) dWt, X0 = x2, t ∈ [0, T ], (3.111b)

whereσ(x) > 0. We assume that we have existence and uniqueness of strong solutions for both SDEs.
Assume thatx1 andx2 are random variables with densitiesf1(x) andf2(x) with respect to the Lebesgue
measure which have the same support, or nonrandom and equal to the same constant. LetP1 andP2 denote
the laws of these two SDEs. Then these two measures are equivalent7 and their Radon-Nikodym derivative
is

dP2

dP1
(X) =

f2(X0)

f1(X0)
exp

(∫ T

0

b2(Xt)− b1(Xt)

σ2(Xt)
dXt −

1

2

∫ T

0

b22(Xt)− b21(Xt)

σ2(Xt)
dt

)
. (3.112)

Linear stochastic differential equations are studied in most textbooks on stochastic differential equations and
stochastic processes, see, e.g. [5, Ch. 8], [86, Ch. 6].

3.9 Exercises

1. Calculate all moments of the geometric Brownian motion (3.74) for the Itô and Stratonovich interpreta-
tions of the noise in the equation.

2. Prove rigorously (3.24) by keeping careful track of the error terms.

3. Use Itô’s formula to obtain the Feynman-Kac formula (3.56). (Hint: DefineYt = f(Xt) andZt =

exp
(
−
∫ t
0 q(Xs) ds

)
. Calculate thend(Yt Zt) and use this to calculateE(YtZt)).

7Two probability measuresP1, P2 are equivalent on aσ-fieldG if P1(A) = 0 =⇒ P2(A) = 0 for all A ∈ G. In this casedP2

dP1

and dP1

dP2

exist.
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4. Consider Equation (3.104) and assume that all the eigenvalues of the matrixA have positive real parts.
Assume furthermore thatΣ is symmetric and strictly positive definite. Show that thereexists a unique
positive solution to the Lyapunov equation (3.104).

5. Obtain (3.103) using Itô’s formula.

6. Solve the Fokker-Planck equation (3.100) with initial conditions (3.107) (hint: take the Fourier transform
and use the fact that the Fourier transform of a Gaussian function is Gaussian). Assume that the matrices
A andΣ commute. Calculate the stationary autocorrelation matrixusing the formula

E(XT
0 Xt) =

∫ ∫
xT0 xp(x, t|x0, 0)ps(x0) dxdx0

and Gaussian integration.

7. Consider the mean reverting Ornstein-Uhlenbeck process

dXt =
(
µ− αXt

)
dt+

√
2λdWt, X(0) = x. (3.113)

Obtain a solution to this equation. Write down the generatorand the Fokker-Planck equation. Obtain the
transition probability density, the stationary distribution and formulas for the moments of this process.

8. Consider the two-dimensional Itô stochastic equation

dXt = b(Xt) dt+ σ(Xt) dWt, (3.114)

whereWt is a standard two-dimensional Brownian motion andσ(x) ∈ R
2×2 a uniformly positive definite

matrix. Investigate whether a generalisation of the Lamperti transformation (3.91) to two dimensions
exist, i.e. whether there exists a transformation that maps(3.114) to an SDE with additive noise. In
particular, find conditions onσ(x) so that such a transformation exists. What is the analogue ofthis
transformation at the level of the backward and forward Kolmogorov equations? Is such a transformation
still possible when we consider a diffusion process in a bounded domain with reflecting, absorbing or
periodic boundary conditions?

9. (See [38, Ch. 6])

(a) Consider the Itô equation
dXt = f(Xt) dt+ σg(Xt) dWt. (3.115)

Define

Z(x) =
f(x)

g(x)
− 1

2

dg

dx
(x) and θ(x) = − 1

dZ
dx (x)

d

dx

(
g(x)

dZ

dx
(x)

)
.

Assume that
θ(x) = const≡ θ. (3.116)

Define the diffusion processYt

Yt = exp(θB(Xt)), B(x) =

∫ x 1

g(z)
dz.
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Show that when (3.116) is satisfied,Yt is the solution of the linear SDE

dYt = (α + βYt) dt+ (γ + σYt) dWt. (3.117)

(b) Apply this transformation to obtain the solution and thetransition probability density of the Stratonovich
equation

dXt = − 1

2
√
2
tanh(2

√
2Xt) dt+

σ

4
sech(2

√
2Xt) ◦ dWt. (3.118)

(c) Do the same for the Verhulst SDE

dXt = (λXt −X2
t ) dt+ σXt dWt. (3.119)
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Chapter 4

The Fokker-Planck Equation

In Chapter 2 we derived the backward and forward (Fokker-Planck) Kolmogorov equations.1 The Fokker-
Planck equation enables us to calculate the transition probability density, which we can use in order to
calculate the expectation value of observables of a diffusion process. In this chapter we study various
properties of this equation such as existence and uniqueness of solutions, long time asymptotics, boundary
conditions and spectral properties of the Fokker-Planck operator. We also study in some detail various
examples of diffusion processes and of the associated Fokker-Palnck equation. We will restrict attention to
time-homogeneous diffusion processes, for which the driftand diffusion coefficients do not depend on time.

In Section 4.1 we study various basic properties of the Fokker-Planck equation, including existence and
uniqueness of solutions and boundary conditions. In Section 4.2 we present some examples of diffusion
processes and use the corresponding Fokker-Planck equation in order to calculate statistical quantities such
as moments. In Section 4.3 we study diffusion processes in one dimension. In Section 4.4 we study the
Ornstein-Uhlenbeck process and we study the spectral properties of the corresponding Fokker-Planck oper-
ator. In Section 4.5 we study stochastic processes whose drift is given by the gradient of a scalar function,
the so-called Smoluchowski equation . In Section 4.6 we study properties of the Fokker-Planck equation
corresponding to reversible diffusions. In Section 4.7 we solve the Fokker-Planck equation for a reversible
diffusion using eigenfunction expansions. In Section 4.8 we introduce very briefly Markov Chain Monte
Carlo techniques. In Section 4.9 we study the connection between the Fokker-Planck operator, the generator
of a diffusion process and the Schrödinger operator. Discussion and bibliographical remarks are included in
Section 4.10. Exercises can be found in Section 4.11.

4.1 Basic properties of the Fokker-Planck equation

We consider a time-homogeneous diffusion processXt onR
d with drift vectorb(x) and diffusion matrix

Σ(x). We assume that the initial conditionX0 is a random variable with probability density functionρ0(x).
The transition probability densityp(x, t), if it exists and is aC2,1(Rd × R

+) function, is the solution of the

1In this chapter we will call the equation Fokker-Planck, which is more customary in the physics literature. rather forward
Kolmogorov, which is more customary in the mathematics literature.
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initial value problem for the Fokker-Planck (backward Kolmogorov) equation that we derived in Chapter 2

∂p

∂t
= ∇ ·

(
− b(x)p +

1

2
∇ ·
(
Σ(x)p

))
(4.1a)

= −
d∑

j=1

∂

∂xj
(bi(x)p) +

1

2

d∑

i,j=1

∂2

∂xi∂xj
(Σij(x)p),

p(x, 0) = ρ0(x). (4.1b)

The Fokker-Planck equation (4.1a) can be written in equivalent forms that are often useful. First, we can
rewrite it in the form

∂p

∂t
= ∇ ·

(
b̂(x)p

)
+

1

2
∇ ·
(
Σ(x)∇p

)
. (4.2)

with
b̂(x) = −b(x) +

1

2
∇ ·Σ(x). (4.3)

We can also write the Fokker-Planck equation in non-divergence form:

∂p

∂t
=

1

2
Σ(x) : D2p+ b̃(x) · ∇p+ c(x)p, (4.4)

where
b̃(x) = −b(x) +

1

2
∇ ·Σ(x), c(x) = −∇ · b(x) + 1

2
∇ · (∇ ·Σ)(x). (4.5)

By definition (see equation (2.62)), the diffusion matrix isalways symmetric and nonnegative. We will
assume that it is uniformly positive definite: there exists aconstantα > 0 such that

〈ξ,Σ(x)ξ〉 > α‖ξ‖2, ∀ ξ ∈ R
d, (4.6)

uniformly in x ∈ R
d. We will refer to this as the uniform ellipticity assumption. This assumption is

sufficient to guarantee the existence of the transition probability density; see the discussion in Section??.
Furthermore, we will assume that the coefficients in (4.4) are smooth and that they satisfy the growth

conditions
‖Σ(x)‖ 6M, ‖̂̂b(x)‖ 6M(1 + ‖x‖), ‖c(x)‖ 6M(1 + ‖x‖2). (4.7)

Definition 4.1. We will call a solution to the initial value problem for the Fokker-Planck equation(4.4) a
classical solution if:

i. p(x, t) ∈ C2,1(Rd,R+).

ii. ∀T > 0 there exists ac > 0 such that

‖p(t, x)‖L∞(0,T ) 6 ceα‖x‖
2

iii. limt→0 p(t, x) = ρ0(x).

We can prove that, under the regularity and uniform ellipticity assumptions, the Fokker-Planck equation
has a unique smooth solution. Furthermore, we can obtain pointwise bounds on the solution.
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Theorem 4.2.Assume that conditions(4.6)and(4.7)are satisfied, and assume that|ρ0(x)| 6 ceα‖x‖
2
. Then

there exists a unique classical solution to the Cauchy problem for the Fokker-Planck equation. Furthermore,
there exist positive constantsK, δ so that

|p|, |pt|, ‖∇p‖, ‖D2p‖ 6 Kt(−d+2)/2 exp

(
− 1

2t
δ‖x‖2

)
. (4.8)

From estimates (4.8) it follows that all moments of a diffusion process whose diffusion matrix satisfies
the uniform ellipticity assumption (4.6) exist. In particular, we can multiply the Fokker-Planck equation by
monomialsxn, integrate overRd and then integrate by parts. It also follows from the maximumprinciple
for parabolic PDEs that the solution of the Fokker-Planck equation is nonnegative for all times, when the
initial conditionρ0(x) is nonnegative. Sinceρ0(x) is the probability density function of the random variable
X0 it is nonnegative and normalized,|ρ0|L1(Rd) = 1. The solution to the Fokker-Planck equation preserves
this properties–as we would expect, since it is the transition probability density.

The Fokker-Planck equation can be written as the familiar continuity equation from continuum mechan-
ics. We define theprobability flux (current)to be the vector

J := b(x)p− 1

2
∇ ·
(
Σ(x)p

)
. (4.9)

The Fokker-Planck equation can be written in the form

∂p

∂t
+∇ · J = 0. (4.10)

Integrating the Fokker-Planck equation overR
d and using the divergence theorem on the right hand side of

the equation, together with (4.8), we obtain

d

dt

∫

Rd

p(x, t) dx = 0.

Consequently: ∫

Rd

p(x, t) dx =

∫

Rd

ρ0(x) dx = 1. (4.11)

Hence, the total probability is conserved, as expected.
The stationary Fokker-Planck equation, whose solutions give us the invariant distributions of the diffu-

sion processXt, can be written in the form

∇ · J(ps) = 0. (4.12)

Consequently, the equilibrium probability flux is a divergence-free vector field.

Boundary conditions for the Fokker-Planck equation

There are many applications where it is necessary to study diffusion processes in bounded domains. In such
cases we need to specify the behavior of the diffusion process on the boundary of the domain. Equivalently,
we need to specify the behavior of the transition probability density on the boundary. Diffusion processes
in bounded domains lead to initial boundary value problems for the corresponding Fokker-Planck equation.
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To understand the type of boundary conditions that we can impose on the Fokker-Planck equation, let
us consider the example of a random walk on the domain{0, 1, . . . N}.2 When the random walker reaches
either the left or the right boundary we can consider the following cases:

i. X0 = 0 orXN = 0, which means that the particle gets absorbed at the boundary;

ii. X0 = X1 orXN = XN−1, which means that the particle is reflected at the boundary;

iii. X0 = XN , which means that the particle is moving on a circle (i.e., weidentify the left and right
boundaries).

These three different boundary behaviors for the random walk correspond to absorbing, reflecting or periodic
boundary conditions.

Consider the Fokker-Planck equation posed inΩ ⊂ R
d whereΩ is a bounded domain with smooth

boundary. LetJ denote the probability current and letn be the unit outward pointing normal vector to the
surface. The above boundary conditions become:

i. The transition probability density vanishes on an absorbing boundary:

p(x, t) = 0, on ∂Ω.

ii. There is no net flow of probability on a reflecting boundary:

n · J(x, t) = 0, on ∂Ω.

iii. Consider the case whereΩ = [0, L]d and assume that the transition probability function is periodic in
all directions with periodL. We can then consider the Fokker-Planck equation in[0, L]d with periodic
boundary conditions.

Using the terminology of the theory of partial differentialequations, absorbing boundary conditions corre-
spond to Dirichlet boundary conditions and reflecting boundary conditions correspond to Robin boundary
conditions. We can, of course, consider mixed boundary conditions where part of the domain is absorbing
and part of it is reflecting.

Consider now a diffusion process in one dimension on the interval [0, L]. The boundary conditions are

p(0, t) = p(L, t) = 0 absorbing,

J(0, t) = J(L, t) = 0 reflecting,

p(0, t) = p(L, t) periodic,

where the probability current is defined in (4.9). An exampleof mixed boundary conditions would be
absorbing boundary conditions at the left end and reflectingboundary conditions at the right end:

p(0, t) = 0, J(L, t) = 0.

2Of course, the random walk is not a diffusion process. However, as we have already seen the Brownian motion can be defined
as the limit of an appropriately rescaled random walk. A similar construction exists for more general diffusion processes.
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4.2 Examples of Diffusion Processes and their Fokker-Planck Equation

There are several examples of diffusion processes in one dimension for which the corresponding Fokker-
Planck equation can be solved analytically. We present someexamples in this section. In the next section
we study diffusion processes in one dimension using eigenfunction expansions.

Brownian motion

First we consider Brownian motion inR. We setb(x, t) ≡ 0, Σ(x, t) ≡ 2D > 0. The Fokker-Planck
equation for Brownian motion is the heat equation. We calculate the transition probability density for a
Brownian particle that is atx0 at times. The Fokker-Planck equation for the transition probability density
p(x, t|x0, s) is:

∂p

∂t
= D

∂2p

∂x2
, p(x, s|x0, s) = δ(x− x0). (4.13)

The solution to this equation is the Green’s function (fundamental solution) of the heat equation:

p(x, t|y, s) = 1√
4πD(t− s)

exp

(
− (x− x0)

2

4D(t− s)

)
. (4.14)

Quite often we can obtain information on the properties of a diffusion process, for example, we can calculate
moments, without having to solve the Fokker-Planck equation but by only using the structure of the equation.
For example, using the Fokker-Planck equation (4.13) we canshow that the mean squared displacement of
Brownian motion grows linearly in time. Assume that the Brownian particle was atx0 initially. We calculate,
by performing two integrations by parts (which can be justified in view of (4.14))

d

dt
EW 2

t =
d

dt

∫

R

x2p(x, t|x0, 0) dx

= D

∫

R

x2
∂2p(x, t|x0, 0)

∂x2
dx

= D

∫

R

p(x, t|x0, 0) dx = 2D,

From this calculation we conclude that the one dimensional Brownian motionWt with diffusion coefficient
D satisfies

EW 2
t = 2Dt.

Assume now that the initial conditionW0 of the Brownian particle is a random variable with distribution
ρ0(x). To calculate the transition probability density of the Brownian particle we need to solve the Fokker-
Planck equation with initial conditionρ0(x). In other words, we need to take the average of the probability
density function

p(x, t|x0) := p(x, t|x0, 0)

over all initial realizations of the Brownian particle. Thesolution of the Fokker-Planck equation with
p(x, 0) = ρ0(x) is

p(x, t) =

∫
p(x, t|x0)ρ0(x0) dx0. (4.15)
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Brownian motion with absorbing boundary conditions

We can also consider Brownian motion in a bounded domain, with either absorbing, reflecting or periodic
boundary conditions. Consider the Fokker-Planck equationfor Brownian motion with diffusion coefficient
D (4.13) on[0, 1] with absorbing boundary conditions:

∂p

∂t
=

1

2

∂2p

∂x2
, p(0, t|x0) = p(1, t|x0) = 0, p(x, 0|x0) = δ(x− x0), (4.16)

In view of the Dirichlet boundary conditions we look for a solution to this equation in a sine Fourier series:

p(x, t) =
∞∑

k=1

pn(t) sin(nπx). (4.17)

With our choice (4.16) the boundary conditions are automatically satisfied. The Fourier coefficients of the
initial conditionδ(x− x0) are

pn(0) = 2

∫ 1

0
δ(x− x0) sin(nπx) dx = 2 sin(nπx0).

We substitute the expansion (4.17) into (4.16) and use the orthogonality properties of the Fourier basis to
obtain the equations

ṗn = −n2Dπ2pn n = 1, 2, . . .

The solution of this equation is
pn(t) = pn(0)e

−n2π2Dt.

Consequently, the transition probability density for the Brownian motion on[0, 1] with absorbing boundary
conditions is

p(x, t|x0, 0) = 2
∞∑

n=1

e−n2π2Dt sin(nπx0) sin(nπx).

Notice that
lim
t→∞

p(x, t|x0) = 0.

This is not surprising, since all Brownian particles will eventually get absorbed at the boundary.

Brownian Motion with Reflecting Boundary Condition

Consider now Brownian motion with diffusion coefficientD on the interval[0, 1] with reflecting boundary
conditions. To calculate the transition probability density we solve the Fokker-Planck equation which in this
case is the heat equation on[0, 1] with Neumann boundary conditions:

∂p

∂t
= D

∂2p

∂x2
, ∂xp(0, t|x0) = ∂xp(1, t|x0) = 0, p(x, 0) = δ(x− x0).

The boundary conditions are satisfied by functions of the form cos(nπx). We look for a solution in the form
of a cosine Fourier series

p(x, t) =
1

2
a0 +

∞∑

n=1

an(t) cos(nπx).
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From the initial conditions we obtain

an(0) = 2

∫ 1

0
cos(nπx)δ(x − x0) dx = 2cos(nπx0).

We substitute the expansion into the PDE and use the orthonormality of the Fourier basis to obtain the
equations for the Fourier coefficients:

ȧn = −n2π2Dan
from which we deduce that

an(t) = an(0)e
−n2π2Dt.

Consequently

p(x, t|x0) = 1 + 2
∞∑

n=1

cos(nπx0) cos(nπx)e
−n2π2Dt.

Brownian motion on [0,1] with reflecting boundary conditions is an ergodic Markov process. To see this, let
us consider the stationary Fokker-Planck equation

∂2ps
∂x2

= 0, ∂xps(0) = ∂xps(1) = 0.

The unique normalized solution to this boundary value problem isps(x) = 1. Indeed, we multiply the
equation byps, integrate by parts and use the boundary conditions to obtain

∫ 1

0

∣∣∣∣
dps
dx

∣∣∣∣
2

dx = 0,

from which it follows thatps(x) = 1. Alternatively, by taking the limit ofp(x, t|x0) ast → ∞ we obtain
the invariant distribution:

lim
t→∞

p(x, t|x0) = 1.

Now we can calculate the stationary autocorrelation function:

E(WtW0) =

∫ 1

0

∫ 1

0
xx0p(x, t|x0, 0)ps(x0) dxdx0

=

∫ 1

0

∫ 1

0
xx0

(
1 + 2

∞∑

n=1

cos(nπx0) cos(nπx)e
−n2π2Dt

)
dxdx0

=
1

4
+

8

π4

+∞∑

n=0

1

(2n + 1)4
e−(2n+1)2π2Dt.

The Ornstein–Uhlenbeck Process

We set nowb(x, t) = −αx with α > 0 andΣ(x, t) = 2D > 0 for the drift and diffusion coefficients,
respectively. The Fokker-Planck equation for the transition probability densityp(x, t|x0) is

∂p

∂t
= α

∂(xp)

∂x
+D

∂2p

∂x2
, (4.18a)

p(x, 0|x0) = δ(x− x0). (4.18b)
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This equation is posed on the real line, and the boundary conditions are thatp(x, t|x0) decays sufficiently
fast at infinity; see Definition 4.1. The corresponding stochastic differential equation is

dXt = −αXt dt+
√
2D dWt, X0 = x0. (4.19)

In addition to Brownian motion there is a linear force pulling the particle towards the origin. We know that
Brownian motion is not a stationary process, since the variance grows linearly in time. By adding a linear
damping term, it is reasonable to expect that the resulting process can become stationary. When (4.19) is
used to model the velocity or position of a particle, the noisy term on the right hand side of the equation
is related to thermal fluctuations. The diffusion coefficient D measures the strength of thermal fluctuations
and it is associated with the temperature:

D = kBT =: β−1, (4.20)

whereT denotes the absolute temperature andkB Boltzmann’s constant. We will quite often use the notation
β−1 and refer toβ as the inverse temperature. We will also refer toα in (4.19) as the friction coefficient.

The solution of the stochastic differential equation (4.19) is given by (3.72). It follows then that

Xt ∼ N
(
x0e

−αt,
D

α
(1− e−2αt)

)
. (4.21)

See Equation (3.72) and Section 3.7. From this we can immediately obtain the transition probability density,
the solution of the Fokker-Planck equation

p(x, t|x0) =
√

α

2πD(1− e−2αt)
exp

(
−α(x− x0e

−αt)2

2D(1 − e−2αt)

)
. (4.22)

We also studied the stationary Ornstein-Uhlenbeck processin Example (2.2) (forα = D = 1) by using the
fact that it can be defined as a time change of the Brownian motion. We can also derive it by solving the
Fokker-Planck equation (4.18), by taking the Fourier transform of (4.18a), solving the resulting first order
PDE using the method of characteristics and then taking the inverse Fourier transform. See Exercise 6 in
Chapter 3.

In the limit as the friction coefficientα goes to0, the transition probability (4.22) converges to the
transition probability of Brownian motion. Furthermore, by taking the long time limit in (4.22) we obtain

lim
t→+∞

p(x, t|x0) =
√

α

2πD
exp

(
−αx

2

2D

)
,

irrespective of the initial positionx0. This is to be expected, since as we have already seen the Ornstein-
Uhlenbeck process is an ergodic Markov process with a Gaussian invariant distribution

ps(x) =

√
α

2πD
exp

(
−αx

2

2D

)
. (4.23)

Using now (4.22) and (4.23) we obtain the stationary joint probability density

p2(x, t|x0) = p(x, t|x0)ps(x0)

=
α

2πD
√
1− e−2αt

exp

(
−α(x

2 + x20 − 2xx0e
−αt)

2D(1− e−2αt)

)
,
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or, starting at an arbitrary initial times,

p2(x, t|x0, s) =
α

2πD
√

1− e−2α|t−s|
exp

(
−α(x

2 + x20 − 2xx0e
−α|t−s|)

2D(1− e−2α|t−s|)

)
. (4.24)

Now we can calculate the stationary autocorrelation function of the Ornstein-Uhlenbeck process

E(XtXs) =

∫ ∫
xx0p2(x, t|x0, s) dxdx0

=
D

α
e−α|t−s|.

The derivation of this formula requires the calculation of Gaussian integrals, similar to the calculations
presented in Section B.5. See Exercise 3 and Section 3.7.

Assume now that the initial conditions of the Ornstein-Uhlenbeck processXt is a random variable
distributed according to a distributionρ0(x). As in the case of a Brownian particle, the probability density
function is given by the convolution integral

p(x, t) =

∫
p(x, t|x0)ρ0(x0) dx0, (4.25)

WhenX0 is distributed according to the invariant distributionps(x), given by (4.23), then the Ornstein-
Uhlenbeck process becomes stationary. The solution to the Fokker-Planck equation is nowps(x) at all
times and the joint probability density is given by (4.24).

Knowledge of the transition probability density enables usto calculate all moments of the Ornstein-
Uhlenbeck process:

Mn := E(Xt)
n =

∫

R

xnp(x, t) dx, n = 0, 1, 2, . . . ,

In fact, we can calculate the moments by using the Fokker-Planck equation, rather than the explicit formula
for the transition probability density. We assume that all moments of the initial distribution exist. We start
with n = 0. We integrate (4.18a) overR to obtain:

∫
∂p

∂t
= α

∫
∂(xp)

∂y
+D

∫
∂2p

∂x2
= 0,

after an integration by parts and using the fact thatp(x, t) decays fast at infinity. Consequently:

d

dt
M0 = 0 ⇒ M0(t) =M0(0) = 1,

which simply means that ∫

R

p(x, t) dx =

∫

R

ρ0(x) dx = 1.

Let nown = 1. We multiply (4.18a) byx, integrate overR and perform an integration by parts to obtain:

d

dt
M1 = −αM1.

Consequently:
M1(t) = e−αtM1(0).
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Now we consider the casen > 2. We multiply (4.18a) byxn and integrate by parts, once on the first term
and twice on the second on the right hand side of the equation)to obtain:

d

dt
Mn = −αnMn +Dn(n− 1)Mn−2, n > 2.

This is a first order linear inhomogeneous differential equation. We can solve it using the variation of
constants formula:

Mn(t) = e−αntMn(0) +Dn(n− 1)

∫ t

0
e−αn(t−s)Mn−2(s) ds. (4.26)

We can use this formula, together with the formulas for the first two moments in order to calculate all higher
order moments in an iterative way. For example, forn = 2 we have

M2(t) = e−2αtM2(0) + 2D

∫ t

0
e−2α(t−s)M0(s) ds

= e−2αtM2(0) +
D

α
e−2αt(e2αt − 1)

=
D

α
+ e−2αt

(
M2(0)−

D

α

)
.

As expected, all moments of the Ornstein-Uhlenbeck processconverge to their stationary values:

M∞
n :=

√
α

2πD

∫

R

xne−
αx2

2D dx

=
{

1.3 . . . (n− 1)
(
D
α

)n/2
, n even,

0, n odd.

In fact, it is clear from (4.26) that the moments conerge to their stationary values exponentially fast and
that the convergence is faster the closer we start from the stationary distribution–see the formula forM2(t).
Later in this chapter we will study the problem of convergence to equilibrium for more general classes of
diffusion processes; see Section 4.6

Geometric Brownian Motion

We setb(x) = µx, Σ(x) = 1
2σ

2x2. This is the geometric Brownian motion that we encountered in
Chapters 1 and 3. This diffusion process appears in mathematical finance and in population dynamics. The
generator of this process is

L = µx
∂

∂x
+
σx2

2

∂2

∂x2
. (4.27)

Notice that this operator is not uniformly elliptic, since the diffusion coefficient vanishes atx = 0. The
Fokker-Planck equation is

∂p

∂t
= − ∂

∂x
(µx) +

∂2

∂x2

(
σ2x2

2
p

)
. (4.28a)

p(x, 0|x0) = δ(x − x0). (4.28b)
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Since the diffusion coefficient is not uniformly elliptic, it is not covered by Theorem 4.2. The corresponding
stochastic differential equation is given by Equation (3.74). As for the Ornstein-Uhlenbeck process, we can
use the Fokker-Planck equation in order to obtain equationsfor the moments of geometric Brownian motion:

d

dt
M1 = µnMn,

d

dt
Mn =

(
µn+

σ2

2
n(n− 1)

)
Mn, n > 2.

We can solve these equations to obtain
M1(t) = eµtM1(0)

and
Mn(t) = e(µ+(n−1)σ

2

2
)ntMn(0), n > 2.

We remark that thenth moment might diverge ast→ ∞, depending on the values ofµ andσ. Consider for
example the second moment. We have

Mn(t) = e(2µ+σ2)tM2(0), (4.29)

which diverges whenσ2 + 2µ > 0.

4.3 Diffusion Processes in One Dimension

In this section we study the Fokker-Planck equation for diffusion processes in one dimension in a bounded
interval and with reflecting boundary conditions. LetXt denote a diffusion process in the interval[ℓ, r] with
drift and diffusion coefficientsb(x) andσ(x), respectively. We will assume thatσ(x) is positive in[ℓ, r].
The transition probability densityp(x, t|x0) is the solution of the following initial boundary value problem
for the Fokker-Planck equation:

∂p

∂t
= − ∂

∂x

(
b(x)p− 1

2

∂

∂x
(σ(x)p)

)
=: −∂J

∂x
, x ∈ (ℓ, r), (4.30a)

p(x, 0|x0) = δ(x− x0), (4.30b)

J(ℓ, t) = J(r, t) = 0. (4.30c)

The reflecting boundary conditions and the assumption on thepositivity of the diffusion coefficient ensure
thatXt is ergodic. We can calculate the unique invariant probability distribution. The stationary Fokker-
Planck equation reads

dJs
dx

= 0, x ∈ (ℓ, r), (4.31a)

Js(ℓ) = Js(r) = 0, (4.31b)

where

Js(x) := J(ps(x)) = b(x)ps(x)−
1

2
σ(x)

dps
dx

(x) (4.32)

denotes the stationary probability flux,ps(x) being the stationary probability distribution. We use the re-
flecting boundary conditions (4.31) to write the stationaryFokker-Planck equation in the form

Js(x) = 0, x ∈ (ℓ, r). (4.33)
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Thus, the stationary probability flux vanishes. This is called thedetailed balancecondition and it will be
discussed in Section 4.6. Equation (4.33) gives

b(x)ps(x)−
1

2

d

dx
(σ(x)ps(x)) = 0, x ∈ (ℓ, r), (4.34)

together with the normalization condition
∫ r

ℓ
ps(x) dx = 1.

The detailed balance condition (4.33) results in the stationary Fokker-Planck equation becoming a first order
differential equation. The solution to (4.34) can be obtained up to one constant, which is determined from
the normalization condition. The solution is

ps(x) =
1

Z

1

σ(x)
exp

(
2

∫ x

ℓ

b(y)

σ(y)
dy

)
, Z =

∫ r

ℓ

(
1

σ(x)
exp

(
2

∫ x

ℓ

b(y)

σ(y)
dy

))
dx. (4.35)

Now we solve the time dependent Fokker-Planck equation (4.30). We first transform the Fokker-Planck
(forward Kolmogorov) equation to the backward Kolmogorov equation, since the boundary conditions for
the generatorL of the diffusion processXt are simpler than those for the Fokker-Planck operatorL∗. Let
p ∈ D(L∗) := {p ∈ C2(ℓ, r) ; J(p(ℓ)) = J(p(r)) = 0}, the domain of definition of the Fokker-Planck
operator with reflecting boundary conditions. We writep(x) = f(x)ps(x) and use the stationary Fokker-
Planck equation and the detailed balance condition (4.31b)to calculate

L∗p =
d

dx

(
−b(x)f(x)ps(x) +

1

2

d

dx
(σ(x)f(x)ps(x))

)

= psLf. (4.36)

Furthermore,

J(p) = J(fps) = −1

2
σ(x)ps(x)

df

dx
(x).

In particular, in view of the reflecting boundary conditionsand the fact that both the diffusion coefficient
and the invariant distribution are positive,

df

dx
(ℓ) =

df

dx
(r) = 0. (4.37)

Consequently, the generatorL of the diffusion processXt is equipped with Neumann boundary conditions,
D(L) = (f ∈ C2(ℓ, r), f ′(ℓ) = f ′(r) = 0).

Setting nowp(x, t|x0) = f(x, t|x0)ps(x), we obtain the following initial boundary value problem

∂f

∂t
= b(x)

∂f

∂x
+

1

2
σ(x)

∂2f

∂x2
=: Lf, x ∈ (ℓ, r), (4.38a)

f(x, 0|x0) = p−1
s (x)δ(x − x0), (4.38b)

f ′(ℓ, t|x0) = f ′(r, t|x0) = 0. (4.38c)

We solve this equation using separation of variables (we suppress the dependence on the initial condition
x0),

f(x, t) = ψ(x)c(t).
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Substituting this into (4.38a) we obtain
ċ

c
=

Lψ
ψ

= −λ,

whereλ is a constant and
c(t) = c(0)e−λt, −Lψ = ψ.

Using the superposition principle, we deduce that the solution to the backward Kolmogorov equation (4.38)
is

f(x, t) =

+∞∑

n=0

cnψn(x)e
−λnt, (4.39)

where{λn, ψn}+∞
n=0 are the eigenvalues and eigenfunctions of the generator ofXt equipped with Neumann

boundary conditions:
−Lψn = λnψn, ψ′

n(ℓ) = ψ′
n(r) = 0. (4.40)

The generatorL (with Neumann boundary conditions) is a selfadjoint operator in the spaceL2((ℓ, r); ps(x)),
the space of square integrable functions in the interval(ℓ, r), weighted by the stationary distribution of the
process. This is a Hilbert space with inner product

〈f, h〉 =
∫ r

ℓ
f(x)h(x)ps(x) dx

and corresponding norm‖f‖ =
√

〈f, f〉. The selfadjointness ofL follows from (4.36):3

∫ r

ℓ
Lfhps dx =

∫ r

ℓ
fL∗(hps) dx =

∫ r

ℓ
fLhps dx

for all f, h ∈ D(L). Furthermore,−L is a positive operator: performing an integration by parts and using
the stationary Fokker-Planck equation we obtain

∫ r

ℓ
(−Lf)fps dx =

1

2

∫ r

ℓ
|f ′|2σps dx.

The generatorL has discrete spectrum in the Hilbert spaceL2((ℓ, r); ps(x)). In addition, the eigenvalues of
−L are real, nonnegative, withλ0 = 0 corresponding to the invariant distribution, and can be ordered,0 =

λ0 < λ1 < λ2 < . . . . The eigenfunctions of−L form an orthonormal basis onL2((ℓ, r); ps(x)): a function
f ∈ L2((ℓ, r); ps(x)) can be expanded in a generalized Fourier seriesf =

∑
fnψn with fn = 〈f, ψn〉.

The solution to (4.38) is given by (4.39)

f(x, t|x0) =
+∞∑

n=0

cne
−λntψn(x),

where the constants{cn}+∞
n=0 are determined from the initial conditions:

cn =

∫ r

ℓ
f(x, 0|x0)ψn(x)ps(x) dx =

∫ r

ℓ
δ(x− x0)ψn(x) dx

= ψn(x0).

3In fact, we only prove thatL is symmetric. An additional argument is needed in order to prove that it is self-adjoint. See the
comments in Section 4.10.
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Putting everything together we obtain a solution to the timedependent Fokker-Planck equation (4.30):

p(x, t|x0) = ps(x)

+∞∑

n=0

e−λntψn(x)ψm(x0). (4.41)

The main challenge in this approach to solving the Fokker-Planck equation is the calculation of the eigen-
values and eigenfunctions of the generator ofXt in L2((ℓ, r); ps(x)). This can be done either analytically
or, in most cases, numerically.

If the initial condition of the diffusion processX0 is distributed according to a probability distribution
ρ0(x), then the solution of the stationary Fokker-Planck equation is

p(x, t) = ps(x)

+∞∑

n=0

cne
−λntψn(x), cn =

∫ r

ℓ
ψn(x)ρ0(x) dx. (4.42)

Notice that from the above formula and the fact that all eigenvalues apart from the first are positive we
conclude thatXt, starting from an arbitrary initial distribution, converges to its invariant distribution ex-
ponentially fast inL2((ℓ, r); ps(x)). We will consider multidimensional diffusion processes for which a
similar result can be obtained later in this chapter.

4.4 The Ornstein-Uhlenbeck Process and Hermite Polynomials

The Ornstein-Uhlenbeck process that we already encountered in Section 4.2 is one of the few stochastic
processes for which we can calculate explicitly the solution of the corresponding stochastic differential
equation, the solution of the Fokker-Planck equation as well as the eigenvalues and eigenfunctions of the
generator of the process. In this section we show that the eigenfunctions of the Ornstein-Uhlenbeck pro-
cess are the Hermite polynomials and study various properties of the generator of the Ornstein-Uhlenbeck
process. We will see that it has many of the properties of the generator of a diffusion process in one di-
mension with reflective boundary conditions that we studiedin the previous section. In the next section we
will show that many of the properties of the Ornstein-Uhlenbeck process (ergodicity, selfadjointness of the
generator, exponentially fast convergence to equilibrium, real, discrete spectrum) are shared by a large class
of diffusion processes, namely reversible diffusions.

We consider a diffusion process inRd with drift b(x) = −αx, α > 0 andΣ(x) = β−1I, whereI
denotes thed× d identity matrix. The generator of thed-dimensional Ornstein-Uhlenbeck process is

L = −αp · ∇p + β−1∆p, (4.43)

where, as explained in Section 4.4,β denotes the inverse temperature andα denotes the friction coefficient.
We have already seen that the Ornstein-Uhlenbeck process isan ergodic Markov process whose unique

invariant density is the Gaussian

ρβ(p) =
1

(2πα−1β−1)d/2
e−β

α|p|2

2 .

We can perform the same transformation as in the previous section: we have that

L∗(hρβ(p)) = ρβ(p)Lh. (4.44)
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The initial value problem for the Fokker-Planck equation

∂p

∂t
= L∗p, p(x, 0) = p0(x)

becomes
∂h

∂t
= Lh, h(x, 0) = ρ−1

β (x)p0(x).

Therefore, in order to study the Fokker-Planck equation forthe Ornstein-Uhlenbeck process it is sufficient
to study the properties of the generatorL. As in the previous section, the natural function space for studying
the generator of the Ornstein-Uhlenbeck process is theL2-space weighted by the invariant measure of the
process. This is a (separable) Hilbert space with norm

‖f‖2ρ :=

∫

Rd

f2ρβ dp.

and corresponding inner product

〈f, h〉ρ =

∫

Rd

fhρβ dp.

We can also define weightedL2-spaces involving derivatives, i.e. weighted Sobolev spaces. See Exercise 6.
The generator of the Ornstein-Uhlenbeck process becomes a selfadjoint operator in this space. In fact,

L defined in (4.43) has many nice properties that are summarized in the following proposition.

Proposition 4.3. The operatorL has the following properties:

i. For everyf, h ∈ C2(Rd) ∩ L2(ρβ),

〈−Lf, h〉ρ = −β−1

∫

Rd

∇f · ∇hρβ dp. (4.45)

ii. L is a nonpositive operator onL2(ρβ).

iii. The null space ofL consists of constants.

Proof.
i. Equation (4.45) follows from an integration by parts:

〈Lf, h〉ρ =

∫
−p · ∇fhρβ dp+ β−1

∫
∆fhρβ dp

=

∫
−p · ∇fhρβ dp− β−1

∫
∇f · ∇hρβ dp+

∫
−p · ∇fhρβ dp

= −β−1〈∇f,∇h〉ρ.

ii. Non-positivity ofL follows from (4.45) upon settingh = f :

〈Lf, f〉ρ = −β−1‖∇f‖2ρ 6 0. (4.46)

iii. Let f ∈ N (L) and use (4.46) to deduce that
∫

Rd

|∇f |2ρβ dx = 0,
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from which we deduce thatf ≡ const.
The generator of the Ornstein-Uhlenbeck process has a spectral gap: For everyf ∈ C2(Rd) ∩ L2(ρβ)

we have
〈−Lf, f〉ρ > Var(f), (4.47)

where Var(f) =
∫
Rd f

2ρβ −
( ∫

Rd fρβ
)2

. This statement is equivalent to the statement that the Gaussian
measureρβ(x) dx satisfiesPoincar̀e’s inequality:

∫

Rd

f2ρβ dp 6 β−1

∫

Rd

|∇f |2ρβ dp (4.48)

for all smooth functions with
∫
fρβ = 0. Poincaré’s inequality for Gaussian measures can be proved using

the fact that (tensor products of) Hermite polynomials forman orthonormal basis inL2(Rd; ρβ). We can also
use the fact that the generator of the Ornstein-Uhlenbeck process is unitarily equivalent to the Schrödinger
operator for the quantum harmonic oscillator, whose eigenfunctions are the Hermite functions:4 consider
the generatorL in one dimension and set, for simplicityβ = 1, α = 2. Then

ρ
1/2
β

(
− L(hρ−1/2

β )
)
= −d

2h

dx2
+ x2h− h := Hh. (4.49)

Poincaré’s inequality (4.48) follows from the fact that the operatorĤ = − d2

dx2 + x2 has a spectral gap,
∫

R

Ĥhhdx >

∫

R

|h|2 dx, (4.50)

which, in turn, follows from the estimate

‖h‖2L2 6 2‖xh‖L2

∥∥∥∥
dh

dx

∥∥∥∥
L2

, (4.51)

for all smooth functionsh. From (4.49) it follows that (4.48) is equivalent to
∫

R

Hhhdx >

∫

R

h2 dx,

∫

R

he−x2/2 dx = 0.

We can check that
√
ρ = e−x2/2 is the first eigenfunction ofH, corresponding to the zero eigenvalue,

λ0 = 0. The centering condition forf is equivalent to the condition thath is orthogonal to the ground state
(i.e. the first eigenfunction) ofH.

Since nowĤ = − d2

dx2 + x2 is a selfadjoint operator inL2(R) that satisfies the spectral gap esti-
mate (4.50), it has discrete spectrum and its eigenfunctions form an orthonormal basis inL2(R).5 Fur-
thermore its eigenvalues are positive (from (4.50) it follows that it is a positive operator) and we can check
that its first nonzero eigenvalue isλ1 = 2. Let {λn, φn} denote the eigenvalues and eigenfunctions ofH
and leth be a smoothL2 function that is orthogonal to the ground state. We have

∫

R

Hhhdx =

∞∑

n=1

λnh
2
n > 2

∞∑

n=1

h2n, (4.52)

4The transformation of the generator of a diffusion process to a Schrödinger operator is discussed in detail in Section 4.9.
5These eigenfunctions are the Hermite functions.
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from which (4.47) or, equivalently, (4.48) follows. From Proposition 4.3 and the spectral gap estimate (4.47)
it follows that the generator of the Ornstein-Uhlenbeck process is a selfadjoint operator inL2(ρβ) with
discrete spectrum, nonnegative eigenvalues and its eigenfunctions form an orthonormal basis inL2(ρβ).

The connection between the generator of the Ornstein-Uhlenbeck process and the Schrödinger operator
for the quantum harmonic oscillator can be used in order to calculate the eigenvalues and eigenfunctions
of L. We present the results in one dimension. The multidimensional problem can be treated similarly by
taking tensor products of the eigenfunctions of the one dimensional problem.

Theorem 4.4. Consider the eigenvalue problem for the the generator of theone dimensional Ornstein-
Uhlenbeck process

L = −αp d
dp

+ β−1 d
2

dp2
, (4.53)

in the spaceL2(ρβ):

−Lfn = λnfn. (4.54)

Then the eigenvalues ofL are the nonnegative integers multiplied by the friction coefficient:

λn = αn, n = 0, 1, 2, . . . . (4.55)

The corresponding eigenfunctions are the normalized Hermite polynomials :

fn(p) =
1√
n!
Hn

(√
αβp

)
, (4.56)

where

Hn(p) = (−1)ne
p2

2
dn

dpn

(
e−

p2

2

)
. (4.57)

Notice that the eigenvalues ofL are independent of the strength of the noiseβ−1.6 This is a general
property of the spectrum of the generator of linear stochastic differential equations. See Sections 3.7 and??.

From (4.57) we can see thatHn is a polynomial of degreen. Furthermore, only odd (even) powers
appear inHn(p) whenn is odd (even). In addition, the coefficient multiplyingpn in Hn(p) is always1. The
orthonormality of the modified Hermite polynomialsfn(p) defined in (4.56) implies that

∫

R

fn(p)fm(p)ρβ(p) dp = δnm.

The first few Hermite polynomials and the corresponding rescaled/normalized eigenfunctions of the gener-

6Of course, the function spaceL2(ρβ) in which we study the eigenvalue problem forL does depend onβ throughρβ .
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ator of the Ornstein-Uhlenbeck process are:

H0(p) = 1, f0(p) = 1,

H1(p) = p, f1(p) =
√
βp,

H2(p) = p2 − 1, f2(p) =
αβ√
2
p2 − 1√

2
,

H3(p) = p3 − 3p, f3(p) =
αβ3/2

√
6
p3 − 3

√
αβ√
6
p

H4(p) = p4 − 3p2 + 3, f4(p) =
1√
24

(
(αβ)2p4 − 3αβp2 + 3

)

H5(p) = p5 − 10p3 + 15p, f5(p) =
1√
120

(
(αβ)5/2p5 − 10(αβ)3/2p3 + 15(αβ)1/2p

)
.

Proof of Theorem 4.4.We already know thatL has discrete nonnegative spectrum and that its eigenfunctions
spanL2(ρβ). We can calculate the eigenvalues and eigenfunctions by introducing appropriate creation and
annihilation operators. We define the annihilation operator

a− =
1√
β

d

dp
(4.58)

and the creation operator

a+ =
√
βαp− 1√

β

d

dp
. (4.59)

These two operators areL2(ρβ)-adjoint:

〈a−f, h〉ρ = 〈f, a+h〉ρ,

for all C1 functionsf, h in L2(ρβ). Using these operators we can write the generatorL in the form

L = −a+a−.

The eigenvalue problem (4.54) becomes

a+a−fn = λnfn.

Furthermore, we easily check thata+ anda− satisfy the following commutation relation

[a+, a−] = a+a− − a−a+ = −α.

Now we calculate:

[L, a+] = L+a+−a+L = −a+a−a+ + a+a+a−

= −a+a−a+ + a+(a−a+ − α)

= −α.
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We proceed by induction to show that

[L, (a+)n] = −αn(a+)n. (4.60)

Define now

φn = (a+)n1, (4.61)

whereφ0 = 1 is the ”ground state” corresponding to the eigenvalueλ0 = 0, L0φ0 = 0. We use (4.60) and
the fact thatL1 = 0 to check thatφn is then-th unnormalized eigenfunction of the generatorL:

−Lφn = −L(a+)n1 = −(a+)nL1− [L, (a+)n]1
= αn(a+)n1 = αnφn.

We can check by induction that the eigenfunctions defined in (4.61) are the unormalized Hermite polynomi-
als. We present the calculation of the first few eigenfunctions:

φ0 = 1, φ1 = a+φ0 =
√
βαp, φ2 = a+φ1 = βα2p2 − α.

Sincea+ anda− areL2(ρβ)-adjoint, we have that

〈φn, φm〉ρ = 0, n 6= m.

Upon normalizing the{φn}+∞
n=0 we obtain (4.56). The normalization constant

‖φn‖ρ =
√
〈(a+)n1, (a+)n1〉ρ

can be calculated by induction. From the eigenfunctions and eigenvalues ofL and using
the transformation (4.44) we conclude that the Fokker-Planck operator of the Ornstein-Uhlenbeck process
has the same eigenvalues as the generatorL and the eigenfunctions are obtained by multiplying those ofthe
generator by the invariant distribution:

−L∗(ρβfn) = αnρβfn, n = 0, 1, . . . (4.62)

Using the eigenvalues and eigenfunction of the Fokker-Planck operator (or, equivalently, of the generator)
we can solve the time dependent problem and obtain a formula for the probability density function (compare
with (4.41)):

ρ(p, t) = ρβ(p)

+∞∑

n=0

cne
−λntfn(p), cn =

∫

R

fn(p)ρ0(p) dx, (4.63)

where{fn}+∞
n=0 denote the eigenvalues of the generator. From this formula we deduce that the when starting

from an arbitrary initial distributionρ0(p) ∈ L2(R; ρ−1
β ) the law of the process converges exponentially fast

to the invariant distribution.
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4.5 The Smoluchowski Equation

The Ornstein-Uhlenbeck process is an example of an ordinarydifferential equation with a gradient structure
that is perturbed by noise: lettingV (x) = 1

2α|x|2 we can write the SDE for the Ornstein-Uhlenbeck process
in the form

dXt = −∇V (Xt) dt+
√
2β−1 dWt.

The generator can be written as:

L = −∇V (x) · ∇+ β−1∆. (4.64)

The Gaussian invariant distribution of the Ornstein-Uhlenbeck process can be written in the form

ρβ(x) =
1

Z
e−βV (x), Z =

∫

Rd

e−βV (x) dx.

In the previous section we were able to obtain detailed information on the spectrum of the generator of the
Ornstein-Uhlenbeck process, which in turn enabled us to solve the time-dependent Fokker-Planck equation
and to obtain (4.63) from which exponentially fast convergence to equilibrium follows. We can obtain
similar results, using the same approach for more general classes of diffusion processes whose generator is
of the form (4.64), for a quite general class of scalar functionsV (x). We will refer toV (x) as the potential.

In this section we consider stochastic differential equations of the form

dXt = −∇V (Xt) dt+
√

2β−1 dWt, X0 = x, (4.65)

for more general potentialsV (x), not necessarily quadratic. The generator of the diffusionprocessXt is

L = −∇V (x) · ∇+ β−1∆, (4.66)

Assume that the initial condition forXt is a random variable with probability density functionρ0(x). The
probability density function ofXt, ρ(x, t) is the solution of the initial value problem for the corresponding
Fokker-Planck equation:

∂ρ

∂t
= ∇ · (∇V ρ) + β−1∆ρ, (4.67a)

ρ(x, 0) = ρ0(x). (4.67b)

The Fokker-Planck equation (4.67a) is often called theSmoluchowski equation. In the sequel we will refer
to this equation as either the Smoluchowski or the Fokker-Planck equation.

It is not possible to calculate the time dependent solution of the Smoluchowski equation for arbitrary
potentials. We can, however, always calculate the stationary solution, if it exists.

Definition 4.5. A potentialV will be calledconfiningif lim|x|→+∞ V (x) = +∞ and

e−βV (x) ∈ L1(Rd). (4.68)

for all β ∈ R
+.
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In other words, a potentialV (·) is confining if it grows sufficiently fast at infinity so that (4.68) holds.
The simplest example of a confining potential is the quadratic potential. A particle moving in a confining
potential according to the dynamics (4.65) cannot escape toinfinity, it is confined to move in a bounded area
in R

d. It is reasonable, then, to expect that the dynamics (4.65) in a confining potential has nice ergodic
properties.

Proposition 4.6. LetV (x) be a smooth confining potential. Then the Markov process withgenerator(4.66)
is ergodic. The unique invariant distribution is the Gibbs distribution

ρβ(x) =
1

Z
e−βV (x) (4.69)

where the normalization factorZ is the partition function

Z =

∫

Rd

e−βV (x) dx. (4.70)

The fact that the Gibbs distribution is an invariant distribution follows by direct substitution. In fact, the
stationary probability flux vanishes (compare with (4.12)):

J(ρβ) = −β−1∇ρβ −∇V ρβ = 0.

Uniqueness follows from the fact that the Fokker-Planck operator has a spectral gap; see the discussion later
in the section.

Just as with the one dimensional diffusion processes with reflecting boundary conditions and the Ornstein-
Uhlenbeck process, we can obtain the solution of the Smoluchowski equation (4.67) in terms of the solution
of the backward Kolmogorov equation by a simple transformation. We defineh(x, t) through

ρ(x, t) = h(x, t)ρβ(x).

Then we can check that the functionh satisfies the backward Kolmogorov equation:

∂h

∂t
= −∇V · ∇h+ β−1∆h, h(x, 0) = ρ0(x)ρ

−1
β (x). (4.71)

To derive (4.71), we calculate the gradient and Laplacian ofthe solution to the Fokker-Planck equation:

∇p = ρ∇h− ρhβ∇V and ∆p = ρ∆h− 2ρβ∇V · ∇h+ hβ∆V ρ+ h|∇V |2β2ρ.

We substitute these formulas into the Fokker-Planck equation to obtain (4.71).
Consequently, in order to study properties of solutions to the Fokker-Planck equation it is sufficient to

study the backward equation (4.71). The generatorL is self-adjoint in the right function space, which is the
space of square integrable functions, weighted by the invariant density of the processXt:

L2(ρβ) :=

{
f |
∫

Rd

|f |2ρβ dx <∞
}
, (4.72)

whereρβ denotes the Gibbs distribution. This is a Hilbert space withinner product

〈f, h〉ρ :=

∫

Rd

fhρβ dx (4.73)
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and corresponding norm‖f‖ρ =
√

〈f, f〉ρ.
The generator of the Smoluchowski dynamics (4.65) has the same properties as those of the generator

of the Ornstein-Uhlenbeck process.

Proposition 4.7. Assume thatV (x) is a smooth potential and assume that condition(4.68)holds. Then the
operator

L = −∇V (x) · ∇+ β−1∆

is self-adjoint inH. Furthermore, it is nonpositive and its kernel consists of constants.

Proof. Let f,∈ C2
0 (R

d) ∩ L2(ρβ). We calculate

〈Lf, h〉ρ =

∫

Rd

(−∇V · ∇+ β−1∆)fhρβ dx

=

∫

Rd

(∇V · ∇f)hρβ dx− β−1

∫

Rd

∇f∇hρβ dx− β−1

∫

Rd

∇fh∇ρβ dx

= −β−1

∫

Rd

∇f · ∇hρβ dx, (4.74)

from which selfadjointness follows.7

If we now setf = h in the above equation we get

〈Lf, f〉ρ = −β−1‖∇f‖2ρβ ,

which shows thatL is non-positive.
Clearly, constants are in the null space ofL. Assume thatf ∈ N (L). Then, from the above equation

we get ∫
|∇f |2ρβ dx = 0,

from which we deduce thatf is constant.

The expression
DL(f) := 〈−Lf, f〉ρ (4.75)

is called theDirichlet form of the generatorL. In the case of a gradient flow, it takes the form

DL(f) = β−1

∫

Rd

|∇f |2ρβ(x) dx. (4.76)

Several properties of the diffusion processXt can be studied by looking at the corresponding Dirichlet form.
Using now Proposition 4.7 we can study the problem of convergence to equilibrium forXt. In particular,

we can show that the solution of the Fokker-Planck equation (4.67) for an arbitrary initial distributionρ0(x)
converges to the Gibbs distribution exponentially fast. Toprove this we need a functional inequality that is
a property of the potentialV . In particular, we need to use the fact that, under appropriate assumptions on
V , the Gibbs measureµ(dx) = Z−1e−βV (x) dx satisfies aPoincar̀e inequality:

7In fact, a complete proof of this result would require a more careful study of the domain of definition of the generator.
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Theorem 4.8. LetV ∈ C2(Rd) and defineµ(dx) = 1
Z e

−V dx. If

lim
|x|→+∞

( |∇V (x)|2
2

−∆V (x)

)
→ +∞, (4.77)

thenµ(dx) satisfies a Poincaré inequality with constantλ > 0: for every f ∈ C1(Rd) ∩ L2(ρβ) with∫
f µ(dx) = 0, there exists a constantλ > 0 such that

λ‖f‖2L2(µ) 6 ‖∇f‖2L2(µ). (4.78)

For simplicity we will sometimes say that the potentialV , rather than the corresponding Gibbs measure,
satisfies Poincaré’s inequality. Clearly, ifµ(dx) = 1

Z e
−V dx satisfies (4.78), so doesµβ(dx) = 1

Z e
−βV dx

for all positiveβ. Examples of potentials (Gibbs measures) that satisfy Poincaré’s inequality are quadratic
potentials inRd of the formV (x) = 1

2x
TDx with D ∈ R

d being a strictly positive symmetric matrix
and the bistable potentialV (x) = −x2

2 + x4

4 in R. A condition that ensures that the probability measure
µ(dx) = 1

Z e
−V dx satisfies Poincaré’s inequality with constantλ is the convexity condition

D2V > λI. (4.79)

This is the Bakry-Emery criterion .
Notice also that, using the definition of the Dirichlet form (4.76) associated with the generatorL, we

can rewrite Poincaré’s inequality in the form

λβ−1Var(f) 6 DL(f, f), (4.80)

for functionsf in the domain of definition of the Dirichlet form. The assumption that the potentialV
satisfies Poincaré’s inequality is equivalent of assumingthat the generatorL has aspectral gapin L2(ρβ).

The proof of Theorem 4.8 or of the equivalent spectral gap estimate (4.80) is beyond the scope of this
book. We remark that, just as in the case of Gaussian measures, we can link (4.80) to the study of an
appropriate Schrödinger operator. Indeed, we have that (see Section 4.9) that

−ρ−1/2
β Lρ1/2β = −β−1∆+

(β
4
|∇V |2 − 1

2
∆V

)
:= −β−1∆+W (x) =: H. (4.81)

If we can prove that the operatorH has a spectral gap inL2(Rd), we can then use the expansion of
L2(Rd)-functions in eigenfunctions ofH to prove (4.80), see estimate (4.52) for the quadratic potential.
This amounts to proving the estimate

β−1

∫

Rd

|∇h|2 dx+

∫

Rd

W (x)h2 dx > λ

∫

Rd

|h|2 dx.

To prove this, it is certainly sufficient to prove an inequality analogous to (4.52):

‖h‖2L2 > 2λ‖Wh‖L2‖∇h‖L2 (4.82)

for all C1 functions with compact support. It is clear that the behavior of W (·) at infinity, Assumption 4.77,
plays a crucial role in obtaining such an estimate.

Poincaré’s inequality yields exponentially fast convergence to equilibrium, in the right function space.
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Theorem 4.9.Letρ(x, t) denote the solution of the Fokker-Planck equation(4.67)withρ0(x) ∈ L2(Rd; ρ−1
β )

and assume that the potentialV satisfies a Poincaré inequality with constantλ. Thenρ(x, t) converges to
the Gibbs distributionρβ defined in(4.69)exponentially fast:

‖ρ(·, t) − ρβ‖L2(ρ−1
β

) 6 e−λβ−1t‖ρ0(·)− Z−1e−βV ‖L2(ρ−1
β

). (4.83)

Proof. We can rewrite (4.71) for the mean zero functionh− 1:

∂(h− 1)

∂t
= L(h− 1).

We multiply this equation by(h− 1) ρβ , integrate and use (4.76) to obtain

1

2

d

dt
‖h− 1‖2ρ = −DL(h− 1, h − 1).

We apply now Poincaré’s inequality in the form (4.80) to deduce

1

2

d

dt
‖h− 1‖2ρ = −DL(h− 1, h− 1)

6 −β−1λ‖h− 1‖2ρ.

Our assumption onρ0 implies thath ∈ L2(ρβ). Consequently, the above calculation shows that

‖h(·, t) − 1‖ρ 6 e−λβ−1t‖h(·, 0) − 1‖ρ.

This estimate, together with the definition ofh throughρ = ρ0h, leads to (4.83).

The proof of the above theorem is based on the fact that the weightedL2-norm of h − 1 is a Lya-
punov functionfor the backward Kolmogorov equation (4.71). In fact, we canconstruct a whole family of
Lyapunov functions for the diffusion processXt.

Proposition 4.10. Letφ(·) ∈ C2(Rd) be a convex function onR and define

H(h) =

∫
φ(h)ρβ dx (4.84)

with ρβ = 1
Z e

−βV . Furthermore, assume thatV is a confining potential and leth(t, ·) be the solution

of (4.71). Then
d

d
(H(h(t, ·))) 6 0. (4.85)

Proof. We use (4.74) to calculate

d

dt
H(h(t, ·)) =

d

dt

∫
φ(h) ρβ dx =

∫
φ′(h)

∂h

∂t
ρβ dx

=

∫
φ′(h)Lhρβ dx = −

∫
∇φ′(h)∇hρβ dx

= −
∫
φ′′(h)|∇h|2 ρβ dx

6 0,

sinceφ(·) is convex.
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In Theorem 4.9 we usedφ(h) = (h− 1)2. In view of the previous proposition, another choice is

φ(h) = h ln h− h+ 1. (4.86)

From a thermodynamic perspective, this a more natural choice: in this case the Lyapunov functional (4.84)
becomes the (rather, a multiple of)free energy functional

F (ρ) =

∫
V ρ dx+ β−1

∫
ρ ln ρ dx+ β−1 lnZ. (4.87)

This follows from the following calculation (using the notation
∫
f instead of

∫
Rd f dx ):

H(ρ) =

∫
φ(h)ρβ dx =

∫ (
h lnh− h+ 1

)
ρβ dx

=

∫
ρ ln

(
ρ

ρβ

)
dx

=

∫
ρ ln ρ dx−

∫
ρ ln

(
Z−1e−βV

)
dx

= β

∫
V ρ dx+

∫
ρ ln ρ dx+ lnZ.

We will also refer to the functional

H(ρ) =

∫
ρ ln

(
ρ

ρ∞

)
dx

as therelative entropybetween the probability densitiesρ andρβ . It is possible to prove exponentially fast
convergence to equilibrium for the Smoluchowski equation under appropriate assumptions on the potential
V . This result requires that that the measure1

Z e
−V satisfies alogarithmic Sobolev inequality. See the

discussion in Section 4.10.

4.6 Reversible Diffusions

The stationary (X0 ∼ ρβ(x) dx) diffusion processXt with generator (4.66) that we studied in the previous
section is an example of a (time-) reversible Markov process.

Definition 4.11. A stationary stochastic processXt is time reversible if its law is invariant under time
reversal: for everyT ∈ (0,+∞) Xt and the time-reversed processXT−t have the same distribution.

This definition means that the processesXt andXT−t have the same finite dimensional distributions.
Equivalently, for eachN ∈ N

+, a collection of times0 = t0 < t1 · · · < tN = T , and bounded measurable
functions with compact supportfj, j = 0, . . . N we have that

Eµ

N∏

j=0

fj(Xtj ) = Eµ

N∏

j=0

fj(XT−tj ), (4.88)

whereµ(dx) denotes the invariant measure ofXt andEµ denotes expectation with respect toµ.
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In fact, the Markov property implies that it is sufficient to check (4.88). In particular, reversible diffusion
processes can be characterized in terms of the properties oftheir generator. Indeed, time-reversal, which is a
symmetry property of the processXt, is equivalent to the selfadjointness (which is also a symmetry property)
of the generator in the Hilbert spaceL2(Rd;µ).

Theorem 4.12. A stationary Markov processXt in R
d with generatorL and invariant measureµ is re-

versible if and only if its generator is selfadjoint inL2(Rd;µ).

Proof. 8 It is sufficient to show that (4.88) holds if and only if the generator is selfadjoint inL2(Rd;µ).
Assume first (4.88). We takeN = 1 andt0 = 0, t1 = T to deduce that

Eµ

(
f0(X0)f1(XT )

)
= Eµ

(
f0(XT )f1(X0)

)
, ∀f0, f1 ∈ L2(Rd;µ).

This is equivalent to

∫ (
eLtf0(x)

)
f1(x)µ(dx) =

∫
f0(x)

(
eLtf1(x)

)
µ(dx),

i.e.

〈eLtf1, f2〉L2
µ
= 〈f1, eLtf2〉L2

µ
, ∀f1, f2 ∈ L2(Rd; ρs). (4.89)

Consequently, the semigroupeLt generated byL is selfadjoint. Differentiating (4.89) att = 0 gives thatL
is selfadjoint.

Conversely, assume thatL is selfadjoint inL2(Rd;µ). We will use an induction argument. Our assump-
tion of selfadjointness implies that (4.88) is true forN = 1

Eµ

1∏

j=0

fj(Xtj ) = Eµ

1∏

j=0

fj(XT−tj ), (4.90)

Assume that it is true forN = k. Using Equation (2.22) we have that

Eµ

k∏

j=0

fj(Xtj ) =

∫
. . .

∫
f0(x0)µ(dx0)

k∏

j=1

fj(xj)p(tj − tj−1, xj−1, dxj)

= Eµ

k∏

n=0

fj(Xtj−1)

=

∫
. . .

∫
fk(xk)µ(dxk)

k∏

j=1

fj−1(xj−1)p(tj − tj−1, xj , dxj−1),

(4.91)

8The calculations presented here are rather formal. In particular, we do not distinguish between a symmetric and a selfadjoint
operator. For a fully rigorous proof of this result we need tobe more careful with issues such as the domain of definition ofthe
generator and its adjoint. See the discussion in Section 4.10.

102



wherep(t, x,Γ) denotes the transition function of the Markov processXt. Now we show that (4.88) it is
true forN = k + 1. We calculate, using (4.90) and (4.91)

Eµ

k+1∏

j=1

fj(Xtj ) = EµΠ
k
j=1fj(Xtj )fk+1(Xtk+1

)

(2.22)
=

∫
. . .

∫
µ(dx0)f0(x0)

k∏

j=1

fj(xj)p(tj − tj−1, xj−1, dxj)×

fk+1(xk+1)p(tk+1 − tk, xk, dxk+1)

(4.91)
=

∫
. . .

∫
µ(dxk)f0(xk)

k∏

j=1

fj−1(xj−1)p(tj − tj−1, xj , dxj−1)×

fk+1(xk+1)p(tk+1 − tk, xk, dxk+1)

(4.91)
=

∫
. . .

∫
µ(dxk)f0(xk)fk+1(xk+1)p(tk+1 − tk, xk, dxk+1)×

k∏

j=1

fj−1(xj−1)p(tj − tj−1, xj , dxj−1)

(4.90)
=

∫
. . .

∫
µ(dxk+1)f0(xk+1)

k+1∏

j=1

fj−1(xj−1)p(tj − tj−1, xj, dxj−1)×

fk+1(xk+1)p(tk+1 − tk, xk, dxk+1)

= Eµ

k+1∏

j=0

fj(XT−tj ).

In the previous section we showed that the generator of the Smoluchowski dynamics

L = −∇V · ∇+ β−1∆

is a selfadjoint operator inL2(ρβ), which implies that the stationary solution of (4.66) is a reversible diffu-
sion process. More generally, consider the Itô stochasticdifferential equation inRd (see Section 3.2)

dXt = b(Xt) dt+ σ(Xt) dWt, (4.92)

The generator of this Markov process is

L· = b(x) · ∇+
1

2
Tr
(
Σ(x)D2

)
, (4.93)

whereΣ(x) = σ(x)σT (x), which we assume to be strictly positive definite, see (4.6).Note that we can also
write

Tr
(
Σ(x)D2

)
= Σ(x) : ∇ · ∇.

The Fokker-Planck operator is

L∗· = ∇ ·
(
− b(x) ·+1

2
∇ ·
(
Σ(x) ·

))
. (4.94)
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We assume that the diffusion process has a unique invariant distribution which is the solution of the station-
ary Fokker-Planck equation

L∗ρs = 0. (4.95)

The stationary Fokker-Planck equation can be written as (see Equation (4.12))

∇ · J(ρs) = 0 with J(ρs) = bρs −
1

2
∇ · (Σρs).

Notice that we can write the invariant distributionρs in the form

ρs = e−Φ, (4.96)

whereΦ can be thought of as a generalized potential.9

Let nowXt be an ergodic diffusion process with generator (4.93). We consider now the stationary so-
lution of (4.92), i.e. we setX0 ∼ ρs. Our goal is to find under what conditions on the drift and diffusion
coefficients this process is reversible. According to Theorem 4.12 it is sufficient to check under what con-
ditions on the drift and diffusion coefficients the generator L is symmetric inH := L2(Rd; ρs(x) dx). Let
f, h ∈ H ∩ C2(Rd). We perform integrations by parts to calculate:

∫
b · ∇fhρs dx = −

∫
fb · ∇hρs dx−

∫
fh∇ · (bρs) dx

and
∫ (

Σ∇ · ∇f
)
hρs dx = −

∫
Σ∇f · ∇hρs dx−

∫ (
∇fh

)
· ∇ · (Σρs) dx

= −
∫

Σ∇f · ∇hρs dx+

∫ (
f∇h

)
· ∇
(
Σρs

)
dx

+

∫
fh∇ ·

(
∇ · (Σρs)

)
dx.

We combine the above calculations and use the stationary Fokker-Planck equation (4.95) and the definition
of the stationary probability fluxJs := J(ps) to deduce that

〈−Lf, g〉ρ :=

∫ (
− Lf

)
hρs dx

=
1

2

∫
Σ∇f · ∇hρs dx+

∫
f∇h · Js dx

=
1

2
〈Σ∇f,∇h〉ρ + 〈f, ρ−1

s ∇h · Js〉ρ.

9Note that we can incorporate the normalization constant in the definition ofΦ. Alternatively, we can writeρ = 1
Z
e−Φ, Z =

∫

e−Φ dx. See, for example, the formula for the stationary distribution of a one dimensional diffusion process with reflecting
boundary conditions, Equation (4.35). We can write it in theform

ps(x) =
1

Z
e−Φ with Φ = log(σ(x))−

(

2

∫ x

ℓ

b(y)

σ(y)
dy

)

.
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The generatorL is symmetric if and only if the last term on the righthand sideof the above equation vanishes,
i.e. if and only if the stationary probability flux vanishes:

J(ρs) = 0. (4.97)

This is thedetailed balancecondition. From the detailed balance condition (4.97) we obtain a relation
between the drift vectorb, the diffusion matrixΣ and the generalized potentialΦ:

b =
1

2
ρ−1
s ∇ ·

(
Σρs

)
=

1

2
∇ ·Σ− 1

2
Σ∇Φ. (4.98)

We summarize the above calculations

Proposition 4.13. LetXt denote the stationary process(4.93)with invariant distributionρs, the solution
of (4.95). ThenXt is reversible if and only if the detailed balance condition(4.97)holds or, equivalently,
there exists a scalar functionΦ such that(4.98)holds.

Remark 4.14. The term1
2∇ ·Σ(x) in (4.98) is the Itô-to-Stratonovich correction, see Section 3.2. Indeed,

if we interpret the noise in (4.92) in the Stratonovich sense,

dXt = b(Xt) dt+ σ(Xt) ◦ dWt, (4.99)

then the condition for reversibility (4.98) becomes

b(x) = −1

2
Σ(x)∇Φ(x). (4.100)

For the stationary processXt, the solution of the Stratonovich stochastic differentialequation (4.99) with
X0 ∼ ρs, the following conditions are quivalent:

i. The processXt is reversible.

ii. The generatorL is selfadjoint inL2(Rd; ρs).

iii. There exists a scalar functionΦ such that (4.100) holds.

Consider now an arbitrary ergodic diffusion processXt, the solution of (4.92) with invariant distribution
ρs. We can decompose this process into a reversible and a nonreversible part in the sense that the generator
can be decomposed into a symmetric and antisymmetric part inthe spaceL2(Rd; ρs). To check this, we add
the subtract the termρ−1

s Js · ∇ from the generatorL and use the formula for the stationary probability flux:

L =
1

2
Σ∇ · ∇+

(
b− ρ−1

s Js
)
· ∇+ ρ−1

s Js · ∇

=
1

2
Σ∇ · ∇+ ρ−1

s ∇ ·
(
Σρs

)
· ∇+ ρ−1

s Js · ∇

=
1

2
ρ−1
s ∇ ·

(
Σρs∇

)
+ ρ−1

s Js · ∇
=: S +A.
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Clearly, the operatorS = 1
2ρ

−1
s ∇ ·

(
Σρs∇

)
is symmetric inL2(Rd; ρs). To prove thatA is antisymmetric

we use the stationary Fokker-Planck equation written in theform ∇ · Js = 0:

〈Af, h〉ρ =

∫
Js · ∇f h dx

= −
∫
Js · ∇fJs · ∇hdx−

∫
fh∇ · Js dx

= −〈f,Ah〉ρ.

The generator of an arbitrary diffusion process inR
d can we written in the useful form

L = ρ−1
s Js · ∇+

1

2
ρ−1
s ∇ ·

(
Σρs∇

)
, (4.101)

where the drift (advection) term on the right hand side is antisymmetric, whereas the second order, divergence-
form part is symmetric inL2(Rd; ρs).

4.7 Eigenfunction Expansions for Reversible Diffusions

Let Xt denote the generator of a reversible diffusion. We write thegeneratorL in the form, see Equa-
tion (4.101)

L =
1

2
ρ−1
s ∇ ·

(
Σρs∇

)
. (4.102)

The corresponding Dirichlet form is

DL(f) := 〈−Lf, f〉ρ =
1

2
〈Σ∇f,∇h〉ρ. (4.103)

We assume that the diffusion matrixΣ is uniformly positive definite with constantα, Equation (4.6). This
implies that

DL(f) >
α

2

∫

Rd

|∇f |2e−Φ dx,

where we have introduced the generalized potentialΦ, ρs = e−Φ. In order to prove that the generator (4.102)
has a spectral gap we need to show that the probability measure ρs dx or, equivalently, the potentialΦ, sat-
isfied a Poincaré inequality. For this it is sufficient to show that the generalized potential satisfies assump-
tion (4.77) in Theorem 4.8.

Assume now that the generatorL has a spectral gap:

λVar(f) 6 DL(f, f). (4.104)

Then−L is a nonnegative, selfadjoint operator inL2(Rd; ρs) with discrete spectrum. The eigenvalue prob-
lem for the generator is

−Lφn = λnφn, n = 0, 1, . . . (4.105)

Notice thatφ0 = 1 andλ0 = 0. The eigenvalues of the generator are real and nonnegative:

0 = λ0 < λ1 < λ2 < . . .
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Furthermore, the eigenfunctions{φj}∞j=0 spanL2(Rd; ρs): we can express every element ofL2(Rd; ρs) in
the form of a generalized Fourier series:

f =

∞∑

n=0

φnfn, fn = (φn, φn)ρ (4.106)

with (φn, φm)ρ = δnm. This enables us to solve the time dependent Fokker-Planck equation in terms of
an eigenfunction expansion, exactly as in the case of a one dimensional diffusion process with reflecting
boundary conditions that we studied in Section 4.3. The calculation is exactly the same as for the one
dimensional problem: consider first the initial value problem for the transition probability densityp(x, t|x0):

∂p

∂t
= L∗p, (4.107a)

p(x, 0|x0) = δ(x− x0). (4.107b)

The functionh(x, t|x0) = p(x, t|x0)ρ−1
s (x) is the solution of the initial value problem

∂h

∂t
= Lh, (4.108a)

h(x, 0|x0) = ρ−1
s (x)δ(x − x0). (4.108b)

We solve this equation using separation of variables and thesuperposition principle. Transforming back, we
finally obtain

p(x, t|x0) = ρs(x)

(
1 +

∞∑

ℓ=1

e−λℓtφℓ(x)φℓ(x0)

)
. (4.109)

When the initial condition is a random variable with probability density functionρ0(x) then the formula
for the probability distribution functionp(x, t), the solution of the Fokker-Planck equation withp(x, 0) =
ρ0(x) is

p(x, t) = ρs(x)

(
1 +

+∞∑

ℓ=1

e−λℓtφℓ(x)ρℓ

)
, ρℓ =

∫

Rd

ρ0(x)φℓ(x) dx. (4.110)

We use now (2.60) to define the stationary autocorrelation matrix

C(t) := E(Xt ⊗X0) =

∫ ∫
x0 ⊗ xp(x, t|x0)ρs(x0) dxdx0. (4.111)

Substituting (4.109) into (4.111) we obtain

C(t) =
∞∑

ℓ=0

e−λℓ|t|αℓ ⊗αℓ, αℓ =

∫

Rd

xφk(x)ρs(x) dx, (4.112)

with λ0 = 1, φ0 = 1. Using now (1.7) we can obtain a formula for the spectral density, which in the
multdimensional case is ad× d matrix. We present here for the formula in one dimension

S(ω) =
1

π

∞∑

k=1

α2
k λk

λ2k + ω2
. (4.113)

The interested reader is invited to supply the details of these calculations (see Exercise 11). It is important
to note that for a reversible diffusion the spectral densityis given as a sum of Cauchy-Lorentz functions ,
which is the spectral density of the Ornstein-Uhlenbeck process.
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4.8 Markov Chain Monte Carlo

Suppose that we are given a probability distributionπ(x) in R
d that is known up to the normalization

constant.10 Our goal is to sample from this distribution and to calculateexpectation values of the form

Eπf =

∫

Rd

f(x)π(x) dx, (4.114)

for particular choices of functionsf(x). A natural approach to solving this problem is to construct an
ergodic diffusion process whose invariant distribution isπ(x). We then run the dynamics for a sufficiently
long time, until it reaches the stationary regime. The equilibrium expecation (4.114) can be calculated by
taking the long time average and using the ergodic theorem:

lim
T→+∞

1

T

∫ T

0
f(Xs) ds = Eπf. (4.115)

This is an example of theMarkov Chain Monte Carlo (MCMC)methodology.
There are many different diffusion processes that we can use: we have to choose the drift and diffusion

coefficients so that the stationary Fokker-Planck equationis satisfied:

∇ ·
(
− bπ +

1

2
∇ ·
(
Σπ
))

= 0. (4.116)

We have to solve the ”inverse problem” for this partial differential equation: given its solutionπ(x), we
want to find the coefficientsb(x) andΣ(x) that this equation is satisfied. Clearly, there are (infinitely)
many solutions to this problem. We can restrict the class of drift and diffusion coefficients (and of the
corresponding diffusion process) that we consider by imposing the detailed balance conditionJ(π) = 0.
The stationary Fokker-Planck equation is

−bπ +
1

2
∇ · (Σπ) = 0. (4.117)

Thus, we consider reversible diffusion processes in order to sample fromπ(x). Even when we impose the
detailed balance condition, there is still a lot of freedom in choosing the drift and diffusion coefficients. A
natural choice is to consider a constant diffusion matrix,Σ = 2I. The drift is

b = π−1∇π = ∇ log π.

This leads to the Smoluchowski dynamics that we studied in Section 4.5.11

dXt = ∇ lnπ(Xt) dt+
√
2 dWt. (4.118)

Notice that in order to be able to construct this diffusion process we do not need to know the normalization
constant since only the gradient of the logarithm ofπ(x) appears in (4.118). Provided that the ”potential”

10The calculation of the normalization constant requires thecalculation of an integral (the partition function) in a high dimen-
sional space which might be computationally ver expensive.

11In the statistics literature this is usually called the Langevin dynamics. We will use this term for the seconder order stochas-
tic differential equation that is obtained after adding dissipation and noise to a Hamiltonian system, see Chapter??. Using the
terminology that we will introduce there, the dynamics (4.118) corresponds to the overdamped Langevin dynamics.
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V (x) = − log π(x) satisfies Poincaré’s inequality, Theorem 4.8, we have exponentially fast convergence
to the target distribution inL2(Rd;π), Theorem 4.9. The rate of convergence to the target distribution
π(x) depends only on (the tails of) the distribution itself, since the Poincaré constant depends only on the
potential.

When the target distribution is multimodal (or equivalently, V (x) = − log π(x) has a lot of local min-
ima) convergence to equilibrium for the dynamics (4.118) might be slow (see Chapter??). In such a case,
it might be useful to modify the dynamics either through the drift or the diffusion in order to facilitate the
escape of the dynamics for the local minima ofV (x). Ideally, we would like to choose the drift and diffusion
coefficients in such a way that the corresponding dynamics converges to the target distribution as quickly
as possible.12 For the reversible dynamics, for which the generator is a self-adjoint operator inL2(Rd;π),
the optimal choice of the diffusion process is the one that maximizes the first nonzero eigenvalue of the
generator, since this determines the rate of convergence toequilibrium. The first nonzero eigenvalue can be
expressed in terms of the Rayleigh quotient:

λ1 = min
φ∈D(L) φ 6=0

DL(φ)
‖φ‖ρ

, (4.119)

whereDL(φ) = 〈−Lφ, φ〉ρ. The optimal choice of the drift and diffusion coefficients is the one that
maximizesλ1, subject to the detailed balance condition:

λ1 = max
b,Σ J(ρs)=0

min
φ∈D(L) φ 6=0

DL(φ)
‖φ‖ρ

. (4.120)

We can also introduce perturbations in the drift of the Smoluchowski dynamics that lead to nonreversible
diffusions. We consider the following dynamics

dXγ
t = (∇π(Xγ

t ) + γ(Xγ
t )) dt+

√
2 dWt. (4.121)

whereγ(x) a smooth vector field that has to be chosen so that the invariant distribution of (4.121) is still
π(x). The stationary Fokker-Planck equation becomes

∇ · (γ(x)π(x)) = 0. (4.122)

Consequently, all divergence-free perturbations vector fields, with respect to the target distribution, can be
used in order to construct nonreversible ergodic dynamics whose invariant distribution isπ(x). There exist
many such vector fields, for example

γ(x) = J∇ log π(x), J = −JT .

We can then ask whether it is possible to accelerate convergence to the target distribution by choosing the
nonreversible perturbation, i.e. the matrixJ , appropriately. It is reasonable to expect that a nonreversible
perturbation that facilitates the escape of the dynamics from the local minima ofV (x) = −∇ log π(x)

would speed up convergence of the modified dynamicsXγ
t to equilibrium.

12When implementing the MCMC algorithm we need to discretize the stochastic differential equation and take the discretization
and Monte Carlo errors into account. See Section??.
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4.9 Reduction to a Schr̈odinger Operator

In Sections 4.4 and 4.5 we used the fact that the generator of the Ornstein-Uhlenbeck process and of the
generator of the Smoluchowski dynamics can be transformed to a Schrödinger operator, formulas (4.49)
and (4.81). We used this transformation in order to study Poincaré inequalities for the Gibbs measure
µ(dx) = 1

Z e
−V (x) dx. In this section we study the connection between the generator L, the Fokker-Planck

operator and an appropriately defined Schrödinger-like operator in more detail.

We start by writing the generator of an ergodic diffusion process in the form (4.101)

L· =
1

2
ρ−1
s ∇ ·

(
Σρs∇ ·

)
+ ρ−1

s Js · ∇ · (4.123a)

=: S +A, (4.123b)

whereρs denotes the invariant density. The operatorsS andA are symmetric and antisymmetric, respec-
tively, in the function spaceL2(Rd; ρs). Using the definition of theL2(Rd)-adjoint, we can check that the
Fokker-Planck operator can be written in the form

L∗· =
1

2
∇ ·
(
ρsΣ∇(ρ−1

s ·)
)
− Js · ∇

(
ρ−1
s ·

)
, (4.124a)

=: S∗ +A∗. (4.124b)

The operatorsS∗ andA∗ are symmetric and antisymmetric, respectively, in the function spaceL2(Rd; ρ−1
s ).

We introduce the following operator (compare with Equation(4.81))

H· := ρ1/2s L
(
ρ−1/2
s ·

)
, (4.125)

acting on twice differentiable functions that belong inL2(Rd).

Lemma 4.15. The operatorH defined in(4.125)has the form

H· = 1

2
∇ ·
(
Σ∇ ·

)
+W (x) ·+A·, (4.126)

whereA denotes the antisymmetric part ofL and the scalar functionW is given by the formula

W (x) =
√
ρsL

√
ρ−1
s . (4.127)

Proof. Let f ∈ C2(Rd). We calculate

Hf = ρ1/2s L
(
ρ−1/2
s f

)
= ρ1/2s S

(
ρ−1/2
s f

)
+ ρ1/2s A

(
ρ−1/2
s f

)

= ρ1/2s S
(
ρ−1/2
s f

)
+Af + f

√
ρsA

√
ρ−1
s , (4.128)

sinceA is a first order differential operator. Let nowψ be anotherC2 function. We have the identity

∇ ·
(
Σρs∇(fψ)

)
= ∇ ·

(
Σ∇f

)
ρsψ +∇ ·

(
Σρs∇ψ

)
f

+
[
Σψ∇ρs + 2Σρs∇ψ

]
· f.
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In particular, forψ =
√
ρ−1
s the second term on the righthand side of the above equation vanishes:

∇ ·
(
Σρs∇

(
f

√
ρ−1
s

))
= ∇ ·

(
Σ∇f

)√
ρs +∇ ·

(
Σρs∇

√
ρ−1
s

)
f.

This equation implies that

ρ1/2s S
(
ρ−1/2
s f

)
=

1

2
∇ ·
(
Σ∇f

)
+ ρ1/2s S

(
ρ−1/2
s

)
.

We combine this with (4.128) to obtain (4.126).

The operatorH given by (4.126) is reminiscent of a Schrödinger operator in a magnetic field. We can
write the ”effective potential”W in a more explicit form. We use the notationρs = e−Φ, see Equation (4.96).
We have

ρ1/2s Sρ−1/2
s =

1

2
eΦ/2∇ ·

(
Σe−Φ∇eΦ/2

)

=
1

4
eΦ/2∇ ·

(
Σe−Φ/2∇Φ

)

=
1

4
∇ · (Σ∇Φ)− 1

8
Σ∇Φ · ∇Φ.

Furthermore,

ρ1/2s Aρ−1/2
s = ρ−1/2

s Js · ∇ρ−1/2
s

=
1

2
ρ−1
s Js · ∇Φ.

We combine these calculations to obtain

W (x) =
1

4
∇ · (Σ∇Φ)− 1

8
Σ∇Φ · ∇Φ+

1

2
ρ−1
s Js · ∇Φ. (4.129)

For reversible diffusions the stationary probability current vanishes and the operatorH becomes

H· = 1

2
∇ ·
(
Σ∇ ·

)
+

(
1

4
∇ · (Σ∇Φ)− 1

8
Σ∇Φ · ∇Φ

)
· . (4.130)

On the other hand, for nonreversible perturbations of the Smoluchwoski (overdamped Langevin) dynamics,
Equation (4.121) whose generator is given by

L = (−∇V + γ) · ∇+∆, ∇ ·
(
γe−V

)
= 0, (4.131)

operatorH takes the form

H = ∆+

(
1

2
∆V − 1

4

∣∣∇V
∣∣2 + 1

2
γ · ∇V

)
+ γ · ∇. (4.132)

It is important to keep in mind that the three operatorsL, L∗ andH are defined in different function spaces,
in (dense subsets of)L2(Rd; ρs), L

2(Rd; ρ−1
s ) andL2(Rd), respectively. These operators are related trough
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a (unitary) transformation.13 We have already shown this for the map fromL toH, Equation (4.125): define
the multiplication operator

UL,H =
√
ρs : L

2(Rd; ρs) 7→ L2(Rd).

This is a unitary operators fromL2(ρβ) toL2(Rd):

〈UL,Hf, UL,Hh〉L2 = 〈f, h〉ρ ∀f, h ∈ L2(Rd; ρs).

Clearly,UL,H =
√
ρs. We can then rewrite (4.125) in the form

H = UL,HLU−1
L,H.

The generator and Fokker-Planck operators are also unitarily equivalent, up to a sign change. We denote the
generator defined in (4.123) byLJs , to emphasize the dependence on the stationary fluxJs. We use (4.123)
and (4.124) to calculate, for everyf ∈ L2(Rd; ρ−1

s )

ρsLJs

(
ρ−1
s f

)
= ρs

(
S +A

)(
ρ−1
s f

)

=
(
S∗ −A∗)f =: L∗

−Jsf.

Introducing then the unitary multiplication operator

UL,L∗ = ρs : L
2(Rd; ρs) 7→ L2(Rd; ρ−1

s ),

we can write
UL,L∗LJsU

−1
L,L∗ = L∗

−Js .

It is important to note that, under this transformation, thesymmetric part of the generator (corresponding
to the reversible part of the dynamics) is mapped to the symmetric part of the Fokker-Planck operator
whereas the antisymmetric part (corresponding to the nonreversible part of the dynamics) is mapped to
minus the antisymmetric part of the Fokker-Planck operator. As an example, consider the generator of the
Smoluchowski dynamics, perturbed by the divergence-free vector fieldγ we have (see Equation (4.131))

L−γ = (−∇V − γ) · ∇+∆, ∇ ·
(
γe−V

)
= 0,

and similarly for the corresponding Fokker-Planck operator:

L∗
γ = ∇ ·

(
∇V − γ +∇

)
(4.133a)

= ∆+∇V · ∇ − γ · ∇ −∇ · γ , (4.133b)

and
L∗
−γ = ∆+∇V · ∇+ γ · ∇+∇ · γ

We summarize these calculations in the following proposition.

13Two operatorsA1, A2 defined in two Hilbert spacesH1, H2 with inner products〈·, ·〉H1
, 〈·, ·〉H2

, respectively, are called
unitarily equivalent if there exists a unitary transformation U : H1 7→ H2 (i.e. 〈Uf,Uh〉H2

= 〈f, h〉H1
, ∀f, h ∈ H1) such that

UA1U
−1 = A2.

When the operatorsA1, A2 are unbounded we need to be more careful with their domain of definition.
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Proposition 4.16. The operatorsLJs , L∗
−Js

andH defined onL2(Rd; ρs), L
2(Rd; ρ−1

s ) andL2(Rd), re-
spectively, are unitarily equivalent:

ρsLJsρ
−1
s = L∗

−Js , (4.134a)

√
ρsLJs

√
ρ−1
s = H, (4.134b)

√
ρ−1
s L∗

−Js

√
ρs = H. (4.134c)

This proposition is presented graphically in Figure 4.9.
For reversible diffusions, i.e. when the stationary probability flux vanishes, no sign reversal is needed

and the generator, the Fokker-Planck operator and the corresponding Schrödinger-like operatorH are uni-
tarily equivalent. Consider now this case,Js = 0 and assume that the generalized potentialΦ is such that
the generatorL has a spectral gap, Assumption (4.104) holds. Then the generator has discrete nonnegative
spectrum and its eigenfucntions spanL2(Rd; ρs), see Section 4.7. Then the three operatorsL, L∗ andH
have the same eigenvalues and its eigenfunctions are related through a simple transformation. Indeed, let
(Ti, Hi), i = 1, 2 be two unitarily equivalent self-adjoint operators with discrete spectrum in the Hilbert
spacesH1, H2. Consider the eigenvalue problem forT1:

T1ψ
1
k = λ1kψ

1
k, k = 1, . . .

Let U−1T2U = T1. Substituting this formula in the above equation and multiplying the resulting equation
byU we deduce that

ψ2
k = Uψ1

k and λ2k = λ1k.

For eigenfunctions of the generator, the Fokker-Planck operator and the operatorH, denoted byψL
k , ψ

L∗
k

andψH
k , respectively, are related through the formulas

ψL∗

k = ρ−1
s ψL

k ψH
k =

√
ρ−1
s ψL

k . (4.135)

Mapping the eigenvalue problem for the Fokker-Planck operator (or the generator) to the eigenvalue problem
for a Schrödinger operator is very useful, since the spectral problem for such operators is very well studied.
Similarly, we can map the Fokker-Planck equation to a Schrödinger equation in imaginary time. Let us
consider the Smoluchowski Fokker-Planck equation

∂p

∂t
= β−1∇ ·

(
e−βV ∇

(
eβV p

))
. (4.136)

Defineψ(x, t) = eβV/2p(x, t). Thenψ solves the PDE

∂ψ

∂t
= β−1∆ψ − U(x)ψ, U(x) :=

β|∇V |2
4

− ∆V

2
. (4.137)

The operatorH can be written as the product of two first order operators:

H = β−1A∗A, A = ∇+
β∇U
2

, A∗ = −∇+
β∇U
2

,

or
A· = e−βU/2∇

(
eβU/2·

)
, A∗· = eβU/2∇

(
e−βU/2·

)
.
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L∗
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H−Js

ρ
1/2
s H−Jsρ

−1/2
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s

ρ
−1
s L∗

−Jsρs

Figure 4.1: Transformation between the Fokker-Planck operator (4.124), the generator (4.123) and the
Schrödinger operator (4.126).

4.10 Discussion and Bibliography

The proof of existence and uniqueness of classical solutions for the Fokker-Planck equation of a uniformly
elliptic diffusion process with smooth drift and diffusioncoefficients, Theorem 4.2, can be found in [24].
See also [96], in particular Theorem 1.1.9, for rigorous results on the backward and forward Kolmogorov
equation for diffusion processes. Parabolic PDEs (in particular in bounded domains) are studied in detail
in [21].

The condition that solutions to the Fokker-Planck equationdo not grow too fast, see Definition 4.1, is
necessary to ensure uniqueness. In fact, there are infinitely many solutions of

∂p

∂t
= ∆p in R

d × (0, T )

p(x, 0) = 0.

Each of these solutions besides the trivial solutionp = 0 grows very rapidly asx→ +∞. More details can
be found in [45, Ch. 7].

The Fokker-Planck equation is studied extensively in Risken’s monograph [86]. See also [28, 38, 95,
102]. In these references several examples of diffusion processes whose Fokker-Planck equation can be
solved analytically can be found. The connection between the Fokker-Planck equation and stochastic dif-
ferential equations is presented in Chapter??. See also [5, 25, 26].

Diffusion processes in one dimension are studied in [65]. There is a complete classification of bound-
aries and boundary conditions in one dimension, theFeller classification: the boundaries can beregular,
exit, entranceandnatural. The Feller classification for one dimensional diffusion processes can be found
in [47, 23]. We particularly recommend [47, Ch. 15] for a verydetailed presentation of diffusion processes
in one dimension. Several examples of Fokker-Planck operators in one dimension whose spectrum can
be calculated analytically and whose eigenfunctions can beexpressed in terms of orthogonal polynomials
are presented in [13]. The study of the Fokker-Planck operator in one dimension is closely related to the
study of Sturm-Liouville problems. More information on theSturm-Liouville problem and one dimensional
Schrödinger operators (that we obtain after the unitary transformation described in Section 4.9) can be found
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in [100, Ch. 9].

Hermite polynomials appear very frequently in applications. We can prove that the Hermite polynomi-
als form an orthonormal basis forL2(Rd, ρβ) without using the fact that they are the eigenfunctions of a
symmetric operator with compact resolvent.14 The proof of Proposition 4.3 can be found in [97, Lemma
2.3.4].

In Section 4.6 we studied convergence to equilibrium for reversible diffusions using a functional analytic
approach and, in particular, the Poincaré inequality for the probability measureZ−1e−V dx. An alternative
approach is the use of aLyapunov function[63, 62, 52]: We will say that the functionU ∈ C2(Rd) is a
Lyapunov function provided that

i. U(x) > 0 for all x ∈ R
d;

ii. lim|x|→+∞U(x) = +∞;

iii. there exist positive constantsρ andδ such thatU(x) 6 ρeδ|x| and|∇U(x)| 6 ρeδ|x|.

It is possible to show that the existence of a Lyapunov function satisfying

LU(x) 6 −αU(x) + β, (4.138)

whereα, β are positive constants, ensures convergence of the solution to the Fokker-Planck equationp(x, t)
to the unique steady stateps(x) (i.e. the solution of the stationary Fokker-Planck equation) for all initial
conditionsp(x, 0):

lim
t→+∞

p(t, x) = ps(x), (4.139)

the convergence being inL1(Rd). The Fokker-Planck equation and the corresponding probability density
function are calledglobally asymptotically stable [63]. Lyapunov function techniques for stochastic dif-
ferential equations are studied in detail in [35]. A comparison between functional inequalities-based and
Lyapunov function-based techniques for studying convergence to equilibrium for diffusion processes is pre-
sented in [7]. A systematic use of Lypunov functions in the study of the ergodic properties of Markov chains
is presented in [69].

Dirichlet forms play an important role in the study of diffusion processes, both in finite and in infinite
dimensions. Consider an ergodic diffusion processXt with invariant measureµ(dx) and generator

L = b(x) · ∇+
1

2
Σ(x) : D2.

Theopérateur carŕe du champ, defined for example onC2(Rd)× C2(Rd), is

Γ(f, g) = L(f g) − fLg − gLf. (4.140)

In particular,

Γ(f, f) = Lf2 − 2fLf = 〈Σ(x)∇f,∇f〉.
14In fact, Poincaré’s inequality for Gaussian measures can be proved using the fact that that the Hermite polynomials form an

orthonormal basis forL2(Rd, ρβ).
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The Dirichlet form of the diffusion processXt is then defined as

DL(f) =
∫

Rd

Γ(f, f)µ(dx). (4.141)

Further information on Dirichlet forms and the study of diffusion processes can be found at [61].
Poincaré inequalities for probability measures is a vast subject with deep connections with the theory of

Schrödinger operators and spectral theory. See [8] and thereferences therein. The proof of the Poincaré in-
equality under assumption 4.77, Theorem 4.8, can be found in[103, Thm. A.19]. As we saw in Section 4.5,
Poincaré’s inequality for the measureρβ dx = 1

Z e
−βV dx immediately implies exponentially fast conver-

gence to equilibrium for the corresponding reversible diffusion process in the spaceL2(Rd; ρ−1
β ). However,

theorem 4.9 is not very satisfactory since we are assuming that we are already close to equilibrium. Indeed,
the assumption on the initial condition

∫

Rd

|ρ0(x)|2ρ−1
β <∞

is very restrictive (think of the case whereV = 1
2x

2). The function spaceL2(Rd; ρ−1
β ) in which we prove

convergence is not the right space to use. Sinceρ(·, t) ∈ L1, ideally we would like to prove exponentially
fast convergence inL1(Rd). We can prove such a result assuming that the Gibbs densityρβ satisfies a
logarithmic Sobolev inequality(LSI) [33]. In fact, we can also prove convergence in relative entropy. The
relative entropy norm controls theL1 norm:

‖ρ1 − ρ2‖2L1 6 2H(ρ1|ρ2)

This is theCsiszar-Kullbackor Pinsker inequality. Using a logarithmic Sobolev inequality, we can
prove exponentially fast convergence to equilibrium, assuming only that the relative entropy of the initial
conditions is finite. We have the following result.

Theorem 4.17.Letρ denote the solution of the Fokker-Planck equation(4.67)where the potential is smooth
and uniformly convex. Assume that the the initial conditions satisfy

H(ρ0|ρβ) <∞.

Thenρ converges toρβ exponentially fast in relative entropy:

H(ρ(·, t)|ρβ) 6 e−λβ−1tH(ρ0|ρβ).

Logarithmic Sobolev inequalities are studied in detail in [8]. The approach of using relative entropy
and logarithmic Sobolev inequalities to study convergenceto equilibrium for the Fokker-Planck equation
is presented in [67, 4]. Similar ideas can be used for studying convergence to equilibrium for other types
of parabolic PDEs and of kinetic equations, both linear and nonlinear. Further information can be found
in [14, 15, 3]. The Bakry-Emery criterion (4.79) guaranteesthat the measuree−V dx satisfies a logarithmic
Sobolev inequality with constantλ. This in turn implies that potentials of the formV + v0 wherev0 ∈
L∞(Rd) also satisfy a logarithmic Sobolev inequality. This is the content of the Holley-Stroock perturbation
lemma . See [67] and the references therein.
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The connection between self-adjointness of the generator of an ergodic diffusion process inL2(µ) and
the gradient structure (existence of a potential function)of the drift is established in [71]. The equivalence
between self-adjointness, the existence of a potential function, time-reversibility and zero entropy production
for a diffusion process is studied in detail in [80, 44]. Conditions on the drift and diffusion coefficients that
ensure that detailed balance holds are studied in [85]. Timereversal for diffusion processes with time
dependent coefficients is studied in [36]; consider the stochastic equation

dXt = b(Xt, t) dt+ σ(Xt, t) dWt, (4.142)

in R
d and witht ∈ (0, 1) where the drift and diffusion coefficients satisfy the assumptions of Theorem 3.6

(i.e. a unique strong solution exists) and assume, furthermore, that that probability densityp(t, x), the
solution of the Fokker-Planck equation corresponding to (4.142) satisfies

∫ 1

0

∫

O

[
|p(x, t)|2 + |σ(x, t) · ∇p(x, t)|2

]
dxdt <∞, (4.143)

for any open bounded setO. Then the reversed processXt = X1−t, t ∈ [0, 1] is a Markov diffusion process
satisfying the SDE

dX t = b(X t, t) dt+ σ(X t, t) dWt, (4.144)

with
b(x, t) = −b(x, 1− t) + p(x, 1 − t)−1∇ · (Σ(x, 1− t) p(1− t, x)) , (4.145)

whereΣ = σσT and
σ(x, t) = σ(x, 1− t). (4.146)

When the drift and diffusion coefficients in (4.142) are timeindependent andXt is stationary with stationary
distributionps(x) then the formulas for the drift and the diffusion coefficients become

b(x) = −b(x) + ps(x)
−1∇ · (Σ(x) ps(x)) (4.147)

and
σ(x) = σ(x). (4.148)

Markov Chain Monte Carlo is the standard methodology for sampling from probability distributions
in high dimensional spaces [16, 57]. Usually the stochasticdynamics is combined with an accept-reject
(Metropolis-Hastings) step. When the Smoluchowski (overdamped Langevin) dynamics is combined with
the Metropolis-Hastings step, the resulting algorithm is called the Metropolis adjusted Langevin algorithm
(MALA) [89, 88, 87].

In Section 4.8 we saw that there are (infinitely many) different diffusion processes that can be used in
order to sample from a given probability distributionπ(x). Choosing the diffusion process that converges
the fastest to equilibrium leads to a computationally efficient algorithm. The Smoluchowski dynamics is not
the optimal choice since it can lead to a slow convergence to the target distribution. The drift vector and/or
the diffusion matrix have to be modified in order to accelerate convergence. It turns out that the addition of
a non-reversible perturbation to the dynamics will in general speed up convergence to equilibrium; see [39,
40]. The optimal nonreversible perturbation can be calculated for diffusions with linear drift that can be used
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in order to sample from Gaussian distributions. See [54]. Introducing a time dependent temperature can also
accelerate convergence to the target distribution. This isrelated to thesimulated annealingalgorithm [37].
Another quantity of interest is the asymptotic varianceσ2f for an observablef . We can show that

σ2f := Var(f) = 〈(−L)−1f, f〉π, (4.149)

whereL denotes the generator of the dynamics,π the distribution from which we want to sample and〈·, ·〉π
the inner product inL2(Rd;π). It is possible to use techniques from the spectral theory ofoperators to study
σ2f . See [70] and the references therein. A detailed analysis ofalgorithms for sampling from the Gibbs
distribution 1

Z e
−βV can be found in [55].

Mapping a Fokker-Planck operator to a Schrödinger operator is very useful since Schrödinger operators
are one of the most studied topics in mathematical physics, e.g. [81]. For example, the algebraic study of the
spectrum of the generator of the Ornstein-Uhlenbeck process using creation and annihilation operators is a
standard tool in quantum mechanics. See [100, Ch. 8]. In addition, semigroups generated by Schrödinger
operators can be used in order to study properties of the corresponding Markov semigroup; see [93].

Conversely, it is possible to express the solution of the time dependent Schrödinger equation in terms of
the solution to an appropriate Fokker-Planck equation. This is the basis for Nelson’sstochastic mechanics.
See [11, 73].

4.11 Exercises

1. Solve equation (4.18) by taking the Fourier transform, using the method of characteristics for first order
PDEs and taking the inverse Fourier transform.

2. Use (4.26) to obtain formulas for the moments of the Ornstein-Uhlenbeck process. Prove, using these
formulas, that the moments of the Ornstein-Uhlenbeck process converge to their equilibrium values ex-
ponentially fast.

3. Show that the autocorrelation function of the stationaryOrnstein-Uhlenbeck is

E(XtX0) =

∫

R

∫

R

xx0pOU(x, t|x0, 0)ps(x0) dxdx0

=
D

2α
e−α|t|,

wherepOU(x, t|x0, 0) denotes the transition probability function andps(x) the invariant Gaussian distri-
bution.

4. LetXt be a one-dimensional diffusion process with drift and diffusion coefficientsa(y, t) = −a0 − a1y

andb(y, t) = b0 + b1y + b2y
2 whereai, bi > 0, i = 0, 1, 2.

(a) Write down the generator and the forward and backward Kolmogorov equations forXt.

(b) Assume thatX0 is a random variable with probability densityρ0(x) that has finite moments. Use
the forward Kolmogorov equation to derive a system of differential equations for the moments of
Xt.
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(c) Find the first three momentsM0, M1, M2 in terms of the moments of the initial distributionρ0(x).

(d) Under what conditions on the coefficientsai, bi > 0, i = 0, 1, 2 isM2 finite for all times?

5. Consider a uniformly elliptic diffusion process inΩ ⊂ R
d with reflecting boundary conditions and

generator

L = b(x) · ∇+
1

2
Σ : D2. (4.150)

Let p(x, t) denote the probability density function, i.e. the solutionof the Fokker-Planck equation, and
ps(x) the stationary distribution. Show that the relative entropy

H(t) =

∫

Ω
p(x, t) ln

(
p(x, t)

ps(x)

)
dx

is nonincreasing:
dH

dt
6 0.

6. LetV be a confining potential inRd, β > 0 and letρβ(x) = Z−1e−βV (x). Give the definition of the
Sobolev spaceHk(Rd; ρβ) for k a positive integer and study some of its basic properties.

7. LetXt be a multidimensional diffusion process on[0, 1]d with periodic boundary conditions. The drift
vector is a periodic functiona(x) and the diffusion matrix is2DI, whereD > 0 andI is the identity
matrix.

(a) Write down the generator and the forward and backward Kolmogorov equations forXt.

(b) Assume thata(x) is divergence-free (∇ · a(x) = 0). Show thatXt is ergodic and find the invariant
distribution.

(c) Show that the probability densityp(x, t) (the solution of the forward Kolmogorov equation) con-
verges to the invariant distribution exponentially fast inL2([0, 1]d).

8. The Rayleigh processXt is a diffusion process that takes values on(0,+∞) with drift and diffusion
coefficientsa(x) = −ax+ D

x andb(x) = 2D, respectively, wherea, D > 0.

(a) Write down the generator the forward and backward Kolmogorov equations forXt.

(b) Show that this process is ergodic and find its invariant distribution.

(c) Solve the forward Kolmogorov (Fokker-Planck) equationusing separation of variables. (Hint: Use
Laguerre polynomials).

9. Letx(t) = {x(t), y(t)} be the two-dimensional diffusion process on[0, 2π]2 with periodic boundary
conditions with drift vectora(x, y) = (sin(y), sin(x)) and diffusion matrixb(x, y) with b11 = b22 =

1, b12 = b21 = 0.

(a) Write down the generator of the process{x(t), y(t)} and the forward and backward Kolmogorov
equations.
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(b) Show that the constant function
ρs(x, y) = C

is the unique stationary distribution of the process{x(t), y(t)} and calculate the normalization
constant.

(c) LetE denote the expectation with respect to the invariant distributionρs(x, y). Calculate

E
(
cos(x) + cos(y)

)
and E(sin(x) sin(y)).

10. Leta, D be positive constants and letX(t) be the diffusion process on[0, 1] with periodic boundary
conditions and with drift and diffusion coefficientsa(x) = a andb(x) = 2D, respectively. Assume that
the process starts atx0,X(0) = x0.

(a) Write down the generator of the processX(t) and the forward and backward Kolmogorov equa-
tions.

(b) Solve the initial/boundary value problem for the forward Kolmogorov equation to calculate the
transition probability densityp(x, t|x0, 0).

(c) Show that the process is ergodic and calculate the invariant distributionps(x).

(d) Calculate the stationary autocorrelation function

E(X(t)X(0)) =

∫ 1

0

∫ 1

0
xx0p(x, t|x0, 0)ps(x0) dxdx0.

11. Prove formulas (4.109), (4.112) and (4.113).

12. LetXt be a reverisble diffusion process. Use the spectral analysis from Section 4.7 to obtain a spectral
representation for an autocorrelation function of the form

E(f(Xt)h(X0)), (4.151)

wheref andh are arbitrary observables.
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Appendix A

Frequently Used Notation

In the following all summations are over indices from the set{1, 2, . . . , d}, d being the dimension of the
space. We useRd to denote thed−dimensional Euclidean space. We denote by〈·, ·〉 the standard inner
product onRd. We also use· to denote the inner product between two vectors, so that

〈a, b〉 = a · b =
∑

i

aibi,

where{ξi}di=1 are the components of a vectorξ ∈ R
d with respect to the standard basis{ei}di=1. The norm

induced by this inner product is the Euclidean norm

|a| =
√
a · a

and it follows that
|a|2 =

∑

i

a2i , a ∈ R
d.

The inner product between matricesis denoted by

A : B = tr(ATB) =
∑

ij

aijbij.

The norm induced by this inner product is theFrobenius norm

|A|F =
√

tr(ATA). (A.1)

Let∇ and∇· denotegradientanddivergencein R
d. The gradient lifts a scalar (resp. vector) to a vector

(resp. matrix) whilst the divergence contracts a vector (resp. matrix) to a scalar (resp. vector). The gradient
acts on scalar valued functionsφ(z), or vector valued functionsv(z), via

(∇φ)i =
∂φ

∂xi
, (∇v)ij =

∂vi
∂xj

.

The divergence of a vector valued functionv(z) is

∇ · v = Tr
(
∇v
)
=
∑

i

∂vi
∂zi

.
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The divergence and gradient operators do not commute:

∇
(
∇ · v

)
= ∇ ·

(
(∇v)T

)
.

The divergence of a matrix valued functionA(x) is the unique vector field defined as

∇ ·A(x) · a = ∇ ·
(
AT (x)a

)
,

for all constant vectorsa ∈ R
d. Componentwise,

(∇ ·A)i =
∑

j

∂Aij

∂zj
, i = 1, . . . d.

Given a vector valued functionv(x) and a matrix valued functionA(x) we have the following product rule

∇ ·
(
AT v

)
=
(
∇ · A

)
· v +A : ∇v.

For two matrix valued functionsA(x), B(x) we have the following product rule

∇ ·
(
AB
)
· a = (∇ · B) ·Aa+B : ∇(Aa). (A.2)

Given vector fieldsa, v we use the notation

a · ∇v := (∇v)a.

Thus we define the quantity by calculatinga · ∇vk for each component of the vectorv. Likewise we can
extend to the notation

a · ∇Θ,

whereΘ is a matrix field, by using the above definition componentwise.
Since the gradient is defined for scalars and vectors we readily make sense of the expression

∇∇φ

for any scalarφ; it is theHessianmatrixD2f with entries ∂2φ
∂xi∂xj

. Similarly, we can also make sense of the
expression

∇∇v
by applying∇∇ to each scalar component of the vectorv, or indeed

∇∇Θ,

again componentwise. We define the Laplacian of a scalar or vector field by

∆φ = ∇ · ∇φ; ∆v = ∇ · ∇v.

It follows that∆φ = I : ∇∇φ. Applying this definition componentwise allows for the definition of ∆Θ.

We also use the following notations

A : ∇∇f = A : D2f = Tr(AD2)f =
∑

i,j

Aij
∂2f

∂xi∂xj
.
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Appendix B

Elements of Probability Theory

In this appendix we put together some basic definitions and results from probability theory that we used. This
is very standard material and can be found in all textbooks onprobability theory and stochastic processes. In
Section B.1 we give some basic definitions from the theory of probability. In Section B.2 we present some
properties of random variables. In Section B.3 we introducethe concept of conditional expectation and
in Section B.4 we define the characteristic function. A few calculations with Gaussian measures in finite
dimensions and in separable Hilbert spaces are presented inSection B.5. Different types of convergence
and the basic limit theorems of the theory of probability arediscussed in Section B.6. Discussion and
bibliographical comments are presented in Section B.7.

B.1 Basic Definitions from Probability Theory

In order to study stochastic processes we need to be able to describe the outcome of a random experiment
and to calculate functions of this outcome. First we need to describe the set of all possible experiments.

Definition B.1. The set of all possible outcomes of an experiment is called thesample spaceand is denoted
byΩ.

We define events to be subsets of the sample space. Of course, we would like the unions, intersections
and complements of events to also be events. When the sample spaceΩ is uncountable, then technical
difficulties arise. In particular, not all subsets of the sample space need to be events. A definition of the
collection of subsets of events which is appropriate for finite additive probability is the following.

Definition B.2. A collectionF of Ω is called a field onΩ if

i. ∅ ∈ F ;

ii. if A ∈ F thenAc ∈ F ;

iii. If A, B ∈ F thenA ∪B ∈ F .

From the definition of a field we immediately deduce thatF is closed under finite unions and finite
intersections:

A1, . . . An ∈ F ⇒ ∪n
i=1Ai ∈ F , ∩n

i=1Ai ∈ F .
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WhenΩ is infinite dimensional then the above definition is not appropriate since we need to consider count-
able unions of events.

Definition B.3 (σ-algebra). A collectionF ofΩ is called aσ-field orσ-algebra onΩ if

i. ∅ ∈ F ;

ii. if A ∈ F thenAc ∈ F ;

iii. If A1, A2, · · · ∈ F then∪∞
i=1Ai ∈ F .

A σ-algebra is closed under the operation of taking countable intersections. Standard examples of a
σ-algebra areF =

{
∅, Ω

}
, F =

{
∅, A, Ac, Ω

}
whereA is a subset ofΩ and the power set ofΩ, denoted

by {0, 1}Ω which contains all subsets ofΩ.

Let nowF be a collection of subsets ofΩ. It can be extended to aσ-algebra (take for example the
power set ofΩ). Consider all theσ-algebras that containF and take their intersection, denoted byσ(F),
i.e.A ⊂ Ω if and only if it is in everyσ-algebra containingF . It is a standard exercise to show thatσ(F) is
aσ-algebra. It is the smallest algebra containingF and it is called theσ-algebra generated byF .

Example B.4. LetΩ = R
n. Theσ-algebra generated by the open subsets ofR

n (or, equivalently, by the
open balls ofRn) is called the Borelσ-algebra ofRn and is denoted byB(Rn).

LetX be a closed subset ofRn. Similarly, we can define the Borelσ-algebra ofX, denoted byB(X).
A sub-σ-algebra is a collection of subsets of aσ-algebra which satisfies the axioms of aσ-algebra. The
σ−field F of a sample spaceΩ contains all possible outcomes of the experiment that we want to study.
Intuitively, theσ-field contains all the information that is available to use about the random experiment that
we are performing.

Now we want to assign probabilities to the possible outcomesof an experiment.

Definition B.5 (Probability measure). A probability measureP on the measurable space(Ω, F) is a function
P : F 7→ [0, 1] satisfying

i. P(∅) = 0, P(Ω) = 1;

ii. For A1, A2, . . . withAi ∩Aj = ∅, i 6= j then

P(∪∞
i=1Ai) =

∞∑

i=1

P(Ai).

Definition B.6. The triple
(
Ω, F , P

)
comprising a setΩ, a σ-algebraF of subsets ofΩ and a probability

measureP on (Ω, F) is a called a probability space.

A standard example is that ofΩ = [0, 1], F = B([0, 1]), P = Leb([0, 1]). Then (Ω,F ,P) is a
probability space.
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B.2 Random Variables

We are usually interested in the consequences of the outcomeof an experiment, rather than the experiment
itself. The function of the outcome of an experiment is arandom variable, that is, a map fromΩ to R.

Definition B.7. A sample spaceΩ equipped with aσ−field of subsetsF is called a measurable space.

Definition B.8. Let (Ω,F) and (E,G) be two measurable spaces. A functionX : Ω → E such that the
event

{ω ∈ Ω : X(ω) ∈ A} =: {X ∈ A} (B.1)

belongs toF for arbitrary A ∈ G is called a measurable function or random variable.

WhenE isR equipped with its Borelσ-algebra, then (B.1) can by replaced with

{X 6 x} ∈ F ∀x ∈ R.

LetX be a random variable (measurable function) from(Ω,F , µ) to (E,G). If E is a metric space then we
may defineexpectationwith respect to the measureµ by

E[X] =

∫

Ω
X(ω) dµ(ω).

More generally, letf : E 7→ R beG–measurable. Then,

E[f(X)] =

∫

Ω
f(X(ω)) dµ(ω).

Let U be a topological space. We will use the notationB(U) to denote the Borelσ–algebra ofU : the
smallestσ–algebra containing all open sets ofU . Every random variable from a probability space(Ω,F , µ)
to a measurable space(E,B(E)) induces a probability measure onE:

µX(B) = PX−1(B) = µ(ω ∈ Ω;X(ω) ∈ B), B ∈ B(E). (B.2)

The measureµX is called thedistribution (or sometimes thelaw) of X.

Example B.9. LetI denote a subset of the positive integers. A vectorρ0 = {ρ0,i, i ∈ I} is a distribution
onI if it has nonnegative entries and its total mass equals1:

∑
i∈I ρ0,i = 1.

Consider the case whereE = R equipped with the Borelσ−algebra. In this case a random variable is
defined to be a functionX : Ω → R such that

{ω ∈ Ω : X(ω) 6 x} ⊂ F ∀x ∈ R.

We can now define the probability distribution function ofX, FX : R → [0, 1] as

FX(x) = P
( {
ω ∈ Ω

∣∣X(ω) 6 x
)}

=: P(X 6 x). (B.3)

In this case,(R,B(R), FX ) becomes a probability space.
The distribution functionFX(x) of a random variable has the properties thatlimx→−∞ FX(x) =

0, limx→+∞ F (x) = 1 and is right continuous.
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Definition B.10. A random variableX with values onR is called discrete if it takes values in some countable
subset{x0, x1, x2, . . . } ofR. i.e.: P(X = x) 6= x only forx = x0, x1, . . . .

With a random variable we can associate the probability massfunctionpk = P(X = xk). We will con-
sider nonnegative integer valued discrete random variables. In this casepk = P(X = k), k = 0, 1, 2, . . . .

Example B.11. The Poisson random variable is the nonnegative integer valued random variable with prob-
ability mass function

pk = P(X = k) =
λk

k!
e−λ, k = 0, 1, 2, . . . ,

whereλ > 0.

Example B.12. The binomial random variable is the nonnegative integer valued random variable with
probability mass function

pk = P(X = k) =
N !

n!(N − n)!
pnqN−n k = 0, 1, 2, . . . N,

wherep ∈ (0, 1), q = 1− p.

Definition B.13. A random variableX with values onR is called continuous ifP(X = x) = 0∀x ∈ R.

Let (Ω,F ,P) be a probability space and letX : Ω → R be a random variable with distributionFX .
This is a probability measure onB(R). We will assume that it is absolutely continuous with respect to
the Lebesgue measure with densityρX : FX(dx) = ρ(x) dx. We will call the densityρ(x) the probability
density function (PDF) of the random variableX.

Example B.14. i. The exponential random variable has PDF

f(x) =

{
λe−λx x > 0,

0 x < 0,

with λ > 0.

ii. The uniform random variable has PDF

f(x) =

{
1

b−a a < x < b,

0 x /∈ (a, b),

with a < b.

Definition B.15. Two random variablesX andY are independent if the events{ω ∈ Ω |X(ω) 6 x} and
{ω ∈ Ω |Y (ω) 6 y} are independent for allx, y ∈ R.

Let X, Y be two continuous random variables. We can view them as a random vector, i.e. a random
variable fromΩ to R

2. We can then define the joint distribution function

F (x, y) = P(X 6 x, Y 6 y).
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The mixed derivative of the distribution functionfX,Y (x, y) := ∂2F
∂x∂y (x, y), if it exists, is called the joint

PDF of the random vector{X, Y }:

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (x, y) dxdy.

If the random variablesX andY are independent, then

FX,Y (x, y) = FX(x)FY (y)

and
fX,Y (x, y) = fX(x)fY (y).

The joint distribution function has the properties

FX,Y (x, y) = FY,X(y, x),

FX,Y (+∞, y) = FY (y), fY (y) =

∫ +∞

−∞
fX,Y (x, y) dx.

We can extend the above definition to random vectors of arbitrary finite dimensions. LetX be a random
variable from(Ω,F , µ) to (Rd,B(Rd)). The (joint) distribution functionFXR

d → [0, 1] is defined as

FX(x) = P(X 6 x).

LetX be a random variable inRd with distribution functionf(xN ) wherexN = {x1, . . . xN}. We define
the marginal or reduced distribution functionfN−1(xN−1) by

fN−1(xN−1) =

∫

R

fN (xN ) dxN .

We can define other reduced distribution functions:

fN−2(xN−2) =

∫

R

fN−1(xN−1) dxN−1 =

∫

R

∫

R

f(xN ) dxN−1dxN .

Expectation of Random Variables

We can use the distribution of a random variable to compute expectations and probabilities:

E[f(X)] =

∫

R

f(x) dFX(x) (B.4)

and

P[X ∈ G] =

∫

G
dFX(x), G ∈ B(E). (B.5)

The above formulas apply to both discrete and continuous random variables, provided that we define the
integrals in (B.4) and (B.5) appropriately.

WhenE = R
d and a PDF exists,dFX(x) = fX(x) dx, we have

FX(x) := P(X 6 x) =

∫ x1

−∞
. . .

∫ xd

−∞
fX(x) dx..
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WhenE = R
d then byLp(Ω;Rd), or sometimesLp(Ω;µ) or even simplyLp(µ), we mean the Banach

space of measurable functions onΩ with norm

‖X‖Lp =
(
E|X|p

)1/p
.

Let X be a nonnegative integer valued random variable with probability mass functionpk. We can
compute the expectation of an arbitrary function ofX using the formula

E(f(X)) =
∞∑

k=0

f(k)pk.

LetX, Y be random variables we want to know whether they are correlated and, if they are, to calculate
how correlated they are. We define the covariance of the two random variables as

cov(X,Y ) = E
[
(X − EX)(Y − EY )

]
= E(XY )− EXEY.

The correlation coefficient is

ρ(X,Y ) =
cov(X,Y )√

var(X)
√

var(X)
(B.6)

The Cauchy-Schwarz inequality yields thatρ(X,Y ) ∈ [−1, 1]. We will say that two random variables
X andY are uncorrelated provided thatρ(X,Y ) = 0. It is not true in general that two uncorrelated random
variables are independent. This is true, however, for Gaussian random variables.

Example B.16. • Consider the random variableX : Ω 7→ R with pdf

γσ,b(x) := (2πσ)−
1
2 exp

(
−(x− b)2

2σ

)
.

Such anX is termed a Gaussian or normal random variable. The mean is

EX =

∫

R

xγσ,b(x) dx = b

and the variance is

E(X − b)2 =

∫

R

(x− b)2γσ,b(x) dx = σ.

• Let b ∈ R
d andΣ ∈ R

d×d be symmetric and positive definite. The random variableX : Ω 7→ R
d

with pdf

γΣ,b(x) :=
(
(2π)ddetΣ

)− 1
2
exp

(
−1

2
〈Σ−1(x− b), (x − b)〉

)

is termed a multivariate Gaussian or normal random variable. The mean is

E(X) = b (B.7)

and the covariance matrix is

E

(
(X − b)⊗ (X − b)

)
= Σ. (B.8)

Since the mean and variance specify completely a Gaussian random variable onR, the Gaussian is
commonly denoted byN (m,σ). The standard normal random variable isN (0, 1). Similarly, since the mean
and covariance matrix completely specify a Gaussian randomvariable onRd, the Gaussian is commonly
denoted byN (m,Σ).

Some analytical calculations for Gaussian random variables will be presented in Section B.5.
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B.3 Conditional Expecation

One of the most important concepts in probability is that of the dependence between events.

Definition B.17. A family{Ai : i ∈ I} of events is called independent if

P
(
∩j∈J Aj

)
= Πj∈JP(Aj)

for all finite subsetsJ of I.

When two eventsA, B are dependent it is important to know the probability that the eventA will occur,
given thatB has already happened. We define this to beconditional probability, denoted byP(A|B). We
know from elementary probability that

P (A|B) =
P (A ∩B)

P(B)
.

A very useful result is that of thelaw of total probability.

Definition B.18. A family of events{Bi : i ∈ I} is called a partition ofΩ if

Bi ∩Bj = ∅, i 6= j and ∪i∈I Bi = Ω.

Proposition B.19. Law of total probability. For any eventA and any partition{Bi : i ∈ I} we have

P(A) =
∑

i∈I
P(A|Bi)P(Bi).

The proof of this result is left as an exercise. In many cases the calculation of the probability of an event
is simplified by choosing an appropriate partition ofΩ and using the law of total probability.

Let (Ω,F ,P) be a probability space and fixB ∈ F . ThenP(·|B) defines a probability measure onF .
Indeed, we have that

P(∅|B) = 0, P(Ω|B) = 1

and (sinceAi ∩Aj = ∅ implies that(Ai ∩B) ∩ (Aj ∩B) = ∅)

P (∪∞
j=1Ai|B) =

∞∑

j=1

P(Ai|B),

for a countable family of pairwise disjoint sets{Aj}+∞
j=1. Consequently,(Ω,F ,P(·|B)) is a probability

space for everyB ∈ F .
Assume thatX ∈ L1(Ω,F , µ) and letG be a sub–σ–algebra ofF . The conditional expectation ofX

with respect toG is defined to be the function (random variable)E[X|G] : Ω 7→ E which isG–measurable
and satisfies ∫

G
E[X|G] dµ =

∫

G
X dµ ∀G ∈ G.

We can defineE[f(X)|G] and the conditional probabilityP[X ∈ F |G] = E[IF (X)|G], whereIF is the
indicator function ofF , in a similar manner.

We list some of the most important properties of conditionalexpectation.
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Proposition B.20. [Properties of Conditional Expectation]. Let(Ω,F , µ) be a probability space and letG
be a sub–σ–algebra ofF .

(a) If X is G−measurable and integrable thenE(X|G) = X.

(b) (Linearity) IfX1, X2 are integrable andc1, c2 constants, then

E(c1X1 + c2X2|G) = c1E(X1|G) + c2E(X2|G).

(c) (Order) IfX1, X2 are integrable andX1 6 X2 a.s., thenE(X1|G) 6 E(X2|G) a.s.

(d) If Y andXY are integrable, andX is G−measurable thenE(XY |G) = XE(Y |G).

(e) (Successive smoothing) IfD is a sub–σ–algebra ofF , D ⊂ G andX is integrable, thenE(X|D) =

E[E(X|G)|D] = E[E(X|D)|G].

(f) (Convergence) Let{Xn}∞n=1 be a sequence of random variables such that, for alln, |Xn| 6 Z where
Z is integrable. IfXn → X a.s., thenE(Xn|G) → E(X|G) a.s. and inL1.

Let (Ω,F , µ) be a probability space,X a random variable from(Ω,F , µ) to (E,G) and letF1 ⊂ F2 ⊂
F . Then (see Theorem B.20)

E(E(X|F2)|F1) = E(E(X|F1)|F2) = E(X|F1). (B.9)

GivenG ⊂ F we define the functionPX(B|G) = P (X ∈ B|G) for B ∈ F . Assume thatf is such that
Ef(X) <∞. Then

E(f(X)|G) =
∫

R

f(x)PX(dx|G). (B.10)

B.4 The Characteristic Function

Many of the properties of (sums of) random variables can be studied using the Fourier transform of the
distribution function. LetF (λ) be the distribution function of a (discrete or continuous) random variableX.
The characteristic function ofX is defined to be the Fourier transform of the distribution function

φ(t) =

∫

R

eitλ dF (λ) = E(eitX). (B.11)

For a continuous random variable for which the distributionfunctionF has a density,dF (λ) = p(λ)dλ, (B.11)
gives

φ(t) =

∫

R

eitλp(λ) dλ.

For a discrete random variable for whichP(X = λk) = αk, (B.11) gives

φ(t) =
∞∑

k=0

eitλkak.

From the properties of the Fourier transform we conclude that the characteristic function determines uniquely
the distribution function of the random variable, in the sense that there is a one-to-one correspondance be-
tweenF (λ) andφ(t). Furthermore, in the exercises at the end of the chapter the reader is asked to prove the
following two results.
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Lemma B.21. Let{X1,X2, . . . Xn} be independent random variables with characteristic functionsφj(t), j =
1, . . . n and letY =

∑n
j=1Xj with characteristic functionφY (t). Then

φY (t) = Πn
j=1φj(t).

Lemma B.22. LetX be a random variable with characteristic functionφ(t) and assume that it has finite
moments. Then

E(Xk) =
1

ik
φ(k)(0).

B.5 Gaussian Random Variables

In this section we present some useful calculations for Gaussian random variables. In particular, we calcu-
late the normalization constant, the mean and variance and the characteristic function of multidimensional
Gaussian random variables.

Theorem B.23. Let b ∈ R
d and Σ ∈ R

d×d a symmetric and positive definite matrix. LetX be the
multivariate Gaussian random variable with probability density function

γΣ,b(x) =
1

Z
exp

(
−1

2
〈Σ−1(x− b),x− b〉

)
.

Then

i. The normalization constant is
Z = (2π)d/2

√
det(Σ).

ii. The mean vector and covariance matrix ofX are given by

EX = b

and
E((X− EX)⊗ (X− EX)) = Σ.

iii. The characteristic function ofX is

φ(t) = ei〈b,t〉−
1
2
〈t,Σt〉.

Proof. i. From the spectral theorem for symmetric positive definitematrices we have that there exists a
diagonal matrixΛ with positive entries and an orthogonal matrixB such that

Σ−1 = BTΛ−1B.

Let z = x− b andy = Bz. We have

〈Σ−1z, z〉 = 〈BTΛ−1Bz, z〉
= 〈Λ−1Bz, Bz〉 = 〈Λ−1y,y〉

=

d∑

i=1

λ−1
i y2i .
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Furthermore, we have that det(Σ−1) = Πd
i=1λ

−1
i , that det(Σ) = Πd

i=1λi and that the Jacobian of an
orthogonal transformation isJ = det(B) = 1. Hence,

∫

Rd

exp

(
−1

2
〈Σ−1(x− b),x− b〉

)
dx =

∫

Rd

exp

(
−1

2
〈Σ−1z, z〉

)
dz

=

∫

Rd

exp

(
−1

2

d∑

i=1

λ−1
i y2i

)
|J | dy

=

d∏

i=1

∫

R

exp

(
−1

2
λ−1
i y2i

)
dyi

= (2π)d/2Πn
i=1λ

1/2
i = (2π)d/2

√
det(Σ),

from which we get that
Z = (2π)d/2

√
det(Σ).

In the above calculation we have used the elementary calculus identity
∫

R

e−αx2

2 dx =

√
2π

α
.

ii. From the above calculation we have that

γΣ,b(x) dx = γΣ,b(B
Ty + b) dy

=
1

(2π)d/2
√

det(Σ)

d∏

i=1

exp

(
−1

2
λiy

2
i

)
dyi.

Consequently

EX =

∫

Rd

xγΣ,b(x) dx

=

∫

Rd

(BTy+ b)γΣ,b(B
Ty+ b) dy

= b

∫

Rd

γΣ,b(B
Ty + b) dy = b.

We note that, sinceΣ−1 = BTΛ−1B, we have thatΣ = BTΛB. Furthermore,z = BTy. We
calculate

E((Xi − bi)(Xj − bj)) =

∫

Rd

zizjγΣ,b(z+ b) dz

=
1

(2π)d/2
√

det(Σ)

∫

Rd

∑

k

Bkiyk
∑

m

Bmiym exp

(
−1

2

∑

ℓ

λ−1
ℓ y2ℓ

)
dy

=
1

(2π)d/2
√

det(Σ)

∑

k,m

BkiBmj

∫

Rd

ykym exp

(
−1

2

∑

ℓ

λ−1
ℓ y2ℓ

)
dy

=
∑

k,m

BkiBmjλkδkm

= Σij.
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iii. Let y be a multivariate Gaussian random variable with mean0 and covarianceI. Let alsoC = B
√
Λ.

We have thatΣ = CCT = CTC. We have that

X = CY + b.

To see this, we first note thatX is Gaussian since it is given through a linear transformation of a
Gaussian random variable. Furthermore,

EX = b and E((Xi − bi)(Xj − bj)) = Σij.

Now we have:

φ(t) = Eei〈X,t〉 = ei〈b,t〉Eei〈CY,t〉

= ei〈b,t〉Eei〈Y,CT t〉 = ei〈b,t〉Eei
∑

j(
∑

k Cjktk)yj

= ei〈b,t〉e−
1
2

∑

j|∑k Cjktk|2 = ei〈b,t〉e−
1
2
〈Ct,Ct〉

= ei〈b,t〉e−
1
2
〈t,CTCt〉 = ei〈b,t〉e−

1
2
〈t,Σt〉.

Consequently,

φ(t) = ei〈b,t〉−
1
2
〈t,Σt〉.

B.5.1 Gaussian Measures in Hilbert Spaces

In the following we letH to be a separable Hilbert space and we letB(H) to be the Borelσ-algebra onH.
We start with the definition of a Gaussian measure.

Definition B.24. A probability measureµ on (H, B(H)) is called Gaussian if for allh ∈ H there exists an
m ∈ R such that

µ (x ∈ H; 〈h, x〉 ∈ A) = N (A), A ∈ B(R). (B.12)

Let µ be a Gaussian measure. We define the following continuous functionals:

H → R h→
∫

H
〈h, x〉µ(dx) (B.13a)

H ×H → R (h1, h2) →
∫

H
〈h1, x〉〈h2, x〉µ(dx) (B.13b)

The functional in (B.13b) is symmetric. We can use the Riesz representation theorem onH andH ×H to
conclude:

Theorem B.25. There exists anm ∈ H, and a symmetric, nonnegative continuous operatorQ such that
∫

H
〈h, x〉µ(dx) = 〈m,h〉 ∀h ∈ H

and ∫

H
〈h1, x〉〈h2, x〉µ(dx) − 〈m,h1〉〈m,h2〉 = 〈Qh1, h2〉 ∀h1, h2 ∈ H.
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We will call m the mean andQ the covariance operator of the measureµ.

A Gaussian measureµ onH with meanm and covarianceQ has the following characteristic function:

µ(λ) =

∫
ei〈λ·x〉µ(dx) = ei〈λ·m〉− 1

2
〈Qλ,λ〉. (B.14)

Consequently, a Gaussian measure is uniquely determined bym andQ. Using the characteristic function of
µ one can prove thatQ is a trace class operator.

Let now{ek} and{λk} be the eigenfunctions and eigenvalues ofQ, respectively. SinceQ is symmetric
and bounded,{ek} forms a complete orthonormal basis onH. Further, letxk = 〈x, ek〉, k ∈ N. In the
sequel we will setm = 0.

Lemma B.26. The random variables(x1, . . . , xn) are independent.

Proof. We compute:

∫

H
xixi µ(dx) =

∫

H
〈x, ei〉〈x, ej〉µ(dx)

= 〈Qei, ej〉
= λiδij. (B.15)

Now we have the following:

Proposition B.27. Letµ ∈ N (0, Q) onH. Let

SQ = inf
λ∈σ(Q)

1

2λ
=

1

2‖Q‖ (B.16)

whereσ(Q) is the spectrum ofQ. Then,∀ s ∈ [0, SQ) we have:

∫

H
es|x|

2
µ(dx) = exp

[
−1

2
Tr (log(I − 2sQ))

]

= exp

[
1

2

∞∑

k=1

(2s)k

k
Tr(Qk)

]
(B.17)

Proof. 1. First we observe that sinceQ is a bounded operator we haveSQ > 0. Now, for s ∈ [0, SQ) we
have:

log(I − 2sQ) =

∞∑

k=1

(2s)k

k
, (B.18)

the series being absolutely convergent inL(H). Consequently, the operatorlog(I−2sQ) is also trace class.
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2. We fixs ∈ [0, SQ) and we consider finite dimensional truncations of the integral that appears on the
left hand side of equation (B.17):

In =

∫

H
es

∑n
i=1 x

2
i µ(dx)

=

n∏

i=1

∫

H
esx

2
i µ(dx) ({xi} are independent)

=

n∏

i=1

1√
2πλi

∫ ∞

−∞
e

(

sξ2− xi2

2λi

)

µ(dx) (xi ∈ N (0, λi))

=
n∏

i=1

1√
1− 2λis

= e(−
1
2

∑n
i=1 log(1−2λis))

= e(−
1
2
Tr log(I−2sQn)) (B.19)

with

Qnx =

n∑

i=1

λi〈x, ei〉ei, x ∈ H. (B.20)

Now we letn→ ∞ and use the fact thatlog(I − 2sQn) is trace class to obtain (B.17).

From the above proposition we immediately obtain the following corollary:

Corollary B.28. For arbitrary p ∈ N there exists a constantCp such that

∫

H
|x|2p µ(dx) 6 Cp [Tr(Q)]p (B.21)

for arbitrary µ ∈ N (0, Q).

Proof. Differentiate equation (B.17)p times and sets = 0. Now we make a few remarks on the above
proposition and corollary. First,Cp is a combinatorial constant and grows inp. Moreover, we have

∫

H
|x|2 µ(dx) = Tr(Q). (B.22)

Let nowX be a Gaussian variable onH with distributionµ(dx). Then we have:

E|X|2p =

∫

H
|x|2p µ(dx) 6 Cp

(
E|X|2

)p
. (B.23)

We will use the notationE|X|2p := ‖X‖2p
L2p . LetXt be a stationary stochastic process onH with distribu-

tion µ(dx), µ ∈ N (0, Q). Then, using the above corollary we can bound theL2p norm ofXt:

‖Xt‖L2p 6 Cp ‖Xt‖L2 . (B.24)
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B.6 Types of Convergence and Limit Theorems

One of the most important aspects of the theory of random variables is the study of limit theorems for sums
of random variables. The most well known limit theorems in probability theory are the law of large numbers
and the central limit theorem. There are various different types of convergence for sequences or random
variables. We list the most important types of convergence below.

Definition B.29. Let{Zn}∞n=1 be a sequence of random variables. We will say that

(a) Zn converges toZ with probability one if

P
(

lim
n→+∞

Zn = Z
)
= 1.

(b) Zn converges toZ in probability if for everyε > 0

lim
n→+∞

P
(
|Zn − Z| > ε

)
= 0.

(c) Zn converges toZ in Lp if

lim
n→+∞

E
[∣∣Zn − Z

∣∣p] = 0.

(d) LetFn(λ), n = 1, · · ·+∞, F (λ) be the distribution functions ofZn n = 1, · · ·+∞ andZ, respectively.
ThenZn converges toZ in distribution if

lim
n→+∞

Fn(λ) = F (λ)

for all λ ∈ R at whichF is continuous.

Recall that the distribution functionFX of a random variable from a probability space(Ω,F ,P) to R

induces a probability measure onR and that(R,B(R), FX) is a probability space. We can show that the
convergence in distribution is equivalent to the weak convergence of the probability measures induced by
the distribution functions.

Definition B.30. Let (E, d) be a metric space,B(E) the σ−algebra of its Borel sets,Pn a sequence of
probability measures on(E,B(E)) and letCb(E) denote the space of bounded continuous functions onE.
We will say that the sequence ofPn converges weakly to the probability measureP if, for eachf ∈ Cb(E),

lim
n→+∞

∫

E
f(x) dPn(x) =

∫

E
f(x) dP (x).

Theorem B.31. LetFn(λ), n = 1, · · · +∞, F (λ) be the distribution functions ofZn n = 1, · · · +∞ and
Z, respectively. ThenZn converges toZ in distribution if and only if, for allg ∈ Cb(R)

lim
n→+∞

∫

X
g(x) dFn(x) =

∫

X
g(x) dF (x). (B.25)
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Notice that (B.25) is equivalent to

lim
n→+∞

Eng(Xn) = Eg(X),

whereEn andE denote the expectations with respect toFn andF , respectively.
When the sequence of random variables whose convergence we are interested in takes values inRd or,

more generally, a metric space space(E, d) then we can use weak convergence of the sequence of probability
measures induced by the sequence of random variables to define convergence in distribution.

Definition B.32. A sequence of real valued random variablesXn defined on a probability spaces(Ωn,Fn, Pn)

and taking values on a metric space(E, d) is said to converge in distribution if the indued measures
Fn(B) = Pn(Xn ∈ B) for B ∈ B(E) converge weakly to a probability measureP .

Let {Xn}∞n=1 be iid random variables withEXn = V . Then, thestrong law of large numbersstates that
average of the sum of the iid converges toV with probability one:

P

(
lim

N→+∞
1

N

N∑

n=1

Xn = V
)
= 1. (B.26)

The strong law of large numbers provides us with informationabout the behavior of a sum of random vari-
ables (or, a large number or repetitions of the same experiment) on average. We can also study fluctuations
around the average behavior. Indeed, letE(Xn − V )2 = σ2. Define the centered iid random variables
Yn = Xn − V . Then, the sequence of random variables1

σ
√
N

∑N
n=1 Yn converges in distribution to a

N (0, 1) random variable:

lim
n→+∞

P

(
1

σ
√
N

N∑

n=1

Yn 6 a

)
=

∫ a

−∞

1√
2π
e−

1
2
x2
dx.

This is thecentral limit theorem.
A useful result is Slutksy’s theorem.

Theorem B.33. (Slutsky)Let {Xn}+∞
n=1, {Yn}+∞

n=1 be sequences of random variables such thatXn con-
verges in distribution to a random variableX andYn converges in probability to a constantc 6= 0. Then

lim
n→+∞

Y −1
n Xn = c−1X,

in distribution.

B.7 Discussion and Bibliography

The material of this appendix is very standard and can be found in many books on probability theory and
stochastic processes. See, for example [10, 22, 23, 58, 59, 49, 97].

The connection between conditional expectation and orthogonal projections is discussed in [12].
The reduced distribution functions defined in Section B.2 are used extensively in statistical mechanics.

A different normalization is usually used in physics textbooks. See for instance [9, Sec. 4.2].
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The calculations presented in Section B.5 are essentially an exercise in linear algebra. See [53, Sec.
10.2]. Section B.5 is based on [78, Sec. 2.3] where additional information on probability measures in
infinite dimensional spaces can be found.

Limit theorems for stochastic processes are studied in detail in [43].
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Hessian, 124
Holley-Stroock lemma, 116

inequality
Csiszar-Kullback, 116
logarithmic Sobolev, 116
Pinsker, 116
Poincarè, 98

inner product
matrix, 123

invariant measure, 37
Markov process, 46

Itô isometry, 53
Itô stochastic calculus, 51
Itô stochastic differential equation, 55
Itô stochastic integral, 52
Itô’s formula, 51, 59, 60
Itô-to-Stratonovich correction, 56

Karhunen-Loéve Expansion, 16
for Brownian Motion, 19

Klimontovich stochastic integral, 55

Lamperti’s transformation, 68, 69, 75
Landau-Stuart equation, 50
law

of a random variable, 127
law of large numbers

strong, 139
law of total probability, 131
lemma

Holley-Stroock, 116
likelihood function, 70
linear stochastic differential equation

autocorrelation matrix, 71
Liouville operator, 60
logarithmic Sobolev inequality, 101
logarithmic Sobolev inequality (LSI), 116
Lorentz distribution, 7
Lyapunov equation, 72

Lyapunov function, 73, 100, 115

Markov chain
continuous-time, 28
discrete time, 28
generator, 30
transition matrix, 29

Markov Chain Monte Carlo, 108
Markov process, 27

ergodic, 37
generator, 35
stationary, 38
time-homogeneous, 29, 33
transition function, 32
transition probability , 29

Markov semigroup, 35
martingale, 54
mean reverting Ornstein-Uhlenbeck process, 66
Mercer’s theorem, 18
multiplicative noise, 50

norm
Euclidean, 123
Frobenius, 123

opérateur carré du champ, 115
operator

Hilbert-Schmidt, 24
Ornstein–Uhlenbeck process, 38
Ornstein-Uhlenbeck process, 7

Fokker-Planck equation, 83
mean reverting, 66

partition function, 97
Pawula’s theorem, 47
Pinsker inequality, 116
Poincarè’s inequality, 98

for Gaussian measures, 92
Poisson process, 24
probability density function

of a random variable, 128
probability flux, 79

random variable, 127
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Gaussian, 130
uncorrelated, 130

reduced distribution function, 129
relative entropy, 101, 116, 119
reversible diffusion, 101
reversible diffusion process, 90

sample path, 1
sample space, 125
semigroup of operators, 34
Slutsky’s theorem, 139
Smoluchowski equation, 77, 96
spectral density, 6
spectral measure, 6
stationary Fokker–Planck equation, 37
stationary Markov process, 38
stationary process, 3

second order stationary, 4
strictly stationary, 3
wide sense stationary, 4

stochastic differential equation, 13
additive noise, 50
Cox-Ingersoll-Ross, 69
Itô, 55
multiplicative noise, 50
Stratonovich, 55
strong solution, 57, 73
Verhulst, 76
weak solution, 73

stochastic integral
Itô, 52
Klimontovich, 55
Stratonovich, 53

stochastic matrix, 29
stochastic mechanics, 118
stochastic process

definition, 1
equivalent, 2
ergodic, 4
finite dimensional distributions, 1
Gaussian, 2
sample path, 1

second-order stationary, 4
stationary, 3
strictly stationary, 3

stopping time, 51, 73
Stratonovich stochastic differential equation, 55
Stratonovich stochastic integral, 53
strong solution of a stochastic differential equation,

57

Tanaka equation, 73
theorem

Birkhoff, 4
Bochner, 6
Doob, 39
Girsanov, 68, 70
Mercer, 18
Pawula, 47
Slutsky, 139

time-homogeneous Markov process, 33
transformation

Lamperti, 69, 75
transition function, 32
transition matrix

Markov chain, 29
transition probability

of a Markov process, 29
transition probability density, 33
transport coefficient, 9

uniform ellipticity
Fokker-Planck equation, 78

Verhulst stochastic differential equation, 76

Wiener process, 11
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G. Toscani, and C. Villani. Entropies and equilibria of many-particle systems: an essay on recent
research.Monatsh. Math., 142(1-2):35–43, 2004.

[4] A. Arnold, P. Markowich, G. Toscani, and A. Unterreiter.On convex Sobolev inequalities and the
rate of convergence to equilibrium for Fokker-Planck type equations. Comm. Partial Differential
Equations, 26(1-2):43–100, 2001.

[5] L. Arnold. Stochastic differential equations: theory and applications. Wiley-Interscience [John Wiley
& Sons], New York, 1974. Translated from the German.

[6] S. Asmussen and P. W. Glynn.Stochastic simulation: algorithms and analysis, volume 57 ofStochas-
tic Modelling and Applied Probability. Springer, New York, 2007.

[7] D. Bakry, P. Cattiaux, and A. Guillin. Rate of convergence for ergodic continuous Markov processes:
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[59] M. Loève. Probability theory. II. Springer-Verlag, New York, fourth edition, 1978. Graduate Texts
in Mathematics, Vol. 46.

[60] L. Lorenzi and M. Bertoldi. Analytical Methods for Markov Semigroups. CRC Press, New York,
2006.
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