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Introduction

The main aim of this thesis is to study quantum measurement protocols with respect

to the concepts of noise and disturbance. When the notions of noise and disturbance

are mentioned, the first thing that comes to mind is usually the famous relation from

Heisenberg, which is commonly written in the following form:

σxσp ≥
~
2
, (1)

where σi denotes standard deviation related to the position and momentum measurement,

respectively. The problem of noise in a measurement and disturbance of a quantum system

is much more intricate though. First thing complicating the whole situation is the fact

that Heisenberg never gave any physical interpretations to σi. The original Heisenberg

relation takes the following form:

∆x∆p ≥ h, (2)

where h = 2π~. The meaning behind equation (2) is that the measurement precision of

one physical property on wave-like systems necessarily influences measurement precision

of another physical property. A great example of this phenomenon can be a tone pitch

and its duration. The shorter we measure certain tone pitch, the harder it is to exactly

tell what its frequency is. This behaviour is natural for all systems that can be described

using wave equation, which means that it must be observed in quantum systems. This

principle is described in great detail in the third chapter.

Both relations (1) and (2) are not what we mean by measurement disturbance, since,

as we already mentioned, the principle described above applies to all wave-like systems,

not only the quantum ones. What does apply only to the quantum world is the observer

effect, a concept, which tells us that every measurement necessarily influences the system

being measured. This influence then causes some loss of information about the system and

there is no way of completely getting rid of it. In order to quantify this mainly negative

influence and the information loss it causes, we need to correctly and rigorously define joint

quantum measurements. We can then introduce functions which, using information theory

and statistics, give us the amount of correlation between the outcomes we measured and

outcomes that can be considered as ”real”. Quantifying this link between the two means

calculating the noise and disturbance on the system by some joint measurement.

XI





Chapter 1

Generalized measurements

In this chapter we shall briefly explore the basics of measurement theory in quantum

mechanics. In the first section we start with von Neumann measurements, where we

represent a state by a vector. We then make a generalization and switch to a better way

of state representation – density matrices, denoted throughout this thesis as ρ̂, which serve

as a very convenient way to describe composite systems and their evolution. We end this

chapter with the theory of quantum operations and show the superiority of this notation.

For a quantum system, whose states can be, up to a global phase factor eiϕ, represented

by a set of state vectors |ψi〉 with respective probabilities pi is the density matrix, or

density operator, defined as follows:

ρ̂ ≡
∑
i

pi |ψi〉 〈ψi| . (1.1)

The evolution of a state can then be very conveniently described using unitary operator

Û :

ρ̂→ Û ρ̂Û †, (1.2)

where Û † represents the adjoint operator to Û . The density operator completely describes

a quantum state and is always a positive operator with Tr(ρ̂) = 1.

1.1 von Neumann measurements

The von Neumann measurement, introduced by Hungarian-American mathematician John

von Neumann, is also called ideal or projective measurement. It does not take effects of

noise into account, meaning the measured system is understood as a combined system

of the apparatus and the quantum state we seek to measure. Let us have an observable

quantity represented by a Hermitian operator Â with a set of eigenstates (now represented

by vectors) {|λn〉} and a set of eigenvalues σA = {λn}, where λn ∈ C and {|λn〉} form an

orthonormal basis on our Hilbert space H. We start with the following equation:

Â |λn〉 = λn |λn〉 . (1.3)

1



The set of eigenvalues {λn} represents the measurement outcomes. An operator Â with

non-degenerate spectrum can be decomposed using both eigenvalues and eigenstates {λn}
as follows:

Â =
∑
n

λn |λn〉 〈λn| . (1.4)

Let us also have a state represented by a density matrix ρ̂, then we can calculate the

probability of measuring a value λn from the spectrum σA of the operator Â as:

P (λn) = 〈λn|ρ̂|λn〉 . (1.5)

If we assume the eigenstates can be degenerate the operator Â can be decomposed as

follows:

Â =
∑
n

d(n)∑
j

λn |λ(j)n 〉 〈λ(j)n | , (1.6)

where d(n) denotes the multiplicity of eigenvalues λn and {|λ(j)n 〉 |1 ≥ j ≥ d(n)} forms an

orthonormal basis if the eigenstate |λn〉 correspond with the eigenvalue λn. The probability

of measuring such degenerate eigenvalue (measurement outcome) is given by:

P (λ(j)n ) =
∑
j

〈λ(j)n |ρ|λ(j)n 〉 (1.7)

Here we can make an abstraction by transitioning from observables to outcomes, which will

change our description of the measurement act. So instead of the measurement outcome

being labeled as λn we shall label it as n and use a projector defined as:

P̂n = |λn〉 〈λn| = |n〉 〈n| , (1.8)

or, for degenerate states, as:

P̂n =
∑
j

|λ(j)n 〉 〈λ(j)n | =
∑
j

P̂ (j)
n . (1.9)

Projectors are always positive P̂n ≥ 0 and have the following properties:∑
n

P̂n = Î ,

P̂mP̂n = δmnP̂n,

P̂ †n = P̂n

(1.10)

where P̂ †n is the Hermitian conjugate of P̂n, Î represents the identity operator on our

Hilbert space and δmn is the Kronecker delta. The respective probabilities, defined previ-

ously in (1.5) and (1.7) can now be written as follows:

P (λn) = P (n) = Tr (〈n|ρ̂|n〉) = Tr (ρ̂ |n〉 〈n|) = Tr(ρ̂P̂n) = Tr(P̂nρ̂P̂
†
n) (1.11)

thanks to properties of trace and projectors.



Another important thing we need when studying quantum measurements is the state

right after the measurement took place. Since we wish to represent our quantum states by

density matrices, we ought to know the new density matrix of the n-th outcome ρ̂′n given

ρ̂ was the state prior to a measurement. We determine ρ̂′n by acting on ρ̂ with projector

P̂n on both sides:

ρ̂→ ρ̂′n =
P̂nρ̂P̂

†
n

Tr(P̂nρ̂P̂
†
n)

=
P̂nρ̂P̂

†
n

P (λn)
, (1.12)

where the denominator is there for normalization of the post-measurement state1. The

state right after projective measurement, according to the Copenhagen interpretation,

collapsed into one of n possible outcomes and revealed all the information that was hidden

prior to the measurement. This collapse also means that the state was irreversibly changed

and applying the same projective measurement on such state ρ̂′n gives no new information.

In the next section we will take into account the effects of noise and induced errors in the

von Neumann measurement.

1.2 Generalized measurements

Generalized quantum measurement can be described by a set of so called measurement

operators M̂n, where the index n refers, again, to different outcomes of our experiment.

In the von Neumann case, this set is represented by a set of projectors, but this is not

always the case (as we will see later). The measurement operators, as was the case for

projectors, also need to satisfy a condition called the completeness relation:∑
n

M̂ †
nM̂n = Î . (1.13)

The probability of obtaining the n-th outcome is then given by:

P (n) = Tr
(
M̂nρ̂M̂

†
n

)
. (1.14)

The post-measurement state is defined just as it was defined previously for the projective

measurement, only now M̂ †
n 6= M̂n:

ρ̂′n =
M̂nρ̂M̂

†
n

P (n)
. (1.15)

Introducing generalized measurement operators allows for weakening of the destructing

effect a projector has on a state. We can demonstrate such weakening on a specific example

by defining the following measurement operators acting on a state |ψ〉 =

(
α

β

)
on H = C2:

M̂0 =

√2
3

0

0
√

1
3

 , M̂1 =

√1
3

0

0
√

2
3

 . (1.16)

1We choose to write the post-measurement state with the hermitian conjugate so the form is the same

as forms we use later in our text.



Calculating M̂0 |ψ〉 and M̂0 |ψ〉 yields the following expressions:

M̂0 |ψ〉 =

√2
3
α√

1
3
β

 M̂1 |ψ〉 =

√1
3
α√

2
3
β

 (1.17)

and as we can see this type of measurement did not ”destroy” the state |ψ〉 completely.

Probabilities of such measurement would then be:

P (0) =
2

3
|α|2 +

1

3
|β|2

P (1) =
1

3
|α|2 +

2

3
|β|2

(1.18)

instead of P (0) = |α|2 and P (1) = |β|2 which would be the case for projectors. Such

measurement can then be repeated in order for probabilities to be more defined causing

better post-measurement state discrimination. This process of projector weakening is

discussed in great detail in section 5.4.

1.3 Positive operator-valued measure

The positive operator-valued measure, or POVM for short, is a mathematical tool designed

specifically for quantum measurement analysis. It is defined as a set of operators Π̂n whose

expectational values are equal to probabilities of corresponding outcomes. For this reason

they are often called probability operators. We can define them for the von Neumann

measurement by a relation with measurement operators defined in the section 1.2 as

follows:

Π̂n ≡ M̂ †
nM̂n. (1.19)

The completeness relation for probability operators now reads:∑
i

Πi = Î . (1.20)

The equation (1.19) makes Π̂n a positive operator. The number of elements in the POVM

set can be greater or even smaller than the dimension of the state space they operate on.

The probability of getting the n-th outcome is given by:

P (n) = Tr(ρ̂Π̂n). (1.21)

It is widely known (for reference, see [1] on page 90) that any set of operators satisfying

the completeness relation (1.13) is utilisable for describing any generalized measurement2,

which is then conducted as follows. We start by preparing an ancillary quantum system

P , or probe, in a known quantum state, here denoted by a vector |ξ〉 ∈ HP . We then

cause this state to interact in a controlled way with the system we seek to measure, which

we denote as |ψ〉 ∈ H. This interaction, as we mentioned in the beginning of this chapter,

2This statement is a direct corollary of Naimark’s theorem, see [2] page 31.



can be represented by a unitary operator Û , that acts on the entangled state of the probe

|ξ〉 and our system |ψ〉, meaning Û ∈ H ⊗ HP . We can write this interaction down as

follows:

|ξ〉 → Û (|ψ〉 ⊗ |ξ〉) . (1.22)

After this interaction has taken place we perform a von Neumann measurement on the

composed system. This measurement is equivalent to projecting the now entangled state

onto a complete set of states in an extended state space3 and our POVM then describes

a von Neumann measurement on the whole system. The resultant extended state is then

partially traced to get rid of the probe.

An important statement needs to be added here. As we already indicated earlier, one

can describe any measurement by POVM, but the implication also goes the other way – if

a measurement cannot be described by the POVM formalism then it cannot be performed.

This is a great way of determining which processes have any relation to reality.

We can show the practicality of POVM in practice on the following example. Let us

have a device that measures a qubit4, meaning the measurement outcome is going to be

either 0 or 1. In the case of non-ideal measurement we induce errors on the ideal case,

meaning the probability distribution we had previously was distorted by a source of noise

in our apparatus. This, from the practical point of view, means that a part of the ideally

accessible information was distorted. We start with the ideal measurement constructed in

the following form:

M̂0 = P̂0 = |0〉 〈0|
M̂1 = P̂1 = |1〉 〈1| .

(1.23)

Let m be different real outcome of our measurement and n be an outcome of the respective

ideal measurement. Then the probability of getting m-th outcome is given by:

P (m) =
∑
i

P (m|n)Tr(ρ̂P̂i). (1.24)

So in our case the respective probabilities would be:

P (0) = (1− p)Tr(ρ̂P̂0) + pTr(ρ̂P̂1)

P (1) = (1− p)Tr(ρ̂P̂1) + pTr(ρ̂P̂0)
(1.25)

in the case of symmetric noisy channel5. The probabilities in (1.25) changed since we

accounted for some source of noise that was causing statistical errors. These errors can

be added into the act of measurement itself. There we had probabilities of getting either

3The extended state space can be represented by extra states of the original unknown quantum state

not used in prior notation.
4Here we mean the term qubit as a two level system, such as polarization of a photon or spin of an

electron. We give a brief explanation of both terms at the end of the second chapter.
5A symmetric noisy channel measures two possible outcomes m,n ∈ {0, 1} with probabilities P (m =

n) = 1− p and P (m 6= n) = p. Further description of classical information channels can be found in [3].



0 or 1 as an outcome in equations (1.25). Since POVM elements have their expectational

values equal to probabilities of corresponding outcomes we can rewrite (1.25) as follows:

P (0) = (1− p) 〈0|ρ̂|0〉+ p 〈1|ρ̂|1〉
P (1) = (1− p) 〈1|ρ̂|1〉+ p 〈0|ρ̂|0〉

(1.26)

and we can determine the form of both Π̂0 and Π̂1 as follows:

Tr(ρ̂Π̂0) = (1− p) 〈0|ρ̂|0〉+ p 〈1|ρ̂|1〉 = (1− p)Tr(P̂0ρ̂) + pTr(P̂1ρ̂) =

= Tr
[
((1− p)P̂0 + pP̂1)ρ̂

] (1.27)

Tr(ρ̂Π̂1) = (1− p) 〈1|ρ̂|1〉+ p 〈0|ρ̂|0〉 = (1− p)Tr(P̂1ρ̂) + pTr(P̂0ρ̂) =

= Tr
[
((1− p)P̂1 + pP̂0)ρ̂

]
.

(1.28)

From equations (1.27) and (1.28) we can extract the form of both POVM elements:

Π̂0 = (1− p)P̂0 + pP̂1

Π̂1 = (1− p)P̂1 + pP̂0.
(1.29)

What does a post-measurement state look like? One would naively consider the square

root of probability operator M̂n =
√

Πn which satisfies the equation (1.19), or even more

generally M̂n = Û
√

Πn for any unitary operator Û . We could, however, calculate the

post-measurement state directly. Since we are using symmetric noisy channel we know we

can either get the desired outcome or we can get the other one with probability p. This

makes the post-measurement state a statistical mixture of both states P̂0ρ̂P̂
†
0 and P̂1ρ̂P̂

†
1 :

ρ̂0 =
(1− p)P̂0ρ̂P̂

†
0 + pP̂1ρ̂P̂

†
1

P (0)

ρ̂1 =
pP̂0ρ̂P̂

†
0 + (1− p)P̂1ρ̂P̂

†
1

P (1)
.

(1.30)

As we can see, this is not equal to the form (1.15) for any M̂ †
m

6 so a further generalization

is in order. We devote the next section to it.

6In a language of generalized measurement there is a possibility of constructing a set of Kraus operators

in the following forms. For the first outcome 0 we can write: M̂
(1)
0 =

√
1− pP̂0, M̂

(2)
0 =

√
pP̂1 and for

the second outcome 1 we can write: M̂
(1)
1 =

√
1− pP̂1, M̂

(2)
1 =

√
pP̂0. The POVM set would then

be constructed as follows: Π̂0 = M̂
(1)†
0 M̂

(1)
0 + M̂

(2)†
0 M̂

(2)
0 = (1 − p)P̂0 + pP̂1 and Π̂1 = M̂

(1)†
1 M̂

(1)
1 +

M̂
(2)†
1 M̂

(2)
1 = (1 − p)P̂1 + pP̂0. We could also define another set as follows: ˆ̃M0 =

√
(1− p)P̂0 + pP̂1 =√

(1− p)P̂0 +
√
pP̂1, where ˆ̃M ˆ̃M (†) = Π̂0 and ˆ̃M1 =

√
(1− p)P̂1 + pP̂0 =

√
(1− p)P̂1 +

√
pP̂0, where

ˆ̃M0
ˆ̃M

(†)
0 = Π̂0 and ˆ̃M1

ˆ̃M
(†)
1 = Π̂1. Upon investigating the post-measurement state we find out, that

ˆ̃ρ0 =
(

ˆ̃M0ρ̂
ˆ̃M

(†)
0

)
6= ρ̂0, where ρ̂0 is the post-measurement state of the first set of measurement operators

without tilde. This ambiguity need correction that we provide in the next section.



1.4 Operations

In previous sections we focused on how a generalized measurement can be performed and

how to determine probabilities for each possible outcome. In this section we will present a

more versatile tool for describing changes that a system undergoes during measurement.

Quantum operations represent a great mechanism for describing other than destructive

(projective) measurements and to handle unwanted interactions with the environment,

which we identify with noise. They are also practical and useful for describing sequential

measurement.

A quantum operation can be described as a completely positive, trace non-increasing

map7 E that takes a density matrix ρ̂ representing the initial state and, without an explicit

reference for the passage of time, gives us the final state density matrix ρ̂′:

ρ̂→ E(ρ̂). (1.31)

As we can see the map denoted here as E represents a state transformation that can be

repeated or even composed. The post-measurement state will take the following form:

ρ̂′m =
Em(ρ̂)

Tr(Em(ρ̂))
=
Em(ρ̂)

P (m)
, (1.32)

where P (m) is the probability of measuring the m-th outcome. Quantum operations can

be represented by a set of measurement operators {Âm} commonly known as effects:

Em(ρ̂) =
∑
i

Â(i)
m ρ̂Â

(i)†
m . (1.33)

There also exists a dual map to Em denoted as E∗m(ρ̂):

E∗m(ρ̂) =
∑
i

Â(i)†
m ρ̂Â(i)

m (1.34)

thanks to which we can define a POVM set as follows:

Π̂m = E∗m(Î) =
∑
i

Â(i)†
m Â(i)

m . (1.35)

As we can see, Em determines Π̂m uniquely. How about the inverse statement? Unfortu-

nately, there are infinitely many sets of {Â(i)
m } satisfying the equation (1.35) corresponding

to different physical interpretations. So the set of effects can’t be reconstructed from the

POVM alone.

Let’s assume the result of a generalized measurement performed with POVM {Π̂m} in

the form (1.35) is m. Post-measurement states are described by effects as:

ρ̂→ ρ̂′m =

∑
i Â

(i)
m ρ̂Â

(i)†
m

Tr(Â
(i)
m ρ̂Â

(i)†
m )

=

∑
i Â

(i)
m ρ̂Â

(i)†
m

P (m)
(1.36)

7For more information on quantum operations see [4].



with probabilities given by:

P (m) = Tr(Em(ρ̂)) = Tr(Π̂mρ̂) =
∑
i

Tr(Â(i)
m ρ̂Â

(i)†
m ). (1.37)

As we can see the equation (1.15) is a special case for {Â(i)
m } = {M̂m}.

Effects can be chained to represent joint measurement. If we measure the state (1.36)

with a set of operators {B̂j} with outcomes labeled as j, then the joint probability of mea-

suring the outcome j after measuring i can be calculated using the conditional probability

formula P (bj|ai)P (ai) = P (ai, bj):

P (j|i) =
Tr
(
B̂jÂiρ̂Â

†
i B̂
†
j

)
Tr
(
Âiρ̂Â

†
i

)
.

(1.38)

So the joint probability of measuring states i and j sequentially is:

P (i, j) = P (j|i)P (i) = Tr
(
B̂†j B̂jÂiρ̂Â

†
i

)
= Tr

(
Â†i B̂

†
j B̂jÂiρ̂

)
. (1.39)

As we can see, by utilizing properties of tracing, we can understand this sequential mea-

surement as a new POVM and determine the combined probability operator as:

Π̂ij = Â†i B̂
†
j B̂jÂi. (1.40)

If we define Ĉij = B̂jÂi then:

Π̂ij = Ĉ†ijĈij. (1.41)

In this case the operator Ĉij acts as a measurement operator for obtaining the combined

results (i, j) for the sequential measurement and the initial state described by ρ̂ changes

as follows:

ρ̂→
∑
ij

Â†i B̂
†
j ρ̂B̂jÂi = Ĉ†ij ρ̂Ĉij. (1.42)

The operations themselves can also be composed without the use of effects in a rather

elegant way. If we took a density matrix ρ̂ with a post-measurement state defined as:

ρ̂′i =
Ei(ρ̂)

P (i)
, (1.43)

we can take this new state ρ̂′i and apply a new operation, this time denoted as Fj. The

new post-measurement state can then be written as:

ρ̂′i→j = ρ̂′ij =
Fj(ρ̂′i)
P (i, j)

=
1

P (j|i)
Fj
(
Ei(ρ̂)

P (i)

)
=

1

P (j|i)P (i)
Fj(Ei(ρ̂)), (1.44)

where P (i) = Tr(Ei(ρ̂)) and P (j|i)P (i) = P (i, j) = Tr(Fj(Ei(ρ̂))). The new composed

operation can then be denoted as Gi,j:

Gi,j = Fj ◦ Ei. (1.45)



Chapter 2

Fundamentals of information theory

In this chapter we will present basic theorems from classical information theory, or Shan-

non theory, needed in this work for proper understanding of the next chapter. We define

information in a mathematically correct way for classical systems and discuss how the

situation changes for quantum systems. The main source for this chapter was [5] and [6]

together with the paper A Mathematical Theory of Communication by C. E. Shannon

[3].

For correct definition of information in the mathematical sense we first need to introduce

the concept of entropy. Let X be a discrete random variable with realizations denoted as

x. Entropy can then be understood as its measure of uncertainty or as a measure of the

amount of information needed to describe the random variable, or information content

for short. Let X be an alphabet of X, X finite, and let P (x) = P (X = x), x ∈ X be its

probability function.

Definition 1. The entropy, denoted H(X), of a random discrete variable X is defined as

H(X) = −
∑
x∈X

P (x) log2 P (x). (2.1)

We shall omit the subscript in the logarithm henceforward since the entropy is expressed

in bits.

One could ask why the logarithm - and not some other type of function - is used to

define the measure of information. The reasons are quite simple. First, we require higher

uncertainty for lower probability, but the most important argument is that logarithm has

useful properties, such as additivity or positivity in the whole range of the function. Shan-

non himself gives several reasons in his famous paper why logarithm is the most convenient

choice. First and foremost it is very close to our intuitive understanding of measure (log-

arithmic scale is used in many different sciences as a scale, for example pH, sound level or

Richter magnitude scale) but it is also mathematically suitable, as we suggested earlier.

This gives the entropy H properties that very much make the concept intuitive. H = 0

only if the probabilities are all equal to one meaning there is no uncertainty in things that

happen for sure. For all the other cases, when the probability takes a values P (x) ∈ (0, 1),
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H stays positive. In the next definition we extend the number of discrete variables and

define joint and conditional entropy, which will be needed to study collective systems.

Definition 2. The joint entropy, denoted H(X, Y ), of a pair of random discrete variables

(X, Y ) with a joint probability distribution P (x, y) is defined as

H(X, Y ) = −
∑
x∈X

∑
y∈Y

P (x, y) logP (x, y). (2.2)

If the two discrete variables (X, Y ) are independent, then:

H(X, Y ) = H(X) +H(Y ). (2.3)

Definition 3. The conditional entropy, denoted H(Y |X), of a pair of random discrete

variables (X, Y ) with a joint probability distribution P (x, y) is defined as

H(Y |X) = −
∑
x∈X

∑
y∈Y

P (x, y) logP (y|x). (2.4)

Theorem 1. Chain rule for the joint entropy:

H(X, Y ) = H(X) +H(Y |X). (2.5)

The chain rule can be proved using the following equation1:

P (y|x) =
P (x, y)

P (x)
. (2.6)

A direct corollary to Theorem 1 is the following equation:

H(X, Y |Z) = H(X|Z) +H(Y |X,Z). (2.7)

We now introduce relative entropy, the measure of distance between two distributions,

and mutual information:

Definition 4. The relative entropy D(p||q) is a measure of distance between two proba-

bility distributions p(x) and q(x) and it can be calculated as:

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
. (2.8)

The mutual information is then defined as follows:

Definition 5. For two random variables X and Y, with probability distributions p(x) and

p(y) and joint probability distribution p(x, y), the mutual information si expressed by the

relative entropy between the joint and the product distribution p(x)p(y):

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
= D(p(x, y)||p(x)p(y)). (2.9)

1For more information about discrete probability distribution see [7].



Another way we can express the mutual information is in terms of entropy:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X), (2.10)

and as we can see, the mutual information reduces the uncertainty of X thanks to the

knowledge of Y and vice versa. This also means that X gives the same amount of infor-

mation about Y as Y gives about X. A corollary to the symmetric properties of entropy

is the following statement:

I(X;Y ) = H(X) +H(Y )−H(X, Y ). (2.11)

Now that we defined all the necessary concepts for two random variables, we should

extend the previous definitions for N random variables, N ∈ N.

Theorem 2. Let us have random variables X1, X2, · · · , XN with probability distribution

p(x1, x2, · · · , xN), then

H(X1, X2, · · · , XN) =
N∑
i=1

H(Xi|Xi−1, · · · , X1). (2.12)

Using the result of 2 , we can write the next statement:

I(X1, X2, · · · , XN ;Y ) =
N∑
i=1

I(Xi;Y |Xi−1, · · · , X1). (2.13)

Another thing that requires a brief written summary is the notion of discrete channels.

Shannon defines discrete channel as a system which transmits a sequence of symbols

picked from a discrete set between two parties. He offers as an example any stochastic

process producing discrete sequence of symbols X ∈ X, such as human languages or

quantized signals. One channel in particular, which was mentioned in the previous chapter

in section 1.3, was the symmetric noisy channel, which took into account the possibility

of information distortion during the transmission. Another type of discrete channels will

be used later in this thesis for mapping classical outcomes m ∈ M from a measurement

to a set containing two elements, namely 0 and 1.

We conclude this chapter by a brief discussion about how the situation changes for

quantum systems. The outcome of Shannon’s information theory is the concept of bit as

a measure of entropy which is connected to information via equation (2.1). 1 bit represents

the amount of information we get when answering a yes-or-no type of question and can be

physically represented by a device with two stable positions, for example by a transistor.

This idea of physical representation is crucial for expressing quantum information, where

the bit changes to quantum bit, or qubit for short. This measure of quantum information

is then represented by a two-level quantum system, such as the polarization of a photon

or an atom in ground and excited energy level and by measuring such quantum state we

get at most one bit of information.





Chapter 3

Noise and disturbance in

measurement

In this chapter we discuss in detail how to mathematically define the terms noise and

disturbance in quantum measurement and find a trade-off between those two, which will

help us understand the concept of joint measurements and what happens when we try to

measure two observables on one system. We use mainly two sources, see [8] and [9].

3.1 Noise and disturbance using statistics

We will start this section by examination of the Heisenberg uncertainty principle which

will naturally lead to definitions of noise and disturbance. The Heisenberg relation is

usually demonstrated by the Robertson uncertainty relation, which is defined for two

non-commuting observables as:

σ(Â, ψ)σ(B̂, ψ) ≥ | 〈ψ|[Â, B̂]|ψ〉 |
2

, (3.1)

where σ(X̂, ψ) is the standard deviation of an observable X̂ and a state ψ defined as:

σ(X̂, ψ)2 = 〈ψ|X̂2|ψ〉 − 〈ψ|X̂|ψ〉
2
. (3.2)

One has to be careful though because there is a certain ambiguity in what we generally call

the Heisenberg principle. The general interpretation of relation (3.1) refers to the physi-

cally possible accuracy of quantum state preparation and has no relation to disturbance

introduced by a measurement. It gives us the fundamental limit of knowledge precision

of two general non-commuting complementary variables. On the other hand, the observer

effect is what gives us the limit on measuring one observable and causing the other observ-

able to be disturbed by this measurement. It tells us that no measurement in quantum

mechanics can be done without somehow affecting the system. So for a measuring ap-

paratus M and an observables Â, B̂ we get what is called Heisenberg noise-disturbance

uncertainty relation:

ε(M, Â)η(M, B̂) ≥ | 〈ψ|[Â, B̂]|ψ〉 |
2

, (3.3)
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where the function ε(M, Â) refers to noise and η(M, B̂) represents disturbance. We can

also formulate what is called the Heisenberg uncertainty relation for joint measurements:

ε(M, Â)ε(M, B̂) ≥ | 〈ψ|[Â, B̂]|ψ〉 |
2

, (3.4)

which describes a joint measurement of observables Â, B̂ by an apparatus M . The rela-

tionship between equations (3.3) and (3.4) can be described as follows: if the measurement

of Â by an apparatus A is immediately followed by measuring B̂ by a noiseless apparatus

B, we can put A and B together and get a new apparatus denoted as C. This new ap-

paratus C then performs joint measurement on Â and B̂. Since B is noiseless, the noise

caused by C on B̂ is equal to the disturbance of B̂ caused by A. In other words:

ε(A, Â) = ε(C, Â) (3.5)

η(A, B̂) = ε(C, B̂). (3.6)

Equation (3.3) cannot be generally reduced to (3.4) due to reasons explained in a great

detail in [9]. The noise can be conveniently defined as a root-mean-square deviation,

which gives us the distance between a system observable and our measurement outcome.

We first deduce the real value of the classical outcome, meaning the value one would

measure without noise in one’s apparatus. We say that M measures Â precisely if

P (m) = 〈ψ|Ê(m)|ψ〉 , (3.7)

where Ê(m) is the projector for an outcome m. Equation (3.7) is called Born statistical

formula and it can also be understood in terms of how much the experimental probability

distribution coincides with theoretical prediction. Now, if M does not satisfy the condition

(3.7), we say the apparatus M measures Â with noise.

To correctly determine the noise and the disturbance of our measurement we first write

down the evolution of our system in time. The input state is given by entangling the

object we seek to measure with a probe denoted as P prepared in some referential state

|ξ〉. We denote the state of such system as ψ ⊗ ξ. Then:

Âin = Â⊗ Î , (3.8)

P̂ in = Î ⊗ P̂ , (3.9)

Âout = Û †(Â⊗ Î)Û , (3.10)

P̂ out = Û †(Î ⊗ P̂ )Û (3.11)

where Û represents the time evolution of our composite system ψ ⊗ ξ and P̂ denotes

some observable to be measured on P , chosen suitably to reveal information about Â.

The output is then recorded by m with probability distribution given by:

P (m) = 〈ψ ⊗ ξ|Ê(pout)|ψ ⊗ ξ〉 , (3.12)



where {pout} is the set of classical outcomes of P̂ out. The noise ε(M, Â) is then defined as

the root-mean-square deviation of P̂ out from the theoretical Âin:

ε(M, Â) = 〈(P̂ out − Âin)2〉
1/2
. (3.13)

The disturbance is defined as the degree to which one can correct such noise for a given

observable and it can, as well, be defined as root-mean-square of the change happening

during measurement:

η(M, B̂) = 〈(B̂out − B̂in)2〉
1/2
. (3.14)

It can then be proved that η = 0 if and only if:

〈E(bin)〉 = 〈E(bout)〉 (3.15)

for any input state.

The last paragraph of this section will be devoted to an important result of the paper

[9], where the authors corrected the noise-disturbance uncertainty relation (3.3) by adding

an additional term that made the relation universally valid for all types of measurement.

They called this additional term the correlation term and ensured that those experiments

which found a violation of the original Heisenberg principle1, obeyed this new inequality.

We now define several new terms for this new inequality as follows:

P̂ out = Âin +N(A) (3.16)

B̂out = B̂in +D(B), (3.17)

where N(A) is called the noise operator and D(B) is the disturbance operator. Also,

[P̂ out, B̂out] = 0, which tells us that M̂ and B̂ are observables in different systems. Then

after some steps, which are described in great detail in [9], we get the universally valid

noise-disturbance relation:

ε(Â)η(B̂) +
| 〈[N(A), B̂in]〉+ 〈[Âin, D(B)]〉 |

2
≥ | 〈ψ|[Â, B̂]|ψ〉 |

2
(3.18)

for any pair of observables (Â, B̂). This equation can also be written in terms of standard

deviations σ(Â) and σ(B̂) as follows:

ε(Â)η(B̂) + ε(Â)σ(B̂) + σ(Â)η(B̂) ≥ | 〈ψ|[Â, B̂]|ψ〉 |
2

. (3.19)

3.2 Noise and disturbance using entropy

Another approach to define the noise and disturbance can be done using entropy. First

we need to specify the measurement model. Let’s consider a quantum system S with two

1For more information see [10]



observables Â, whose set of eigenvalues is {|ψa〉}, and B with set of eigenvalues {|φb〉}.
We subject S to some measurement denoted as M and get an output labeled m. This

observed outcome can then be compared to eigenvalues of measured observable denoted

as {a} and {b} for the observables Â and B̂, respectively. Since correlation measurements

can be expressed by a conditional probability distribution, quantifying noise means finding

this distribution P (a|m), where by a we mean the input state taken from the set {|ψa〉}.
Assuming no prior information is available we have:

P (a) =
1

d
, (3.20)

where d = dim H is dimension of our Hilbert space. We can thus provide the joint

input-output probability:

P (m, a) = P (a)P (m|a) =
P (m|a)

d
. (3.21)

We quantify both noise and disturbance using correlations between input and output of

some measurement device. The noise can be hence defined as follows:

Definition 6. The noise of the instrument M as a measurement of Â is defined as

N(M, Â) ≡ H(Â|M), (3.22)

where H(Â|M) denotes the conditional entropy.

The conditional entropy H(Â|M) can be computed from P (m, a) and P (a|m) using the

Bayes rule.2

We can see the noise decreases as the precision of our correctly guessing the eigenvalue

ξa from m increases. The situation is somewhat more complicated for disturbance since

some kinds of measured back-action can be corrected by post-processing. Unlike noise

we have an option to use any possible correction procedures that will help us restore

more information about the input state. Such procedure can be mathematically defined

by a completely positive trace-preserving map E that attempts at reconstructing the pre-

measurement quantum system S from S ′. The disturbance will then depend on both

m = b and a guess given by ES ′ = S, denoted here as b′, and can be characterized

using correlation between b and b′. This correlation is then given by a joint probability

distribution between b and b′:

P (b′, b) = P (b)P (b′|b) =
P (b′|b)
d

(3.24)

Using this result we can define disturbance properly.

2The Bayes rule gives us conditional probability P (X|Y ) for two discrete variables X,Y with respective

probabilities P (X), P (Y ) and conditional probability P (Y |X) as follows:

P (X|Y ) =
P (Y |X)P (X)

P (Y )
, ∀y : P (Y = y) 6= 0. (3.23)

More on probability theory can be found for example in [7].



Definition 7. The disturbance any measuring device introduces on any subsequent mea-

surement of B̂ is defined as:

D(M, B̂) ≡ min
E
H(B̂|B′), (3.25)

where the entropy H(B̂|B′) can be computed from P (b′, b).

Definitions 6 and 7 then lead to a noise-disturbance relation defined for any measuring

apparatus M and any non-degenerate observables A and B as:

N(M, Â) +D(M, B̂) ≥ − log2 c, (3.26)

where c ≡ maxa,b | 〈ψa|φb〉 |2. The equation (3.26) tells us that when Â and B̂ are incom-

patible, meaning c < 1, it is impossible to measure one with no noise without, at the same

time, disturbing the other. It also tells us how any measurement apparatus must disturb

one observable to gain information about the other observable.

We should add an important note before proceeding further. The disturbance defined

by equation (3.25) is minimized over the full set of operations E which doesn’t always

present the most convenient way for calculations. This means that in some cases we will

skip the opportunity for the correction, fixing E at the identity map meaning the following

simplification will be used instead:

D(M, B̂) ≡ H(B̂|B′). (3.27)

The inequality (3.26) remains the same.





Chapter 4

Zero disturbance on systems with

two identical particles

In this chapter we will explore how to use the language of joint measurements to cause as

little disturbance as possible on our system made out of two copies of the same particle.

The main motivation behind this chapter is to show that disturbance can be influenced

by choosing the measurement operators correctly and using some tricks.

We will start with a state that can be described as follows:

|φ〉 = |ψ〉 ⊗ |ψ〉 , |ψ〉 = α |0〉+ β |1〉 (4.1)

where α, β ∈ C. In the system of this state we consider two single-qubit observables,

which we will denote as Â and B̂. These will be extended to Â ⊗ Î and B̂ ⊗ Î so that

they can act on a two-qubit system |φ〉 while retaining commutation properties of Â and

B̂. The question now is how to make a measurement with as little as possible noise and

disturbance.

There is always a trivial way to accomplish no disturbance whatsoever by achieving in

some way that Â is measured on the first qubit and B̂ is measured on the second qubit.

This makes the measurement absolutely free from any disturbance because it basically

describes two independent measurement with no relationship between the two observables

Â and B̂, such as in (3.3). Here noise and disturbance are zero and this trick represents

a great motivation for us to try ”squeezing” the disturbance in other situations. In the

following sections we show how this trick formally fits into both statistical and entropy

approach described in sections 3.1 and 3.2.

4.1 Zero disturbance using statistical noise and dis-

turbance

As we showed in the third chapter, both noise and disturbance can be quantified using

different operators on input and output states, see relations (3.8) – (3.11). If we choose

19



these operators ”cleverly” we can show that the disturbance defined in (3.14) will be zero.

So let us have the system S of two qubits with the input state |φ〉. We entangle this

state with a probe system also described by a qubit in some initial state |ξ〉 and define

the unitary operator as the SWAP operator1 which we let act on the last two qubits of

our composite system. We also have to redefine the operators Âin, B̂in, P̂ in so that they

can act on 2× 2× 2 dimensional systems. The reason is that the four-dimensional input

state is now entangled with two-dimensional probe2. We label these new operators with

a subscript 8D and define them as follows:

Âin8D = Â⊗ Î ⊗ Î , (4.3)

B̂in
8D = B̂ ⊗ Î ⊗ Î , (4.4)

P̂ in
8D = Î ⊗ Î ⊗ P̂ . (4.5)

If we now apply the SWAP operator on equations (4.3), (4.4) and (4.5), we get:

Âout8D = Â⊗ Î ⊗ Î , (4.6)

B̂out
8D = B̂ ⊗ Î ⊗ Î , (4.7)

P̂ out
8D = Î ⊗ P̂ ⊗ Î . (4.8)

Now we can use the equation (3.14) to calculate the disturbance this measurement makes

on our composite system:

η(M, B̂8D) = 〈(B̂out
8D − B̂in

8D)2〉
1/2

= 〈0〉1/2 = 0. (4.9)

An interesting point can be brought up – even though we found a combination of operators

so that the measurement has zero disturbance, it doesn’t have zero noise. If we try to

calculate the noise according to equation (3.13) we actually find out that it is non-zero:

ε(M, Â8D) = 〈(P̂ out
8D − Âin8D)2〉

1/2
= 〈(Î ⊗ P̂ ⊗ Î − Â⊗ Î ⊗ Î)2〉

1/2
.

Clearly on a state of the form (4.1) a measurement of Â ⊗ Î ⊗ Î can be substituted by

that of Î ⊗ Â⊗ Î, therefore it is natural to choose Â ≡ P̂ :

ε(M, Â8D) = 〈(Î ⊗ Â⊗ Î − Â⊗ Î ⊗ Î)2〉
1/2

= 〈(Î ⊗ Â2 ⊗ Î − 2Â⊗ Î ⊗ Î + Â2 ⊗ Î ⊗ Î)2〉
1/2

=

= (2 〈Â2〉 − 2 〈Â〉
2
)1/2 =

√
2σ(Â) 6= 0.

We can see that this choice of measurement does not satisfy the noise-disturbance uncer-

tainty relation (3.3) for generally non-commuting Â and B̂. This case is one of the ones

for which we had to define the new uncertainty relation (3.19).

1Such operator can be represented in matrix form on a two qubit system as:

Û =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (4.2)

2The probe can, in general, have as many dimensions as we want. We chose two in this particular case

for practical reasons.



4.2 Zero disturbance using entropy

Similarly to the previous section we will show that by choosing E = SWAP and observables

Â ⊗ Î , B̂ ⊗ Î we achieve zero disturbance. This is one of those cases where using the

simplified version (3.27) doesn’t necessarily mean it will simplify our calculation. Also,

the operation E was defined, so it is easier to make the minimization.

The relation (3.25) in Definition 7 is a function of eigenvalues {b} of an observable B̂

and our set of guesses {b′}. There is no need for the relation (3.24) though, since the guess

made by E = SWAP gives us exactly the value b, meaning b′ = b in this particular case.

Using relation (3.25) we get:

H(B̂|B′)|E=SWAP = H(B̂|B̂). (4.10)

Using the chain rule from the joint entropy3 we know that H(X|X) for a discrete random

variable X is zero, which can’t be further minimized, meaning:

D(M, B̂) = H(B̂|B̂) = 0. (4.11)

This concludes the chapter discussing how to achieve zero disturbance on a system contain-

ing two identical particles. In the next chapter we shall discuss how to reduce disturbance

in a more restrictive scenario with three particles and, finally, with N particles, N ∈ N.

3See Theorem 1 in the second chapter.





Chapter 5

Reducing disturbance without

addressing specific particles

In this chapter we present three different types of measurement, which no longer dis-

tinguish between particles, together with disturbance calculations. The measured system

now contains three particles, instead of two, which could for example be indistinguishable

bosons. Assuming particle indistinguishability for constructed measurements means that

the trick used in the previous chapter, where we applied the measurement operators in a

way that one measurement did had no relation to the other one, is no longer realizable.

Another implemented change is that the number of measurement operators differs with

the number of particles in our system. There were two copies of the same system in the

previous chapter. This number is now increased to three meaning we can illustrate our

problem on more general examples. Three approaches on how to construct measurements

under said conditions will be discussed in great detail and the main differences will be

shown. The aim of this chapter is to primarily show these differences in terms of overall

system disturbance. We will also discuss possible approaches of disturbance reduction.

Addressing an ensemble of particles in a non-distinguishing manner, two basic ap-

proaches are easily identifiable: either treating every particle the same way, or choosing

one at random and averaging over the choice. Both approaches will be discussed in fol-

lowing sections.

5.1 Measuring total spin

Let us first consider subjecting every particle of the ensemble to the same binary measure-

ment described by projectors {P̂0, P̂1}. For indistinguishable particles, we only learn the

number of P̂0 and P̂1 outcomes. If the measurement was a measurement of spin component

in a given axis, this situation would arise in measuring the total spin of the system in this

direction, so we will use this both to illustrate the principle and to refer to this scheme.

Let us have a system of three identical spin-1/2 particles described as follows:

|φ〉 = |ψ〉 ⊗ |ψ〉 ⊗ |ψ〉 , (5.1)
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where |ψ〉 = α |0〉+β |1〉, and measure the total spin in the axis which fixes basis |0〉 , |1〉.
The possible outcomes are: {

−3

2
,−1

2
,
1

2
,
3

2

}
(5.2)

which we want to map to the values 0 and 1 using some classical information channel so

that the the single-particle probabilities P (0) = |α|2 = p and P (1) = |β|2 = 1 − p are

reconstructed for any input state. Respective measurement operators can then be found

as follows:
Â0 = P̂0 ⊗ P̂0 ⊗ P̂0

Â1 = P̂1 ⊗ P̂0 ⊗ P̂0 + P̂0 ⊗ P̂1 ⊗ P̂0 + P̂0 ⊗ P̂0 ⊗ P̂1

Â2 = P̂1 ⊗ P̂1 ⊗ P̂0 + P̂1 ⊗ P̂0 ⊗ P̂1 + P̂0 ⊗ P̂1 ⊗ P̂1

Â3 = P̂1 ⊗ P̂1 ⊗ P̂1.

(5.3)

This measurement is designed in such a way that we’re not able to distinguish between

particles. This indicates invariance towards permutation of our set of particles or, in quan-

tum mechanical language, the quantum operations assigned to a measurement commute

with permutation. The overall probability for the first outcome is p3 since only three spins

down give the overall value of spin equal to −3/2. Similarly, the second equation tells us

that the channel maps two outcomes of −1/2 and one outcome 1/2 to 0 in three different

ways meaning the overall probability in terms of p would be 3p2(1− p). This way we can

assign a polynomial function of p to every outcome m ∈M .:

P

[
m = −3

2

]
= p3 = p0

P

[
m = −1

2

]
= 3p2(1− p) = p1

P

[
m =

1

2

]
= 3p(1− p)2 = p2

P

[
m =

3

2

]
= (1− p)3 = p3.

(5.4)

The next step is to retrodict the single particle spin −1/2, 1/2, or the binary outcome 0, 1,

with the correct probabilities. Using equations in (5.4) we can calculate the conditional

probabilities P (0|m) and P (1|m) from the fact that for random discrete variables X, Y

the following is true1:

P (X = x) =
∑
y∈Y

P (X = x|Y = y)P (Y = y). (5.5)

We get the following equations from (5.5):

P (0) = P (↓) = P (0|m = −3/2)p3 + P (0|m = −1/2)3p2(1− p)+
+ P (0|m = 1/2)3p(1− p)2 + P (0|m = 3/2)(1− p)3 = p

(5.6)

1This law is called the law of total probability in probability theory.



and
P (1) = P (↑) = P (1|m = 3/2)p3 + P (1|m = 1/2)3p2(1− p)+
+ P (1|m = −1/2)3p(1− p)2 + P (1|m = −3/2)(1− p)3 = 1− p.

(5.7)

Using symmetry of the two equations with respect to the replacement P (0)↔ P (1), p↔
1−p we can rewrite these equations in a more convenient way using real constants a, b, c, d:

a · p0 + b · p1 + c · p2 + d · p3 =

= a · p3 + 3b · p2(1− p) + 3c · p(1− p)2 + d · (1− p)3 = p
(5.8)

After comparing both sides we get the following result:

a = 1, b =
2

3
, c =

1

3
, d = 0 ∀p ∈ (0, 1). (5.9)

Measuring the spin of all three particles gives us the following equations for probability

of measuring the down spin:

P (0) = P (↓) =
3p0 + 2p1 + p2

3
= p. (5.10)

For the probability of measuring the up spin we get:

P (1) = P (↑) =
3p3 + 2p2 + p1

3
= 1− p. (5.11)

This channel is depicted in the figure 5.1:

Figure 5.1: Depiction of the channel that maps outcomes m ∈M to either P (0) or P (1).

The observation that a, b, c, d form an arithmetic sequence will be generalized to N copies

and prove analytically in the next chapter.

5.2 Projection with replacement

The previous case did not offer anything new compared to the measurement of the two-

particle system; in fact it compared even worse in terms of the number of measurements



one had to perform in order to get the same amount of information. Our second model will

be designed differently. We will pick a particle from our system at random, but this time,

after measurement, we put it back to the system. Only after that will a new measurement

take place. This way we have only two outcomes, instead of four, so there is no need for

any channel that maps the outcomes to a two-element set. The measurement operators

would take the following form:

Â
(1,2,3)
0 =

{
1√
3

(
P̂0 ⊗ Î ⊗ Î

)
,

1√
3

(
Î ⊗ P̂0 ⊗ Î

)
,

1√
3

(
Î ⊗ Î ⊗ P̂0

)}
Â

(1,2,3)
1 =

{
1√
3

(
P̂1 ⊗ Î ⊗ Î

)
,

1√
3

(
Î ⊗ P̂1 ⊗ Î

)
,

1√
3

(
Î ⊗ Î ⊗ P̂1

)}
.

(5.12)

We can see that the individual operators no longer commute with permutation of particles.

Nevertheless, the combined quantum operation assigned to outcome 0 or 1 via (1.33) does,

which makes this a physically realizable measurement.

We know that the probabilities for each outcome of such measurement are the same

compared to the previous case since both POVM sets made from (5.3) and (5.12) give

the same results, as shown in the following equations. First we will calculate the POVM

elements similarly to the situation shown in the first chapter in (1.29). First for the

previous case (5.3):

Π̂0 =
3

3
Â†0Â0 +

2

3
Â†1Â1 +

1

3
Â†2Â2 +

0

3
Â†3Â3 = Â0 +

2

3
Â1 +

1

3
Â2

Π̂1 =
3

3
Â†3Â3 +

2

3
Â†2Â2 +

1

3
Â†1Â1 +

0

3
Â†0Â0 = Â3 +

2

3
Â2 +

1

3
Â1 (5.13)

and second for the case of projection with replacement (5.12):

Π̂0 = Â
(1)†
0 Â

(1)
0 + Â

(2)†
0 Â

(2)
0 + Â

(3)†
0 Â

(3)
0 =

1√
3

(
Â

(1)
0 + Â

(2)
0 + Â

(3)
0

)
Π̂1 = Â

(1)†
1 Â

(1)
1 + Â

(2)†
1 Â

(2)
1 + Â

(3)†
1 Â

(3)
1 =

1√
3

(
Â

(1)
1 + Â

(2)
1 + Â

(3)
1

)
. (5.14)

As mentioned in the first chapter, the expectational values of POVM elements are equal

to probabilities of the outcomes, as seen in equations in (1.26). Since Π̂0 and Π̂1 are the

same2 in both (5.13) and (5.14) we get the same probabilities we had in the previous case:

P (0) = p and P (1) = 1− p.

5.3 Calculating disturbance for both types of projec-

tion

We will now show calculation of system disturbance for both measurements proposed in

equations (5.3) and (5.12). First step is to define operators Â from equation (3.22) and

2The equality of both POVM sets can be easily shown by writing the elements in matrix form, which

is possible to be extended for the case with N particles.



B̂ from equation (3.25). We will make the following choice:

Â = σ̂x =

(
0 1

1 0

)
B̂ = σ̂z =

(
1 0

0 −1

)
(5.15)

where σ̂x, σ̂z denotes the Pauli matrices. This means we choose to measure spin in x and

z direction respectively. Matrices in (5.15) have the following eigenstates:

σ̂x : |+〉 =
1√
2

(
1

1

)
|−〉 =

1√
2

(
1

−1

)
σ̂z : |0〉 =

(
1

0

)
|1〉 =

(
0

1

)
.

(5.16)

We also define projectors, needed for both measurement schemes (5.3) and (5.12), on the

respective eigenstates as follows:

P̂+ =
1

2

(
1 1

1 1

)
P̂− =

1

2

(
1 −1

−1 1

)
P̂0 =

(
1 0

0 0

)
P̂1 =

(
0 0

0 1

)
.

(5.17)

5.3.1 Disturbance for total spin measurement without replace-

ment

In the beginning of disturbance calculation, operators of the first measurement, that will

be applied on the input state, need to be defined. We will denote them as Âi. These will

be constructed correspondingly to (5.3), which means we can write the set Âi as follows:

Â0 = P̂− ⊗ P̂− ⊗ P̂−
Â1 = P̂+ ⊗ P̂− ⊗ P̂− + P̂− ⊗ P̂+ ⊗ P̂− + P̂− ⊗ P̂− ⊗ P̂+

Â2 = P̂+ ⊗ P̂+ ⊗ P̂− + P̂+ ⊗ P̂− ⊗ P̂+ + P̂− ⊗ P̂+ ⊗ P̂+

Â3 = P̂+ ⊗ P̂+ ⊗ P̂+. (5.18)

We now choose the input state as |φ〉 = |000〉; this choice will be denoted as b = 0. If we

were to choose |φ〉 = |111〉 we would denote it as b = 1. After calculating Âi |000〉 we get

the following outcomes:

Â0 |000〉 =
1
√

2
3 |− − −〉

Â1 |000〉 =
1
√

2
3 (|+−−〉+ |−+−〉+ |− −+〉)

Â2 |000〉 =
1
√

2
3 (|+ +−〉+ |+−+〉+ |−+ +〉)

Â3 |000〉 =
1
√

2
3 |−+ ++〉 . (5.19)



with respective probabilities for the choice b = 0 being equal to the vector norms:

P (i = 0) =
1

8
, P (i = 1) =

3

8
, P (i = 2) =

3

8
, P (i = 3) =

1

8
. (5.20)

In the next step we define the second measurement, which will be labeled as B̂j:

B̂0 = P̂0 ⊗ P̂0 ⊗ P̂0

B̂1 = P̂1 ⊗ P̂0 ⊗ P̂0 + P̂0 ⊗ P̂1 ⊗ P̂0 + P̂0 ⊗ P̂0 ⊗ P̂1

B̂2 = P̂1 ⊗ P̂1 ⊗ P̂0 + P̂1 ⊗ P̂0 ⊗ P̂1 + P̂0 ⊗ P̂1 ⊗ P̂1

B̂3 = P̂1 ⊗ P̂1 ⊗ P̂1

(5.21)

which is going to be used for measuring the first normalized state from (5.19):

|− − −〉 (5.22)

The respective outcomes of B̂j |− − −〉 are summarized in the table 5.1. After repeating

the same calculation on all intermediate states (5.19), we get the outcomes for P (j|i)
which are summarized in the table 5.2.

States after measuring B̂j Respective probabilities P (j|b = 0, i = 0)

B̂0 |− − −〉 |000〉 1
8

B̂1 |− − −〉 1√
3

(|100〉+ |010〉+ |001〉) 3
8

B̂2 |− − −〉 1√
3

(|110〉+ |101〉+ |011〉) 3
8

B̂3 |− − −〉 |111〉 1
8

Table 5.1: Table of post-measurement states B̂j |− − −〉 , j ∈ {0, 1, 2, 3} and their respective

probabilities P (j|b = 0, i = 0).

P (j|i, b = 0) i = 0 i = 1 i = 2 i = 3

j = 0 1
8

3
8

3
8

1
8

j = 1 3
8

1
8

1
8

3
8

j = 2 3
8

1
8

1
8

3
8

j = 3 1
8

3
8

3
8

1
8

Table 5.2: Table of probabilities P (j|i) for all values i ∈ {0, 1, 2, 3} and j ∈ {0, 1, 2, 3}.

As we can see, probabilities in table 5.2 are symmetrical and the diagonal elements

have the same value.

The next step is to process outcomes of the second measurement using the classical

channel we applied earlier for mapping outcomes of our measurement (5.3) to a two-



element set {0, 1}. We get the following equations:

P (b′ = 0|b = 0) =

= [a · P (j = 0|b) + b · P (j = 1|b) + c · P (j = 2|b) + d · P (j = 3|b)]|b=0 =
1

2

P (b′ = 1|b = 0) =

= [d · P (j = 0|b) + b · P (j = 1|b) + c · P (j = 2|b) + a · P (j = 3|b)]|b=0 =
1

2

(5.23)

where a, b, c, d are taken from (5.9. Thanks to the symmetry of the problem we can deduce

P (b′ = 0|b = 0) = P (b′ = 0|b = 1) and P (b′ = 1|b = 0) = P (b′ = 1|b = 1). Those values

are independent of i.

The paper [8] suggests using the prior P (b) = 1
d
, in our case d = 2. Knowing this

and having conditional probabilities P (b′|b), we can calculate P (b′, b) and P (b|b′), which

incidentally coincides with P (b′|b) due to the symmetry. The overall disturbance then

takes the following form:

D(M, B̂j) = H

(
1

2
,
1

2

)
= −

(
1

2
log

1

2
+

1

2
log

1

2

)
= 1 bit. (5.24)

This outcome tells us that in this measurement protocol, measuring Â = σx with sub-

sequent measurement of B̂ = σz, disturbs our system maximally, leaving no information

about the input state. There is thus no improvement compared to a single-particle mea-

surement of the same observables. For these reasons we will, from now on, focus more

on the second measurement (5.12), although similar steps will be taken when calculating

disturbance for projector weakening, presented at the end of this chapter.

5.3.2 Disturbance for total spin measurement with replacement

The steps leading to the outcome of system disturbance in projection with replacement

are analogous to the previous case. We first define operators Âi as follows:

Â
(1,2,3)
0 =

{
1√
3

(
P̂− ⊗ Î ⊗ Î

)
,

1√
3

(
Î ⊗ P̂− ⊗ Î

)
,

1√
3

(
Î ⊗ Î ⊗ P̂−

)}
Â

(1,2,3)
1 =

{
1√
3

(
P̂+ ⊗ Î ⊗ Î

)
,

1√
3

(
Î ⊗ P̂+ ⊗ Î

)
,

1√
3

(
Î ⊗ Î ⊗ P̂+

)} (5.25)

and take the same input state as previously: |φ〉 = |000〉. Applying Â
(1,2,3)
i on the state

|000〉 leads to the following unnormalized intermediate states:

Â
(1)
0 |000〉 =

1√
6
|−00〉 , Â

(2)
0 |000〉 =

1√
6
|0− 0〉 , Â

(3)
0 |000〉 =

1√
6
|00−〉

Â
(1)
1 |000〉 =

1√
6
|+00〉 , Â

(2)
1 |000〉 =

1√
6
|0 + 0〉 , Â

(3)
1 |000〉 =

1√
6
|00+〉

(5.26)

with probabilities for each outcome being equal to 1
6
. We now apply the second set of

measurement operators B̂
(1,2,3)
j , on the first normalized intermediate outcome |−00〉, in



the following form:

B̂
(1,2,3)
0 =

{
1√
3

(
P̂0 ⊗ Î ⊗ Î

)
,

1√
3

(
Î ⊗ P̂0 ⊗ Î

)
,

1√
3

(
Î ⊗ Î ⊗ P̂0

)}
B̂

(1,2,3)
1 =

{
1√
3

(
P̂1 ⊗ Î ⊗ Î

)
,

1√
3

(
Î ⊗ P̂1 ⊗ Î

)
,

1√
3

(
Î ⊗ Î ⊗ P̂1

)} (5.27)

which yield post-measurement states with respective probabilities summarized in the table

5.3.

States after measuring B̂j Respective probabilities P (j|b = 0, i = 0)

B̂
(1)
0 |−00〉 |000〉 1

6

B̂
(2)
0 |−00〉 |−00〉 1

3

B̂
(3)
0 |−00〉 |−00〉 1

3

B̂
(1)
1 |−00〉 |100〉 1

6

B̂
(2)
1 |−00〉 – 0

B̂
(3)
1 |−00〉 – 0

Table 5.3: Table of post-measurement states B̂
(1,2,3)
j |−00〉 , j ∈ {0, 1} and their respective prob-

abilities P (j|b = 0, i = 0). The last two lines are empty since we are measuring P̂1 |0〉.

The previous case was more complicated compared to this one because we had 4 outcomes

that needed to be mapped on either 0 or 1 using (5.9). This time there is no need for

such procedure because summing first three probabilities from the table 5.3 gives the

conditional probability P (b′ = 0|b = 0, i = 0) = 5
6

and summing the last three probabilities

from the table 5.3 gives P (b′ = 1|b = 0 = 1
6
. After more calculations we can put together

table 5.4 which summarizes all conditional probabilities P (b′|b).

P (b′|b) b = 0 b = 1

b′ = 0 5
6

1
6

b′ = 1 1
6

5
6

Table 5.4: Table of probabilities P (b′|b) for all values b ∈ {0, 1} and b′ ∈ {0, 1}.

As we can see, the table came out symmetrical, just as in the previous case. The distur-

bance can then be calculated as follows:

D(M, B̂i) = H

(
5

6
,
1

6

)
= 0.65 bit. (5.28)

So by changing the measurement scheme slightly we managed to significantly reduce

disturbance.3

3Concerning noise: observables Âi are noiseless according to Definition 6.



5.4 Weakening of the projectors

We presented two similar ways to conduct a measurement on a set of three identical

particles. The main differences between both measurements shown in equations (5.3) and

(5.12) were discussed, mainly in terms of disturbance.

Another approach to the measurement construction would be to keep the first scheme

but weaken the overall influence of measurement, resulting in smaller disturbance. This

means that the outcomes are going to be harder to distinguish, compared with the previous

cases where we used projectors, but since we posses copies of the original state we can

carry out the measurement several times and try to compensate in terms of the overall

information gain. This approach requires using effects instead of projectors. Let us first

show how such measurement would work on one particle and then extend the problem to

a three-particle case. The N -particle case will be explored in the next chapter.

The measurement operators, or effects, for the one-particle case can be constructed as

follows:
Q̂0 = µÎ + νP̂0

Q̂1 = µÎ + νP̂1,
(5.29)

where w.l.o.g. µ, ν ∈ 〈0, 1〉. Measurement operators can then be defined as the effects

themselves:
Â0 = Q̂0

Â1 = Q̂1.
(5.30)

Calculating the respective probabilities first requires a POVM set, which can be written

as follows:
Π̂0 = Â†0Â0 = uÎ + vP̂0

Π̂1 = Â†1Â1 = uÎ + vP̂1,
(5.31)

where we used the following substitution:

u = µ2

v = ν2 + 2µν
(5.32)

so that the we can use a shorter form for the following calculation. In order for the mea-

surement operators to be defined correctly we need to determine u, v so that
∑

i Â
†
i Âi = Î:

Q̂†0Q̂0 + Q̂†1Q̂1 = uÎ + vP̂0 + uÎ + vP̂1 (5.33)

from which we can make the following constraints on u, v:

2u+ v
!

= 1. (5.34)

Using the substitution defined in (5.32), we can write:

2µ2 + 2µν + ν2 = 1. (5.35)



Measurement operators (5.30) under the constraint (5.35) are constructed correctly, since

the POVM elements are both positive operators and they sum to Î, meaning we can now

write:

q = u+ vp, 1− q = u+ v(1− p) (5.36)

for an input state in the form |ψ〉 = α |0〉+ β |1〉.

We are no longer using projectors so there is no way for us to assign zero or unitary

probability to either of {0, 1} outcome4. In other words, the distribution (5.36) contains

slightly less information than {p, 1−p}. How to at least approach the original probability

distribution? We will demonstrate on a three particle case with measurement operators

constructed as follows:5

Â0 = Q̂0 ⊗ Q̂0 ⊗ Q̂0

Â
(1,2,3)
1 =

{(
Q̂1 ⊗ Q̂0 ⊗ Q̂0

)
,
(
Q̂0 ⊗ Q̂1 ⊗ Q̂0

)
,
(
Q̂0 ⊗ Q̂0 ⊗ Q̂1

)}
Â

(1,2,3)
2 =

{(
Q̂1 ⊗ Q̂1 ⊗ Q̂0

)
,
(
Q̂1 ⊗ Q̂0 ⊗ Q̂1

)
,
(
Q̂0 ⊗ Q̂1 ⊗ Q̂1

)}
.

Â3 = Q̂1 ⊗ Q̂1 ⊗ Q̂1.

(5.38)

We again have to correctly define both µ, ν. If it weren’t for the previous one-particle

case we would need to do a tedious calculation, but the following implication is going to

simplify our problem:

Q̂†0Q̂0 + Q̂†1Q̂1 = Î =⇒
∑
i

∑
j

Â
(j)†
i Â

(j)
i = Î (5.39)

which is true for the measurement operators Â
(j)
i in (5.38). Now that we know what values

can be assigned to both µ, ν we can calculate the respective probabilities which take the

following form:

P (0) = q3

P (1) = 3q2(1− q)
P (2) = 3q(1− q)2

P (3) = (1− q)3

(5.40)

4This statement is true unless we assign zero value to u. Such case would then lead to the previous

cases of projection.
5The reason we chose a form similar to (5.12) instead of (5.3) is the following: the effects constructed

as

Â0 = Q̂0 ⊗ Q̂0 ⊗ Q̂0

Â1 = Q̂1 ⊗ Q̂0 ⊗ Q̂0 + Q̂0 ⊗ Q̂1 ⊗ Q̂0 + Q̂0 ⊗ Q̂0 ⊗ Q̂1

Â2 = Q̂1 ⊗ Q̂1 ⊗ Q̂0 + Q̂1 ⊗ Q̂0 ⊗ Q̂1 + Q̂0 ⊗ Q̂1 ⊗ Q̂1

Â3 = Q̂1 ⊗ Q̂1 ⊗ Q̂1.

(5.37)

do not satisfy the completeness relation under (1.13).



Since the measurement operators take a similar form to those in (5.3) we will try to solve

for a, b, c, d in substituted equations (5.8):

a · q3 + 3b · q2(1− q) + 3c · q(1− q)2 + d · (1− q)3 = p =
q − u
v

d · q3 + 3c · q2(1− q) + 3b · q(1− q)2 + a · (1− q)3 = 1− p =
1− q + u

v
.

(5.41)

We get the following result:

a =
1− u
v

=
3− 3u

3v
, b =

2− 3u

3v
, c =

1− 3u

3v
, d = −u

v
=

0− 3u

3v
. (5.42)

As we can see, the results take form of an arithmetic sequence, just as a, b, c, d in section

5.1 did. This is no coincidence and the proof of this statement will be provided in the

next chapter.

We now need to assign (5.42) specific values in order to proceed with our calculations.

After solving a, b, c, d in terms of u we can conclude that they can not be considered an

information channel unless we make some adjustments, since all four constants need to

be at least equal to zero and at most equal to one, which is not the case. The situation is

depicted in figure 5.2.

Figure 5.2: Constants a, b, c, d as functions of u. The blue frame depicts the values of a, b, c, d ∈
〈0, 1〉 where they can be considered a description of an information channel.

The adjustments of a, b, c, d in (5.42) in order for them to become a realistic information

channel are discussed at the end of this chapter, section 5.4.2. For now we can assume

that they are assigned some values such as to at least approximate an inverse to (5.36).



5.4.1 Disturbance for projector weakening

We will now calculate disturbance for measurement proposed in (5.38). The first step,

just as in previous cases, is to write down the measurement operators Âi with substituted

Q̂0 = µÎ + νP̂0 for Q̂− = µÎ + νP̂− and Q̂1 = µÎ + νP̂1 for Q̂+ = µÎ + νP̂+:

Â0 = Q̂− ⊗ Q̂− ⊗ Q̂−

Â
(1,2,3)
1 =

{(
Q̂+ ⊗ Q̂− ⊗ Q̂−

)
,
(
Q̂− ⊗ Q̂+ ⊗ Q̂−

)
,
(
Q̂− ⊗ Q̂− ⊗ Q̂+

)}
Â

(1,2,3)
2 =

{(
Q̂+ ⊗ Q̂+ ⊗ Q̂−

)
,
(
Q̂+ ⊗ Q̂− ⊗ Q̂+

)
,
(
Q̂− ⊗ Q̂+ ⊗ Q̂+

)}
.

Â3 = Q̂+ ⊗ Q̂+ ⊗ Q̂+.

(5.43)

Applying operators (5.43) on the state |φ〉 = |000〉 yields the following outcomes:

Â0 |000〉 =

(
µ |0〉+

ν√
2
|−〉
)
⊗
(
µ |0〉+

ν√
2
|−〉
)
⊗
(
µ |0〉+

ν√
2
|−〉
)

=
1
√

2
3 |χ−χ−χ−〉

Â
(1)
1 |000〉 =

(
µ |0〉+

ν√
2
|+〉
)
⊗
(
µ |0〉+

ν√
2
|−〉
)
⊗
(
µ |0〉+

ν√
2
|−〉
)

=
1
√

2
3 |χ+χ−χ−〉

Â
(2)
1 |000〉 =

(
µ |0〉+

ν√
2
|−〉
)
⊗
(
µ |0〉+

ν√
2
|+〉
)
⊗
(
µ |0〉+

ν√
2
|−〉
)

=
1
√

2
3 |χ−χ+χ−〉

Â
(3)
1 |000〉 =

(
µ |0〉+

ν√
2
|−〉
)
⊗
(
µ |0〉+

ν√
2
|−〉
)
⊗
(
µ |0〉+

ν√
2
|+〉
)

=
1
√

2
3 |χ−χ−χ+〉

Â
(1)
2 |000〉 =

(
µ |0〉+

ν√
2
|+〉
)
⊗
(
µ |0〉+

ν√
2
|+〉
)
⊗
(
µ |0〉+

ν√
2
|−〉
)

=
1
√

2
3 |χ+χ+χ−〉

Â
(2)
2 |000〉 =

(
µ |0〉+

ν√
2
|+〉
)
⊗
(
µ |0〉+

ν√
2
|−〉
)
⊗
(
µ |0〉+

ν√
2
|+〉
)

=
1
√

2
3 |χ+χ−χ+〉

Â
(3)
2 |000〉 =

(
µ |0〉+

ν√
2
|−〉
)
⊗
(
µ |0〉+

ν√
2
|+〉
)
⊗
(
µ |0〉+

ν√
2
|+〉
)

=
1
√

2
3 |χ−χ+χ+〉

Â3 |000〉 =

(
µ |0〉+

ν√
2
|+〉
)
⊗
(
µ |0〉+

ν√
2
|+〉
)
⊗
(
µ |0〉+

ν√
2
|+〉
)

=
1
√

2
3 |χ+χ+χ+〉

(5.44)

where we used the following notation:

|χ−〉 =
√

2

(
µ |0〉+

ν√
2
|−〉
)

|χ+〉 =
√

2

(
µ |0〉+

ν√
2
|+〉
) (5.45)

for simplicity. The condition (5.35) guarantees that these kets are normalized. The second

set of measurement operators B̂j takes the following form:

B̂0 = Q̂0 ⊗ Q̂0 ⊗ Q̂0

B̂
(1,2,3)
1 =

{(
Q̂1 ⊗ Q̂0 ⊗ Q̂0

)
,
(
Q̂0 ⊗ Q̂1 ⊗ Q̂0

)
,
(
Q̂0 ⊗ Q̂0 ⊗ Q̂1

)}
B̂

(1,2,3)
2 =

{(
Q̂1 ⊗ Q̂1 ⊗ Q̂0

)
,
(
Q̂1 ⊗ Q̂0 ⊗ Q̂1

)
,
(
Q̂0 ⊗ Q̂1 ⊗ Q̂1

)}
.

B̂3 = Q̂3 ⊗ Q̂3 ⊗ Q̂3.

(5.46)



Applying the operators B̂j in (5.46) on the first intermediate state |χ−χ−χ−〉 yields out-

comes which are summarized in the table 5.5. In this case we chose not to include the exact

form of the states after measuring B̂j |χ−χ−χ−〉) in the table 5.5, simply because their

form was too long and they are not needed for the next steps of disturbance calculation.

States after measuring B̂j Respective probabilities P (j|b = 0, i = 0)

B̂0 |χ−χ−χ−〉
(

1+2µν+2(µν)2

2

)3
= r3

B̂
(1)
1 |χ−χ−χ−〉

(
1+2µν+2(µν)2

2

)2 (
1−2µν−2(µν)2

2

)
= r2(1− r)

B̂
(2)
1 |χ−χ−χ−〉

(
1+2µν+2(µν)2

2

)2 (
1−2µν−2(µν)2

2

)
= r2(1− r)

B̂
(3)
1 |χ−χ−χ−〉

(
1+2µν+2(µν)2

2

)2 (
1−2µν−2(µν)2

2

)
= r2(1− r)

B̂
(1)
2 |χ−χ−χ−〉

(
1+2µν+2(µν)2

2

)(
1−2µν−2(µν)2

2

)2
= r(1− r)2

B̂
(2)
2 |χ−χ−χ−〉

(
1+2µν+2(µν)2

2

)(
1−2µν−2(µν)2

2

)2
= r(1− r)2

B̂
(3)
2 |χ−χ−χ−〉

(
1+2µν+2(µν)2

2

)(
1−2µν−2(µν)2

2

)2
= r(1− r)2

B̂3 |χ−χ−χ−〉
(

1−2µν−2(µν)2
2

)3
= r3

Table 5.5: Table of post-measurement states B̂j |χ−χ−χ−〉), j ∈ {0, 1, 2, 3} and their respective

probabilities P (j|b = 0, i = 0).

The next step is to create a table of probabilities P (j = 0, 1, 2, 3|i = 0, b = 0). The

only difference, compared to the case of projection covered in section 5.1, is that we first

have to sum probabilities of the states B̂
(1,2,3)
1 and B̂

(1,2,3)
2 . Calculation of these overall

probabilities can be found in (5.47).

||B̂(
1j) |χ−χ−χ−〉 || = 3r2(1− r)

||B̂(
2j) |χ−χ−χ−〉 || = 3r(1− r)2

(5.47)

These calculations leads us to the table 5.6 of conditional probabilities P (j|i).

P (j|i) i = 0 i = 1 i = 2 i = 3

j = 0 r3 r3 r3 r3

j = 1 3r2(1− r) 3r2(1− r) 3r2(1− r) 3r2(1− r)
j = 2 3r(1− r)2 3r(1− r)2 3r(1− r)2 3r(1− r)2

j = 3 (1− r)3 (1− r)3 (1− r)3 (1− r)3

Table 5.6: Table of probabilities P (j|i) for all values i ∈ {0, 1, 2, 3} and j ∈ {0, 1, 2, 3}.

In order to calculate disturbance we need to use a, b, c, d from (5.42) to map outcomes

from table 5.6 to a two-element set {0, 1}, which would yield us conditional probabilities

P (b′|b) as functions of u and v.6. There is a catch though – as we indicated earlier, for

example in figure 5.2, for most values u, v is a > 1 and d < 0, meaning a, b, c, d can not

represent an information channel. We dedicate the next section to this problem.

6P (b′|b) would take the following form:



5.4.2 Classical channels as functions of µ, ν

In the ending discussion of this chapter we are going to examine several possible cases,

when values of a, b, c, d (5.42) can be considered as realizable classical information channel.

There are two trivial choices. First is to assign the following values to u, v:

u = 0, v = 1 (5.49)

which corresponds to the previous case of projection seen in (5.3). The other trivial case

would be:

u =
1

2
, v = 0. (5.50)

Assigning such values of u, v to operators in (5.37) would have no effect on the input state

and would also yield no information whatsoever, but mainly such channel (5.42) would

be ill defined since we would divide by 0. All the interesting and relevant channels hence

lie between those two cases. The correction of values in (5.42) can be done as follows. We

will first fix the value of a to the maximal one while fixing the value of d to the minimum

and assign a value which lies in 〈0, 1〉 to b and c such that b + c = 1. For every u we

can there exists this corrected channel, but also µ, ν and r can be calculated from it. The

values in table 5.5 will then have a fixed value from which disturbance can be calculated,

a general calculation can be seen in figure 5.3.

0.0 0.1 0.2 0.3 0.4 0.5
u

0.2

0.4

0.6

0.8

1.0
D (N=3)

Figure 5.3: Disturbance for the three-particle case as a function of u.

P (b′ = 0|b = 0) = P (b′ = 1|b = 1)

= [a · P (j = 0|b) + 3b · P (j = 1|b) + 3c · P (j = 2|b) + d · P (j = 3|b)]|b=0 =

=
1− u
v

r3 + 3
2− 3u

3v
r2(1− r) + 3

1− 3u

3v
r(1− r)2 − u

v
(1− r)3 =

r − u
v

P (b′ = 1|b = 0) = P (b′ = 1|b = 0)

[d · P (j = 0|b) + 3b · P (j = 1|b) + 3c · P (j = 2|b) + a · P (j = 3|b)]|b=0 =

= −u
v
r3 + 3

1− 3u

3v
r2(1− r) + 3

2− 3u

3v
r(1− r)2 +

1− u
v

(1− r)3 =
1− r + u

v
.

(5.48)



Chapter 6

N-particle system disturbance

In this chapter we are going to finalize our work and extend the previous discussions,

namely the measurement proposed in projection with replacement and projector weaken-

ing, to an N -particle case.

6.1 Projection with replacement for N particles

The measurement operators A
(1,2,3)
i presented in (5.12) would extend to the N -particle

case as follows:

Â
(1,2,...,N)
0 =

{
1√
N

(
P̂− ⊗ Î ⊗ · · · ⊗ Î

)
, . . . ,

1√
N

(
Î ⊗ Î ⊗ · · · ⊗ P̂−

)}
Â

(1,2,...,N)
1 =

{
1√
N

(
P̂+ ⊗ Î ⊗ · · · ⊗ Î

)
, . . . ,

1√
N

(
Î ⊗ Î ⊗ · · · ⊗ P̂+

)}
.

(6.1)

We take the input state in the following form:

|φ〉 = |ψ〉 ⊗ |ψ〉 ⊗ . . . |ψ〉︸ ︷︷ ︸
N copies

= |00 . . . 0〉 (6.2)

and apply measurement operators from (6.1). Such operation would yield the following

outcomes with probability for each outcome being equal to 1
2N

:

Â
(1)
0 |φ〉 = |−0 . . . 0〉 Â

(2)
0 |φ〉 = |0− . . . 0〉 . . . Â

(N)
0 |φ〉 = |00 . . .−〉

Â
(1)
1 |φ〉 = |+0 . . . 0〉 Â

(2)
1 |φ〉 = |0 + . . . 0〉 . . . Â

(N)
1 |φ〉 = |00 · · ·+〉 .

(6.3)

In analogy to the three-particle case we now present the second set of measurement

operators B̂
(1,2,...,N)
j :

B̂
(1,2,...,N)
0 =

{
1√
N

(
P̂0 ⊗ Î ⊗ · · · ⊗ Î

)
, . . . ,

1√
N

(
Î ⊗ Î ⊗ · · · ⊗ P̂0

)}
B̂

(1,2,...,N)
1 =

{
1√
N

(
P̂1 ⊗ Î ⊗ · · · ⊗ Î

)
, . . . ,

1√
N

(
Î ⊗ Î ⊗ · · · ⊗ P̂1

)}
.

(6.4)

which will be used to measure the normalized states (6.3), yielding probabilities summa-

rized in the table 6.1. Using these outcomes we can calculate conditional probabilities

P (b′|b), which are summarized in the table 6.2 and are no longer dependent on i.
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B̂
(1,2,...,N)
j Respective probabilities P (j|b = 0)

B̂
(1)
0 |−0 . . . 0〉 1

2N

B̂
(2)
0 |−0 . . . 0〉 1

N
...

...

B̂
(N)
0 |−0 . . . 0〉 1

N

B̂
(1)
1 |−0 . . . 0〉 1

2N

B̂
(2)
1 |−0 . . . 0〉 0

...
...

B̂
(N)
1 |−0 . . . 0〉 0

Table 6.1: Table of post-measurement states B̂
(1,2,...,N)
j |−0 . . . 0〉 , j ∈ {0, 1} and their respective

probabilities P (j|b = 0, i = 0).

P (b′|b) b = 0 b = 1

b′ = 0 2N−1
2N

1
2N

b′ = 1 1
2N

2N−1
2N

Table 6.2: Table of probabilities P (b′|b) for all values b ∈ {0, 1} and b′ ∈ {0, 1}.

The disturbance can then, in analogy to (5.28) in the previous chapter, be calculated

as follows:

D(M, B̂
(1,2,...,N)
j ) = H

(
2N − 1

2N
,

1

2N

)
. (6.5)

We can rewrite D(M, B̂
(1,2,...,N)
j ) as follows:

D(M, B̂
(1,2,...,N)
j ) =

log(2N − 1)− 2N log(1− 1/N)

N log 4
. (6.6)

Calculating the disturbance for macroscopic systems means calculating the limit N →∞
from (6.6):

lim
N→∞

D(M, B̂
(1,2,...,N)
j ) = lim

N→∞

log(2N − 1)− 2N log(1− 1/N)

N log 4
= 0. (6.7)

Just as we expected, the system disturbance in macroscopic world can be neglected. We

conclude this chapter by plotting D(M, B̂
(1,2,...,N)
j ) as a function of N .



6.2 Projector weakening for N particles

We start again by extending Âi from the three-particle case in (5.43) to N :

Â0 =
[
Q̂− ⊗ Q̂− ⊗ · · · ⊗ Q̂−

]
Â

(1)
1 =

[
Q̂+ ⊗ Q̂− ⊗ · · · ⊗ Q̂−

]
Â

(2)
1 =

[
Q̂− ⊗ Q̂+ ⊗ · · · ⊗ Q̂−

]
...

Â
(N)
1 =

[
Q̂− ⊗ Q̂− ⊗ · · · ⊗ Q̂+

]
Â

(1)
2 =

[
Q̂+ ⊗ Q̂+ ⊗ · · · ⊗ Q̂−

]
...

Â
(N)
2 =

[
Q̂− ⊗ · · · ⊗ Q̂+ ⊗ Q̂+

]
Â3 =

(
N

N

)[
Q̂+ ⊗ Q̂+ ⊗ · · · ⊗ Q̂+

]
.

(6.8)

Applying (6.8) on the input state |φ〉 yields the following outcomes:

Â0 |φ〉 =
1
√

2
N
|χ−χ− . . . χ−〉

Â
(1)
1 |φ〉 =

1
√

2
N
|χ+χ− . . . χ−〉

Â
(2)
1 |φ〉 =

1
√

2
N
|χ−χ+ . . . χ−〉

...

Â
(N)
1 |φ〉 =

1
√

2
N
|χ−χ− . . . χ+〉

Â
(1)
2 |φ〉 =

1
√

2
N
|χ+χ+ . . . χ−〉

...

Â
(N)
2 |φ〉 =

1
√

2
N
|χ− . . . χ+χ+〉

Â3 |φ〉 =
1
√

2
N
|χ+ . . . χ+χ+〉 .

(6.9)



We again pick the first intermediate state |χ−χ− . . . χ−〉 as the state on which we apply

the following set of measurement operators B̂
(l)
j , l ∈ {1, 2, . . . N}:

B̂0 =
[
Q̂0 ⊗ Q̂0 ⊗ · · · ⊗ Q̂0

]
B̂

(1)
1 =

[
Q̂1 ⊗ Q̂0 ⊗ · · · ⊗ Q̂0

]
B̂

(2)
1 =

[
Q̂0 ⊗ Q̂1 ⊗ · · · ⊗ Q̂0

]
...

B̂
(N)
1 =

[
Q̂0 ⊗ Q̂0 ⊗ · · · ⊗ Q̂1

]
B̂

(1)
2 =

[
Q̂1 ⊗ Q̂1 ⊗ · · · ⊗ Q̂0

]
...

B̂
(N)
2 =

[
Q̂0 ⊗ · · · ⊗ Q̂1 ⊗ Q̂1

]
B̂3 =

[
Q̂1 ⊗ Q̂1 ⊗ · · · ⊗ Q̂1

]
.

(6.10)

which yield the outcomes summarized in the table 6.3, where we again used the substitu-

tion r = 1+2µν+2(µν)2

2
.

j ∈ {0, 1, 2, . . . N} P (j|i = 0)

j = 0
(
N
0

)
rN

j = 1
(
N
1

)
r(N−1)(1− r)

...
...

j = N
(
N
N

)
(1− r)N

Table 6.3: Table of probabilities P (j|i = 0) for all values j ∈ {0, 1, 2, . . . N}.

For disturbance calculation we first need a mapping of the outcomes in table 6.3 onto

the set {0, 1}, just as we did in the three-particle case. Here we present a proof of the

statement that a, b, c, d in (5.9) and (5.42) are indeed in a form of arithmetic sequence.

We will do so only for the case of projector weakening since the measurement scheme

presented in section 5.1 is only a special case for u = 0 and v = 1.

Measuring the intermediate state |χ−χ− . . . χ−〉 with B̂
(1,2,...,N)
j each yield either 0 or 1

in terms of the binary outcome with the following probability distribution:

j = 0 with probability rN

j = 1 with probability N · rN−1(1− r)
...

j = k with probability

(
N

k

)
· rN−k(1− r)k

...

j = N with probability (1− r)N

(6.11)



where j ∈ N . Our hypothesis based on (5.42) is that the conditional probabilities P (0|j)
and P (1|j) should take the following form:

P (0|j) =
(N − j)−N · u

N · v
P (1|j) =

j −N · u
N · v

.

(6.12)

If our assumption about the channel mapping taking form of an arithmetic sequence is

true, then the outcome should yield p and 1− p respectively for an arbitrary q when we

write them in a form of (5.5):

N∑
j=0

P (0|j)P (j) =
N∑
j=0

(N − j)−N · u
N · v

(
N

j

)
· qN−j (1− q)j =

=
N∑
j=0

N − j
N · v

(
N

j

)
qN−j (1− q)j − u

v

N∑
j=0

(
N

j

)
qN−j (1− q)j =

=
N∑
j=0

N − j
N · v

N !

j!(N − j)!
qN−j (1− q)j − u

v
(q + 1− q)N =

=
1

v

N∑
j=0

(N − 1)!

j!(N − j − 1)!
qN−j (1− q)j − u

v
=

=
1

v

N∑
j=0

(
N − 1

j

)
qN−j (1− q)j − u

v
=

=
q

v
(q + 1− q)N−1 − u

v
=
q − u
v

= p.

We can now move on to calculating the disturbance. Since we know that the channel

(6.12) used for the previous calculation is an idealized one and can not be achieved in

reality, we need to make several adjustment. A real channel would take the following form

for P (0|j):
P (0|j) =

N − j −N · u
N · v

if ∈ 〈0, 1〉

P (0|j) = 0 if < 0

P (0|j) = 1 if > 1.

(6.13)

P (1|j) can be constructed in analogy to (6.13). As we can see, (6.13) is a function of both

N and u, from which we can calculate all other variables used in previous calculations:

u ∈
(

0,
1

2

)
, v = 1− 2u, µ =

√
u, ν =

√
u+ v −

√
u. (6.14)

Calculating the disturbance then means putting the probabilities from table 6.2 through

the above channel, obtaining P (b′ = 0|b = 0) and P (b′ = 1|b = 0 and calculating the

conditional entropy H(B′|B) as before. We show this in the two limit cases of section

5.4.2. The limit u → 0 would mean, as we have shown in section 5.4.2, the first case of

simple projection, for which we calculated D(M, B̂j) = 1, see (5.24).



The other limit, u→ 1
2
, would mean, that r gets ”worse”, meaning disturbance would

approach 1 bit. On the other hand, r−u
v
→ 1, which would cause the disturbance to

approach 0 bits. This is the value that would be obtained if a channel described by

(6.12) were available, but it coincides with the result of the modified channel in the limit

N → ∞. This then results in both disturbance and error to approach 0 for N → ∞.

Using the values of the ”unreal” channel (6.12), we can plot disturbance as a function of

N , which is depicted in figure 6.1.

0.0 0.1 0.2 0.3 0.4 0.5
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Figure 6.1: The N -particle system disturbance as a function of N .

To conclude this chapter, with N → ∞ copies we can expand the Â, B̂ measurements

such that Â is measured without error and B̂ without disturbance in either scheme. For

the section 6.1, the results we obtained are exact. For the section 6.2, cases with N <∞
have to be computed numerically.



Conclusion

The main aim of this work was to present the theory behind quantum measurements

and study how noise and disturbance affects quantum systems with respect to different

measurement schemes. We studied several cases and discussed how the situation with

respect to disturbances changes for each of them, starting with measurements on one-

particle systems. The one-particle case was then extended for three-particles in order to

show the process of measuring several copies of one particle. The measurement schemes

presented in the three-particle case was discussed in great detail in chapter five. We

conclude our work with case of having N copies of a quantum state and investigating

how the disturbance changes with regards to sending N → ∞. We found that for the

measurement scheme which uses replacement the disturbance has a specific value as a

function of N and goes to zero with N approaching ∞. For the second important case,

the measurement scheme where we used projector weakening, the disturbance is a rather

complicated function of N which nonetheless approaches 0 for N →∞.
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