Elektrický potenciál

φ=14πε0Vρ(r)rrdV\varphi = \frac{1}{4 \pi \varepsilon_0} \int_V \frac{\rho{\left(\vec r'\right)}}{{\left\lvert \vec r - \vec r'\right\rvert}} {\mathrm dV} E=14πε0Sσ(r)rr3(rr)dSE = \frac{1}{4 \pi \varepsilon_0} \int_S \frac{\sigma{\left(\vec r'\right)}}{{\left\lvert \vec r - \vec r'\right\rvert}^3} {\left(\vec r - \vec r'\right)} \,{\mathrm dS}

Substituce

Vf(x,y,z)dxdydz=Vf(x(u,v,w),y(u,v,w),z(u,v,w))Jdudvdw\int_V f{\left(x,y,z\right)} \,{\mathrm dx} \,{\mathrm dy} \,{\mathrm dz} = \int_V f{\left(x{\left(u,v,w\right)}, y{\left(u,v,w\right)}, z{\left(u,v,w\right)}\right)} \cdot {\left\lvert J\right\rvert} \,{\mathrm du} \,{\mathrm dv} \,{\mathrm dw} lf(x,y,z)dl=lf(x(t),y(t),z(t))Φ˙(t)dt\int_l f{\left(x,y,z\right)} \,{\mathrm dl} = \int_l f{\left(x{\left(t\right)}, y{\left(t\right)}, z{\left(t\right)}\right)} \cdot {\left\lvert \dot{\vec \Phi}{\left(t\right)}\right\rvert} \,{\mathrm dt} lF(x,y,z)dl=lF(x(t),y(t),z(t))Φ˙(t)dt\int_l \vec F{\left(x,y,z\right)} \,{\mathrm dl} = \int_l \vec F{\left(x{\left(t\right)}, y{\left(t\right)}, z{\left(t\right)}\right)} \cdot \dot{\vec \Phi}{\left(t\right)} \,{\mathrm dt}