Arithmetic Complexity of Sturmian Words

Tom Hejda, tohe@centrum.cz
based on work of J. Cassaigne and A. Frid

Doppler Institute & Department of Mathematics,
FNSPE, Czech Technical University in Prague

Combinatorics on Words, Hojsova Straz 2010
Notation

- **alphabet** \(\{0, 1\} \)
- **(right) infinite word** \(s = s_0s_1s_2 \cdots \)
- **finite word** \(w = w_0w_1 \cdots w_{n-1}w_n \), length \(n + 1 \)
- **fractional part** of \(x \in \mathbb{R} \) is \(\{x\} = x - \lfloor x \rfloor \).
Complexity Functions

- **factor complexity** $C_u(n + 1) = \# \text{ of “subword” factors}

 \[\mathcal{L}_u(n + 1) = \{ u_k u_{k+1} u_{k+2} \cdots u_{k+n} | k \geq 0 \} \]

- **Abelian complexity** $C_u^{ab}(n + 1) = \# \text{ of Parikh vectors}

 \[\{(|w|_0, |w|_1) | w \in \mathcal{L}_u(n + 1)\} \]

- **arithmetic complexity** $C_u^{ar}(n + 1) = \# \text{ of arithmetic factors}

 \[A_u(n + 1) = \{ u_k u_{k+d} u_{k+2d} \cdots u_{k+nd} | k \geq 0, d \geq 1 \} \]

Example: factors and arit. factors of $u = (01)^\omega$
Complexity Functions

- **factor complexity** \(C_u(n + 1) = \# \text{ of “subword” factors} \)
 \[
 \mathcal{L}_u(n + 1) = \{u_k u_{k+1} u_{k+2} \cdots u_{k+n} | k \geq 0\}
 \]

- **Abelian complexity** \(C^\text{ab}_u(n + 1) = \# \text{ of Parikh vectors} \)
 \[
 \left\{(|w|_0, |w|_1) | w \in \mathcal{L}_u(n + 1)\right\}
 \]

- **arithmetic complexity** \(C^\text{ar}_u(n + 1) = \# \text{ of arithmetic factors} \)
 \[
 \mathcal{A}_u(n + 1) = \{u_k u_{k+d} u_{k+2d} \cdots u_{k+nd} | k \geq 0, d \geq 1\}
 \]

Example: factors and arit. factors of \(u = (01)^\omega \)
Complexity Functions

- **factor complexity** \(C_u(n + 1) = \# \) of “subword” factors
 \[
 \mathcal{L}_u(n + 1) = \{ u_k u_{k+1} u_{k+2} \cdots u_{k+n} | k \geq 0 \}
 \]

- **Abelian complexity** \(C_u^{ab}(n + 1) = \# \) of Parikh vectors
 \[
 \{ (|w|_0, |w|_1) | w \in \mathcal{L}_u(n + 1) \}
 \]

- **arithmetic complexity** \(C_u^{ar}(n + 1) = \# \) of arithmetic factors
 \[
 \mathcal{A}_u(n + 1) = \{ u_k u_{k+d} u_{k+2d} \cdots u_{k+nd} | k \geq 0, d \geq 1 \}
 \]

Example: factors and arit. factors of \(u = (01)^\omega \)
Complexity Functions

- **factor complexity** $C_u(n + 1) = \# \text{ of "subword" factors}$

 $$L_u(n + 1) = \{u_k u_{k+1} u_{k+2} \cdots u_{k+n} | k \geq 0\}$$

- **Abelian complexity** $C_{ab}^u(n + 1) = \# \text{ of Parikh vectors}$

 $$\{(|w|_0, |w|_1) | w \in L_u(n + 1)\}$$

- **arithmetic complexity** $C_{ar}^u(n + 1) = \# \text{ of arithmetic factors}$

 $$A_u(n + 1) = \{u_k u_{k+d} u_{k+2d} \cdots u_{k+nd} | k \geq 0, d \geq 1\}$$

Example: factors and arit. factors of $u = (01)^\omega$
Sturmian Words

Many ways how to define Sturmian words — infinite u is Sturmian, iff,

1. factor complexity satisfies $C_u(n) = n + 1 \quad \forall n \geq 0$
2. u is aperiodic and balanced
3. u is aperiodic and Abelian complexity satisfies $C_{u}^{ab}(n) = 2 \quad \forall n \geq 1$
4. u is a rotation word with irrational slope α
 - lower rotation word $s_{\alpha}(\rho) = s_0 s_1 \cdots$; $\alpha, \rho \in [0, 1)$
 $$s_k = \begin{cases}
1 & \text{if } \{ (k+1)\alpha + \rho \} < \alpha, \\
0 & \text{otherwise},
\end{cases}$$
 - upper rotation word $s'_{\alpha}(\rho) \rightarrow \leq$ instead of $<$
5. u codes irrational 2iet
6. u is mechanical with irrational slope
7. u is a cutting sequence with irrational slope
Sturmian Words

Many ways how to define Sturmian words — infinite u is Sturmian, iff,

1. factor complexity satisfies $C_u(n) = n + 1 \quad \forall n \geq 0$
2. u is aperiodic and balanced
3. u is aperiodic and Abelian complexity satisfies $C_u^{ab}(n) = 2 \quad \forall n \geq 1$
4. u is a rotation word with irrational slope α
 - lower rotation word $s_\alpha(\rho) = s_0 s_1 \cdots$, $\alpha, \rho \in [0, 1)$
 - $s_k = \begin{cases} 1 & \text{if } \{(k+1)\alpha + \rho\} < \alpha, \\ 0 & \text{otherwise,} \end{cases}$
 - upper rotation word $s'_\alpha(\rho) \rightarrow \leq$ instead of $<$
5. u codes irrational 2iet
6. u is mechanical with irrational slope
7. u is a cutting sequence with irrational slope
Many ways how to define **Sturmian words** — infinite \(u \) is Sturmian, iff,

1. **factor complexity** satisfies \(C_u(n) = n + 1 \) \(\forall n \geq 0 \)
2. \(u \) is aperiodic and balanced
3. \(u \) is aperiodic and Abelian complexity satisfies
 \[
 C_u^{ab}(n) = 2 \quad \forall n \geq 1
 \]
4. \(u \) is a rotation word with irrational slope \(\alpha \)
 - lower rotation word \(s_{\alpha}(\rho) = s_0s_1s_2\cdots \quad \alpha, \rho \in [0,1) \)

 \[
 s_k = \begin{cases}
 1 & \text{if } \{(k+1)\alpha + \rho\} < \alpha, \\
 0 & \text{otherwise},
 \end{cases}
 \]
 - upper rotation word \(s'_{\alpha}(\rho) \) — \(\leq \) instead of \(< \)
5. \(u \) codes irrational 2iet
6. \(u \) is mechanical with irrational slope
7. \(u \) is a cutting sequence with irrational slope
Sturmian Words

Many ways how to define Sturmian words — infinite u is Sturmian, iff,

1. factor complexity satisfies $C_u(n) = n + 1 \quad \forall n \geq 0$
2. u is aperiodic and balanced
3. u is aperiodic and Abelian complexity satisfies $C_{u}^{ab}(n) = 2 \quad \forall n \geq 1$
4. u is a rotation word with irrational slope α
 - lower rotation word $s_\alpha(\rho) = s_0 s_1 \cdots, \alpha, \rho \in [0,1)$
 \[s_k = \begin{cases}
 1 & \text{if } \((k+1)\alpha + \rho\} < \alpha, \\
 0 & \text{otherwise},
 \end{cases} \]
 - upper rotation word $s'_\alpha(\rho)$ — \leq instead of $<$
5. u codes irrational 2iet
6. u is mechanical with irrational slope
7. u is a cutting sequence with irrational slope
Many ways how to define **Sturmian words** — infinite \(u \) is Sturmian, iff,

1. factor complexity satisfies \(C_u(n) = n + 1 \quad \forall n \geq 0 \)

2. \(u \) is aperiodic and balanced

3. \(u \) is aperiodic and Abelian complexity satisfies
 \[
 C_{ab}^u(n) = 2 \quad \forall n \geq 1
 \]

4. \(u \) is a rotation word with irrational slope \(\alpha \)
 - lower rotation word \(s_\alpha(\rho) = s_0s_1 \cdots \), \(\alpha, \rho \in [0, 1) \)
 \[
 s_k = \begin{cases}
 1 & \text{if } \{ ((k+1)\alpha + \rho) \} < \alpha, \\
 0 & \text{otherwise},
 \end{cases}
 \]
 - upper rotation word \(s'_\alpha(\rho) \rightleftharpoons \leq \) instead of \(<\)

5. \(u \) codes irrational 2iet

6. \(u \) is mechanical with irrational slope

7. \(u \) is a cutting sequence with irrational slope
Many ways how to define Sturmian words — infinite u is Sturmian, iff,

1. factor complexity satisfies $C_u(n) = n + 1 \quad \forall n \geq 0$
2. u is aperiodic and balanced
3. u is aperiodic and Abelian complexity satisfies $C_{ab}^u(n) = 2 \quad \forall n \geq 1$
4. u is a rotation word with irrational slope α
 - lower rotation word $s_\alpha(\rho) = s_0 s_1 \cdots$, $\alpha, \rho \in [0, 1)$
 \[
s_k = \begin{cases}
1 & \text{if } \{(k + 1)\alpha + \rho\} < \alpha, \\
0 & \text{otherwise},
\end{cases}
\]
 - upper rotation word $s'_\alpha(\rho)$ — \leq instead of $<$
5. u codes irrational 2iet
6. u is mechanical with irrational slope
7. u is a cutting sequence with irrational slope
Many ways how to define Sturmian words — infinite u is Sturmian, iff,

1. factor complexity satisfies $C_u(n) = n + 1$ $\forall n \geq 0$
2. u is aperiodic and balanced
3. u is aperiodic and Abelian complexity satisfies $C^{ab}_u(n) = 2$ $\forall n \geq 1$
4. u is a rotation word with irrational slope α
 - lower rotation word $s_\alpha(\rho) = s_0s_1\cdots$, $\alpha, \rho \in [0, 1)$

 $s_k = \begin{cases}
 1 & \text{if } \{(k + 1)\alpha + \rho\} < \alpha, \\
 0 & \text{otherwise},
 \end{cases}$

 - upper rotation word $s'_\alpha(\rho) — \leq$ instead of $<$
5. u codes irrational 2iet
6. u is mechanical with irrational slope
7. u is a cutting sequence with irrational slope
Sturmian Words

Many ways how to define Sturmian words — infinite \(u \) is Sturmian, iff,

1. factor complexity satisfies \(C_u(n) = n + 1 \) \(\forall n \geq 0 \)
2. \(u \) is aperiodic and balanced
3. \(u \) is aperiodic and Abelian complexity satisfies \(C_{u_{ab}}(n) = 2 \) \(\forall n \geq 1 \)
4. \(u \) is a rotation word with irrational slope \(\alpha \)
 - lower rotation word \(s_\alpha(\rho) = s_0s_1 \cdots \), \(\alpha, \rho \in [0, 1) \)
 \[s_k = \begin{cases}
 1 & \text{if } \lfloor (k + 1)\alpha + \rho \rfloor < \alpha, \\
 0 & \text{otherwise,}
 \end{cases} \]
 - upper rotation word \(s'_\alpha(\rho) \) — \(\leq \) instead of \(< \)
5. \(u \) codes irrational 2iet
6. \(u \) is mechanical with irrational slope
7. \(u \) is a cutting sequence with irrational slope
Sturmian Words

Many ways how to define Sturmian words — infinite u is Sturmian, iff,

1. factor complexity satisfies $C_u(n) = n + 1 \quad \forall n \geq 0$
2. u is aperiodic and balanced
3. u is aperiodic and Abelian complexity satisfies $C^{ab}_u(n) = 2 \quad \forall n \geq 1$
4. u is a rotation word with irrational slope α
 - lower rotation word $s_\alpha(\rho) = s_0 s_1 \cdots, \quad \alpha, \rho \in [0, 1)$

 \[
 s_k = \begin{cases} 1 & \text{if } \{((k + 1)\alpha + \rho)\} < \alpha, \\ 0 & \text{otherwise,} \end{cases}
 \]
 - upper rotation word $s'_\alpha(\rho) = \leq$ instead of $<$
5. u codes irrational 2iet
6. u is mechanical with irrational slope
7. u is a cutting sequence with irrational slope
Theorem

Let u be Sturmian word. Then its arithmetic complexity satisfies for all $n \geq 1$

$$\frac{n^3}{4\pi^2} + O(n^2) \leq C^a_u(n) \leq \left(\frac{1}{6} + \frac{1}{\pi^2}\right)n^3 + O(n^2).$$

We prove only upper bound (lower bound as well by Frid).
Theorem

Let \(u \) be Sturmian word. Then its arithmetic complexity satisfies for all \(n \geq 1 \)

\[
\frac{n^3}{4\pi^2} + O(n^2) \leq C_u^\text{ar}(n) \leq \left(\frac{1}{6} + \frac{1}{\pi^2}\right) n^3 + O(n^2).
\]

We prove only upper bound (lower bound as well by Frid).
Sturmian Words as Mechanical Words

- lower rotation word $s_\alpha(\rho) = s_0s_1 \cdots$, $\alpha, \rho \in [0, 1)$

$$s_k = \begin{cases} 1 & \text{if } \{k\alpha + \rho\} < \alpha, \\ 0 & \text{otherwise}, \end{cases}$$

- from now on, we fix $\alpha \in [0, 1) \setminus \mathbb{Q}$
- we define $w_\alpha(\beta, \gamma, n) = w_0 \cdots w_n$, $\beta, \gamma \in [0, 1)$, length $n + 1$, $0 \leq k \leq n$

$$w_i = \begin{cases} 1 & \text{if } \{i\beta + \gamma\} < \alpha, \\ 0 & \text{otherwise}, \end{cases}$$

Lemma

1. $L_{s_\alpha(\rho)}(n)$ and $A_{s_\alpha(\rho)}(n)$ depends only on α (denote $L_\alpha(n)$, $A_\alpha(n)$)
2. $w_\alpha(\beta, \gamma, n) \in A_\alpha \iff \exists k, d : \beta = \{d\alpha\}, \gamma = \{k\alpha + \rho\}$
3. $A_\alpha = \bigcup_{\beta, \gamma \in [0, 1)} w_\alpha(\beta, \gamma, n)$
Sturmian Words as Mechanical Words

- lower rotation word \(s_\alpha(\rho) = s_0 s_1 \cdots, \alpha, \rho \in [0, 1) \)

\[
s_k = \begin{cases}
1 & \text{if } \{k \alpha + \rho\} < \alpha, \\
0 & \text{otherwise},
\end{cases}
\]

- from now on, we fix \(\alpha \in [0, 1) \setminus \mathbb{Q} \)

- we define \(w_\alpha(\beta, \gamma, n) = w_0 \cdots w_n, \beta, \gamma \in [0, 1), \text{ length } n+1, \)

\[
w_i = \begin{cases}
1 & \text{if } \{i \beta + \gamma\} < \alpha, \\
0 & \text{otherwise},
\end{cases} \quad 0 \leq k \leq n
\]

Lemma

1. \(L_{s_\alpha(\rho)}(n) \) and \(A_{s_\alpha(\rho)}(n) \) depends only on \(\alpha \) (denote \(L_\alpha(n), A_\alpha(n) \))
2. \(w_\alpha(\beta, \gamma, n) \in A_\alpha \iff \exists k, d : \beta = \{d \alpha\}, \gamma = \{k \alpha + \rho\} \)
3. \(A_\alpha = \bigcup_{\beta, \gamma \in [0,1)} w_\alpha(\beta, \gamma, n) \)
Sturmian Words as Mechanical Words

- **Lower rotation word** \(s_{\alpha}(\rho) = s_0s_1 \cdots \), \(\alpha, \rho \in [0, 1) \)

\[
s_k = \begin{cases}
1 & \text{if } \{k\alpha + \rho\} < \alpha, \\
0 & \text{otherwise,}
\end{cases}
\]

- **From now on, we fix** \(\alpha \in [0, 1) \setminus \mathbb{Q} \)
- **We define** \(w_{\alpha}(\beta, \gamma, n) = w_0 \cdots w_n, \quad \beta, \gamma \in [0, 1), \quad \text{length } n + 1 \),

\[
w_i = \begin{cases}
1 & \text{if } \{i\beta + \gamma\} < \alpha, \\
0 & \text{otherwise,}
\end{cases} \quad 0 \leq k \leq n
\]

Lemma

- \(L_{s_{\alpha}(\rho)}(n) \) and \(A_{s_{\alpha}(\rho)}(n) \) depends only on \(\alpha \) (denote \(L_{s_{\alpha}}(n), A_{s_{\alpha}}(n) \))
- \(w_{\alpha}(\beta, \gamma, n) \in A_{s_{\alpha}} \iff \exists k, d : \beta = \{d\alpha\}, \gamma = \{k\alpha + \rho\} \)
- \(A_{s_{\alpha}} = \bigcup_{\beta, \gamma \in [0, 1)} w_{\alpha}(\beta, \gamma, n) \)
Sturmian Words as Mechanical Words

- lower rotation word \(s_\alpha(\rho) = s_0 s_1 \cdots, \quad \alpha, \rho \in [0, 1) \)

\[
s_k = \begin{cases}
 1 & \text{if } \{k \alpha + \rho\} < \alpha, \\
 0 & \text{otherwise},
\end{cases}
\]

- from now on, we fix \(\alpha \in [0, 1) \setminus \mathbb{Q} \)

- we define \(w_\alpha(\beta, \gamma, n) = w_0 \cdots w_n, \quad \beta, \gamma \in [0, 1), \quad \text{length } n + 1, \)

\[
w_i = \begin{cases}
 1 & \text{if } \{i \beta + \gamma\} < \alpha, \\
 0 & \text{otherwise},
\end{cases} \quad 0 \leq k \leq n
\]

Lemma

1. \(\mathcal{L}_{s_\alpha(\rho)}(n) \) and \(\mathcal{A}_{s_\alpha(\rho)}(n) \) depends only on \(\alpha \) (denote \(\mathcal{L}_\alpha(n), \mathcal{A}_\alpha(n) \))

2. \(w_\alpha(\beta, \gamma, n) \in \mathcal{A}_\alpha \iff \exists k, d : \beta = \{d \alpha\}, \gamma = \{k \alpha + \rho\} \)

3. \(\mathcal{A}_\alpha = \bigcup_{\beta, \gamma \in [0,1)} w_\alpha(\beta, \gamma, n) \)
Sturmian Words as Mechanical Words

- lower rotation word $s_{\alpha}(\rho) = s_0 s_1 \cdots$, $\alpha, \rho \in [0, 1)$

$$s_k = \begin{cases} 1 & \text{if } \{k\alpha + \rho\} < \alpha, \\ 0 & \text{otherwise}, \end{cases}$$

- from now on, we fix $\alpha \in [0, 1) \setminus \mathbb{Q}$
- we define $w_{\alpha}(\beta, \gamma, n) = w_0 \cdots w_n$, $\beta, \gamma \in [0, 1)$, length $n + 1$

$$w_i = \begin{cases} 1 & \text{if } \{i\beta + \gamma\} < \alpha, \\ 0 & \text{otherwise}, \end{cases} \quad 0 \leq k \leq n$$

Lemma

1. $L_{s_{\alpha}(\rho)}(n)$ and $A_{s_{\alpha}(\rho)}(n)$ depends only on α (denote $L_\alpha(n)$, $A_\alpha(n)$)
2. $w_{\alpha}(\beta, \gamma, n) \in A_\alpha \iff \exists k, d : \beta = \{d\alpha\}, \gamma = \{k\alpha + \rho\}$
3. $A_\alpha = \bigcup_{\beta, \gamma \in [0,1)} w_{\alpha}(\beta, \gamma, n)$
Sturmian Words as Mechanical Words

- lower rotation word $s_\alpha(\rho) = s_0s_1 \cdots$, $\alpha, \rho \in [0, 1)$

 $$s_k = \begin{cases}
 1 & \text{if } \{k\alpha + \rho\} < \alpha, \\
 0 & \text{otherwise,}
 \end{cases}$$

- from now on, we fix $\alpha \in [0, 1) \setminus \mathbb{Q}$

- we define $w_\alpha(\beta, \gamma, n) = w_0 \cdots w_n$, $\beta, \gamma \in [0, 1)$, length $n + 1$

 $$w_i = \begin{cases}
 1 & \text{if } \{i\beta + \gamma\} < \alpha, \\
 0 & \text{otherwise,}
 \end{cases} \quad 0 \leq k \leq n$$

Lemma

1. $\mathcal{L}_{s_\alpha(\rho)}(n)$ and $\mathcal{A}_{s_\alpha(\rho)}(n)$ depends only on α (denote $\mathcal{L}_\alpha(n)$, $\mathcal{A}_\alpha(n)$)
2. $w_\alpha(\beta, \gamma, n) \in \mathcal{A}_\alpha \iff \exists k, d : \beta = \{d\alpha\}, \gamma = \{k\alpha + \rho\}$
3. $\mathcal{A}_\alpha = \bigcup_{\beta, \gamma \in [0,1)} w_\alpha(\beta, \gamma, n)$
Planar Representation

- $w_\alpha(\beta, \gamma, n) = w_0 \cdots w_n$,

\[w_i = \begin{cases} 1 & \text{if } \{i \beta + \gamma\} < \alpha, \\ 0 & \text{otherwise}, \end{cases} \quad 0 \leq k \leq n \]

- planar representation
 - line $y = \beta x + \gamma$
 - closest points below the line
 - sequence of \bullet defines $w_\alpha(\beta, \gamma, n)$

- Question (not open):
 Can different sequences of \bullet that came from some lines define the same word?
Planar Representation

- $w_\alpha(\beta, \gamma, n) = w_0 \cdots w_n,$

\[
 w_i = \begin{cases}
 1 & \text{if } \{i\beta + \gamma\} < \alpha, \\
 0 & \text{otherwise},
 \end{cases} \\
 0 \leq k \leq n
\]

- planar representation
 - line $y = \beta x + \gamma$
 - closest points below the line
 - sequence of \bullet defines $w_\alpha(\beta, \gamma, n)$

- Question (not open):
 Can different sequences of \bullet that came from some lines define the same word?
Planar Representation

- $w_{\alpha}(\beta, \gamma, n) = w_0 \cdots w_n,$

$$w_i = \begin{cases} 1 & \text{if } \{i\beta + \gamma\} < \alpha, \\ 0 & \text{otherwise,} \end{cases} \quad 0 \leq k \leq n$$

- planar representation
 - line $y = \beta x + \gamma$
 - closest points below the line
 - sequence of \bullet defines $w_{\alpha}(\beta, \gamma, n)$

- Question (not open): Can different sequences of \bullet that came from some lines define the same word?
Planar Representation

- \(w_\alpha(\beta, \gamma, n) = w_0 \cdots w_n, \)

\[
\begin{align*}
 w_i &= \begin{cases}
 1 & \text{if } \{ i \beta + \gamma \} < \alpha, \\
 0 & \text{otherwise,}
 \end{cases} \\
 & \quad 0 \leq k \leq n
\end{align*}
\]

- planar representation
 - line \(y = \beta x + \gamma \)
 - closest points below the line
 - sequence of \(\bullet \) defines \(w_\alpha(\beta, \gamma, n) \)

- **Question (not open):**
 Can different sequences of \(\bullet \) that came from some lines define the same word?
Geometric Dual Method

Dual transformation:
- line \(l \equiv y = \beta x + \gamma \) maps to point \(l^* = (\beta, -\gamma) \)
- point \(p = (\beta, \gamma) \) maps to line \(p^* \equiv y = \beta x - \gamma \)

Lemma
1. \(l^{**} = l \) and \(p^{**} = p \).
2. Point \(p = (a, b) \) is below/above/on line \(l \equiv y = cx + d \) \(\iff \) point \(l^* = (c, -d) \) is below/above/on line \(p^* \equiv y = ax - b \).
3. Lines \(l_1, \ldots, l_k \) intersect in one point \(p \) \(\iff \) points \(l_1^*, \ldots, l_k^* \) lies on the same line \(p^* \).
Dual transformation:

- line $l \equiv y = \beta x + \gamma$ maps to point $l^* = (\beta, -\gamma)$
- point $p = (\beta, \gamma)$ maps to line $p^* \equiv y = \beta x - \gamma$

Lemma

1. $l^{**} = l$ and $p^{**} = p$.
2. Point $p = (a, b)$ is below/above/on line $l \equiv y = cx + d \iff$ point $l^* = (c, -d)$ is below/above/on line $p^* \equiv y = ax - b$.
3. Lines l_1, \ldots, l_k intersect in one point $p \iff$ points l_1^*, \ldots, l_k^* lies on the same line p^*.
• face of arrangement $\mathcal{D}_\alpha(n)$ defines arithmetic factor in $A_\alpha(n + 1)$
• it follows: $C^\text{ar}_\alpha(n + 1) \leq \# \text{ faces of } \mathcal{D}_\alpha(n)$
face of arrangement $\mathcal{D}_\alpha(n)$ defines arithmetic factor in $A_\alpha(n+1)$

it follows: $C^\text{ar}_\alpha(n+1) \leq \# \text{ faces of } \mathcal{D}_\alpha(n)$
Geometric Dual Method

- face of arrangement $\mathcal{D}_\alpha(n)$ defines arithmetic factor in $A_\alpha(n + 1)$
- it follows: $C_{\alpha}^{ar}(n + 1) \leq \# \text{ faces of } \mathcal{D}_\alpha(n)$
• face of arrangement $D_\alpha(n)$ defines arithmetic factor in $A_\alpha(n+1)$
• it follows: $C^\text{ar}_\alpha(n+1) \leq \# \text{ faces of } D_\alpha(n)$
Theorem (Euler’s Formula)

Let \((V, E)\) be a planar graph with faces \(F\). Then

\[\#F = \#E - \#V + 1. \]

4 types of vertices:

1. “boundary” vertices
2. crossings of lines of “0”-type
3. crossings of lines of “1”-type
4. crossings between both types
Counting Faces of $D_\alpha(n)$

Theorem (Euler’s Formula)

Let (V, E) be a planar graph with faces F. Then

$$\#F = \#E - \#V + 1.$$
Counting Faces of $D_\alpha(n)$

1. “boundary” vertices
 \[\# \text{new edges} - \# \text{“boundary” vertices} = O(\# \text{ lines}) = O(n^2) \]

2. crossings of lines of “0”-type
 Bestel, Pocchiola: \(\# \text{ new edges} - \# \text{ crossings} = \frac{1}{\pi^2} n^3 + O(n^2) \)

3. crossings of lines of “1”-type
 Bestel, Pocchiola: \(\# \text{ new edges} - \# \text{ crossings} = \frac{1}{\pi^2} n^3 + O(n^2) \)

4. crossings between both types
 - lines of both types: \(y = \{ ix \} - 1, \quad y = \{ jx - \alpha \} - 1, \quad i, j = 0, \ldots, n \)
 - equation \(\{ ix \} - 1 = \{ jx - \alpha \} - 1 \) has \(|j - i| \) solutions in \([0, 1)\)
 - \(\sum_{i,j=0}^{n} |j - i| = \frac{1}{3} n(n + 1)(n + 2) = \# \ \text{crossings} \)
 - a crossing generates 2 new edges (crossing points are unique)
 - \(\# \text{ new edges} - \# \text{ crossings} = \frac{1}{3} n^3 + O(n^2) \)

5. together

 \[\#F = \#E - \#V + 1 = \left(\frac{1}{3} + \frac{2}{\pi^2} \right) n^3 + O(n^2) \]
Counting Faces of $D_\alpha(n)$

1. "boundary" vertices
 \[\# \text{new edges} - \# \text{"boundary" vertices} = O(\# \text{ lines}) = O(n^2) \]

2. crossings of lines of "0"-type
 Bestel, Pocchiola: \[\# \text{new edges} - \# \text{crossings} = \frac{1}{\pi^2} n^3 + O(n^2) \]

3. crossings of lines of "1"-type
 Bestel, Pocchiola: \[\# \text{new edges} - \# \text{crossings} = \frac{1}{\pi^2} n^3 + O(n^2) \]

4. crossings between both types
 - lines of both types: \[y = \{ix\} - 1, \quad y = \{jx - \alpha\} - 1, \]
 \[i, j = 0, \ldots, n \]
 - equation \[\{ix\} - 1 = \{jx - \alpha\} - 1 \] has \(|j - i| \) solutions in \([0, 1)\)
 - \[\sum_{i,j=0}^{n} |j - i| = \frac{1}{3} n(n+1)(n+2) = \# \text{ crossings} \]
 - a crossing generates 2 new edges (crossing points are unique)
 - \[\# \text{new edges} - \# \text{crossings} = \frac{1}{3} n^3 + O(n^2) \]

5. together

 \[\#F = \#E - \#V + 1 = \left(\frac{1}{3} + \frac{2}{\pi^2} \right) n^3 + O(n^2) \]
Counting Faces of $D_\alpha(n)$

1. “boundary” vertices
 \[\# \text{new edges} - \# \text{“boundary” vertices} = O(\# \text{ lines}) = O(n^2) \]

2. crossings of lines of “0”-type
 Bestel, Pocchiola: \[\# \text{new edges} - \# \text{crossings} = \frac{1}{\pi^2} n^3 + O(n^2) \]

3. crossings of lines of “1”-type
 Bestel, Pocchiola: \[\# \text{new edges} - \# \text{crossings} = \frac{1}{\pi^2} n^3 + O(n^2) \]

4. crossings between both types
 - lines of both types: \[y = \{ ix \} - 1, \quad y = \{ jx - \alpha \} - 1, \]
 \[i, j = 0, \ldots, n \]
 - equation \[\{ ix \} - 1 = \{ jx - \alpha \} - 1 \] has \[|j - i| \] solutions in \([0, 1)\]
 - \[\sum_{i,j=0}^n |j - i| = \frac{1}{3} n(n + 1)(n + 2) = \# \text{ crossings} \]
 - a crossing generates 2 new edges (crossing points are unique)
 - \# new edges - \# crossings = \[\frac{1}{3} n^3 + O(n^2) \]

5. together

\[\#F = \#E - \#V + 1 = \left(\frac{1}{3} + \frac{2}{\pi^2} \right) n^3 + O(n^2) \]
Counting Faces of $D_{\alpha}(n)$

1. “boundary” vertices
 \[\#\text{new edges} - \# \text{“boundary” vertices} = O(\# \text{ lines}) = O(n^2) \]

2. crossings of lines of “0”-type
 Bestel, Pocchiola: \[\# \text{ new edges} - \# \text{ crossings} = \frac{1}{\pi^2} n^3 + O(n^2) \]

3. crossings of lines of “1”-type
 Bestel, Pocchiola: \[\# \text{ new edges} - \# \text{ crossings} = \frac{1}{\pi^2} n^3 + O(n^2) \]

4. crossings between both types
 - lines of both types: \[y = \{i x\} - 1, \quad y = \{j x - \alpha\} - 1, \]
 \[i, j = 0, \ldots, n \]
 - equation \[\{i x\} - 1 = \{j x - \alpha\} - 1 \] has \(|j - i|\) solutions in \([0, 1)\)
 - \[\sum_{i,j=0}^n |j - i| = \frac{1}{3} n(n + 1)(n + 2) = \# \text{ crossings} \]
 - a crossing generates 2 new edges (crossing points are unique)
 - \[\# \text{ new edges} - \# \text{ crossings} = \frac{1}{3} n^3 + O(n^2) \]

5. together

\[\#F = \#E - \#V + 1 = \left(\frac{1}{3} + \frac{2}{\pi^2} \right) n^3 + O(n^2) \]
Counting Faces of $D_\alpha(n)$

1. “boundary” vertices

$\#_{\text{new edges}} - \#_{\text{“boundary” vertices}} = O(\#_{\text{lines}}) = O(n^2)$

2. crossings of lines of “0”-type

Bestel, Pocchiola: $\#_{\text{new edges}} - \#_{\text{crossings}} = \frac{1}{\pi^2} n^3 + O(n^2)$

3. crossings of lines of “1”-type

Bestel, Pocchiola: $\#_{\text{new edges}} - \#_{\text{crossings}} = \frac{1}{\pi^2} n^3 + O(n^2)$

4. crossings between both types

- lines of both types: $y = \{ix\} - 1, \quad y = \{jx - \alpha\} - 1,$
 $i, j = 0, \ldots, n$
- equation $\{ix\} - 1 = \{jx - \alpha\} - 1$ has $|j - i|$ solutions in $[0, 1)$
- $\sum_{i,j=0}^n |j - i| = \frac{1}{3} n(n + 1)(n + 2) = \#_{\text{crossings}}$
- a crossing generates 2 new edges (crossing points are unique)
- $\#_{\text{new edges}} - \#_{\text{crossings}} = \frac{1}{3} n^3 + O(n^2)$

5. together

$$\#F = \#E - \#V + 1 = \left(\frac{1}{3} + \frac{2}{\pi^2}\right) n^3 + O(n^2)$$
Symmetry of Faces

what we got vs. what Theorem says

\[\left(\frac{1}{3} + \frac{2}{\pi^2} \right) n^3 + O(n^2) \]

\[\left(\frac{1}{6} + \frac{1}{\pi^2} \right) n^3 + O(n^2) \]

Question (not open): Can different sequences of \(\bullet \) that came from some lines define the same word?

Answer: Yes, they can.
Symmetry of Faces

what we got

\[
\left(\frac{1}{3} + \frac{2}{\pi^2} \right) n^3 + O(n^2)
\]

vs.

what Theorem says

\[
\left(\frac{1}{6} + \frac{1}{\pi^2} \right) n^3 + O(n^2)
\]

Question (not open): Can different sequences of \(\bullet \) that came from some lines define the same word?
Symmetry of Faces

what we got vs. what Theorem says

\[
\left(\frac{1}{3} + \frac{2}{\pi^2} \right) n^3 + O(n^2)
\]

\[
\left(\frac{1}{6} + \frac{1}{\pi^2} \right) n^3 + O(n^2)
\]

Question (not open): Can different sequences of \(\bullet \) that came from some lines define the same word?

Answer: Yes, they can.
Symmetry of Faces

what we got vs. what Theorem says

\[
\left(\frac{1}{3} + \frac{2}{\pi^2} \right) n^3 + O(n^2) \quad \text{vs.} \quad \left(\frac{1}{6} + \frac{1}{\pi^2} \right) n^3 + O(n^2)
\]

Question (not open): Can different sequences of \(\bullet \) that came from some lines define the same word?

Answer: Yes, they can.
Symmetry of Faces

what we got vs. what Theorem says

\[
\left(\frac{1}{3} + \frac{2}{\pi^2}\right) n^3 + O(n^2)
\]

\[
\left(\frac{1}{6} + \frac{1}{\pi^2}\right) n^3 + O(n^2)
\]

Question (not open): Can different sequences of • that came from some lines define the same word?

Answer: Yes, they can.
Symmetry of Faces

what we got
\[\left(\frac{1}{3} + \frac{2}{\pi^2} \right) n^3 + O(n^2) \]

vs.
what Theorem says
\[\left(\frac{1}{6} + \frac{1}{\pi^2} \right) n^3 + O(n^2) \]

Question (not open): Can different sequences of • that came from some lines define the same word?

Answer: Yes, they can.

Tom Hejda (CTU)
Hojsova Straz '10
Symmetry of Faces

what we got
\[\left(\frac{1}{3} + \frac{2}{\pi^2} \right) n^3 + O(n^2) \]

vs.
what Theorem says
\[\left(\frac{1}{6} + \frac{1}{\pi^2} \right) n^3 + O(n^2) \]

Question (not open): Can different sequences of \(\bullet \) that came from some lines define the same word?
Answer: Yes, they can.
Remarks

1. The upper bound is independent of α.
2. Both lower and upper bound is $\sim n^3$ (upper is 10.58 larger).
3. The upper bound is satisfied for larger set of words than Sturmian:

$$s_\alpha(\beta, \rho), \quad \beta \notin \mathbb{Q}, \quad s_k = \begin{cases} 1 & \text{if } \{(k + 1)\beta + \rho\} < \alpha, \\ 0 & \text{otherwise.} \end{cases}$$

4. Can be generalized to 3iet with permutation $0 \rightarrow 1$, $1 \rightarrow 2$, $2 \rightarrow 0$.
1. The upper bound is independent of α.
2. Both lower and upper bound is $\sim n^3$ (upper is 10.58 larger).
3. The upper bound is satisfied for larger set of words than Sturmian:

$$s_\alpha(\beta, \rho), \quad \beta \notin \mathbb{Q}, \quad s_k = \begin{cases} 1 & \text{if } \{ (k+1)\beta + \rho \} < \alpha, \\ 0 & \text{otherwise}. \end{cases}$$

4. Can be generalized to 3iet with permutation $0 \rightarrow 1, 1 \rightarrow 2, 2 \rightarrow 0$.
Remarks

1. The upper bound is independent of α.
2. Both lower and upper bound is $\sim n^3$ (upper is 10.58 larger).
3. The upper bound is satisfied for larger set of words than Sturmian:

$$s_\alpha(\beta, \rho), \quad \beta \notin \mathbb{Q}, \quad s_k = \begin{cases} 1 & \text{if } \{(k + 1)\beta + \rho\} < \alpha, \\ 0 & \text{otherwise}. \end{cases}$$

4. Can be generalized to 3iet with permutation $0 \rightarrow 1, 1 \rightarrow 2, 2 \rightarrow 0$.
1. The upper bound is independent of α.
2. Both lower and upper bound is $\sim n^3$ (upper is 10.58 larger).
3. The upper bound is satisfied for larger set of words than Sturmian:

$$s_\alpha(\beta, \rho), \hspace{1cm} \beta \notin \mathbb{Q}, \hspace{1cm} s_k = \begin{cases} 1 & \text{if } \{(k+1)\beta + \rho\} < \alpha, \\ 0 & \text{otherwise}. \end{cases}$$

4. Can be generalized to 3iet with permutation $0 \rightarrow 1, \ 1 \rightarrow 2, \ 2 \rightarrow 0$.
