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Chapter 1

Introduction to Stochastic Processes

In this chapter we present some basic results from the thafosyochastic processes and investigate the
properties of some of the standard continuous-time stéich@scesses. In Section 1.1 we give the definition
of a stochastic process. In Section 1.2 we present some riggpef stationary stochastic processes. In
Section 1.3 we introduce Brownian motion and study somesgitibperties. Various examples of stochastic
processes in continuous time are presented in Section hetKarhunen-Loeve expansion, one of the most
useful tools for representing stochastic processes artbmarields, is presented in Section 1.5. Further
discussion and bibliographical comments are presenteddtidh 1.6. Section 1.7 contains exercises.

1.1 Definition of a Stochastic Process

Stochastic processes describe dynamical systems whosevofution is of probabilistic nature. The pre-
cise definition is given below.

Definition 1.1 (stochastic process) et T be an ordered set(?, 7,P) a probability space andFE,G) a
measurable space. A stochastic process is a collectionrafam variablesX = {X;;¢ € T} where, for
each fixed € T', X, is a random variable fronQ2, 7, P) to (E, G). 2 is known as the sample space, where
E is the state space of the stochastic proc¥ss

The setT’ can be either discrete, for example the set of positive @r&g., , or continuous” = R, .
The state spacg will usually beR¢ equipped with ther-algebra of Borel sets.

A stochastic proces& may be viewed as a function of batlke 7" andw € 2. We will sometimes write
X(t), X (t,w) or X;(w) instead ofX;. For a fixed sample point € €, the functionX;(w) : T — E'is
called a (realization, trajectory) of the process

Definition 1.2 (finite dimensional distributions)The finite dimensional distributions (fdd) of a stochastic
process are the distributions of thig*-valued random variable$¢X (t1), X (t2), ..., X (t;)) for arbitrary
positive integer and arbitrary times; € T, i € {1,...,k}:

F(X):]P’(X(tz) <1‘Z,Z:1,,]{7)

withx = (z1, ..., xk).

1The notation and basic definitions from probability thedrgttwe will use can be found in Appendix B.
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From experiments or numerical simulations we can only olitdbrmation about the finite dimensional
distributions of a process. A natural question arises: fadihite dimensional distributions of a stochastic
process sufficient to determine a stochastic process ugiRjuehis is true for processes with continuous
paths?, which is the class of stochastic processes that we wilysituthese notes.

Definition 1.3. We say that two processé§ andY; are equivalent if they have same finite dimensional
distributions.

Gaussian stochastic processes

A very important class of continuous-time processes is dfid@baussian processes which arise in many
applications.

Definition 1.4. A one dimensional continuous time Gaussian process is dastic process for which
E = R and all the finite dimensional distributions are Gaussiam. i every finite dimensional vector
(Xty, Xitgy .-, Xy, ) is @ N (ug, Ki) random variable for some vectqr, and a symmetric nonnegative
definite matrixi;, forall k = 1,2,... and for allt{, o, ..., ts.

From the above definition we conclude that the finite dimaralidistributions of a Gaussian continuous-
time stochastic process are Gaussian with probabilityiligton function

_n _ 1,
Vun K (%) = (27) /2(detK ) /2 exp _§<Kk Yx — k), x — ) |

wherex = (z1,x2, ... k).
It is straightforward to extend the above definition to aebif dimensions. A Gaussian process) is
characterized by its mean
m(t) := Ex(t)

and the covariance (or autocorrelation) matrix

O(t,s) = E((m(t) —m(t)) ® (a(s) - m(s))).

Thus, the first two moments of a Gaussian process are suffiiera complete characterization of the
process.

It is not difficult to simulate Gaussian stochastic processe a computer. Given a random number
generator that generatd§(0, 1) (pseudo)random numbers, we can sample from a Gaussiarastiocpro-
cess by calculating the square root of the covariance. Alsimlgorithm for constructing a skeleton of a
continuous time Gaussian process is the following:

e Fix At and defing; = (j —1)At, j =1,...N.

N
e SetX; := X(t;) and define the Gaussian random vectdf = {XJN} o ThenX ™ ~ N (N, T'V)
]:
with MN = (M(tl), e M(tN)) ande}[ = C(tz‘,t]‘).

2In fact, all we need is the stochastic process tadgarableSee the discussion in Section 1.6.
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e ThenX? = uV + AN(0,1) with TN = AAT.

We can calculate the square root of the covariance matexher using the Cholesky factorization, via the
spectral decomposition @f, or by using the singular value decomposition (SVD).

Examples of Gaussian stochastic processes

Random Fourier series: l€t, ¢; ~ N (0,1), ¢ = 1,... N and define

N
Z (& cos(2mjt) + j sin(2mjt)) .
7=1

Brownian motion is a Gaussian process wiilit) = 0, C'(¢, s) = min(¢, s).

Brownian bridge is a Gaussian process witlt) = 0, C(¢,s) = min(¢, s) — ts.

The Ornstein-Uhlenbeck process is a Gaussian processmwith = 0, C(t,s) = Xe~ sl with
a, A > 0.

1.2 Stationary Processes

In many stochastic processes that appear in applicatiensstatistics remain invariant under time transla-
tions. Such stochastic processes are catationary It is possible to develop a quite general theory for
stochastic processes that enjoy this symmetry propertg. useful to distinguish between stochastic pro-
cesses for which all finite dimensional distributions aem&tation invariant (strictly stationary processes)
and processes for which this translation invariance hotdg for the first two moments (weakly stationary

processes).

Strictly Stationary Processes

Definition 1.5. A stochastic process is called (strictly) stationary if fatlite dimensional distributions are
invariant under time translation: for any integérand timeg; € 7', the distribution of X (¢), X (t2), ..., X (tx))
is equal to that of X (s+1¢1), X (s+t2),..., X(s+tg)) foranys suchthats+¢; € T'foralli € {1,... k}.

In other words,

P(thJrs S A17Xt2+3 € Ay.. -thJrs € Ak) = P(th € Al,Xt2 €Ay, .. th € Ak), VseT.

Example 1.6. Let Yy, Y7,... be a sequence of independent, identically distributedaandariables and
consider the stochastic procekg = Y,,. ThenX,, is a strictly stationary process (see Exercise 1). Assume
furthermore thalEY; = i < +o00. Then, by the strong law of large numbers, Equation (B.2@&)have that

1Nfl 1Nfl
T2 Xi=5 D Vi E =y,
j=0 j=0
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almost surely. In fact, thBirkhoff ergodic theorenstates that, for any functiofisuch thatf f (Y;) < +oo,
we have that

1 N-1
Gim ;o F(X;5) = Ef(Y0), (1.1)

almost surely. The sequence of iid random variables is ampbeaof an ergodic strictly stationary processes.

We will say that a stationary stochastic process that sadigfi.1) isergodic  For such processes we
can calculate expectation values of observaBlg,X;) using a single sample path, provided that it is long
enough (V > 1).

Example 1.7. Let Z be a random variable and define the stochastic prakgss Z, n =0,1,2,.... Then
X, is a strictly stationary process (see Exercise 2). We canlzdé the long time average of this stochastic

process:

N-1 N-1

1 N=
i=0 =0

N

<

which is independent oV and does not converge to the mean of the stochastic procEs§gs= EZ
(assuming that it is finite), or any other deterministic nemf his is an example of a non-ergodic processes.

Second Order Stationary Processes

Let (Q,}‘, IP’) be a probability space. LeY;, ¢t € T (with T' = R or Z) be a real-valued random process
on this probability space with finite second moméiitX;|> < +oo (i.e. X; € L2(Q,P) forallt € T).
Assume that it is strictly stationary. Then,

E(Xys) =EX,, seT, (1.2)
from which we conclude that X; is constant and
E((Xti4s = ) (Xtygs — ) = E((Xyy, — p)(Xp, — ), s €T, (1.3)
implies that thecovariance functiordepends on the difference between the two timesds:
C(t,s) =C(t—s).
This motivates the following definition.

Definition 1.8. A stochastic procesX; € L? is called second-order stationary, wide-sense statiorary
weakly stationary if the first momeRtX; is a constant and the covariance functi@fX; — u)(Xs — u)
depends only on the difference- s:

EXy =p, E(Xi—p)(Xs —p) =C(t—s).

The constanf: is the expectation of the proce&s. Without loss of generality, we can set= 0, since
if EX; = p then the process; = X; — v is mean zero. A mean zero process is called a centered process
The functionC(t) is thecovariance(sometimes also called autocovariance) orahcorrelation function
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of the X;. Notice thatC(t) = E(X;X,), whereas”(0) = EX?, which is finite, by assumption. Since we
have assumed tha, is a real valued process, we have thdt) = C(—t), t € R.

Let now X; be a strictly stationary stochastic process with finite sdanoment. The definition of strict
stationarity implies thaEX; = p, a constant, an@l.((X; — u)(Xs — p)) = C(t — s). Hence, a strictly
stationary process with finite second moment is also statyoim the wide sense. The converse is not true,
in general. Itis true, however, for Gaussian processese $he first two moments of a Gaussian process are
sufficient for a complete characterization of the proce<saassian stochastic process is strictly stationary
if and only if it is weakly stationary.

Example 1.9. Let Yy, Y7,... be a sequence of independent, identically distributedaaindariables and
consider the stochastic process, = Y,,. From Example 1.6 we know that this is a strictly stationary
process, irrespective of whethiy is such thaffY? < +oc. Assume now thaEY, = 0 andEY = o2 <
+00. ThenX,, is a second order stationary process with mean zero andat@refunctionR(k) = 250.
Notice that in this case we have no correlation between thiesaf the stochastic process at different times
n andk.

Example 1.10. Let Z be a single random variable and consider the stochastiegsdt, = Z, n =
0,1,2,.... From Example 1.7 we know that this is a strictly stationargcpss irrespective of whether
E|Z|? < +oc0 or not. Assume now thd&Z = 0, EZ? = o2. ThenX,, becomes a second order stationary
process withR(k) = o2. Notice that in this case the values of our stochastic peoaedifferent times are
strongly correlated.

We will see later in this chapter that for second order shatip processes, ergodicity is related to fast
decay of correlations. In the first of the examples aboveagtiheas no correlation between our stochastic
processes at different times and the stochastic procesgddie. On the contrary, in our second example
there is very strong correlation between the stochasticga® at different times and this process is not
ergodic.

Continuity properties of the covariance function are eglamt to continuity properties of the paths of
X, inthe L? sense, i.e.

lim E| X, — X¢> = 0.
h—0

Lemma 1.11. Assume that the covariance functiofit) of a second order stationary process is continuous
att = 0. Then it is continuous for alt € R. Furthermore, the continuity af’(¢) is equivalent to the
continuity of the proces¥/ in the L?-sense.

Proof. Fix t € R and (without loss of generality) sBtX; = 0. We calculate:

C(t+h) = C) [E(Xe41X0) = E(XiXo)[* = E|((Xe4n — Xi) Xo)|?
E(X0)’E(Xyn — Xi)?
C(0)(EXZy), + EXP — 2E(Xe Xe41))

2C(0)(C(0) = C(n)) = 0,

I\

ash — 0. Thus, continuity ofC'(-) at0 implies continuity for allt.
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Assume now thaf’(t) is continuous. From the above calculation we have
E|[Xiyn — Xef? = 2(C(0) — C(h)), (1.4)
which converges t® ash — 0. Conversely, assume thaf; is L2-continuous. Then, from the above
equation we gelim;, _,o C'(h) = C(0). O

Notice that form (1.4) we immediately conclude tlia0) > C'(h), h € R.

The Fourier transform of the covariance function of a secoittér stationary process always exists.
This enables us to study second order stationary processestools from Fourier analysis. To make the
link between second order stationary processes and Faunddysis we will use Bochner's theorem, which
applies to all nonnegative functions.

Definition 1.12. A functionf(z) : R — R is called nonnegative definite if
n
> fti—ty)ae; =0 (1.5)
ij=1
forallneN, t1,...t, € R, ¢1,...c, € C.
Lemma 1.13. The covariance function of second order stationary proteasonnegative definite function.
Proof. We will use the notatiorXy := >""" | X;,¢;. We have.

n n
Y Cti—tj)ee; = Y EXy, Xy eic

i,j=1 i,j=1

n n

= E ZXticiZthaj =E (X;X¢)
i=1 j=1

= E|X{]* > 0.

O

Theorem 1.14.[Bochner] LetC(¢) be a continuous positive definite function. Then there £&sinique
nonnegative measugeonR such thatp(R) = C(0) and

C(t) = /Rei‘”t p(dw) VteR. (1.6)

Let X, be a second order stationary process with autocorrelatioctibnC'(¢) whose Fourier transform
is the measurg(dw). The measurg(dw) is called thespectral measuref the process;. In the following
we will assume that the spectral measure is absolutelyraomiis with respect to the Lebesgue measure on
R with densityS(w), i.e. p(dw) = S(w)dw. The Fourier transforny(w) of the covariance function is called
the spectral densityf the process:

1 oo

S(w) = —/ e~ CO(t) dt. 1.7)

27 J_
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From (1.6) it follows that that the autocorrelation functiof a mean zero, second order stationary process
is given by the inverse Fourier transform of the spectrakign

C(t) = / h "™ S(w) dw. (1.8)

The autocorrelation function of a second order stationapggss enables us to associate a timescalg to
thecorrelation timer,,,.:

1 & 1 ©
Tecor = m/o C(T) dr = M/O E(XTX()) dr.

The slower the decay of the correlation function, the lathercorrelation time is. Notice that when the
correlations do not decay sufficiently fast so tigt) is not integrable, then the correlation time will be
infinite.

Example 1.15. Consider a mean zero, second order stationary processavitflation function
C(t) = C(0)e~ (1.9)
wherea > 0. We will write C'(0) = g whereD > 0. The spectral density of this process is:

1D [t
Sw) = —— e~ wtemolt gy

2m o J_o

= LB </0 e*itheat dt + /+OO 671'0'”5670“5 dt)
2m o \J_o 0

1D< 1 1 >
= —— - + -
2ra \—w+a  w+ o

D 1
T w2+ a2’

This function is called theCauchyor the Lorentz distribution.  The correlation time is (we have that

R(0) =D/a)
Teor = / e tdt = Oéil.
0

A real-valued Gaussian stationary process definell with correlation function given by (1.9) is called
the stationanyOrnstein-Uhlenbeck proces¥Ve will study this stochastic process in detail in laterpties.
The Ornstein-Uhlenbeck proce&s can be used as a model for the velocity of a Brownian partltis.of
interest to calculate the statistics of the position of thevBiian particle, i.e. of the integral (we assume that
the Brownian patrticle starts 8}

t
Zy = / Y ds, (1.10)
0
The particle positiorZ; is a mean zero Gaussian process.det D = 1. The covariance function df; is

E(ZZs) = 2min(t, s) + e~ ™ints) 4 gmmax(ts) _ o=ft=s| _ 7 (1.12)
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Ergodic properties of second-order stationary processes

Second order stationary processes have nice ergodic fespgrovided that the correlation between values
of the process at different times decays sufficiently fastthis case, it is possible to show that we can
calculate expectations by calculating time averages. Amge of such a result is the following.

Proposition 1.16. Let{ X, };~¢ be a second order stationary process on a probability sgéxeF, ) with
meany and covariance”(t), and assume that'(t) € L'(0,+o00). Then

2
= 0. (1.12)

T
Xsds—p

T—+o0 ‘ T 0

For the proof of this result we will first need the followingstét, which is a property of symmetric
functions.

Lemma 1.17. Let R(t) be an integrable symmetric function. Then

/OT /OT Ot — s) dtds = 2/0T(T — $)C(s) ds. 113

Proof. We make the change of variables= ¢t — s, v = t + s. The domain of integration in the s
variables i50, 7] x [0,T]. In theu, v variables it becomes-T',T| x [|u|,2T — |u|]. The Jacobian of the
transformation is

The integral becomes

/OT/OTR(t—s)dtds - / /|2T " Ru) dvdu
- [ @ lnw @

T
= 2/ (T — uw)R(u) du,
0
where the symmetry of the functiari(v) was used in the last step. O

Proof of Theorem 1.18/Me use Lemma (1.17) to calculate:
1 (7T ? 1 T

- / / (X, — 1)(X, — o) dids

9 T
= 72 ; (T —u)C(u) du
A u P
< = - — < =
<7/ ‘(1 T)C(u)‘du\T/O C(u) du — 0,



using the dominated convergence theorem and the assundptipre L'(0, +oc0).  Assume thap = 0

and define
“+o0

D= C(t) dt, (1.14)
0

which, from our assumption ofi (¢), is a finite quantity> The above calculation suggests that, fop 1,

we have that
t 2
E (/ X(t) dt) ~ 2Dt.
0

This implies that, at sufficiently long times, the mean squdisplacement of the integral of the ergodic
second order stationary proceXs scales linearly in time, with proportionality coefficiend. Let now X,

be the velocity of a (Brownian) particle. The particle positZ; is given by (1.10). From our calculation
above we conclude that

EZ? = 2Dt.

where
D:/ C(t)dt:/ E(X;:Xo) dt (1.15)
0 0

is thediffusion coefficientThus, one expects that at sufficiently long times and unperapriate assump-
tions on the correlation function, the time integral of atistaary process will approximate a Brownian
motion with diffusion coefficientD. The diffusion coefficient is an example of a transport cogfit
and (1.15) is an example of the Green-Kubo formula: a tramsgefficient can be calculated in terms of
the time integral of an appropriate autocorrelation fuorctiln the case of the diffusion coefficient we need
to calculate the integral of the velocity autocorrelationdtion. We will explore this topic in more detail in
Chapter??.

Example 1.18. Consider the stochastic processes with an exponentiatlation function from Exam-

ple 1.15, and assume that this stochastic process desthibeselocity of a Brownian particle. Since
C(t) € L(0,+oc) Proposition 1.16 applies. Furthermore, the diffusion ficieht of the Brownian particle

is given by

o C(t)dt =C(0)r; !t = D

0 ¢ o

Remark 1.19. Let X; be a strictly stationary process and I¢tbe such thaE(f(Xo))? < +oo. A calcula-
tion similar to the one that we did in the proof of Propositibri6 enables to conclude that

1
lim —
T—4o00 T’

T

| e ds =erxo) (1.16)
0

in L2(€2). In this case the autocorrelation function &% is replaced by

Cy(t) = E[(f(Xy) — Ef(Xo)) (f(Xo) — Ef(X0))].

3Notice however that we do not know whether it is nonzero. Téigiires a separate argument.
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Settingf = f — E. f we have:

) 1 T +oo o o
lim 7 Var, <?/0 f(Xt)dt> :2/0 E.(F(X,)f(Xo)) dt (1.17)

T—+o0

Var, <% /OTf(Xt)dt> = E, <% /OTf(Xt)dt>

We calculate

v = -

[\

I
Nlv N
S~

qo
—

[

|

| »
N~

=
3
—
g
s
=l
&
~

QL
@

from which (1.16) follows.

1.3 Brownian Motion

The most important continuous-time stochastic processag/Bian motion. Brownian motion is a process
with almost surely continuous paths and independent Gaugscrements. A process; has independent
increments if for every sequenég< t; < ...t, the random variables

X — Xy, Xy — Xy ooy Xy, — Xy,
are independent. If, furthermore, for ahy t», s € T and Borel se3 C R
P(Xty1s — Xty 45 € B) =P(Xy, — Xy, € B),
then the procesX; has stationary independent increments.

Definition 1.20. A one dimensional standaBrownian motion¥ (¢) : R*™ — R is a real valued stochastic
process with a.s. continuous paths such tHat0) = 0, it has independent increments and for every
t > s > 0, the incrementV (t) — W (s) has a Gaussian distribution with me&@irand variancet — s, i.e.
the density of the random variabl& (t) — W (s) is

g(x;t,s) = (277(15 — s))_% exp <_2(tx7js)> : (1.18)

A standardd-dimensional standard Brownian motid#i (¢) : RT — R? is a vector ofd independent one-
dimensional Brownian motions:
W(t) = (Wi(t),..., Wy(t)),

10



mean of 1000 paths
5 individual paths

15

-15 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1
t
Figure 1.1: Brownian sample paths
whereW;(t),i = 1,...,d are independent one dimensional Brownian motions. Thetgesfshe Gaussian

random vectodV (¢) — W (s) is thus

g(x;t,s) = <27T(t - s))id/2 exp <_2(”txﬂ2s)> .

Brownian motion is also referred to as téener processlf Figure 1.1 we plot a few sample paths of
Brownian motion.

As we have already mentioned, Brownian motion has almostysaontinuous paths. More precisely, it
has a continuous modification: consider two stochasticgaeesX; andY;, t € T, that are defined on the
same probability spacg?, F,P). The procesd; is said to be a modification of; if P(X; = Y;) = 1 for
all t € T. The fact that there is a continuous modification of Brownigstion follows from the following
result which is due to Kolmogorov.

Theorem 1.21. (Kolmogorov) LetX;, ¢ € [0, c0) be a stochastic process on a probability spéte 7, P).
Suppose that there are positive constamtsnd 3, and for eachl” > 0 there is a constant’(7") such that

E|X;, — X,|* < C(T)|t —s|'?, 0<s,t<T. (1.19)
Then there exists a continuous modificatlgrof the processY;.

We can check that (1.19) holds for Brownian motion with= 4 and3 = 1 using (1.18). It is possible
to prove rigorously the existence of the Wiener processwBran motion):

Theorem 1.22. (Wiener) There exists an almost surely continuous prodéssith independent increments
such andiy = 0, such that for each > 0 the random variabldV; is N'(0, ¢). Furthermore, W, is almost
surely locally Hdlder continuous with exponentfor anya € (0, %).

11



50-step random walk 1000-step random walk
— T

I I I I I I I I I I I I I I I I I I
0 5 10 15 2 % Kl 3% L} L3 50 0 100 200 30 40 50 600 700 800 %0 1000

a. n=>50 b. n = 1000

Figure 1.2: Sample paths of the random walk of lengts 50 andn = 1000.

Notice that Brownian paths are not differentiable.

We can construct Brownian motion through the limit of an ajppiately rescaled random walk: let
X1, Xo,... beiid random variables on a probability spa€k F,P) with mean0 and variancd. Define
the discrete time stochastic procégswith S = 0, S, = Zj:1 X, n > 1. Define now a continuous time
stochastic process with continuous paths as the lineadypalated, appropriately rescaled random walk:

1
NG

where[:] denotes the integer part of a number. ThEft converges weakly, as — +oco to a one dimen-
sional standard Brownian motion. See Figure 1.2.

An alternative definition of the one dimensional standaroMBiian motion is that of a Gaussian stochas-
tic process on a probability spa¢@, F, IP’) with continuous paths for almost all € €2, and finite dimen-
sional distributions with zero mean and covariafit@?; W;,) = min(t;,t;). One can then show that
Definition 1.20 follows from the above definition.

For thed-dimensional Brownian motion we have (see (B.7) and (B.8))

1

W = \/ﬁX[nt]—l—la

Singy + (nt — [nt])

EW(t)=0 Vt>0

and
E((W(H) = W(s) @ (W(t) = W(s))) = (t = s)I. (1.20)

wherel denotes the identity matrix. Moreover,
E(W(t) ® W(s)) = min(t, s)1. (1.21)
Although Brownian motion has stationary increments, itas & stationary process itself Brownian motion

12



itself. The probability density of the one dimensional Brian motion is

[a—

z,t) = e/,
gl@t) = ——
We can easily calculate all moments:
EW(H") = —— / et
= T e X
27t J_oo
_ { 1.3...(n—1)t"2, neven
N 0, nodd

In particular, the mean square displacement of Browniananafrows linearly in time.
Brownian motion is invariant under various transformagiamtime.

Proposition 1.23. Let W, denote a standard Brownian motionltr Then,IV; has the following properties:
i. (Rescaling). For each > 0 defineX; = % (ct). Then(X, t > 0) = (Wi, t > 0) in law.

ii. (Shifting). For eache > 0 W, — W,,t > 0 is a Brownian motion which is independentl®f,, u €
[0, c].

iii. (Time reversal). DefineX; = Wy_, — Wy, t € [0,1]. Then(Xy, ¢t € [0,1]) = (W, t € [0, 1]) in law.

iv. (Inversion). LetX,, ¢ > 0 defined byX, = 0, X; = tW(1/t). Then(X;, t > 0) = (W, t > 0) in
law.

The equivalence in the above result holds in law and not irttayse sense. The proof of this proposi-
tion is left as an exercise.

We can also add a drift and change the diffusion coefficieth®Brownian motion: we will define a
Brownian motion with drift, and variancer? as the process

Xt == ‘Ltt + O'Wt.
The mean and variance &f; are
EX, = ut, E(X;—EX;)?=o%.

Notice thatX,; satisfies the equation
dXt = /,Ldt + O'th.

This is an example of atochastic differential equationWe will study stochastic differential equations in
Chapters 3 an@?.

1.4 Examples of Stochastic Processes
We present now a few examples of stochastic processes thedafpequently in applications.

13



The Ornstein-Uhlenbeck process

The stationary Ornstein-Uhlenbeck process that was intred earlier in this chapter can be defined through
the Brownian motion via a time change.

Lemma 1.24. Let W (¢) be a standard Brownian motion and consider the process
V(t) = e tW(e*).
ThenV/(t) is a Gaussian stationary process with meésand correlation function
R(t) = eIt (1.22)
For the proof of this result we first need to show that time geahGaussian processes are also Gaussian.

Lemma 1.25. Let X (¢) be a Gaussian stochastic process and¥iét) = X (f(t)) wheref(t) is a strictly
increasing function. Thelr (¢) is also a Gaussian process.

Proof. We need to show that, for all positive intege¥sand all sequences of timg$,, t¢o,...tx} the
random vector

{Y(t1), Y(ta),...Y(tn)} (1.23)

is a multivariate Gaussian random variable. Sifi¢g is strictly increasing, it is invertible and hence, there
exists;, i = 1,... N such thats; = f~1(¢;). Thus, the random vector (1.23) can be rewritten as

{X(s1), X(s52),--- X(sn)},
which is Gaussian for alNV and all choices of times;, s, ... sy. HenceY (¢) is also Gaussian. O

Proof of Lemma 1.24The fact thaf/(¢) is a mean zero process follows immediately from the fact that
W (t) is mean zero. To show that the correlation functio/¢f) is given by (1.22), we calculate

E(V(H)V(s)) = e " EW ()W (e*)) = e "% min(e*, )

e~ lt=sl,

The Gaussianity of the proce$§t) follows from Lemma 1.25 (notice that the transformationt thizes
V (t) in terms of W (¢) is invertible and we can writd/ (s) = s'/2V/(1 In(s))). O

Brownian Bridge

We can modify Brownian motion so that the resulting processéxed at both ends. L&V (¢) be a standard
one dimensional Brownian motion. We define the Browniand®iffrom0 to 0) to be the process

By =W, —tW;, telo,1]. (1.24)

Notice thatBy = B; = 0. Equivalently, we can define the Brownian bridge to be thdinanus Gaussian
process{B; : 0 < ¢t < 1} such that

EB; =0, E(B,B,)=min(s,t)—st, s,te[0,1]. (1.25)

14



15

0.5

A

) O
AT vﬂ&'ﬂ"‘.\@'é’h“nﬁ.“.@’m\
A/) w V AN W

—05F

-1t

-15r-

-2

Figure 1.3: Sample paths and first (blue curve) and secoadklgurve) moment of the Brownian bridge.

Another, equivalent definition of the Brownian bridge isaiigh an appropriate time change of the Brownian
motion:
t
Bi=(1-t)W (ﬁ) , te][0,1). (1.26)
Conversely, we can write the Brownian motion as a time charfigiee Brownian bridge:

t
=(t+1)B|— t = 0.
Wy=(t+1) <1+t>’ 0

We can use the algorithm for simulating Gaussian processgsierate paths of the Brownian bridge process
and to calculate moments. In Figure 1.3 we plot a few samplespand the first and second moments of
Brownian bridge.

Fractional Brownian Motion

The fractional Brownian motion is a one-parameter familyGaussian processes whose increments are
correlated.

Definition 1.26. A (normalized) fractional Brownian motiol,/, ¢+ > 0 with Hurst parametedd € (0, 1)
is a centered Gaussian process with continuous sample patbse covariance is given by

1
EWHWH) = 5(SZH + 21— — 5P, (1.27)

S

The Hurst exponent controls the correlations between treinents of fractional Brownian motion as
well as the regularity of the paths: they become smoothéf axreases.
Some of the basic properties of fractional Brownian motieasaimmarized in the following proposition.

Proposition 1.27. Fractional Brownian motion has the following properties.

15
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Figure 1.4: Sample paths of fractional Brownian motion far$t exponenf/ = 0.3 andH = 0.8 and first
(blue curve) and second (black curve) moment.

i. WhenH = 1, Wt% becomes the standard Brownian motion.
i. Wi =0, EWH =0, EWH)?2=t|*",t>0.
iii. It has stationary increments anB(W/H — WH)2 = |t — s|?H.
iv. It has the following self similarity property
WH t>0) =@ WH t>0), a>0, (1.28)
where the equivalence is in law.

The proof of these properties is left as an exercise. In Eidu4 we present sample plots and the first
two moments of the factional Brownian motion f&fF = 0.3 and H = 0.8. As expected, for larger values
of the Hurst exponent the sample paths are more regular.

1.5 The Karhunen-Loéve Expansion

Let f € L?(D) whereD is a subset oR? and let{e, }>° ; be an orthonormal basis i?(D). Then, it is
well known thatf can be written as a series expansion:

= Z Jnn,
n=1

fu= /Q f(@)en(a) da

16
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The convergence is ih?(D):

It turns out that we can obtain a similar expansion foZ&rmean zero process which is continuous in the
L? sense:

EX? < 400, EX; =0, lim B| X, ¢ - Xi?=0. (1.29)
_)

For simplicity we will takeT" = [0, 1]. Let R(¢,s) = E(X;X;) be the autocorrelation function. Notice that
from (1.29) it follows thatR(t, s) is continuous in both ands; see Exercise 20.

Let us assume an expansion of the form
w) =Y &wlen(t), te[0,1] (1.30)
n=1

where{e, }>° , is an orthonormal basis ih?(0, 1). The random variables, are calculated as

1 1 °© 00
/ Xiep(t) dt = / D Gnen(en(t) dt = Endn = &,
0 0 =1 n=1

where we assumed that we can interchange the summation teggaition. We will assume that these
random variables are orthogonal:

where{\, }>° ; are positive numbers that will be determined later.
Assuming that an expansion of the form (1.30) exists, we adgutate

R(t,s) =E(X:Xs) = <ZZ§k€k Yeer(s )
k=1 (=1
= > E (&) ex(t)en(s)
k=1 (=1
= Z)\kek(t)ek(s).

B
Il
—_

Consequently, in order to the expansion (1.30) to be valitheaxl

) =Y Arer(t)ex(s). (1.31)
=1

17



From equation (1.31) it follows that

1Rt ds = 'y A t d
/0 (t,s)en(s)ds = /0 Z kek(t)ex(s)en(s)ds

k=1
o0 1
= Acer(t) [ ex(s)en(s)ds
; kCEk A k
= > Mer(t)Omn
k=1
= Apen(t).

Consequently, in order for the expansion (1.30) to be v, e, (¢)}5° ; have to be the eigenvalues and
eigenfunctions of the integral operator whose kernel ictireelation function ofX,:

/1 R(t, s)en(s)ds = Apep(t). (1.32)
0

To prove the expansion (1.30) we need to study the eigenyabidem for the integral operator

1
Rf ::/0 R(t,s)f(s)ds. (1.33)

We consider it as an operator froh¥[0, 1] to L2[0,1]. We can show that this operator is selfadjoint and
nonnegative in.2(0, 1):

(Rf,h) = (f,Rh) and (Rf,f)>0 V f heL*0,1),

where(-, ) denotes thd.?(0, 1)-inner product. It follows that all its eigenvalues are raati nonnegative.
Furthermore, it is a compact operator {if, }°> , is a bounded sequence i#(0, 1), then{R¢,}°°, has

a convergent subsequence). The spectral theorem for canspiadjoint operators can be used to deduce
that R has a countable sequence of eigenvalues tendifg Eurthermore, for every € L?(0,1) we can
write

f=Tfo+Y_ faenlt),
n=1

whereR fy = 0 and{e,(t)} are the eigenfunctions of the operafdrcorresponding to nonzero eigenvalues
and where the convergence isfif. Finally, Mercer's Theorem states that f(t, s) continuous orf0, 1] x
[0, 1], the expansion (1.31) is valid, where the series convergeslately and uniformly.

Now we are ready to prove (1.30).

Theorem 1.28. (Karhunen-Lé&ve). Let{ X;, t € [0,1]} be anL? process with zero mean and continuous
correlation functionR(¢,s). Let{\,, e,(t)}>, be the eigenvalues and eigenfunctions of the operR&tor
defined in(1.33) Then

X = Zgnen(t)> te [07 1]7 (1.34)
n=1

18



where )
&Z/XM@W Bty =0, E(€ntm) = Aoum. (1.35)
0

The series converges ii¥ to X (t), uniformly int.

Proof. The fact thattE¢,, = 0 follows from the fact thatX; is mean zero. The orthogonality of the random
variables{¢,, }>° ; follows from the orthogonality of the eigenfunctions®f

E(6ném) = / / X, X en(t)em(s) dtds

= // (t,s)en(t)em(s) dsdt
= / s)ds = Apnm.-

Consider now the partial susty = 32 €,e,,(1).

E|X; — Sn|*° = EX?+ES% — 2E(X;Sy)

N N
= R(,t)+E Z Epéeer(t)ee(t) — 2 (Xt Zﬁnen(t)>

k=1 n=1

N N 1
= Rt + Y Mler(®)]” - 21[-32/ X Xsep(s)en(t) ds
k=1 k=10
N
= R(t:t) = Y Melex(t)
k=1

by Mercer’s theorem. O

The Karhunen-oéve expansion is straightforward to agp{@dussian stochastic processes. Xgbe a
Gaussian second order process with continuous covaridice). Then the random variablgg };° , are
Gaussian, since they are defined through the time integelGHussian processes. Furthermore, since they
are Gaussian and orthogonal, they are also independenteHen Gaussian processes the Karhunen-Loéve
expansion becomes:

+oo
Xi =YV wbrer(t), (1.36)
k=1

where{¢;; }7° , are independent/(0, 1) random variables.

Example 1.29. The Karhunen-Loéve Expansion for Brownian Motion. Therelation function of Brown-
ian motion isR(t, s) = min(¢, s). The eigenvalue probleR,, = A1, becomes

1
/0 min(t, s)n(s) ds = A\t (t).
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Let us assume that, > 0 (we can check thad is not an eigenvalue). Upon settimg= 0 we obtain
¥, (0) = 0. The eigenvalue problem can be rewritten in the form

/Ot s¢n(s) ds + t/tl U (s) ds = At (t).

We differentiate this equation once:
1
[l ds = 20
t

We sett = 1 in this equation to obtain the second boundary conditigfil) = 0. A second differentiation
yields;

—tn (t) = )\nT/)Z (t)>

where primes denote differentiation with respect.tdhus, in order to calculate the eigenvalues and eigen-
functions of the integral operator whose kernel is the dawae function of Brownian motion, we need to
solve the Sturm-Liouville problem

_wn(t) = )\nwg(t% 1/}(0) = 1/}/(1) =0.

We can calculate the eigenvalues and (normalized) eigetifuns are

Un(t) = V2sin (%(271 = 1)7rt> A= (%)2

(2n —1

Thus, the Karhunen-Loéve expansion of Brownian motiof0om] is

W, = \/izlgnﬁ sin (%(Qn - l)mf> . (1.37)

1.6 Discussion and Bibliography

The material presented in this chapter is very standard ande found in any any textbook on stochastic
processes. Consult, for example [48, 47, 49, 32]. The prbBbohner’s theorem 1.14 can be found in [50],
where additional material on stationary processes canwalfdSee also [48].

The Ornstein-Uhlenbeck process was introduced by OrnatadriJhlenbeck in 1930 as a model for the
velocity of a Brownian particle [101]. An early reference thie derivation of formulas of the form (1.15)
is [99].

Gaussian processes are studied in [1]. Simulation algosifior Gaussian processes are presented in [6].
Fractional Brownian motion was introduced in [64].

The spectral theorem for compact, selfadjoint operat@swie used in the proof of the Karhunen-Loéve
expansion can be found in [84]. The Karhunen-Loéve expansan be used to generate random fields, i.e.
a collection of random variables that are parameterized bgatial (rather than temporal) parameter
See [29]. The Karhunen-Loéve expansion is useful in theldement of numerical algorithms for partial
differential equations with random coefficients. See [92].
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We can use the Karhunen-Loéve expansion in order to stugjfregularity of stochastic processes.
First, letR be a compact symmetric positive definite operator.é(0, 1) with eigenvalues and normalized
eigenfunctions{ s, ex(2)};>] and consider a functiofi € L?(0,1) with fo s)ds = 0. We can define
the one parameter family of Hllbert spacH$ through the norm

P12 = IR FIIZ2 = D IfulPA7e
k

The inner product can be obtained through polarization.s Tiorm enables us to measure the regularity
of the functionf(¢).* Let X; be a mean zero second order (i.e. with finite second momenteps with
continuous autocorrelation function. Define the spte:= L?((Q, P), H*(0,1)) with (semi)norm

X2 = Bl Xe | Fra = > Al (1.38)
k

Notice that the regularity of the stochastic proc&sslepends on the decay of the eigenvalues of the integral
operatorR- := [ R - ds.

As an example, conS|der the?-regularity of Brownian motion. From Example 1.29 we knovatth
A\ ~ k2. Consequently, from (1.38) we get that, in order Yoy to be an element of the spag&*, we

need that
D A7) < oo,
k

from which we obtain that < 1/2. This is consistent with the Holder continuity of Browniarotion from
Theorem 1.22°

1.7 Exercises

1. LetYp, Yi,... be a sequence of independent, identically distributedaendariables and consider the
stochastic procesk,, = Y,,.
(a) Show thatX,, is a strictly stationary process.
(b) Assume thaEYy = p < +oo andEY{ = o2 < +oo. Show that
N-1
lim

1

— ¥ x; =
N—)-l—oo N J K
J=0

(c) Let f be such thaE f?(Yy) < +oc. Show that
N-1
lim

1
N—+4o00 N f ) =0
7=0

“Think of R as being the inverse of the Laplacian with periodic boundanditions. In this cas&“ coincides with the standard
fractional Sobolev space.

SNotice, however, that Wiener’s theorem refers to a.s. Bibtwbntinuity, whereas the calculation presented in thitice is
aboutL?-continuity.
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2. LetZ be arandom variable and define the stochastic prakgss Z, n =0,1,2,.... Show thatX,, is
a strictly stationary process.

3. LetAy, Aq,... A, and By, By, ... B, be uncorrelated random variables with mean zero and vasanc
EA? = 02, EB? =02, i = 1,...m. Letwy, w1, ...wm, € [0,7] be distinct frequencies and define, for
n=0,+£1,%2,..., the stochastic process

m
X, = Z <Ak cos(nwy) + By sm(nwk))
k=0

Calculate the mean and the covarianceXgf Show that it is a weakly stationary process.

4. Let{¢, : n=0,£1,42,...} be uncorrelated random variables wWith,, = 1, E(&, — )% = 02, n =

0,4+1,42,.... Letay,aq,... be arbitrary real numbers and consider the stochastic gsoce

Xp =a1&y +a2kp—1+ ... amgnferl-

(a) Calculate the mean, variance and the covariance funofid(,,. Show that it is a weakly stationary
process.

(b) Seta = 1/4/m for k = 1,...m. Calculate the covariance function and study the cases 1
andm — +oo0.

5. LetW (t) be a standard one dimensional Brownian motion. Calculatéalfowing expectations.

(a) EeW (),
(b) E¢CWOHW () ¢ s, € (0, 400).
() EQCL, ;W (t;))?, wherec; € R, i =1,...nandt; € (0,+00), i =1,...n.

(d) Ee [(Ziew )] ,Wherec; e R, i =1,...nandt; € (0,+00),i=1,...n.
6. LetW; be a standard one dimensional Brownian motion and define
By =W, —tWy, tel0,1].
(&) Show thatB; is a Gaussian process with

EBt = O7 E(BtBS) = min(t, S) —ts.

(b) Show that, for € [0, 1) an equivalent definition oB, is through the formula

Bi=(1—0)W (ﬁ)

(c) Calculate the distribution function ;.
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7.

10.

11.

12.
13.
14.

15.

Let X; be a mean-zero second order stationary process with atgtatmn function

N 2

)2
R(t) =Y el

=1 Y
where{a;, \;}}_, are positive real numbers.

(a) Calculate the spectral density and the correlactior tifrthis process.

(b) Show that the assumptions of Theorem 1.16 are satisfi@dise the argument presented in Sec-
tion 1.2 (i.e. the Green-Kubo formula) to calculate theudifbn coefficient of the process =
3 X, ds.

(c) Under what assumptions on the coefficiefis, )\j}j.vzl can you study the above questions in the
limit N — 400?

. Show that the position of a Brownian particle whose véjois described by the stationary Ornstein-

Uhlenbeck process, Equation (1.10) is a mean zero Gaudeirastic process and calculate the covari-
ance function.

. Letaq,...a, andsy,...s, be positive real numbers. Calculate the mean and variantteeafandom

variable

LetW (t) be the standard one-dimensional Brownian motion andl,let, s, > 0. Calculate

(@) Ee”W®),
(b) E(sin(cW (s1))sin(cW (s2))).

LetW; be a one dimensional Brownian motion andgdetr > 0 and define
Sy = etrtoWe,
(a) Calculate the mean and the varianc&pf
(b) Calculate the probability density function 6f.
Prove proposition 1.23.
Use Lemma 1.24 to calculate the distribution functiothefstationary Ornstein-Uhlenbeck process.

Calculate the mean and the correlation function of tteginal of a standard Brownian motion

t
Y}:/ W ds.
0

Show that the process
t+1
Y: :/ (Ws —Wy)ds, teR,
t

is second order stationary.
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16. LetV; = e 'W (e?!) be the stationary Ornstein-Uhlenbeck process. Give thaitiefi and study the
main properties of the Ornstein-Uhlenbeck bridge.

17. The autocorrelation function of the velocity(¢) a Brownian particle moving in a harmonic potential
V(z) = %w%xQ is
1
R(t) = e (cos(a\t\) - sin(ayty)),
wherey is the friction coefficient and = /w3 — ~2.

(a) Calculate the spectral densityft).

(b) Calculate the mean square displacenfi&n¥ (¢))? of the position of the Brownian particl& (¢) =
J5 Y (s) ds. Study the limitt — +oo.

18. Show the scaling property (1.28) of the fractional Brmmrmotion.

19. The Poisson process with intenskydenoted byV (¢), is an integer-valued, continuous time, stochastic
process with independent increments satisfying
“At=5) (\(t — 5))"
Use Theorem (1.21) to show that there does not exist a cantinmodification of this process.

20. Show that the correlation function of a procé§ssatisfying (1.29) is continuous in bottands.
21. LetX, be a stochastic process satisfying (1.29) &(d s) its correlation function. Show that the integral
operatorR : L2[0,1] ~ L?[0, 1] defined in (1.33),
1
Rf = [ R(t.s)f(s)ds,
0

is selfadjoint and nonnegative. Show that all of its eigkmes are real and nonnegative. Show that
eigenfunctions corresponding to different eigenvaluesoathogonal.

22. Let H be a Hilbert space. An operat® : H — H is said to be Hilbert—Schmidt if there exists a
complete orthonormal sequente, }o° | in H such that

(o]
Z [Ren|? < oo.
n=1

LetR : L2[0,1] — L?[0, 1] be the operator defined in (1.33) wift(t, s) being continuous both ihand
s. Show that it is a Hilbert-Schmidt operator.

23. LetX, a mean zero second order stationary process defined in #meaHo, 7'] with continuous covari-
anceR(t) and let{ )\, },;:> be the eigenvalues of the covariance operator. Show that

i An = T R(0).
n=1
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24. Calculate the Karhunen-Loeve expansion for a secoret gtdchastic process with correlation function
R(t,s) = ts.

25. Calculate the Karhunen-Loeve expansion of the Browbiatye on[0, 1].

26. LetX,, ¢t € [0,T] be a second order process with continuous covariance arni@n-Loéve expansion

Xi =) &ren(t).
k=1

Define the process
Y(t) - f(t)XT(t)7 le [07 S]v

wheref (t) is a continuous function and¢) a continuous, nondecreasing function witld) = 0, 7(S5) =
T. Find the Karhunen-Loéve expansionft), in an appropriate weightei? space, in terms of the
KL expansion ofX;. Use this in order to calculate the KL expansion of the Oingtthlenbeck process.

27. Calculate the Karhunen-Loéve expansion of a centeae$an stochastic process with covariance func-
tion R(s,t) = cos(2n(t — s)).

28. Use the Karhunen-Loeve expansion to generate paths of

(a) the Brownian motion of0, 1];

(b) the Brownian bridge ofo, 1];

(c) the Ornstein-Uhlenbeck df, 1].
Study computationally the convergence of the Karhuneeveoéxpansion for these processes. How
many terms do you need to keep in the expansion in order tolatdcaccurate statistics of these pro-

cesses? How does the computational cost compare with ttthe aftandard algorithm for simulating
Gaussian stochastic processes?

29. (See [29].) Consider the Gaussian random fié{d) in R with covariance function
Y(a,y) = e Y (1.39)
wherea > 0.

(a) Simulate this field: generate samples and calculatertddiir moments.

(b) ConsiderX (x) for x € [—L, L]. Calculate analytically the eigenvalues and eigenfunstiof the
integral operatoiC with kernelvy(z, y),

L
Kf(x) = /_ ) ) dy.

Use this in order to obtain the Karhunen-Loéve expansioXfoPlot the first five eigenfunctions
whena = 1, L = —0.5. Investigate (either analytically or by means of numeregleriments) the
accuracy of the KL expansion as a function of the number ofaadept.
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(c) Develop a numerical method for calculating the first fégeavalues and eigenfunctions /6fwith
a =1, L = —0.5. Use the numerically calculated eigenvalues and eigetiumecto simulateX (x)
using the KL expansion. Compare with the analytical resutid comment on the accuracy of the
calculation of the eigenvalues and eigenfunctions and erdmputational cost.
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Chapter 2

Diffusion Processes

In this chapter we study some of the basic properties of Madtochastic processes and, in particular,
of diffusion processes. In Section 2.1 we present varioasngkes of Markov processes, in discrete and
continuous time. In Section 2.2 we give the precise defimitiba Markov process. In Section 2.2 we
derive the Chapman-Kolmogorov equation, the fundamenizéitgon in the theory of Markov processes. In
Section 2.3 we introduce the concept of the generator of &dtgsrocess. In Section 2.4 we study ergodic
Markov processes. In Section 2.5 we introduce diffusiorcgsses and we derive the forward and backward
Kolmogorov equations. Discussion and bibliographical admm are presented in Section 2.6 and exercises
can be found in Section 2.7.

2.1 Examples of Markov processes

Roughly speaking, a Markov process is a stochastic probassetains no memory of where it has been in
the past: only the current state of a Markov process can mfiiavhere it will go next. A bit more precisely:
a Markov process is a stochastic process for which, giverptesent, the past and future are statistically
independent.

Perhaps the simplest example of a Markov process is that afhidom walk in one dimension. Let
&, 1=1,... be independent, identically distributed mean zero anchmadl random variables. The one
dimensional random walk is defined as

N
XN =Y & Xo=0.
n=1
Letii,i0,... be a sequence of integers. Then, for all integeamdm we have thdt

In words, the probability that the random walk will beigt ,,, at timen + m depends only on its current
value (at timen) and not on how it got there.

In fact, it is sufficient to taken = 1 in (2.1). See Exercise 1.
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The random walk is an example ofdiscrete time Markov chainWe will say that a stochastic process
{S,; n € N} with state spacé = Z is a discrete time Markov chain provided that the Markov proyp(2.1)
is satisfied.
Consider now a continuous-time stochastic procéswith state spacé = Z and denote by X, s <
t} the collection of values of the stochastic process up to tinvée will say thatX; is a Markov processes
provided that
P(Xitn = t4n[{Xs, s <1}) = P(Xppn = ieqn| Xe), (2.2)
for all h > 0. A continuous-time, discrete state space Markov procesallisd a continuous-time Markov
chain. A standard example of a continuous-time Markov clgihe Poisson process of ratewith
0 if j <1,
P(Nipn = jINy = i) = { RO
G-t
Similarly, we can define a continuous-time Markov procesth state space iR, as a stochastic process
whose future depends on its present state and not on howtheet

it j > (2:3)

P(Xipn € TH{X, s <t}) = P(Xyyn € T[XY) (2.4)

for all Borel setd". In this book we will consider continuous-time Markov prsses for which @onditional
probability densityexists:

P(Xin € DXy = 2) = /P(yvt + hlz,t) dy. (2.5)
r

Example 2.1. The Brownian motion is a Markov process with conditionalbability density given by the
following formula

1 Iw—yl2>
PWiip e I'|Wy =2 :/ ex <— dy. 2.6
( t+h | t ) F\/ﬂ p 2% Yy ( )

The Markov property of Brownian motion follows from the fdbat it has independent increments.

Example 2.2. The stationary Ornstein-Uhlenbeck proc&ss= e~ (e2!) is a Markov process with con-
ditional probability density

1 ’y - I_ef(tfs)’2
t = —_— . 2.7
p(y> |I, ‘9) \/27_(_(1 _ e—Q(t—S)) P ( 2(1 — 672(2573)) ( )

To prove (2.7) we use the formula for the distribution fuactiof the Brownian motion to calculate, for
t> s,

P(Ve <ylVe=az) = Pl W(e*) <yle™W(e*) =)
= P(W(e*) < ely|[W(e*) = e°z)

ety 1 - ‘27163‘2
— e 2(e2t —¢23) dZ

oo \/27(e% — &%)
Ik 1 e
— e 2(eft(1—e==t79)) dp
—oo /2me2 (1 — e—2(t-9))

/y 1 _ \0—21'(\5 % 4
— e 2(1—e—4t=9)) p
—00 \/271'(1 — G_Q(t_s))
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Consequently, the transition probability density for thd @rocess is given by the formula

0
p(y,tlx,s) = 8yP(V <ylVs =)

1 ly — ze=(t=9))2
= ex e — .
VIl —e 29y P\ T2 —e )
The Markov property enables us to obtain an evolution eqodir thetransition probability for a
discrete-time or continuous-time Markov chain

P(Xnt1 = ins1|Xn = in), P(Xipn = ien|Xe = i¢), (2.8)

or for the transition probability density defined in (2.5hig equation is th€hapman-Kolmogorov equa-
tion. Using this equation we can study the evolution of a Markacpss.

We will be mostly concerned with time-homogeneous Markascpeses, i.e. processes for which the
conditional probabilities are invariant under time shiftsr time-homogeneous discrete-time Markov chains
we have

]:P(XnJrl = ]|Xn = ’L) = P(Xl = ]|X0 = Z) = pij-

We will refer to the matrixP? = {p;;} as the transition matrix. The transition matrix is a stothasatrix,
i.e. it has nonnegative entries aid; p;; = 1. Similarly, we can define the-step transition matrix

P ={pi(n)} as
pz’j(n) = P(Xintn = j|Xm =1).

We can study the evolution of a Markov chain through the Chap#tolmogorov equation:

pz] m + n szk pk] (29)

Indeed, Ietuz(") := P(X,, = i). The (possibly infinite dimensional) vectaf*) determines the state of the
Markov chain at time:. From the Chapman-Kolmogorov equation we can obtain a ftarfion the evolution
of the vectoru (™)

p™ =, pn (2.10)

where P" denotes thexth power of the matrix?. Hence in order to calculate the state of the Markov chain
at timen what we need is the initial distribution” and the transition matri®. Componentwise, the above
equation can be written as
=3 i)
7

Consider now a continuous-time Markov chain with transitiwobability
pij(s,t) =P(Xy = j|Xs =1), s<t.
If the chain is homogeneous, then
pij(s,t) = p;;(0,t —s) foralli,j,s,t.
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In particular,
pij(t) = P(Xt = j‘XQ = Z)

The Chapman-Kolmogorov equation for a continuous-timeKdachain is

dpij
= ijpim)gkj, (2.11)

where the matrixG is called thegeneratorof the Markov chain that is defined as
G = lim ~(P, — 1)
= lim — —
0 b " ’
with P, denoting the matriXp;;(t¢)}. Equation (2.11) can also be written in matrix form:

dP
— = P,G.
ae
Let now i = P(X; = 4). The vecton, is the distribution of the Markov chain at tinte We can study its

evolution using the equation
pe = pob.

Thus, as in the case of discrete time Markov chains, the gBeolof a continuous- time Markov chain is
completely determined by the initial distribution and s#ion matrix.

Consider now the case a continuous-time Markov process aoitiinuous state space and with con-
tinuous paths. As we have seen in Example 2.1 the Browniaioma such a process. The conditional
probability density of the Brownian motion (2.6) is the famdental solution (Green’s function) of the dif-

fusion equation:

op 10%p . .

Similarly, the conditional distribution of the Ornsteirhlénbeck process satisfies the initial value problem

ap _Oyp) 19 _

ot oy 20y %gr}gp(y,t|w,8) =4(y — ). (2.13)
The Brownian motion and the OU process are examplesdiff@sion processa continuous-time Markov
process with continuous paths. A precise definition will beeg in Section 2.5, where we will also derive
evolution equations for the conditional probability deynsi(y, t|z, s) of an arbitrary diffusion process, the
forward Kolmogorov (Fokker-Planck) (2.54) and backwardrifogorov (2.47) equations.

2.2 Markov Processes and the Chapman-Kolmogorov equation

In Section 2.1 we gave the definition of Markov process whowse ts either discrete or continuous, and
whose state space is countable. We also gave several exaaiparkov chains as well as of processes
whose state space is the real line. In this section we giverbese definition of a Markov process with

t € R, and with state space B?. We also introduce the Chapman-Kolmogorov equation.
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In order to give the definition of a Markov process we need ®the conditional expectation of the
stochastic process conditioned on all past values. We cemderall past information about a stochastic
process into an appropriate collectionooflgebras. Let(2, F, 1) denote a probability space and consider
a stochastic proces¥ = X;(w) with ¢ € R, and state spacgR?, B) where B denotes the Boret-
algebra. We define the-algebra generated byX;, ¢ € R, }, denoted bys(X;, t € R,), to be the
smallesto-algebra such that the family of mappingX;, t € R} is a stochastic process with sample
space(Q, o (X;, t € R,)) and state spac@?, B).? In other words, ther-algebra generated by, is the
smallestz-algebra such thaX; is a measurable function (random variable) with respedt to i

We define now a filtration o2, F) to be a nondecreasing fami{yF;,¢ € R, } of subo-algebras of
F:

FsCF CF fors<t.

We setF., = o(UerFt). The filtration generated by our stochastic procEsswhereX; is:
FrX =0 (X;s<t). (2.14)
Now we are ready to give the definition of a Markov process.

Definition 2.3. Let X; be a stochastic process defined on a probability Sg&LeF, 1) with values inR?
and letF/X be the filtration generated byX;;t € R, }. Then{X;;¢t € R} is a Markov process provided
that

P(X; € T|FX) = P(X; € T'|X,) (2.15)

forall t,s € T witht > s, andT € B(R?).

We remark that the filtratiocF/* is generated by events of the fofw|X;, € I'y, X;, € T's, ... X;, €

Ty dwith0 < ¢ <ty < --- < t, < tandl; € B(RY). The definition of a Markov process is thus
equivalent to the hierarchy of equations

P(Xt € F|Xt1 s XtQ, L th) = P(Xt € F|th) a.s.

forn>1land0 <t <ty <---<t, <twithl € B(E).

We also remark that it is sometimes possible to describe avtarkovian processX; in terms of a
Markovian procesy¥; in a higher dimensional state space. The additional vasabiat we introduce account
for the memory in theX;. This is possible when the non-Markovian process has findmary that can be
represented by a finite number of additional degrees of i@edNe will use this approach in Chapt&?
when we derive stochastic differential equations from mheteistic dynamical systems with random initial
conditions, see DefinitioRA?.

As an example, consider a Brownian particle whose velositgeiscribed by the stationary Ornstein-
Uhlenbeck process; = e~ ‘W (e?!), see (1.10) and (1.11). The particle position is given byirikegral of
the Ornstein-Uhlenbeck process

t
&:%+/n@
0

2In later chapters we will also consider Markov processeh siitte space being the a subseR6f for example the unit torus.

31



The particle position depends on the past of the Ornstelesiliieck process and, consequently, is not a
Markov process. However, the joint position-velocity mes{ X;, Y;} is. Its transition probability density
p(z,y, tlxo, yo) satisfies the forward Kolmogorov equation

82
Yy

=

op  Op 0
ot p&r * 8y(yp) *

5"

)

1
2

The Chapman-Kolmogorov Equation

With every continuous-time Markov process? defined in a probability spacg?, 7, P) and state space
(R4, B) we can associate theansition function

P(T,t|X,,s) =P[X; € T|F],

forallt,s € Ry witht > sand alll” € B(Rd). Itis a function of4 arguments, the initial time and position
X, and the final timg and the sef’. The transition functiorP(¢,T'|x, s) is, for fixedt, x s, a probability
measure orR? with P(t,R%z,s) = 1; it is B(RY)-measurable in:, for fixed ¢, s, I' and satisfies the

Chapman-Kolmogorov equation
P(L.te,) = [ Pty ) Py, ufe.s). (2.16)
Rd

forallz € R%, I € B(RY) ands, u,t € Ry with s < u < t. Assume thaf(, = . SinceP [X, € I'|FX] =
P[X; € I'| X] we can write
P tlx,s) =P [X; e I'Xs = x].

The derivation of the Chapman-Kolmogorov equation is basethe Markovian assumption and on prop-
erties of conditional probability. We can formally deriveetChapman-Kolmogorov equation as follows:
We use the Markov property, together with Equations (B.®9) @10) from Appendix B and the fact that
s<u = FX C FY tocalculate:

P, tlz,s) = P(X,€Tl|X,=1)=P(X; € [|FX)
= E(Ir(Xy)|F) = B(E(Ir(X)| F)IFX)
= EE(Ir(X)|FOIFS) = BEP(X, € T|X,)|F")
= E(P(X; eD|X, =9)|X, =)
_ /R P(T, t| Xy = y) P(dy, u| X, = 2)
= P(T,tly,u)P(dy, ulz, s),
R4

wherelr(-) denotes the indicator function of the $etin words, the Chapman-Kolmogorov equation tells
us that for a Markov process the transition framat times to the sefl” at timet¢ can be done in two steps:
first the system moves from to y at some intermediate time Then it moves fromy to I" at timet. In

*We always take € R.

32



order to calculate the probability for the transition framat times to I" at timet¢ we need to sum (integrate)
the transitions from all possible intermediate states

The transition function and the initial distribution &f; are sufficient to uniquely determine a Markov
process. In fact, a proces§ is a Markov process with respect to its filtratidi® defined in (2.14) with
transition functionP(t, -|s, -) and initial distributionv (X ~ v)ifand only ifforall0 =ty < t; < --- < t,
and bounded measurable functiof)s j = 0,... N we have

H (Xy;) / fo(xo)v(dzg) H/ [i(xj)P(dzj, ti|lzj_1,t;—1), (2.17)

, Where we have used the notatifip to emphasize the dependence of the expectation on thd ligia
tribution v. The proof that a Markov process with transition functiBrsatisfies (2.17) follows from the
Chapman-Kolmogorov equation (2.16) and an induction aspumin other words, the finite dimensional
distributions ofX; are uniquely determined by the initial distribution and ttesition function:

P(X(] € dxg, Xy, € dxq, ... , X, € dIn = I/ dZC(] H dxj,tj|xj,1,tj,1). (2.18)

In this book we will consider Markov processes for which transition function has a density with respect
to the Lebesgue measure:

P(T, t]a, s) = / p(y, tlz, 5) dy
T

We will refer top(y, t|x, s) as thetransition probability densitylt is a function of four arguments, the initial
position and timer, s and the final position and timg ¢. Fort = s we haveP(T', s|x,s) = Ip(x). The
Chapman-Kolmogorov equation becomes:

/ ply, iz, s) dy = / / Py, 1z w)p(z, ula, ) d=dy,
T Rd JT

and, sincd’ € B(R?) is arbitrary, we obtain the Chapman-Komogorov equatiotifetransition probability
density:

pstia,s) = [ plntle,wp(e.ufe.s) de 219)

When the transition probability density exists, and assgntihat the initial distribution has a density,
we can writeP(Xo € dxo, Xy, € da1, ..., Xy, € dvy) = p(20, to, - - - Tn, ty) [[[—o dz; and we have

n
p(zo,to, ... Tn,tn) = p(x0) H (zj,tjlwj—1,t5-1)- (2.20)

The above formulas simplify when the (random) law of evaintdof the Markov procesX; does not change
in time. In this case the conditional probability in (2.18pe&nds on the initial and final timteand s only
through their difference: we will say that a Markov processme-homogeneous$the transition function
P(-,t|-,s) depends only on the difference between the initial and fime@ t — s:

P, t|xz,s) = P(I',t — s|z,0) =: P(t — s,,T),
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forall T € B(R?) andx € R? For time-homogeneous Markov processes with can fix theliritne,
s = 0. The Chapman-Kolmogorov equation for a time-homogeneoakd¥ process becomes

P(t+s,z,T') = P(s,z,dz)P(t, z,T). (2.21)
R4

Furthermore, formulas (2.17) and (2.18) become
B 1600 = [ ptonan T [ He)P6 -t ), @22)
j=0 J=1
and

n
P(X(] S d:C(], th € d:Cl, - ,th € dwn) = I/(d:ﬂo) H P(tj — tjfl,yjfl,dyj),

7j=1
(2.23)

respectively. Given the initial distributiom and the transition functio®(x, ¢, ") of a Markov process(;,
we can calculate the probability of finding; in a setl” at timet:

P(X;eT) = / P(z,t,T)v(dx).
R

Furthermore, for an observabfewe can calculate the expectation using the formula

E,f(Xy) = /[Rd 9 f(z)P(t,xo,dx)v(dzg). (2.24)

The Poisson process, defined in (2.3) is a homogeneous Markmess. Another example of a time-
homogenous Markov process is Brownian motion. The tramsftinction is the Gaussian

1 x —y|?
P(t,z,dy) = ’Yt,m(y)d% ’Yt,x(y) = \/ﬁexp <—| o | > . (2.25)

Let now X; be time-homogeneous Markov process and assume that te&itaprobability density exists,
P(t,x,T) = [rp(t,z,y)dy. The Chapman-Kolmogorov equatipf¥, z, y) reads

e+ s,20) = [ w2t 0) d (226)
R

2.3 The Generator of a Markov Processes

Let X; denote a time-homogeneous Markov process. The Chapmamnegolov equation (2.21) suggests
that a time-homogeneous Markov process can be describedgtihia semigroup of operators, i.e. a one-
parameter family of linear operators with the properties

Py=1, P,s=PoP, forallt,s>D0.
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Indeed, letP(t, -, -) be the transition function of a homogeneous Markov procaddet f € C,(R?), the
space of continuous bounded functionsRshand define the operator

(Pef)(@) := E(f(X)[Xo = ) = y fW)P(t,z,dy). (2.27)
This is a linear operator with

(Pof)(z) =E(f(Xo)|Xo =2) = f(2)

which means thaP, = I. Furthermore:

(Pevsf)(z) = / f(y)P(t+s,:c,dy):/ f()P(s, z,dy)P(t,z,dz)
R4 Rd JRd
= /R d( y f(y)P(s,z,dy)> P(t,z,dz) = /R () (2)P(t,x, dz)
= (BioPif)(x).
Consequently:

PtJrs = Pt OPS.

The semigroupP; defined in (2.27) is an example of a Markov semigroup. We cadysproperties of a
time-homogeneous Markov proceXs by studying properties of the Markov semigrofp

Let now X; be a Markov process iR¢ and letP; denote the corresponding semigroup defined in (2.27).
We consider this semigroup acting on continuous boundedtibs and assume th&} f is also aCy,(R?)
function. We define byD(L) the set of allf € C,(E) such that the strong limit

cf;:nmptf_f

t—0 t

(2.28)

exists. The operatof : D(L) — C,(R?) is called the (infinitesimal) generator of the operator ggoip
P;. We will also refer tol as the generator of the Markov process
The semigroup property and the definition of the generata Wfarkov semigroup (2.28) imply that,
formally, we can write:
P, =L,

Consider the function(z, t) := (P, f)(z) = E(f(X:)|Xo = z) . We calculate its time derivative:

ou d d
o = @D =g (@)

= L(f)=LPf = Lu.

Furthermoreu(z,0) = Py f(x) = f(z). Consequentlyy(x, t) satisfies the initial value problem

% = Lu, (2.29a)
u(z,0) = f(x). (2.29b)
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Equation (2.29) is thbéackward Kolmogorov equationt governs the evolution of the expectation value of
an observablg € C,(R?). At this level this is formal since we do not have a formulatfee generator
of the Markov semigroup. In the case where the Markov proisethge solution of a stochastic differential
equation, then the generator is a second order elliptiemdifftial operator and the backward Kolmogorov
equation becomes an initial value problem for a paraboli&PEee Section 2.5 and Chapter 4.

As an example consider the Brownian motion in one dimensidhe transition function is given
by (2.25), the fundamental solution of the heat equationria dimension. The corresponding Markov
semigroup is the heat semigroip = exp <2 o 2) The generator of the one dimensional Brownian motion

is the one dimensional Laplac@nd?. The backward Kolmogorov equation is the heat equation
ou_ 1%
ot 2022

The Adjoint Semigroup

The semigroupP; acts on bounded continuous functions. We can also definedjoegnisemigroupF;*
which acts on probability measures:

Pru0) = [ PO € T1X = o) dula) = [ P(t.a.T) duta).

The image of a probability measugeunderP;* is again a probability measure. The operatBrand P;* are
(formally) adjoint in theL?-sense:

[ Pt@auta) = [ 1)@, (2.30)

We can, write

Py =€l (2.31)

)

whereL* is the L2-adjoint of the generator of the process:

/ﬁfhdx:/fﬁ*hdm.

Let X, be a Markov process with generat®y with Xy ~ p and letP; denote the adjoint semigroup defined
in (2.31). We define
wy = P u. (2.32)

This is thelaw of the Markov process. An argument similar to the one uselarderivation of the backward
Kolmogorov equation (2.29) enables us to obtain an equébiothe evolution ofy,:

Ot

— =L = u.

ot M, Mo H
Assuming that both the initial distribution and the law of the process have a density with respect to
Lebesgue measurgg () andp(t, -), respectively, this equation becomes:

Ip

5 = £p Py,0) = poly). (2.33)
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This is theforward Kolmogorowequation. When the initial conditions are deterministig, = x, the initial
condition becomep, = d(z — y). As with the backward Kolmogorov equation (2.29) this egprats still
formal, still we do not have a formula for the adjoifit of the generator of the Markov proce&s. In
Section 2.5 we will derive the forward and backward Kolmagyoequations and a formula for the generator
L for diffusion processes.

2.4 Ergodic Markov processes

In Sect. 1.2, we studied stationary stochastic processesywa showed that such processes satisfy a form
of the law of large numbers, Theorem 1.16. In this sectionnmduce a class of Markov processes for
which the phase-space average, with respect to an appgeprizbability measure, thavariant measure
equals the long time average. Such Markov processes aesl eafjodic Ergodic Markov processes are
characterized by the fact that an invariant measure, se€2E2p) below, exists and is unique.

For the precise definition of an ergodic Markov process weaireghat all shift invariant sets, i.e. all
sets of the form(X;, € I'1, Xy, € I'y,..., X;, € I';) that are invariant under time shifts, are trivial, i.e.
they have probability) or 1. For our purposes it is more convenient to describe ergoaditk®b processes
in terms of the properties of their generators and of theesponding Markov semigroup.

We will consider a Markov procesk; in R? with generatorZ and Markov semigrou;. We will say
that X; is ergodic provided thdi is a simple eigenvalue a or, equivalently, provided that the equation

Lg=0 (2.34)

has only constant solutions. Consequently, we can studgrtfalic properties of a Markov proce&s by
studying the null space of its generator. From (2.34), anaguthe definition of the generator of a Markov
process (2.28), we deduce that a Markov process is ergattie gquation

Pg =g, (2.35)

has only constant solutions for al> 0. Using the adjoint semigroup, we can defingrarariant measure
as a probability measure that is invariant under the timéudieo of X4, i.e., a fixed point of the semigroup
P

Pru=p. (2.36)
This equation is thd.2-adjoint of the equatioP,g = ¢ in (2.35). If there is a unique probability measure
satisfying (2.36), then the Markov process is ergodic (witbpect to the measuyg. Using this, we can
obtain an equation for the invariant measure in terms ofdj@rst £* of the generator, which is the generator

of the semigroup?;". Assume, for simplicity, that the measytehas a density with respect to Lebesgue
measure. We divide (2.36) yand pass to the limit as— 0 to obtain

L*p=0. (2.37)

When X; is a diffusion process, this equation is ttationary Fokker—Planck equationEquation (2.37),
which is the adjoint of (2.34), can be used to calculate thariant distributionp, i.e., the density of the
invariant measureg.
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The invariant measure (distribution) governs the longetiolgnamics of the Markov process. In particu-
lar, whenX, ~ g initially, we have that

Jm Bpo = p. (2.38)

Furthermore, the long-time average of an observglhbdenverges to the equilibrium expectation with respect
to the invariant measure

i 1 [ s = [ s uian)

T—+o00

This is the definition of an ergodic process that is quiterofteed in physics: the long-time average equals
the phase-space average.

If Xy is distributed according tg, then so isX; for all ¢ > 0. The resulting stochastic process, wib
distributed in this way, is stationary; see Sect. 1.2.

Example 2.4. Brownian motion irR¢ is not an ergodic Markov process. On the other hand, if weidenst
in a bounded domain with appropriate boundary conditiohgntit becomes an ergodic process. Consider
a one-dimensional Brownian motion ¢®, 1], with periodic boundary conditions. The generator of this
Markov proces<C is the differential operatoll = %%, equipped with periodic boundary conditions on
[0, 1]. This operator is self-adjoint. The null spaces of btand £* comprise constant functions ¢ 1].
Both the backward Kolmogorov and the Fokker—Planck eqoatiduce to the heat equation

dp 1%

“+L__ZF 2.39

ot 20x2 ( )
with periodic boundary conditions ifd, 1]. We can solve the heat equati(h39)using Fourier analysis to
deduce that the solution converges to a constant at an exgiaheate.

Example 2.5. The one-dimensional Ornstein—Uhlenbeck process is a Markacess with generator

d d?

The null space of comprises constants in Hence, it is an ergodic Markov process. In order to calcelat
the invariant measure, we need to solve the stationary Fektanck equation:

Lp=0, p=0, /p(m) dr = 1. (2.40)
We calculate the.?-adjoint of £. Assuming thaf,  decay sufficiently fast at infinity, we have

df d’f
/Rﬁfhdac /R [(—(m%> h + (D@> h] dx

— /[fam(oth)+f(D8§h)] dx ::/fﬁ*hdx,
R R

where )
. d d2h
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Figure 2.1: Sample paths of the Ornstein—Uhlenbeck process

We can calculate the invariant distribution by solving E140) The invariant measure of this process is

the Gaussian measure
N @ 2)
pu(dz) = ”27TD exp< 55 % dx.

If the initial condition of the Ornstein—Uhlenbeck procésslistributed according to the invariant measure,
then the Ornstein—Uhlenbeck process is a stationary Gangsiocess. LeK; denote the one-dimensional
Ornstein—Uhlenbeck process wiffiy ~ A (0,D/«a). ThenX, is a mean-zero Gaussian second-order
stationary process oft), co) with correlation function

D
R(t) = Ee—alt\
and spectral density
D 1
flo) = a2+ a2

The Ornstein—Uhlenbeck process is the only real-valuechrzego Gaussian second-order stationary Markov
process with continuous paths defined®nThis is the content of Doob’s theorem. See Exercise 6. A few
paths of the stationary Ornstein—Uhlenbeck process aregmted in Fig. 2.1.

2.5 Diffusion processes and the forward and backward Kolmogrov equa-
tions

A Markov process consists of three parts: a drift, a randorhgral a jump process. A diffusion process is a
Markov process that has continuous sample paths (trajes}oi hus, it is a Markov process with no jumps.
A diffusion process can be defined by specifying its first twamments, together with the requirement that
there are no jumps. We start with the definition of a diffugimacess in one dimension.
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Definition 2.6. A Markov processX; in R with transition functionP (T, ¢|z, s) is called a diffusion process
if the following conditions are satisfied.

i. (Continuity). For every: and every > 0
/ P(dy,t|z,s) = o(t — s) (2.41)
lz—y|>e

uniformly overs < t.

ii. (Definition of drift coefficient). There exists a funetid(z, s) such that for every: and every > 0
/ (y — z)P(dy, tlx,s) = b(x,s)(t —s) + ot — s). (2.42)
ly—z|<e

uniformly overs < t.

iii. (Definition of diffusion coefficient). There exists anftion X(x, s) such that for every: and every
e>0

/ (y — 2)2P(dy, t|x,s) = L(x, s)(t — s) + o(t — s). (2.43)
ly—z|<e
uniformly overs < t.

In Definition 2.6 we truncated the domain of integration sido not know whether the first and second
moments ofX; are finite. If we assume that there exists & 0 such that

. 1
lim
t=st— s

[ lo=al?* Ptz =0, (2.44)

then we can extend the integration over the wHbland use expectations in the definition of the drift and
the diffusion coefficient. Indeed, lét= 0, 1, 2 and notice that

/| sl Py i) = / ly — 2]y — 2~ P(dy, t]z, 5)
Yy—x|>€e

ly—z|>e
1
< m/ ly — 5'3|2+5P(dyat|5'3a5)
€ ly—z|>e

1 5
< 62+5,k /]Rd |y - CC|2+ P(dy,t|£ﬂ,8)
Using this estimate together with (2.44) we conclude that:

lim
t—wst— s

/| | ly — z|*P(dy,t|z,s) =0, k=0,1,2.
Yy—x|>€e

This implies that Assumption (2.44) is sufficient for the gdenpaths to be continuoug (= 0) and for
the replacement of the truncated integrals in (2.42) and3f2by integrals oveR (k = 1 andk = 2,
respectively).

Assuming that the first two moment exist, we can write the fdem for the drift and diffusion coeffi-
cients in the following form:

limE

t—s

(Xt - Xs

t—s

X, = x) = b(x,s) (2.45)
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and )
lim E <|X‘;7X|‘X - x) = Y(z, s). (2.46)

t—s

The backward Kolmogorov equation

We can now use the definition of the diffusion process in ordebtain an explicit formula for the generator

of a diffusion process and to derive a partial differentgation for the conditional expectatiariz, s) =

E(f(X¢)|Xs = x), as well as for the transition probability densityy, t|z, s). These are the backward and
forward Kolmogorov equations. We will derive these equaidor one dimensional diffusion processes.
The extension to multidimensional diffusion processesssussed later in this section. In the following we

will assume that:(z, s) is a smooth function aof ands.*

Theorem 2.7. (Kolmogorov) Letf (z) € Cy(R) and let

(e, s) = E(F(0)|X, = 2) = [ F(0)P(dy.tlo. ),
with ¢ fixed. Assume furthermore that the functié(s, s), X(z, s) are smooth in botlr ands. Thenu(z, s)

solves the final value problem, ferc [0, ¢],

ou ou 1 0%
s = b(m,s)% + 52(%8)@7 u(t,z) = f(x). (2.47)

Proof. First we notice that, the continuity assumption (2.41)etbgr with the fact that the functiof(z) is
bounded imply that

u(z,s) = /f P(dy,t|z,s)
_ / f(y)P(dy,t|x,s)+/ f(y)P(dy,t|z,s)
ly—z|<e

ly—z|>e

< /|ym|<5 f(y)P(dy’ﬂan) + HfHLoo / P(dy,ﬂﬁﬂ,s)

ly—z|>e

= [ 1Pyt +olt ).
ly—z|<e
We add and subtract the final conditigiz) and use the previous calculation to obtain:

ues) = [ F@PUte) = 1@+ [ (710) - F@) P e
= @[ e s@ Pt + — () Pyt o)

x\>5

@ p) 4 / (F(y) — £(@) P(dy. tlz,5) + oft — 5).

ly—z|<e

“In fact, all we need is that € C*!(R x R, ). This can be proved using our assumptions on the transitiactibn, onf and
on the drift and diffusion coefficients.
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The final condition follows from the fact thgt(x) € C;(R) and the arbitrariness ef
Now we show thatu(s, z) solves the backward Kolmogorov equation (2.47). We use thep@an-
Kolmogorov equation (2.16) to obtain

ueo) = [ FEP@ ) = [ [ 7Py, p) Py plo.)
= /RU(y,p)P(dy,plw,ff)- (2.48)

We use Taylor’s theorem to obtain

ou(x, 10%u
u(p) —ue,p) = P00 (o gy LEUED (e, al<e (249
where
B Pu(x,p)  ul(zp)
@ = p7|zsll£‘<€ 0z ox? |’

andlim._,g o = 0.
We combine now (2.48) with (2.49) to calculate

u(z,s) — Z(x, s+h) _ % </R P(dy, s + h|z, s)u(y, s + h) — u(z, s + h)>
1
= %/RP(dy,s+h|x,s)(u(y,s+h) —u(x, 5+ h))
1
- % /:Ey<e P(dyv s+ h‘.%', S)(u(y7 s+ h) B u(x, S)) + 0(1)

ou 1
= — h)— —xz)P(d h
gty [ P e

2'LL
sty [ =Py b o)1+ ) + o)

= b(x,s)a—Z(m,s—i-h)—F—E(x,s) (x,s+h)(1+ a:) + o(1).

Equation (2.47) follows by taking the limits— 0, h — 0. O

Notice that the backward Kolmogorov equation (2.47) is al fiatue problem for a partial differential
equation of parabolic type. For time-homogeneous diffugioocesses, that is where the drift and the
diffusion coefficients are independent of time= b(x) and¥ = X(x), we can rewrite it as an initial
value problem. Lef" = ¢ — s and introduce the functiobi (x,T") = u(z,t—s). The backward Kolmogorov

equation now becomes

oU oU 1., U
57 = b@) 5 + 5@ 5 Ul@,0) = f(@). (2.50)

In the time-homogeneous case we can set the initial fimmeD. We then have that the conditional expecta-
tion u(x,t) = E(f(X:|Xo = z) is the solution to the initial value problem

ou ou 1 0%u
Fri b(x )% + —E( )W, u(z,0) = f(z). (2.51)
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The differential operator that appears on the right hanel sid2.51) is the generator of the diffusion process
X;. In this book we will use the backward Kolmogorov in the for2ns1)>

Assume now that the transition function has a dengsity, ¢|x, s). In this case the formula fai(z, s)
becomes

u(z, s) /f p(y,t|z, s)dy

Substituting this in the backward Kolmogorov equation 2 we obtain

/ 1y (ap y tl, s) +£s,mp<y,t|x,s>) ~0 (2.52)

where
2

= b(x, 5)83 + E(:U 5)882

Equation (2.52) is valid for arbitrary continuous boundeddtionsf. COnsequently, from (2.52) we obtain
a partial differential equation for the transition probiypidensity:

Lsa

»L

O tlas) 00 tlays) | 1 Pp(y,tlz,s)

s pe + §E(x, s) 92 (2.53)

Notice that the variation is with respect to the "backwardriablesz, s.

The forward Kolmogorov equation

Assume that the transition function has a density with retspiethe Lebesgue measure which a smooth
function of its arguments

P(dy,t|z,s) = p(y, tlz,s)dy

We can obtain an equation with respect to the "forward” \@dgy, ¢, the forward Kolmogorov or Fokker-
Planck equation.

Theorem 2.8. (Kolmogorov) Assume that conditio(&s41), (2.42), (2.43)are satisfied and that(y, t|-, -), b(y,t), X(y,t
are smooth functions af, t. Then the transition probability density is the solutiorthie initial value prob-

lem
2
% = _a% (b(t,y)p) + %88—y2 (E(t.y)p), p(s,ylz,s) =z —y). (2.54)

Proof. The initial condition follows from the definition of the traition probability densityp(y, t|x, s).
Fix now a functionf(y) € C3(R). An argument similar to the one used in the proof of the backwa
Kolmogorov equation gives

2
i 5 ([ £00p(0.5+ hles) ds = 1)) =bo9) P 0) 4 32000 ) (@59

The backward Kolmogorov equation can also be derived usirgformula. See Chapter 3.
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where subscripts denote differentiation with respect.t®n the other hand

/f 5Ptz ) at/f (Y, tlz, s)
— flligbﬁ/(p(y,t—i-h\%s) —p(y,tlz,s)) f(y) dy

— i ([ ot nleor s - [ ot s a:)

h
= flzg%h (// (y,t + s|z,t)p(z, t|x, s) f(y )dydz—/p(z,t\s,x)f(z)dz)

B %L%(/ =t >(/ (9.t + hlz 1) f (y)dy—f(2)>>dz

= [ pletians) (16t >d—f<>+—z<> 1)) ds

= — 2(b(z,t)p(z,ﬂ:r: s ) + ——2( z,t)p(z t|x,s)) f(z)dz.
0z 20z

In the above calculation we used the Chapman-Kolmogoroatémiu We have also performed two inte-
grations by parts and used the fact that, since the testifin¢thas compact support, the boundary terms

vanish. Since the above equation is valid for every testtfancf the forward Kolmogorov equation fol-
lows. O

g“\
~5

Assume now that initial distribution oX} is py(x) and sets = 0 (the initial time) in (2.54). Define

p(y,1) == / Py, ]z, 0)po (x) dz. (2.56)

We multiply the forward Kolmogorov equation (2.54) py(z) and integrate with respect toto obtain the
equation

2
8p(@i’t) = —a% (a(y, O)p(y, 1)) + —% (b(y, t)p(t,y)) (2.57)

together with the initial condition
p(y,0) = po(y)- (2.58)

The solution of equation (2.57), provides us with the prdligithat the diffusion procesX;, which initially
was distributed according to the probability dengityz), is equal toy at timet. Alternatively, we can think
of the solution to (2.54) as the Green’s function for theiphdifferential equation (2.57). Using (2.57) we
can calculate the expectation of an arbitrary function efdHfusion process\;:

E(f(X,) = / / F@)p(y. tlz, 0)p(cx, 0) dady

= / fW)p(y.t) dy,
wherep(y, t) is the solution of (2.57).
The solution of the Fokker-Planck equation provides us whth transition probability density. The
Markov property enables to calculate joint probability siéies using Equation (2.20). For example, &t
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denote a diffusion process withy ~ 7, let0 = ¢ty < t1--- < t, and letf(zo,...,z,) a measurable
function. Denoting byE,. the expectation with respect t1g we have

Wf(Xto>Xt1> . th / /f Zo, . .- 'IO d.l?(] prjat |x] 1,1t J— 1)d$] (259)
7j=1

In particular, the autocorrelation function &f; at timet and0 is given by the formula
C(t)i= Ex(XiX0) = [ [ vy, ]z, 0yn(z) ddy. (2.60)

Multidimensional Diffusion Processes

The backward and forward Kolmogorov equations can be difimemultidimensional diffusion processes
using the same calculations and arguments that were uskd praofs of Theorems 2.7 and 2.8. Lét be
a diffusion process iiR%. The drift and diffusion coefficients of a diffusion procés®R< are defined as:

1
i [ (= 0)Pldy.tle.5) = bla.s)
tsst— s ly—z|<e
and )
fm—— [ (=)@ (- 2)Pldy.tr.5) = D(e).
t>st— s ly—z|<e

The drift coefficientb(z, s) is ad-dimensional vector field and the diffusion coeffici@ifz, s) is ad x d
symmetric nonnegative matrix. The generator dfdimensional diffusion process is

L = b(z,s) - V+ = E(w,s) \AY%
2

d
9
= b Bac T3 22”“)8 2:03;

i=1 J ij=1

.

Assuming that the first and second moments of the multidinaakdiffusion process exist, we can write
the formulas for the drift vector and diffusion matrix as

limE <M s = ac) = b(z,s) (2.61)
t—s t —
and X — X X — X
1imE<( 1= X)) ® (Xo = X) s::ﬂ> = X(x, s). (2.62)
t—s t—s

The backward and forward Kolmogorov equations for mutidisienal diffusion processes are

_% =Db(z,s)  Vyu+ %E(x, $): ViVau, wu(t,z)= f(x), (2.63)
and 5 1
8_]159 =V, <_b(t,y)p + Evy . (Z(t,y)p)> . ply,slx,s) =d(z —y). (2.64)
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As for one-dimensional time-homogeneous diffusion preessthe backward Kolmogorov equation for a
time-homogeneous multidimensional diffusion processheawritten as an initial value problem:

W= Lu, u(e,0) = f() (2.65)
for u(z,t) = E(f(X:)|Xo = z). For time-homogeneous processes we can fix the initial $irae0 in the

forward Kolmogorov equation. Assuming furthermore th@tis a random variable with probability density
po(z) the forward Kolmogorov equation becomes

I _

ot
for the transition probability density(y, ¢). In this book we will use the forward and backward Kolmogorov
equations in the form (2.65) and (2.66).

E*pa p(:C,O) = pO(:C)> (266)

2.6 Discussion and Bibliography

Markov chains in both discrete and continuous time are stliti [74, 98]. A standard reference on Markov
processes is [19]. The proof that the transition functiod #e initial distribution ofX; are sufficient to
uniquely determine a Markov process, Equation (2.17) cdoulred in [83, Prop. 1.4, Ch. Ill]. See also [19,
Thm 1.1, Ch. 4].

Operator semigroups are the main analytical tool for theystf diffusion processes, see for exam-
ple [60]. Necessary and sufficient conditions for an operétto be the generator of a (contraction) semi-
group are given by the Hille-Yosida theorem [21, Ch. 7].

The space’;,(F) is natural in a probabilistic context for the study of Markeemigroups, but other
function spaces often arise in applications; in particulaen there is a measupeon F, the spaced&? (E; u)
sometimes arise. We will quite often use the spat@?; 1), wherey is an invariant measure of the Markov
process. Markov semigroups can be extended from the spdmmintied continuous functions to the space
LP(E; u) for anyp > 1. The proof of this result, which follows from Jensen’s inalify and the Hahn-
Banach theorem, can be found in [34, Prop 1.14].

The generator is frequently taken as the starting point Herdefinition of a homogeneous Markov
process. Conversely, |€t be acontraction semigroufgLet X be a Banach space afil: X — X a
bounded operator. Thefis a contraction provided thdf ' f||x < || f|lx V f € X), with D(P,) C Cy(E),
closed. Then, under mild technical hypotheses, there B-aralued homogeneous Markov proc€ss, }
associated wittP; defined through

E[f(X(t)|F:)] = P—s f(X(s))

forallt,s € Twitht > sandf € D(F;).

The argument used in the derivation of the forward and badkialmogorov equations goes back to
Kolmogorov's original work. See [30] and [38]. A more modexpproach to the derivation of the forward
equation from the Chapman-Kolmogorov equation can be fonrjélé, Ch. 1]. The connection between
Brownian motion and the corresponding Fokker-Planck eguathich is the heat equation was made by
Einstein [18]. Many of the early papers on the theory of statie processes have been reprinted in [17].
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Early papers on Brownian motion, including the original @epby Fokker and by Planck, are available
fromhttp://wwv. physi k. uni - augsbur g. de/ t heol/ hanggi / Hi story/ BM Hi story. html .
Very interesting historical comments can also be found &j fihd [68].

We can also derive backward and forward Kolmogorov equationcontinuous-time Markov processes
with jumps. For such processes, an additional nonlocal aeperm (an integral operator) appears in the
Kolmogorov equations that accounts for the jurfi3etails can be found in [28].

A diffusion process is characterized by the (almost sura)igoity of its paths and by specifying the first
two moments. A natural question that arises is whether d¥pers of stochastic processes can be defined
by specifying a fixed number of moments higher than two. Ihgusut that this is not possible: we either
need to retain two or all (i.e. infinitely many) moments. Sfyéng a finite number of moments, greater
than two, leads to inconsistencies. This is the content ofulRes theorem . [77]. Example 2.4 can also be
found in [76, Ch. 6].

The duality between the backward and forward Kolmogorovaéiqus, the duality between studying
the evolution of observables and states, is similar to ttaitgubetween the Heisenberg (evolution of ob-
servables) and Schrodinger (evolution of states) reptaBens of quantum mechanics or the Koopman
(evolution of observables) and Frobenius-Perron (evatutif states) operators in the theory of dynamical
systems, i.e. on the duality between the study of the ewnldf observables and of states. See [82, 52, 100].

2.7 Exercises

1. Let{X, } be a stochastic process with state spsice Z. Show that it is a Markov process if and only if
forall n
]P(Xn+1 - in+1|X1 - ’L'1, e Xn - ’Ln) - ]P)(Xn+1 - ’L'n+1|X - Zn)
2. Show that (2.6) is the solution of initial value probleml) as well as of the final value problem

op 1% _
~5s = 5anz ot s) =6y - ).

3. Use (2.7) to show that the forward and backward Kolmogeauations for the OU process are

dp 0 10%p

E_a_y(ypHia_gﬂ
and

o op, 10%

"5 Tor 2027
4. LetW (t) be a standard one dimensional Brownian motion}Ylgt) = oW (t) with & > 0 and consider
the process

X(t):/o Y(s)ds.

Show that the joint procedsX (¢), Y (¢)} is Markovian and write down the generator of the process.

®The generator of a Markov process with jumps is necessailjocal: a local (differential) operatdt corresponds to a Markov
process with continuous paths. See [96, Ch. 1].
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5. LetY (t) = e W (e?) be the stationary Ornstein-Uhlenbeck process and contsidgarocess

t
X(t) = / Y (s)ds.
0
Show that the joint procedsX (¢), Y (¢)} is Markovian and write down the generator of the process.

6. (a) LetX, Y be mean zero Gaussian random variables Bi¥¥ = 0%, EY? = o2 and correlation
coefficientp (the correlation coefficient is = %). Show that

PoX

E(X[Y) =12

Y.

(b) Let X; be a mean zero stationary Gaussian process with autod¢mmefanction R(t). Use the
previous result to show that

E[ Xt Xs] = %X(s), s,t > 0.

(c) Use the previous result to show that the only stationaaygSian Markov process with continuous
autocorrelation function is the stationary OU process.

7. Show that a Gaussian processis a Markov process if and only if

E(th‘th = T1y.-- th71 = I'n_l) = E(Xt" ’th71 = .%'n_l).

8. Prove equation (2.55).
9. Derive the initial value problem (2.57), (2.58).

10. Prove Theorems 2.7 and 2.8 for multidimensional diffagirocesses.
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Chapter 3

Introduction to Stochastic Differential
Equations

In this chapter we study diffusion processes at the levebttig In particular, we study stochastic differen-
tial equations driven by Gaussian white noise, defined flyraa the derivative of Brownian motion. In Sec-
tion 3.1 we introduce stochastic differential equatiomsSéction 3.2 we introduce the 1td and Stratonovich
stochastic integrals. In Section 3.3 we present the corfepsolution for a stochastic differential equation.
The generator, Itd’s formula and the connection with thklkeo-Planck equation are covered in Section 3.4.
Examples of stochastic differential equations are preseimt Section 3.5. Lamperti’s transformation and
Girsanov's theorem are discussed briefly in Section 3.6eduirstochastic differential equations are studied
in Section 3.7. Bibliographical remarks and exercises @afobnd in Sections 3.8 and 3.9, respectively.

3.1 Introduction

We consider stochastic differential equations (SDESs) efftiim

dX (t)

CE = bt X() + ot X)€W, X(0) = (3.1)

whereX (t) € R4, b: [0,7] x R s R ando : [0,T] x RY — R¥™. We use the notatiog(t) = 4
to denote (formally) the derivative of Brownian motion Ri?, i.e. the white noise process which is a
(generalized) mean zero Gaussian vector-valued stochlmstiess with autocorrelation function

E (gz(t)gj(s)) = (Sl'j(;(t - S), ’L',j =1...m. (32)

The initial conditionz can be either deterministic or a random variable which igjehdent of the Brownian
motion W (t), in which case there are two different, independent souwteandomness in (3.1). We will
use different notations for the solution of an SDE:

X(t), X¢ or X7.

The latter notation will be used when we want to emphasizeddpendence of the solution of the initial
conditions.
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We will consider mostly autonomous SDEs, i.e. equationssstamefficients do not depend explicitly
on time. When we study stochastic resonance and Browniaorsot Section®? and ??, respectively,
it will be necessary to consider SDEs with time dependenffica@nts. It is also often useful to consider
SDEs in bounded domains, for example in a box of iz¢0, L]d with periodic boundary conditions; see
Section?? on Brownian morion in periodic potentials.

The amplitude of the noise in (3.1) may be independent oftéite sf the systemy(z) = o, a constant;
in this case we will say that the noise in (3.1)additive When the amplitude of the noise depends on
the state of the system we will say that the noise in (3.Inudtiplicative In the modeling of physical
systems using stochastic differential equations additdise is usually due to thermal fluctuations whereas
multiplicative noise is due to noise in some control paramet

Example 3.1. Consider the Landau-Stuart equation

dxX
dt
wherea is a parameter. Assume that this parameter fluctuates rdpdiortime or that we are uncertain

about its actual value. Modeling this uncertainty as whites®e, o — « + £ we obtain the stochastic
Landau equation with multiplicative noise:

= X(a— X?),

4,

- =Xi(a - X2) 4+ o X, £(t). (3.3)

It is important to note that an equation of the form (3.3) i$ safficient to determine uniquely the
stochastic procesX;: we also need to determine how we chose to interpret the moibe equation, e.g.
whether the noise in (3.3) is Itd or Stratonovich. This iepagate modeling issue that we will address in
Section??.

Since the white noise proces§) is defined only in a generalized sense, equation (3.1) isfontgal.
We will usually write it in the form

dX(t) =b(t, X(t))dt + o(t, X(t)) dW(t), (3.4)
together with the initial conditioX (0) = z, or, componentwise,
dX;(t) = bi(t, X(1))dt + > o(t, X () dW;(t), j=1,....d, (3.5)
j=1

together with the initial conditions. In fact, the correntdrpretation of the SDE (3.4) is as a stochastic
integral equation

X(t) :x—l—/otb(t, X(t))dt—i—/oto-(t, X (1)) dW (t). (3.6)

Even when writing the SDE as an integral equation, we arkfating several mathematical difficulties.
First we need to give an appropriate definition of the stadhagegral

I(t) = /0 o(t, X (1) dW (t), (3.7)
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or, more generally,
t
I(t) := /O h(t) dW (t), (3.8)

for a sufficiently large class of functions. Since Browniantion is not of bounded variation, the inte-
gral (3.7) cannot be defined as a Riemann-Stieljes integral unique way. As we will see in the next
section, different Riemann-Stieljes approximations leadifferent stochastic integrals that, in turn, lead to
stochastic differential equations with different propest

After defining the stochastic integral in (3.6) we need tegiproper definition of a solution to an SDE.
In particular, we need to give a definition that takes intoaot the randomness due to the Brownian motion
and the initial conditions. Furthermore, we need to take aticount the fact that, since Brownian motion is
not regular but only Holder continuous with exponent 1/2, solutions to an SDE of the form (3.1) cannot
be very regular. As in the case of partial differential etpret, there are different concepts of solution for
an SDE of the form (3.1).

After having given an appropriate definition for the stoc¢ltamtegral and developed an existence and
uniqueness theory of solutions to SDEs, we would like to Be bcalculate (the statistics of) functionals
of the solution to the SDE. LeX (¢) be the solution of (3.4) and Igt(t, =) be a sufficiently regular function
of t andz. We want to derive an equation for the function

z(t) = f(t, X (1))

In the absence of noise we can easily obtain an equation(forby using the chain rule. However, the
stochastic forcing in (3.1) and the lack of regularity of ®raan motion imply that the chain rule has to be
modified appropriately. This is, roughly speaking, due ®ftdct thatk(dW (¢))? = dt and, consequently,
second order differentials need to be kept when calculdktiaglifferential ofz(¢). It turns out that whether
a correction to the chain rule from standard calculus is egatbpends on how we interpret the stochastic
integral (3.7).

Furthermore, we would like to be able to calculate the stesiof solutions to SDEs. In Chapter 2 we
saw that we can calculate the expectation value of an odslerva

u(z,t) = E(f(X{)| X5 = ) (3.9)

by solving the backward Kolmogorov equation (2.47). In ittispter we will see that the backward Kol-
mogorov equation is a consequence ofltiés formulg the chain rule oftd stochastic calculus

Quite often it is important to be able to evaluate the siafisif solutions to SDEs at appropriate random
times, the so calledtopping timesAn example of a stopping time is tHiest exit timeof the solution of an
SDE of the form (3.1), which is defined as the first time theugibn X7 exits an open domai® ¢ R,
with x € D:

™ = inf {Xt ¢ D}. (3.10)

The statistics of the first exit time will be needed in the aidton of the escape time of a diffusion process
from a metastable state, see Chafter

There is also an important modeling issue that we need taaddmwhite noise is a stochastic process
with zero correlation time. As such, it can only be thoughaisfan idealization of the noise that appears
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in physical, chemical and biological systems. We are isteds therefore, in understanding the connection
between an SDE driven by white noise with equations where i@ ploysically realistic noise is present.
The question then is whether an SDE driven by white noise (af be obtained from an equation driven
by noise with a non trivial correlation structure throughapropriate limiting procedure. We will see in
Section?? that it is possible to describe more general classes of maikin the framework of diffusion
processes, by adding additional variables. Furthermoeecam obtain the SDE (3.1) in the limit of zero
correlation time, and for an appropriate definition of thechistic integral.

3.2 The Itd and Stratonovich Stochastic Integrals

In this section we define stochastic integrals of the form

1) = /O F(s)dW (s), (3.11)

whereW (t) is a standard one dimensional Brownian motion ar& [0, 7"]. We are interested in the case
where the integrand is a stochastic process whose randsrdepsends on the Brownian motidii(¢)-think

of the stochastic integral in (3.6)-and, in particulartih&s adaptedto thefiltration F; (see 2.14) generated
by the Brownian motioiiV/ (¢), i.e. that it is anF; measurable function for all€ [0, T']. Roughly speaking,
this means that the integrand depends only the past histdhe Brownian motion with respect to which
we are integrating in (3.11). Furthermore, we will assunae the random proces¥-) is square integrable:

1) </0Tf(s)2ds> < oo.

Our goal is to define the stochastic integfél) as theL2-limit of a Riemann sum approximation of (3.11).
To this end, we introduce a partition of the intery@ 7] by settingt, = kAt, k = 0,... K — 1 and
KAt = t; we also define a parametgre [0, 1] and set

T = (1—)\)tk+)\tk+1, k=0,... K —1. (3.12)

We define now stochastic integral as th&((2) limit (2 denoting the underlying probability space) of the
Riemann sum approximation

K—1
I(t) = lim_ kZO F(rr) (W (trn) — W (t)) - (3.13)
Unlike the case of the Riemann-Stieltjes integral when wegirate against a smooth deterministic function,
the result in (3.13) depends on the choice\af [0, 1] in (3.12). The two most common choices are- 0,

in which case we obtain th#d stochastic integral

K-1
L) = lim S F(t) (W (teya) — W (k). (3.14)

K—oo
k=0
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The second choice is = % which leads to th&tratonovich stochastic integral

K-1

Is(t) = lim Zf@(wm)) (W (ter) — W (). (3.15)
k=0

We will use the notation .
I5(t) = [ f(s) 0 (o)
0

to denote the Stratonovich stochastic integral. In gertbealtd and Stratonovich stochastic integrals are
different. When the integranfl(¢) depends on the Brownian motid¥ (¢) throughX (¢), the solution of the
SDE in (3.1), a formula exists for converting one stochastiegral into another.

When the integrand in (3.14) is a sufficiently smooth functithen the stochastic integral is independent
of the parametek and, in particular, the 1td and Stratonovich stochastiegrals coincide.

Proposition 3.2. Assume that there exiét ¢ > 0 such that
E(f(t)— f(s))> < Clt—s"", 0<s, ¢t <T. (3.16)
Then the Riemann sum approximatior(3113)converges in.! () to the same value for all € [0, 1].
The interested reader is invited to provide a proof of th@gppsition.

Example 3.3. Consider the Langevin equation (see Chap®mwith a space dependent friction coefficient:

més = —VV (a) — ¥(a)de + v/27(a) We,

whereq denotes the particle position with masas Writing the Langevin equation as a system of first order
SDEs we have

mdg = pgdt, (3.17a)
dpr = —VV(q)dt —v(q)pe dt + \/27v(q) dWr. (3.17b)

Assuming that the potential and the friction coefficients amooth functions, the particle positignis
a differentiable function of timé. Consequently, according to Proposition 3.2, the Itd amdt&iovich
stochastic integrals in (3.17) coincide. This is not truthmlimit of small massy — 0. See the Sectio@?
and the discussion in Section 3.8.

The 1td stochastic integral(¢) is almost surely continuous inh As expected, it satisfies the linearity
property

[ (er0 s o) vy =a [ soavo s [ g, oser

for all square integrable functionft), g(¢). Furthermore, the I1td stochastic integral satisfiedtihésome-
try

E Tf(t)dW(t) 2: TE|f(t)|2dt, (3.18)
0 0

YIn fact, itis aC*** function of time, witha < 1/2.

53



from which it follows that, for all square integrable furans f, g,

E </OT h(t) dW (1) /OTg(s) dW(s)> :IE/OT h(t)g(t) dt.

The 1td stochastic integral ismartingale:

Definition 3.4. Let{F; },c(o. 7] be afiltration defined on the probability spa@, 7, 1) and let{ M },cjo. )
adapted taF; with M; € L*(0,T). We say thai\1, is an F; martingale if

E[My|Fs] = M5 Vit = s.

For the 1td stochastic integral we have

E /0 F(s)dW(s) =0 (3.19)

and . \
E{ /0 f(e)dW(e)\fs]: /O FOAW () Vi s, (3.20)

whereF, denotes the filtration generated By(s). The quadratic variation of this martingale is

(1)) = /0 (f())* ds.

The proofs of all these properties and the study of the Riensam (3.13) proceed as follows: first, these
properties are proved for the simplest possible functioaspely step functions for which we can perform
explicit calculations using the properties of Brownianramaents. Then, an approximation step is used to
show that square integrable functions can be approximatexielp functions. The details of these calcula-
tions can be found in the references listed in Section 3.8.

The above ideas are readily generalized to the case Whétgis a standard- dimensional Brownian
motion andf(t) € R™*4 for eacht > 0. In the multidimensional case the Itd isometry takes thmfo

t
E[I(t)? = /O E|f(s)[3ds. (3.21)

where| - | denotes the Frobenius nof|p = /tr(AT A).

Whether we choose the Itd or Stratonovich interpretaticthe stochastic integral in (3.6) is a modeling
issue that we will address later in Secti@® Both interpretations have their advantages: the Itdhstsiic
integral is a martingale and we can use the well developeahthaf martingales to study its properties; in
particular, there are many inequalities and limit theorémnsnartingales that are very useful in the rigorous
study of qualitative properties of solutions to SDEs. Ondtteer hand, the Stratonovich stochastic integral
leads to the standard Newton-Leibniz chain rule, as opptustitt 1td stochastic integral where a correction
to the Leibniz chain rule is needed. Furthermore, as we wélia Sectior??, SDEs driven by noise with
non-zero correlation time converge, in the limit as the @ation time tends t0, to the Stratonivich SDE.

2\We use Itd isometry withf = h + g.
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When the stochastic integral in (3.4) or (3.6) is an Itdgnéd we will refer to the SDE as dtb SDE whereas
when it is a Stratonovich integral we will refer to the SDE &ti@tonovich stochastic differential equation
There are other interpretations of the stochastic integinak arise in applications e.g. the Klimontovich
(kinetic) stochastic integral that corresponds to the@hai= 1 in (3.12).

An 1td SDE can be converted into a Stratonovich SDE and theratay around. This transformation in-
volves the addition (or subtraction) of a drift term. We cddde this correction to the drift in one dimension.
Consider the 1td SDE

dX; = b(Xy) dt + o(Xy) dWy. (3.22)

We want to write it in Stratonovich form:
dX; = b(Xy) dt + 5(X;) 0 AW (3.23)

Let us calculate the Stratonovich stochastic integral iB3B We have, withy = % and using the notation
AW; = W (tj+1) — W(t;) and similarly forAX; as well as a Taylor series expansion,

t
/E(Xt)oth ~ S G(X(jAL+alt) AW,
0 -
J
ZA . Zd3 .

Q

/0 FX (D)W () +a ) g(X(jAt)) (b(Xj) At; + a(Xj)AWj) AW;

b do

/ FX(1) dW (L) + a / X)X (1)t (3.24)
0 0

Q

In the above calculation we have used the form&AtAW;) = 0 andE(AW;)* = At; see Section 3.4.
This calculation suggests that the Stratonovich stoahastgral, when evaluated at the solution of the 1td
SDE (3.22), is equal to the 1td stochastic integral plusifi dorrection. Notice that the above calculation
provides us with a correction for arbitrary choices of theapzetera € [0, 1]. The above heuristic argument
can be made rigorous: we need to control the difference lmt%é&(Xt) o dW; and the righthand side
of (3.24) inL?(9)); see Exercise 2.

Substituting (3.24) in the Stratonovich SDE (3.23) we abtai

~ 1do ~
dX, = (b(Xt) + 5%()(,f)a()g)) dt + 5(X;) dW;.
This is the 1td equation (3.22). Comparing the drift anddifusion coefficients we deduce that
~ 1
c=0c and b=0b— 50'0. (3.25)

Consequently, the Itd SDE
dXt = b(Xt) dt + O'(Xt) th

is equivalent to the Stratonovich SDE

ax, = (b(x,) - %a'(xt)a(xt)) dt + o(Xy) o AW,
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Conversely, the Stratonovich SDE
dX, = b(X;) dt + o(Xy) o dW,
is equivalent to the 1td SDE
dX, = <b(Xt) + %a’(Xt)a(Xt)> dt + o (X;) dW;.

The correction to the drif%a’a is called theltd-to-Stratonovich correctianSimilar formulas can be ob-
tained in arbitrary dimensions. The multidimensional$iDE

dX, = b(X,) dt + o(X;) AW, (3.26)

whereb : R? — R? ando : RY — R¥>™ can be transformed to the Stratonovich SDE

dX; = (b(X;) — h(Xy)) dt + o(Xy) o dWy, (3.27)
where the correction drift is given by the formula
1 L& 00k
() == ; - =1,...,d. 2
hl(x) 2;;Uﬂ€(%’) aﬁj (.%'), ? ’ 7d (3 8)

Conversely, the multidimensional Stratonovich SDE
dX; = b(X;)dt + o(X;) o dW, (3.29)
can be transformed into the 1td SDE
dX; = (b(Xy) + h(Xy)) dt + o(Xy) dWy, (3.30)
with A given by (3.28). The Itd-to-Stratonovich correction canwritten in index-free notation:
h(z) — %[V S(2) — (0V-oT)(2)], = =o0o’ (3.31)
To see this, we first note that

oo ; d Jojy doy,
®), = ; ax: ZZ( ke + Tie g ]j> (3.32)

k=1 /(=1

On the other hand,

d m
(GV ol ZZO’M&JM (3.33)
k=1¢

=1
The equivalence between (3.31) and (3.28) follows uporraating (3.33) from (3.32). Notice also that we
can also write )
h (= §aT :V(aTe), (3.34)

for all vectors? € R4,

Notice that in order to be able to transform a StratonoviciE$@o and I1t6 SDE we need to assume
differentiability of the matrixe, an assumption that is not necessary for the existence dgdamess of
solutions to an SDE; see Section 3.3.
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3.3 Solutions of Stochastic Differential Equations

In this section we present, without proof, a basic existearm uniqueness result for stochastic differential
equations of the form

dX, =b(t, X;)dt + o(t, X,)dW;, X(0) =z, (3.35)

whereb(-,-) : [0,T] x R* — R% ande-,- : [0, T] x R? — R¥*"™ are measurable vector-valued and matrix-
valued functions, respectively, afmid; denotes standard Brownian motionRft. We assume that the initial
condition is a random variable which is independent of theaBrian motioni¥;. We will denote byF; the
filtration generated by the Brownian motid¥,.

We will use the following concept of a solution to (3.35).

Definition 3.5. A processX; with continuous paths defined on the probability spéeeF, P) is called a
strong solutionto the SDH3.35)if:

(i) X;is almost surely continuous and adapted to the filtratign
(i) b(-, X)) € L'((0,T);R%) anda (-, X.) € L?((0,T); R¥™) almost surely.

(iii) For everyt > 0 the stochastic integral equation
t t
Xe=z +/ b(s, Xs)ds —i—/ o(s, Xs)dWs, X(0)==x (3.36)
0 0

holds almost surely.

The assumptions that we have to impose on the drift and fiusoefficients in (3.35) so that a unique
strong solutions exists are similar to the Lipschitz cantinand linear growth assumptions that are familiar
from the existence and uniqueness theory of (determihistitinary differential equations. In particular,
we make the following two assumptions on the coefficientsrdtexists a positive constafitsuch that, for
all z € R? andt € [0, T7,

b(t,z)| + |ot,z)|r < C(1+ |z]) (3.37)
and for allz, y € R andt € [0, 7]

Notice that for globally Lipschitz vector and matrix fieldsando (i.e. when (3.38) is satisfied), the linear
growth condition (3.37) is equivalent to the requiremerati(¢,0)| and|o(t,0)|» are bounded for all
t > 0.

Under these assumptiongybal, uniquesolution exists for the SDE (3.35). By uniqueness of strong
solutions we mean that, X; andY; are strong solutions to (3.35), then

X =Y, forall t almost surely
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Theorem 3.6. Letb(-,-) and o (+,-) satisfy Assumptiong.37)and (3.38) Assume furthermore that the
initial condition x is a random variable independent of the Brownian motignwith

E|z* < cc.

Then the SDE3.35)has a unique strong solutiol; with

t
E [/ \XSIst} < 00 (3.39)
0
forall ¢t > 0.

Using Gronwall’'s inequality we can also obtain a quanti@atstimate in (3.39), as a function of the
second moment of the solution that increases exponenimnatigne.

The solution of the SDE (3.35) satisfies the Markov propenty lsad continuous paths: it is a diffusion
process. In fact, solutions of SDEs are precisely the ddfuprocesses that we studied in Chapter 2.

The Stratonovich analogue of (3.35) is

dX, = b(t, X;)dt + o(t, X;) o dW;, X(0) =, (3.40)

As with the 1td SDE, the correct interpretation of (3.35)nthe sense of the integral equation

t t
Xi=z +/ b(s, Xs)ds +/ o(s, Xs)odWs, X(0)=uzx. (3.41)
0 0

Using the Itb-to-Stratonovich transformation (3.28), @& write (3.40) as an 1td SDE and then use The-
orem 3.6 to prove existence and uniqueness of strong sadutidotice, however, that for this we need to
assume differentiability of the diffusion matrix and that we need to check that conditions (3.37) and (3.38)
are satisfied for the modified drift in (3.30).

Just as with nonautonomous ordinary differential equatidris possible to rewrite a stochastic differ-
ential equation with time dependent coefficients as a tioradgeneous equation by adding one additional
variable. Consider, for simplicity, the one dimensionaliaipn

dXt == b(t, Xt) dt + O'(t, Xt) th (342)
We introduce the auxiliary variablg to write (3.42) as the system of SDEs

dX; = b(Tt,Xt)dt+U(Tt,Xt)th, (343a)
dr, = dt. (3.43b)

Thus we obtain a system of two homogeneous stochastic efitief equations for the variablés;, 7).
Notice that noise acts only in the equation f&f. The generator of the diffusion proceg),, 7) (see
Section 3.4) is

0 o 1 0?

- _ — 2 _
L= o + b(7,x) o + 50 (T,Cﬂ)awz. (3.44)
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Quite often we are interested in studying the long time priigee of the solution of a stochastic differential
equation. For this it is useful to rescale time so that we cansg on the long time scales. Using the scaling
property of Brownian motion, see Theorem 1.23,

Wct) = VW (¢),

we have that, it = ct, then
AW 1 dW

a5 T o dt
the equivalence being, of course, in law. Hence, if we sdéale tos = ct, the SDE

becomes

1 1
dXt = Eb(Xt) dt + %U(Xt) th,

together with the initial conditionXy, = x. We will use such a change of the time scale when we study
Brownian motors in Sectio?.

3.4 1to’'s formula

In Chapter 2 we showed that to a diffusion proc&ssve can associate a second order differential operator,
the generator of the process. Consider the I1td stochaffiecahtial equation

dX, = b(X,) dt + o(X;) AW, (3.45)

where for simplicity we have assumed that the coefficierdsratependent of timeX; is a diffusion process
with drift b(x) and diffusion matrix
¥(z) = o(x)o(z)T. (3.46)

The generator. is then defined as
L=b(z)-V+ %2(55) : D%, (3.47)

whereD? denotes the Hessian matrix. The generator can also bemaiste

r o 1 . 0?
=2 bl +5 > g o

Z7j:

Using now the generator we can write Itd’s formula . Thigriata enables us to calculate the rate of change
in time of functionsV’ : [0, T] x R? — R evaluated at the solution of &f-valued SDE. First, recall that in
the absence of noise the rate of chang® @fan be written as

Lyt aiy) = 2

i o () + AV (t,2(2), (3.48)
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wherez(t) is the solution of the ODE = b(x) and.A denotes the (backwardjouville operator
A=0b(z) V. (3.49)

Let now X; be the solution of (3.45) and assume that the white niisis replaced by a smooth function
¢(t). Then the rate of change df(¢, X;) is given by the formula

d ov
EV(t Xy) = 5
This formula is no longer valid when the equation (3.45) igelr by white noise and not a smooth function.
In particular, the Leibniz formula (3.50) has to be modifigdtie addition of a drift term that accounts for
the lack of smoothness of the noise: the Liouville operat@iven by (3.49) in (3.50) has to be replaced by
the generatoC given by (3.47). We have already encountered this additi@men in the previous chapter,

when we derived the backward Kolmogorov equation. Forma#iycan write

d ov
Svix,) = 2=
dtv(’ ! ot

The precise interpretation of the expression for the rathahge ofi/ is in integrated form.

—(t, Xy) + AV (t, X3) + (VV(t, Xy), 0 (X)( (1)) (3.50)

(t, Xy) + LV (t, Xy) + <VV(t,Xt) (Xt)d;f>

Lemma 3.7. (It6’s Formula ) Assume that the conditions of Theorem 3.6 hold. Xgbe the solution
of (3.45)and letV’ € C?(R%). Then the procesE (X;) satisfies

¢ t
V(t, X)) = V(XO)—i—/ %—Z(S,Xs)ds—i—/ LV (s, Xs)ds
0 0

+ /t (VV (s, Xy),0(X,)dWy) . (3.51)

0

The presence of the additional term in the drift is not vempsgaing, in view of the fact that the Brownian
differential scales like the square root of the differdnititime: E(dW;)? = dt. In fact, we can write Itd’s
formula in the form

d _ov
—V(t, X

y V4. X,) + (VV (5 X)), X)) + %(Xt, D2V (t, X,) X)), (3.52)

or,

AV (t, X;) = dt + Z — dX ; 830 axj dX;dX;, (3.53)
where we have suppressed the argunent’;) from the right hand side. When writing (3.53) we have used
the conventiordW;(t) dW;(t) = &;;dt, dW;(t)dt =0, i,j = 1,...d. Thus, we can think of (3.53) as a
generalization of Leibniz’ rule (3.50) where second ord#eckntials are kept. We can check that, with the
above convention, Ité’s formula follows from (3.53).

The proof of Ité’s formula is essentially the same as theopaf the validity of the backward Kol-
mogorov equation that we presented in Chapter 2, Theorem Qohversely, after having proved Itd’s
formula, then the backward Kolmogorov and Fokker-Planckwifrd Kolmogorov) equations follow as
corollaries. Letp € C%(R?) and denote byX? the solution of (3.45) withX¢ = z. Consider the function

u(z,t) = E¢(Xy) = E(¢(X])|Xg = @), (3.54)
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where the expectation is with respect to all Brownian dgvraths. We take the expectation in (3.51), use
the martingale property of the stochastic integral, Equa(B.20), and differentiate with respect to time to
obtain the backward Kolmogorov equation

ou

i Lu, (3.55)
together with the initial condition(x,0) = ¢(x). In this formal derivation we need to assume that the
expectationE and the generatof commute; this can be justified since, as we have already Heemex-
pectation of a functional of the solution to the stochastfteential equation is given by the semigroup
generated byC: (P, f)(x) = (e“ f)(z) = Ef(X7).

The Feyman-Kac formula

It6’s formula can be used in order to obtain a probabiligiéscription of solutions to more general partial
differential equations of parabolic type. L&t" be a diffusion process with drifi(-), diffusion (-) =
ool () and generatof with X% = = and letf € C2(R%) andV € C(R?), bounded from below. Then the
function

u(,t) =B (e hVODE (x| (3.56)

is the solution to the initial value problem

ou
Frl Lu—Vu, (3.57a)
u(0,2) = f(x). (3.57b)

To derive this result, we introduce the variable= exp (— fot V(Xs) ds> we rewrite the SDE folX; as

dX¥ = b(XF)dt+o(XF)dW;, X§ ==, (3.583)
dy® = —V(XF)dt, Y§=0. (3.58D)

The procesg X}, Y;*} is a diffusion process with generator

Lypy=L~— V(m)g
Y

We can write
E (e RV Ep(XE)) = B(o(XT, V),

whereg(z,y) = f(z)e?. We apply now Itd’s formula to this function (or, equivalBntwrite the backward
Kolmogorov equation for the function(z, y) = E(¢(X¢, Y;))) to obtain (3.57).

The representation formula (3.56) for the solution of thigiahvalue problem (3.57) is called the
Feynman-Kac formula It is very useful both for the theoretical analysis of ialtvalue problems for
parabolic PDEs of the form (3.57) as well as for their nunaraolution using a Monte Carlo approach,
based on solving numerically (3.58). See Secft@n
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Derivation of the Fokker-Planck Equation

Starting from 1td’s formula we can easily obtain the backivolmogorov equation (3.55). Using now
the backward Kolmogorov equation and the fact that the FeRkanck operator is thé&2-adjoint of the
generator, we can obtain the Fokker-Planck (forward Kolonog) equation that we will study in detail in
Chapter 4. This line of argument provides us with an altéveatand perhaps simpler, derivation of the
forward and backward Kolmogorov equations to the one pteddn Section 2.5.

The Fokker-Planck operator corresponding to the stochd#terential equation (3.45) reads

1
E*-:V-(—b(x)-+§v-(2-)). (3.59)
We can derive this formula from the formula for the generdtaf X; and two integrations by parts:

Lfhdr = fL hdx,
R4 Rd

forall f, h € C2(RY).

Proposition 3.8. Let X; denote the solution of thedtSDE(3.45)and assume that the initial conditiaki,
is a random variable, independent of the Brownian motiowidg the SDE, with density,(xz). Assume
that the law of the Markov process; has a density(xz,t) € C*!(R? x (0,+00))3, thenp is the solution
of the initial value problem for the Fokker-Planck equation

% L*p for(x,t) € RY x (0,00), (3.60a)
p = po forzeR?x{0}. (3.60b)

Proof. Let E# denote the expectation with respect to the product measdreéd by the measugewith
densitypy on X, and the Wiener measure of the Brownian motion that is dritiegSDE. Averaging over
the random initial conditions, distributed with densiky(x), we find

Bo(X) = [ o tmo)do
Rd
= [ D@ da
= [ ) @)ota) da,
But sincep(x, t) is the density ofX; we also have

B0(X) = [ pleit)oe) do.
Equating these two expressions for the expectation at#tiwesobtain

/@MMWW@M:/M%Wwwx
]Rd

Rd

3This is the case, for example, when the SDE has smooth cestficand the diffusion matriX = oo’ is strictly positive
definite.
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We use a density argument so that the identity can be extaodaty ¢ L?(R?). Hence, from the above
equation we deduce that

pz,t) = (empo> ().
Differentiation of the above equation gives (3.60a). 8gtti= 0 gives the initial condition (3.60b). [
The chain rule for Stratonovich equations
For a Stratonovich stochastic differential equations thes of standard calculus apply:
Proposition 3.9. Let X, : Rt — R? be the solution of the Stratonovich SDE
dX; = b(X,)dt + o(X;) o dW,, (3.61)

whereb : R? — R? ando : R? — R4, Then the generator and Fokker-Planck operator’dfare,
respectively:

L=b. V. +%UT V6TV (3.62)

and 1
L=V-(-b- +50V- (a1). (3.63)

Furthermore, the Newton-Leibniz chain rule applies.

Proof. We will use the summation convention and also use the natatidor the partial derivative with
respect tac;. We use the formula for the Itd-to-Stratonovich corregtigquation (3.31), to write

1 1
L = bjaj + §O'jk8j0'ikaif + §Uik0'jkaiajf
1
= b;0;f; + 5050 (0u0if)
1
= b-V+ §aT :V(e'Vf).

To obtain the formula for the Fokker-Planck operator, fieh be twocg(]Rd) functions. We perform two
integrations by parts to obtain

/R 0340 (cixdif ) da /R 0i(oudy(eh)) do

— /Rd 10i(o(V - (0Th)), ) dv
_ /Rdfai(a-v-(aTh))idx
. /Rdfv-<o--v-(0'Th)>dm.

To show that the Stratonovich SDE satisfies the standara chia, leth : R? — R¢ be an invertible map,
lety = h(z) and letz = h=!(y) =: g(y). LetJ = V,h denote the Jacobian of the transformation. We
introduce the notation

b(y) =b(gy), &) =0a(gly). Iy =IEw). (3.64)



We need to show that, faf; = h(X;),
av, = 3(v) <E(Yt) dt + &(Y;) o th). (3.65)

Itis important to note that in this equation the (square obdie) diffusion matrix is?(y)&(y). In particular,
the Stratonovich correction in (3.65) is (see (3.28))

(‘Eﬁgﬂk) (y) ayj

b (y) = (y), €=1,...d, (3.66)

DO | —

or, using (3.31),
1 PN ~ ~
b*(y) = 5[V (I2I7) - J5V . (73] ().
To prove this, we first transform the Stratonovich SDE Xgrinto an 1td SDE using (3.31). We then apply
[td’s formula to calculate

dYy = (Lhe)(Xy)dt + (Diheoij) (Xe) dW;
= Ju(Xy) (bi(Xt) dt + 045(X¢) de)
+5076(X0)0; (o (X0) (X)) (3.67)
for¢ =1,...d. Equivalently, using (3.62),
dY, = V,h(X;)(b(X)dt + o(X,) dW;)
4507 (X)) V(0" (X0)Vh(X,) dr (3.68)
Now we need to rewrite the righthand side of this equationfasetion ofy. This follows essentially from

the inverse function theorem, and in particular the fact tina Jacobian of the inverse transformation (from
y to z) is given by the inverse of the Jacobidrof the transformatiory = h(x):

Jy) = (Vye) "

In particular,

~ ~

Vo f(x) = J(y) Vyf(y)- (3.69)
For the first term, and using the notation (3.64), we have

Voh(X,) (b(X,) dt + o (X,) dWy) = 3(v;) (B(Ye) dt + &(¥i) AWy ).

Now we need to show that the second term on the righthand $i&6Y) is equal to the Stratonovich
correctionb®(y) in (3.65) that is given by (3.66). This follows by applyingetiechain rule (3.69) to the
righthand sider of (3.68) and using (3.34). Equivalentbing (3.67):

Yy = Ju(Yy)(0i(Ys)dt +5y(Y0) W)
1~ N ~
+§ijapk(Y;)6j (Uzk(th)Jéz(Xt)) dt

= Ju(Yy) (bi(Y) dt + Gij(V3) 0 dW).
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3.5 Examples of Stochastic Differential Equations

Brownian Motion

We consider a stochastic differential equation with nota@nifd constant diffusion coefficient:
dXt =V20 th, X(] =, (370)

where the initial condition can be either deterministicamdom, independent of the Brownian motidn.
The solution is:

Xt =+ \/20'Wt.

This is just Brownian motion starting atwith diffusion coefficients.

Ornstein-Uhlenbeck Process

Adding a restoring force to (3.70) we obtain the SDE for thesd¥in-Uhlenbeck process that we have
already encountered:
dXt = —(XXt dt + V20 th, X(O) =x, (371)

where, as in the previous example, the initial condition loareither deterministic or random, independent
of the Brownian motioriV;. We solve this equation using the variation of constantsda:

t
X, =e %z +20 / e =8 qw,. (3.72)
0

We can use Itd’s formula to obtain equations for the momehtse OU proces$.The generator is:

L =— i_i_ d_2
= owvdx O’de.

We apply Ité’s formula to the functioffi(z) = «™ to obtain:

d
dX' = LXPdt+ \/QO'%X? AW
= —anX]dt+on(n — )X 2dt +nV20 X dW.

Consequently:
t t
XP =" +/ (—anX} +on(n —1)X;"7%) dt + m/za/ Xr—taw,.
0 0

By taking the expectation in the above equation and usinfatig¢hat the stochastic integral is a martingale,
in particular (3.19), we obtain an equation for the momeig¢) = EX}* of the OU process fon > 2:

M, (t) = M,(0) +/0 (—anM,(s) + on(n — 1) M, _2(s)) ds,

“In Section 4.2 we will redo this calculation using the FokRéanck equation.
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where we have considered random initial conditions distedd a according to a distributiom (x) with
finite moments.
A variant of the the SDE (3.71) is thmean reverting Ornstein-Uhlenbeck process

dXy = (p— aXy) dt + V20 dW;,  X(0) = a. (3.73)

We can use the variation of constants formula to solve thig;3ee exercise 7.

Geometric Brownian motion

(See also Section 4.2) Consider the following scalar lir8RE with multiplicative noise
dXt == MXt dt + O'Xt th, XO =, (374)

where we use the Itd interpretation of the stochastic diffdal. The solution to this equation is known as
the geometric Brownian motionWe can think of it as a very simple model of population dyrnzsrin a
fluctuating environment: We can obtain (3.74) from the exgmial growth (or decay) model

X,

B X (3.75)

We assume that there are fluctuations (or uncertainty) igtbeth rateu(¢). Modelling the uncertainty as
Gaussian white noise we can write

u(t) = p+ o&(t), (3.76)

with £(¢) denoting the white noise proceé%. Substituting now (3.76) into (3.75) we obtain the SDE for
the geometric Brownian motion. The multiplicative nois€3ti74) is due to our lack of complete knowledge
of the growth parameter(¢). This is a general feature in the modelling of physical, dgidal systems using
SDEs: multiplicative noise is quite often associated witictiiations or uncertainty in the parameters of the
model.
The generator of the geometric Brownian motion is
L= ,uaci + @d—z
dx 2 da?

The solution of (3.74) is
o2
X(t) = xexp <(,u - 7)t + JW(t)> . (3.77)

To derive this formula, we apply Itd’s formula to the furwtif (x) = log(x):

d
dlog(X;) = £<log(Xt)> dt + o2~ log(X;) W,

1 o2X? 1
— X, — Ll — dt d
(i, + 55 (-xp) ) v o
0,2
= <,u—7> dt + o dWy.
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Consequently:
Xt 0'2
log <fo> = <,u - 7) t+oW(t),
from which (3.77) follows.

Notice that if we interpret the stochastic differential ;144) in the Stratonovich sense, then the solution
is no longer given by (3.77). To see this, first note that fr@m28§) it follows that the Stratonovich SDE

dXt = ,U,Xt dt + O'Xt e} th, X(] =, (378)

is equivalent to the 1td SDE
1
dXt = <,U + 50’2> Xt dt + O'Xt th, XO =2x. (379)

Consequently, from (3.77) and replacingvith u + %02 we conclude that the solution of (3.78) is
X(t) = zxexp(ut + cW(t)). (3.80)

Comparing (3.77) with (3.80) we immediately see that tbetid Stratonovich interpretations of the stochas-
tic integral lead to SDEs with different properties. For regde, from (3.77) we observe that the noise
in (3.74) can change the qualitative behaviour of the smtutfor . > 0 the solution to the deterministic
equation ¢ = 0) increases exponentially as— +oco, whereas for the solution of the stochastic equation, it
can be shown that it convergesaevith probability one, provided that — "2—2) < 0.

We now present a list of stochastic differential equatidvag appear in applications.

e The Cox-Ingersoll-Ross equation:
dXt == Oé(b - Xt) dt + g/ Xt th, (381)

whereq, b, o are positive constants.

The stochastic Verhulst equation (population dynamics):

dX; = A\X; — X2) dt + o X; dW;. (3.82)

Coupled Lotka-Volterra stochastic equations:

d
dXi(t) = Xi(t) | ai + > bi X;(t) | dt + 0 X;(t) dWi(t). (3.83)
j=1

Protein kinetics:

dXt = ((X — Xt + )\Xt(l — Xt)) dt =+ O'Xt(l — Xt) ¢} th (384)

Dynamics of a tracer particle (turbulent diffusion):

dX; = u(Xy,t)dt + o dWy, V-u(z,t) =0. (3.85)
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e Josephson junction (pendulum with friction and noise):
¢y = —sin(dy) — vd + /278~ L WL (3.86)
e Noisy Duffing oscillator (stochastic resonance)

X, = -BX, — aXf’ — fth + Acos(wt) + o W;. (3.87)

e The stochastic heat equation that we can write formally as
Opu = 0*u + O, W (z, 1), (3.88)

whereW (x,t) denotes an infinite dimensional Brownian motion. We can iceng3.88) on[0, 1]
with Dirichlet boundary conditions. We can repres#ntz, t) as a Fourier series:

+o00
Wz, t) =Y en(z)Wi(t), (3.89)
k=1

whereWy,(t), k = 1,--- + oo are one dimensional independent Brownian motions {andx)}; >
is the standard orthonormal basis (0, 1) with Dirichlet boundary conditions, i.e.e(z) =
sin(2rkz), k=1, 4 oo.

3.6 Lamperti’'s Transformation and Girsanov’s Theorem

Stochastic differential equations with a nontrivial daftd multiplicative noise are hard to analyze, in par-
ticular in dimensions higher than one. In this section wes@nt two techniques that enable us to map
equations with multiplicative noise to equations with digdi noise, and to map equations with a honcon-
stant drift to equations with no drift and multiplicativeise. The first technique, Lamperti's transformation
works mostly in one dimension, whereas the second technfgiteanov’s theorem is applicable in arbi-
trary, even infinite, dimensions.

Lamperti’s transformation

For stochastic differential equations in one dimensios fiassible to map multiplicative noise to additive
noise through a generalisation of the method that we usedlar ¢o obtain the solution of the equation for
geometric Brownian motion. Consider a one dimensionaSEE with multiplicative noise

We ask whether there exists a transformatios h(z) that maps (3.90) into an SDE with additive noise.
We apply Ité’s formula to obtain

dZt = ﬁh(Xt) dt + h,(Xt)O'(Xt) th,
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whereL denotes the generator af;. In order to obtain an SDE with unit diffusion coefficient weed to
impose the condition

b (z)o(z) =1,

from which we deduce that

o1

h(z) :/ ——dz, (3.91)

2o ()

wherez is arbitrary. We have that
_b(x) 1,
Lh(x) = e 57 (x).

Consequently, the transformed SDE has the form

dY; = by (V) dt + dW, (3.92)
with »
by (0) = S (o = 50 )

This is called the_amperti transformation As an application of this transformation, consider the Cox
Ingersoll-Ross equation (3.81)

dXt:(M—OéXt)dt—i-O'\/Xtth, X0:$>O

From (3.91) we deduce that

The generator of this process is

We have that
Lh(z) = <B — E) a2 212,

The CIR equation becomes, fiif = %x/Xt,

dy, = (ﬁ—5> ! dt—%\/?tdwdwt

(o2 4 VXt

o 1\ 1 «

e e ¥ .
[(UQ 2)1@ 2t]dt+th

Whenpu = 2—2 the equation above becomes the Ornstein-Uhlenbeck préaress

Apart from being a useful tool for obtaining solutions to atienensional SDEs with multiplicative
noise, it is also often used in statistical inference for SD&ee Sectioi? and the discussion in Sectior.
Such a transformation does not exist for arbitrary SDEsghds dimensions. In particular, it is not possible,
in general, to transform a multidimensional It6 SDE withltiplicative noise to an SDE with additive noise;
see Exercise 8.
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Girsanov’s theorem

Conversely, itis also sometimes possible to remove thetdrih from an SDE and obtain an equation where
only (multiplicative) noise is present. Consider first to#dwing one dimensional SDE:

dX, = b(X;) dt + dW. (3.93)

We introduce the following functional oX;

1 t t
M; = exp (—5/ bQ(Xs)der/ b(Xs)dW5> . (3.94)
0 0
We can writeM; = e~ ¥* whereY; is the solution to the SDE
1
M, =e Y, dy,= §b2(Xt) dt 4+ b(X;) dW;, Yy = 0. (3.95)
We can now apply Ité’s formula to obtain the equation
dM; = —Mb(Xy) dWr. (3.96)

Notice that this is a stochastic differential equation withdrift.

In fact, under appropriate conditions on the dbift), it is possible to show that the law of the process
X, denoted byP, which is a probability measure over the space of contindfaastions, is absolutely
continuous with respect to the Wiener measBig, the law of the Brownian motio;. The Radon-
Nikodymderivative between these two measures is the inverse ofdbkastic process/; given in (3.95):

dP 1t t
——(Xi) =exp (5 [ b (Xs)ds+ [ b(Xs)dWs ). (3.97)
This is a form ofGirsanov’s theorem Using now equation (3.93) we can rewrite (3.97) as
dP t 1 t
—(X;) = exp / b(X,)dX, — —/ Ib(X,)|>ds ) . (3.98)
dPw 0 2 0

The Girsanov transformation (3.96) or (3.98) enables ustmipare” the proces; with the Brownian
motion ;. This is a very useful result when the drift functiég) in (3.93) is known up to parameters that
we want to estimate from observations. In this context, taddR-Nikodym derivative in (3.98) becomes
thelikelihood function. We will study the problem of maximum likelihood parametstimation for SDEs
in Section??.

3.7 Linear Stochastic Differential Equations

In this section we study linear SDEs in arbitrary finite dimiens. LetA, Q € R**“ be positive definite
and positive semidefinite matrices, respectively andiif¢t) be a standard Brownian motionRf. We will
consider the SDE

dX(t) = —AX(t)dt + o dW (1), (3.99)

*We can also consider the case where R*™ with n # m, i.e. when the SDE is driven by an dimensional Brownian
motion.
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or, componentwise,

d

d
dXi(t) = =Y Ay X;(t)+ Y i dW;(t), i=1,...d,
j=1 j=1

The initial conditionsX (0) = x can be taken to be either deterministic or random. The gtrevhthe
Markov processX () is

1
£:—Am-V+§E:D2,

whereY. = oo”. The corresponding Fokker-Planck equation is

1
% =V . (Azp) + §V . (EVp). (3.100)
The solution of (3.99) is
t
X(t)=e Az + / e A=) g dW (s). (3.101)
0

We use the fact that the stochastic integral is a martingataltulate the expectation of the procésg):
u(t) :==EX(t) = e MEa.

To simplify the formulas below we will sgi(¢) = 0. This is with no loss of generality, since we can define
the new proces¥ (¢t) = X (t) — u(t) that is mean zero.
We think of X (t) € R%*! as a column vector. Consequently,”(t) € R'*™ is a row vector. The
autocorrelation matrix is
R(t,s) =E(Xt)XT(s) = E(X(t) ® X,).

Componentwise:
Rij(t,s) = E(Xi(t)X;(s)).

We will denote the covariance matrix of the initial conditsor by Ry, Exz” =: R.

Proposition 3.10. The autocorrelation matrix of the proceds(¢) is given by
N min(t,s) A AT AT
R(t,s) =e [ Ry +/ e PYe™ Pdp | e ™ %, (3.102)
0

Furthermore, the variance at timeX(¢) := R(t, t) satisfies the differential equation
dx(t)

— = —AS) - »(t)AT + 3. (3.103)
The steady state varianée,, is the solution of the equation
A¥ o + X AT = 3. (3.104)
The solution to this equation is
Do = /0 T AT dp (3.105)

The invariant distribution 0f3.99)is Gaussian with meafand varianceX ..
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Proof. We will use the notatiors; = e~4* and B; = QW (t). The solution (3.101) can be written in the
form

t
Xt = St.%' +/ St—s dBS
0

Consequently, and using the properties of the stochaségriai:
t S T
R(t,s) = E((Sx)(Ssz)” +E// S,_¢dB;)(Ss—,dB
(t,9) (S S)) +E || (Seedni)(5,-paB,)

t s
— SE(xaT)S, + / / S1-QE(aweaw[ ) QT ST,
0 JO

t rs
SRS, + [ [ 56~ p)Q"ST, dedp
0 J0
min(t,s)
= SiRoSs + / Si-pESL ,dp
0

min(t,s) - -
— At R0+/ eAPyed Pdp e~ A4S,
0

From (3.102) it follows that, wittt, := R(¢,t),

t
5, = e At (Ro + / eAryed’s dp> e A, (3.106)
0
Upon differentiating this equation we obtain the equationtiie variance:
% =AY, -5, AT + %,

with 3y = Ry. We now set the left hand side of the above equatidhttobtain the equation for the steady
state varianc& .
AV oo + B AT = 3.

O

Equation (3.104) is an example olLgapunov equationWhenX is strictly positive definite then it is
possible to show that (3.105) is a well defined unique salutib(3.104); see Exercise 4. The situation
becomes more complicated whEris positive semidefinite. See the discussion in Section 3.8.

We can use Proposition 3.10 us to solve the Fokker-Planctiequ(3.100) with initial conditions

p(x,t|x0,0) = d(x — xq). (3.107)

The solution of (3.99) withX (0) = z, deterministic is a Gaussian process with ma&) = ¢~ and
varianceX; given by (3.106). Consequently, the solution of the Fokkiamck equation with initial condi-
tions (3.107):

1 <_1
)2 /dez) T\ 2

This result can also be obtained by using the Fourier tramsf&ee Exercise 6.

p(z,tlxg,0) = (z — eiAt:UO)T »(t) (z— eAt:UO)> . (3.108)
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3.8 Discussion and Bibliography

Stochastic differential equations and stochastic catcahe treated in many textbooks. See, for example [5,
25, 26, 42, 66, 75, 20] as well as [46, 83, 90, 91]. The readstrisgly encouraged to study carefully
the proofs of the construction of the Itd integral, It&srula and of the basic existence and unigueness
theorem for stochastic differential equations from thevelr@ferences.

In this book, we consider stochastic equations in finite disiens. There is also a very well developed
theory of stochastic partial differential equations; s&8] Proposition 3.2 is taken from [75, Exer. 3.10].
Theorem 3.6 is taken from [75] where the proof be found; see B9, Ch. 21] and [79, Thm. 3.1.1].
The assumption that the drift and diffusion coefficient islgllly Lipschitz can be weakened when a priori
bounds on the solution can be found. This is the case, for pearwhen alLyapunov functiorcan be
constructed. See, e.g. [66]. Several examples of stochemtiations that can be solved analytically can be
found in [27].

The derivation of Itd’s formula is similar to the derivati@f the backward Kolmogorov equation that
was presented in Chapter 2, in particular Theorem 2.7. Thefpran be found in all of the books on
stochastic differential equations mentioned above. ThaiRan-Kac formula, which his a generalization
of Itd’s formula, was first derived in the context of quantamechanics, providing a path integral solution to
the Schrodinger equation. Path integrals and functiontafjration are studied in detail in [94, 31].

The concept of the solution used in 3.6 is that aftng solution It is also possible to define weak
solutions of SDEs, in which case the Brownian motion thatriging the SDE (3.35) is not specified a
priori. Roughly speaking, the concept of a weak solutionafgtochastic equation is related to the solution
of the corresponding Fokker-Planck equation, i.e. the lath® processX;. One could argue that in some
applications such as physics and chemistry the concept afek \wolution is more natural than that of a
strong solution, since in these applications one is usuatlrested in probability distribution functions
rather than the actual paths of a diffusion process.

It is not very difficult to construct examples of stochastiffedential equations that have weak but not
strong solutions. A standard example is that of Taaaka equation

dXt == SgD(Xt) th, (3109)

wheresgn denotes the sign function. One can show that this equatismbatrong solution (which is not
a big surprise, since the assumptions of Theorem 3.6 aratistisd), but that it does have a unique weak
solution. See [75] for the details. The fact that (3.109)olvable in the weak sense follows from the fact
that the Fokker-Planck equation for (3.109) is simply thatlegjuation, i.e. the Fokker-Planck equation for
Brownian motion. Hence, any Brownian motion is a weak sotutf the Tanaka equation.

Itd’s formula also holds for a particular class of randomes, the Markov ostopping timesRoughly
speaking, a stopping time is a random timér which we can decide whether it has already occurred or
not based on the information that is available to us, i.e.stilation of our stochastic differential equation
up to the present tim@.Let X, be a diffusion process with generatfr starting atz. We will denote the

®More precisely: Le{ F;} be a filtration. A functionr Q +— [0, +o0] is a called a (strict) stopping time with respect{ts; }
provided that
{w;T(w) <t} e F forallt>0.
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expectation with respect to the law of this processi#y Let furthermoref € COQ(]Rd) and letr be a
stopping time withET < +o0. Dynkin’s formulareads

E*f(X,) = f(x) + E® [/OT LF(X,) ds}. (3.110)

The derivation of this formula and generalizations can lbmdbin [75, Ch. 7, 8]. Dynkin’s formula and the
Feynman-Kac formula are very useful for deriving partidfetential equations for interesting functionals
of the diffusion process\;. Details, in particular for diffusion processes in one disien, can be found
in [47].

It is not possible, in general, to transform a stochastifedihtial equation with multiplicative noise to
one with additive noise in dimensions higher than one. Ieotords, the Lamperti transformation exists,
unless additional assumptions on the diffusion matrix emgased, only in one dimension. Extensions of
this transformation to higher dimensions are discussed]irSee also Exercise 8.

Girsanov’s theorem is one of the fundamental results inhststic analysis and is presented in all the
standard textbooks, e.g. [46, 83, 43]. A very detailed disian of Girsanov’s theorem and of its connection
with the construction of the likelihood function for diffies processes can be found in [56, Ch. 7]. A form
of Girsanov’s theorem that is very useful in statisticakmeince for diffusion processes is the following [51,
Sec. 1.1.4], [41, Sec. 1.12]: consider the two equations

dX; = bi(Xy)dt +o(Xe)dWs, Xo=2', te€l0,T), (3.111a)
dX; = bo(Xy)dt + o(Xy)dW,, Xo =22, t€0,T], (3.111b)

whereo(z) > 0. We assume that we have existence and uniqueness of striutigrse for both SDEs.
Assume thatr! andz? are random variables with densiti¢s(z) and fo(x) with respect to the Lebesgue
measure which have the same support, or nonrandom and edhalgtame constant. L& and P, denote
the laws of these two SDEs. Then these two measures are leqifivend their Radon-Nikodym derivative

is
dPs f2(Xo) (/T ba(X¢) — b1(Xy) 1 /T b3(X¢) — b3 (X4) >
— = ex dX; — = dt ). 3.112
dPy f1(Xo) 0 o?(Xt) "2 o?(Xi) ( )
Linear stochastic differential equations are studied ist@xtbooks on stochastic differential equations and
stochastic processes, see, e.g. [5, Ch. 8], [86, Ch. 6].

3.9 Exercises

1. Calculate all moments of the geometric Brownian motiai@4gfor the 1td and Stratonovich interpreta-
tions of the noise in the equation.

2. Prove rigorously (3.24) by keeping careful track of theeterms.

3. Use Itd’s formula to obtain the Feynman-Kac formula 63.5Hint: DefineY; = f(X;) and Z; =
exp <— fot q(Xs) ds). Calculate ther(Y; Z;) and use this to calculai&(Y; Z;)).

"Two probability measure®, P, are equivalent on a-field G if P1(A) =0 = P2(A) = 0forall A € G. Inthis case%

dP1 Ay
and gL exist.
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. Consider Equation (3.104) and assume that all the eigars/af the matrix4 have positive real parts.
Assume furthermore that is symmetric and strictly positive definite. Show that thexésts a unique
positive solution to the Lyapunov equation (3.104).

. Obtain (3.103) using Itd’s formula.

. Solve the Fokker-Planck equation (3.100) with initiahditions (3.107) (hint: take the Fourier transform
and use the fact that the Fourier transform of a Gaussiartifumis Gaussian). Assume that the matrices
A and3 commute. Calculate the stationary autocorrelation maisirg the formula

BOTX) = [ [ abape.tro, 0 o) deday
and Gaussian integration.
. Consider the mean reverting Ornstein-Uhlenbeck process
dX; = (p— aXy) dt +V2XdW;,  X(0) = a. (3.113)

Obtain a solution to this equation. Write down the generatat the Fokker-Planck equation. Obtain the
transition probability density, the stationary distrilout and formulas for the moments of this process.

. Consider the two-dimensional Itd stochastic equation

whereW, is a standard two-dimensional Brownian motion arid) € R?*2 a uniformly positive definite
matrix. Investigate whether a generalisation of the Latpemsformation (3.91) to two dimensions
exist, i.e. whether there exists a transformation that nfadsl4) to an SDE with additive noise. In
particular, find conditions om(z) so that such a transformation exists. What is the analogukisf
transformation at the level of the backward and forward Kajorov equations? Is such a transformation
still possible when we consider a diffusion process in a bedndomain with reflecting, absorbing or
periodic boundary conditions?

. (See [38, Ch. 6])

(&) Consider the Itd equation

Define i) 1d L4 iz
T g _
0 =15 3 and 06 =g (s g @)
Assume that
0(x) = const= 6. (3.116)

Define the diffusion procesg
Y; = exp(0B(Xy)), B(z)= / L dz.

75



Show that when (3.116) is satisfied, is the solution of the linear SDE
dY; = (a+ BY;) dt + (y + o¥y) dW;. (3.117)

(b) Apply this transformation to obtain the solution andtifaasition probability density of the Stratonovich
eqguation

1
aXe = =5 tanh(2v/2X;) dt + %sech(2\/§Xt) o dW,. (3.118)

(c) Do the same for the Verhulst SDE

dX; = (\X; — X2) dt + o X; dW;. (3.119)
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Chapter 4

The Fokker-Planck Equation

In Chapter 2 we derived the backward and forward (FokkendkpKolmogorov equations.The Fokker-
Planck equation enables us to calculate the transitionahitity density, which we can use in order to
calculate the expectation value of observables of a ddfugirocess. In this chapter we study various
properties of this equation such as existence and unigserie®lutions, long time asymptotics, boundary
conditions and spectral properties of the Fokker-Plandkratpr. We also study in some detail various
examples of diffusion processes and of the associated Féldtack equation. We will restrict attention to
time-homogeneous diffusion processes, for which the dnidt diffusion coefficients do not depend on time.

In Section 4.1 we study various basic properties of the FeRkanck equation, including existence and
uniqueness of solutions and boundary conditions. In Seei@ we present some examples of diffusion
processes and use the corresponding Fokker-Planck egiratoder to calculate statistical quantities such
as moments. In Section 4.3 we study diffusion processeséndimension. In Section 4.4 we study the
Ornstein-Uhlenbeck process and we study the spectral giirepef the corresponding Fokker-Planck oper-
ator. In Section 4.5 we study stochastic processes whasésdgiven by the gradient of a scalar function,
the so-called Smoluchowski equation . In Section 4.6 weysfardperties of the Fokker-Planck equation
corresponding to reversible diffusions. In Section 4.7 wleesthe Fokker-Planck equation for a reversible
diffusion using eigenfunction expansions. In Section 4e8imtroduce very briefly Markov Chain Monte
Carlo techniques. In Section 4.9 we study the connectionderi the Fokker-Planck operator, the generator
of a diffusion process and the Schrodinger operator. Bsion and bibliographical remarks are included in
Section 4.10. Exercises can be found in Section 4.11.

4.1 Basic properties of the Fokker-Planck equation

We consider a time-homogeneous diffusion proc&s®n R¢ with drift vector b(z) and diffusion matrix
3 (x). We assume that the initial conditioty, is a random variable with probability density functipg(z).
The transition probability density(z, t), if it exists and is a0%!(R¢ x R*) function, is the solution of the

In this chapter we will call the equation Fokker-Planck, erhis more customary in the physics literature. rather fodwa
Kolmogorov, which is more customary in the mathematicsditare.
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initial value problem for the Fokker-Planck (backward Kolgorov) equation that we derived in Chapter 2

B~ v (bt 5V (26) (4.1a)
d d 2
= - %(bi(m)p) + % > ax‘?am(&j(x)p),
j=1""1 ig=1 """
p(z,0) = po(x) (4.1b)

The Fokker-Planck equation (4.1a) can be written in eqeivdiorms that are often useful. First, we can
rewrite it in the form

0 ~ 1
B_Itj =V - (b(x)p) + 3V (=(z)Vp). (4.2)
with )
b(z) = —b(z) + §V - 3(x). (4.3)
We can also write the Fokker-Planck equation in non-divecgeform:
op 1 5 =
5 = 52(3@) : Dp+b(zx) - Vp + c(x)p, (4.4)
where 1 )
b(z) = —b(z) + §V -3(z), c(zr)=-V-b(z)+ §V (VX)) (2). (4.5)

By definition (see equation (2.62)), the diffusion matrixalsvays symmetric and nonnegative. We will
assume that it is uniformly positive definite: there existdastanty > 0 such that

(€, 2(x)€) > all¢|?, VEeRY (4.6)

uniformly in z € R% We will refer to this as the uniform ellipticity assumptionThis assumption is
sufficient to guarantee the existence of the transitiongidity density; see the discussion in Sectih
Furthermore, we will assume that the coefficients in (4.4)sanooth and that they satisfy the growth
conditions R
IS(@)[| < M, [b@)]| < M1+ |l=]), lle()| < ML+ [2]?). (4.7)

Definition 4.1. We will call a solution to the initial value problem for the ler-Planck equatioif4.4) a
classical solution if:

i. p(z,t) € C*HRE,RY),
ii. VT > 0there exists & > 0 such that

allz(|?

Ip(t, ) || oo (0,7) < ce

i, limy o p(t,z) = po(x).

We can prove that, under the regularity and uniform elliptiassumptions, the Fokker-Planck equation
has a unique smooth solution. Furthermore, we can obtamwigie bounds on the solution.
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Theorem 4.2. Assume that conditior(d.6)and (4.7) are satisfied, and assume tha§ ()| < ce®l=I”. Then
there exists a unique classical solution to the Cauchy gmlfor the Fokker-Planck equation. Furthermore,
there exist positive constanis, § so that

_ 1
Pl lpel, [V, [1D%p]) < K42/ exp (‘mml?) - (4.8)

From estimates (4.8) it follows that all moments of a diffusprocess whose diffusion matrix satisfies
the uniform ellipticity assumption (4.6) exist. In partiay we can multiply the Fokker-Planck equation by
monomialsz™, integrate oveiR¢ and then integrate by parts. It also follows from the maxinprinciple
for parabolic PDEs that the solution of the Fokker-Planciatipn is nonnegative for all times, when the
initial condition py(x) is nonnegative. Sincey(z) is the probability density function of the random variable
Xp it is nonnegative and normalizefy |1 re) = 1. The solution to the Fokker-Planck equation preserves
this properties—as we would expect, since it is the trasjprobability density.

The Fokker-Planck equation can be written as the familiatinaity equation from continuum mechan-
ics. We define theprobability flux (current}to be the vector

J :=b(x)p — %V (Z(x)p). (4.9)

The Fokker-Planck equation can be written in the form

dp
= .J=0. 4.1
5 TV I=0 (4.10)

Integrating the Fokker-Planck equation ot and using the divergence theorem on the right hand side of

the equation, together with (4.8), we obtain

= ) dz = 0.
7 de(w, ) dx

Consequently:

/Rd p(z,t)dx = /]Rd po(z)dr = 1. (4.12)

Hence, the total probability is conserved, as expected.
The stationary Fokker-Planck equation, whose solutioms gs the invariant distributions of the diffu-
sion process;, can be written in the form

V- J(ps) = 0. (4.12)

Consequently, the equilibrium probability flux is a divenge-free vector field.

Boundary conditions for the Fokker-Planck equation

There are many applications where it is necessary to stdfiysidin processes in bounded domains. In such
cases we need to specify the behavior of the diffusion psoorghe boundary of the domain. Equivalently,

we need to specify the behavior of the transition probabdinsity on the boundary. Diffusion processes
in bounded domains lead to initial boundary value probleongtfe corresponding Fokker-Planck equation.
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To understand the type of boundary conditions that we camsmpn the Fokker-Planck equation, let
us consider the example of a random walk on the donfi@jn, ... N'}.2 When the random walker reaches
either the left or the right boundary we can consider thevalhg cases:

i. Xo=0orXy =0, which means that the particle gets absorbed at the boundary
ii. Xg=X7o0rXy= Xy_1,which means that the patrticle is reflected at the boundary;

iii. Xo = Xx, which means that the particle is moving on a circle (i.e.,identify the left and right
boundaries).

These three different boundary behaviors for the randork e@trespond to absorbing, reflecting or periodic
boundary conditions.

Consider the Fokker-Planck equation posedlinc R? where( is a bounded domain with smooth
boundary. Letl denote the probability current and ketbe the unit outward pointing normal vector to the
surface. The above boundary conditions become:

i. The transition probability density vanishes on an abisgrboundary:

p(z,t) =0, on Q.

ii. There is no net flow of probability on a reflecting boundary

n-J(z,t) =0, on Q.

iii. Consider the case whefe = [0, L]? and assume that the transition probability function isqmid in
all directions with period.. We can then consider the Fokker-Planck equatidf,in|? with periodic
boundary conditions.

Using the terminology of the theory of partial differentegjuations, absorbing boundary conditions corre-
spond to Dirichlet boundary conditions and reflecting bamcconditions correspond to Robin boundary
conditions. We can, of course, consider mixed boundary itiond where part of the domain is absorbing
and part of it is reflecting.

Consider now a diffusion process in one dimension on thevaté), L]. The boundary conditions are

p(0,t) = p(L,t) =0 absorbing
J(0,t) = J(L,t) =0 reflecting

p(0,t) = p(L,t) periodic

where the probability current is defined in (4.9). An examplemixed boundary conditions would be
absorbing boundary conditions at the left end and refledimgndary conditions at the right end:

p(0,t) =0, J(L,t)=0.

20f course, the random walk is not a diffusion process. Howaswe have already seen the Brownian motion can be defined
as the limit of an appropriately rescaled random walk. A Eingonstruction exists for more general diffusion proesss
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4.2 Examples of Diffusion Processes and their Fokker-Plakd=quation

There are several examples of diffusion processes in onerdiion for which the corresponding Fokker-
Planck equation can be solved analytically. We present so@amples in this section. In the next section
we study diffusion processes in one dimension using eigetifon expansions.

Brownian motion

First we consider Brownian motion iR. We setb(z,t) = 0, X(z,t) = 2D > 0. The Fokker-Planck
equation for Brownian motion is the heat equation. We caleuthe transition probability density for a
Brownian particle that is at( at times. The Fokker-Planck equation for the transition probapiliensity
p(z, tlxg, s) is:

Op %p
9 DWv p(x, s|lvo, s) = 6(x — o). (4.13)
The solution to this equation is the Green’s function (fundatal solution) of the heat equation:
1 (x — x0)? >
oty s) = ——exp [ ——— ). 4.14
platly.s) = =) ( 1D(t — 5) (4.14)

Quite often we can obtain information on the properties dffaslon process, for example, we can calculate

moments, without having to solve the Fokker-Planck equadiig by only using the structure of the equation.

For example, using the Fokker-Planck equation (4.13) wesbaw that the mean squared displacement of
Brownian motion grows linearly in time. Assume that the Bniaw particle was at initially. We calculate,

by performing two integrations by parts (which can be justifin view of (4.14))

d d
thWt = o ac 2p(z, t|20, 0) da
p(,t|z0,0)
2 )
= D/ 8.%'2 dx

= D/p(:ﬂ,t|x0,0)daz:2D,
R

From this calculation we conclude that the one dimensiomaiWRian motioni¥; with diffusion coefficient
D satisfies

EW? = 2Dt.

Assume now that the initial conditioi, of the Brownian particle is a random variable with distribat
po(x). To calculate the transition probability density of the Brian particle we need to solve the Fokker-
Planck equation with initial conditiopy(x). In other words, we need to take the average of the probabilit
density function

p(x, tlxg) = p(z, t|xo,0)

over all initial realizations of the Brownian particle. Tiselution of the Fokker-Planck equation with
p(x,0) = po(x) is
p(x,t) = /P(ﬂﬁ,t’wo)Po(ﬂco)dwo- (4.15)
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Brownian motion with absorbing boundary conditions

We can also consider Brownian motion in a bounded domairn &ither absorbing, reflecting or periodic
boundary conditions. Consider the Fokker-Planck equdtoBrownian motion with diffusion coefficient
D (4.13) on|0, 1] with absorbing boundary conditions:

op 10?
5 =308 POtlr0) = p(Ltlao) =0, p(a,Olag) = 3(x — o), (4.16)

In view of the Dirichlet boundary conditions we look for astbn to this equation in a sine Fourier series:
o
p(x,t) = an(t) sin(nmx). (4.17)
k=1

With our choice (4.16) the boundary conditions are autora#yi satisfied. The Fourier coefficients of the
initial conditiond(z — x) are

1
pn(0) = 2/0 d(z — zg) sin(nmx) dz = 2sin(nmxy).

We substitute the expansion (4.17) into (4.16) and use tthegonality properties of the Fourier basis to
obtain the equations

pn=—n’Dr’p, n=12,...
The solution of this equation is
pn(t) — pn(0)67n27r2Dt.
Consequently, the transition probability density for thenian motion orj0, 1] with absorbing boundary
conditions is

[e.e]
p(z, t|xg,0) = 2 Z e’ Dt sin(nmxg) sin(nmx).
n=1
Notice that
Jim p(z, t|zo) = 0.

This is not surprising, since all Brownian particles wileeually get absorbed at the boundary.

Brownian Motion with Reflecting Boundary Condition

Consider now Brownian motion with diffusion coefficiebton the interval0, 1] with reflecting boundary
conditions. To calculate the transition probability dénsie solve the Fokker-Planck equation which in this
case is the heat equation 1] with Neumann boundary conditions:

op 0*p
o~ Paz

The boundary conditions are satisfied by functions of thenfars(nrz). We look for a solution in the form
of a cosine Fourier series

0:p(0, t|xo) = Oup(1,t|zo) =0, p(x,0) = d(x — o).

p(z,t) = %ao + Z ay(t) cos(nmzx).

n=1
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From the initial conditions we obtain
1
an(0) = 2/ cos(nmz)d(x — xg) dx = 2 cos(nmxg).
0

We substitute the expansion into the PDE and use the orthmadity of the Fourier basis to obtain the
equations for the Fourier coefficients:
an = —n’n*Da,,

from which we deduce that
(O)B—nQWQDt'

an(t) = ap
Consequently
o
p(z,tlrg) =1+ 2 Z cos(nmxp) cos(nwx)e_”%QDt.
n=1
Brownian motion on [0,1] with reflecting boundary conditiois an ergodic Markov process. To see this, let
us consider the stationary Fokker-Planck equation

&ps
= = 1) =0.
55 = 0,0:p5(0) = 0ops(1) = 0
The unique normalized solution to this boundary value mobisp,(z) = 1. Indeed, we multiply the
equation byp,, integrate by parts and use the boundary conditions torobtai

/

from which it follows thatps(x) = 1. Alternatively, by taking the limit op(z, t|z¢) ast — oo we obtain
the invariant distribution:

2

dps
p dx =0,

dzx

tll)rgop(x,t\xo) =1

Now we can calculate the stationary autocorrelation fancti

1 p1
E(WW,) = //xwop(x,t]mo,O)ps(xo)dwdxo
o Jo

1 1 o0
= / / xT() (1 +2 Z cos(nmxg) cos(nwx)e”2”2Dt> dxdxg
0 Jo n=1

1 8 = 1 ( )2 2
_ = 2 —(2n+1)*m=Dt
- 4+7T4;)(2n+1)4e '
The Ornstein—Uhlenbeck Process
We set nowb(z,t) = —axz with a > 0 andX(z,t) = 2D > 0 for the drift and diffusion coefficients,
respectively. The Fokker-Planck equation for the tramsiprobability density(z, t|xq) is
dp d(zp) - p
£ = D= 4.1
ot R + 0x?’ (4.183)
p(z,0|z9) = 0z — xp). (4.18b)
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This equation is posed on the real line, and the boundaryitions! are thaip(x, t|xg) decays sufficiently
fast at infinity; see Definition 4.1. The corresponding ststit differential equation is

dX; = —aX,dt + V2D dW,, X, = . (4.19)

In addition to Brownian motion there is a linear force puilithe particle towards the origin. We know that
Brownian motion is not a stationary process, since the magajrows linearly in time. By adding a linear
damping term, it is reasonable to expect that the resultinggss can become stationary. When (4.19) is
used to model the velocity or position of a particle, the pnaerm on the right hand side of the equation
is related to thermal fluctuations. The diffusion coeffitiEhmeasures the strength of thermal fluctuations
and it is associated with the temperature:

D =kgT =: 871, (4.20)

whereT denotes the absolute temperature AgpdBoltzmann’s constant. We will quite often use the notation
5~1 and refer to3 as the inverse temperature. We will also refentim (4.19) as the friction coefficient.
The solution of the stochastic differential equation (3.i&Qiven by (3.72). It follows then that

X~ N <x06_0‘t, g(l — e—2at)> ) (4.21)

See Equation (3.72) and Section 3.7. From this we can imredgliabtain the transition probability density,
the solution of the Fokker-Planck equation

« a(x — zoe~ )2
p(z, tlxg) = \/27TD(1 Ty exp <—W> . (4.22)

We also studied the stationary Ornstein-Uhlenbeck praceSgample (2.2) (forx = D = 1) by using the
fact that it can be defined as a time change of the BrownianomotiVe can also derive it by solving the
Fokker-Planck equation (4.18), by taking the Fourier tfams of (4.18a), solving the resulting first order
PDE using the method of characteristics and then takingniverse Fourier transform. See Exercise 6 in
Chapter 3.

In the limit as the friction coefficientx goes to0, the transition probability (4.22) converges to the
transition probability of Brownian motion. Furthermorey, taking the long time limit in (4.22) we obtain

lim_p(a, o) = /=2 o’
11m T X = — X —_
zHJroop it 2D b 2D )’

irrespective of the initial positiom. This is to be expected, since as we have already seen thé{drns
Uhlenbeck process is an ergodic Markov process with a Gaugsiariant distribution

[ o az?
ps(x) = D exp <—E> . (4.23)

Using now (4.22) and (4.23) we obtain the stationary joitaibility density

pa(z,tlzg) = p(x,tlzo)ps(xo)

a(r? + 23 — 2xxoe°‘t)>

«
2rDVI e 2ot <_ 2D(1 —e7>)
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or, starting at an arbitrary initial time

« a(z? 4+ 22 — 2:6:606_0"’5_5‘
po(x, tlxg, s) = exp | — ( 0 ~Salts] ) . (4.24)
21D/ 1 — e—2alt—s| 2D(1 —e€ )

Now we can calculate the stationary autocorrelation faanctif the Ornstein-Uhlenbeck process

E(X:X;) = //Sﬂu’ﬂom(fﬂaﬂiﬂoas)dﬂ?dﬂﬂo
D

_ e—a|t—s\.
(%

The derivation of this formula requires the calculation cduSsian integrals, similar to the calculations
presented in Section B.5. See Exercise 3 and Section 3.7.

Assume now that the initial conditions of the Ornstein-Ulleck processX; is a random variable
distributed according to a distributign (x). As in the case of a Brownian particle, the probability dgnsi
function is given by the convolution integral

p(z,t) = /P(u’ﬂaﬂu’ﬂo)ﬂo(ﬂﬂo)dﬁﬂoa (4.25)

When X is distributed according to the invariant distributipg(x), given by (4.23), then the Ornstein-
Uhlenbeck process becomes stationary. The solution to dk&ef~Planck equation is nows(z) at all
times and the joint probability density is given by (4.24).

Knowledge of the transition probability density enablestaugalculate all moments of the Ornstein-
Uhlenbeck process:

M, =E(X;)" = / z"p(x,t)de, n=0,1,2,...,
R

In fact, we can calculate the moments by using the FokkardRlaquation, rather than the explicit formula
for the transition probability density. We assume that adhments of the initial distribution exist. We start
with n = 0. We integrate (4.18a) ové@ to obtain:

op _ [ O(zp) Pp _
o1 _O‘/ oy TP a2 ="

after an integration by parts and using the fact fi{at ¢) decays fast at infinity. Consequently:

d
aMg =0 = M(](t) = M()(O) = 1,

/Rp(ac,t) dz = /R,oo(:v) dr = 1.

Let nown = 1. We multiply (4.18a) by, integrate oveR and perform an integration by parts to obtain:

d
My = —al;.
dt 1 Quivly

which simply means that

Consequently:
M1 (t) = e_atMl (0)
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Now we consider the case > 2. We multiply (4.18a) byr™ and integrate by parts, once on the first term
and twice on the second on the right hand side of the equabtast)tain:
d

EMn = —anM, + Dn(n — 1)M,—2, n > 2.

This is a first order linear inhomogeneous differential eéiqua We can solve it using the variation of
constants formula:

t
M, (t) = e ™ M,,(0) + Dn(n — 1) / e MM o (s) ds. (4.26)
0

We can use this formula, together with the formulas for thet fivo moments in order to calculate all higher
order moments in an iterative way. For example s/foe 2 we have

t
My(t) = e 2“My(0)+ 2D / e~ 2= Ny (s) ds
0

D
_ 672atM2(0) + _672at(€2at _ 1)
«

_ Do <M2(0) — 9) .

« «

As expected, all moments of the Ornstein-Uhlenbeck processgerge to their stationary values:

M>* = i/ac”e%lb2 dx
n ’ 27TD R
_ 1.3...(

{ 3... n—l)(g)"ﬂ, neven
0, nodd

In fact, it is clear from (4.26) that the moments conerge tirtbtationary values exponentially fast and
that the convergence is faster the closer we start from #i@sary distribution—see the formula fof,(t).
Later in this chapter we will study the problem of convergete equilibrium for more general classes of
diffusion processes; see Section 4.6

Geometric Brownian Motion

We setb(z) = pz, ¥(z) = 20%z? This is the geometric Brownian motion that we encountered i
Chapters 1 and 3. This diffusion process appears in matimahfihance and in population dynamics. The

generator of this process is
L= ,uﬂc3 + 0——1-28—2
Ox 2 0x2
Notice that this operator is not uniformly elliptic, sindeetdiffusion coefficient vanishes at= 0. The

Fokker-Planck equation is

(4.27)

Op 0 0% [o2z?
% - 5a (px) + 922 < 5 p> . (4.28a)
p(z,0lzg) = d(z — ). (4.28b)
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Since the diffusion coefficient is not uniformly elliptic,i$ not covered by Theorem 4.2. The corresponding
stochastic differential equation is given by Equation 43.As for the Ornstein-Uhlenbeck process, we can
use the Fokker-Planck equation in order to obtain equafmrtse moments of geometric Brownian motion:

d d o?

EMl = unM,, aMn = (un + En(n — 1))Mn7 n > 2.
We can solve these equations to obtain

M (t) = e M;(0)
and
02

M, (t) = eW+=DFIntpr ), n> 2.
We remark that theth moment might diverge as— oo, depending on the values pfando. Consider for
example the second moment. We have

M, (t) = e+ 0), (4.29)

which diverges when? + 24 > 0.

4.3 Diffusion Processes in One Dimension

In this section we study the Fokker-Planck equation fougifin processes in one dimension in a bounded
interval and with reflecting boundary conditions. Ugtdenote a diffusion process in the inter{@lr] with

drift and diffusion coefficient$(x) ando(x), respectively. We will assume thatx) is positive in[¢, r].
The transition probability density(x, t|z¢) is the solution of the following initial boundary value ptem

for the Fokker-Planck equation:

0 0 0 0
P = g (Mo Gprotam)) = =52z, (4309
p($,0|$0) = 5(56_560)7 (43Ob)
Jt) = J(rt)=0. (4.30c)

The reflecting boundary conditions and the assumption opakéivity of the diffusion coefficient ensure
that X; is ergodic. We can calculate the unique invariant prolghbdistribution. The stationary Fokker-
Planck equation reads

Zf = 0, ze(,r), (4.31a)
Jo(0) = Jy(r)=0, (4.31b)

where ) 4
Js(@) = J(ps(x)) = bla)ps(x) - 50(2) 7 (@) (4.32)

denotes the stationary probability flux,(z) being the stationary probability distribution. We use tke r
flecting boundary conditions (4.31) to write the stationBokker-Planck equation in the form

Js(x) =0, xe€(,r). (4.33)
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Thus, the stationary probability flux vanishes. This isaedithedetailed balancecondition and it will be
discussed in Section 4.6. Equation (4.33) gives

1d

b(x)ps(z) — E%(a(x)ps(x)) =0, ze€(lr), (4.34)

together with the normalization condition
,
/ ps(x)de = 1.
¢

The detailed balance condition (4.33) results in the gtatip Fokker-Planck equation becoming a first order
differential equation. The solution to (4.34) can be ol®dinip to one constant, which is determined from
the normalization condition. The solution is

ps(z) = %ﬁexp <2/j%dy>, Z:/; <U(‘l) exp <2/;%dy>> da. (4.35)

Now we solve the time dependent Fokker-Planck equatiorD}4.8Ve first transform the Fokker-Planck
(forward Kolmogorov) equation to the backward Kolmogorauation, since the boundary conditions for
the generatoL of the diffusion process(; are simpler than those for the Fokker-Planck operétor Let

p € D(L*) = {p € C?(¢,r); J(p(¢)) = J(p(r)) = 0}, the domain of definition of the Fokker-Planck
operator with reflecting boundary conditions. We wyite:) = f(z)ps(x) and use the stationary Fokker-
Planck equation and the detailed balance condition (4.®iltalculate

e = g (U@ + 5@ i)

— pLf. (4.36)

Furthermore, . p
J) = J(fp2) =~ 30(@ps(2) L (@),

In particular, in view of the reflecting boundary conditiomsd the fact that both the diffusion coefficient
and the invariant distribution are positive,

af o _df
() == (r) = 0. (4.37)

Consequently, the generat6rof the diffusion proces; is equipped with Neumann boundary conditions,

D(L) = (f € C2(L,m), f'(€) = f'(r) = 0).

Setting nowp(z, t|xg) = f(z,t|zo)ps(z), we obtain the following initial boundary value problem

% b(x)% + %O’(I‘)% =Lf, ze(,r), (4.38a)
f(z,0|zg) = ps_l(x)é(m — Zp), (4.38b)
f',tlzg) = f'(r,tlxo) =0. (4.38c)

We solve this equation using separation of variables (werags the dependence on the initial condition
xO)!

flx,t) = (@)e(t).
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Substituting this into (4.38a) we obtain
C_LY_
1/} 7
where) is a constant and
c(t) = c(0)e™™N, —Lip =1,
Using the superposition principle, we deduce that the solub the backward Kolmogorov equation (4.38)

IS
“+00

f(x’ t) = Z ann(x)eiAntv (439)

n=0
where{\,,, ¥, ;ﬁ% are the eigenvalues and eigenfunctions of the generat& efjuipped with Neumann
boundary conditions:

—Lapp = Ay, %(5) = w;(T) =0. (4-40)
The generator£ (with Neumann boundary conditions) is a selfadjoint opmritthe spacd.?((¢,7); ps(z)),

the space of square integrable functions in the intef&at), weighted by the stationary distribution of the
process. This is a Hilbert space with inner product

1) = [ F@hia)p(a) da
and corresponding northf|| = /(f, f). The selfadjointness af follows from (4.36)3

/L'fhpsdx:/ f[l*(hps)dx:/ fLhpsdx
¢ ¢ ¢

forall f, h € D(L). Furthermore—L is a positive operator: performing an integration by pand asing
the stationary Fokker-Planck equation we obtain

T_ _1 " /20,
[ enied=3 [ 19 opeaa

The generator has discrete spectrum in the Hilbert spdéé(¢, r); ps(x)). In addition, the eigenvalues of
—L are real, nonnegative, witky = 0 corresponding to the invariant distribution, and can beerad,0 =
Ao < A1 < A2 < .... The eigenfunctions of £ form an orthonormal basis ai?((¢, r); ps(z)): a function
f € L?((4,7);ps(x)) can be expanded in a generalized Fourier sgfiesd f,4, with f, = (f,¢,).

The solution to (4.38) is given by (4.39)

+o0o
f(z,tlzo) = Z cne” ey (2),
n=0

where the constants:, }t>% are determined from the initial conditions:

o = [ IOl de = [ 6w - a0)p(e) da
) l
= wn(wO)

%In fact, we only prove that’ is symmetric. An additional argument is needed in order av@rthat it is self-adjoint. See the
comments in Section 4.10.
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Putting everything together we obtain a solution to the titapendent Fokker-Planck equation (4.30):

+o0
p(@, tlwo) = ps(x) D e (@)t (o). (4.41)
n=0

The main challenge in this approach to solving the Fokkanék equation is the calculation of the eigen-
values and eigenfunctions of the generatoXefin L2((¢,7); ps(z)). This can be done either analytically
or, in most cases, numerically.

If the initial condition of the diffusion procesX| is distributed according to a probability distribution
po(x), then the solution of the stationary Fokker-Planck equaito

+00 r
p(z,t) = ps(x) Z cne”‘”twn(x), Cn = /g () po(x) dz. (4.42)
n=0

Notice that from the above formula and the fact that all eighres apart from the first are positive we
conclude thatX;, starting from an arbitrary initial distribution, convegto its invariant distribution ex-
ponentially fast inL?((¢,r); ps(x)). We will consider multidimensional diffusion processes ¥ehich a
similar result can be obtained later in this chapter.

4.4 The Ornstein-Uhlenbeck Process and Hermite Polynomisll

The Ornstein-Uhlenbeck process that we already encouhter8ection 4.2 is one of the few stochastic
processes for which we can calculate explicitly the sofutdd the corresponding stochastic differential
equation, the solution of the Fokker-Planck equation as agethe eigenvalues and eigenfunctions of the
generator of the process. In this section we show that thentigctions of the Ornstein-Uhlenbeck pro-
cess are the Hermite polynomials and study various praseadfi the generator of the Ornstein-Uhlenbeck
process. We will see that it has many of the properties of #reator of a diffusion process in one di-
mension with reflective boundary conditions that we studiieithe previous section. In the next section we
will show that many of the properties of the Ornstein-Uhlecib process (ergodicity, selfadjointness of the
generator, exponentially fast convergence to equilibyriteal, discrete spectrum) are shared by a large class
of diffusion processes, namely reversible diffusions.

We consider a diffusion process Rf' with drift b(x) = —ax, a > 0 andX(z) = 711, wherel
denotes the x d identity matrix. The generator of thkdimensional Ornstein-Uhlenbeck process is

L=—ap-V,+B7'A,, (4.43)

where, as explained in Section 4#denotes the inverse temperature andenotes the friction coefficient.
We have already seen that the Ornstein-Uhlenbeck processagyodic Markov process whose unique
invariant density is the Gaussian

1 _pelr?
ps(p) = me

We can perform the same transformation as in the previoumsegve have that

L*(hps(p)) = ps(p)Lh. (4.44)
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The initial value problem for the Fokker-Planck equation

0
5 =L p(.0) = po()

becomes
Oh

5 = Lhe h(@,0) = p5' (@)pola).

Therefore, in order to study the Fokker-Planck equatiortierOrnstein-Uhlenbeck process it is sufficient
to study the properties of the generatbrAs in the previous section, the natural function spacettaihsng

the generator of the Ornstein-Uhlenbeck process id.thepace weighted by the invariant measure of the
process. This is a (separable) Hilbert space with norm

91 := [ Foadp.
R4
and corresponding inner product
(o= [, hoadp.
Rd

We can also define weightdd-spaces involving derivatives, i.e. weighted Sobolev spaSee Exercise 6.
The generator of the Ornstein-Uhlenbeck process becomafadjsint operator in this space. In fact,
L defined in (4.43) has many nice properties that are sumnagirizne following proposition.

Proposition 4.3. The operatorC has the following properties:

i. Foreveryf, h € C*(R%) N L%(pg),
(=Lf,h)p = —ﬁ_l/ Vf-Vhpgdp. (4.45)
R4

ii. £ is anonpositive operator oh?(pg).
iii. The null space ofZ consists of constants.

Proof.
i. Equation (4.45) follows from an integration by parts:

(L h)p

[ v tnosdps 57t [ Ashosdp

— [ Vhpsdp =57 [ V5 Vhpsdp+ [ <p-Vshpadp
AP

ii. Non-positivity of £ follows from (4.45) upon setting = f:
(Lf, f)o=—BIVIIL <O. (4.46)
iii. Let f € (L) and use (4.46) to deduce that

[ 194Bosdz =0,
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from which we deduce thagt = const. O
The generator of the Ornstein-Uhlenbeck process has arapgap: For everyf € C%(RY) N L?(pp)

we have
(=LF, f)p > Var(f), (4.47)

where Vatf) = [z 2ps — (fRd fpﬁ)z. This statement is equivalent to the statement that the SEaus
measureg(x) da satisfiesPoincar’s inequality:

| osan <™t [ 91P0sdo (4.48)

for all smooth functions withf" fps = 0. Poincaré’s inequality for Gaussian measures can be grasiag
the fact that (tensor products of) Hermite polynomials famorthonormal basis ih?(R¢; ps). We can also
use the fact that the generator of the Ornstein-Uhlenbea&ess is unitarily equivalent to the Schrodinger
operator for the quantum harmonic oscillator, whose eigigetions are the Hermite functiofisconsider
the generator in one dimension and set, for simplici/= 1, a = 2. Then

1/2 ~1/2 d?h
pg (= L(hpg 7)) = o3 te h —h:=Hh. (4.49)

Poincaré’s inequality (4.48) follows from the fact thag¢ kbperatorﬁ = —% + 22 has a spectral gap,

/ﬁhhdx>/\h12dx, (4.50)
R R
which, in turn, follows from the estimate
dh
18172 < 2(|zh]l 2 || 5= - (4.51)
L

for all smooth functions:. From (4.49) it follows that (4.48) is equivalent to

/’Hhhdx>/h2 dz, /her/Q dz = 0.
R R R

We can check that/p = e=2*/2 is the first eigenfunction of{, corresponding to the zero eigenvalue,
Ao = 0. The centering condition fof is equivalent to the condition thatis orthogonal to the ground state
(i.e. the first eigenfunction) of{.

Since nowH = —% + 22 is a selfadjoint operator id.?(R) that satisfies the spectral gap esti-
mate (4.50), it has discrete spectrum and its eigenfuretiorm an orthonormal basis ih?(R).> Fur-
thermore its eigenvalues are positive (from (4.50) it feBathat it is a positive operator) and we can check
that its first nonzero eigenvalue \s = 2. Let {\,, ¢,,} denote the eigenvalues and eigenfunction${of
and leth be a smooth.? function that is orthogonal to the ground state. We have

/ Hhhdz = M\h2 >2> b2, (4.52)
R n=1 n=1

4The transformation of the generator of a diffusion process $chrodinger operator is discussed in detail in Secti@n 4
These eigenfunctions are the Hermite functions.
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from which (4.47) or, equivalently, (4.48) follows. Fromdposition 4.3 and the spectral gap estimate (4.47)
it follows that the generator of the Ornstein-Uhlenbeckcpss is a selfadjoint operator it¥ (pg) with
discrete spectrum, nonnegative eigenvalues and its eigetidns form an orthonormal basisirf(ps).

The connection between the generator of the Ornstein-bbkdnprocess and the Schrodinger operator
for the quantum harmonic oscillator can be used in order koutate the eigenvalues and eigenfunctions
of £. We present the results in one dimension. The multidimeasiproblem can be treated similarly by
taking tensor products of the eigenfunctions of the one dsiomal problem.

Theorem 4.4. Consider the eigenvalue problem for the the generator ofatie dimensional Ornstein-
Uhlenbeck process

L= —ozpdi; + 15_1)22’ (4.53)
in the spacel?(pp):
—Lfn =\ fn (4.54)
Then the eigenvalues gfare the nonnegative integers multiplied by the frictionftioent:
Am=an, n=0,12,.... (4.55)
The corresponding eigenfunctions are the normalized Herpolynomials :
1
Jnlp) = == (VaBn). (4.56)
where
Ho(p) = (—1)"e’s % <ef> . (4.57)

Notice that the eigenvalues @f are independent of the strength of the noisé.® This is a general
property of the spectrum of the generator of linear stoahdgferential equations. See Sections 3.7 afd

From (4.57) we can see théf, is a polynomial of degrea. Furthermore, only odd (even) powers
appear inH,,(p) whenn is odd (even). In addition, the coefficient multiplyipg in H,(p) is alwaysl. The
orthonormality of the modified Hermite polynomiafs(p) defined in (4.56) implies that

/R Jn(0) fm(P)ps(P) dp = Snm.

The first few Hermite polynomials and the correspondingatestinormalized eigenfunctions of the gener-

®0f course, the function spade’ (ps) in which we study the eigenvalue problem fdidoes depend oft throughpgs.
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ator of the Ornstein-Uhlenbeck process are:

Ho(p) =1, fo(p) =1,
Hi(p) = p, fi(p) = v/ Bp,
H@) =p 1,  fap) = j—épz -
_ .3 _0453/23_3\/@
H3(p) = p° — 3p, f3(p) = N N
Hy(p) = p* — 3p* + 3, falp) = % ((eB)?p" — 3aBp* + 3)
Hs(p) = p° — 10p* + 15p, fs5(p) = \/%_0 ((a5)5/2p5 —10(aB)%?p® + 15(aﬁ)1/2p) :

Proof of Theorem 4.4Ne already know thaf has discrete nonnegative spectrum and that its eigendunscti
spanL?(pg). We can calculate the eigenvalues and eigenfunctions hydinting appropriate creation and
annihilation operators. We define the annihilation operato

1 d
- _ 4.58
VB dp (4.59)
and the creation operator
1 d
at =/ Bap — —=—. 4.59
VBap - —5 (4.59)

These two operators afe?(pg)-adjoint:

(@™ f,h)p = (f,a*h),,
for all C! functionsf, hin L?(pg). Using these operators we can write the generétiorthe form
L=—aa".
The eigenvalue problem (4.54) becomes
a+a_fn = Afn.
Furthermore, we easily check that anda~ satisfy the following commutation relation
tal=a"a —a a" =

la —a.

Now we calculate:

[L,aT] = LTa+—-a"L=—-aTa"a® +aTaTa”
—ata"at +at(a"at - a)

= —aQ.
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We proceed by induction to show that
(£, (a)"] = —an(a™)™ (4.60)

Define now
bn = (™)1, (4.61)

where¢y = 1 is the "ground state” corresponding to the eigenvalye= 0, Lo¢g = 0. We use (4.60) and
the fact thatC1 = 0 to check that,, is then-th unnormalized eigenfunction of the generafor

~Lép, = —L(a")"1=—(a")"L1~[L,(a")"]1

= an(a™)"1 = ang,.

We can check by induction that the eigenfunctions defined.Bil) are the unormalized Hermite polynomi-
als. We present the calculation of the first few eigenfumstio

¢o=1, ¢1=a"gy=+Bap, ¢s=at¢1=pa"p—a.

Sincea™ anda~ are L?(pg)-adjoint, we have that

<¢n7 ¢m>p = 07 n 7é m.

Upon normalizing the ¢, }7>9 we obtain (4.56). The normalization constant

[énlly = /(@)1 (at)m1),

can be calculated by induction. OFrom the eigenfunctions and eigenvalueLaind using
the transformation (4.44) we conclude that the Fokker-¢Karperator of the Ornstein-Uhlenbeck process
has the same eigenvalues as the generatnd the eigenfunctions are obtained by multiplying thosthef
generator by the invariant distribution:

~L(psfa) = onpsfa. n=0,1,... (4.62)

Using the eigenvalues and eigenfunction of the Fokkerdklamerator (or, equivalently, of the generator)
we can solve the time dependent problem and obtain a forrautad probability density function (compare
with (4.41)):

+o0o
p(0,t) = ps(0) > cne " fulp), n = /R fa(®)po(p) dz, (4.63)
n=0

where{ fn}jg% denote the eigenvalues of the generator. From this formeldeduce that the when starting
from an arbitrary initial distributiong(p) € L?(R; pgl) the law of the process converges exponentially fast
to the invariant distribution.
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4.5 The Smoluchowski Equation

The Ornstein-Uhlenbeck process is an example of an ordiifieyential equation with a gradient structure
that is perturbed by noise: lettiig(z) = 1a|z|? we can write the SDE for the Ornstein-Uhlenbeck process
in the form

dXt = —VV(Xt) dt + vV 2ﬁ71 th

The generator can be written as:
L=-VV(z) V+ A (4.64)

The Gaussian invariant distribution of the Ornstein-Ubkxgk process can be written in the form

1
palx) = Ee_ﬁv(x), Z = / e V@) g,
R4

In the previous section we were able to obtain detailed imé&tion on the spectrum of the generator of the
Ornstein-Uhlenbeck process, which in turn enabled us tedble time-dependent Fokker-Planck equation
and to obtain (4.63) from which exponentially fast conveige to equilibrium follows. We can obtain
similar results, using the same approach for more geneaxsses of diffusion processes whose generator is
of the form (4.64), for a quite general class of scalar fuomdi/ (). We will refer toV'(x) as the potential.

In this section we consider stochastic differential equretiof the form

dX; = —VV(X,)dt +/26-1dW,, Xy =z, (4.65)
for more general potentialg(z), not necessarily quadratic. The generator of the diffupi@tessX; is
L=-VV(z)-V+57A, (4.66)

Assume that the initial condition faX; is a random variable with probability density functipg(x). The
probability density function o, p(x,t) is the solution of the initial value problem for the corresgdimg
Fokker-Planck equation:

% V- (VVp) + B 1 Ap, (4.67a)
p(x,0) = po(). (4.67b)

The Fokker-Planck equation (4.67a) is often calledSh&luchowski equationin the sequel we will refer
to this equation as either the Smoluchowski or the FokkanéM equation.

It is not possible to calculate the time dependent solutioth@ Smoluchowski equation for arbitrary
potentials. We can, however, always calculate the statjos@lution, if it exists.

Definition 4.5. A potentialV” will be called confiningif lim ;| _, 1, V(x) = +oc and
e V@) ¢ LY(RY). (4.68)
forall 5 € RT.
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In other words, a potentidl (-) is confining if it grows sufficiently fast at infinity so that.@8) holds.
The simplest example of a confining potential is the quati@aiential. A particle moving in a confining
potential according to the dynamics (4.65) cannot escapditity, it is confined to move in a bounded area
in RZ. It is reasonable, then, to expect that the dynamics (4r68)donfining potential has nice ergodic
properties.

Proposition 4.6. LetV (x) be a smooth confining potential. Then the Markov processgeitierator(4.66)
is ergodic. The unique invariant distribution is the Gibbstdbution

1
p(x) = —e V@) (4.69)
7
where the normalization factar is the partition function
7 = / e V@) g, (4.70)
R4

The fact that the Gibbs distribution is an invariant disttibn follows by direct substitution. In fact, the
stationary probability flux vanishes (compare with (4.12))

J(pg) = —B~'Vpg —VVps =0.

Uniqueness follows from the fact that the Fokker-Planckatme has a spectral gap; see the discussion later
in the section.

Just as with the one dimensional diffusion processes wiliating boundary conditions and the Ornstein-
Uhlenbeck process, we can obtain the solution of the Smolski equation (4.67) in terms of the solution
of the backward Kolmogorov equation by a simple transfoiomatWe defineh(x, t) through

p(z,t) = h(z,t)pg(x).
Then we can check that the functiarsatisfies the backward Kolmogorov equation:

Oh

5= " VV-Vh +B7 AR, h(x,0) = po(x)py (z). (4.71)

To derive (4.71), we calculate the gradient and Laplaciah@&olution to the Fokker-Planck equation:
Vp=pVh—phBVV and Ap = pAh—2pBVV -Vh+ hBAVp+ h|VV|?5%p.

We substitute these formulas into the Fokker-Planck egnati obtain (4.71).

Consequently, in order to study properties of solutionhéoRokker-Planck equation it is sufficient to
study the backward equation (4.71). The generétar self-adjoint in the right function space, which is the
space of square integrable functions, weighted by theismidensity of the procesk;:

12(pp) = {f| [ 15psds < oo}, (4.72)

whereps denotes the Gibbs distribution. This is a Hilbert space witter product
(f,h)p = /Rd fhpgdx (4.73)
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and corresponding noryf ||, = \/(f, f),-

The generator of the Smoluchowski dynamics (4.65) has thme gaoperties as those of the generator
of the Ornstein-Uhlenbeck process.

Proposition 4.7. Assume that/(x) is a smooth potential and assume that condiiiér68) holds. Then the
operator
L=-VV(z)-V+5A

is self-adjoint in. Furthermore, it is nonpositive and its kernel consistsaistants.

Proof. Let f, € CZ(R?) N L%(pg). We calculate

(Lf, Dy, = /Rd(—VV-V—Fﬁ_lA)fhpgd:U
= /(VV-Vf)hpgdx—ﬁl/ Vthde:c—ﬁl/ VfhVpgdz
R4 R4 R4
= —ﬁl/ Vf-Vhpgdz, (4.74)
Rd

from which selfadjointness follows.
If we now setf = h in the above equation we get

(Cf, o =BTV,

which shows that is non-positive.
Clearly, constants are in the null spacefof Assume thaf € N'(£). Then, from the above equation
we get

/ IV f|?pp dx =0,
from which we deduce that is constant. O

The expression
De(f):=(=Lf. fp (4.75)

is called theDirichlet form of the generatoL. In the case of a gradient flow, it takes the form

De(p) =57 [ IV S Ppsta)da. (@.76)

Several properties of the diffusion processcan be studied by looking at the corresponding Dirichletfor

Using now Proposition 4.7 we can study the problem of coremarg to equilibrium folX;. In particular,
we can show that the solution of the Fokker-Planck equadai’{ for an arbitrary initial distributiopg(x)
converges to the Gibbs distribution exponentially fastpfiave this we need a functional inequality that is
a property of the potentidl’. In particular, we need to use the fact that, under apprgpaasumptions on
V, the Gibbs measure(dz) = Z e~ #V(®) dz satisfies @oincar inequality

"In fact, a complete proof of this result would require a maxeetul study of the domain of definition of the generator.
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Theorem 4.8. LetV € C?*(RY) and defingu(dz) = te™V dx. If

2
lim (M - AV(w)) — 400, (4.77)
|x| =400 2

then 11(dx) satisfies a Poincdr inequality with constand > 0: for every f € C*(R?) N L?(pg) with
[ f n(dz) = 0, there exists a constant > 0 such that

M2 < NV FIZ2(0- (4.78)

For simplicity we will sometimes say that the potenfiglrather than the corresponding Gibbs measure,
satisfies Poincaré’s inequality. Clearlyyifdz) = Le~" du satisfies (4.78), so dogs;(dz) = Le #V du
for all positive 8. Examples of potentials (Gibbs measures) that satisfydaci’s inequality are quadratic
potentials inR? of the form V' (z) = 127Dz with D € R¢ being a strictly positive symmetric matrix
and the bistable potentidf (z) = —%2 + %4 in R. A condition that ensures that the probability measure
wu(dr) = %e—‘/ dzx satisfies Poincaré’s inequality with constans the convexity condition

D?*V > M. (4.79)

This is the Bakry-Emery criterion .
Notice also that, using the definition of the Dirichlet forh{6) associated with the generaibrwe
can rewrite Poincaré’s inequality in the form

A~ Var(f) < De(f, f), (4.80)

for functions f in the domain of definition of the Dirichlet form. The assuiptthat the potential/
satisfies Poincaré’s inequality is equivalent of assurttiag the generatof has aspectral gagn L?(pg).

The proof of Theorem 4.8 or of the equivalent spectral gaimese (4.80) is beyond the scope of this
book. We remark that, just as in the case of Gaussian measueesan link (4.80) to the study of an
appropriate Schrodinger operator. Indeed, we have that$gction 4.9) that

_ 1
—p5 Loy = —pA+ (%vw? —JAV) = BT AL W(a) = . (4.81)

If we can prove that the operat@{ has a spectral gap ii?(R?), we can then use the expansion of
L?(R%)-functions in eigenfunctions of to prove (4.80), see estimate (4.52) for the quadratic pialen
This amounts to proving the estimate

51/ |Vh|? da +/ W(z)h?dx > X | |n|?dz.
Rd Rd Rd
To prove this, it is certainly sufficient to prove an inegtyaiinalogous to (4.52):
1h]|72 = 2XIWh] 12 | VA 2 (4.82)

for all C! functions with compact support. Itis clear that the behasfd/ (-) at infinity, Assumption 4.77,
plays a crucial role in obtaining such an estimate.
Poincaré’s inequality yields exponentially fast conegrge to equilibrium, in the right function space.
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Theorem 4.9. Letp(z, t) denote the solution of the Fokker-Planck equat@67)with po(z) € L*(R?; p[gl)
and assume that the potentitl satisfies a Poincd inequality with constank. Thenp(z,t) converges to
the Gibbs distributiorpg defined in(4.69)exponentially fast:

—\3—1 -1 —
llp(-t) — pBHL2(pEI) <e AP tHPO(') —-Z7 e BV”B@?)- (4.83)
Proof. We can rewrite (4.71) for the mean zero function- 1:
d(h—1)
——==L(h—-1).
5 (h—1)
We multiply this equation byh — 1) pg, integrate and use (4.76) to obtain
1d 9
§£||h —1f|; = =Dg(h—1,h —1).
We apply now Paincaré’s inequality in the form (4.80) to desl
1d 9

< =BT -1z
Our assumption opy implies thath € L?(pg). Consequently, the above calculation shows that
_yp-—1
A (-, t) = 1, < e IR (-, 0) = 1],
This estimate, together with the definition/othroughp = pgh, leads to (4.83). O

The proof of the above theorem is based on the fact that thghtesl L2-norm of h — 1 is aLya-
punov functiorfor the backward Kolmogorov equation (4.71). In fact, we canstruct a whole family of
Lyapunov functions for the diffusion process.

Proposition 4.10. Let¢(-) € C%(R?) be a convex function dR and define
H(h) = /qb(h)pg dz (4.84)

with pg = Ze PV, Furthermore, assume thaf is a confining potential and lek(t,-) be the solution
of (4.71) Then
g(H(h(t, ) <0. (4.85)
Proof. We use (4.74) to calculate
SH0w) = 5 [ompadr =[5 pads
/(b'(h)ﬁh ppdr = — / V¢'(h)Vhps dx

=~ [ WIVHE py s
0,

N

since¢(-) is convex. O
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In Theorem 4.9 we usegl(h) = (h — 1)2. In view of the previous proposition, another choice is
#(h) =hlnh —h+ 1. (4.86)

From a thermodynamic perspective, this a more natural ehdaicthis case the Lyapunov functional (4.84)
becomes the (rather, a multiple df¢e energy functional

F(p) :/Vpdx+ﬁl/plnpdx+ﬁlln2. (4.87)

This follows from the following calculation (using the ntien | f instead of [, f dx ):

H(p) = /qﬁ(h)pﬁdx:/(hlnh—h—i—l)pgdx

= /pln< > dx
Ps
= /plnpdm—/pln (Z_le_ﬁv) dx

= ﬁ/Vpdx+/plnpdac—i—an.

We will also refer to the functional

H(p) = /pln (poo> dx

as therelative entropybetween the probability densitigsandpg. It is possible to prove exponentially fast
convergence to equilibrium for the Smoluchowski equatindar appropriate assumptions on the potential
V. This result requires that that the meas%re—v satisfies dogarithmic Sobolev inequality See the
discussion in Section 4.10.

4.6 Reversible Diffusions

The stationary X ~ pg(z) dx) diffusion processX; with generator (4.66) that we studied in the previous
section is an example of a (time-) reversible Markov process

Definition 4.11. A stationary stochastic process; is time reversible if its law is invariant under time
reversal: for everyl’ € (0,+o00) X; and the time-reversed proce&s-_; have the same distribution.

This definition means that the processésand X_; have the same finite dimensional distributions.
Equivalently, for eachV € N*, a collection of time$) = to < t;--- < ty = T, and bounded measurable
functions with compact suppoyt, j = 0,... N we have that

H fi(X) H fi(Xr—, (4.88)

wherey(dx) denotes the invariant measureXf andE,, denotes expectation with respectto
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In fact, the Markov property implies that it is sufficient teeck (4.88). In particular, reversible diffusion
processes can be characterized in terms of the propertibsio§enerator. Indeed, time-reversal, which is a
symmetry property of the proceds, is equivalent to the selfadjointness (which is also a sytnnpeoperty)
of the generator in the Hilbert spaéé(R%; 11).

Theorem 4.12. A stationary Markov proces, in R? with generator£ and invariant measure is re-
versible if and only if its generator is selfadjoint irf (R%; 11).

Proof. 8 It is sufficient to show that (4.88) holds if and only if the geator is selfadjoint in.2(R%; u).
Assume first (4.88). We tak/ = 1 andtg = 0, ¢t; = T to deduce that

By (fo(X0)/1(X1)) = E,(fo(X7) [1(X0)), Vo, fr € LA(R% ).

This is equivalent to

/(eﬁtfo(:v)) wu(dz) /fo Etfl )) p(dz),

(€ fi, fo) iz = (fr, e fo) 1z, Vi, fo € L2(RY py). (4.89)

Consequently, the semigroup® generated by is selfadjoint. Differentiating (4.89) at= 0 gives that(
is selfadjoint.

Conversely, assume thétis selfadjoint inL?(R%; 11). We will use an induction argument. Our assump-
tion of selfadjointness implies that (4.88) is true fér= 1

H fi(X) H fi(Xr—, (4.90)
Assume that it is true folN = k. Using Equation (2.22) we have that
k k
E, ] fi(x,) = / /fo o) p(do) H (zj)p(tj —tj—1, 21, dz;)
=0 j=1
:EAIM&H>
n=0

k
= [ [ fetantan) T fa(oi0ptts ~ bz do),
j=1

(4.91)

8The calculations presented here are rather formal. Inquéat, we do not distinguish between a symmetric and a gelfad
operator. For a fully rigorous proof of this result we needémore careful with issues such as the domain of definitiahef
generator and its adjoint. See the discussion in Sectidh 4.1
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wherep(t, z,I") denotes the transition function of the Markov procégs Now we show that (4.88) it is
true for N = k + 1. We calculate, using (4.90) and (4.91)

k+1
Eu H fj(th) = Euné?:lfj(th)fk‘Jrl(th-H)

k
2.22
222 / / (dzo) fo(zo H p(t; —tj—1,5-1,dx;) X

Jr1(@pp1)p(teg1 — tlm T, dTpy1)

k
4,91
0 [ [ wtamso(on) T] o1 (ai0plts = by, dnyo) %
j=1
Jrp1(@r4 1)tk — tis Th, dXp11)

4,91
0 [ [l folon) s onsn ot — s o) %

k
H fimi(@j—1)p(t; — tj—1, 25, dzj1)
=1

k+1

4.90
420 / / (dwgs1) fo(h+1) Hf] 1(@j—1)p(t; —tj—1, 25, dxj1) x

Jrr1 (@) p(thg1 — e, Tk, d$k+1)
k1

= E, H fi( X))

J=0

In the previous section we showed that the generator of thalugmowski dynamics
L=-VV -V+p'A

is a selfadjoint operator ilﬁ/Q(pﬁ), which implies that the stationary solution of (4.66) is eersible diffu-
sion process. More generally, consider the 1td stochasffierential equation ifiR? (see Section 3.2)

The generator of this Markov process is
1 2
L-=b(x) -V + §Tr(2(x)D ), (4.93)

whereX(z) = o(z)o” (), which we assume to be strictly positive definite, see (A}e that we can also

write
Tr(Z(z)D?) = B(z) : V- V.

The Fokker-Planck operator is
1
L=V (—b(;c)-+§v- (E(w)-)). (4.94)
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We assume that the diffusion process has a unigue invaiistribdtion which is the solution of the station-
ary Fokker-Planck equation
L*ps = 0. (4.95)

The stationary Fokker-Planck equation can be written asEsgiation (4.12))
V- J(ps) =0 with J(ps) = bps — %V (Zps).
Notice that we can write the invariant distributipnin the form
ps=e"%, (4.96)

where® can be thought of as a generalized poteritial.

Let now X; be an ergodic diffusion process with generator (4.93). Wesicier now the stationary so-
lution of (4.92), i.e. we seK, ~ ps. Our goal is to find under what conditions on the drift andwdifbn
coefficients this process is reversible. According to Thao#.12 it is sufficient to check under what con-
ditions on the drift and diffusion coefficients the generafds symmetric inH := L?(R%; ps(x) dx). Let
f, h € Hn C?(RY). We perform integrations by parts to calculate:

/b-thpsdx:—/fb-Vhpsdx—/th-(bps)dw
and
/(EV-Vf)h,osdx = —/EVf-Vh,osdx—/(th)-V-(Eps)dx
= —/EVf-Vhpsdx+/(th)-V(Eps)dm
+/fhv- (V- (Zps)) dz.

We combine the above calculations and use the stationaeFRékanck equation (4.95) and the definition
of the stationary probability flu¥; := J(ps) to deduce that

(Ll = [(~LHho.do

1

= §/EVf.Vhpsdm+/th-Jsdx

1 _
= §<2Vf,Vh>p+<f,ps 1Vh'JS>P'

°Note that we can incorporate the normalization constartiérdefinition of®. Alternatively, we can write) = %e“b, Z =
J e~ % dx. See, for example, the formula for the stationary distitoubf a one dimensional diffusion process with reflecting
boundary conditions, Equation (4.35). We can write it infibren

ps(x) = %e_q) with @ =log(o(z)) — (2 /pz % dy) .
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The generatof is symmetric if and only if the last term on the righthand sifithe above equation vanishes,
i.e. if and only if the stationary probability flux vanishes:

J(ps) = 0. (4.97)

This is thedetailed balancecondition. From the detailed balance condition (4.97) wtaioba relation
between the drift vectdr, the diffusion matrix> and the generalized potential

1 1 1
b= §p;1v- (Zps) = 5V-2 - 532V, (4.98)

We summarize the above calculations
Proposition 4.13. Let X; denote the stationary proce$4.93) with invariant distributionp, the solution

of (4.95) ThenX; is reversible if and only if the detailed balance conditi@n97)holds or, equivalently,
there exists a scalar functiob such that(4.98)holds.

Remark 4.14. The term%v - ¥(x) in (4.98) is the Itd-to-Stratonovich correction, see 8ec8.2. Indeed,
if we interpret the noise in (4.92) in the Stratonovich sense

dXt = b(Xt) dt + O'(Xt) e} th, (499)

then the condition for reversibility (4.98) becomes

b(z) = —%E(w)VCI)(m). (4.100)

For the stationary process;, the solution of the Stratonovich stochastic differenéiquation (4.99) with
Xo ~ ps, the following conditions are quivalent:

i. The processX; is reversible.
i. The generatol is selfadjoint inZ?(R%; p,).
iii. There exists a scalar functioh such that (4.100) holds.

Consider now an arbitrary ergodic diffusion procégsthe solution of (4.92) with invariant distribution
ps. We can decompose this process into a reversible and a mositee part in the sense that the generator
can be decomposed into a symmetric and antisymmetric ptiréispace.?(R%; p,). To check this, we add
the subtract the termy; J, - V from the generatof and use the formula for the stationary probability flux:

L = %2v-v+(b—pgljs)-v+p;1Js-v

_ %zv-vm;lv- (Sps) -V 4 p7, -V

= %psflv'(ﬁpsv)ntp;le-V
= S+ A
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Clearly, the operatof = %p;lv- (Zpsv) is symmetric inL?(R?; p,). To prove thatA is antisymmetric

we use the stationary Fokker-Planck equation written irfdhm V - J; = 0:
AR, = /JS Vfhda

- —/JS-VfJS-Vhda:—/th-Jsdx
= —(f, Ah),.

The generator of an arbitrary diffusion proces®ihcan we written in the useful form
1
L=p; -V + 5pglv (ZpsV), (4.101)

where the drift (advection) term on the right hand side issgmimetric, whereas the second order, divergence-
form part is symmetric ir.2(R%; p,).

4.7 Eigenfunction Expansions for Reversible Diffusions

Let X; denote the generator of a reversible diffusion. We writegheeratorL in the form, see Equa-
tion (4.101)

L= %p;lv (ZpsV). (4.102)
The corresponding Dirichlet form is
1
De(f) =(=Lf,f)p= 5(2Vf, Vh),. (4.103)

We assume that the diffusion mat3X is uniformly positive definite with constait, Equation (4.6). This
implies that

« _
De(p)> 5 [ IViPet s

where we have introduced the generalized potefitjal, = e~®. In order to prove that the generator (4.102)
has a spectral gap we need to show that the probability measdt: or, equivalently, the potentiab, sat-
isfied a Poincaré inequality. For this it is sufficient toshthat the generalized potential satisfies assump-
tion (4.77) in Theorem 4.8.

Assume now that the generatfthas a spectral gap:

AVar(f) < De(f, f). (4.104)

Then—L is a nonnegative, selfadjoint operatorfifi(R?; p,) with discrete spectrum. The eigenvalue prob-
lem for the generator is
—Lén = AnPn, n=0,1,... (4.105)

Notice thatpy = 1 andAg = 0. The eigenvalues of the generator are real and nonnegative:
0:)\0<)\1<)\2<...
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Furthermore, the eigenfunctiof; 20 spanL?(R?; p,): we can express every elementof(R?; p,) in
the form of a generalized Fourier series:

F= bnfur fn=(bn 0n)p (4.106)
n=0

With (¢n, ém), = Onm. This enables us to solve the time dependent Fokker-Plame&tien in terms of
an eigenfunction expansion, exactly as in the case of a anerdiional diffusion process with reflecting
boundary conditions that we studied in Section 4.3. Theutalion is exactly the same as for the one
dimensional problem: consider first the initial value peshlfor the transition probability densipyfx, t|zo):

% = L*p, (4.107a)
p(z,0|z9) = 0(z — xp). (4.107b)
The functionh(z, t|zg) = p(z, t|zo)ps () is the solution of the initial value problem

oh
_ 4.1
= Ch, (4.108a)

h(z,0lzg) = p;t(z)d(z — xo). (4.108b)

We solve this equation using separation of variables andutherposition principle. Transforming back, we
finally obtain

p(z,t|zo) = ps(x) (1 +y 6’\”@(%)@(%0)) - (4.109)
=1

When the initial condition is a random variable with probigpidensity functionpy (x) then the formula
for the probability distribution functiom(z, t), the solution of the Fokker-Planck equation witfx, 0) =

po() is

p(z,t) = ps(z) (1 + +Z€A‘t¢e(fv)pe> .ope= /Rd po(w)¢e(z) da. (4.110)
We use now (2.60) to define the s’fa:tionary autocorrelatiottixma
C(t) =E(X; ® Xo) = //:Uo ® xp(z, tlxo)ps(To) drdzy. (4.1112)
Substituting (4.109) into (4.111) we obtain
C(t) = gio:e)‘dtag oy, oy = /Rd xop(x)ps(x) de, (4.112)
=0

with A\g = 1, ¢9 = 1. Using now (1.7) we can obtain a formula for the spectral ign&hich in the
multdimensional case is&x d matrix. We present here for the formula in one dimension

S(w) = - i W (4.113)
o7 — A2+ w? '

The interested reader is invited to supply the details adatwalculations (see Exercise 11). It is important
to note that for a reversible diffusion the spectral denisitgiven as a sum of Cauchy-Lorentz functions ,
which is the spectral density of the Ornstein-Uhlenbeclcess.
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4.8 Markov Chain Monte Carlo

Suppose that we are given a probability distributiofx) in R? that is known up to the normalization
constant® Our goal is to sample from this distribution and to calcuktpectation values of the form

E.f = f(z)m(z) dx, (4.114)
R4

for particular choices of functiong(x). A natural approach to solving this problem is to construtt a
ergodic diffusion process whose invariant distributiorr{g). We then run the dynamics for a sufficiently

long time, until it reaches the stationary regime. The dopiiim expecation (4.114) can be calculated by
taking the long time average and using the ergodic theorem:

1
lim —
T—+oc0 T

/T F(X,)ds =E,f. (4.115)
0

This is an example of thilarkov Chain Monte Carlo (MCMQnethodology.
There are many different diffusion processes that we canwsédnave to choose the drift and diffusion
coefficients so that the stationary Fokker-Planck equasigatisfied:

V- (—bw+%v- (=) =0. (4.116)

We have to solve the "inverse problem” for this partial diffietial equation: given its solution(z), we
want to find the coefficienté(x) and X(x) that this equation is satisfied. Clearly, there are (infiyjte
many solutions to this problem. We can restrict the classrifif @nd diffusion coefficients (and of the
corresponding diffusion process) that we consider by inmgpthe detailed balance conditiof(7) = 0.
The stationary Fokker-Planck equation is

1
—br + 5V - () = 0. (4.117)

Thus, we consider reversible diffusion processes in omeample fromr(z). Even when we impose the
detailed balance condition, there is still a lot of freedanthoosing the drift and diffusion coefficients. A
natural choice is to consider a constant diffusion malfix= 27. The drift is

b=7"'Vr=Vlogn.
This leads to the Smoluchowski dynamics that we studied ati@e4.511
dX, = Vinw(X,) dt + V2 dW,. (4.118)

Notice that in order to be able to construct this diffusiongass we do not need to know the normalization
constant since only the gradient of the logarithmr@t) appears in (4.118). Provided that the "potential”

1%The calculation of the normalization constant requiresciileulation of an integral (the partition function) in a higimen-
sional space which might be computationally ver expensive.

N the statistics literature this is usually called the Lewig dynamics. We will use this term for the seconder ordectsis-
tic differential equation that is obtained after addingsgiation and noise to a Hamiltonian system, see Ch&fetUsing the
terminology that we will introduce there, the dynamics (@)Lcorresponds to the overdamped Langevin dynamics.
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V(z) = —logw(x) satisfies Poincaré’s inequality, Theorem 4.8, we have rapitally fast convergence
to the target distribution in.?(R%; r), Theorem 4.9. The rate of convergence to the target disiibu
m(z) depends only on (the tails of) the distribution itself, €inhe Poincaré constant depends only on the
potential.

When the target distribution is multimodal (or equivalgnit (z) = — log w(x) has a lot of local min-
ima) convergence to equilibrium for the dynamics (4.118)mhbe slow (see Chaptéf). In such a case,
it might be useful to modify the dynamics either through thié dr the diffusion in order to facilitate the
escape of the dynamics for the local minimadfr). Ideally, we would like to choose the drift and diffusion
coefficients in such a way that the corresponding dynamiogerges to the target distribution as quickly
as possiblé? For the reversible dynamics, for which the generator is faakbint operator inL?(R%; ),
the optimal choice of the diffusion process is the one thatimizes the first nonzero eigenvalue of the
generator, since this determines the rate of convergeneguitibrium. The first nonzero eigenvalue can be
expressed in terms of the Rayleigh quotient:

M= mi D.(¢)

_ N , 4.119
' sen(c) s20 (|9l (4.119)

where D;(¢) = (—L¢,¢),. The optimal choice of the drift and diffusion coefficienssthe one that
maximizes\, subject to the detailed balance condition:

Dc(¢)

A1 = max min .
b, 2 J(ps)=06eD(L) 670 | 9ll,

(4.120)

We can also introduce perturbations in the drift of the Smiodwvski dynamics that lead to nonreversible
diffusions. We consider the following dynamics

dX] = (Va(X]) +~v(X])) dt + V2 dW;. (4.121)

where~(z) a smooth vector field that has to be chosen so that the intatistnibution of (4.121) is still
m(x). The stationary Fokker-Planck equation becomes

V- (y(z)r(z)) = 0. (4.122)

Consequently, all divergence-free perturbations vecébddj with respect to the target distribution, can be
used in order to construct nonreversible ergodic dynamlusse invariant distribution is(xz). There exist
many such vector fields, for example

~(z) = JVlogn(z), J=-JI.

We can then ask whether it is possible to accelerate convetg®e the target distribution by choosing the
nonreversible perturbation, i.e. the matiix appropriately. It is reasonable to expect that a nonrilers
perturbation that facilitates the escape of the dynamios fthe local minima off’ (z) = —V log 7 (x)
would speed up convergence of the modified dynami¢ggo equilibrium.

12When implementing the MCMC algorithm we need to discretimegtochastic differential equation and take the discrétin
and Monte Carlo errors into account. See Sect@an
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4.9 Reduction to a Schbdinger Operator

In Sections 4.4 and 4.5 we used the fact that the generatdreddtnstein-Uhlenbeck process and of the
generator of the Smoluchowski dynamics can be transformed 3chrodinger operator, formulas (4.49)
and (4.81). We used this transformation in order to studyhn&ue inequalities for the Gibbs measure
wu(dxr) = %e*v(x) dz. In this section we study the connection between the gesrefathe Fokker-Planck
operator and an appropriately defined Schrodinger-lilkeratpr in more detail.

We start by writing the generator of an ergodic diffusiongass in the form (4.101)

1
L = 5,oglv-(z:,osv-)Jr,o;hJs-v- (4.123a)
— S+ A (4.123b)

wherep, denotes the invariant density. The operatSrand.A are symmetric and antisymmetric, respec-
tively, in the function spacé&?(R?; p,). Using the definition of the.?(R%)-adjoint, we can check that the
Fokker-Planck operator can be written in the form

L0 = SV (pEV) ~ e V), (4.124a)
— ST A (4.124b)

The operators* and.A* are symmetric and antisymmetric, respectively, in the ioncspacel.?(R?; p; ).
We introduce the following operator (compare with Equatié:81))

H- = pi/Qﬁ(pgl/Q ), (4.125)
acting on twice differentiable functions that belonglit( R?).

Lemma 4.15. The operatorH defined in(4.125)has the form

Ho= LV (DY) 4+ W(2) +A, (4.126)

where. 4 denotes the antisymmetric part 6fand the scalar functiomV is given by the formula
W (x) = /psLA/ ps . (4.127)
Proof. Let f € C?(R?). We calculate
i = oL ) = S (2 0) + ol A )
= piPS(p 2 f) + Af + F/psA p5 (4.128)

since A is a first order differential operator. Let nawbe anotheC? function. We have the identity

V- (ZpsV(f) = V- (EVf)ps + V- (Zps V) f
+[ZVps + 28ps VY| - f.

110



In particular, fory) = v/p; ! the second term on the righthand side of the above equatitshes:

v (200 (f p;1> )=V (295) Vo + V- (2095 1
This equation implies that
1
P28 (p 2 ) = 5V - (BVF) + 928 (717
We combine this with (4.128) to obtain (4.126). O

The operator{ given by (4.126) is reminiscent of a Schrodinger operata magnetic field. We can
write the "effective potentiall¥ in a more explicit form. We use the notatipn= ¢~ %, see Equation (4.96).
We have

1
p;/28p;1/2 _ §ed>/2v_<267<1>ve<1>/2>
_ Lgpg —3/2
= 3"V (ze V(I))
1 1
= [V (3V) - XVe -V,

Furthermore,

pt P AT = p 1P vp

1 -1
= —p;'Js- V.
5Ps Js -V
We combine these calculations to obtain
1 1 1
W(z) = 7V - (2V) = 2BV VO 4 Sp L, - V. (4.129)

For reversible diffusions the stationary probability @mntrvanishes and the operatdrbecomes
1 1 1
H=35V-(BV)+ <ZV (DY) — XV v¢>> . (4.130)

On the other hand, for nonreversible perturbations of thelSchwoski (overdamped Langevin) dynamics,
Equation (4.121) whose generator is given by

L=(-VV+79)-V+A, V(v ")=0, (4.131)
operatorH takes the form
1 1 2 1
H=A+ <§AV—Z\VV| +§7-VV> +v-V. (4.132)

It is important to keep in mind that the three operatfrsC* and# are defined in different function spaces,
in (dense subsets of)>(R%; p,), L?(R%; p;1) and L2(R?), respectively. These operators are related trough
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a (unitary) transformatiot® We have already shown this for the map frahto 7, Equation (4.125): define
the multiplication operator

Uzn = ps : LR ps) = L2(RY).
This is a unitary operators froh?(ps) to L?(R):
Ur,uf Usuh)rz = (f,h), Vf, he L*(R% py).
Clearly,U, 3 = /ps. We can then rewrite (4.125) in the form
H = UE,HcUg}H.

The generator and Fokker-Planck operators are also upiggpilivalent, up to a sign change. We denote the
generator defined in (4.123) Iy, , to emphasize the dependence on the stationary/flu¥ve use (4.123)
and (4.124) to calculate, for evefyc L?(R%; p; 1)

)

psLy (051 ) = ps(S+A)(ps'f)

= (8" -ANf=Lyf
Introducing then the unitary multiplication operator
Ur, v = ps : L*(R% po) = L*(RY pJ7h),
we can write
Ur,c-L1,Ug e = LE .

It is important to note that, under this transformation, sigenmetric part of the generator (corresponding
to the reversible part of the dynamics) is mapped to the symiongart of the Fokker-Planck operator
whereas the antisymmetric part (corresponding to the mersible part of the dynamics) is mapped to
minus the antisymmetric part of the Fokker-Planck operataran example, consider the generator of the
Smoluchowski dynamics, perturbed by the divergence-fesor fieldy we have (see Equation (4.131))

Loy=(-VV=9)-V+A, V-(ye")=0,
and similarly for the corresponding Fokker-Planck opetato

L= V- (vv oyt v) (4.133a)

= A4+VV.V—»v. V-V v, (4.133b)
and
E*_7:A+VV-V+7-V+V-7

We summarize these calculations in the following propositi

13Two operatorsA;, A, defined in two Hilbert spaceH;, H» with inner products(-, )z, , (-, ) u,, respectively, are called
unitarily equivalent if there exists a unitary transforioatU : H, — H, (i.e. (U f,Uh)nu, = (f,h)u,, Vf, h € Hy) such that

UALU ! = As.

When the operatord;, A» are unbounded we need to be more careful with their domaiefafiton.
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Proposition 4.16. The operatorsC;,, £* ; and H defined onL?(R%; p,), L?(R% p;!) and L*(R?), re-
spectively, are unitarily equivalent:

psLips' = L, (4.1343)
VosLinpst = H, (4.134b)
ps LY \ps = H. (4.134c)

This proposition is presented graphically in Figure 4.9.

For reversible diffusions, i.e. when the stationary pradlitstflux vanishes, no sign reversal is needed
and the generator, the Fokker-Planck operator and thespameling Schrodinger-like operatéf are uni-
tarily equivalent. Consider now this casg, = 0 and assume that the generalized poterdtigd such that
the generatol has a spectral gap, Assumption (4.104) holds. Then the gemndras discrete nonnegative
spectrum and its eigenfucntions spaf(R?; p,), see Section 4.7. Then the three operadr<* andH
have the same eigenvalues and its eigenfunctions areddlatmugh a simple transformation. Indeed, let
(T;, H;), © = 1,2 be two unitarily equivalent self-adjoint operators witlsatiete spectrum in the Hilbert
spacedd, H,. Consider the eigenvalue problem for:

Ty = Nabt, k=1,...

Let U—'ToU = T;. Substituting this formula in the above equation and miyiityg the resulting equation
by U we deduce that

Y =Uypt and A\ = AL
For eigenfunctions of the generator, the Fokker-Planckaipe and the operatd¥, denoted byz/z,f, (e
andw,"g‘, respectively, are related through the formulas

VE = psE Wl =\ ps WE. (4.135)

Mapping the eigenvalue problem for the Fokker-Planck dpefar the generator) to the eigenvalue problem
for a Schrodinger operator is very useful, since the speptoblem for such operators is very well studied.
Similarly, we can map the Fokker-Planck equation to a Stihger equation in imaginary time. Let us
consider the Smoluchowski Fokker-Planck equation

Op _ 5 BV (o
5 = giv. (e Vv (e Vp>> . (4.136)
Definey(z,t) = e®V/2p(z,t). Theny solves the PDE
o _ _BIVVP AV
5 = BTAY —U(x)y, Ulx):= Y (4.137)

The operatof{ can be written as the product of two first order operators:

H=p"TA"A, A:V+W7U, A*:—V+W?U,

o A = o BU2y <€BU/2‘) AN = PU/2y <€75U/2') '
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ps_lﬁ*—Jsps

Js —Js

1/2 ~1/2
ps T Hog.ps 1/2 ~1/2
p 2L p Y

_JS s

Hoy

S

Figure 4.1: Transformation between the Fokker-Planck aiper(4.124), the generator (4.123) and the
Schrodinger operator (4.126).

4.10 Discussion and Bibliography

The proof of existence and unigueness of classical solufionthe Fokker-Planck equation of a uniformly
elliptic diffusion process with smooth drift and diffusi@oefficients, Theorem 4.2, can be found in [24].
See also [96], in particular Theorem 1.1.9, for rigorousiltsson the backward and forward Kolmogorov
equation for diffusion processes. Parabolic PDEs (in palei in bounded domains) are studied in detail
in [21].

The condition that solutions to the Fokker-Planck equatiomot grow too fast, see Definition 4.1, is
necessary to ensure uniqueness. In fact, there are infinitehy solutions of

(9]) . d
E Ap in RY x (0, T)
p(z,0) = 0.

Each of these solutions besides the trivial solupioa 0 grows very rapidly ag — +oo. More details can
be found in [45, Ch. 7].

The Fokker-Planck equation is studied extensively in Riskenonograph [86]. See also [28, 38, 95,
102]. In these references several examples of diffusiosgases whose Fokker-Planck equation can be
solved analytically can be found. The connection betweerFtbkker-Planck equation and stochastic dif-
ferential equations is presented in ChaferSee also [5, 25, 26].

Diffusion processes in one dimension are studied in [65kr&lis a complete classification of bound-
aries and boundary conditions in one dimension, Rker classification the boundaries can begular,
exit, entranceandnatural. The Feller classification for one dimensional diffusiomgesses can be found
in [47, 23]. We patrticularly recommend [47, Ch. 15] for a vestailed presentation of diffusion processes
in one dimension. Several examples of Fokker-Planck operah one dimension whose spectrum can
be calculated analytically and whose eigenfunctions caexpeessed in terms of orthogonal polynomials
are presented in [13]. The study of the Fokker-Planck opeiatone dimension is closely related to the
study of Sturm-Liouville problems. More information on tB&urm-Liouville problem and one dimensional
Schrodinger operators (that we obtain after the unitamysformation described in Section 4.9) can be found
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in [100, Ch. 9].

Hermite polynomials appear very frequently in applicasiokVe can prove that the Hermite polynomi-
als form an orthonormal basis fd?(R9, ps) without using the fact that they are the eigenfunctions of a
symmetric operator with compact resolvéhtThe proof of Proposition 4.3 can be found in [97, Lemma
2.3.4].

In Section 4.6 we studied convergence to equilibrium foersible diffusions using a functional analytic
approach and, in particular, the Poincaré inequality liergrobability measurg —'e~" dz. An alternative
approach is the use oflayapunov function[63, 62, 52]: We will say that the functiotlr € C?(R9) is a
Lyapunov function provided that

i. U(x) > 0forallz € RY
i limy) 400 U() = 400;
iii. there exist positive constangsands such that/(z) < pe®l*l and|VU (z)| < pedl*!.
It is possible to show that the existence of a Lyapunov famcsiatisfying
LU(z) < —aU(x) + S, (4.138)

whereq, [ are positive constants, ensures convergence of the sototibe Fokker-Planck equatigitz, ¢)
to the unique steady statg(x) (i.e. the solution of the stationary Fokker-Planck equgtior all initial
conditionsp(z, 0):

lim p(t,x) = ps(x), (4.139)

t—-+o0

the convergence being ih'(R?). The Fokker-Planck equation and the corresponding prbityabensity
function are calledylobally asymptotically stable [63]. Lyapunov function bedques for stochastic dif-
ferential equations are studied in detail in [35]. A comgami between functional inequalities-based and
Lyapunov function-based techniques for studying convesgeo equilibrium for diffusion processes is pre-
sented in [7]. A systematic use of Lypunov functions in thalgtof the ergodic properties of Markov chains
is presented in [69].

Dirichlet forms play an important role in the study of diffos processes, both in finite and in infinite
dimensions. Consider an ergodic diffusion proc&ssvith invariant measurg(dz) and generator

1
L=0bx)-V+5%(2): D?.
Theopérateur caré du champ defined for example 06?(R?) x C%(R%), is

L(f,g9) = L(fg) — fLg—gLf. (4.140)

In particular,
D(f, f)=Lf*=2fLf = (S(@)V],V]).

¥In fact, Poincaré’s inequality for Gaussian measures eaprbved using the fact that that the Hermite polynomialsfan
orthonormal basis foE.?(R?, pg).
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The Dirichlet form of the diffusion procesk, is then defined as

De(f) = [ TU ) ). (a.141)

Further information on Dirichlet forms and the study of dgffon processes can be found at [61].

Poincaré inequalities for probability measures is a vajext with deep connections with the theory of
Schrodinger operators and spectral theory. See [8] anakfaeences therein. The proof of the Poincaré in-
equality under assumption 4.77, Theorem 4.8, can be foupd8 Thm. A.19]. As we saw in Section 4.5,
Poincaré’s inequality for the measupg dz = %e*ﬁ" dx immediately implies exponentially fast conver-
gence to equilibrium for the corresponding reversibleuiiin process in the spaé&é(R?; pgl). However,
theorem 4.9 is not very satisfactory since we are assumatgmé are already close to equilibrium. Indeed,
the assumption on the initial condition

[ w5t <

is very restrictive (think of the case wheve= 12?). The function spacé?(R; pgl) in which we prove
convergence is not the right space to use. Spfeg) € L', ideally we would like to prove exponentially
fast convergence ih'(R%). We can prove such a result assuming that the Gibbs depgigatisfies a
logarithmic Sobolev inequalitfSI) [33]. In fact, we can also prove convergence in reagwntropy. The
relative entropy norm controls the' norm:

o1 — pall7 < 2H(p1p2)

This is theCsiszar-Kullbackor Pinskerinequality. Using a logarithmic Sobolev inequality, we can
prove exponentially fast convergence to equilibrium, egeg only that the relative entropy of the initial
conditions is finite. We have the following result.

Theorem 4.17.Let p denote the solution of the Fokker-Planck equatii67)where the potential is smooth
and uniformly convex. Assume that the the initial cond#tieatisfy

H(polpg) < .

Thenp converges t@z exponentially fast in relative entropy:

a1
H(p(t)|pg) < e "H(polpg).

Logarithmic Sobolev inequalities are studied in detail 8h [The approach of using relative entropy
and logarithmic Sobolev inequalities to study convergetocequilibrium for the Fokker-Planck equation
is presented in [67, 4]. Similar ideas can be used for stgdgonvergence to equilibrium for other types
of parabolic PDEs and of kinetic equations, both linear aolinear. Further information can be found
in [14, 15, 3]. The Bakry-Emery criterion (4.79) guarantéest the measure " dx satisfies a logarithmic
Sobolev inequality with constant. This in turn implies that potentials of the forin + vy wherewvy €
L>(R?) also satisfy a logarithmic Sobolev inequality. This is tbatent of the Holley-Stroock perturbation
lemma . See [67] and the references therein.
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The connection between self-adjointness of the generétam ergodic diffusion process ih? (1) and
the gradient structure (existence of a potential functafrthe drift is established in [71]. The equivalence
between self-adjointness, the existence of a potentiatim, time-reversibility and zero entropy production
for a diffusion process is studied in detail in [80, 44]. Citioths on the drift and diffusion coefficients that
ensure that detailed balance holds are studied in [85]. Tewersal for diffusion processes with time
dependent coefficients is studied in [36]; consider thelgtstic equation

dXt == b(Xt, t) dt + O'(Xt, t) th, (4142)

in R? and witht € (0, 1) where the drift and diffusion coefficients satisfy the asgtioms of Theorem 3.6
(i.e. a unique strong solution exists) and assume, furtbegnthat that probability density(¢, x), the
solution of the Fokker-Planck equation corresponding tth42) satisfies

/1/ [!P(M)IQ + |o(z,t) - Vp(a,t)]?| dedt < o, (4.143)
0 O

for any open bounded sét. Then the reversed proceds = X 4, t € [0, 1] is a Markov diffusion process
satisfying the SDE

dX; = b(Xy,t)dt +7(Xy,t) dWs, (4.144)
with
b(z,t) = —b(z,1 —t) +p(z,1 =)'V - (Z(z,1 —t)p(1 — t,2)), (4.145)
whereX = oo’ and
o(z,t) =0o(z,1 —1). (4.146)

When the drift and diffusion coefficients in (4.142) are timéependent and; is stationary with stationary
distributionp; () then the formulas for the drift and the diffusion coefficebecome

b(x) = —b(x) + ps(x) "'V - (S() ps(2)) (4.147)

and
o(z) = o(z). (4.148)

Markov Chain Monte Carlo is the standard methodology fordarmg from probability distributions
in high dimensional spaces [16, 57]. Usually the stochadtitamics is combined with an accept-reject
(Metropolis-Hastings) step. When the Smoluchowski (oaerded Langevin) dynamics is combined with
the Metropolis-Hastings step, the resulting algorithmailez! the Metropolis adjusted Langevin algorithm
(MALA) [89, 88, 87].

In Section 4.8 we saw that there are (infinitely many) diffier@iffusion processes that can be used in
order to sample from a given probability distributiaiz). Choosing the diffusion process that converges
the fastest to equilibrium leads to a computationally effitialgorithm. The Smoluchowski dynamics is not
the optimal choice since it can lead to a slow convergencketdarget distribution. The drift vector and/or
the diffusion matrix have to be modified in order to acceke@nvergence. It turns out that the addition of
a non-reversible perturbation to the dynamics will in gahepeed up convergence to equilibrium; see [39,
40]. The optimal nonreversible perturbation can be catedléor diffusions with linear drift that can be used
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in order to sample from Gaussian distributions. See [54fottucing a time dependent temperature can also
accelerate convergence to the target distribution. Thisl#éed to thesimulated annealinglgorithm [37].
Another quantity of interest is the asymptotic varianﬁe‘or an observablg. We can show that

o = Var(f) = (=£) " f, ), (4.149)

where£ denotes the generator of the dynamieshe distribution from which we want to sample afid) .
the inner product i.?(R¢; 7). Itis possible to use techniques from the spectral theoppefators to study
af[. See [70] and the references therein. A detailed analys#goiithms for sampling from the Gibbs
distribution e =AY can be found in [55].

Mapping a Fokker-Planck operator to a Schrodinger operateery useful since Schrodinger operators
are one of the most studied topics in mathematical physigs[&l]. For example, the algebraic study of the
spectrum of the generator of the Ornstein-Uhlenbeck peogsisg creation and annihilation operators is a
standard tool in quantum mechanics. See [100, Ch. 8]. Irtiaddsemigroups generated by Schrodinger
operators can be used in order to study properties of thegmwnding Markov semigroup; see [93].

Conversely, itis possible to express the solution of the tilependent Schrodinger equation in terms of
the solution to an appropriate Fokker-Planck equations Thihe basis for Nelson&ochastic mechanics
See [11, 73].

4.11 Exercises

1. Solve equation (4.18) by taking the Fourier transfornmgighe method of characteristics for first order
PDEs and taking the inverse Fourier transform.

2. Use (4.26) to obtain formulas for the moments of the Omstklenbeck process. Prove, using these
formulas, that the moments of the Ornstein-Uhlenbeck m®cenverge to their equilibrium values ex-
ponentially fast.

3. Show that the autocorrelation function of the statior@rgstein-Uhlenbeck is

E(X:Xo) — / / zzopou (@, tlzo, 0)ps (z0) drdzg
RJR
D

= —e
2

—alt]
)

wherepoy (z, t|zo, 0) denotes the transition probability function andx) the invariant Gaussian distri-
bution.

4. Let X; be a one-dimensional diffusion process with drift and diffu coefficientsi(y,t) = —ap — a1y
andb(y,t) = by + by + boy? wherea;, b; > 0,7 =0,1,2.
(&) Write down the generator and the forward and backwardnidgbrov equations foky;.

(b) Assume thafX is a random variable with probability density(z) that has finite moments. Use
the forward Kolmogorov equation to derive a system of défaial equations for the moments of
X;.
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(c) Find the first three momentd,, M;, M- in terms of the moments of the initial distributi@g(x).

(d) Under what conditions on the coefficients b; > 0, i = 0,1, 2 is M finite for all times?

. Consider a uniformly elliptic diffusion process fa ¢ R¢ with reflecting boundary conditions and
generator

1
£:b(x)-V+§E:D2. (4.150)

Let p(z,t) denote the probability density function, i.e. the solutairthe Fokker-Planck equation, and
ps(x) the stationary distribution. Show that the relative engrop

H(t) = /Q p(z,t)In (1; %3) da

dH
— < 0.
dt

is nonincreasing:

. LetV be a confining potential ilR?, 3 > 0 and letps(z) = Z~'e=8V(*). Give the definition of the
Sobolev spacél*(R%; ps) for k a positive integer and study some of its basic properties.

. Let X; be a multidimensional diffusion process fih1]¢ with periodic boundary conditions. The drift
vector is a periodic function(z) and the diffusion matrix i DI, whereD > 0 and[ is the identity
matrix.

(&) Write down the generator and the forward and backwardnidgbrov equations foky;.

(b) Assume that(z) is divergence-freeY\ - a(x) = 0). Show thatX; is ergodic and find the invariant
distribution.

(c) Show that the probability densipyx,t) (the solution of the forward Kolmogorov equation) con-
verges to the invariant distribution exponentially fasti([0, 1]¢).

. The Rayleigh procesX, is a diffusion process that takes values (0n+o0c) with drift and diffusion
coefficientsa(x) = —ax + % andb(z) = 2D, respectively, where, D > 0.

(a) Write down the generator the forward and backward Kolonog equations forX;,.

(b) Show that this process is ergodic and find its invariasiritiution.

(c) Solve the forward Kolmogorov (Fokker-Planck) equatising separation of variableddit: Use

Laguerre polynomials).

. Letx(t) = {z(t), y(t)} be the two-dimensional diffusion process [Bn 27]? with periodic boundary
conditions with drift vector(z,y) = (sin(y), sin(x)) and diffusion matrixb(z,y) with by; = byy =
1, bi2 = b1 = 0.

(a) Write down the generator of the procdsst), y(¢)} and the forward and backward Kolmogorov
equations.
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(b) Show that the constant function
ps(l', y) =C

is the unique stationary distribution of the procdsst), y(¢)} and calculate the normalization
constant.

(c) LetE denote the expectation with respect to the invariant distion p,(x, y). Calculate
E (cos(z) 4 cos(y)) and E(sin(z)sin(y)).

10. Leta, D be positive constants and |&i(¢) be the diffusion process 00, 1] with periodic boundary
conditions and with drift and diffusion coefficieni$z) = a andb(x) = 2D, respectively. Assume that
the process starts ap, X (0) = zo.

(a) Write down the generator of the proces$t) and the forward and backward Kolmogorov equa-
tions.

(b) Solve the initial/lboundary value problem for the forddolmogorov equation to calculate the
transition probability density(x, t|xo,0).

(c) Show that the process is ergodic and calculate the avadistributionps(z).

(d) Calculate the stationary autocorrelation function

1,1
E(X(t)X(O)):/O /0 xxop(x, t|zo, 0)ps (o) drdxy.

11. Prove formulas (4.109), (4.112) and (4.113).

12. LetX; be a reverisble diffusion process. Use the spectral asaly@in Section 4.7 to obtain a spectral
representation for an autocorrelation function of the form

E(f(X1)h(X0)), (4.151)

wheref andh are arbitrary observables.
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Appendix A

Frequently Used Notation

In the following all summations are over indices from the §et2, ..., d}, d being the dimension of the
space. We us®&‘ to denote thel—dimensional Euclidean space. We denote(hy) the standard inner
product onR?. We also use to denote the inner product between two vectors, so that

<a,b>:a-b:2aibi,

where{¢; }_, are the components of a vectpe R¢ with respect to the standard bagis}<_,. The norm
induced by this inner product is the Euclidean norm

la| = Va-a

and it follows that
laf* = Za?, a € RY
7

Theinner product between matricésdenoted by

A:B= tr(ATB) = Zaljbij.
]

The norm induced by this inner product is th@benius norm
|A|p = 4/tr(AT A). (A1)

Let V andV- denotegradientanddivergencan R%. The gradient lifts a scalar (resp. vector) to a vector
(resp. matrix) whilst the divergence contracts a vect@prenatrix) to a scalar (resp. vector). The gradient
acts on scalar valued functior$z), or vector valued functions(z), via

0
(Vo) = 52

(Vv)ij == 8:6 -
J

The divergence of a vector valued functiofx) is

V-U:Tr(Vv):Z%.
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The divergence and gradient operators do not commute:
V(V-v)=V-((Vo)T).
The divergence of a matrix valued functiet{x) is the unique vector field defined as
V-Ax)-a=V- (AT (2)a),
for all constant vectors € R%. Componentwise,

(V-A), = Yooi=1,...d.
Zj:azj

Given a vector valued function(x) and a matrix valued functiod (x) we have the following product rule
V- (ATU) =(V-A)-v+A:Vu.
For two matrix valued functiong(x), B(z) we have the following product rule
V- (AB)-a=(V-B)-Aa+ B:V(4a). (A.2)
Given vector fields:, v we use the notation
a-Vv:=(Vov)a.

Thus we define the quantity by calculating Vv, for each component of the vector Likewise we can
extend to the notation
a- VO,
where® is a matrix field, by using the above definition componentwise
Since the gradient is defined for scalars and vectors welyaadke sense of the expression
VV¢
for any scalaw; it is the Hessianmatrix D? f with entriesagaij . Similarly, we can also make sense of the
expression

VVu
by applyingV'V to each scalar component of the vectoor indeed
vVve,
again componentwise. We define the Laplacian of a scalaratorvéeld by
Ap=V-V¢;, Av=V-Vo.

It follows that A¢ = I : VV¢. Applying this definition componentwise allows for the deiom of A©.
We also use the following notations
0% f

A:VVf=A:D*f=T(AD*)f = ZAMTC_(%:
ij v
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Appendix B

Elements of Probability Theory

In this appendix we put together some basic definitions asultssfrom probability theory that we used. This

is very standard material and can be found in all textbooksrohability theory and stochastic processes. In
Section B.1 we give some basic definitions from the theoryrobability. In Section B.2 we present some

properties of random variables. In Section B.3 we introdilee concept of conditional expectation and
in Section B.4 we define the characteristic function. A felcalations with Gaussian measures in finite
dimensions and in separable Hilbert spaces are presentgection B.5. Different types of convergence

and the basic limit theorems of the theory of probability digscussed in Section B.6. Discussion and
bibliographical comments are presented in Section B.7.

B.1 Basic Definitions from Probability Theory

In order to study stochastic processes we need to be ablestoilokethe outcome of a random experiment
and to calculate functions of this outcome. First we needeticdbe the set of all possible experiments.

Definition B.1. The set of all possible outcomes of an experiment is calledaimple spacand is denoted
by Q.

We define events to be subsets of the sample space. Of cowseoud like the unions, intersections
and complements of events to also be events. When the sapgie(3 is uncountable, then technical
difficulties arise. In particular, not all subsets of the ptarspace need to be events. A definition of the
collection of subsets of events which is appropriate fotdiadditive probability is the following.

Definition B.2. A collectionF of €2 is called a field orf2 if
i. 0eF;
i. if Ae FthenAce F;
jii. If A, Be FthenAUB € F.

From the definition of a field we immediately deduce thfais closed under finite unions and finite
intersections:

Ay,... A, e F = U?ZlAZ‘G./T", ﬂznzlAz‘GJ:.
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When(2 is infinite dimensional then the above definition is not appiaie since we need to consider count-
able unions of events.

Definition B.3 (c-algebra) A collectionF of Q2 is called ac-field or o-algebra on(2 if
i. 0eF,
i. if Ae FthenAce F;
ji. If Ay, Ag,--- € FthenU® A; € F.

A o-algebra is closed under the operation of taking countaiilrsections. Standard examples of a
o-algebra areF = {(7), Q} F = {(7), A, A€, Q} whereA is a subset of2 and the power set d?, denoted
by {0, 1}** which contains all subsets 6.

Let now F be a collection of subsets 6I. It can be extended to @-algebra (take for example the
power set of?). Consider all ther-algebras that contaif and take their intersection, denoted dF),

i.e. A C Qifandonly ifitis in everyo-algebra containingr. It is a standard exercise to show thafF) is
ac-algebra. It is the smallest algebra containifigand it is called ther-algebra generated b¥.

Example B.4. Let Q2 = R". Theo-algebra generated by the open subset®Rbf(or, equivalently, by the
open balls ofR™) is called the Boreb-algebra ofR™ and is denoted big(R"™).

Let X be a closed subset &". Similarly, we can define the Boret-algebra ofX, denoted by3(X).
A sub--algebra is a collection of subsets otraalgebra which satisfies the axioms obalgebra. The
o—field F of a sample spac@ contains all possible outcomes of the experiment that wet veanstudy.
Intuitively, theo-field contains all the information that is available to ubew the random experiment that
we are performing.

Now we want to assign probabilities to the possible outcoaies experiment.

Definition B.5 (Probability measure)A probability measur® on the measurable spa¢®, F) is a function
P: F — |0, 1] satisfying

ii. For Ay, Ao, ... with A; ﬂAj =0, i +# jthen
P(UZ,Ai) = ) P(4)).
=1
Definition B.6. The tripIe(Q, F, IP’) comprising a sef?, a o-algebra F of subsets of? and a probability

measureP on (2, F) is a called a probability space.

A standard example is that 6 = [0,1], F = B([0,1]), P = Leb([0,1]). Then (22, F,P) is a
probability space.
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B.2 Random Variables

We are usually interested in the consequences of the outobareexperiment, rather than the experiment
itself. The function of the outcome of an experiment rmadom variablethat is, a map fronf to R.

Definition B.7. A sample spac@ equipped with ar—field of subsets is called a measurable space.

Definition B.8. Let (2, F) and (E,G) be two measurable spaces. A functi§n: 2 — E such that the
event
{we: X(w)e A} = {X € A} (B.1)

belongs taF for arbitrary A € G is called a measurable function or random variable.
WhenF is R equipped with its Boret-algebra, then (B.1) can by replaced with
{X<z}eF VzelR

Let X be a random variable (measurable function) fré.F, ) to (E, G). If E is a metric space then we
may defineexpectationwith respect to the measureby

E[X] :/QX(w) dp(w).

More generally, letf : E — R beG—measurable. Then,

E[f(X)] = /Q F(X () duw).

Let U be a topological space. We will use the notati8(i/) to denote the Boreb—algebra ofU: the
smallesiv—algebra containing all open setslof Every random variable from a probability spa€g F, 1)
to a measurable spa¢€, B(E)) induces a probability measure éh

px(B) =PX }(B) = pu(w e Q; X(w) € B), BecB(E). (B.2)
The measurg x is called thedistribution (or sometimes thiaw) of X.

Example B.9. LetZ denote a subset of the positive integers. A vegior {po;, ¢ € Z} is a distribution
onZ if it has nonnegative entries and its total mass equaly ;7 po; = 1.

Consider the case whefe = R equipped with the Borer—algebra. In this case a random variable is
defined to be a functioX : Q2 — R such that

{weQ: X(w)<z}CF VreR.
We can now define the probability distribution functionXf F'y : R — [0, 1] as
Fx(z) =P({w e QX (w) <z)} = P(X < z). (B.3)

In this case(R, B(R), F'x) becomes a probability space.
The distribution functionF’x (z) of a random variable has the properties thai, , ., Fx(z) =
0, lim,— 400 F'(z) = 1 and is right continuous.
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Definition B.10. A random variableX with values omR is called discrete if it takes values in some countable
subsef{zg, x1, z2,... } Of R.i.e.: P(X = x) # x only forz = xq, z1,....

With a random variable we can associate the probability asgionp, = P(X = z). We will con-
sider nonnegative integer valued discrete random vasalethis case, = P(X = k), £k =0,1,2,....

Example B.11. The Poisson random variable is the nonnegative integeracafandom variable with prob-
ability mass function

\k A
pk:IP’(X:k):Fe , k=0,1,2,...,

where) > 0.

Example B.12. The binomial random variable is the nonnegative integeugdl random variable with
probability mass function

N! N
(N —n)? 1 k=0,1,2,... N,

wherep € (0,1), ¢ =1 —p.
Definition B.13. A random variableX with values orR is called continuous iP(X = z) = 0Vz € R.

Let (Q2, F,P) be a probability space and l1&f : Q2 — R be a random variable with distributiaFiy .
This is a probability measure of(R). We will assume that it is absolutely continuous with respec
the Lebesgue measure with density: F'x(dx) = p(x)dz. We will call the densityp(x) the probability
density function (PDF) of the random variabte

Example B.14. i. The exponential random variable has PDF
Xe ™ x>0,
J(@) = { 0 x<0,

with A > 0.

ii. The uniform random variable has PDF

%a a<z<b,
f(””):{bo v ¢ (a,b)

with a < b.

Definition B.15. Two random variables{ andY are independent if the evenfs € Q| X (w) < z} and
{w € Q]Y(w) <y} are independent for alt, y € R.

Let X, Y be two continuous random variables. We can view them as anangctor, i.e. a random
variable from( to R2. We can then define the joint distribution function

F(z,y) =P(X <z,Y <vy).
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The mixed derivative of the distribution functiofx y (z,y) := gj—gy(:c,y), if it exists, is called the joint
PDF of the random vectdrX, Y}:

r Y
Fxy(z,y) = / / Ixv(z,y)dzdy.
If the random variablex” andY” are independent, then

Fxy(z,y) = Fx(2)Fy (y)

and
fxy(@,y) = fx()fy(y).

The joint distribution function has the properties

FX,Y(x’y) = FY,X(y’x)a
+o0o
Fxy(+oo,y) = Fy(y), fr(y) 2/ fxy(z,y)dz.

—0o0

We can extend the above definition to random vectors of arifinite dimensions. LeX be a random
variable from(9, 7, u) to (R¢, B(R%)). The (joint) distribution function'xR¢ — [0, 1] is defined as

Let X be a random variable iR¢ with distribution functionf (zx) wherezy = {z1,...2nx}. We define
the marginal or reduced distribution functigh’~!(zx_1) by

AN ano) = / N (zn) da.
R
We can define other reduced distribution functions:

sz(DCN—Q):/RfN1(36N—1)d96N—1 :/R/Rf(ﬂﬁN)dwN—MwN-

Expectation of Random Variables

We can use the distribution of a random variable to compupe&tations and probabilities:

E[f(X)] = / f(x) dF () (B.4)

and

P[X € G] = / dFx(z), G € B(E). (B.5)
G

The above formulas apply to both discrete and continuoudoranvariables, provided that we define the
integrals in (B.4) and (B.5) appropriately.
WhenE = R? and a PDF existsiFx (z) = fx(z) dz, we have

F(z) = P(X < 2) = /; . /Z Fx () dz..
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WhenE = R? then by LP(Q; R?), or sometimes.?(€2; ;1) or even simplyL?(u), we mean the Banach
space of measurable functions @rwith norm

Xl = (E1xp) "

Let X be a nonnegative integer valued random variable with pritityalmass functionp;,. We can
compute the expectation of an arbitrary function¥iising the formula

E(f(X)) = f(k)px-
k=0

Let X, Y be random variables we want to know whether they are coeatkand, if they are, to calculate
how correlated they are. We define the covariance of the tndoma variables as

cov(X,Y) =E[(X —EX)(Y —EY)| = E(XY) - EXEY.
The correlation coefficient is (X.Y)
cov( X,
p(X,Y) =
Vvar(X)/var(X)
The Cauchy-Schwarz inequality yields thdtX,Y) € [—1,1]. We will say that two random variables

X andY are uncorrelated provided thatX,Y) = 0. It is not true in general that two uncorrelated random
variables are independent. This is true, however, for Gansandom variables.

(B.6)

Example B.16. e Consider the random variabl& : Q — R with pdf

Such anX is termed a Gaussian or normal random variable. The mean is

EX = / 2Ygp(x)dr =b
R

and the variance is
E(X —b)? = /R(ac — )2 ypp(x) dz = 0.
e Leth € R? and ¥ € R¥*? pe symmetric and positive definite. The random variable 2 — R?¢
with pdf
ale) = ((2maes)  exp (~3(27 -0 (2 - ) )
is termed a multivariate Gaussian or normal random varialdlee mean is
E(X)=b (B.7)
and the covariance matrix is
E((X ) ® (X - b)) =3 (B.8)

Since the mean and variance specify completely a Gaussilomavariable orR, the Gaussian is
commonly denoted by (m, o). The standard normal random variablig0, 1). Similarly, since the mean
and covariance matrix completely specify a Gaussian randamnable onR?, the Gaussian is commonly
denoted byV (m, X).

Some analytical calculations for Gaussian random varsai# be presented in Section B.5.
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B.3 Conditional Expecation

One of the most important concepts in probability is thahefdependence between events.

Definition B.17. Afamily{4; : i € I} of events is called independent if
P(Njes Aj) = TjesP(4;)
for all finite subsets/ of I.

When two eventsi, B are dependent it is important to know the probability thatakentA will occur,
given thatB has already happened. We define this tabeditional probability denoted byP(A|B). We

know from elementary probability that
P(A|B) = P(ANB)
P(B)

A very useful result is that of thiaw of total probability

Definition B.18. A family of event§ B; : i € I} is called a partition of(2 if

BZ-(]B]-:Q)7 27&] and UieIBi:Q-

Proposition B.19. Law of total probability. For any evemt and any partition{ B; : i € I} we have

= P(A|B)P(B
i€l
The proof of this result is left as an exercise. In many casesalculation of the probability of an event
is simplified by choosing an appropriate partition{band using the law of total probability.
Let (2, F,P) be a probability space and fi8 € F. ThenP(-|B) defines a probability measure dn
Indeed, we have that
P(@|B) =0, P(Q|B)=1

and (since4; N 4; = 0 implies that(4; N B) N (4; N B) = 0)

U2, 44| B) = ZIPA|B

for a countable family of pairwise disjoint se{sﬁlj}jj‘f. Consequently(Q2, 7, P(-|B)) is a probability
space for evenp € F.

Assume thatX € L'(Q, F, ) and letg be a subs—algebra ofF. The conditional expectation of
with respect taj is defined to be the function (random variab®)X |G| : 2 — E which isG—measurable
and satisfies

/E[X\g]d,u:/Xdu VGEeG.
G G

We can definéE[f(X)|G] and the conditional probabilitP[X € F|G] = E[Ir(X)|G], wherelr is the
indicator function ofF, in a similar manner.
We list some of the most important properties of conditianglectation.
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Proposition B.20. [Properties of Conditional Expectation]. Lé£2, 7, 1) be a probability space and ¢t
be a subs—algebra ofF.

(@) If X isG—measurable and integrable th&{X|G) = X.
(b) (Linearity) If X7, X5 are integrable ana:, ¢ constants, then
E(c1 X1 + c2X2|G) = c1E(X1|G) + c2E(X3|G).
(c) (Order) If X7, X, are integrable andX; < X a.s., therE(X;|G) < E(X»|G) a.s.
(d) If Y andXY are integrable, andX is G—measurable thefi( XY |G) = XE(Y|G).

(e) (Successive smoothing)T¥is a subs—algebra of 7, D C G and X is integrable, therE(X|D) =
E[E(X|G)|D] = E[E(X[D)|]].

(f) (Convergence) LefX, }>° , be a sequence of random variables such that, forallX,,| < Z where
7 is integrable. IfX,, — X a.s., therE(X,,|G) — E(X|G) a.s. and inL!.

Let (Q2, F, ) be a probability spaceX a random variable fron2, 7, 1) to (E,G) and letF; C F» C
F. Then (see Theorem B.20)

E(E(X|F2)|F1) = E(E(X|F1)[F2) = E(X|F). (B.9)

GivenGg C F we define the functiolPy (B|G) = P(X € B|G) for B € F. Assume thaff is such that
Ef(X) < co. Then

E(f(X)|9) = /R f(x)Px(dz]G). (8.10)

B.4 The Characteristic Function

Many of the properties of (sums of) random variables can bdieti using the Fourier transform of the
distribution function. LetF'(\) be the distribution function of a (discrete or continuows)dom variableX .
The characteristic function of is defined to be the Fourier transform of the distributionction

B(t) = /R N AF(N) = E(eX). (B.11)

For a continuous random variable for which the distribufiomction F' has a density/F'(\) = p(\)dA, (B.11)
gives

o) = [ o) ar

For a discrete random variable for whiBl,X = \;) = ax, (B.11) gives

o(t) = Z kg,
k=0

From the properties of the Fourier transform we concludettieacharacteristic function determines uniquely
the distribution function of the random variable, in the sethat there is a one-to-one correspondance be-
tweenF'(\) and¢(t). Furthermore, in the exercises at the end of the chaptee#ter is asked to prove the
following two results.
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LemmaB.21.Let{ X, X»,... X,,} be independent random variables with characteristic fiomst¢;(t), j =
1,...nandletY = 37", X; with characteristic functiomy (¢). Then

¢y (1) = I_1 5 (t).

Lemma B.22. Let X be a random variable with characteristic functierit) and assume that it has finite

moments. Then

B(x*) = 26D (0).

B.5 Gaussian Random Variables

In this section we present some useful calculations for &angandom variables. In particular, we calcu-
late the normalization constant, the mean and variancetendharacteristic function of multidimensional
Gaussian random variables.

Theorem B.23. Letb € R? and ¥ € R¥*¢ a symmetric and positive definite matrix. L§tbe the
multivariate Gaussian random variable with probabilityrddty function

Tep(x) = %exp (—%(E_l(x —b),x— b>> .

Then

i. The normalization constant is

Z = (2m)%%,/det(D).
ii. The mean vector and covariance matrixXfare given by
EX=b

and
E(X-EX)® (X -EX)) =3.

iii. The characteristic function oX is

b(t) = ot (bt)—5 (£,5)

Proof. i. From the spectral theorem for symmetric positive defimtrices we have that there exists a
diagonal matrixA with positive entries and an orthogonal matfxsuch that

»!=BTAIB.
Letz = x — b andy = Bz. We have

(x7'z,2) = (BTA"'Bz,z)
= (A7'Bz,Bz) = (A"'y,y)

d
= D> N
=1
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Furthermore, we have that g8 ') = I1¢_, \; !, that det¥) = II¢_, \; and that the Jacobian of an
orthogonal transformation i = det(B) = 1. Hence,

exp —1<2*1(x—b),x—b> dx = exp —1<2*1z,z> dz
fuer (=3 )i = [ (30e)

d
1
= _Z A2 ) 1Tl d
/Rde><p< 2;1 i yz>! | dy

d 1
= H/exp <__>‘¢_1?/z'2> dy;
i=1/R 2
= 2n)PIL N = 2m)"2/del),
from which we get that
Z = (2m)%%/det(D).

In the above calculation we have used the elementary calddduntity

2
/ea%dx:\/2—w.
R (6%

ii. From the above calculation we have that

yep(x)dx = ys4(Bly +b)dy

d
1 1
—ZNy? ) dy;.
S del(z)il_[lexp< . yz> y

Consequently
EX = / xyy,p(x) dx
R4
= /Rd(BTy +b)ys,(BTy +b)dy

= b/ vs4(BTy +b)dy = b.
]Rd

We note that, sinc&~! = BTA~!B, we have that> = BTAB. Furthermorez = BTy. We
calculate

E((Xi — bi)(X; — b)) = /Rd zizjy5p(z + b) dz
1 1
= By Briym e —= )\_1 2\ d
(2m)d/2 /d—el(E) /Rdzk: kyk%: Y Xp< 2%: 14 yz) y
1 1
= By; B mexp [ —= Nly? | d
i ﬁdemz); K J/Rdyky p< 2; y yz) y

= Z By Bryj A\ k:Okm

k,m

= Eij-
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iii. Lety be a multivariate Gaussian random variable with m@and covariancé. Let alsoC' = Bv/A.
We have that = CCT = CT'C. We have that

X=CY +b.

To see this, we first note th& is Gaussian since it is given through a linear transformatiba
Gaussian random variable. Furthermore,

EX=b and E((XZ — bz)(X] — b])) = Eij-
Now we have:

pt) = EeiXt) = btEHCY L)
_ bty g lY.CTt) _ ibit) g i 20, (o Clnth)y;
oilbot) o= 5[k Conta|” _ Lilbit) o~ 3(CE.CH)

ez’(b,t>ef%<t,CTCt) ci(bt) ef%(t,2t>.

Consequently,

o(t) = ez’(b,t>f%<t,2t>

B.5.1 Gaussian Measures in Hilbert Spaces

In the following we letH to be a separable Hilbert space and we3ékl) to be the Boreb-algebra onA.
We start with the definition of a Gaussian measure.

Definition B.24. A probability measure. on (H, B(H)) is called Gaussian if for alh € H there exists an
m € R such that

p(x € H;y(h,z) € A) = N(A), A e BR). (B.12)
Let 1 be a Gaussian measure. We define the following continuodidmals:
H—-R h— / (h, x)p(dx) (B.13a)
H
H x H—R (hy,h2) %/ (h1,z)(h2, x)p(dx) (B.13b)
H

The functional in (B.13b) is symmetric. We can use the Riegzesentation theorem dih andH x H to
conclude:

Theorem B.25. There exists am € H, and a symmetric, nonnegative continuous operégi@uch that

/ (h,z)p(dx) = (m,h) Yhe H
H

and
/H<h1,x><h2,m>u(dm) — (my ) (m, o) = (Qha, he) Vhi, by € H.
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We will call m the mean and) the covariance operator of the measure
A Gaussian measureon H with meanm and covariancé) has the following characteristic function:

u(A) = /ei<’\'x>u(dx) — iAm)=3{QAN) (B.14)

Consequently, a Gaussian measure is uniguely determingdand(. Using the characteristic function of
1 one can prove thap is a trace class operator.

Let now{e; } and{\;} be the eigenfunctions and eigenvalueg)pfespectively. Sincé) is symmetric
and bounded{e; } forms a complete orthonormal basis &h Further, letr, = (z,e), & € N. In the
sequel we will setn = 0.

Lemma B.26. The random variableézy, .. ., z,,) are independent.

Proof. We compute:

/Hxixi,u(dx) = /H<x,ei>(x,ej>u(dx)

= <Qeivej>
— Ay (B.15)
U
Now we have the following:
Proposition B.27. Letu € N'(0,Q) on H. Let
1 1
So= inf —=—- B.16
@= 802 = 2q] (619
whereo (Q) is the spectrum af). Then,¥ s € [0, Sg) we have:
S‘x‘2 1
e u(dr) = exp —§Tr (log(I — 2sQ))
H
00 k
= exp [% (22) Tr(Qk)] (B.17)

Proof. 1. First we observe that sin€g is a bounded operator we haggy > 0. Now, fors € [0,.5g) we
have:

log(I — 25Q) :Z k (B.18)
k=1

the series being absolutely convergenLiiff). Consequently, the operatioig (I — 2sQ) is also trace class.
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2. We fixs € [0, Sg) and we consider finite dimensional truncations of the irstetitat appears on the
left hand side of equation (B.17):

[n — / 682?:1 mzzlu(dm)
H

= H/ s u(dz)  ({z;} are independeit
i=17H

- o [ 5 utan) @enon
i1 27‘(’)\@' )
_ H 1 _ (-3 log(1-2);5))
Pl v1—2\s
— (=3 Trog(1-25Qn)) (B.19)
with
Qnx = Z Ni{z,e;)e;, © € H. (B.20)
=1
Now we letn — oo and use the fact thawg(I — 2sQ),,) is trace class to obtain (B.17). O

From the above proposition we immediately obtain the foilmacorollary:

Corollary B.28. For arbitrary p € N there exists a constaxit, such that
| el utde) < 6, @) (8.21)
H
for arbitrary © € N (0, Q).

Proof. Differentiate equation (B.17%) times and set = 0. [ONow we make a few remarks on the above
proposition and corollary. First;, is a combinatorial constant and growspinMoreover, we have

/H |z|? p(dz) = Tr(Q). (B.22)
Let now X be a Gaussian variable di with distributiony(dz). Then we have:
E| X |* :/ || pu(dz) < Cp (EIX[?)". (B.23)
H

We will use the notatioft| X |27 := || X ||%2 Top- LEt X be a stationary stochastic processimwith distribu-
tion u(dx), u € N(0,Q). Then, using the above corollary we can boundtf&norm of X;:

[ Xell 2 < Cp [ Xell 2 (B.24)
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B.6 Types of Convergence and Limit Theorems

One of the most important aspects of the theory of randonabkas is the study of limit theorems for sums
of random variables. The most well known limit theorems iokability theory are the law of large numbers
and the central limit theorem. There are various differgpes of convergence for sequences or random
variables. We list the most important types of convergeretevin

Definition B.29. Let{Z,, }°° ; be a sequence of random variables. We will say that

(@) Z, converges t&Z with probability one if

P( lim Z,=2)=1.

n—-+o0o
(b) Z, converges tdZ in probability if for everye > 0

lim P(|Z, - Z| >¢) =0.

n—-+o0o
(c) Z, converges td& in LP if
. _ D _
ngrfOOEHZn Z|"] =o.
(d) LetF,(\),n=1,---400, F()) be the distribution functions &, n = 1, - - -+ 00 and Z, respectively.
ThenZ,, converges td in distribution if

lim F,(\) = F())

n—-+4o00

for all A € R at which F' is continuous.

Recall that the distribution functiof’xy of a random variable from a probability spa@e, 7,P) to R
induces a probability measure @and that(R, B(R), F'x) is a probability space. We can show that the
convergence in distribution is equivalent to the weak cayerece of the probability measures induced by
the distribution functions.

Definition B.30. Let (E,d) be a metric spacel3(E) the c—algebra of its Borel setspP,, a sequence of
probability measures otF, B(E)) and letCy,(E) denote the space of bounded continuous functiong.on
We will say that the sequence Bf converges weakly to the probability measitéd, for eachf € C,(E),

lim /E F(z) dPy(z) = /E f(z) dP ().

n—-+o0o

Theorem B.31. Let F,(\),n = 1,--- + oo, F(\) be the distribution functions ¢f, n = 1,--- + oo and
Z, respectively. The#,, converges tdZ in distribution if and only if, for ally € C,(R)

Jim [ gl)dFu@) = [ g(e)dPa). (B.25)
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Notice that (B.25) is equivalent to

lim E,g(X,)=Eg(X
Jm Eng(Xn) = Eg(X),
whereFE,, and £ denote the expectations with respecfipand F', respectively.

When the sequence of random variables whose convergenceewrderested in takes valuesitf or,
more generally, a metric space spéfed) then we can use weak convergence of the sequence of propabili
measures induced by the sequence of random variables te defimergence in distribution.

Definition B.32. A sequence of real valued random variablés defined on a probability spacég,,, 7, P,,)
and taking values on a metric spa¢é,d) is said to converge in distribution if the indued measures
F,.(B) = P,(X,, € B) for B € B(E) converge weakly to a probability measure

Let{X,,}>° , beiid random variables witR.X,, = V. Then, thestrong law of large numberstates that
average of the sum of the iid convergestavith probability one:

N
1
IP’( lim — 3 X :V>:1. B.26
Vi 2 X (B.26)
The strong law of large numbers provides us with informatibout the behavior of a sum of random vari-
ables (or, a large number or repetitions of the same expat)roe average. We can also study fluctuations
around the average behavior. Indeed,H¢K,, — V)2 = o2. Define the centered iid random variables
Y, = X, — V. Then, the sequence of random variabie\%v Zﬁle Y,, converges in distribution to a
N (0, 1) random variable:

1 & O
lim P Y, <al|= e~ 3% d.
n— 400 (U N ; n ) / o

—00

This is thecentral limit theorem
A useful result is Slutksy’s theorem.

Theorem B.33. (Slutsky)Let {X,,}7>9, {Y,,},}>5 be sequences of random variables such thatcon-

n=1> =

verges in distribution to a random variabl€ andY,, converges in probability to a constant 0. Then

lim Y, X, =c1X,

n—-+o0o

in distribution.

B.7 Discussion and Bibliography

The material of this appendix is very standard and can bedfimmany books on probability theory and
stochastic processes. See, for example [10, 22, 23, 5895974

The connection between conditional expectation and odhalgprojections is discussed in [12].

The reduced distribution functions defined in Section B&umed extensively in statistical mechanics.
A different normalization is usually used in physics texitke. See for instance [9, Sec. 4.2].
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The calculations presented in Section B.5 are essentialigxarcise in linear algebra. See [53, Sec.
10.2]. Section B.5 is based on [78, Sec. 2.3] where additioriarmation on probability measures in
infinite dimensional spaces can be found.

Limit theorems for stochastic processes are studied inl die{d3].
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Gibbs measure, 98
Girsanov’s theorem, 68, 70
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strong, 139
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lemma
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Liouville operator, 60
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transition matrix, 29
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transition function, 32

transition probability , 29
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Ornstein-Uhlenbeck process, 7
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partition function, 97
Pawula’s theorem, 47
Pinsker inequality, 116
Poincare’s inequality, 98

for Gaussian measures, 92
Poisson process, 24
probability density function
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probability flux, 79

random variable, 127
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Gaussian, 130

uncorrelated, 130
reduced distribution function, 129
relative entropy, 101, 116, 119
reversible diffusion, 101
reversible diffusion process, 90

sample path, 1
sample space, 125
semigroup of operators, 34
Slutsky’s theorem, 139
Smoluchowski equation, 77, 96
spectral density, 6
spectral measure, 6
stationary Fokker—Planck equation, 37
stationary Markov process, 38
stationary process, 3

second order stationary, 4

strictly stationary, 3

wide sense stationary, 4
stochastic differential equation, 13

additive noise, 50

Cox-Ingersoll-Ross, 69

Itd, 55

multiplicative noise, 50

Stratonovich, 55

strong solution, 57, 73

Verhulst, 76

weak solution, 73
stochastic integral

Itd, 52

Klimontovich, 55

Stratonovich, 53
stochastic matrix, 29
stochastic mechanics, 118
stochastic process

definition, 1

equivalent, 2

ergodic, 4

finite dimensional distributions, 1

Gaussian, 2

sample path, 1

second-order stationary, 4
stationary, 3
strictly stationary, 3
stopping time, 51, 73
Stratonovich stochastic differential equation, 55
Stratonovich stochastic integral, 53
strong solution of a stochastic differential equation,
57

Tanaka equation, 73
theorem

Birkhoff, 4

Bochner, 6

Doob, 39

Girsanov, 68, 70

Mercer, 18

Pawula, 47

Slutsky, 139
time-homogeneous Markov process, 33
transformation

Lamperti, 69, 75
transition function, 32
transition matrix

Markov chain, 29
transition probability

of a Markov process, 29
transition probability density, 33
transport coefficient, 9

uniform ellipticity
Fokker-Planck equation, 78

Verhulst stochastic differential equation, 76

Wiener process, 11
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