Krásný zápis

lim(an±÷bn)=liman±÷limbn\lim {\left(a_n \underset{\div}{\underset{\cdot}{\pm}} b_n\right)} = \lim a_n \underset{\div}{\underset{\cdot}{\pm}} \lim b_n

Zajímavý příkládek

Cvičení. Sestrojte posloupnosti (an),(bn),(cn)(a_n), (b_n), (c_n) takové, aby limn(an+bn)cnlimn(an+b)cn\displaystyle \lim_{n\to\infty} {\left(a_n + b_n\right)} c_n \neq \lim_{n\to\infty} {\left(a_n + b\right)} c_n, kde b=limnbn\displaystyle b = \lim_{n\to\infty} b_n.
Řešenían=1n,bn=1n,cn=na_n = \frac{1}{n}, b_n = \frac{1}{n}, c_n = n

Důkaz součtu čtverců

k=1n(k1)3=k=1nk33k=1nk2+3k=1nk=1n1=k=0n1k3=k=1nk3n33k=1nk2=n3+3n(n+1)2n=2n3+3n2+n2=n(n+1)(2n+1)2k=1nk2=n(n+1)(2n+1)6\begin{align*}\sum_{k=1}^n (k-1)^3 &= \sum_{k=1}^n k^3 - 3 \sum_{k=1}^n k^2 + 3 \sum_{k=1}^n - \sum_{k=1}^n 1 \\&= \sum_{k=0}^{n-1} k^3 = \sum_{k=1}^n k^3 - n^3 \\ 3 \sum_{k=1}^n k^2 &= n^3 + 3 \frac{n (n+1)}{2} - n \\&= \frac{2 n^3 + 3 n^2 + n}{2} \\&= \frac{n (n+1) (2n+1)}{2} \\ \sum_{k=1}^n k^2 &= \frac{n (n+1) (2n+1)}{6}\end{align*}

Obecně

k=1n(km+11)=l=0m+1(1)lk=1n(m+1l)kl=k=0n1km+1=k=1nkm+1nm+1(m+1)k=1nkm=nm+1+l=0m1(1)lk=1n(m+1l)klk=1nkm=nm+1+l=0m1(1)lk=1n(m+1l)klm+1\begin{align*}\sum_{k=1}^n {\left(k^{m+1} - 1\right)} &= \sum_{l=0}^{m+1} (-1)^l \sum_{k=1}^n {m+1 \choose l} k^l \\&= \sum_{k=0}^{n-1} k^{m+1} = \sum_{k=1}^n k^{m+1} - n^{m+1} \\ (m+1) \sum_{k=1}^n k^m &= n^{m+1} + \sum_{l=0}^{m-1} (-1)^l \sum_{k=1}^n {m+1 \choose l} k^l \\ \sum_{k=1}^n k^m &= \frac{n^{m+1} + \sum_{l=0}^{m-1} (-1)^l \sum_{k=1}^n {m+1 \choose l} k^l}{m+1}\end{align*}