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Abstrakt: Zabýváme se jednorozměrnou Hadamardovou procházkou na nekonečné dis-
krétní síťce. Její prostorová homogenita může být narušena: například defekty v min-
covém prostoru. V této práci představíme analytické řešení problému vlastních čísel
Hadamardovy procházky s jedním mincovým defektem. Dále uvedeme konečnou analogii
zkoumaného systému a zavedeme patřičné okrajové podmínky. Přestože se spektrální
vlastnosti obou modelů značně liší, podléhají při perturbacích jejich spektra překvapivě
podobnému vývoji. Této vlastnosti lze s výhodou využít, neboť můžeme ve finitním
případě numericky zkoumat situace, jež analyticky řešit neumíme. Ze spektrálních vlast-
ností konečného perturbovaného systému pak můžeme usuzovat na vlastnosti spekter
nekonečných procházek. Tento postup je vhodný pro analýzu adiabatických přechodů
mezi více mincovými defekty.
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Abstract: We consider a one-dimensional Hadamard walk on an infinite lattice. Its space
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1 Introduction, basic concepts

Ever since the the beginning of ages people have been puzzled by the world that surrounds
us. Every human epoch carries topics of peoples’ interest; the more we know, the broader
our interests are. Once upon the time we experience both puzzling and illuminating
breakthrough such as discoveries of quantum mechanics, special relativity or computer
sciences. For some times, people tend to find connections between such topics, try to
combine them and derive new and more general concepts.

In this thesis, we introduce Hadamard walk on an infinite discrete line and also its
finite anologue. One of the key properties of such walks is their spatial homogeneity. We
will, however, investigate small perturbations in their structure and regard the impact on
their spectra. Such structure-preserving perturbations are known as coin defects[1]. We
shall derive an analytical solution to the eigenvalue problem of the Hadamard walk with
a general single-point defect. Even though spectral properties of the finite and infinite
models differ significantly,we uncover a surprisingly similar behaviour with respect to the
coin perturbations. Although we are able to find stationary states of Hadamard walks
with a single defect, we are not able to analyze multiple coin defects analytically. This is
unfortunately the case that arise during various transitions between perturbations. We
might, for example, trap a walker at a desired location using a phase-altered coin [2]. If
we were to move the localized walker, we need to somehow shift the coin defect the walker
is attracted to. We might encounter a co-existence of two structural perturbations in the
close vicinity during the transition. Despite not being able to examine these transitions
analytically we can examine them using the finite model. Even though its spectrum
differs fundamentally, both models share strikingly similar behaviour while undergoing
perturbations. We thus implemented own framework in order to simulate adiabatic
transitions and provide several examples concerning different coin defects.

We shall at first introduce the Hadamard walk and its structure. An impact of
single-point perturbations on the stationary states will be discussed in Section 2.2. We
begin by presenting known examples and then add our own solution to the single coin
defect problem. Later on, in Section 3.1 a short note on methods and techniques used
in our simulation framework will be provided. This section also includes the examples of
adiabatic transitions in different settings.

1.1 Random walks in the quantum realm

We begin by introducing a classical random walk. At first, a model for discrete classical
walks will be discussed [3]. We imagine a walker or a particle located in a state space.
The walker performs steps in the state space and our task is to examine the resulting
paths. In this example the evolution takes place in an infinite grid Zd where Z denotes the
set of integers. The state space is equipped with a transition function P : Zd×Zd → R+

satisfying:

(∀x, y ∈ Zd) (P (x, y) = P (0, x− y)) , (1)

(∀x, y ∈ Zd)

∑
x∈Zd

P (0, x) = 1

 . (2)

The transition function dictates the probability of transition from a point x to a point y
in a single step of the walk. The first equation postulates spatial homogeneity and the
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second postulates the normalisation of probability. We may imagine a random walker
placed on a grid whose only task is to move according the transition function at each
time step. No matter where he stands at a particular time the transition function does
not change thanks to the spatial homogeneity.

A well-known example is that of a simple random walk. We shall denote the d-

dimensional Euclidean norm by ‖x‖ =
√∑d

i=1(xi)2, where xi denotes the i-th coordinate
of x. Define the transition function as follows:

P (0, x) =
1

2d
if ‖x‖ = 1, (3)

P (0, x) = 0 if ‖x‖ 6= 1. (4)

This choice of the transition function ensures that the probability of finding the walker
somewhere in the grid remains constant.

In the case d = 1 when the state space is a discretized line standing at the point 0
the walker has two directions to choose from. The transition function (4) implies that
the walker certainly does not stay at position 0 and that the probabilities of choosing
either left or right direction are equal. The same reasoning holds for higher dimensions
as well: any point in Z has 2d direct neighbours.

A simple physical model of a one-dimensional random walk may be constructed.
Imagine we stuck pins onto a board as depicted in figure 1. If we lift the top of the
board keeping the base placed on the floor, so that marbles can roll down from the top
vertex, each pin forces marbles to go either left or right at random. In the ideal case,
the probabilities are both equal to 1

2 but we might slightly tilt the board to achieve a
biased walk. If we lift one side of the base just slightly, all marbles are forced to prefer
one direction. 1

An observer measures positions where marbles leave the board. Having done multiple
experiments, one finds that for both biased and unbiased walks, the resulting distribution
resembles the binomial distribution.

An ideal model of the latter board is mathematically described as n independent
Bernoulli trials, where n stands for the number of layers of nails (for the case in Figure 1
n = 5).

1We neglect momenta of the marbles. In the real world, these aspects might cause non-Markovian
behavior. [4]
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Figure 1: Galton’s board (Quincunx) with sample trajectories of two marbles. We let the marbles
fall from top of the board. Clearly, for n = 5 layers, only odd positions are allowed as results.
The bins to collect escaping balls are thus placed only at odd positions. Additionally, grey bars
indicate the resulting distribution for a very high number of trials; the full height of a slot is
scaled to probability 1

2 .

In 1993, Y. Aharonov, L. Davidovich and N. Zagury [5] investigated a quantum
analogy to the classical random walks. Their concept used a spin-1

2 particle located
on a 1-dimensional line. Imagine there is a particle localized at point x0 having spin
c−|↑〉+c+|↓〉 and denote its state (c−|↑〉+c+|↓〉)|ψ(x0)〉. We use column vector notation:

|↑〉 =

(
1
0

)
, |↓〉 =

(
0
1

)
(5)

for a description of the spin-space using Sz eigenvectors, where

Sz =
~
2

(
1 0
0 −1

)
=
~
2

(|↑〉〈↑| − |↓〉〈↓|) (6)

denotes spin projection along z axis.
Denoting the momentum operator P , one may express translation to a step of length l

as follows:

I ⊗ Tl(c−|↓〉+ c+|↑〉)|ψ(x0)〉 = I ⊗ exp

(
− i
~
Pl

)
(c−|↓〉+ c+|↑〉)|ψ(x0)〉 =

(c−|↓〉+ c+|↑〉)|ψ(x0 − l)〉,
(7)

where |ψ(x0 − l)〉 represents a wave packet centered around x0 − l. Note that the trans-
lation chosen in (7) acts trivially on the spin space. What if we try to construct a
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conditional transition that moves the particle based on its spin?[
(|↑〉〈↑|)⊗ exp

(
− i
~
Pl

)
+ (|↑〉〈↑|)⊗ exp

(
i

~
Pl

)]
(c−|↓〉+ c+|↑〉)|ψ(x0)〉 =

c−|↓〉 ⊗ exp

(
− i
~
Pl

)
|ψ(x0)〉+ c+|↑〉 ⊗ exp

(
i

~
Pl

)
|ψ(x0)〉 =

c−|↓〉|ψ(x0 − l)〉+ c+|↑〉|ψ(x0 + l)〉 = Ul (c−|↓〉+ c+|↑〉) |ψ(x0)〉.

(8)

Such spin-conditioned transition Ul will enable us to create a quantum analogy of classical
random walks. But at first imagine the examined particle happens to have internal spin
that is an eigenstate of Sz, for example |↓〉|ψ(x0)〉. Then the evolution dictated by the
effective evolution operator Ul from the equation (8) forces the particle to move left by l
in each step. Such a walk is not really a random walk. On the other hand it enables
us to mimic translations defined by the equation (7). More interesting behavior may be
observed when considering particles with internal spin that is a superposition of |↓〉, |↑〉.

1. Having begun with state Ψ0 = (c−|↓〉 + c+|↑〉)|ψ(x0)〉 we apply the conditional
transition operator (8); the resulting state will be: Ψ1 = c−|↓〉|ψ(x0 − l)〉 +
c+|↑〉|ψ(x0 + l)〉.

2. Performing a measurement of the spin on Ψ̃1, we either find spin −~2 with proba-
bility |c−|2 and the particle will be located at x0 − l, or we measure spin ~

2 with
probability |c+|2 and the particle will be at x0 + l.

3. Suppose, for example, spin −~2 and thus position x0 − l was measured. Provided
we then prepare a new state Ψ1 = (c−|↓〉+ c+|↑〉) |ψ(x0 − l)〉, we apply the con-
ditional step and measure the spin again, either c−|↓〉|ψ(x0 − 2l)〉 or c+|↑〉|ψ(x0)〉
are obtained.

4. Repeating this procedure one is fully capable to mimic classical random walk on a
line.

Returning to the equation (8) describing the effective evolution operator for a single
conditional step, we may write [1]:

Ul =

[
(|↑〉〈↑|)⊗ exp

(
− i
~
Pl

)
+ (|↑〉〈↑|)⊗ exp

(
i

~
Pl

)]
= (9)

exp

(
− i
~

(|↑〉〈↑| − |↓〉〈↓|)⊗ Pl
)

= exp

(
−2

i

~
Sz ⊗ Pl

)
, (10)

since |↓〉〈↓| and |↑〉〈↑| are projections and any natural power leaves them unaffected, and
because operators |↓〉〈↓|⊗P and |↑〉〈↑|⊗P commute. We have arrived at the same form
of unitary evolution as described in [5].

From now on, let ~ be equal to 1; such a choice simplifies the equations without
introducing any ambiguity.

Note 1.1. Up until now we have discussed our ability to replicate classical biased walks
on a line using equation (8) or (9). There are several questions to be answered:

1. Does the quantum analogy bring any new phenomena?
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2. Is there a quantum analogy to classical walks on lattices?

3. Since we know classical walks may be used as a building block for designing certain
algorithms, could we use quantum walks for quantum computation? And if yes, do
we gain any speedup against classical computation?

1.2 From Quantum Computing to Adiabatic Theorem

For a physicist the possibility of being able to effectively simulate evolution of a physical
system has always been an important question. Predictions of classical physics are based
on ordinary and partial differential equations, finding extremes of certain functionals etc.
Digital computers play a major role in the world of simulation because classical analog
computers are not very suitable for such task. They require extremely precise setting
and control over external conditions (baths, shielding, mechanical isolation etc.) in order
to provide sufficiently reliable results. Moreover their setting is very subtle and we are
often unable to gather precise control over all components (e.g. due to noise) [6]. The
idea of using physical phenomena reappeared in Feynman’s article from 1982 [7] where
he suggested performing simulations of quantum systems using other quantum systems.

From the perspective of computer scientists, the circuit model of quantum computa-
tion has been theoretically examined as the first universal model of quantum computing
[8], [9] and [10]. Computations are performed in the domain of the circuit model using
unitary gates that operate on qubits [11]. Processors used in digital computers imple-
ment only particular subsets of all possible logical operations from which more complex
instructions are composed [12]. Despite this, we are able to show that they may perform
any logical operation desired; this property is called universality [6], [13]. A similar result
is known for the circuit model: any unitary operation may be expressed using Hadamard
gate H, phase gate S, π/8 gate T and cnot gate to arbitrary accuracy [11]. These gates
are expressed by matrices:

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, (11)

T =

(
1 0

0 eiπ/4

)
, cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (12)

An alternative approach to quantum computing uses an encoding of computationally
hard problems as a ground state of a specifically designed Hamiltonians. Image we are
able to map an output of an algorithm as a ground state of H1 and that we find a
Hamiltonian H0 with known ground state and a deformation of H0 to H1. Provided that
the transition between Hamiltonians is slow enough and we do not change the degeneracy
of the ground state during the transition, we might end up with the ground state of H1.
This idea is formally governed by adiabatic theorems of the quantum mechanics. There
are several versions and each is suitable under different circumstances; discussion of
adiabatic theorems is left to the section 1.3.

The design of encoding a result of a computation as a ground state appeared in 1988
[14] in the article Quantum Stochastic Optimization written by Apolloni, Carvalho, and
de Falco [15]. Their approach was later considered as a branch of quantum annealing
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(QA) [14]. QA was understood as a quantum counterpart to the simulated annealing [16].
Later, in 1999, Brooke et al. published an article Quantum Annealing of a Disordered
Magnet where they investigated an implementation of QA in experimental configura-
tions of disordered quantum ferromagnets. Their experiments provided a step towards
construction of devices enabling to perform QA and this approach became interesting
from the perspective of the quantum computing [14]. In 2000 Farhi et. al. proposed
a solution of SAT-3 problem based on a quantum adiabatic algorithm [17]. The term
adiabatic quantum computing (AQC) was introduced by van Dam, Mosca and Vazirani
at Symposium on Foundations of Computer Science in 2001 [18], [14].

In 2007 Aharonov et. al. [19] found connections of computation resources between
the adiabatic and the circuit paradigms: they showed that we are able to simulate AQC
using the circuit model and vice versa with only a polynomial overhead. They also stated
a precise definition of AQC using k-local Hamiltonians [19].

Definition 1.1. We say that a hermitian matrix H acting on a space of p-state particles
(e.g. binary particles) that may be written as H =

∑r
i=1Hi, where each Hi acts non-

trivially on at most k particles, is a k-local Hamiltonian. We suppose that p ≥ 2.

The adiabatic quantum computing is defined as follows [19].

Definition 1.2. A k-local adiabatic quantum computation is specified by two k-local
Hamiltonians H0 and H1 acting on p-state particles and by a description of the adiabatic
evolution. We pose additional conditions on the Hamiltonian: the ground state of H0 is
unique and it is a product state. The adiabatic evolution is described by a constant T :
total runtime and time-evolution function s(t) : [0, T ] → [0, 1], an increasing smooth
bijection.

We set the time dependent Hamiltonian H(s) to be

H(s) = (1− s)H0 + sH1.

Both T and s(t) have to be adjusted in such way that the final state of the adiabatic
evolution generated by H(s) = (1− s)H0 + sH1 at time T , |ψ(T )〉, is ε-close in L2 norm
to the ground state of H1, say |ϕ〉: ‖|ϕ〉− |ψ(T )〉‖ < ε, where ε is a parameter from (0, 1]
describing the precision of our computation.

The output of the adiabatic computation is the evolved vector |ψ(T )〉.

Note 1.2. A few comments to the latter definition 1.2:

1. If the function s(t) is given, ε can be calculated (for example as an estimate on
the computation error). Usually, in practice, however, one would like to perform a
calculation and given a parameter ε ∈ (0, 1] design the evolution function s(t).

2. Even though the definition 1.2 supposes non-degenerate ground states of the Hamil-
tonian H(s), we may suppress this assumption, for the adiabatic theorem of the
quantum mechanics holds also for degenerate spectra (but it is necessary to track
the path not of eigenvector but rather that of the whole eigenspace belonging to
the lowest energy). Nevertheless Aharonov showed in [19] that the simpler case
is sufficient in order to obtain a computation model of the equal strength as the
quantum circuit model.
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3. The definition 1.2 supposes that only the evolution of the ground state is tracked.
In practise it may be useful to track the evolution of excited states (e.g. the glued
trees problem [20], [21]). Although, strictly speaking, such a computation does not
belong to the class AQC defined 1.2, it is generally considered as a variation on
AQC.

4. The evolution given by 1.2 is not the most general. In fact, there are known
situations in which a different type is needed. Aharonov proposed introducing an
intermediate catalyst – a Hamiltonian Hc(s) depending on s ∈ [0, 1] that satisfies:
Hc(0) = Hc(1) = 0 [19]. Having introduced the catalyst Hamiltonian, we may be
able to guarantee non-degeneracy of the first two eigenvalues from the spectrum of
H(s) := (1 − s)H0 + sH1 + Hc(s) despite the fact that the ground eigenvalues of
H(s) := (1− s)H0 + sH1 would become degenerate during the evolution.

Farhi et. al. investigated the use of an intermediate catalyst in the article Quantum
computation by adiabatic evolution [17] while solving the SAT-3 problem with use
of the adiabatic evolution.

5. An intuitive way to understand the value of k may be that it somehow manages
the interconnection between degrees of freedom of the given system. In this sense
it may be compared to memory requirements from the classical computing theory.
During the time there has always been investigation of the value k and its relation
to computation resources. In 2007 Aharonov et. al. showed that k = 6 suffices to
create a universal AQC. It is also known that such k has to be at least 2, see [22]
and [23].

Further details concerning the history of our knowledge regarding the impact of k
to computation resources are summarized in [14]

1.3 Adiabatic theorems of quantum mechanics

In 1916 Ehrenfest stated a hypothesis that the laws of quantum physics would allow only
certain motions. He supposed that evolution governed by the quantum mechanics might
be invariant under slowly introduced perturbations – adiabatic perturbations [24]. The
idea was later investigated by Born and Fock. They studied adiabatic changes of opera-
tors with discrete spectra [25]. Later, in 1950, Kato expanded the class of operators to be
considered and stated a rigorous version of the adiabatic theorem (AT) governing both
operators with discrete spectra and operators with non-discrete or possibly degenerate
spectra [26]. However, we need to encompass an important property operators, whose
evolution is to be examined, should have. When we imagine an adiabatic transition we
usually tend to fix a final state that is to be achieved by end of the transition. The
requirement for a suitable “consolidation” is discussed in [27]. Although Kato did not
use this definition in the statement of the adiabatic theorem, he implicitly assumed that
investigated evolution consolidate in the proof. This assumption is necessary because
we may derive counterexamples of Hamiltonians with oscillatory driving terms whose
evolution is very slow – and are admitted by the Kato’s statement of the AT – but they
never reach a final fixed state. Furthermore there are counterexamples that satisfy the
requirements imposed by Kato but violating the statement of AT. For a summary of
comments on Kato’s proof, examples of Hamiltonians with oscillatory driving terms and
other remarks see [27].
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We begin by introducing so-called “approximate” versions 2 of the AT. We used the
attribute “approximate” because additional assumptions have to be added in order to
make the statements valid, to be more precise to disallow certain pathological cases. For
a critique of different versions of the AT see for example [27], [28] or [29]. Although there
are known refinements of these “approximate” versions, their statements are cumbersome
and complicated. In practice, the approximate versions of the AT often hold: for example
when we slowly introduce a perturbation or in AQC. While designing algorithms, we
usually tend to find an ingenious way to perform a deformation of the system under
consideration without introducing unnecessary disturbances or even oscillatory driving
terms which are the typical counterexamples to the validity of AT. Another rationale
why to start with the “approximate” statements is that historically they came first and
the refined rigorous versions of the AT are usually based on them.

Born’s and Fock’s statement of the AT concerned Hamiltonians with discrete and non-
degenerate spectra. Later, Messiah presented a generalised version for Hamiltonians with
possibly degenerate spectra in his monograph Quantum Mechanics [30]. Both statements
are analogous except for the degeneracy. Denote the instantaneous eigenstates of a time-
dependent Hamiltonian H(t) by |εj(t)〉 where εj(t) marks the j-th energy level, j ∈ N0.
We may write:

H(t)|εj(t)〉 = εj(t)|εj(t)〉. (13)

It is usually convenient to introduce a particular labeling of the eigenvalues. While ex-
amining time-dependent Hamiltonians, we may label the eigenvalues using the ordering:
j < k =⇒ εj(t) ≤ εk(t). Having initialized the system subjected to the time dependent
Hamiltonian H(t) the labeling helps us to discern between different eigenvalues and en-
ables us to track their evolution. If we begin in an eigenstate |εj(0)〉, the evolved state
will follow the path 3 of instantaneous eigenstates |εj(t)〉 for all times t ∈ [0, T ], where T
denotes the total time of the evolution, provided that [30]

max
t∈[0,T ]

|〈εi|∂tεj〉|
|εi − εj |

= max
t∈[0,T ]

|〈εi|∂tH|εj〉|
|εi − εj |2

� 1 ∀i 6= j. (14)

In 2009, Amin found a way to improve the assumptions (14) so that the AT holds
generally [29]. He pointed out that using a suitable reparametrisation of the time scale
leads to a criterion providing a variant of AT analogous to the Messiah’s (14) [30]. Let s
be from the interval [0, 1]. We may see that the Schrödinger equation can be rewritten
using s = t

T as follows
i

T

∂|ψ̃(s)〉
∂s

= H̃(s)|ψ̃(s)〉, (15)

where H̃(s) = H(sT ) and |ψ̃(s)〉 = |ψ(sT )〉. The variable s is called dimensionless time
and we will further omit tildes while expressing dependency on it.

The adiabatic theorem holds provided that the H(s) parameterized by the dimen-
sionless time s does not explicitly depend on T and if

max
s∈[0,1]

|〈εi(s)|∂sH(s)|εj(s)〉|
|εi(s)− εj(s)|2

� T ∀j 6= i. (16)

2Also known as classical. This name, however, does not imply any direct connection to the classical
physics. The term classical means “first known”.

3Up to global phase factor.
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For the interpolating Hamiltonians of the form

H(s) = sH0 + (1− s)H1, (17)

suitable for the AQC, we are usually able to guarantee the above conditions if the time
scale s grows monotonically and provided that the final Hamiltonian H1 does not depend
on the runtime T 4.

Recall the adiabatic condition (16); if the operator ∂sH is bounded 5 we may set
B(s) = ‖∂sH‖. Then we arrive at a useful bound for the total runtime T , ∀j 6= i:

max
s∈[0,1]

|〈εi(s)|∂sH(s)|εj(s)〉|
|εi(s)− εj(s)|2

< max
s∈[0,1]

|〈εi(s)|B(s)|εj(s)〉|
|εi(s)− εj(s)|2

(18)

< max
s∈[0,1]

B(s)

|εi(s)− εj(s)|2
(19)

= max
s∈[0,1]

B(s)

εij(s)2
� T, (20)

where εij(s) stands for |εi(s)− εj(s)|. An (ij)-th spectral gap may be defined as

∆ij = min
s∈[0,1]

εij(s). (21)

With the use of (21) the equation (18) can be further estimated as follows:

max
s∈[0,1]

B(s)

εij(s)2
< max

s∈[0,1]

B(s)

∆2
ij

. (22)

An estimate on the operator ∂sH was used together with the fact that T is significantly
greater than the left-hand side (18). An inverse-square dependence may bee seen in (18)
and (22); from here arise names for such bounds: “inverse square spectral gap” etc [14].

Various more precise bounds may be found; the are usually of the form O( 1
Tn ) for

n ∈ N [31] or [32]. We will not present a proof of any of the refined alternatives as (18)
and (22) suffices for our purposes. For a deeper analysis and alternative statements of
the inverse spectral gap rule see, for example [32].

We will conclude this section by adding two remarks [36]: one concerning a structural
aspect of the proof, second regarding a possibility of achieving an arbitrarily small error
in the resulting state.

1. While introducing the adiabatic theorem, a note regarding a phase factor was
added. We shall return to the discussion of the phase evolution in the following
paragraphs. Let H(s) be a Hamiltonian 6 with an eigenvector ψ(s). Physically,
for any parameter κ, a vector |φ(s)〉 defined as |φ(s)〉 = eiκs|ψ(s)〉 is an equally
suitable eigenvector, the phase factor is not of observable significance. One may
easily see that unless κ = 0 it is not possible to make ψ(s) and φ(s) arbitrarily
close in norm. This may cause problems while making statements about closeness
of evolved states. Several solutions are available.

4When it does, additional investigation has to be performed.
5Up until now we have been implicitly presuming existence of required derivatives and in cases where

operators have been derivated also boundedness of their derivatives.
6H(s) is considered to be a reparametrization of a Hamiltonian H(t) that uses dimensionless time.
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One approach is based on replacing of the objects to be investigated – vectors with
physically insignificant global phase – to objects without such an attribute – for
example, rays or projectors. Then the adiabatic theorem becomes a statement
about evolution of projectors onto eigenspaces. This idea appeared for the first
time in Kato’s proof [26] and was later studied by various authors: for instance [33]
and [34].

Another approach is based on elimination of the rotational phase factor. A suitable
selection of complex factors was investigated in [31]. We will only point a Lemma
from [31] enabling us to regard evolution of eigenvectors:

Lemma 1.1. Let ψ(s), 0 ≤ s ≤ 1, be a time-dependent unit vector in some Hilbert
space H, such that ψ(s) is a differentiable function of s. Then, there is another
time-dependent unit vector φ(s) that is identical to ψ(s) up to phase such that
d
ds〈φ(s)|φ(s)〉 = 0 and φ(0) = ψ(0).

Provided we are able to fulfill conditions outlined in the Lemma 1.1 we may track
evolution of the eigenstates directly [31].

2. In the criteria (18) and (22) we imposed rather imprecise conditions on the total
runtime T : we were only advised to pick T a lot greater than something. Is there
any way how to make the estimate how precise the resulting state is?

These questions were investigated in Nenciu’s work [33] and later in [35]. We will
not go through the derivation of statements presented in the latter articles nor
will we state them precisely as they are rather complicated and some theoretical
background is needed [36].

The major result of [35] will be summarized in the following lines. Assume for
simplicity that we investigate conditions for the two lowest eigenvalues and suppose
further that ε0(s) = 0, i.e. the eigenvalue corresponding to the ground state is zero
during the evolution. Let the phase be fixed as in the Lemma 1.1: d

ds〈ε0(s)|ε0(s)〉 =
0. Under these conditions the following theorem holds [35] [14]:

Theorem 1.2. Assume that all derivatives of the Hamiltonian H(s) vanish at s ∈
{0, 1}, and moreover that it satisfies the following condition: there exist constants
C,R, α > 0 such that for all k ≥ 1,

max
s∈[0,1]

‖H(k)(s)‖ ≤ CRk (k!)1+α

(k + 1)2
. (23)

Then the adiabatic error is bounded as

min
θ
‖|ψ(1)〉 − eiθ|ε0(1)〉‖ ≤ c1

C

∆
exp

((
−c2∆3T

C2

)1/(1+α)
)
, (24)

where c1 = eR(8π2/3) and c2 = 3/4π2

4eR2 .

Thus, as long as T � C2

∆3 and as long as the conditions of the theorem 1.2 holds
and with latter prerequisites, the adiabatic error is exponentially small in T [14].

Further comments on the estimates of error is available in [14].
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2 The Hadamard walk

The Hadamard walk is a standard model for a discrete time quantum walk [37]. Suppose
the walker is located on an infinite discretized line – the position space

Hn = span
{
|i〉|i ∈ Z

}
. (25)

In the previous chapter, we introduced conditional shifts on a continuous line using the
equation (8). Instead of using |ψ(x0)〉 to denote a particle at a point x0 we shall use
|x0〉. In this discrete model we will no longer allow the shift l to take any value: from
now on we fix l = 1. In order to enable conditional shifts, we augment the position space
with a so-called coin space Hc in analogy to the spin space for spin-1

2 particles from the
previous section. We keep the notation and say that Hc is spanned by vectors |↓〉, |↑〉.
The evolution is then taking place in Hc ⊗Hn and it is again governed by a conditional
shift operator analogous to (9):

S = |↓〉〈↓| ⊗
∑
n

|i− 1〉〈i|+ |↑〉〈↑| ⊗
∑
n

|i+ 1〉〈i|. (26)

This choice implies that S|↑〉|p〉 = |↑〉|p + 1〉 and S|↓〉|p〉 = |↓〉|p − 1〉; the up/down
notation |↓〉, |↑〉 agrees with the direction of the conditional shift. The random walk is
realised as a two step process:

1. We perform a unitary operation C in the coin space called tossing a coin.

2. The the conditional shift S from the equation (26) is applied.

Usually, steps 1 and 2 are thought of as a single iteration of the random walk. By a
suitable choice of the coin operation C, we may mimic a classical walk. Starting with the
state |↓〉|0〉, we expect to measure the position of the walker ±1 after a single iteration.
The unitary coin should map |↓〉 to a uniform superposition of |↓〉 and |↑〉 and similarly
for |↑〉. The conventional choice of the balanced coin operator is [1]

C = H =

(
s s
s −s

)
, (27)

where s = 1√
2
, equal to the Hadamard gate (11), giving name to the Hadamard walk.

The evolution governed by the successive application of C and S may be written as:

U = S(C ⊗ I) =

(
|↓〉〈↓| ⊗

∑
n

|i− 1〉〈i|+ |↑〉〈↑| ⊗
∑
n

|i+ 1〉〈i|

)
(C ⊗ I). (28)

In this case we apply the same unitary operation C at all positions of the grid Z.
While studying quantum random walks we are not primarily interested in simulating

classical walks but we let the walker evolve without the intermediate measurements.
Without resetting the internal spin, quantum walks differ significantly from classical.
We adopt an illustrative example from [1]. Beginning in the state |↑〉 ⊗ |0〉 we shall
proceed a few steps of the evolution:

step 0 |↑〉 ⊗ |0〉,
step 1 s(|↓〉 ⊗ |−1〉 − |↑〉 ⊗ |1〉),

step 2
1

2
(|↓〉 ⊗ |−2〉+ (|↓〉 − |↑〉)⊗ |0〉+ |↑〉 ⊗ |2〉),

step 3
s

2
(|↓〉 ⊗ |−3〉+ |↑〉 ⊗ |−1〉+ |↓〉 ⊗ |1〉 − 2|↑〉 ⊗ |1〉 − |↑〉 ⊗ |3〉).

(29)
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The resulting probability distribution differs from that of classical walks even after such
small number of steps. It is convenient to introduce coordinates on C2 ⊗ span

{
|n〉
}

with basis {|↓〉 ⊗ |n〉, |↑〉 ⊗ |n〉}. For this case we use column vectors
(
αn
βn

)
. In order

to describe a point in C2Z we use a pair of sequences (αn)n∈Z and (βn)n∈Z with the
normalizing condition: ∑

n∈Z

∥∥∥∥(αnβn
)∥∥∥∥2

= 1. (30)

We note that the probability of p(n) finding a walker at a node n equals

p(n) =

∥∥∥∥(αnβn
)∥∥∥∥2

. (31)

Returning to the equation (29) we see that the resulting probability distribution is not
symmetric. Furthermore, it clearly depends on the way we set the initial state up.
The problem of determining initial states leading to symmetrical distributions has been
investigated [38]. The choice of the initial state we used in our simulations is:

ψ0 = s(|↑〉+ i|↓〉)⊗ |0〉. (32)

We will not perform step-by-step iteration as in the equation (29) to deduce symmetry.
The Hadamard coin has only real elements, so that it does not introduce any imagi-
nary amplitudes when we initialize the walk with only real α’s and β’s. But analogous
property holds for only imaginary α’s and β’s. Having thus initialised the Hadamard
walk in the state ψ0 (32) and taking into account (31) we find the resulting probability
distribution will be symmetrical. In Figure 2 the resulting probability distribution after
having performed 30 steps of the Hadamard walk is plotted. We did not center the walk
around zero but rather around the 75th node.

Nodes

P
ro

b
ab

ili
ty

Step 30

The symmetric Hadamard walk

Figure 2: The resulting probability distribution of the Hadamard walk with the initial setting
corresponding to (32) (shifted to the node 75).
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2.1 Finite-dimensional case and additional boundary conditions

In the following sections, we will discuss adiabatic transitions of the underlying coin space
operators in the equation (28). These transitions will require finding paths in unitary
groups U(n), which leads to numerically complicated computations. In order to simplify
our task we used numerical simulations of these transitions. Even though computers
are increasingly more powerful, they are principally incapable of storing the whole state
space of a quantum random walk. Modern programming offers solutions and enables us
to perform clever tricks [39]. A different approach is to restrict the state space of the
quantum walk to a finite lattice. Then we may benefit from known and fixed dimensions
of the state space and actually perform our computations faster. This approach carries an
inherent drawback: it is necessary to construct a finite model of the investigated system
and introduce new boundary conditions that arise on previously non-existent bounds.

Beginning with the equation (28), we examine the evolution on a finite grid con-
taining, say, N points. We will try to preserve evolution (28) at the internal points
and then derive necessary conditions we have to add in order to guarantee unitarity
of the evolution. The underlying Hilbert space governing the finite dimensional case is
C2 ⊗ span

{
|0〉, |1〉, . . . , |N − 1〉

}
' C2N . We shall use coordinatization of C2⊗span

{
|n〉
}

with basis {|↓〉 ⊗ |n〉, |↑〉 ⊗ |n〉} using column vector
(
αn
βn

)
and will form a large column

vector describing a point in C2N :

x ∈ C2N 7→ ((α0(x), β0(x)), (α1(x), β1(x)), . . . , (αN−1(x), βN−1(x)))T , (33)

where vT denotes the transpose of v. The evolution operator (28) combines the con-
ditional shift (26) together with tossing of the coin. The conditional shift at position
n ∈ {0, 1, . . . , N−1} = N̂ − 1 enables the walker to move one step left or right depending

on the internal state
(
αn
βn

)
∈ C2⊗span

{
|n〉
}
. In this sense the evolution acts locally : am-

plitudes αn(t), βn(t) at a step t depend only on those at near neighbourhood at the previ-

ous time step. We thus modify the evolution matrix only at rows corresponding to
(
α0

β0

)
and

(
αN−1

βN−1

)
. Such choice thus frees the first and last nodes to some extent and enables

us to change the definition of locality for them. For n ∈ {1, 2, . . . , N − 2} the evolution

(28) maps
(
αn(t)
βn(t)

)
⊗|n〉 at time t to s(αn(t)+βn(t))|↓〉|n−1〉+s(αn(t)−βn(t))|↑〉|n+1〉.

Thus:

αn−1(t+ 1) = s(αn(t) + βn(t)),

βn+1(t+ 1) = s(αn(t)− βn(t)).
(34)

We shall find a way to change the evolution of
(
α0

β0

)
and

(
αN−1

βN−1

)
in order to preserve

unitarity of the evolution operator. The evolution operator will be written in a matrix
form and we will expand the set of equations (34) by four rows governing the evolution
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at locations 0 and N − 1:

U =



a1 a2 a3 a4 a5 a6 a7 a8 . . . aN−4 aN−3 aN−2 aN−1

b1 b2 b3 b4 b5 b6 b7 b8 . . . bN−4 bN−3 bN−2 bN−1

0 0 0 0 s s 0 0 . . . 0 0 0 0
s −s 0 0 0 0 0 0 . . . 0 0 0 0
0 0 0 0 0 0 s s . . . 0 0 0 0
0 0 s −s 0 0 0 0 . . . 0 0 0 0
0 0 0 0 0 0 0 0 . . . 0 0 0 0
0 0 0 0 s −s 0 0 . . . 0 0 0 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 0 0 . . . 0 0 s s
0 0 0 0 0 0 0 0 . . . 0 0 0 0

c1 c2 c3 c4 c5 c6 c7 c8 . . . cN−4 cN−3 cN−2 cN−1

d1 d2 d3 d4 d5 d6 d7 d8 . . . dN−4 dN−3 dN−2 dN−1



. (35)

The four highlighted elements illustrate distribution of the elements of the Hadamard
coin at an inner node n = 2 in the evolution matrix. Because we chose the position 2,
we find the original elements in the (2 · (n + 1)-th column at rows (2 · (n + 1)) − 3 and
(2 · (n+ 1)) + 2. The unitarity of U will impose additional conditions on vectors ~a,~b,~c, ~d:

UU †
!

= I, (36)

where † denotes a Hermitian transpose. Performing the calculation (36) we find the
additional conditions:

a1 − a2 = a3 − a4 = aN−4 + aN−3 = aN−2 + aN−1 = 0, (37)
b1 − b2 = b3 − b4 = bN−4 + bN−3 = bN−2 + bN−1 = 0, (38)
c1 − c2 = c3 − c4 = cN−4 + cN−3 = cN−2 + cN−1 = 0, (39)
d1 − d2 = d3 − d4 = dN−4 + dN−3 = dN−2 + dN−1 = 0, (40)

(∀i ∈ {5, 6, . . . , N − 6, N − 5}) (ai = bi = ci = di = 0) (41)

and

〈a|b〉 = 〈a|c〉 = 〈a|d〉 = 0, (42)
〈b|c〉 = 〈b|d〉 = 〈c|d〉 = 0, (43)
〈a|a〉 = 〈b|b〉 = 1, (44)
〈d|d〉 = 〈c|c〉 = 1. (45)

One particularly intuitive solution to the equations (37) to (45) may be obtained by
twisting the grid {0, 1, . . . , N − 1}, so that the point 0 becomes a right neighbour of
N − 1 an vice versa. The solution may be written explicitly:

a3 = s, a4 = s,

bN−2 = s, bN−1 = −s,
c1 = s, c2 = s,

dN−4 = s, dN−3 = −s,

(46)
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and all non-listed elements of the vectors a, b, c, d are zero. This choice of boundary
condition will be called periodic boundary condition and we performed most of numerical
simulations in this setting.

Note that the periodic boundary is equivalent to considering positions as points of
ZN = Z�NZ.

2.2 Analysis of coin-space defects

A quantum walker on an infinite line will undergo a discrete evolution that may be
described as a sequence of two operations: at first a coin is tossed and then the shift
operator shifts the walker accordingly. A straightforward generalisation of the equation
(28) leads us to coin space transformations dependent on the position:

U = S

(⊕
n∈Z

Cn

)
, (47)

where
S = |↓〉〈↓| ⊗

∑
n∈Z
|n− 1〉〈n|+ |↑〉〈↑| ⊗

∑
n∈Z
|n− 1〉〈n|, (48)

and ∀n ∈ Z Cn is a unitary transform [40]. We shall examine eigenvalues of a Hadamard
walk with one defect located at point x = 0. Let the coin defect be

C0 =

(
x11 x12

x21 x22

)
, (49)

where x11, x12, x21, x22 ∈ C and C0 ·C†0 = I, and for all n ∈ Z \ {0}, Cn = H. Note that
we may set the position of the defect to n = 0 without loss of generality.

Suppose there is an eigenvector

|ψ〉 =
∑
n∈Z

(αn|↓〉+ βn|↑〉)⊗ |n〉 (50)

with a corresponding eigenvalue λ. Performing a step of the evolution from time t to
t+ 1 we obtain:

|ψ(t+ 1)〉 = U |ψ(t)〉 =
∑
n∈Z

(αn(t+ 1)|↓〉+ βn(t+ 1)|↑〉)⊗ |n〉

= (x11α0(t) + x12β0(t))|↓〉 ⊗ |−1〉+ (x21α0(t) + x22β0(t))|↑〉 ⊗ |1〉

+
∑

n∈Z\{0}

(sαn(t) + sβn(t))|↓〉 ⊗ |n− 1〉

+
∑

n∈Z\{0}

(sαn(t)− sβn(t))|↑〉 ⊗ |n+ 1〉

!
= λ

∑
n∈Z

(αn(t)|↓〉+ βn(t)|↑〉)⊗ |n〉.

(51)

Having collected corresponding coefficients from both sides of (51), we are led to the
following set of equations:

x11α0(t) + x12β0(t) = λα−1(t) = α−1(t+ 1),

x21α0(t) + x22β0(t) = λβ1(t) = β1(t+ 1),
(52)
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∀n ∈ Z \ {−1} s(αn+1(t) + βn+1(t)) = λαn(t) = αn(t+ 1),

∀n ∈ Z \ {1} s(αn−1(t)− βn−1(t)) = λβn(t) = βn(t+ 1).
(53)

Our aim is to find sequences (αn)n∈Z, (βn)n∈Z together with the corresponding eigenvalue
λ. Before presenting our attempt to solve the eigenvalue problem concerning Hadamard
walks with coin defects, we shall briefly outline two cases already studied, namely phase-
altered coin defect and a coin defect with rotation matrix. These perturbations will be
revisited in our formalism as examples.

2.2.1 Known cases

The eigenvalue problem (51) has been investigated in several cases. We will briefly com-
ment on coin defects introduced by Wójcik et al. [2]. They considered a coin perturbation
of the form:

C0 = exp(2πiφ) ·
(
s s
s −s

)
= ω ·H. (54)

Rather than solving the set of difference equations (52), (53) directly Wójcik et al. opted
for analyzing an eigenvalue problem for a two-step evolution. This leads to a system of
two-step difference equations:

2λα̃0 = α̃1 + β̃1 + ωα̃0 − ωβ̃0,

2λβ̃0 = ωα̃0 − ωβ̃0 − α̃−1 + β̃−1,

2λα̃−1 = ωα̃0 + ωβ̃0 + α̃−1 − β̃−1,

2λβ̃1 = α̃1 + β̃1 − ωα̃0 + ωβ̃−1,

(55)

for the neighbourhood of α̃0, β̃0, where:

α̃n = α2n, (56)

β̃n = β2n, (57)

and
2λα̃n = α̃n+1 + β̃n+1 + α̃n − β̃n for n 6= 0,−1,

2λβ̃n = α̃n + β̃n − α̃n−1 + β̃n−1 for n 6= 0, 1.
(58)

Wójcik et al. found the solutions for λ to be:

λ± =
ω − 2ω2 + ω3 ± iω(1− ω + ω2)

1− 2ω + 2ω2
. (59)

The above equation yields stationary states:

α̃±n = Cxn± for n ≥ 1,

α̃±n = C(ω ∓ iω ± i)x−n± for n ≤ −1
(60)

and for β̃
β̃±n = C(1− ω ∓ iω)xn± for n ≥ 1,

β̃±n = ∓iCx−n± for n ≤ −1,
(61)
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where
x± =

1

2 cos(ω)∓ 2 sin(ω)− 3
. (62)

Finally, explicit formulas for α̃0, β̃0 were derived:

α̃±0 = C, β̃±0 = ∓iC. (63)

The constant C plays a role of normalizing constant and it may be chosen as:

C =

√
1 + x±

2
. (64)

Another type of coin defect was studied by Endo and Konno in [40]. They introduced
a single perturbation:

C0 =

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
(65)

at the origin of an infinite discrete line. In contrast to the Wójcik model with phase-
altered coin (54), this choice of coin defect has the property:

det(C0) = − cos2(θ)− sin2(θ) = det(H) = −1. (66)

With the intention of comparing our approach to that of Endo and Konno we will slightly
adapt their notation. We are to solve an eigenvalue problem

UΨ = λΨ, (67)

for U defined in terms of the equation (48) and where

Ψ = (. . . , α−1, β−1, α0, β0, α1, β1, . . . )
T . (68)

Endo and Konno derived that the eigenvalue problem (67) may be restated as follows:

(∀n ∈ Z) : λ

(
αn
βn

)
=

(
an+1 bn+1

0 0

)(
αn+1+

βn+1+

)(
0 0

cn−1 dn−1

)(
αn−1

βn−1

)
, (69)

where

(∀n ∈ Z \ {0}) :

(
an bn
cn dn

)
= H =

(
s s
s −s

)
(70)

and (
a0 b0
c0 d0

)
=

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
. (71)

Endo and Konno used a so-called SGF method that already proved to be a viable and
helpful tool to investigate eigenvalue problems concerning discrete time quantum walks
[41]. In the latter article Endo and Konno revisited Wójcik model (54) and found the sta-
tionary states with the help of generating functions. We will not introduce this technique
but rather address the reader to the original article [41].

Unlike in Wójcik model for which we had a par of solutions, the problem Endo and
Konno investigated admits four eigenvalues:

λ1,2 = ±cos θ + (
√

2− sin θ)i√
3− 2

√
2 sin θ

, (72)

λ3,4 = ±cos θ − (
√

2− sin θ)i√
3− 2

√
2 sin θ

. (73)
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and their corresponding eigenvectors are of the form:

(
αn
βn

)
1,2

=



(
α0

β0

)
n = 0,(

±i√
3− 2

√
2 sin θ

)n(
α0

β0

(
1−
√

2 sin θ)α0 +
√

2 cos θβ0

)) n ≥ 1,(
∓i√

3− 2
√

2 sin θ

)−n(
α0

(√
2 sin θ − 1)β0 +

√
2 cos θα0

)
β0

)
n ≤ −1

(74)

(75)

(76)

for β0 = −iα0 and

(
αn
βn

)
3,4

=



(
α0

β0

)
n = 0,(

∓i√
3− 2

√
2 sin θ

)n(
α0

β0

(
1−
√

2 sin θ)α0 +
√

2 cos θβ0

)) n ≥ 1,(
±i√

3− 2
√

2 sin θ

)−n(
α0

(√
2 sin θ − 1)β0 +

√
2 cos θα0

)
β0

)
n ≤ −1

(77)

(78)

(79)

for β0 = iα0.
It is important to note that until now we have not considered whether the eigenvectors

obtained using the SGF method are normalizable. Endo and Konno proved that the
sum (30) converges if and only if θ 6= π

4 . Note that this particular choice of θ resets
the perturbed coin to the original Hadamard coin. In the following section we shall
thoroughly comment on our solution. Although we use a similar starting point as Endo
and Konno did in the equation (69) our paths bifurcate soon after that.

2.3 Eigenvalue problem for general coin defects

One way to proceed is to split two sequences (αn)n∈Z, (βn)n∈Z into four branches:
(α−n)n∈N−1, (β−n)n∈N0 and (αn)n∈N0 , (βn)n∈N0 . Since N0 = {0, 1, 2, . . . }, positive and
negative branches have one common point, namely α0 or β0.

We used three different methods to solve the set of equations (52) and (53). Namely:

1. We may form vectors of type
(
αn
βn

)
and establish two shift operators S−, S+

acting on
(
αn
βn

)
, where n is sufficiently distant from 0, as follows: S−

(
αn
βn

)
=(

αn−1

βn−1

)
and S+

(
αn
βn

)
=

(
αn+1

βn+1

)
. Since we must employ the boundary condition

at n = 0, it is convenient to begin with
(
α0

β0

)
, apply the boundary conditions

19



from equation (52) to get
(
α±1

β±1

)
and then generate

(
α−n
β−n

)
= Sn−1

−

(
α−1

β−1

)
and(

αn
βn

)
= Sn−1

+

(
α1

β1

)
.

Using the structure of equations (53), we may benefit from diagonalization of S±
and from analysis of the eigenvalue problem for given recurrence equations. This
method will be described with thoroughly in this section.

2. We may decouple α’s and β’s in order to establish four difference equations of
second order, one for negative α’s, one for positive α’s and similarly for β’s. They
all have to satisfy the boundary condition specified in equation (52) at n = 0. We
will not present this method here because it tends to be more complicated than
the latter one.

3. A numerical simulation of the Hadamard walk with a single point defect might
provide us with explicit solutions of the eigenvalue problem. We will discuss the
relevance of numerical simulations in the Section 3.1 and we will compare numerical
and analytical solutions in relevant cases.

We shall first derive explicit formulas for operators S± acting on an unperturbed
Hadamard walk; later, a defective coin will be introduced and a more elaborate discussion

regarding effects of the three boundary terms
(
α±1

β±1

)
and

(
α0

β0

)
will be provided.

Beginning with S−, we search for a formula deriving
(
αn−1

βn−1

)
from

(
αn
βn

)
. With the

knowledge from equations (51) and (53) we have:

αn−1 = sλ−1(αn + βn) (80)

βn+1 = sλ−1(αn − βn), (81)

where s = 1√
2
. Shifting n 7→ n− 1 in equation (81), we are led to

βn = sλ−1(αn−1 − βn−1). (82)

Thus
(
αn−1

βn−1

)
may be expressed solely by using

(
αn
βn

)
as follows:

αn−1 = sλ−1(αn + βn) (83)

βn−1 = sλ−1(αn +
(
sλ−1 − s−1λ

)
βn), (84)

or in a matrix form: (
αn−1

βn−1

)
=

(
sλ−1 sλ−1

sλ−1 sλ−1 − λs−1

)
︸ ︷︷ ︸

S−

(
αn
βn

)
. (85)

Similar steps will provide us with a formula for S+. Firstly, we shift n 7→ n + 1 in
equation (80) and then express αn+1 in terms of αn and βn+1:

αn+1 = s−1λαn − βn+ 1. (86)
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With the aid of the equation (81) we may write:

αn+1 =
(
s−1λ− sλ−1

)
αn + sλ−1βn (87)

βn+1 = sλ−1(αn − βn), (88)

or equivalently: (
αn+1

βn+1

)
=

(
s−1λ− sλ−1 sλ−1

sλ−1 −sλ−1

)
︸ ︷︷ ︸

S+

(
αn
βn

)
. (89)

The operators S± are in an inverse relation, indeed:

S±S∓ = I. (90)

In order to solve the eigenvalue problem stated by the equation (51), we have to find
a relationship between a candidate eigenvalue λ and convergence of the series∑

n∈Z

∥∥∥∥(αnβn
)∥∥∥∥2

. (91)

The condition (91) encapsulates our ability to normalize the given eigenvector
(
αn
βn

)
n∈Z

.

We shall at first examine the sequences (αn)n∈Z and (βn)n∈Z as n→ ±∞ depending on
the boundary conditions (52). Their convergence is a necessary requirement: if (αn)n∈Z
and (βn)n∈Z do not converge, the sum (91) does not converge.

The sequences (αn)n∈Z and (βn)n∈Z encompass the solution to the recurrence equa-
tions (53).

In order to simplify required analysis, we shall diagonalize the operators S±. Then, we
will examine effect of boundary terms and branching into sequences labeled by negative
and positive indices.

Since both operators S± act on two-dimensional complex vector space, the diagonal-
ization is straightforward, i.e.:

S− =

(
sλ−1 sλ−1

sλ−1 sλ−1 − λs−1

)
= V

(
µ1 0
0 µ2

)
V −1, (92)

where V is a matrix of eigenvectors of S−:

V =

(
1

−λ2+
√
λ4+1

−1
λ2+
√
λ4+1

1 1

)
, (93)

V −1 =
1√

λ4 + 1

(
1
2
−λ2+

√
λ4+1

2
1
2

λ2+
√
λ4+1

2

)
(94)

and eigenvalues µ1, µ2 are expressed using λ as follows:

µ1 =
−λ2 + 1 +

√
λ4 + 1

2λs

µ2 =
−λ2 + 1−

√
λ4 + 1

2λs
.

(95)
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Similar relations hold for the other operator S+. For S+ and S− are inverse, they share
eigenvectors. Thus:

S+ = V

(
1
µ1

0

0 1
µ2

)
V −1 (96)

and the matrix V comes from the equation (93). There is another interesting feature
operators S± have, namely:

detS− = µ1µ2 = −1, (97)

detS+ =
1

µ1µ2
= −1, (98)

note, in particular, that determinants of S± do not depend on λ. (We in fact had to
divide by λ in order to derive (97) and (98) but we suppose λ is an eigenvalue of a unitary
evolution operator so we may treat it as a nonzero number.) We will use the following
relation between µ1 and µ2:

µ1 = − 1

µ2
or µ2 = − 1

µ1
. (99)

We shall now take into account the boundary conditions (52). Suppose that
(
α0

β0

)
and a candidate for an eigenvalue λ are given. Using steps performed in equations (80)

to (88), we find an expression for
(
α±1

β±1

)
in terms of

(
α0

β0

)
:

(
α−1

β−1

)
=

(
λ−1x11 λ−1x12

λ−1x11 λ−1x12 − λs−1

)
︸ ︷︷ ︸

B−

(
α0

β0

)
, (100)

where xij denote the elements of the coin defect introduced in the equation (49). Having
established equation (100) expressing the boundary for negative n’s, we introduce its
positive counterpart: (

α1

β1

)
=

(
λs−1 − x21λ

−1 −λ−1x22

λ−1x21 λ−1x22

)
︸ ︷︷ ︸

B+

(
α0

β0

)
. (101)

Proposition 2.1. If we knew
(
α0

β0

)
, λ and defective coin C0 we could use the following

algorithm to generate sequence
(
αn
βn

)
n∈Z

:

1. Derive
(
α±1

β±1

)
using B±.

2. Calculate
(
α−n
β−n

)
n∈N

by consecutive application of S− on
(
α−1

β−1

)
for any n.
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3. Calculate
(
αn
βn

)
n∈N

by consecutive application of S+ on
(
α1

β1

)
for any n.

Furthermore, the consecutive application of S± simplifies significantly while using
equations (92) and (96). For the negative branch:

(
α−n
β−n

)
= Sn−1

− B−

(
α0

β0

)
=

(
V

(
µ1 0
0 µ2

)
V −1

)n−1

B−

(
α0

β0

)
(102)

= V

(
µn−1

1 0

0 µn−1
2

)
V −1B−

(
α0

β0

)
. (103)

And for n > 0:

(
αn
βn

)
= Sn−1

+ B+

(
α0

β0

)
=

(
V

(
1
µ1

0

0 1
µ2

)
V −1

)n−1

B+

(
α0

β0

)
(104)

= V

( 1
µ1

)n−1
0

0
(

1
µ2

)n−1

V −1B+

(
α0

β0

)
. (105)

Substituting µ2 = − 1
µ1

from the equation (99):

(
α−n
β−n

)
= V

(
µn−1

1 0

0
(
− 1
µ1

)n−1

)
V −1B−

(
α0

β0

)
︸ ︷︷ ︸

v−

, (106)

(
αn
βn

)
= V

((
1
µ1

)n−1
0

0 (−µ1)n−1

)
V −1B+

(
α0

β0

)
︸ ︷︷ ︸

v+

; (107)

note that lower diagonal terms have (−) sign.
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√2-
1√2-1

Figure 3: By plotting the absolute value |µ1(λ)| in the complex plane we may uncover interesting
geometric properties of solutions to be discussed. The complex plane is clearly separated to 4
regions that form a symmetric pattern. For λ is an eigenvalue of a unitary operator, |λ| = 1.
We are thus interested in values of µ1 on the unit circle. Taking into account this restriction
µ1 ∈ [

√
2−1, 1]. We point out that |µ1| = 1 corresponds to the green contour copying parts of the

unit circle. These arcs forms the continuous spectrum of the Hadamard walk. On the other hand,
if arg(λ) ∈ (π4 ,

3π
4 ) ∪ (− 3π

4 ,−
π
4 ) then |µ1| < 1. (We use the convention to choose the argument

of a complex number in the range (−π, π].)

In order to answer the question of convergence of
(
α±n
β±n

)
as n tends to ∞, we have

to analyze absolute values of µ1 and µ2. Imagine, for example, that vector v− has a non-
zero second component and that |µ1| < 1. Then |− 1

µ1
| > 1 and consecutive application

of (106) will produce an unbounded sequence (β−n)n∈N.
The other three branches may produce the same type of divergent series. Similarly:

if |µ1| > 1 the sequence (α−n)n∈N diverges unless the first component of the vector v−
vanishes.

There is another important case concerning both |µ1,2| = 1. Then the equations (106)
and (107) imply the sum (91) will not converge unless both α0 and β0 are zero. Nice
geometric properties of the eigenvalues µ1,2 of the operators S± may be derived directly
from the equation (95). A depiction of µ1(λ) for the case |µ1| < 1 is shown in Figure 3.

In order to simplify notation assume (without loss of generality) that from now on
the eigenvalue µ1 has the property that |µ1| < 1. The following lemma will summarize

behavior of the sequences
(
α±n
β±n

)
.
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Values λ such that |µ(λ)| = 1 form the continuous spectrum of the Hadamard walk.
To be more precise σc = {λ| arg(λ) ∈ [−π,−3π

4 ] ∪ [−π
4 ,

π
4 ] ∪ [3π

4 , π]} [42].

Lemma 2.2. Let µ and − 1
µ be eigenvalues of the operators S±, w1, w2 the corresponding

eigenvectors and suppose that |µ| < 1. If we find
(
α0

β0

)
∈ PreimB−(w1) and such that

B+

(
α0

β0

)
= k · w2 for a constant k ∈ C the sequence

(
α±n
β±n

)
converges as n→∞.

Proof. The proof follows directly from the equations (106), (107). By the assumptions

|µ| < 1 and the corresponding eigenvector of S− is w1. We chose
(
α0

β0

)
∈ PreimB−(w1)

and thus B−
(
α0

β0

)
= w1. The sequence

(
α−n
β−n

)
then converges as n→∞ thanks to the

equation (106).

Similarly B+

(
α0

β0

)
= k · w2 and w2 is an eigenvector of S+ with the eigenvalue − 1

µ ,

where |− 1
µ | < 1. The equation (106) then implies convergence of the sequence

(
αn
βn

)
as

n→∞.

Note 2.1. We will briefly comment on Lemma 2.2.

1. The unitary coin C0 (49) may produce non-invertible matrices B± (100), (101). In
fact, we may choose C0 such that B± are not invertible. The determinants of B±
are:

det(B−) = −x11

s
, (108)

det(B+) =
x22

s
. (109)

If we set

C0 =

(
0 1
1 0

)
, (110)

both determinants (108) and (109) vanish. Since the coin operator is unitary we
either find that both x11 and x22 are zero or both are non-zero, which implies: the
operators B± are either both regular or both singular. We will use this observation
in the following paragraphs.

2. Going back to the equation (93) describing the eigenvectors of the operators S±.
We assumed that S± are diagonizable. But in case

− λ2 +
√
λ4 + 1 = −λ2 −

√
λ4 + 1 (111)

this assumption does not hold. The roots λ1,2,3,4 of the equation (111) are:

λ1,2 = ±s(1 + i), (112)
λ3,4 = ±s(1− i). (113)

(114)
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But we have already covered this case while discussing µ1 as a function of λ (see
Figure 3). Plugging any of the roots λ1,2,3,4 to µ1(λ) results in |µ1(λ1,2,3,4)| = 1.
Lemma 2.2 explicitly uses the assumption that |µ1| < 1.

3. The question of convergence of
(
αn
βn

)
may be restated as follows: we search

(
α0

β0

)
such that:

B−

(
α0

β0

)
= w1,

B+

(
α0

β0

)
= k · w2,

(115)

for some constant k. Using the equations (100) and (101) we find equations for λ.

We shall investigate under what circumstances there is
(
α0

β0

)
∈ PreimB−(w1) satis-

fying B+

(
α0

β0

)
= w2, i.e. under what circumstances are we able to find a solution to the

problem governed by the equation (115). We will set:

D = det(C0) (116)

and split our analysis into two cases.

1. If B± are invertible, we are to solve the equation:(
−x12 − x21 − sD + x12

√
λ4 + 1

)
λ2

λ2x11

(
−λ2 +

√
λ4 + 1

) +
(2s− x12)λ4 +Ds

(
−1 +

√
λ4 + 1

)
λ2x11

(
−λ2 +

√
λ4 + 1

) =

(−2x21s−D)λ2 +D
(
−1 +

√
λ4 + 1

)
2sλ2x11

.

(117)

2. And when neither B− nor B+ are invertible, i.e. x11 and x22 both zero, we are to
solve equations:

− sx12

λ2 − sx12
=

1

−λ2 +
√
λ4 + 1

,

λ2 − x21 s

x21 s
= − 1

λ2 +
√
λ4 + 1

.

(118)

In order to complete the list we must comment on another dichotomy. The equations
above arise when we expect that the eigenvalue µ1 satisfying |µ1| < 1 is of the form:

µ1 =
−λ2 + 1 +

√
λ4 + 1

2λs
. (119)

The other possibility might have been

µ2 =
−λ2 + 1−

√
λ4 + 1

2λs
(120)
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nevertheless the roots of equations (117) and (118) are not affected by the choice of the
sign. The set of equations (118) leads to a pair of uncoupled quadratic equations with
solutions:

λ1 = ± 1

s− x12

√
(s− x12) sx12 (2s− x12), (121)

λ4 = ± −1

s− x21

√
(s− x21)x21 (2s− x21), (122)

whereas the equation (117) may be rearranged as a quadratic equation in terms of λ2.
The solutions may be found analytically, for our particular setting with a general coin
C0 the four expected roots are:

λ1,2 = ±
s
√

(s−Ds− F )
√
F 2 + 4D + F (D − 1) s+ F 2 − 2D
√
Fs+ 2D − 1

, (123)

λ3,4 = ±
s
√

(s−Ds+ F )
√
F 2 + 4D + F (D − 1) s+ F 2 − 2D
√
Fs+ 2D − 1

, (124)

where D = det(C0) and F = x12 + x21.
Having found roots λ the difference equations (52) and (53) may finally be solved

and the convergence of the series (91) can be investigated. We shall refine Proposition
(92) based on the gained knowledge regarding roots λ.

Proposition 2.3. In order to find the eigenvector satisfying (51) we perform the follow-
ing steps:

1. Beginning with a known coin defect C0 we decide regularity of the boundary opera-
tors B± using the equations (108) and (109).

2. We choose the appropriate equation (117) or (118).

3. Having found roots λ we return to the equation (92) describing eigenvectors of the
step operator S±. Then we examine its eigenvalues (95) and based on their absolute
values pick the corresponding eigenvectors w1,2 of S±.

4. If the operators B± from the equations (100) and (100) are invertible we proceed

as follows. Then set
(
α̃−1

β̃−1

)
= w1 (we use α̃ etc. because we do not know yet

whether the eigenvector could be normalized). Further let
(
α̃0

β̃0

)
= B−1

−

(
α̃−1

β̃−1

)
and(

α̃1

β̃1

)
= B+B

−1
−

(
α̃−1

β̃−1

)
.

In case neither B− nor B+ are regular, we have:

B− =

(
0 x12

λ

0 x12
λ −

λ
s

)
, B+ =

(
λ
s −

x21
λ 0

x21
λ 0

)
(125)
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and thus(
0 x12

λ

0 x12
λ −

λ
s

)(
α0

β0

)
= β0

( x12
λ

x12
λ −

λ
s

)
= k1w1 = k1

(
−1

λ2−
√
λ4+1

1

)
, (126)

(
λ
s −

x21
λ 0

x21
λ 0

)(
α0

β0

)
= α0

(
λ
s −

x21
λ

x21
λ

)
= k2w2 = k2

(
−1

λ2+
√
λ4+1

1

)
. (127)

On the other hand, thanks to the equation (118) for λ we are guaranteed to find
a solution. In fact, the non-regularity of B± enables us to solve the negative and

positive branches of the sequence
(
αn
βn

)
independently. This is also why we lost the

coupling between negative and positive terms and why we found two independent
quadratic equations for λ instead of one equation of degree four.

5. Having found
(
α̃±1

β̃±1

)
and

(
α̃0

β̃0

)
, we generate the whole sequence

(
α̃n
β̃n

)
n∈Z

by

successive application of S±. Lemma 2.2 implies this sequence converges as n tends
to ±∞.

6. Finally, we must normalize
(
α̃n
β̃n

)
n∈Z

. For both positive and negative branches∥∥∥∥(α̃±nβ̃±n

)∥∥∥∥
n≥1

form convergent geometric sequences, we are able to sum easily and

thus find the suitable normalizing factor.

Although we could provide explicit formulas for
(
αn
βn

)
n∈Z

comparable to those de-

rived by Endo and Konno in the equations (74) – (79), we prefer to keep only the outlined
guide from Proposition (74). A cumbersome branching and lengthy formulas are thus
avoided.

2.4 Phase-altered Hadamard coin and rotations revisited

While comparing eigenvalues gained in the form of roots of the equations (117) and (118)
with the equation (59) it is important to note the crucial aspect of the solution proposed
by Wójcik et al., namely that their equations yield eigenvalues λ± of the square of unitary
evolution operator. In order to compare results, one has to take square roots

√
λ± and

compare them with the roots of our polynomial equations. The results agree perfectly.
With the aim of using the equations (123) and (124) in the following examples, we

define:

D̃(X) = det(X), (128)

F̃ (x) = x12 + x21, (129)

where

X =

(
x11 x12

x21 x22

)
. (130)
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We shall calculate squares of λ1,2,3,4 for an easier comparison. The determinant detH
is −1 and the constant F is

√
2 for the Hadamard coin. Having multiplied H by a factor

k ∈ C satisfying |k| = 1, are led to: D̃(C0) = −k2 and F̃ (C0) = k
√

2. With help of the
equations (123) and (124) we find:

γ1,2 = λ2
1,3 ±

(
k2 − k + 1

)√
−k2 + k (k − 1)2

2k2 − 2k + 1
. (131)

We may also return to the case studied by Endo and Konno. For their choice of coin
defect C0 (65): D̃(C0) = −1 and F̃ (C0) = 2 sin(θ). Our equations (123) and (124) yield
those derived by Endo and Konno in (72).

We will add one more example: suppose we restrict ourselves on a case of a single
coin defect of the form:

C0 = R(θ) =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
(132)

Here we fix D = 1 and F = 0. This case is thus particularly simple to investigate.
Equations (123) and (124) imply:

λ1,2 = ±i. (133)

We have just seen an interesting case: a subgroup of U(2) leaving the roots λ unchanged
was found. Furthermore, we only have two distinct roots. Going back to the equations
(117), (118), we may revert our steps and use λ = ±i as a starting point. Examining
each case we arrive at a necessary condition for obtaining λ = ±i:

x11x22 = (x21 − 1)(x12 − 1) (134)

or expressed with determinant:

det(C0) = 1− x12 − x21. (135)

This condition is certainly satisfied for rotation defects.

2.5 Possible generalizations

To conclude this section a note on possible generalizations will be added. We have
seen an analytical solution to the eigenvalue problem concerning a single coin defect on
the Hadamard walk. The operators S± proved to provide a deep enough insight, so
that we may find stationary states of the perturbed Hadamard walk using their spectra.
Can we repeat the procedure for multiple coin defects? We do not know. But we will
summarize knowledge we gained regarding this issue. We will address results obtained
using numerical simulations to make assumptions regarding the analytical solutions and
their properties. Any details concerning implementations will not be included here,
we will discuss this topic separately in the Section 3.1. Right now we state only that
numerical simulations agree very closely with analytical solutions for single coin defects
and we suppose simulations provide reliable results even in cases we are not able to
confirm analytically. Though, we point out that the numerical analysis is limited to only
finite systems with the periodic boundary condition. We are thus not able to analyze
eigenvalues from the continuous spectrum of the Hadamard walk. Nevertheless, the coin
defects introduced usually isolate certain eigenvalues from the continuous spectrum. Only
for such eigenvalues are we able to state that finite and infinite model agree.
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Remark 2.1. Summary of our knowledge regarding multiple coin defects.

1. Lemma 2.2 may be restated for two directly neighbouring coin defects. The re-
sulting polynomial equations to be solved are unfortunately of high degree – we
usually arrive at equations of degree 6 in λ2 – and we are not aware of any method
that would provide us solution. What is even worse: this case tends to be hard
even if we add assumptions such as: the coin defects are of the same kind or even
exactly the same. Previously easy-to-solve cases remain unsolved when we examine
directly neighbouring defects.

2. While introducing defects if the same kind we in general not able to use any
knowledge in regard to the single coin case. For example single coin defect in
the form (133) introduces roots λ1,2 = ±i. But a perturbed Hadamard walk with
two neighbouring π

4 -rotations has four stationary states with eigenvalues λ1,2 ≈
±(0.3162+0.9487i) and λ3,4 ≈ ±(0.3162−0.9487i). This brings a new phenomenon:
while varying the angle of rotation, spectral properties of the Hadamard walk with
two coin defects change too. When we introduce two neighbouring π

3 -rotations,
the eigenvalues caused by the perturbation will be λ̃1,2 ≈ ±(0.2257 + 0.9742i) and
λ̃3,4 ≈ ±(0.2257 − 0.9742i). We thus infer that two neighbouring rotations might
introduce up to four stationary states and their eigenvalues tend to follow a clear
symmetry. This suggests we are actually unable to uncover the right equations to
solve.

3. If we choose to introduce two distinct directly neighbouring coin defects we may
obtain two or four roots although we are to solve equations of higher degree.
Hadamard coin with a rotation gives rise to only two distinct roots. This case
should actually not be considered as two coin perturbations. On the other hand,
any formalism describing multiple coin defects should direct us to the cases already
studied. We thus allow for using the Hadamard coin in multiple coin perturbations.
If we fix the angle θ = π

3 in the coin (65) proposed by Endo and Konno and add a
rotation with the same θ, we still obtain only two roots.

An example with four roots may be constructed using iH and iR(θ) in the direct
vicinity.

Throughout our experiments we did not encounter any combination of coin defects
in the direct neighbourhood that would give rise to more than four eigenvalues.
We suppose that developing a theory of mappings between eigenvectors of the
operators S± based on multiple coin defects would provide an important insight.
Despite multiple attempts to investigate compositions of mappings arising from a
direct generalization of the proposed solution, we were not successful in lowering
the degree of the resulting equations.

4. The previous case could be regarded as two coin defects with a separation of the
length 1. Another important case to study takes into account separation of the
length 2. In the following paragraphs we always assume that the distance between
two coin defects is two nodes.

A combination of R(θ1) and R(θ2) gives rise to four roots. Cases concerning iH
and iR(θ) have six roots for various choices of θ. We did not encounter any two
coin perturbation that would isolate 8 eigenvalues from the continuous spectrum.
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The final remark regarding two coin perturbations with separation two discusses
symmetries. From our observations of numerical simulations, the problem of finding
roots of this particular setting shall lead to a cubic polynomial in λ2. In all cases
studied numerical methods have implied: if λ is an eigenvalue corresponding to a
two-coin defect, so is −λ.

5. When we increase the separation further new phenomena occur again. For the case
of two coin defects iR(θ) where θ = π

4 we have:

separation 1 2 3 and more
number of roots 4 4 8

Table 1: Number of roots for two-coin defect: iR(θ) where θ = π
4 .

Nevertheless, setting two coin defect iR(θ1,2) where θ1 = π
4 and θ2 = π

3 leads to:

separation 1 2 3 and more
number of roots 4 6 8

Table 2: Number of roots for two-coin defect: iR(θ1,2) where θ1 = π
4 and θ2 = π

3 .

In spite of having this simple relation for separations greater than than two nodes,
the roots do not remain constant. As the distance between coin defects increases,
the roots tend to those determined by the single coin defect equations (123) and
(124). We provide numerically determined eigenvalues corresponding to the latter
case for the separation of three nodes 7:

roots λ1,2 λ3,4

approx. values ±(0.6416 + 0.7670i) ±(0.6242− 0.7813i)

roots λ5,6 λ7,8

approx. values ±(0.5612− 0.8277i) ±(0.5486 + 0.8360i)

Table 3: Roots for two coin defects iR(θ1,2) where θ1 = π
4 and θ2 = π

3 with separation 3.

The impact of separation between two coin defects on the spectrum investigated is
even clearer when plotted. See Figure 4 or the case of two π

4 rotational coins.

7The eigenvalues were rounded to four decimal places.
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Two-coin perturbation: 1, 3 vs defects distance

Figure 4: By examining two-coin perturbations numerically we found interesting relations be-
tween resulting spectra and distances between defects discussed. As an example we plotted the
eigenvalues λ1 and λ3 for two π

4 -rotations. Surprisingly, even small separation of circa eight
nodes “unties” the defects and they start to act as if they were independent. Note that by adding
the dimensions of the corresponding eigenspaces an invariant is obtained. However, examining
numerical simulations, we find that multiplicities are not being conserved: for small separations
we find four distinct one-dimensional eigenspaces. The further the defects are, the closer is
the separation between eigenvalues, and we are usually not able to discern between the paired
eigenvalues for distances ' 20 due to numerical precision. We thus obtain two two-dimensional
eigenspaces.
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3 Numerical solutions for the Hadamard walk

3.1 Outline of the simulation

In order to study discrete quantum walks numerically we chose to model quantum walks
on finite lattices. Discussion of additional boundary conditions due to creating finite
models of originally infinite problems is described in the Section 2.1. Periodic boundary
conditions were studied primarily, even though other types were implemented as well.
Our aim was to benefit from computational power computers offer, to simulate adiabatic
changes of the evolution operator keeping track of its eigenvalues, their corresponding
eigenstates and to visualise resulting probability distributions. We thus decided to de-
sign a framework that would mirror the physical objects as digital structures. We will
leave details concerning programming structures to the Section A.1 and aim to describe
mathematical concepts used to perform simulations in the following paragraphs.

We did not intend to restrict defects on the finite Hadamard walk to only coin-
space defects. Thus our implementation of adiabatic transitions may connect any two
evolution matrices U1 and U2 via a path in U(2N), where we denote the number of nodes
N and use conventions described in the Section 2.1 8. Although the algorithm for finding
trajectories in U(2N) allows for transition between general unitary matrices, we imposed
an additional criterion: while performing transitions between two operators with defects
only in the coin space, the trajectory has to respect the structure of the Hadamard walk
and we must not introduce any other kind of defects. On the other hand we admit co-
existence of multiple coin perturbations at different locations. For example while moving
a perturbed coin from a location n to a new location m 6= n, we may observe two defects
at once while following the path of adiabatic transition.

Due to the finiteness of the simulated Hadamard walk we absorb the boundary con-
ditions from the Section 2.1 in the evolution matrices. Although we are able to perform
a change of boundary conditions during the evolution, we did not direct much attention
at this kind of transition.

Imagine that we are given a unitary evolution operator U1 describing a Hadamard
walk with the periodic boundary. We would like to slowly perturb the coin located at
position n. To be more precise, we begin with a coin Cn = H and ask the computer to
calculate a transition H 7→ Dn. We shall write coin space operators corresponding to
U1 as Ci, where i ∈ N̂ − 1; operators Di, on the other hand, correspond to the unitary
evolution U2. Written formally:

Ci = Di for i 6= n,

Cn = H

Dn ∈ U(2).

(136)

Being in time t0 of the simulated evolution governed by U1, we search for a path from
U1 to U2. We may also dictate the number of steps T ∈ N the transition will take.
It is convenient to introduce a time-dependent evolution operator U(t) with coin space
operators Pi, i ∈ N̂ − 1. In this particular setting, our requirement not to break the

8In order to simulate evolution of a walker onN nodes, we are required to keep track of 2N coordinates.
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structure of the Hadamard walk becomes formally:

∀s ∈ T̂ : Pi(t0 + s) = Ci for i 6= n,

∀s ∈ T̂ : Pn(t0 + s) interpolates between Cn and Dn.
(137)

One way to satisfy conditions outlined in (136) is to calculate the interpolation be-
tween Cn and Dn in U(2). The time-dependent evolution operator could then be calcu-
lated easily as a finite version of (48). A generalisation of this approach would enable
us to consider cases such as moving the coin defect from the position n to m. The only
difference we would have to take into account was the number of interpolations: two
simultaneous interpolations were required.

The interpolation Pn(t0 + s) between Cn and Dn may be written as follows:

Pn(t0) = T (t0)Cn
!

= Cn,

Pn(t0 + T ) = T (t0 + T )Cn
!

= Dn,

Pn(t0 + s) = T (t0 + s)Cn.

(138)

Although the equation (138) may seem to introduce as unnecessary formalism it trans-
forms the problem of connecting two arbitrary points in U(2) to a simpler one: the task
is to find a path between T (t0) = I and

T (t0 + T ) = DnC
−1
n , (139)

because Cn and Dn are unitary. We will construct the path T (t0 + s) in Proposition 3.1.

Proposition 3.1. In order to connect two arbitrary unitary matrices in U(2) we
may follow the guide:

1. Diagonalize DnC
−1
n = V EV † and denote eigenvalues of the operator E exp(iη1),

exp(iη2). We follow the convention to choose the argument of a complex number in
the range (−π, π].

2. Set Ẽ : [0, 1]→ U(2) to be:

Ẽ(p) =

(
exp(ipη1) 0

0 exp(ipη2)

)
. (140)

3. We define T : [t0, T0 + T ] as follows:

T (t0 + s) = V Ẽ(f(s))V †, (141)

where the increasing function f maps the interval [t0, t0 + T ] onto [0, 1]. Note that
we may adjust the speed of passage both by the choice of its length T and via the
parametrization f . The typical choice for f is:

f(s) =


0 for s ≤ t0.
s−t0
T for s ∈ (t0, t0 + T ),

1 for s ≥ t0 + T.

(142)
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A similar technique may be used to find paths directly between the operators U1

and U2 governing the evolution of the Hadamard walk before and after a perturbation.
Thanks to the structure of the operators U1 and U2 described in the equation (136) the
product U2U

†
1 is very close to a unit matrix; the only dissimilarities from I are in the

vicinity of the elements of the modified coins. To be more precise, while introducing a
new coin defect at location n, we encounter perturbations of matrix elements at positions
[2n, 2n], [2n, 2n+ 5], [2n+ 5, 2n], [2n+ 5, 2n+ 5], where the square bracket denotes rows
and columns. The calculation of U2U

†
1 is thus rather fast and straightforward. Adiabatic

passages are then calculated using the eigenvectors V of U2U
†
1 . Although we perform

the diagonalization only once – while introducing or modifying a defect – this step may
require significant amount of computer resources. But why should we take the trouble
to perform a more difficult task when Proposition 3.1 solves our problem?

1. We aimed to create a simulator offering general transitions, such as introduction
of different boundary conditions or topological changes of the lattice. The latter
mentioned encompass for example a creation of new cycles swapping nodes etc. It
is also important to note that for defects in coin space the more general approach
concerning evolution operators U1,2 gives exactly the same interpolation (or pos-
sibly multiple interpolations) as outlined in Proposition 3.1. We are thus able to
provide a general method governing transitions between evolution operators that
respects our requirements (137). On the other hand we increase our demands on
computers because we need to multiply larger matrices during transitions 9.

2. Bearing in mind that we shall examine spectra of operators undergoing adiabatic
transitions, we benefit from direct access to their matrices as whole. With the inten-
tion of finding all their eigenvalues and tracking eigenspaces, having an element-wise
access to their matrix representation simplifies the task significantly.

It is also important to note that eigenvalues to be computed have all the same absolute
value due to the unitarity and their separation is very subtle. Consider for example
Hadamard walk on 1000 nodes. We thus need 2 · 1000 coordinates and expect to find
2000 eigenvalues. Assuming the best case scenario, the eigenvalues follow an equidistant
distribution 10 and this leads us to π

1000 radians difference in arguments of neighbouring
eigenvalues. The numerical method chosen thus must be designed carefully and with
respect to very close separation of eigenvalues. Furthermore, the set of eigenvectors must
be orthonormal.

3.2 Adiabatic transitions

In the section 2.2 we have seen an analytical solution of the eigenvalue problem (51).
One of our aims was to investigate adiabatic perturbations introducing coin defects. In
Wójcik model[2] we have seen not only analysis for defects concerning the phase-altered
Hadamard coin but also an interesting result concerning the walker. If we initialize
the walker in the state (32) centered around the coin defect, part of its state stays

9The overhead is actually not so significant while working with modern CPU architectures providing
vector instructions such as AVX2. Although we still need to perform matrix multiplication of potentially
large (≈ 104 rows) matrices we are able to perform the multiplication relatively efficiently. Assembling
the matrices, on the other hand, in place disallows us using vectorized instructions in our case.

10This assumption does not hold and the resulting separation is thus even worse.
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trapped around the origin. We would like to examine more general cases and discuss
slow transitions between defects, adiabatic shift of a coin defect to a neighbouring node,
adding a new defect etc.

In Figure 5 we present a snapshot of state functions for two walkers. Remind that

we may use coordinates
(
αn
βn

)
n∈N̂−1

; thus a two-color scheme is used so that we may

distinguish between α’s and β’s. We will always follow the rules:

Note 3.1. 1. The walker on the left is called the reference walker and it visualizes
scenarios as if we did not introduce any defect.

2. The walker on the right is called the perturbed walker and it visualizes scenarios
taking into account all defects introduced.

3. Both walkers were introduced with the same initial conditions and they do not
share the lattice. However, their latices are of the same size and satisfy the same
boundary condition.

4. Unless stated otherwise, we chose the symmetric initial state (32) shifted to the
centre of the grid.

5. Although that the more traditional way is to plot the probabilities of finding the

walker at the n-th node
∥∥∥∥(αnβn

)∥∥∥∥2

, we opted for plotting ‖αn‖2 and ‖βn‖2 sepa-

rately. α’s are plotted orange and β’s are in blue color.

6. Coin defects are marked using vertical lines. An active coin defect is shown by a
red dashed line whereas we mark by a green dotted lines places where a defect had
been introduced but is not present anymore.

Figure 5 shows a “trapped” walker on a 100-node periodic grid. The coin defect had
been introduced just before the walk started. iR(θ) coin perturbation with θ = π

6
11 was

chosen. Note that the perturbation is one node off-centre.

11Although the value π
6
is not distinctive anyhow, we performed a significant amount of numerical

simulations in this setting. Everybody uses π
4
, π
2
, . . . but no one picks π

6
. The number 6 is thus sad and

we wanted to cheer it up a little bit.
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Figure 5: A comparison of two 100-nodes Hadamard walks. We may regard the reference walker
in the left plot after having performed 35 steps fro the initial state (32). Although the perturbed
walker was initialized in the same initial state, part of its probability is trapped due to the coin
defect iR(θ), where θ = pi

6 .

Throughout our path to the analytical solution (123) (124) of the eigenvalue problem
(51) concerning the Hadamard walk with a single coin perturbation we used to check in-
termediate results using numerical simulations. Having derived the analytical solutions
we could finally test the precision of simulations and especially our ability to give numer-
ical estimates to the eigenvalue problem. For single coin perturbations the results agree
perfectly. We are furthermore able to provide numerical analysis of stationary states and
create predictions regarding resulting spectra as mentioned in the Remark 2.1.

The impact of the periodic boundary condition will be discussed with the help of
Figure 6. It shows a sample eigenvector corresponding to a π

4 -rotation coin defect. Re-
mind Proposition 2.3 implied that we shall see a geometric sequence while examining the

norms
∥∥∥∥(αnβn

)∥∥∥∥2

. The numerically determined eigenvectors satisfy this property. Fur-

thermore, they tend to zero fast enough that their interaction with the periodic boundary
is negligible. We may also spot the irregularities in plot of the phase. We anticipate to
see a periodic phase dependency. The numerical solution confirms our expectations to a
certain extent: in the neighbourhood centered around the position of the perturbation
considered, the phase follows the periodic pattern. But as soon as we move ≈ 40 steps
away the regularity of phase disappears. This effect is due to the round-off error caused
by multiplication of extremely small numbers. Such fast convergence to zero is to our
benefit: we do not need to include the interaction with the boundary if we stay far enough
from it.

We may also start the non-perturbed Hadamard walk and introduce the coin pertur-
bation slowly. A 20-step adiabatic transition that introduces a the same π

4 -rotation coin
shall be presented. In the following paragraphs operator U(t) governing the evolution of
the Hadamard walk will be time dependent. We performed 40 steps of an unperturbed
walk, i.e. U(t) was constant, and beginning with the 40th step we slowly interpolated
from the Hadamard coin to a π

4 -rotation using the linear parametrization (142). In Fig-
ure 7 four snapshots of the evolution of its spectrum are shown. With the aim to use
a finite-dimensional system as an approximation to an infinite one and bearing in mind
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A sample eigenvector for π/4 rota�on coin defect 

Figure 6: A sample eigenvector corresponding to a π
4 -rotation coin defect. As Proposition 2.3

anticipate the amplitudes follow a geometric sequence.

that according to the Lemma 2.2 the operators S± must have an eigenvalue satisfying
|µ| < 1. But we have shown this requirement implies:

arg(λ1,2) ∈
(
π

4
,
3π

4

)
∪
(
−3π

4
,−π

4

)
. (143)

These eigenvalues were thus highlighted.
While comparing the analytical an numerical solutions of stationary states for various

perturbations we also compared the analytical and numerical calculation of the eigenval-
ues (123) (124) during transitions. A sample plot showing the four roots that arise while
introducing iR(θ) coin perturbation, where θ = π

6 , is shown in Figure 8. Several these
plots were made in pairs: we always calculated the same transition both analytically
an numerically. The results agree beyond our expectations. It is in fact impossible to
distinguish between eigenvalues thus obtained.
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Step 40 Step 48

Step 54 Step 60

Figure 7: Having performed 40 steps of unperturbed Hadamard walk, we introduced a rota-
tional coin defect and tracked eigenvalues during a 20-step transition. Eigenvalues marked
by green dots lying on the left and right semi-arcs are present even without presence of any
defect. This is due to the periodic boundary condition. On the other hand eigenvalues λ1,2
marked red are introduced thanks to the perturbation and their arguments satisfy the condition
arg(λ1,2) ∈ (π4 ,

3π
4 ) ∪ (− 3π

4 ,−
π
4 ). Compare the plot with Figure 3 where we divided the unit

circle based on relations between eigenvalues µ1,2 (95) of the operators S± and candidates for
eigenvalues λ.

Paths of selected eigenvalues of the Hadamard walk: analy�cal sotu�on

Figure 8: Analytically calculated paths of the eigenvalues that arose due to an adiabatically in-
troduced coin perturbation. In this case an imaginary rotation iR(θ) with θ = π

6 was introduced.
Instead of fixing a time interval and picking up a parametrization, e.g. (142) we chose to plot
the transition using the dimensionless time p.
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3.3 Perturbation shift

We made several attempts at generalizing our analytical solution to the eigenvalue prob-
lem to the case of multiple defects. A short summary of known properties of multiple
coin defects is in the Remark 2.1. Several cases concerting particular settings or combi-
nations of perturbations have been studied using numerical simulations. Multiple coin
defects and particularly multiple coin defects in close vicinity are an important feature
of adiabatic transition concerning shifting of the perturbations.

Image a coin defect Cn was introduced at a position n. Our task is to move the
defect one node left or right. For example if we consider the partially trapped walker
from Figure 5, we may ask whether we could shift the probability peak to a neighbouring
node moving the trapped state align. We might certainly reset the coin Cn to the
Hadamard coin H and then introduce a new perturbation at the location n− 1 or n+ 1.
This procedure is not, however, efficient: while we take away the coin perturbation at
the node n, we also lose the walker’s localization. We may try to improve this method by
designing a direct transition between two Hadamards with a single-coin defect. Though,
this approach enforces a co-existence of a pair of coin defects in close vicinity.

We shall begin by presenting two examples. Both of them implement the idea of the
direct transition between two Hadamard walks with single-coin perturbation initialized
in the symmetric state (32). In the first example we provide a demonstration that the
method outlined in the paragraphs above is vivid and we may actually move the walker
to a neighbouring node. Then we will present an example where we fail to shift the
probability peak as desired. We actually manage to do the contrary – the peak vanishes
completely. In both experiments the walkers underwent the same adiabatic transition:
after having performed 20 steps of a perturbed walk with a single coin defect located at
the node 76 we initialized a 10-steps adiabatic passage in order to slowly push the coin
perturbations to the node 77.

In the first setting we fixed:

CA76 = DA
77 = i

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
, (144)

where θ = π
4 . The second experimental setup considered the same coin defects except

for a phase change:

CB76 = DB
77 =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
. (145)

The choice for θ remained unchanged. We shall refer to the walkers from the setting one
as A-walkers and to those from the setting two as B-walkers. Even though the initial
states of the perturbed A- and B-walkers depicted in Figure 10 and Figure 13 seem
comparable – the probability peak is present in both cases and both walkers experience
slight asymmetry due to the initial position of the perturbed coin defect – during the
passage their evolution bifurcates dramatically.

Note that the imaginary rotation introduces 4 eigenvalues whereas the regular rota-
tion only 2. Throughout the transition of A-walker we have 4 eigenvalues and their paths
are relatively smooth – see Figure 12. On the other hand, while regarding the trajecto-
ries of B-walker’s eigenvalues we begin with only two eigenvalues, two more eigenvalues
are suddenly appear in the 3rd step and finally in the 8th step we suddenly lose the
eigenvalues corresponding to the coin space perturbation. The paths of the B-walker are
depicted in Figure 15.
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After having passed the transitions, both walkers A and B perform ten more steps as
shown in Figure 11 and Figure 14. We managed to shift the probability peak A-walker
started with. In contrast, B-walker’s localization was not preserved. The transition
actually destroyed the probability peak and dispersed it into the neighbourhood of the
shifted defect.

It is up to the designer of the adiabatic transition whether such behavior is or is not
desired. We would like to point out that only 10-step transition suffice to almost eliminate
the chance to find the walker in the new location. After the passage the probability
of finding the walker at the new location is ≈ 0.09 %. Note that we begun with the
probability ≈ 8 %. An alternative visualisation of paths to that offered in Figure 15 is
presented in Figure 9. Visualising the paths directly on the unit circle provides us usually
with a slightly different insight. While observing trajectories depicted in Figure 9, it is
easy to spot an interesting patter: beginning with the eigenvalues ±i typical for rotations,
we see the original pair tends to rotate counterclockwise and a pair of new eigenvalues
appears at the boundary of the continuous spectrum. As the passage progresses, the
original eigenvalues merge with the continuous spectrum whereas the newly appeared
pair tends to ±i. Finally, the original spectral properties are restored. But we managed
to carry the original probability peak away to the the subspace corresponding to the
finite approximation of the continuous parts of the spectrum.

Step 20 Step 23

Step 27 Step 30

Figure 9: While performing an adiabatic transition between two rotation coin defects, two new
eigenvalues suddenly appear in the beginning and later – by the end of the adiabatic passage
vanish.
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Figure 10: A-walker after 20 steps of perturbed evolution with the coin CA76 (144). The probability
is clearly peaked around the location of the perturbed coin.

Figure 11: A-walker after 10 steps transition steps followed by 10 steps of evolution with the coin
DA

77 (144). The probability remained peaked around the location of the shifting perturbation.

Perturba�on shi� by 1 node: imaginary rota�on

Step

Step Step

Step

Figure 12: Numerical calculation of the paths taken by the selected eigenvalues under the coin
shift. In the case of iR(π4 ) we do not observe any dramatic dynamics.
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Figure 13: B-walker after 20 steps of perturbed evolution with the coin CB76 (145). B-walker’s
probability is also peaked around the location of the coin defect.

Figure 14: B-walker after the 10-step transition steps followed by 10 steps of evolution with
the coin DB

77 (145). We managed to destroy the probability peak in the vicinity of the shifted
perturbation. When we examine the probability to find the perturbed B-walker at the node 77 in
time, we find that the probability is almost zero.

Perturba�on shi� by 1 node: rota�on

Step

Step Step

Step

Figure 15: Numerical calculation of the paths taken by the selected eigenvalues under the coin
shift. The case of R(π4 ) introduces a turbulent dynamics and we observe an emanation of two
previously non-existent eigenvalues during the transition. Furthermore, the probability peak is
carried away to to the eigensubspace corresponding to the finite approximation of continuous
spectrum which is the exact opposite we wanted to achieve. Or is it?
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Imagine we track an a trapped walker. The walker is trapped because part of it state
has a non-zero projection onto an eigensubspace or possibly eigensubspace of the unitary
evolution. If we slightly perturb the spectrum of the time step operator, we expect that
the eigensubspaces would not change drastically. Although the the classical statements
of the AT introduced in Section 1.3 propose statements about the adiabaticity based
on properties of Hamiltonians, we may try to perform comparably small perturbations
considering the discrete evolution of the Hadamard walk. Even though we might try to
perform transitions very slowly, we may never escape the inherent discreteness imposed
by the step operator. Our experiments, on the other hand, suggest we could benefit from
adjusting rates of the passages.

In order to express the rate of adiabaticity we introduced several metrics.

1. One possibility is to track projections onto the eigensubspaces corresponding to
the eigenvalues isolated from the continuous spectrum (or its approximation in the
finite case). We are then interested in examination of their consecutive application.
Numerical simulations enable us to do so. We introduce the following function:

Ξλ1,...,λn(t0, t1) =

∥∥∥∥∥
t1∏
i=t0

Pλ1,...,λn(i)

∥∥∥∥∥ , (146)

where we consider instantaneous eigenvalues λ1,...,n to be functions of the discrete
time and we denote the projector onto the eigensubspaces corresponding to the
eigenvalues λ1,...,n at the time step j Pλ1,...,λn(j). Our numerical examination of
transitions between various coin defects revealed an interesting properties. When
we introduce a coin defect Cn at the location n and then we slowly shift the per-
turbation towards the (n+1)-th node, then depending on the number of stationary
states corresponding to Cn we:

(a) either manage to successfully move the localized walker – that is the case of
four stationary states,

(b) or we make the localization vanish– in case the coin defect Cn introduces only
two stationary states.

Furthermore, the longer the transition is, the more successful are we in respective
cases. Having four stationary states we are better at keeping the walker localized
and having only two stationary states we are less likely to find the walker at the
new position.

Although we are currently not able to prove that the problem of two neighbour-
ing defects will never introduce more than four stationary states, we are able to
provide strong experimental evidence that for imaginary rotations and and defects
investigated by Endo and Konno (65) this is the case. For the impact of the length
of passage on shifting of these defects we may see the plot of the function (146) in
Figure 17. Quite a clear pattern is revealed: with increasing transition length we
the function Ξ (146) grows. Ξ is certainly bounded from above by 1 for the case
of preserving selected subspaces intact. Thus, the closer are we able to keep Ξ to
1, the “more” adiabatic transition we managed to pass. We thus also plot 1 − Ξ
in logarithmic coordinates in Figure 18. Both Figure 17 and Figure 18 capture
transition of the same iR(θ) coin defect.
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2. We may also keep track of instantaneous projections defined as:

χλ1,...,λn(t, ψ) = ‖Pλ1,...,λn(t)ψ‖ , (147)

where we denote the projector onto the eigensubspaces corresponding to the eigen-
values λ1,...,n at the time step t Pλ1,...,λn(t). A sample plot corresponding to the
situation described in the point 1 is presented in Figure 16. While comparing
the final states after having passed the adiabatic evolution depicted in Figure 16
and Figure 17, we find agreement. However the function χ (147) might not be
monotonous.

We have not investigated such transition effects yet but we aim to examine their
behaviour in the near future.

In order to provide deeper insight the tho problem of adiabatic transitions we aim our
attention at study of multi-point defects. The analysis of adiabatic transitions, such as
shifts of perturbations, shall be significantly clear as soon as we understand the spectral
properties of Hadamard walks with 2 and more disturbances. Furthermore, we would
like to develop a unified experimental measurement – such those outlined in (146) and
(147) – of the rate of adiabaticity for discrete time evolution. It is also worth noting
that the function χ (147) reveals an interesting behaviour during transitions. We have
seen the relation of (147) in Figure 16. Yet we have encountered cases where “strange
oscillations” occur. We shall examine these phenomena in continuation to this work.

χ

Norm of the projec�on of the state vector onto the selected subspace

Figure 16: Comparison of transition lengths measured using the function χ (147).
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Ξ

Norm of the product of projec�ons onto selected eigenspaces

Figure 17: Comparison of different lengths of adiabatic passages. We plot the function Ξ (146)
for the case of a one-node shift of the coin defect iR(θ), where θ = π

6 .

Figure 18: The probability of loosing walker Ξ − 1 as a function of the transition times T in
logarithmic axes. The fit helps us to determine the asymptotics: in this case this probability
decreases as O( 1

T ).
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4 Conclusion

We presented an analytical method uncovering solutions to the eigenvalue problem con-
cerning Hadamard walks with a single-point defect. While investigating the stationary
states, we may find zero, two or four solutions as outlined in Proposition 2.3. To our
surprise, even the case concerning four roots has a relatively nice form that is expressed
using the equations (123) and (124).

With the aid of our new method, the case considering phase-altered coins studied by
Wójcik et al. in [2] became easy to solve. We have also revisited another well known
example introduced by Endo and Konno [41]. Our results apply also in this example.

We are further interested in examination of multiple-coin defects. Right now, we are
not aware of any special class of two-coin defects that might be investigated analytically.
Though considering adiabatic transitions often introduces multiple perturbations at once.
In order to study such transitions we had to develop own framework providing numerical
solutions. We plan to develop the core of the simulator further and write an appropriate
documentation, so that the code may be released. In more distant future we might
consider adding a user interface.

While studying adiabatic transition we considered a trapped walker. Depending on
the perturbation intermediating the trap we observed two significantly different scenar-
ios. For defects introducing two stationary states, w are usually not able to perform state
transfers. The localized state is usually dispersed to the neighbourhood of the pertur-
bation shifted. On the other hand, experimental setups provide a strong evidence that
defects with four stationary states might be transferred. Although the adiabatic theorem
does not provide insight to discrete time evolution, we managed to observe phenomena
similar to those from continuous realm.
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A Appendix

A.1 Minor implementation details

Rather than beginning with a back end numerical simulator and equipping it with a
user interface, we opted for preparing a framework-like library. Thanks to available
numerical libraries NumPy [43] and SciPy [44] we opted for writing the simulator in
Python. Internal routines of NumPy and SciPy and solvers therein are based on LAPACK
[45] and BLAS packages (in our case FlexiBlas [46]).

Although a constructive algorithm to find paths in U(N) was outlined in the section
3.1 details concerning the numerical solution was omitted. In order to perform the initial
diagonalization from Proposition 3.1 must be performed. The general case requires to
find all the eigenvectors of U2U

−1
1 and their corresponding eigenvalues. Several reliable

numerical methods suitable for diagonalization of unitary matrices are available. In our
case the singular values decomposition or Schur factorisation [47] offer a suitable balance
between numerical precision and speed. Our implementation relies on LAPACK routines
[48] provided through the interface of SciPy linear algebra package [49]. We chose the
Schur decomposition for several reasons: we know the matrices to be factorized are diag-
onizable and that the similarity transform is provided by a unitary matrix consisting of
eigenvectors to be found. Furthermore, numerical routines used for Schur decomposition
in LAPACK rely [50] on elementary Householder matrices (also known as elementary
reflectors) [47]. We are thus guaranteed the eigenvectors found will form an orthonormal
basis. The numerical accuracy thus gained enables us to directly implement mathemat-
ical objects introduced in the section 3.1 without need to introduce neither roundoff
corrections nor renormalisation etc. Having found and stored the Schur decomposition
of U2U

−1
1 we need to perform only two matrix multiplications in order to determine a

point of the trajectory between the unitary matrices U1 and U2.
Similar techniques were used in other methods and careful choice of design patterns

resulted in a reliable tool providing an insight into experiments concerning quantum
random walks.

A brief outline of the structure used in the program shall be presented.
We work primarily with the following objects:

1. A state represents a walker’s stare – its wavefunction in a Hilbert space coordina-
tized by (33).

2. A walk represents a non-perturbed Hadamard walk on a discrete line of desired
length. This class introduces the operator of the unitary evolution and also provides
methods to iterate steps of the walk. The initial position of a walker is passed as
an initial state which is of the type state.

3. A transition encapsulates parameters of both diabatic and adiabatic transitions.

4. A defect represents a perturbed Hadamard walk derived from a parent object,
where parent may be either a walk or a defect, and a transition.

5. A record acts as an auxiliary object to store evolution of given perturbed walks.
This object is usually returned by the record method provided by a defect.
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We omit the use of other classes and functions and focus on the relations between listed
objects. The relations are particularly simple. Once we specify a walk using free pa-
rameters and an initial state we may ask to computer to simulate a desired number of
steps while keeping track of attributes of our interest. However the main purpose of the
outlined structure is to calculate adiabatic passages. We can thus initialize a walk and
then set an adiabatic transition of the form (142). Then we introduce a defect derived
from the walk. Our approach uses a generalised graph relations between defects. We are
thus able to introduce multiple perturbations, arrange adiabatic transitions between two
perturbed evolution or slowly add new defects to already perturbed evolution. Further-
more, we may track eigenvalues that arose due to defects. A piece of code will illustrate
the typical use case:

1 import numpy as np #imports NumPy
2 import hadam #imports the simulator
3 init_state = state(500)
4 promenade = walk( init_state, "periodic")
5 slow_trans = transition( 100, "zig", 10, 1)
6 alpha = np.pi/4 #set the coin defect
7 factor = 1j
8 x11 = np.cos(alpha)*factor
9 x12 = np.sin(alpha)*factor

10 x21 = -np.sin(alpha)*factor
11 x22 = np.cos(alpha)*factor
12 G = [[x11, x12],[x21,x22]]
13 coinspace = defect( promenade, slow_trans, type=10, \
14 defective=[n], coin=[G])
15 coinspace.add_another( type=10, \
16 defective=[def_place + 4], coin=[G])
17 record = coinspace.record( 150, directory=..., make_graphs=True,
18 graph_type="alpha-beta", check_eigenvectors=range(10, 110), \
19 record_eigenspaces = True)
20 record.export_eigvals( file=... )

1. After having imported NumPy and the program itself in Python we initialize the
state. Its size is 500 and thus it describes a state of the Hadamard walk on 250
beads. We may set other options but ommiting them produces a defaut state that
produces symmetric probability distribution for Hadamard walks.

2. A walk named promenade and a transition called slow_trans were initialised. We
passed arguments: 100 steps long transition; transition function of the type (142);
initial delay 10 steps and number of passafes is set to 1 12.

3. On lines 6 – 12 a perturbed coin G is set using NumPy math functions.

4. We set the target coin defects on the lines 13 and 15.

5. On line 17 we record the adiabatic transition of length 150 steps. The additional
arguments specify graphing options and set ranges when to check the eigenvectors.

12For 2 we would perform the transition forwards and then immediately backwards. This feature gives
rise to the name “zig”.
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6. Finally the recorded eigenvalues are exported into a specified file.

The evolution of the program was very dynamical and tightly followed our needs.
Anytime a new feature was required, we implemented it. The set of available options is
thus rather lengthy and will not be presented here.

The code itself shall be released as soon as a suitable documentation becomes avail-
able.
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List of Symbols and Acronyms

Symbols

N the set of positive integers {1, 2, . . . }
N0 the set of positive integers with zero {0, 1, 2, . . . }
Z integers {. . . ,−2,−1, 0, 1, 2, . . . }
N̂ subset of integers {0, 1, 2, . . . , N}
C the set of complex numbers
R the set of real numbers
<(z) the real part of a complex number z
=(z) the imaginary part of a complex number z
ZN = Z�NZ quotient space
ImF (S) image of the set S under a mapping F , i.e. F (S)
PreimF (S) preimage of the set S under a mapping F
H Hilbert space
span

{
x1, . . . , xn

}
linear span

〈x|y〉 dot product of vectors x and y
det(A) determinant of A
AT transpose of A
A† Hermitian transpose of A

Acronyms

AQC adiabatic quantum computing
QA quantum annealing
AT adiabatic theorem
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