
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

Representation of complex numbers in
redundant numeration systems

Reprezentace komplexních čísel v
redundantních číselných systémech

Bachelor’s Degree Project

Author: Adam Blažek
Supervisor: prof. Ing. Edita Pelantová, CSc.
Consultant: Ing. Milena Svobodová, Ph.D.

Academic year: 2023/2024

Acknowledgment:
I would like to thank my supervisor, prof. Edita Pelantová, for providing me this research topic, as well
expertly guiding me to turn it into a bachelor’s degree project and participate in various conferences
and contests with it. I also thank my consultant Ing.Milena Svobodová for collaborating on the project
and my family for supporting me throughout my studies.

Author’s declaration:
I declare that this Bachelor’s Degree Project is entirely my own work and I have listed all the used
sources in the bibliography.

Prague, July 25, 2024 Adam Blažek

Název práce:
Reprezentace komplexních čísel v redundantních číselných systémech

Autor: Adam Blažek

Obor: Matematické inženýrství

Zaměření: Matematická informatika

Druh práce: Bakalářská práce

Vedoucí práce: prof. Ing. Edita Pelantová, CSc.

Konzultant: Ing. Milena Svobodová, Ph.D.

Abstrakt: Penneyova číselná soustava je poziční číselná soustava se základem i − 1 a číslicemi {0, 1};
lze v ní reprezentovat všechna Gaussova celá čísla. Rozšířením na množinu číslic {0, ±1, ±i získáme
redundantní číslenou soustavu. Každé číslo má jedinečnou reprezentaci, v níž mezi každými dvěma ne-
nulovými číslicemi jsou alespoň dvě nuly; toto je zobecnění NAF reprezentací u dvojkové soustavy
se znaménky. Tyto reprezentace jsou optimální ve smyslu Hammingovy váhy, což je důležité pro
zvýšení rychlosti některých algoritmů v kryptografii na eliptických křivkách. V této práci ukážeme
některé známé výsledky přímočařejším způsobem, poté pomocí konečného stavového automatu odvo-
díme nové výsledky. Konkrétně nalezneme čísla s nejvyšším počtem optimálních reprezentací, vypoč-
teme asymptoticky průměrný počet optimálních reprezentací všech čísel a poskytneme algoritmus pro
generaci náhodné optimální reprezentace daného čísla.

Klíčová slova: Gaussova celá čísla, NAF reprezentace, poziční číselné soustavy, redundantní číselné
soustavy

Title:
Representation of complex numbers in redundant numeration systems

Author: Adam Blažek

Abstract: The Penney numeration system is a positional numeration system with base 𝑖 − 1 and digits
{0, 1}, capable of representing all Gaussian integers. Extending it to the digit set {0, ±1, ±𝑖} produces
a redundant numeration system. Each number has a unique representation such that every pair of
non-zero digits has at least two zeros between them; this is a generalization of NAF representations in
the signed binary system. These representations are optimal in terms of Hamming weight, which is
important for improving the performance of certain algorithms in elliptic curve cryptography. In this
work, we demonstrate some known properties of this system in a more straightforward way, then use a
finite transducer to derive some new results. Namely, we identify numbers which have themost optimal
representations, calculate the asymptotic average number of optimal representations of all numbers and
provide an algorithm for generating a uniformly random representation of a given number.

Key words: Gaussian integers, NAF representations, positional numeration systems, redundant numer-
ation systems

Contents

Introduction 7

1 Basics 9
1.1 Positional numeration systems . 9
1.2 NAF binary representations . 10
1.3 Complex integers . 16
1.4 Exercises . 18

2 𝑤-NAF representations of complex integers 19
2.1 Gaussian integers . 19
2.2 Eisenstein integers . 23

3 Counting maximum optimal representations 24
3.1 Transducer . 24
3.2 Transducer as an oriented graph . 27
3.3 Simplifying the graph . 28
3.4 Converting to a matrix problem . 31
3.5 Solving the matrix problem . 34

4 Counting average optimal representations 38

5 Generating optimal representations 42

Conclusion 45

A Programs 46

Bibliography 57

6

Introduction

Positional numeration systems have a long history. Over centuries, civilizations have slowly ac-
cepted them as the most practical way to denote numbers. Several different numbers have been used as
the base, including twenty, sixty, twelve and even six, but we have mostly settled on ten — the number
of fingers on both our hands.

Only recently, with the advent of computers, the matters have changed yet again. While we still
use the decimal system, pretty much all modern electronic devices use base two — the binary system.
There is a good reason for this: it is much easier to design electronic circuits that handle only two
states — off and on, representing the digits 0 and 1 — than ten different states. Despite that, decimal
computers have been tried, but they are now long lost in history.

All the aforementioned positional numeration systems had one thing in common: they used the
non-negative integers strictly lower than the base as the digits. However, this is far from being the
only possible choice for the set of digits. A few computers built in the Soviet Union [12] [13] used
balanced ternary: a system that uses base three, but the digits are 0, 1 and −1. This has a number
of advantages, the biggest one being that negative numbers can be represented without any special
treatment and it is trivial to compute the negation of a number.

It is also possible to use the digits 0, 1 and −1 for representing numbers in base two, which is called
signed binary. In this system, numbers have multiple representations, which allows a certain degree
of choice. As shown in [6], the performance of addition and multiplication is optimal if we minimize
the number of non-zero digits — the Hamming weight. This is achieved by representations in the non-
adjacent form (NAF), where each pair of adjacent digits contains at most one non-zero digit. Such a
representation exists and is unique for every number.

In [1], this idea is generalized to all numeration systems, with emphasis on the case of generalized
integers in the complex plane. The NAF condition is generalized to the 𝑤-NAF condition, which re-
quires every adjacent 𝑤 digits to contain at most one non-zero. It is shown that if a digit set satisfies a
certain condition (minimal norm representatives digit set), then each number has a unique 𝑤-NAF rep-
resentation, and if the digit set is also 𝑤-subadditive, then these representations are optimal (have the
minimal Hamming weight).

Optimal representations in complex bases are useful for algorithms in elliptic curve cryptography
[1]. For this application, due to redundancy being a key element in cryptography, it is important to
know how many optimal representations (with the minimal Hamming weight) each number has and,
in particular, what the upper bound is for a given weight. In [3] and [4], it is shown that for numbers in
the signed binary system, the number of optimal representations for a number whose representation
has a given length or Hamming weight is bounded by the Fibonacci sequence.

The signed binary system also has the useful property that there exists a paralellizable algorithm
for adding numbers [9]. Since the set of digits {0, 1, −1} is closed under multiplication, this also allows
the standard long multiplication algorithm to be partially parallelized, running in linear time rather
than quadratic. In [10], it is discussed which complex bases and digit sets allow parallel addition.

7

8

In this work, we focus on 3-NAF representations of the Gaussian integers in base i − 1, where the
minimal norm representatives digit set {0, ±1, ±i} is closed under multiplication, as well as being the
minimal set of digits to allow parallel addition. This is an extension of a “complex binary” system
introduced by W. Penney in [5]. In Chapter 2, we demonstrate some properties of this system which
have already been proven before, but in amore general and complicatedway, including the optimality of
3-NAF representations, the average density of their non-zero digits and a recursive formula for finding
the number of representations of a given Gaussian integer.

After that, we show some new results about this system. In Chapter 3, a bound for the number
of equivalent optimal representations of a given Hamming weight, analogous to the result in [4]. In
Chapter 4, the average number of optimal representations across all numbers of a given length, analo-
gous to a result in [3]. Finally, in Chapter 5, an algorithm for generating a uniformly random optimal
representation of a given number; the motivation for such an algorithm is shortly discussed in [3]. All
of these new results use a transducer that converts any optimal representation of a number to its 3-NAF
representation or the other way around, which is inspired by [4].

Chapter 1

Basics

1.1 Positional numeration systems

A positional numeration system is the most common way of representing numbers. It consists of a
number 𝛽 , the base, and a set of numbers𝒟 , the digits. Usually the base and digits are positive integers,
but the definition can be generalized to any abelian group, with multiplication by a base being replaced
with a group endomorphism [1]. However, for the purposes of this project, it will suffice to generalize
the notion to complex numbers.

Definition 1.1. Let 𝒜 be a finite set. A word over the alphabet 𝒜 is a finite sequence of elements
from 𝒜 , denoted via juxtaposition: 𝑎1⋯𝑎𝑛. The set of all words over 𝒜 , including the empty word 𝜖, is
denoted 𝒜 ∗. For 𝑤 ∈ 𝒜 ∗ and 𝑛 ∈ ℕ, 𝑤𝑛 denotes a word consisting of 𝑛 repetitions of 𝑤 .

Definition 1.2. A positional numeration system is an ordered pair (𝛽,𝒟), where 𝛽 ∈ ℂ and 𝒟 ⊂ ℂ is a
finite set.

Definition 1.3. Let (𝛽,𝒟) be a positional numeration system and 𝑥𝑛 ⋯𝑥0 ∈ 𝒟 ∗. Then the number
represented by the word 𝑥𝑛 ⋯𝑥0 in base 𝛽 is

𝑥 = [𝑥𝑛 ⋯𝑥0]𝛽 ≔
𝑛
∑
𝑘=0

𝑥𝑘𝛽𝑘 .

The word 𝑥𝑛 ⋯𝑥0 is called a (𝛽,𝒟)-representation of 𝑥 .
Example. Let 𝛽 = 4, 𝒟 = {0, 1, 2, 3}. Then

[133220]4 = 1 ⋅ 45 + 3 ⋅ 44 + 3 ⋅ 43 + 2 ⋅ 42 + 2 ⋅ 41 + 0 ⋅ 40 = 2024.

Example. Let 𝛽 = 𝜑 = 1+√5
2 , 𝒟 = {±1}. Then

[(−1)11]𝜑 = −1 ⋅ 𝜑2 + 1 ⋅ 𝜑1 + 1 ⋅ 𝜑0 = 0.

Example. Let 𝛽 = i, 𝒟 = {0, 1}. Then

[11001100110011001100]i =
4
∑
𝑘=0

(i4𝑘+2 + i4𝑘+3) = −5 − 5i.

9

CHAPTER 1. BASICS 10

Note. Apositional representation of a number is not necessarily unique. For example, with 𝛽 = 2, 𝒟 =
{0, 1, 2},

[1000]2 = [200]2 = [120]2 = [112]2 = 8.
Definition 1.4. A positional representation 𝑥𝑛 ⋯𝑥0 is called reduced if 𝑥𝑛 ≠ 0. As a special case, the
empty representation (representing the number 0) is reduced.

Since adding leading zeros to a representation does not change its value, we will usually consider
representations that differ only in leading zeros to be the same, with the reduced representation being
their canonical form. In some cases, it is more useful to consider all representations as implicitly having
an infinite sequence of zeros to their left.

It is a well-known fact that if 𝛽 is an integer greater than 1 and 𝒟 = {0,… , 𝛽 − 1}, as in our usual
decimal systems, then every non-negative integer has a unique reduced representation. However, the
basic concept of the proof is going to be useful later for proving similar facts about more unusual
systems.

Definition 1.5. Let 𝛽 ∈ ℤ, 𝛽 ≥ 2, 𝒟 = {0, … , 𝛽 − 1}. Then (𝛽,𝒟) is the standard positional numeration
system with base 𝛽 .
Theorem 1.6. Let (𝛽,𝒟) be a standard positional numeration system. Then every 𝑥 ∈ ℕ0 has exactly
one reduced (𝛽,𝒟)-representation 𝑥𝑛 ⋯𝑥0.
Proof. It follows immediately from Definition 1.3 that if 𝑥 = [𝑥𝑛 ⋯𝑥0]𝛽 , then 𝑥 ≡ 𝑥0 (mod 𝛽). Since
every digit from 𝒟 belongs to a different congruence class modulo 𝛽 and all classes are covered, this
uniquely determines 𝑥0. Since [𝑥𝑛 ⋯𝑥0]𝛽 = 𝑥0 + 𝛽 ⋅ [𝑥𝑛 ⋯𝑥1]𝛽 (which also follows from the definition),
𝑥𝑛 ⋯𝑥1 has to be a (𝛽,𝒟)-representation of 𝑥−𝑥0𝛽 (which is obviously a non-negative integer). Therefore,

the same argument can be used to uniquely find the value of 𝑥1. Since 𝑥−𝑥0
𝛽 < 𝑥 for all 𝑥 ≠ 0, repeating

this process will eventually result in trying to find a representation of 0. Since 0 obviously has exactly
one represention that does not start with 0 — the empty string, this gives an algorithm for finding the
(𝛽,𝒟)-representation of 𝑥 along with a proof of its uniqueness. ■

Example. Let us find the base-17 representation of 2024 (with digits {0, 1, … , 16}). We start by dividing
2024 by 17 with remainder:

2024 = 119 ⋅ 17 + 1.
From this, we know that the representation ends in 1, which is preceded by the representation of 119.
We perform another division:

119 = 7 ⋅ 17 + 0.
This tells us that the representation of 119 ends in 0, preceded by the representation of 7. Since 7 < 17,
its representation is just the single digit 7; if we were to continue dividing, we would get an infinite
sequence of leading zeros. Therefore, 2024 is represented as [701]17 in the standard base-17 system.

1.2 NAF binary representations

Consider the positional numeration system with 𝛽 = 2 and 𝒟 = {0, ±1}. For the sake of compact-
ness, we will write −1 as 1when used as a digit (this notation is not to be confused with the notation for
complex conjugation). This system can represent any 𝑥 ∈ ℤ, including negative integers: simply take
the standard binary representation of |𝑥 | and multiply all digits by sgn 𝑥 . In this system, many integers
have multiple representations, for example [101]2 = [111]2 = [1011]2 = [1101]2 = 5. However, it

CHAPTER 1. BASICS 11

turns out that if we add a simple restriction to which representations are eligible, reduced representa-
tions will once again be unique. [6]

Definition 1.7. A positional representation 𝑥𝑛 ⋯𝑥0 is in non-adjacent form (NAF) if there are no two
non-zero digits next to each other, that is,

∀𝑘 ∈ ℕ ∶ 𝑥𝑘 = 0 ∨ 𝑥𝑘+1 = 0,
using the convention of representations having infinitely many leading zeros.

Note. The NAF property was first introduced in [6], where it was called “property M”.

Note. If all non-zero digits have an absolute value of 1 (as is the case with 𝒟 = {0, ±1}), Definition 1.7
can be equivalently written in a more compact, but also more obfuscated way:

∀𝑘 ∈ ℕ ∶ |𝑥𝑘 | + |𝑥𝑘+1| ≤ 1.
Example. Out of the aforementioned representations of 5: [101]2, [111]2, [1011]2, [1101]2, precisely
one is in non-adjacent form, namely [101]2. It turns out that this is the case for all integers, as shown
in the following theorem.

Theorem 1.8. Let 𝒟 = {0, ±1}. Then every 𝑥 ∈ ℤ has exactly one reduced (2,𝒟)-representation
𝑥𝑛 ⋯𝑥0 with the NAF property.

Note. First proven in [6].

Proof. Analogously as in the proof of Theorem 1.6, we need to have 𝑥0 ≡ 𝑥 (mod 2). If 𝑥 is even, this
uniquely determines 𝑥0 to be 0; we can then recursively find a represention of 𝑥

2 . If 𝑥 is odd, we have

two options: either choose 𝑥0 = 1 and find a representation of 𝑥−1
2 , or choose 𝑥0 = −1 and find a

representation of 𝑥+1
2 . Either way, 𝑥0 will be a non-zero digit, so in order to fulfill the NAF constraint,

we need 𝑥1 = 0, which means that [𝑥𝑛 ⋯𝑥1]2 has to be even. Since exactly one of 𝑥±1
2 is even, we have

precisely one choice. Repeating this process, we will eventually reach 0, since for all non-zero 𝑥 we
have |𝑥−𝑥02 | < |𝑥|. ■

Example. Let us find the NAF binary representation of 119. Since 119 is odd, its representation has
to end in either 1 or 1. If we were to choose 1, we would have to find a representation of 119−1

2 = 59
and then append the 1 to it. However, since 69 is also odd, the resulting representation would end
in two non-zero digits, making it not NAF. So instead, we need to use 1 as the last digit and prepend
the representation of 119+1

2 = 60. 60 is even, so its representation ends in a zero, exactly as we need.
After dividing by 2, we get the even number 30, giving us another zero. After that, we have to find
a representation of 15. Again, it is necessary to choose 1 because choosing 1 would violate the NAF
condition. After a few more divisions by 2, we get to 1, which must be represented as 1 because any
other of its infinitely many representations is not NAF:

1 = [1]2 = [11]2 = [111]2 = [1111]2 = ⋯ .

Putting all this together, we obtain the desired NAF representation

119 = [10001001]2.
The system with 𝛽 = 2, 𝒟 = {0, ±1} also has the useful property that it is possible to tell the sign of

a number just from the first non-zero digit of its representation, no matter whether the representation
is NAF. We will need this property later, so here is a simple proof.

CHAPTER 1. BASICS 12

Theorem 1.9. Let 𝒟 = {0, ±1} and 𝑥𝑛 ⋯𝑥0 be a reduced (2,𝒟) representation of a non-zero integer 𝑥 .
Then sgn 𝑥 = 𝑥𝑛.
Proof. We shall prove the case 𝑥𝑛 = 1, the proof for 𝑥𝑛 = −1 is analogous. From Definition 1.3:

𝑥 =
𝑛
∑
𝑘=0

𝑥𝑘2𝑘 = 2𝑛 +
𝑛−1
∑
𝑘=0

𝑥𝑘2𝑘 ≥ 2𝑛 +
𝑛−1
∑
𝑘=0

−2𝑘 = 2𝑛 − 2𝑛 − 1
2 − 1 = 1.

■

NAF binary representations have the interesting property that they contain the fewest non-zero
digits out of all (2,𝒟)-representations of the same number. As mentioned in the introduction, this has
positive implications for parallel multiplication algorithms. In order to prove this fact, we first need
some definitions and a lemma.

Definition 1.10. TheHammingweight of a (𝛽,𝒟)-representation 𝑥𝑛 ⋯𝑥0 is its count of non-zero digits:

𝑊(𝑥𝑛 ⋯𝑥0) ≔ |{𝑘 ∈ {0, … , 𝑛} | 𝑥𝑘 ≠ 0}|.

Note. If all non-zero digits in 𝒟 have an absolute value of 1, then Definition 1.10 can be equivalently
expressed as

𝑊(𝑥𝑛 ⋯𝑥0) ≔
𝑛
∑
𝑘=0

|𝑥𝑘 |.

Definition 1.11. A (𝛽,𝒟)-representation is optimal if its Hamming weight is minimal among all
(𝛽,𝒟)-representations of the same number.

Lemma 1.12. Let 𝒟 = {0, ±1}. Then any (2,𝒟)-representation 𝑥𝑛 ⋯𝑥0 can be converted to a NAF
(2,𝒟)-representation of the same number by repeatedly applying the following substitutions:

• 11 ↦ 01,
• 11 ↦ 01,
• 011 ↦ 101,
• 011 ↦ 101.

Proof. It is obvious from Definition 1.3 that the substitutions preserve the value of the representation.
Also, if this procedure terminates, then the resulting representation has to be NAF, because if there was
a pair of non-zero digits next to each other, one of the substitutions could be applied to the first such
pair. Therefore, we only need to prove that this procedure terminates. Suppose that 𝑥𝑛 = 1; the proof is
analogous for 𝑥𝑛 = −1. Clearly, the only way the representation can increase in length is by applying
the third substitution at the beginning:

11𝑦𝑛−2⋯𝑦0 → 101𝑦𝑛−2⋯𝑦0.

In order for the representation to increase in length again, a series of substitutions would have to
change 01𝑦𝑛−2⋯𝑦0 into 1𝑧𝑛−1𝑧𝑛−2⋯𝑧0. However, by Theorem 1.9, the former represents a negative
number, whereas the latter represents a positive number. Since the substitutions preserve the value,
this is impossible. Therefore, the length of the initial representation can increase at most once. In

CHAPTER 1. BASICS 13

other words, the length of all intermediate representations is at most 𝑛 + 2. For a given intermediate
representation 𝑦𝑛+1⋯𝑦0, we define

𝑠(𝑦𝑛+1⋯𝑦0) ≔
𝑛+1
∑
𝑘=0

(𝑛 + 2 − 𝑘)|𝑦𝑘 |.

It can be easily verified that every substitution strictly decreases 𝑠. Since 𝑠 is a non-negative integer,
the procedure always terminates. ■

Example. Consider the number 119 with its standard binary representation [1110111]2. By applying
these substitutions from right to left, we obtain

119 = [1110111]2
= [1111011]2
= [1111001]2
= [10111001]2
= [10011001]2
= [10001001]2.

This gave us the same result as the modular algorithm, which was to be expected because binary NAF
representations are unique according to Theorem 1.8. Notice that several of the substitutions decreased
the Hamming weight of the representation, whereas none of them increased it. This is the key to
proving that binary NAF representations are optimal, as formalized by the following theorem.

Theorem 1.13. Binary NAF representations are optimal: Let 𝒟 = {0, ±1}. Let 𝑥𝑛 ⋯𝑥0, 𝑦𝑚 ⋯𝑦0 be two
(2,𝒟)-representations of the same integer, with 𝑥𝑛 ⋯𝑥0 also being NAF. Then𝑊(𝑥𝑛 ⋯𝑥0) ≤ 𝑊 (𝑦𝑛 ⋯𝑦0).
Note. First proven in [6].

Proof. By Lemma 1.12, we can convert 𝑦𝑚 ⋯𝑦0 into a NAF representation 𝑧𝑙 ⋯𝑧0 of the same number.
None of the possible substitutions increase the Hamming weight, therefore 𝑊(𝑧𝑙 ⋯𝑧0) ≤ 𝑊 (𝑦𝑚 ⋯𝑦0).
According to Theorem 1.8, binary NAF representations of the same number are equal, so 𝑊(𝑧𝑙 ⋯𝑧0) =
𝑊 (𝑥𝑛 ⋯𝑥0), which concludes the proof. ■

Not only are binary NAF representations optimal, they have asymptotically fewer non-zero digits
on average than standard binary representations. To be specific: If we list all possible standard binary
representations of some fixed length (not necessarily reduced), obviously exactly half of the digits will
be 0 and the other half will be 1. However, if we do the same with NAF representations in signed
binary, the total proportion of non-zero digits will only be approximately 1

3 , as shown in the following
theorem.

Theorem 1.14. Let 𝒟 = {0, ±1}. Let 𝑎𝑛 be the number of all (not necessarily reduced) NAF (2,𝒟)-
representations of length 𝑛 and 𝑏𝑛 the sum of the Hamming weights of these representations. Then
lim𝑛→∞

𝑏𝑛
𝑛𝑎𝑛 = 1

3 . That is, for an average sufficiently long NAF (2,𝒟)-representation, about 1
3 of its digits

are non-zeros.

Note. Shown in [8].

CHAPTER 1. BASICS 14

Proof. Let us find an explicit formula for 𝑎𝑛 and 𝑏𝑛. We can think of NAF (2,𝒟)-representations as

consisting of three kinds of “blocks”: 0 , 01 and 01 . Note that these blocks can only be used to
construct representations starting with a zero, so we are actually expressing 𝑎𝑛−1 and 𝑏𝑛−1, but this
does not matter when 𝑛 → ∞. Take one representation with 𝑛 digits and let 𝑘 be its Hamming weight,

which corresponds to the number of 01 and 01 blocks. These blocks take up 2𝑘 digits, so the number
of 0 blocks is 𝑛 − 2𝑘, for a total of 𝑛 − 𝑘 blocks. There are (𝑛−𝑘𝑘) ways to choose which of these blocks

contain a non-zero digit and 2𝑘 ways to choose whether the digit will be 1 or 1. Therefore, the total
number of these representations is

𝑎𝑛 =
∞
∑
𝑘=0

2𝑘(𝑛 − 𝑘
𝑘)

and the sum of Hamming weights is

𝑏𝑛 =
∞
∑
𝑘=0

𝑘2𝑘(𝑛 − 𝑘
𝑘),

where we define (𝑛𝑘) ≔ 0 for 𝑘 > 𝑛 so that we do not have to worry about the upper limit. If we also

define (𝑛𝑘) ≔ 0 for 𝑘 < 0, the formula (𝑛𝑘) = (𝑛−1𝑘)+(𝑛−1𝑘−1)will work for all 𝑘, which we can use in finding
a recursive expression for 𝑎𝑛:

𝑎𝑛 =
∞
∑
𝑘=0

2𝑘(𝑛 − 𝑘
𝑘)

=
∞
∑
𝑘=0

2𝑘(𝑛 − 𝑘 − 1
𝑘) +

∞
∑
𝑘=0

2𝑘(𝑛 − 𝑘 − 1
𝑘 − 1)

=
∞
∑
𝑘=0

2𝑘(𝑛 − 𝑘 − 1
𝑘) +

∞
∑
𝑘=−1

2𝑘+1(𝑛 − 𝑘 − 2
𝑘)

=
∞
∑
𝑘=0

2𝑘(𝑛 − 𝑘 − 1
𝑘) + 2

∞
∑
𝑘=0

2𝑘(𝑛 − 𝑘 − 2
𝑘)

= 𝑎𝑛−1 + 2𝑎𝑛−2.

Solving this recurrence using its characteristic polynomial 𝜆2 − 𝜆 − 2 = (𝜆 − 2)(𝜆 + 1), we get

𝑎𝑛 = 𝛼2𝑛 + 𝛽(−1)𝑛

for some 𝛼, 𝛽 ∈ ℝ. Clearly 𝛼 ≠ 0, otherwise some terms would be negative. For 𝑏𝑛, we analogously

CHAPTER 1. BASICS 15

have

𝑏𝑛 =
∞
∑
𝑘=0

𝑘2𝑘(𝑛 − 𝑘
𝑘)

=
∞
∑
𝑘=0

𝑘2𝑘(𝑛 − 𝑘 − 1
𝑘) +

∞
∑
𝑘=0

𝑘2𝑘(𝑛 − 𝑘 − 1
𝑘 − 1)

=
∞
∑
𝑘=0

𝑘2𝑘(𝑛 − 𝑘 − 1
𝑘) +

∞
∑
𝑘=−1

(𝑘 + 1)2𝑘+1(𝑛 − 𝑘 − 2
𝑘)

=
∞
∑
𝑘=0

𝑘2𝑘(𝑛 − 𝑘 − 1
𝑘) + 2

∞
∑
𝑘=0

𝑘2𝑘(𝑛 − 𝑘 − 2
𝑘) + 2

∞
∑
𝑘=0

2𝑘(𝑛 − 𝑘 − 2
𝑘)

= 𝑏𝑛−1 + 2𝑏𝑛−2 + 2𝑎𝑛−2
= 𝑏𝑛−1 + 2𝑏𝑛−2 + 2𝛼2𝑛−2 + 2𝛽(−1)𝑛−2.

This is a non-homogenous linear recurrence. The homogenous solution is the same as for 𝑎𝑛, except
with possibly different coefficients 𝛼̃ , ̃𝛽 ∈ ℝ:

𝑏hom𝑛 = 𝛼̃2𝑛 + ̃𝛽(−1)𝑛.

The particular solution is of the form

𝑏par𝑛 = 𝜇𝑛2𝑛 + 𝜈𝑛(−1)𝑛

for some 𝜇, 𝜈 ∈ ℝ. We can find those by substituting in the recurrence:

𝜇𝑛2𝑛+𝜈𝑛(−1)𝑛−𝜇(𝑛 − 1)2𝑛−1−𝜈(𝑛 − 1)(−1)𝑛−1−2𝜇(𝑛 − 2)2𝑛−2−2𝜈(𝑛 − 2)(−1)𝑛−2 = 2𝛼2𝑛−2+2𝛽(−1)𝑛−2.

Collecting terms with 2𝑛 and cancelling, we obtain

𝜇(𝑛 − 𝑛 − 1
2 − 𝑛 − 2

2) = 𝛼
2 ,

𝜇 = 𝛼
3 ≠ 0.

This suffices to evaluate the desired limit, since only the fastest-growing terms matter:

lim𝑛→∞
𝑏𝑛
𝑛𝑎𝑛

= lim𝑛→∞
𝛼̃2𝑛 + ̃𝛽(−1)𝑛 + 𝛼

3 𝑛2𝑛 + 𝜈𝑛(−1)𝑛

𝛼𝑛2𝑛 + 𝛽𝑛(−1)𝑛 = 1
3 .

■

In Theorem 1.14, we have shown that NAF binary representations of a fixed length have an asymp-
totically smaller Hamming weight than standard binary representations. One might object that if, on
average, the NAF representation of a given number is significantly longer than the standard binary
representation, this might not result in such an improvement for fixed numbers. However, as shown in
the following theorem, a NAF binary representation of a given integer is at most one digit longer than
its standard binary representation. This is in fact already apparent from the proof of Lemma 1.12, but
can easily be proven separately.

CHAPTER 1. BASICS 16

Theorem 1.15. Let 𝒟 = {0, ±1} and 𝑥 ∈ ℤ, 𝑥 ≠ 0. Then the reduced NAF (2,𝒟)-representation of 𝑥
has at most ⌊log2 |𝑥 |⌋ + 2 digits.

Note. First shown in [6].

Proof. Let ℎ𝑛 be the smallest positive integer whose binary NAF representation consists of exactly 𝑛
digits. From Theorem 1.9, we know that the representation starts with 1. To minimize the value while
respecting the NAF condition, it is easy to see that this 1 is followed by alternating 0 and 1, so for all
𝑚 ∈ ℕ0,

ℎ2𝑚+1 = [1(01)𝑚]2, ℎ2𝑚+2 = [1(01)𝑚0]2.
Consider first the odd case 𝑛 = 2𝑚 + 1. By Definition 1.3,

ℎ𝑛 = ℎ2𝑚+1 = 22𝑚 −
𝑚−1
∑
𝑘=0

22𝑘 = 22𝑚 −
𝑚−1
∑
𝑘=0

4𝑘 = 22𝑚 − 4𝑚 − 1
3 = 2𝑛 + 1

3 ,

𝑛 = log2 (3ℎ𝑛 − 1) < log2 (4ℎ𝑛) = log2 ℎ𝑛 + 2.
Since ℎ𝑛 has the minimal absolute value out of all integers with an 𝑛-digit NAF (2,𝒟)-representation,
this concludes the proof for odd 𝑛. For even 𝑛, ℎ𝑛 = 2ℎ𝑛−1, so by the already proven odd case,

𝑛 = (𝑛 − 1) + 1 < log2 ℎ𝑛−1 + 2 + 1 = log2 ℎ𝑛 + 2.
■

1.3 Complex integers

There are two different natural ways to extend the concept of an integer to complex numbers: either
using a square lattice, or using a triangular lattice. These generalizations are called Gaussian integers
and Eisenstein integers respectively.

Definition 1.16. The Gaussian integers are the numbers

ℤ[i] ≔ {𝑎 + 𝑏i | 𝑎, 𝑏 ∈ ℤ}.

Definition 1.17. Let 𝜔 ≔ exp (23𝜋 i) = −1
2 +

√3
2 i. The Eisenstein integers are the numbers

ℤ[𝜔] ≔ {𝑎 + 𝑏𝜔 | 𝑎, 𝑏 ∈ ℤ}.
In Appendix A, there are programs implementing basic arithmetic on Gaussian and Eisenstein in-

tegers.
It is obvious how to naturally extend the notion of divisibility and modular arithmetic to integers.

A more interesting question is how to extend the notion of parity. We could, just like in the ordinary
integers, define a complex integer to be even if it is divisible by 2. However, this way we would lose
the useful property that if 𝑥 is even, then 𝑥 ± 1 is odd and vice-versa. Instead, we will use the following
definition for the case of Gaussian integers, which preserves this property (additionally ensuring that
𝑥 ± i also has the opposite parity from 𝑥):
Definition 1.18. Let 𝑥 ∈ ℤ[i]. If 𝑥 ≡ 0 (mod i − 1), then 𝑥 is even, otherwise 𝑥 is odd. (Note that
divisibility by i − 1 is the same as divisibility by i + 1, we are choosing the former for reasons that will
be apparent soon.)

CHAPTER 1. BASICS 17

However, it is not possible to do this with Eisenstein integers, the reason being that the triangular
grid is not a bipartite graph. Note that if there were names for different congruence classes modulo 3,
they could be generalized to Eisenstein integers by considering congruence classes modulo 𝜔 − 1.

The most obvious way to represent complex integers using a positional numeration system is to
simply choose a system for representing regular integers and apply it component-wise. However, with
the right choice of base and digits, we can naturally represent both kinds of complex integers directly.
[5]

Theorem 1.19. Let 𝛽 = i − 1, 𝒟 = {0, 1}. Then every Gaussian integer 𝑥 has a unique reduced
(𝛽,𝒟)-representation 𝑥𝑛 ⋯𝑥0.
Note. First shown in [5].

Proof. Analogously as in the proof of Theorem 1.6, if 𝑥 is even (by Definition 1.18), then 𝑥0 = 0, other-
wise 𝑥0 = 1. We then recursively find a representation of 𝑥−𝑥0

i−1 . It remains to show that this procedure
terminates. We can estimate

| 𝑥 − 𝑥0
i − 1 | = |𝑥 − 𝑥0|

√2
≤ |𝑥| + |𝑥0|

√2
≤ |𝑥| + 1

√2
.

This implies that if |𝑥 | > √2 + 1, then |𝑥−𝑥0i−1 | < |𝑥|. Since |𝑥 | is always the square root of an integer, after
finitely many steps we will reach an 𝑥 such that |𝑥 | ≤ √2+1. Therefore, we just have to manually check
that every such 𝑥 has a representation. There are 21 such numbers:

0 = [𝜖]i−1 ,
1 = [1]i−1 , i = [11]i−1 , −1 = [11101]i−1 , −i = [111]i−1 ,

1 + i = [1110]i−1 , −1 + i = [10]i−1 , −1 − i = [110]i−1 , 1 − i = [111010]i−1 ,
2 = [1100]i−1 , 2i = [1110100]i−1 , −2 = [11100]i−1 , −2i = [100]i−1 ,

2 + i = [1111]i−1 , −1 + 2i = [11001]i−1 , −2 − i = [11101011]i−1 , 1 − 2i = [101]i−1 ,
1 + 2i = [1110101]i−1 , −2 + i = [11111]i−1 , −1 − 2i = [11101001]i−1 , 2 − i = [111011]i−1 .

■

Note. This system is known as the Penney numeration system due toWalter F. Penney being one of the
first mathematicians to work with it [5].

Note. It is apparent from the proofs of Theorem 1.6 and Theorem 1.19 that they can be generalized
to a much larger class of positional numeration systems, with the only two requirements being that
the digits uniquely cover all congruence classes modulo 𝛽 and that all numbers with an absolute value
within some bound have a representation. The general statement is outside the scope of this project.

Note. It is not possible to represent every Gaussian integer with 𝛽 = i + 1 and 𝒟 = {0, 1}. If we tried
to find such a representation for some numbers, such as −1, using the modular algorithm, we would
get into an infinite loop. This shows that verifying the representability of certain small numbers is an
important part of the proof of Theorem 1.19 that cannot be left out.

Theorem 1.20. Let 𝛽 = 𝜔−1, 𝒟 = {0, 1, 𝜔 + 1}. Then every Eisenstein integer 𝑥 has a unique reduced
(𝛽,𝒟)-representation 𝑥𝑛 ⋯𝑥0.
Proof. Analogous to the proof of Theorem 1.19. Left as an exercise for the reader. ■

CHAPTER 1. BASICS 18

1.4 Exercises

Exercise 1.21. Let 𝛽 ∈ ℤ, 𝛽 ≥ 2. Theorem 1.6 shows the modular algorithm for finding the standard
base-𝛽 representation of a non-negative integer 𝑥 . There also exists a greedy algorithm for doing the
same, with the difference that it produces digits starting from the beginning of the word, rather than

the end. The basic idea is that we find the maximal 𝑛 such that 𝛽𝑛 ≤ 𝑥 , then set 𝑥𝑛 ≔ ⌊ 𝑥
𝛽𝑛 ⌋ and fill in

the remaining digits by finding the representation of 𝑥 −𝑥𝑛𝛽𝑛. Prove that this algorithm works and use
it to find the standard base-17 representation of 2024.
Exercise 1.22. Let 𝛽 ∈ ℤ, 𝛽 ≥ 1, 𝒟 = {1, … , 𝛽}. The system (𝛽,𝒟) is called the bijective positional
numeration system with base 𝛽 . Prove that every non-negative integer has a unique representation in
this system (hence the name “bijective”). What do these representations look like when 𝛽 = 1?
Exercise 1.23. Prove Theorem 1.20.

Chapter 2

𝑤-NAF representations of complex
integers

In Chapter 1, we extended the standard binary system by adding the digit −1, creating a system
where a number can have multiple representations, then restricted it to NAF representations, which
once again guaranteed uniqueness while also decreasing the average ratio of non-zero digits in a rep-
resentation. In this chapter, we will show analogous systems for the Gaussian and Eisenstein integers.

Note that the various facts about the systems shown in this chapter are special cases of more general
results known before, but I have formulated them in a simpler way that does not require a lot of abstract
machinery.

2.1 Gaussian integers

We shall start by adding the digit −1 to the Penney system; that is, we use 𝛽 = i − 1, 𝒟 = {0, ±1}.
The natural question is whether every Gaussian integer has a NAF representation in this system. It is
not hard to find that the answer is negative. For example, the number i is odd, so its representation
would have to end in either 1 or −1, but after subtracting either digit and dividing by i − 1, we are left
with another odd number, forcing us to add another non-zero digit.

However, we can add two more digits without violating the useful property that the set of digits
is closed under multiplication: i and −i. As with −1, we will denote −i as i when used as a digit. The
resulting system is the main subject of this project, so we shall give it a name.

Definition 2.1. The extended Penney system is the positional numeration system with 𝛽 = i − 1 and
𝒟 = {0, ±1, ±i}.

Obviously, most Gaussian integers can be represented in multiple ways in this system. However,
they can even have multiple NAF representations, for example [1]i−1 = [i01]i−1 = 1. This suggests
that we could restrict the possible representations even further in order to possibly obtain even better
results in terms of average weight. It turns out that a simple generalization of the NAF condition is
sufficient.

Definition 2.2. Let 𝑤 ∈ ℕ+. A positional representation 𝑥𝑛 ⋯𝑥0 is in 𝑤-non-adjacent form (𝑤-NAF) if
every contiguous subsequence of length at most 𝑤 contains at most one non-zero digit, that is,

𝑊(𝑥𝑘+𝑤−1⋯𝑥𝑘) ≤ 1 for all 𝑘 ∈ ℕ.

19

CHAPTER 2. 𝑤-NAF REPRESENTATIONS OF COMPLEX INTEGERS 20

Note. If all non-zero digits have an absolute value of 1, Definition 2.2 can be equivalently written in a
more compact, but also more obfuscated way:

𝑘+𝑤−1
∑
𝑗=𝑘

|𝑥𝑗 | ≤ 1 for all 𝑘 ∈ ℕ.

Note. Trivially, every representation is 1-NAF and the 2-NAF condition is equivalent to the original
NAF condition.

Lemma 2.3. Let 𝑥 be an odd Gaussian integer. Then there exists exactly one 𝑥0 ∈ {±1, ±i} such that
𝑥 ≡ 𝑥0 (mod 2 + 2i).
Proof. Notice that (2 + 2i) ∣ 4. Let 𝑥 = 𝑎 + 𝑏i, 𝑎, 𝑏 ∈ ℤ. Consider the possible congruence classes of 𝑎, 𝑏
modulo 4, which cannot have the same parity since 𝑥 is odd:

• If 𝑎 ≡ 0 (mod 4) and 𝑏 ≡ 1 (mod 4), then 𝑥 ≡ i (mod 4), so 𝑥 ≡ i (mod 2 + 2i),
• If 𝑎 ≡ 0 (mod 4) and 𝑏 ≡ −1 (mod 4), then 𝑥 ≡ −i (mod 4), so 𝑥 ≡ −i (mod 2 + 2i),
• If 𝑎 ≡ 2 (mod 4) and 𝑏 ≡ 1 (mod 4), then 𝑥 ≡ 2 + i (mod 4), so 𝑥 ≡ −i (mod 2 + 2i),
• If 𝑎 ≡ 2 (mod 4) and 𝑏 ≡ −1 (mod 4), then 𝑥 ≡ 2 − i (mod 4), so 𝑥 ≡ i (mod 2 + 2i),
• If 𝑎 ≡ 1 (mod 4) and 𝑏 ≡ 0 (mod 4), then 𝑥 ≡ 1 (mod 4), so 𝑥 ≡ 1 (mod 2 + 2i),
• If 𝑎 ≡ −1 (mod 4) and 𝑏 ≡ 0 (mod 4), then 𝑥 ≡ −1 (mod 4), so 𝑥 ≡ −1 (mod 2 + 2i),
• If 𝑎 ≡ 1 (mod 4) and 𝑏 ≡ 2 (mod 4), then 𝑥 ≡ 1 + 2i (mod 4), so 𝑥 ≡ −1 (mod 2 + 2i),
• If 𝑎 ≡ −1 (mod 4) and 𝑏 ≡ 2 (mod 4), then 𝑥 ≡ −1 + 2i (mod 4), so 𝑥 ≡ 1 (mod 2 + 2i).

This shows that 𝑥0 exists. It is also unique because none of {±1, ±i} are congruent modulo 2 + 2i. ■

Theorem 2.4. Every 𝑥 ∈ ℤ[i] has exactly one reduced 3-NAF representation 𝑥𝑛 ⋯𝑥0 in the extended
Penney system.

Note. Follows from a general result in [1].

Proof. Once again, we will use a modular algorithm to find the representation. If 𝑥 is even, then the
last digit has to be 0. If 𝑥 is odd, we have a choice between four digits: ±1 and ±i, but in order to
fulfill the 3-NAF constraint, we need the following two digits to be zeros, meaning that 𝑥 − 𝑥0 has to
be divisible by (i − 1)3 = 2 + 2i. Lemma 2.3 ensures that there is precisely one choice. Either way, we
continue by finding the representation of 𝑥−𝑥0

i−1 . It remains to be proven that this procedure terminates.
This can be done using the exact same argument as in the proof of Theorem 1.19, except with different
representations for small numbers:

0 = [𝜖]i−1 ,
1 = [1]i−1 , i = [i]i−1 , −1 = [1]i−1 , −i = [i]i−1 ,

1 + i = [i0]i−1 , −1 + i = [10]i−1 , −1 − i = [i0]i−1 , 1 − i = [10]i−1 ,
2 = [i00]i−1 , 2i = [100]i−1 , −2 = [i00]i−1 , −2i = [100]i−1 ,

2 + i = [100i]i−1 , −1 + 2i = [i001]i−1 , −2 − i = [100i]i−1 , 1 − 2i = [i001]i−1 ,
1 + 2i = [1001]i−1 , −2 + i = [i00i]i−1 , −1 − 2i = [1001]i−1 , 2 − i = [i00i]i−1 .

■

CHAPTER 2. 𝑤-NAF REPRESENTATIONS OF COMPLEX INTEGERS 21

The algorithm for finding 3-NAF representations of Gaussian integers in the extended Penney sys-
tem is implemented in a program in Appendix A.

Example. Let us find the 3-NAF representation of −3 + 11i in the extended Penney system. Because
the number is even, we start by writing a 0 and dividing by i − 1:

−3 + 11i
i − 1 = 7 − 4i.

This number is odd, so we have to find an 𝑥1 ∈ {±1, ±i} such that 𝑥1 ≡ 7 − 4i (mod 2 + 2i). We choose
𝑥1 = −1 because (7 − 4i) − (−1) = 8 − 4i is divisible by 2 + 2i. Now, we could divide 8 − 4i by i − 1 and
continue. However, we know that the next two digits will be zeros, so we might as well write them
immediately and divide by 2 + 2i directly:

8 − 4i
2 + 2i = 1 − 3i.

We see that this is an even number, so we write another 0 and divide by 𝑖 − 1, yielding −2 + i. This
number is odd, so we need to find a digit which, when subtracted, gives a number divisible by 2 + 2i.
Such a digit is −i, giving −2 + 2i. Again, we can write two zeros and directly divide by 2 + 2i, getting i.
This is just a single digit, so we write it down and terminate, getting the result

−3 + 11i = [i00i00010]i−1.

Now that we have proven that the 3-NAF extended Penney system is usable for uniquely (up to
leading zeros) representing Gaussian integers, the next step is to find out how it performs in terms
of the Hamming weight. Like in Lemma 1.12, it can be proven that every possible extended-Penney
representation can be converted into an equivalent 3-NAF representation using a set of substitutions
that never increase the Hamming weight. However, this set consists of a total of 312 substitutions and
requires temporarily switching to a larger set of digits. Therefore, we are going to avoid this method
of proving the optimality of the representations and leave it for the next chapter, which is going to
introduce a transducer for converting any representation to 3-NAF. What we can prove right now,
however, is a result analogous to Theorem 1.14: the asymptotic behavior of the ratio of non-zero digits
to all digits.

Theorem 2.5. Let 𝑎𝑛 be the number of all (not necessarily reduced) 3-NAF extended Penney system
representations of length 𝑛 and 𝑏𝑛 the sum of the Hamming weights of these representations. Then
lim𝑛→∞

𝑏𝑛
𝑛𝑎𝑛 = 1

4 . That is, for an average sufficiently long 3-NAF extended Penney system representation,

about 1
4 of its digits are non-zeros.

Note. This result can be obtained as a special case of a much more general theorem shown in [2]
(Theorem 5.1).

Proof. Let us find an explicit formula for 𝑎𝑛 and 𝑏𝑛. We can think of 3-NAF extended Penney system

representations as consisting of five kinds of “blocks”: 0 , 00i , 001 , 001 and 0i . Note that these
blocks can only be used to construct representations starting with two zeros, so we are actually express-
ing 𝑎𝑛−2 and 𝑏𝑛−2, but this does not matter when 𝑛 → ∞. Analougously as in the proof of Theorem
1.14, we derive

𝑎𝑛 =
∞
∑
𝑘=0

4𝑘(𝑛 − 2𝑘
𝑘),

CHAPTER 2. 𝑤-NAF REPRESENTATIONS OF COMPLEX INTEGERS 22

𝑏𝑛 =
∞
∑
𝑘=0

𝑘4𝑘(𝑛 − 2𝑘
𝑘)

and find a recurrence relation for 𝑎𝑛:

𝑎𝑛 =
∞
∑
𝑘=0

4𝑘(𝑛 − 2𝑘
𝑘)

=
∞
∑
𝑘=0

4𝑘(𝑛 − 2𝑘 − 1
𝑘) +

∞
∑
𝑘=0

4𝑘(𝑛 − 2𝑘 − 1
𝑘 − 1)

=
∞
∑
𝑘=0

4𝑘(𝑛 − 2𝑘 − 1
𝑘) +

∞
∑
𝑘=−1

4𝑘+1(𝑛 − 2𝑘 − 3
𝑘)

=
∞
∑
𝑘=0

4𝑘(𝑛 − 2𝑘 − 1
𝑘) + 4

∞
∑
𝑘=0

4𝑘(𝑛 − 2𝑘 − 3
𝑘)

= 𝑎𝑛−1 + 4𝑎𝑛−3.
Solving this recurrence using its characteristic polynomial

𝜆3 − 𝜆2 − 4 = (𝜆 − 2)(𝜆2 + 𝜆 + 2) = (𝜆 − 2)(𝜆 − 𝜅)(𝜆 − ̄𝜅),

where 𝜅 = −1+√7i
2 , we get

𝑎𝑛 = 𝛼2𝑛 + 𝛽𝜅𝑛 + 𝛾 ̄𝜅𝑛
for some 𝛼, 𝛽, 𝛾 ∈ ℂ. We can verify that 𝛼 ≠ 0 by manually computing the first three terms of the
sequences and solving a set of linear equations. Finding a recurrence for 𝑏𝑛:

𝑏𝑛 =
∞
∑
𝑘=0

𝑘4𝑘(𝑛 − 2𝑘
𝑘)

=
∞
∑
𝑘=0

𝑘4𝑘(𝑛 − 2𝑘 − 1
𝑘) +

∞
∑
𝑘=0

𝑘4𝑘(𝑛 − 2𝑘 − 1
𝑘 − 1)

=
∞
∑
𝑘=0

𝑘4𝑘(𝑛 − 2𝑘 − 1
𝑘) +

∞
∑
𝑘=−1

(𝑘 + 1)4𝑘+1(𝑛 − 2𝑘 − 3
𝑘)

=
∞
∑
𝑘=0

𝑘4𝑘(𝑛 − 2𝑘 − 1
𝑘) + 4

∞
∑
𝑘=0

𝑘4𝑘(𝑛 − 2𝑘 − 3
𝑘) + 4

∞
∑
𝑘=0

4𝑘(𝑛 − 2𝑘 − 3
𝑘)

= 𝑏𝑛−1 + 4𝑏𝑛−3 + 4𝑎𝑛−3
= 𝑏𝑛−1 + 4𝑏𝑛−3 + 4𝛼2𝑛−3 + 4𝛽𝜅𝑛−3 + 4𝛾 ̄𝜅𝑛−3

Homogenous solution:
𝑏hom𝑛 = 𝛼̃2𝑛 + ̃𝛽𝜅𝑛 + ̃𝛾 ̄𝜅𝑛.

Particular solution:
𝑏par𝑛 = 𝜇𝑛2𝑛 + 𝜈𝑛𝜅𝑛 + 𝜔𝑛 ̄𝜅𝑛.

It is evident from the proof of Theorem 1.14 that we only need to find the value of 𝜇, since |𝜅| = √2 < 2.
Therefore, when substituting in the recurrence, we only consider terms with 2𝑛:

𝜇𝑛2𝑛 − 𝜇(𝑛 − 1)2𝑛−1 − 4𝜇(𝑛 − 3)2𝑛−3 = 4𝛼2𝑛−3,

CHAPTER 2. 𝑤-NAF REPRESENTATIONS OF COMPLEX INTEGERS 23

𝜇(𝑛 − 𝑛 − 1
2 − 𝑛 − 3

2) = 𝛼
2 ,

𝜇 = 𝛼
4 ≠ 0.

Substituting into the limit:

lim𝑛→∞
𝑏𝑛
𝑛𝑎𝑛

= lim𝑛→∞
𝛼̃2𝑛 + ̃𝛽𝜅𝑛 + ̃𝛾 ̄𝜅𝑛 + 𝛼

4 𝑛2𝑛 + 𝜈𝑛𝜅𝑛 + 𝜔𝑛 ̄𝜅𝑛
𝛼𝑛2𝑛 + 𝛽𝑛𝜅𝑛 + 𝛾𝑛 ̄𝜅𝑛 = 1

4 .

■

Notice that this is more efficient in terms of the non-zero digits ratio than if we were to represent
Gaussian integers by representing the real and imaginary parts separately using the binary NAF system,
which would yield a ratio of 1

3 as shown in Theorem 1.14.
It can be useful to know howmany representations of a given Hammingweight a given number has.

There exists a straightforward formula for this that can be generalized to other positional numeration
systems, as shown in the following theorem.

Theorem 2.6. A Gaussian integer 𝑥 ∈ ℤ[i] has exactly 𝑅(𝑥, 𝑘) representations with a given Hamming
weight 𝑘 ∈ ℕ0, where 𝑅(𝑥, 𝑘) is given by the following recursive formula:

𝑅(𝑥, 𝑘) =

⎧⎪⎪
⎨⎪⎪
⎩

1, if 𝑥 = 0 and 𝑘 = 0,
0, if 𝑥 = 0 and 𝑘 ≠ 0,
0, if 𝑥 ≠ 0 and 𝑘 = 0,
𝑅(𝑥

i−1 , 𝑘), if 𝑥 ≠ 0, 𝑘 ≠ 0 and (i − 1) ∣ 𝑥 ,
∑𝑑∈{±1,±i} 𝑅(𝑥−𝑑i−1 , 𝑘 − 1), if 𝑥 ≠ 0, 𝑘 ≠ 0 and (i − 1) ∤ 𝑥 .

Proof. The first three cases are trivial. If 𝑥 is divisible by i−1, any of its representations has to end in a
zero, meaning that it is simply a representation of 𝑥

i−1 with a zero appended. Otherwise, a representation

has to end in one of the non-zero digits. Removing this digit 𝑑 would result in a representation of 𝑥−𝑑
i−1 ,

but with one fewer non-zero digit. Since all the possibilities are independent, we take the sum over all
four non-zero digits. ■

2.2 Eisenstein integers

Just like we extended the Penney system to allow for NAF representations of Gaussian integers,
we can extend the system for representing Eisenstein integers with 𝛽 = 𝜔 − 1, 𝒟 = {0, 1, 𝜔 + 1}. By
adding the digits 𝜔, −1, 𝜔̄, 𝜔̄ + 1, we obtain a digit set that is not only closed under multiplication, but
admits a unique 2-NAF representation for every Gaussian integer. The resulting system has many nice
properties as well. In some ways it is better than the extended Penney system, despite only having
2-NAF and not 3-NAF representations for every number. However, these properties are outside the
scope of this project and we are not going to discuss them any further, focusing only on the extended
Penney system for Gaussian integers.

Chapter 3

Counting maximum optimal
representations

We have seen in Theorem 1.13 that with 𝛽 = 2, 𝒟 = {0, ±1}, the 2-NAF representation of a
given number is always optimal. However, it might not be strictly optimal – that is, there might exist
other representations of the same number with equal Hamming weight. For certain applications, it is
important to know the number of such optimal representations. In [3], it is shown that a binary NAF
representation of an integer 𝑥 has at most 𝐹⌊log4 |𝑥 |⌋+3 reduced optimal representations, where (𝐹𝑛)∞𝑛=0
denotes the Fibonacci sequence defined by the recurrence 𝐹0 = 0, 𝐹1 = 1, 𝐹𝑛+2 = 𝐹𝑛 + 𝐹𝑛+1. [4] gives
a similar result, except in terms of the optimal weight rather than the number itself: a binary NAF
representation 𝑥𝑛 ⋯𝑥0 has at most 𝐹𝑊(𝑥𝑛⋯𝑥0)+1 equivalent reduced optimal representations (including
itself). The latter proof makes use of a transducer that converts any (2, {0, ±1})-representation into the
equivalent NAF representation.

In this chapter, we are going to prove a similar statement about 3-NAF extended Penney repre-
sentations of Gaussian integers by constructing an analogous transducer. However, due to the larger
complexity of the transducer, the proof is more complicated and uses a different method based on
solving a non-trivial optimization problem with adjacency matrices. At the start, used a computer pro-
gram (shown in Appendix A) to formulate a hypothesis about what the numbers with the most optimal
representaions look like, then we formally confirmed this hypothesis.

We are going to work with the extended Penney system, so we shall use the symbol 𝛽P ≔ i − 1 for
brevity.

3.1 Transducer

Definition 3.1. A transducer is a function 𝛿 ∶ 𝑄 × 𝒟 → 𝑄 ×𝒟 ∗, where 𝑄 is its set of states and 𝒟 is a
set of digits.

Given a transducer, a sequence 𝑥𝑛 ⋯𝑥0 ∈ 𝒟 ∗ and an initial state 𝑞0 ∈ 𝑄, we can use the transducer
to transform the sequence as follows:

(𝑞1, 𝜂0) ≔ 𝛿(𝑞0, 𝑥0),
(𝑞2, 𝜂1) ≔ 𝛿(𝑞1, 𝑥1),

⋮
(𝑞𝑛+1, 𝜂𝑛) ≔ 𝛿(𝑞𝑛, 𝑥𝑛).

24

CHAPTER 3. COUNTING MAXIMUM OPTIMAL REPRESENTATIONS 25

Re

Im

Figure 3.1: The set 𝑄 of all states of the transducer for converting any extended Penney representation
into the equivalent 3-NAF representation.

Intuitively, we can think of the transducer as a machine that “consumes” the input from the right
one digit at a time and based on the digit and its internal state, it outputs some digits and changes its
internal state. In each step, we obtain a sequence 𝜂𝑘 which forms a part of the output. By concatenating
them, we get the result of the transformation: 𝜂 ≔ 𝜂𝑛 ⋯𝜂0. We can define an extended version of the
transducer, 𝛿∗ ∶ 𝑄 × 𝒟 ∗ → 𝑄 × 𝒟 ∗, which performs all the steps at once: 𝛿∗(𝑞0, 𝑥𝑛 ⋯𝑥0) ≔ (𝑞𝑛+1, 𝜂).

The state of our transducer is going to represent the difference between the numbers represented
by the digits that have been read so far and the digits that have been written so far. The set of possible
states, shown in Figure 3.1, shall be

𝑄 = {0, ±1, ±i, ±1 ± i, ±2, ±2i, ±1 ± 2i, ±2 ± i}.

We define the transducer itself as follows:

𝛿(𝑞, 𝑥) ≔ (𝑞′, 0), if 𝛽P ∣ (𝑥 + 𝑞), 𝑞′ = 𝑥 + 𝑞
𝛽P

,

𝛿(𝑞, 𝑧𝑦𝑥) ≔ (𝑞′, 00𝑟), if 𝛽P ∤ (𝑥 + 𝑞), [𝑧𝑦𝑥]𝛽P + 𝑞 = 𝑞′𝛽3P + 𝑟, 𝑟 ∈ {±1, ±i}.
Note that in the second case, the transducer consumes three digits at once, so it does not strictly

satisfy Definition 3.1, but it can still be used to unambiguously define an extended transducer 𝛿∗. We
just need to verify that the definition is correct in terms of always producing a valid new state and valid
output. The fact that we can always find 𝑞′, 𝑟 in the second case follows immediately from Lemma 2.3.
It remains to show that always 𝑞′ ∈ 𝑄, which can be done by manually checking all finitely many inputs
(which is made easier by the symmetry present).

Now we need to prove that the transducer 𝛿0 actually turns any representation into the equivalent
3-NAF representation, starting with 𝑞0 = 0.
Lemma 3.2. Let 𝑥𝑛 ⋯𝑥0 be a representation in the extended Penney system. Assume that the trans-
ducer 𝛿∗ described above reads all digits of the representation. Then its output 𝑦𝑛 ⋯𝑦0 and the final
state 𝑞𝑛+1 will satisfy

[𝑥𝑛 ⋯𝑥0]𝛽P = 𝑞𝑛+1𝛽𝑛+1P + [𝑦𝑛 ⋯𝑦0]𝛽P .
Proof. We shall prove the statement by induction. Given the empty representation, the transducer
produces an empty representation and stays in the state 𝑞0 = 0, which clearly satisfies the equation.

CHAPTER 3. COUNTING MAXIMUM OPTIMAL REPRESENTATIONS 26

Now assume that the statement is true for representations of length 𝑛. As the induction step, we will
show that if the transducer consumes 𝑛 digits and then performs one more step, the statement will still
hold. Naturally, we are going to distiguish two cases based on the definition of 𝛿 :

• If 𝛽P ∣ (𝑥𝑛+1 + 𝑞𝑛+1), the transducer is going to write 𝑦𝑛+1 = 0 and set its state to 𝑞𝑛+2 = 𝑥𝑛+1+𝑞𝑛+1
𝛽P .

We then have

[𝑥𝑛+1⋯𝑥0]𝛽P = 𝑥𝑛+1𝛽𝑛+1P + [𝑥𝑛 ⋯𝑥0]𝛽P
= 𝑥𝑛+1𝛽𝑛+1P + 𝑞𝑛+1𝛽𝑛+1P + [𝑦𝑛 ⋯𝑦0]𝛽P
= 𝑞𝑛+2𝛽𝑛+2P + 0𝛽𝑛+1P + [𝑦𝑛 ⋯𝑦0]𝛽P
= 𝑞𝑛+2𝛽𝑛+2P [𝑦𝑛+1⋯𝑦0]𝛽P .

• If 𝛽P ∤ (𝑥𝑛+1 + 𝑞𝑛+1), the transducer is going to read two more digits 𝑥𝑛+2 and 𝑥𝑛+3, find 𝑞′ ∈
𝑄, 𝑟 ∈ {±1, ±i} such that [𝑥𝑛+3𝑥𝑛+2𝑥𝑛+1]𝛽P + 𝑞𝑛+1 = 𝑞′𝛽3P + 𝑟 , then output three digits 𝑦𝑛+1 =
𝑟, 𝑦𝑛+2 = 𝑦𝑛+3 = 0 and set its state to 𝑞𝑛+4 = 𝑞′. We then have

[𝑥𝑛+3⋯𝑥0]𝛽P = 𝑥𝑛+3𝛽𝑛+3P + 𝑥𝑛+2𝛽𝑛+2P + 𝑥𝑛+1𝛽𝑛+1P + [𝑥𝑛 ⋯𝑥0]𝛽P
= 𝑥𝑛+3𝛽𝑛+3P + 𝑥𝑛+2𝛽𝑛+2P + 𝑥𝑛+1𝛽𝑛+1P + 𝑞𝑛+1𝛽𝑛+1P + [𝑦𝑛 ⋯𝑦0]𝛽P
= (𝑞′𝛽3P + 𝑟)𝛽𝑛+1P + [𝑦𝑛 ⋯𝑦0]𝛽P
= 𝑞𝑛+4𝛽𝑛+4P + [𝑦𝑛+3⋯𝑦0]𝛽P .

■

Note. It is possible that the transducer will fail to read the whole representation, being left with one
or two digits that fall into the second case, which requires three digits. In this case, we can simply
prepend up to two zeros to finish the transformation.

Theorem 3.3. Let 𝑥𝑛 ⋯𝑥0 be a representation in the extended Penney system. Then it is possible to
prepend finitely many zeros to the representation so that the transducer 𝛿∗ described above reads all
digits, ends up with a final state 𝑞𝑙+1 = 0 and outputs the equivalent 3-NAF representation.

Proof. By Lemma 3.2 and the note below it, we can prepend 0 to 2 zeros so that the transducer reads all
digits, ends up in a state 𝑞𝑚+1 and outputs a representation 𝑦𝑚 ⋯𝑦0 satisfying

[𝑥𝑚 ⋯𝑥0]𝛽P = 𝑞𝑚+1𝛽𝑚+1P + [𝑦𝑚 ⋯𝑦0]𝛽P .

Notice that when the input to the transducer consists entirely of zeros, it is identical to the algorithm
described in Theorem 2.4, finding the 3-NAF representation of 𝑞. Therefore, after consuming the orig-
inal input, we can input a few more zeros into it to get it into the zero state, causing it to output the
3-NAF representation of 𝑞𝑚+1 as 𝑦𝑙 ⋯𝑦𝑚+1. We can substitute this into the above equation:

[𝑥𝑚 ⋯𝑥0]𝛽P = [𝑦𝑙 ⋯𝑦𝑚+1]𝛽P𝛽𝑚+1P + [𝑦𝑚 ⋯𝑦0]𝛽P = [𝑦𝑙 ⋯𝑦0]𝛽P .

Therefore, 𝑦𝑙 ⋯𝑦0 is an equivalent representation. Since the transducer always outputs non-zero digits
with two zeros before them, this representation is also 3-NAF. ■

CHAPTER 3. COUNTING MAXIMUM OPTIMAL REPRESENTATIONS 27

i

1

i − 1

0 ∣ 0

00i ∣ 001

Figure 3.2: Example of edges and their labels in the graph 𝐺 representing the transducer converting
extended Penney representations into 3-NAF

3.2 Transducer as an oriented graph

We can naturally represent the transducer 𝛿 as an oriented graph 𝐺, where vertices represent the
possible states 𝑄 and edges represent transitions. An edge corresponding to reading a digit 𝑥 and
outputting a zero will be labelled 𝑥 ∣ 0, one that reads three digits 𝑧𝑦𝑥 and outputs three digits 00𝑟 will
be labelled 𝑧𝑦𝑥 ∣ 00𝑟 . Since the graph has many edges, a picture of it would be unreadable, but for
illustration, Figure 3.2 shows three nodes and two edges from this graph.

Definition 3.4. Let 𝐺 be a graph with vertices 𝑄 and edges 𝐸. An oriented walk in 𝐺 of length 𝑙 is a
sequence (𝑞0, 𝑒1, 𝑞1, 𝑒2, … , 𝑒𝑙 , 𝑞𝑙), where 𝑞0⋯𝑞𝑙 ∈ 𝑄 and 𝑒𝑘 = (𝑞𝑘−1, 𝑞𝑘) ∈ 𝐸 for all 𝑘 ∈ {1, … , 𝑙}.

Naturally, a transformation using the extended transducer 𝛿∗ corresponds to an oriented walk in
the graph 𝐺 of the original transducer, where 𝑞0⋯𝑞𝑙 are the visited states and 𝑒1⋯ 𝑒𝑙 are the performed
transformations. Notice that since we are reading and writing the representations from right to left,
this walk will be written in the “reverse” order in contrast with its input and output.

We are now ready to use the graph for analyzing the optimality of representations. For this, we
need to introduce the notion of the weight of an edge, which shall indicate how many non-zero digits
the transduces removes when performing the corresponding transition.

Definition 3.5. Let 𝑒 be an edge of our graph 𝐺 with label 𝑥𝑚 ⋯𝑥0 ∣ 𝑦𝑚 ⋯𝑦0. Then we define its weight
as 𝑊(𝑒) ≔ 𝑊(𝑥𝑚 ⋯𝑥0) − 𝑊 (𝑦𝑚 ⋯𝑦0).
Definition 3.6. Let 𝑃 = (𝑞0, 𝑒1, … , 𝑒𝑙 , 𝑞𝑙) be an oriented walk in 𝐺. Then itsweight is defined as𝑊(𝑃) ≔
∑𝑙

𝑘=1𝑊(𝑒𝑘).
Note that some edges in 𝐺 have a negative weight, so we cannot straight up say that no edge

increases the Hamming weight and therefore the 3-NAF representation is optimal. However, it is the
case that if we make a complete walk starting and ending in the state 0, then the sum of all edges on
the walk is non-negative, as can be easily proven:

Lemma 3.7. Let 𝑃 be a walk in our graph 𝐺 starting and ending in 0. Then 𝑊(𝑃) ≥ 0.
Proof. We can use the Bellman-Ford algorithm [14] to find the minimum-weight walk from 0 to itself.
The algorithm indicates that the shortest walk has length 0. ■

Theorem 3.8. Every 3-NAF representation 𝑥𝑛 ⋯𝑥0 in the extended Penney system is optimal.

Note. This result is proven much more generally with completely different machinery in [1].

CHAPTER 3. COUNTING MAXIMUM OPTIMAL REPRESENTATIONS 28

Proof. Let 𝑦𝑚 ⋯𝑦0 be another representation of the same number and (𝑞0, 𝑒1⋯ 𝑒𝑙 , 𝑞𝑙) the walk taken in
𝐺 when transforming 𝑦𝑚 ⋯𝑦0 into its 3-NAF representation using 𝛿∗. From Theorem 2.4, we know that
the output is equal up to leading zeros to 𝑥𝑛 ⋯𝑥0. Using this and Lemma 3.7, we have

𝑊(𝑥𝑛 ⋯𝑥0) − 𝑊 (𝑦𝑚 ⋯𝑦0) =
𝑙

∑
𝑘=1

𝑊(𝑒𝑘) ≥ 0.

Therefore, an arbitrary equivalent representation is at least as long as the 3-NAF representation, which
was to be proven. ■

Lemma 3.7 and the proof of Theorem 3.8 motivate the following definition and trivial lemma:

Definition 3.9. A walk 𝑃 in 𝐺 is optimal if 𝑊(𝑃) = 0.
Lemma 3.10. An extended Penney representation 𝑥𝑛 ⋯𝑥0 is optimal if and only if the walk in 𝐺 pro-
duced by using the transducer 𝛿∗ on 𝑥𝑛 ⋯𝑥0 is optimal.

3.3 Simplifying the graph

Although the graph 𝐺 has many edges, we can exploit the symmetries present in the problem in
order to simplify it.

Lemma 3.11. Let 𝑒 = (𝑞, 𝑞′) ∈ 𝐸 be an edge in the graph 𝐺 of the transducer 𝛿 described above and
𝑑 ∈ {±1, ±i}. Then

• if the label of 𝑒 is 𝑥 ∣ 0, then 𝐺 also contains the edges 𝑑𝑒 ∶ 𝑑𝑞 (𝑑⋅𝑥)∣0−−−−−→ 𝑑𝑞′ and 𝑒 ∶ 𝑞 𝑥∣0−−→ i𝑞′,

• if the label of 𝑒 is 𝑧𝑦𝑥 ∣ 00𝑟 , then 𝐺 also contains the edges 𝑑𝑒 ∶ 𝑑𝑞 (𝑑⋅𝑧)(𝑑⋅𝑦)(𝑑⋅𝑥)∣00(𝑑⋅𝑟)−−−−−−−−−−−−−−−−−→ 𝑑𝑞′ and
𝑒 ∶ 𝑞 (−𝑧)(i⋅𝑦)𝑥∣00𝑟−−−−−−−−−−−→ −i𝑞′.

Proof. Notice that 𝛽P = i𝛽P, 𝛽2P = −𝛽2P and 𝛽3P = −i𝛽3P.
• If 𝑒 is labelled 𝑥 ∣ 0, it means that 𝑥+𝑞 = 𝑞′𝛽P. Then also 𝑑𝑥+𝑑𝑞 = 𝑑𝑞′𝛽P and 𝑥+𝑞 = 𝑞′𝛽P = i𝑞′𝛽P.
• If 𝑒 is labelled 𝑧𝑦𝑥 ∣ 00𝑟 , it means that

𝑧𝛽2P + 𝑦𝛽P + 𝑥 + 𝑞 = 𝑞′𝛽3P + 𝑟 .

Then also
𝑑𝑧𝛽2P + 𝑑𝑦𝛽P + 𝑑𝑥 + 𝑑𝑞 = 𝑑𝑞′𝛽3P + 𝑑𝑟

and

𝑧𝛽2P + 𝑦𝛽P + 𝑥 + 𝑞 = 𝑞′𝛽3P + 𝑟
−𝑧𝛽2P + i𝑦𝛽P + 𝑥 + 𝑞 = −i𝑞′𝛽3P + 𝑟 .

■

CHAPTER 3. COUNTING MAXIMUM OPTIMAL REPRESENTATIONS 29

The symmetry demonstrated in Lemma 3.11 allows us to introduce an equivalence relation ∼ on
the set of states 𝑄 where 𝑞1 ∼ 𝑞2 if 𝑞1 = 𝑑𝑞2 or 𝑞1 = 𝑑𝑞2 for some 𝑑 ∈ {±1, ±i}. We can then group the
states into equivalence groups:

[0] = {0},
[1] = {±1, ±i},

[i + 1] = {±1 ± i},
[2] = {±2, ±2i},

[i + 2] = {±2 ± i, ±1 ± 2i}.

Lemma 3.12. Let 𝑃 be a walk in our graph 𝐺 starting in 𝑞0 and ending in 𝑞𝑙 . Let 𝑞′0 ∈ 𝑄, 𝑞′0 ∼ 𝑞0.
Then there exists a walk 𝑃 ′ of the same length and weight as 𝑃 which starts in 𝑞′0 and ends in some
𝑞′𝑙 ∈ 𝑄, 𝑞′𝑙 ∼ 𝑞𝑙 .
Proof. By definition of ∼, we can transform 𝑞0 into 𝑞′0 by multiplication with a number from {±1, ±i}
and possibly complex conjugation. By Lemma 3.11, there is an edge from 𝑞′0 to 𝑞′1, where 𝑞′1 ∼ 𝑞1. We
can repeat this argument for all edges on 𝑃 . It is also easy to check that the equivalent edges have the
same weights. ■

Notice also that if a representation is optimal, then converting it to 3-NAF using the transducer
does not increase its Hamming weight, therefore the weight of the corresponding walk in 𝐺 is zero.
Such a walk shall be called an optimal walk.

Lemma 3.13. Let 𝑒 be an edge from 𝑞 to 𝑞′ that is contained in some optimal walk 𝑃 . Then 𝑒 has the
minimum weight out of all edges from 𝑞 to 𝑞′.
Proof. Assume for the sake of contradiction that there exists an edge 𝑒′ from 𝑞 to 𝑞′ with𝑊(𝑒′) < 𝑊 (𝑒).
Then we could replace 𝑒 with 𝑒′ in 𝑃 and obtain a walk from 0 to 0 with a negative weight. However,
according to Lemma 3.7, this is impossible. ■

These lemmas allow us to construct a much simpler graph Γ that can still be used to analyze the
optimality of representations. Its vertices will be the equivalence classes of 𝑄. By Lemma 3.11, we can
group edges in 𝐺 that differ only in symmetry into one edge in Γ. By Lemma 3.12, the weights of edges
and walks are still going to be unambiguously defined, so we can label the edges with the common
weight of all corresponding original edges. Lemma 3.13 also allows us to discard edges that cannot be
used in an optimal walk. The result is shown in Figure 3.3.

If we use the Bellman-Ford algorithm on this new graph to calculate the minimum-weight walk
between each pair of vertices, we will notice that some edges are not the minimum-weight walk be-
tween their start and end. Such edges cannot lie on any optimal walk, because if they did, we could
replace them with the shorter walk, similarly to the proof of Lemma 3.13. Additionally, the vertices 2
and i + 2 have the property that the minimum-weight walk from 0 to either of them and then back to
0 has a positive weight. Therefore, no optimal walk can go through these vertices. If we remove the
problematic vertices and edges, we get the graph Γ̃ depicted in Figure 3.4, which has only 3 vertices and
7 edges.

However, by collapsing the vertices of 𝐺 into equivalence classes, we have lost information about
the specific outputs of the edges, since they are not identical for edges from a given equivelence class
to a given equivalence class. We are going to need this information, so we shall introduce yet another
graph 𝐺̃, a subgraph of 𝐺 consisting only of the edges that are represented in Γ̃. This graph, shown in
Figure 3.5, is still quite small, with 9 vertices and 61 edges.

CHAPTER 3. COUNTING MAXIMUM OPTIMAL REPRESENTATIONS 30

[0] [1] [2]

[i + 1] [i + 2]

+1 0

+1

−1

00

0

0
0

+2 +1−1

+2

0

0

+2

0

0

Figure 3.3: The graph Γ.

[0] [1]

[i + 1]

+1

+1

−1

00

0 0

Figure 3.4: The graph Γ̃, a subgraph of Γ limited to vertices and edges that can appear in an optimal
walk, with weights of its edges.

CHAPTER 3. COUNTING MAXIMUM OPTIMAL REPRESENTATIONS 31

0 1

i

−1

−i

1+i−1+i

−1−i 1−i

Figure 3.5: The graph 𝐺̃, a subgraph of 𝐺 limited to edges that can appear in an optimal walk. The colors
of edges correspond to their output: gray ↦ 0, red ↦ 001, green ↦ 00i, blue ↦ 001, yellow ↦ 00i.

Lemma 3.14. All walks in Γ̃, as well as 𝐺̃, are optimal.

Proof. Consider first Γ̃. The only edges that have a non-zero weight are the ones between [0] and the
other two vertices, with those from [0] having +1 and the one to [0] having −1. Any walk that starts
and ends in [0] uses an equal number of edges to and from [0], so the sum of weights is 0. Since the
edges in 𝐺̃ have the same weights as the corresponding edges in Γ̃, this argument also applies to 𝐺̃. ■

Theorem 3.15. Let 𝑥 ∈ 𝑍[i]. Then the number of optimal reduced representations of 𝑥 is equal to the
number of walks in 𝐺̃ whose output is the 3-NAF representation of 𝑥 .
Proof. A direct consequence of Lemma 3.10, Lemma 3.14 and the fact that 𝐺̃ is a subgraph of 𝐺 con-
taining all optimal walks. ■

3.4 Converting to a matrix problem

In Theorem 3.15, we have proven that the graph 𝐺̃ is a good tool for counting optimal extended
Penney representations. We still need a way to count all the possible walks in 𝐺̃. The standard graph-
theoretic way to count walks is using adjacency matrices. However, we do not actually want to count
all walks, just the ones with a specific output. We can achieve this by defining a separate adjecency
matrix for each subgraph consisting only of edges with the same output.

First, we need to put the vertices in a specific order, represented by a tuple of the vertex labels:

𝑉 ≔ (0, 1, i, −1, −i, 1 + i, −1 + i, −1 − i, 1 − i).
We also assign each possible output of an edge to a single digit in the natural way:

𝑂0 ≔ 0, 𝑂𝑑 ≔ 00𝑑, 𝑑 ∈ {±1, ±i}.

CHAPTER 3. COUNTING MAXIMUM OPTIMAL REPRESENTATIONS 32

Then, for each 𝑑 ∈ {0, ±1, ±i}, we define the adjacency matrix 𝐴𝑑 ∈ ℕ9×90 like so:

(𝐴𝑑)𝑖,𝑗 ≔ the number of edges in 𝐺̃ from 𝑉𝑖 to 𝑉𝑗 whose output is 𝑂𝑑 .

The matrices 𝐴0 and 𝐴1 look like this:

𝐴0 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 𝐴1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
2 0 1 1 0 0 1 0 0
2 0 0 1 1 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The remaining three matrices 𝐴i, 𝐴−1, 𝐴−i can be expressed in terms of 𝐴1 using the symmetries
described in Lemma 3.11. To be specific, we define matrices 𝑅, 𝐶 ∈ ℕ9×90 as follows:

𝑅 ≔

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 𝐶 ≔

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

These matrices have the following properties, which can be verified by direct computation:

𝐶 = 𝐶T, 𝑅T = 𝑅−1, 𝐶 = 𝐶−1, 𝑅𝐶 = 𝐶𝑅T,

Due to these properties, the matrices form a group with 8 elements:

𝒫 ≔ ⟨𝑅, 𝐶⟩ = {𝐼 , 𝑅, 𝑅2, 𝑅3, 𝐶, 𝐶𝑅, 𝐶𝑅2, 𝐶𝑅3}.

The properties in the following lemma establish relationships between the adjacency matrices:

Lemma 3.16.

𝐴i⋅𝑑 = 𝑅−1𝐴𝑑𝑅 for all 𝑑 ∈ {0, ±1, ±i},
𝐴𝑑 = 𝑅𝐶𝐴𝑑𝐶 for all 𝑑 ∈ {±1, ±i},
𝐴0 = 𝐶𝑅𝐴0𝐶 .

Proof. The relationships follow from Lemma 3.11 and the way the graph and matrices are constructed.
■

Lemma 3.17. Let 𝑑 ∈ {±1, ±i} and 𝑃 ∈ 𝒫 . Then there exist ℎ ∈ {±1, ±i} and 𝑆, 𝑇 ∈ 𝒫 such that
𝑃𝐴𝑑 = 𝐴ℎ𝑆 and 𝑃𝐴0 = 𝐴0𝑇 .

CHAPTER 3. COUNTING MAXIMUM OPTIMAL REPRESENTATIONS 33

Proof. If we express 𝑑 ≕ i𝑛, 𝑛 ∈ {0, 1, 2, 3}, then by Lemma 3.16, 𝐴𝑑 = 𝑅−𝑛𝐴1𝑅𝑛.
• If 𝑃 = 𝑅𝑝 , 𝑝 ∈ {0, 1, 2, 3}, we choose an 𝑚 ∈ {0, 1, 2, 3} such that 𝑚 ≡ 𝑛 − 𝑝 (mod 4) and
ℎ ≔ i𝑚, 𝑆 ≔ 𝑅𝑝 , 𝑇 ≔ 𝑅𝑝 . Then

𝑃𝐴𝑑 = 𝑅𝑝𝑅−𝑛𝐴1𝑅𝑛 = 𝑅−𝑚𝐴1𝑅𝑚𝑅𝑝 = 𝐴ℎ𝑆,

𝑃𝐴0 = 𝑅𝑝𝑅−𝑝𝐴0𝑅𝑝 = 𝐴0𝑇 .

• If 𝑃 = 𝐶𝑅𝑝 , 𝑝 ∈ {0, 1, 2, 3}, we choose an 𝑚 ∈ {0, 1, 2, 3} such that 𝑛 − 𝑝 − 𝑚 ≡ 1 (mod 4) and
ℎ ≔ i−𝑚, 𝑆 ≔ 𝐶𝑅𝑝+1, 𝑇 ≔ 𝐶𝑅𝑝−1. Then, using all the formulas in Lemma 3.16,

𝑃𝐴𝑑 = 𝐶𝑅𝑝𝑅−𝑛𝐴1𝑅𝑛 = 𝐶𝑅𝑝𝑅−𝑛𝑅𝑚𝐴ℎ𝑅−𝑚𝑅𝑛 = 𝑅𝑛−𝑝−𝑚𝐶𝐴ℎ𝐶𝐶𝑅𝑛−𝑚 = 𝐴ℎ𝑆,

𝑃𝐴0 = 𝐶𝑅𝑝𝑅1−𝑝𝐴0𝐶𝐶𝑅𝑝−1 = 𝐴0𝑇 .

■

Lemma 3.18. Let 𝑑1⋯𝑑𝑙 be a sequence of digits. Then the number of walks (𝑞0, 𝑒1, … , 𝑒𝑙 , 𝑞𝑙) in 𝐺̃ starting
at 𝑉𝑖 and ending at 𝑉𝑗 such that the output label of each 𝑒𝑘 is 𝑂𝑑𝑘 is (𝐴𝑑1 ⋯𝐴𝑑𝑙)𝑖,𝑗 .

Note. This is a generalization of a well-known result from graph theory.

Proof. We shall prove the statement by induction. The case 𝑙 = 1 follows directly from the definition
of the adjacency matrices. Assume that the statement is true for 𝑙 and let 𝑉𝑖, 𝑉𝑗 be some vertices. Then
for each vertex 𝑉𝑘 , there are (𝐴𝑑1 ⋯𝐴𝑑𝑙)𝑖,𝑘 walks from 𝑉𝑖 to 𝑉𝑘 with 𝑙 edges and (𝐴𝑑𝑙+1)𝑘,𝑗 edges from 𝑉𝑘
to 𝑉𝑗 . Each walk from 𝑉𝑖 to 𝑉𝑗 with 𝑙 + 1 consists of one said walk and one said edge, where 𝑉𝑘 can be
arbitrary. Therefore, the total number of such walks is

9
∑
𝑘=1

(𝐴𝑑1 ⋯𝐴𝑑𝑙)𝑖,𝑘(𝐴𝑑𝑙+1)𝑘,𝑗 = (𝐴𝑑1 ⋯𝐴𝑑𝑙+1)𝑖,𝑗 .

■

Theorem3.19. Let 𝑂𝑑1 ⋯𝑂𝑑𝑛 be the 3-NAF extended Penney representation of 𝑥 ∈ ℤ[i]. Then the num-
ber of optimal reduced extended Penney representations of 𝑥 is equal to (𝐴𝑑1 ⋯𝐴𝑑𝑛)1,1 = 𝑒𝐴𝑑1 ⋯𝐴𝑑𝑛 𝑒T,
where 𝑒 = 𝐼1,⋅ is the first row unit vector.

Proof. Follows directly from Theorem 3.15 and Lemma 3.18. ■

At last, we have converted our problem to a matrix problem, making it easier to reason about. Our
ultimate question is: Given a number 𝑁 ∈ ℕ, which 3-NAF representation with Hamming weight 𝑁
has the most equivalent representations? And how many such 3-NAF representations exist? We can
formulate the first question using matrices as follows:

𝑀(𝑁) ≔ max {𝑒𝐴𝑑1 ⋯𝐴𝑑𝑛 𝑒T | 𝑑𝑘 ∈ {0, ±1, ±i},
𝑛
∑
𝑘=1

|𝑑𝑘 | = 𝑁} = ?

CHAPTER 3. COUNTING MAXIMUM OPTIMAL REPRESENTATIONS 34

3.5 Solving the matrix problem

Definition 3.20. Let 𝑢, 𝑣 ∈ ℤ9 be row vectors. We define the relation ≤ as

𝑢 ≤ 𝑣 ⟺ 𝑢𝑖 ≤ 𝑣𝑖 for all 𝑖 ∈ {1, … , 9}.
Definition 3.21. Let 𝑢, 𝑣 ∈ ℤ9 be row vectors. We define the relation ⪯ as

𝑢 ⪯ 𝑣 ⟺ 𝑢𝑃 ≤ 𝑣 for some 𝑃 ∈ 𝒫 .

We say that 𝑢 is majorized by 𝑣 . If also 𝑣 ⪯ 𝑢, we denote 𝑢 ∼ 𝑣 .
Definition 3.22. Let 𝑢, 𝑣 ∈ ℤ9 be row vectors. We define the relation ≺ as

𝑢 ≺ 𝑣 ⟺ 𝑢 ⪯ 𝑣 and 𝑢1 < 𝑣1.
We say that 𝑢 is strictly majorized by 𝑣 . If also 𝑣 ⪯ 𝑢, we denote 𝑢 ∼ 𝑣 .
Lemma 3.23. ∼ is an equivalence relation on ℤ9 and ⪯ is a partial ordering on ℤ9/ ∼.
Proof. We will show that ⪯ is transitive; all other properties trivially follow from the definitions. Let
𝑢, 𝑣 , 𝑤 be vectors such that 𝑢 ⪯ 𝑣 and 𝑣 ⪯ 𝑤 . Then there exist matrices 𝑃, 𝑄 ∈ 𝒫 such that 𝑢𝑃 ≤ 𝑣 and
𝑣𝑄 ≤ 𝑤 . Then also 𝑢𝑃𝑄 ≤ 𝑤 , with 𝑃𝑄 ∈ 𝒫 since 𝒫 is closed under multiplication. ■

Lemma3.24. Let 𝑑1⋯𝑑𝑙 , 𝑓1⋯𝑓𝑚 ∈ {0, ±1, ±i}∗ bewords such that∑𝑙
𝑘=1 |𝑑𝑘 | = ∑𝑚

𝑘=1 |𝑓𝑘 | and 𝑒𝐴𝑑1 ⋯𝐴𝑑𝑙 ≺𝑒𝐴𝑓1 ⋯𝐴𝑓𝑚 . Then for any 𝑑𝑙+1⋯𝑑𝑛 ∈ {0, ±1, ±i} we have

𝑒𝐴𝑑1 ⋯𝐴𝑑𝑛 𝑒T < 𝑀(𝑁), 𝑁 ≔
𝑛
∑
𝑘=1

|𝑑𝑘 |.

Proof. Let 𝑢 ≔ 𝑒𝐴𝑑1 ⋯𝐴𝑑𝑙 , 𝑣 ≔ 𝑒𝐴𝑓1 ⋯𝐴𝑓𝑚 and 𝑤 ≔ 𝐴𝑑𝑙+1 ⋯𝐴𝑑𝑛 𝑒T. Since (𝐴𝑑)1,1 = 1 for all 𝑑 , the first
component of all the vectors is positive: 𝑢1 > 0, 𝑣1 > 0, 𝑤1 > 0. Let 𝑃 ∈ 𝒫 be a matrix such that
𝑢𝑃 ≤ 𝑣 and (𝑢𝑃)1 < 𝑣1. Then

𝑒𝐴𝑑1 ⋯𝐴𝑑𝑛 𝑒T = 𝑢𝑤 = 𝑢𝑃𝑃−1𝑤 < 𝑣𝑃−1𝑤 .

Now it remains to show that 𝑣𝑃−1𝑤 ≤ 𝑀(𝑁). By repeated application of Lemma 3.17, there exist
ℎ𝑙+1⋯ℎ𝑛 ∈ {±1, ±i}, 𝑆 ∈ 𝒫 such that 𝑃−1𝑤 = 𝐴ℎ𝑙+1 ⋯𝐴ℎ𝑛𝑆𝑒T, with each |ℎ𝑘 | = |𝑑𝑘 |. Also, 𝑆𝑒T = 𝑒T
because all matrices in 𝒫 have 𝑒T as the first column. Therefore, by definition of 𝑀(𝑁),

𝑣𝑃−1𝑤 = 𝑒𝐴𝑓1 ⋯𝐴𝑓𝑚𝐴ℎ𝑙+1 ⋯𝐴ℎ𝑛 𝑒T ≤ 𝑀(𝑁).
■

Lemma 3.25. Let 𝑑1⋯𝑑𝑛 be digits such that 𝑁 ≔ ∑𝑛
𝑘=1 |𝑑𝑘 | ∈ {2, 3, 4}. Let 𝑢 ≔ 𝑒𝐴𝑑1 ⋯𝐴𝑑𝑛 . Denote

𝐵2 ≔ 𝐴1𝐴−1, 𝑣2 ≔ 𝑒𝐵2 = (3, 1, 1, 1, 0, 1, 0, 0, 0)
𝐵3 ≔ 𝐴1𝐴−1𝐴−i, 𝑣3 ≔ 𝑒𝐵3 = (8, 1, 3, 1, 3, 1, 1, 0, 0)
𝐵4 ≔ 𝐴1𝐴−1𝐴−i𝐴−i, 𝑣4 ≔ 𝑒𝐵4 = (17, 1, 5, 3, 8, 1, 3, 0, 0)

Then either 𝑢 ≺ 𝑣𝑁 or the following three statements hold:

CHAPTER 3. COUNTING MAXIMUM OPTIMAL REPRESENTATIONS 35

• 𝑢 ∼ 𝑣𝑁 ,

• 𝑛 = 𝑁 ,

• 𝑆T𝐵𝑁 𝑃 = 𝐴𝑑1 ⋯𝐴𝑑𝑛 for some 𝑃, 𝑆 ∈ 𝒫 .

Proof. Notice that 𝐵20 = 𝑒T𝑒, so 𝑤𝐵20 ≤ 𝑤𝐵0 for any vector 𝑤 , and also 𝑒𝐴0 = 𝑒. Therefore, we only need
to check vectors 𝑢 that do not contain 𝐵20 or start with 𝐴0. In other words,

𝑢 = 𝑒𝐴𝑓1𝐴
𝑙10𝐴𝑓2 ⋯𝐴𝑓𝑁𝐴

𝑙𝑁0 , 𝑓𝑘 ∈ {±1, ±i}, 𝑙𝑘 ∈ {0, 1}.

There are only finitely many such vectors for 𝑁 ∈ {2, 3, 4}, so we can verify the theorem manually. ■

Definition 3.26. We define the recurrent sequence of integers

𝑟−1 ≔ 3, 𝑟0 ≔ 8, 𝑟1 ≔ 17, 𝑟𝑁+3 ≔ 𝑟𝑁+2 + 2𝑟𝑁+1 + 2𝑟𝑁
and the recurrent sequence of vectors

𝑡0 ≔ 𝑒𝐴1𝐴−1𝐴−i𝐴−i𝑅3 = (17, 5, 3, 8, 1, 3, 0, 0, 1),
𝑡𝑁+1 ≔ 𝑡𝑁𝐴1𝑅2.

Note. Obviously, 𝑟𝑁 is a strictly increasing sequence.

Lemma 3.27. For each 𝑁 ∈ ℕ+,

𝑡𝑁 = (𝑟𝑁+1, 𝑟𝑁−2 + 𝑟𝑁−1, 𝑟𝑁−1, 𝑟𝑁 , 𝑟𝑁−2, 𝑟𝑁−1, 0, 0, 𝑟𝑁−2).

Proof. Straightforward proof by induction. ■

Lemma 3.28. Let 𝑁 , 𝑙 ∈ ℕ+, 𝑑 ∈ {±1, ±i}. Then
1. 𝑡𝑁𝐴1 ∼ 𝑡𝑁+1,

2. 𝑡𝑁𝐴−1 ≺ 𝑡𝑁+1 ∧ 𝑡𝑁𝐴i ≺ 𝑡𝑁+1,

3. 𝑡𝑁𝐴−i𝐴𝑑 ≺ 𝑡𝑁+2,

4. 𝑡𝑁𝐴𝑙0𝐴𝑑 ≺ 𝑡𝑁+1.

Proof.

1. 𝑡𝑁𝐴1 ∼ 𝑡𝑁𝐴1𝑅2 = 𝑡𝑁+1.

2. By expressing each component in terms of the sequence 𝑟𝑁 (using Lemma 3.27), we obtain
𝑡𝑁𝐴−1𝐶 = 𝑡𝑁𝐴𝑖𝑅𝐶 ≤ 𝑡𝑁+1, with the inequality being strict in the first component.

3. In a similar way, we can verify 𝑡𝑁𝐴−i𝐴1𝐶𝑅2 ≤ 𝑡𝑁𝐴−i𝐴−i𝑅3 and 𝑡𝑁𝐴−i𝐴i𝑅 ≤ 𝑡𝑁𝐴−i𝐴−1𝐶 . There-
fore, we just need to show that 𝑡𝑁𝐴−i𝐴−i𝑅3 ≤ 𝑡𝑁+2 and 𝑡𝑁𝐴−i𝐴−1𝐶 ≤ 𝑡𝑁+2. We shall show this
by induction. For 𝑁 ∈ {1, 2, 3}, the inequalities can be verified manually. Now assume that either
of the inequalities is true for 𝑁 , 𝑁 + 1 and 𝑁 + 2. By taking these three inequalities, multiplying
the first two by 2 and adding them together with the third one, we get the inequality for 𝑁 + 3,
which completes the induction step.

CHAPTER 3. COUNTING MAXIMUM OPTIMAL REPRESENTATIONS 36

4. If 𝑙 ≥ 2, then 𝑡𝑁𝐴𝑙0𝐴𝑑 = 𝑟𝑁+1𝑒 ≤ 𝑡𝑁+2 (due to the fact that 𝐵20 = 𝑒T𝑒). If 𝑙 = 1, then we can
again express each component in terms of the sequence 𝑟𝑁 and verify 𝑡𝑛𝐴0𝐴𝑑 ≺ 𝑡𝑁+1 for each 𝑑
individually.

■

Lemma 3.29. For each 𝑁 ∈ ℕ+, 𝑀(𝑁 + 4) = 𝑡𝑁 𝑒T = 𝑟𝑁+1.

Proof. From Lemma 3.24 and Lemma 3.25, it follows that we only need to consider products of the
form 𝑡0𝐴𝑑1𝐴𝑑2 ⋯𝐴𝑑𝑛 𝑒T ≕ 𝑡0Π𝑒T, since swapping out 𝑡0 for anything else with the same weight would
not increase the result. We consider ∑𝑛

𝑘=1 |𝑑𝑘 | = 𝑁 because 𝑡0 already contains 4 non-zero digits. By
Lemma 3.16, we can rewrite Π as a product of matrices from the set 𝐴0, 𝐴1, 𝑅. Denote

ℬ ≔ {𝐵1⋯𝐵𝑚 | 𝑚 ∈ ℕ, 𝐵𝑘 ∈ {𝐴0, 𝐴1, 𝑅}},
ℬ0 ≔ {𝐵1⋯𝐵𝑚 | 𝑚 ∈ ℕ, 𝐵𝑘 ∈ {𝐴0, 𝑅}}.

Let 𝑙 be the maximum index such that Π = (𝐴1𝑅)𝑙𝐵, 𝐵 ∈ ℬ. That is, 𝑡0Π = 𝑡𝑙𝐵. Clearly, 𝐵 contains
exactly 𝑁 − 𝑙 𝐴1 matrices. If 𝑙 = 𝑁 , then 𝐵 ∈ ℬ0, therefore 𝑡0Π𝑒T = 𝑡𝑁𝐵𝑒T = 𝑡𝑁 𝑒T = 𝑟𝑁+1 (by Lemma
3.27). This shows a lower bound 𝑀(𝑁 + 4) ≥ 𝑟𝑁+1. It remains to show that if 𝑙 < 𝑁 , then this bound
is not exceeded, that is, 𝑡0Π𝑒T < 𝑟𝑁+1. Due to how we chose 𝑙, 𝐵 cannot be of the form 𝐴1𝐵̃, 𝐵̃ ∈ ℬ,
because then we could have chosen a higher 𝑙. We shall consider several different cases, one of which
has to happen:

𝐵 = 𝑅𝑗𝐴1𝐵̃, 𝑗 ∈ {2, 3}, 𝐵̃ ∈ ℬ
Then 𝑡𝑙𝑅𝑗𝐴1 ∼ 𝑡𝑙𝐴i−𝑗 ≺ 𝑡𝑙+1 (by Lemma 3.16 and Lemma 3.28). Therefore, the maximum cannot
be reached by Lemma 3.24.

𝐵 = 𝑅𝐴1𝑅𝑗𝐴1𝐵̃, 𝑗 ∈ {0, 1, 2, 3}, 𝐵̃ ∈ ℬ
Then 𝑡𝑙𝑅𝐴1𝑅𝑗𝐴1 = 𝑡𝑙𝐴−i𝑅𝑗+1𝐴1 ∼ 𝑡𝑙𝐴−i𝐴i−𝑗−1 ≺ 𝑡𝑙+2 (by Lemma 3.16 and Lemma 3.28). Therefore,
the maximum cannot be reached by Lemma 3.24.

𝐵 = 𝑅𝐴1𝑅𝑗𝐴𝑘0𝐴1𝐵̃, 𝑘 ∈ ℕ+, 𝑗 ∈ {0, 1, 2, 3}, 𝐵̃ ∈ ℬ
It can be verified that 𝐴0𝐴1 is component-wise less-or-equal to 𝐴1, therefore 𝑡𝑙𝑅𝐴1𝑅𝑗𝐴𝑘0𝐴1 <
𝑡𝑙𝑅𝐴1𝑅𝑗𝐴1, so this is reduced to the previous case.

𝐵 = 𝑅𝐴1𝐵̃, 𝐵̃ ∈ ℬ0
This implies that 𝑙 = 𝑁 − 1 and 𝑒Π𝑒T = 𝑡𝑙𝑅𝐴1𝐵̃𝑒T = 𝑡𝑙𝑅𝐴1𝑒T. For 𝑁 ≤ 3, we can manually check
that 𝑒Π𝑒T = 𝑡𝑁−1𝑅𝐴1𝑒T < 𝑟𝑁+1. For 𝑁 ≥ 4, we can express 𝑡𝑁−1 in terms of 𝑟𝑁 using Lemma
3.27, then compute that 𝑒Π𝑒T = 𝑡𝑁−1𝑅𝐴1𝑒T = 𝑟𝑁 + 5𝑟𝑁−2 + 2𝑟𝑁−3. It remains to prove that this is
less than 𝑟𝑁+1.

𝑟𝑁+1 = 𝑟𝑁 + 2𝑟𝑁−1 + 2𝑟𝑁−2
= 𝑟𝑁 + 4𝑟𝑁−2 + 4𝑟𝑁−3 + 4𝑟𝑁−4
= 𝑟𝑁 + 5𝑟𝑁−2 + 3𝑟𝑁−3 + 2𝑟𝑁−4 − 2𝑟𝑁−5
> 𝑟𝑁 + 5𝑟𝑁−2 + 2𝑟𝑁−3.

𝐵 = 𝑅𝐴0𝐵̃, 𝐵̃ ∈ ℬ
We assumed that 𝑙 < 𝑁 , so B contains at least one 𝐴1 matrix. That is, there exists a 𝑘 ∈ ℕ+ and
𝑗 ∈ {0, 1, 2, 3} such that 𝐵 = 𝐴𝑘0𝑅𝑚𝐴1𝐵̃, 𝐵̃ ∈ ℬ (making use of Lemma 3.16 to separate the 𝐴0
matrices and 𝑅 matrices). From Lemma 3.28, 𝑡𝑙𝐴𝑘0𝑅𝑚𝐴1 ≺ 𝑡𝑙+1 and therefore, by Lemma 3.24, it
cannot start a product reaching the maximum. ■

CHAPTER 3. COUNTING MAXIMUM OPTIMAL REPRESENTATIONS 37

Theorem 3.30. Let 𝑁 ∈ ℕ, 𝑁 ≥ 2. Then each 3-NAF representation in the extended Penney system
with exactly 𝑁 non-zero digits has at most 𝑟𝑁−3 equivalent representations, and there are exactly 8
such 3-NAF representations which have exactly 𝑟𝑁−3 equivalent representations and do not end in 0.
Proof. For 𝑁 ≤ 4, the second statement follows from Lemma 3.25: The only vectors corresponding to
3-NAF representations with the maximum number of equivalent representations are 𝑣𝑁 𝑃 with 𝑃 ∈ 𝒫 ,
giving a total of 8 vectors, which are all distinct. The maximum number of equivalent representations
can then be calculated manually, such as by using a non-deterministic variant of the modular algorithm.
For𝑁 > 4, Lemma 3.29 immediately gives the first statement. Its proof also shows that the vector of any
representation with exactly 𝑟𝑁−3 equivalent representations is of the form 𝑒𝐴𝑑1 ⋯𝐴𝑑𝑛 ∼ 𝑡𝑁𝐵, 𝐵 ∈ 𝒩0.
Since we are only counting representations that do not end in 0, it follows that 𝐵 consists only of 𝑅
matrices, therefore 𝑒𝐴𝑑1 ⋯𝐴𝑑𝑛 ∼ 𝑡𝑁 . By definition, there are 8 such vectors, which are distinct due to
Lemma 3.27. ■

Chapter 4

Counting average optimal
representations

In Chapter 3, we calculated the maximum number of optimal extended Penney system represen-
tations a Gaussian integer can have if its 3-NAF representation contains a given number of non-zero
digits. In this chapter, we shall give an estimate for the average number of optimal representations
across all Gaussian integers with a 3-NAF representation of a given length, using the machinery devel-
oped in Chapter 3.

An analogous result for the signed binary system was shown in [3], using a measure of the interval
[−1, 1] which encodes optimal representations. However, it gives a more precise result. Specifically, it
determines the average number of optimal representations across all natural numbers up to an arbitrary
given limit for the number itself, whereas our result can only average across all numbers with a given
number of digits. Since the complex numbers are not ordered, it is not clear what such a more precise
estimate could look like; this is a possible subject for future research. We also use a different approach,
which is based on the transducer shown in Chapter 3 rather than measure theory.

Definition 4.1. For a given 𝑥 ∈ ℤ[i], let 𝐴(𝑥) denote the matrix representing the paths in the graph 𝐺̃
corresponding to 𝑥 , as seen in Chapter 3. That is,

𝐴(𝑥) ≔ 𝐴𝑑1 ⋯𝐴𝑑𝑚 ,
where the 3-NAF representation of 𝑥 is 𝑂𝑑1 ⋯𝑂𝑑𝑘 .
Definition 4.2. Let ℳ=𝑁 denote the set of Gaussian integers whose reduced 3-NAF representation
consists of exactly𝑁 digits andℳ≤𝑁 the set of Gaussian integers whose 3-NAF representation consists
of at most 𝑁 digits. Further we shall denote

𝑝0 ≔ 𝑒T, 𝑝𝑘 ≔ (∑
𝑥∈ℳ=𝑘

𝐴(𝑥))𝑒T

Note. With the notation established in Definition 4.2, it follows from Theorem 3.19 that the average
number of optimal representations across all Gaussian integers with a 3-NAF representation of at most
𝑁 digits can be expressed as

1
|ℳ≤𝑁 |

∑
𝑥∈ℳ≤𝑁

𝑒𝐴(𝑥)𝑒T = 1
|ℳ≤𝑁 |

𝑁
∑
𝑘=0

∑
𝑥∈ℳ=𝑘

𝑒𝐴(𝑥)𝑒T = 1
|ℳ≤𝑁 |

𝑁
∑
𝑘=0

𝑒𝑝𝑘 .

38

CHAPTER 4. COUNTING AVERAGE OPTIMAL REPRESENTATIONS 39

Theorem 4.3. The sequence 𝑝𝑘 from Definition 4.2 satisfies the following recurrence relation:

𝑝𝑛 = 𝑝𝑛−1 + 𝑆𝑝𝑛−3 + 𝑇𝑝𝑛−4 + 𝑈𝑝𝑛−5,

where
𝑆 ≔ ∑

𝑑∈{±1,±i}
𝐴𝑑 , 𝑇 ≔ 𝑆(𝐴0 − 𝐼), 𝑈 ≔ 𝑆𝐴0(𝐴0 − 𝐼),

with initial conditions
𝑝0 = 𝑒T, 𝑝1 = 𝑝2 = 𝑝3 = 𝑆𝑒T, 𝑝4 = (𝑆 + 𝑆2)𝑒T

Proof. The initial conditions can be verified by direct computation. Consider 𝑛 ≥ 5 and 𝑥 ∈ ℳ=𝑛. If 𝑥
has only one non-zero digit (at position 𝑛−1), then𝐴(𝑥) = 𝐴𝑑1𝐴𝑛−10 . Otherwise, let 𝑘 be the index of the
second non-zero digit of 𝑥 and 𝑦 ∈ ℳ=𝑘 be the number represented by truncating the representation
of 𝑥 starting at this digit, then 𝐴(𝑥) = 𝐴𝑑1𝐴𝑛−𝑘−30 𝐴(𝑦). Notice that although there are 𝑛 − 𝑘 − 1 zeros
between the first two non-zero digits, two of them belong to the block of the second non-zero digit,
therefore the number of zero blocks is only 𝑛 − 𝑘 − 3. By this reasoning, we can derive a recursive
formula for the sum of the matrices of all 𝑥 ∈ ℳ=𝑛:

∑
𝑥∈ℳ=𝑛

𝐴(𝑥) = ∑
𝑑1∈{±1,±i}

(𝐴𝑑1𝐴𝑛−10 + 𝐴𝑑1
𝑛−3
∑
𝑘=0

∑
𝑦∈ℳ=𝑘

𝐴𝑛−𝑘−30 𝐴(𝑦))

= 𝑆(𝐴𝑛−10 +
𝑛−3
∑
𝑘=0

𝐴𝑛−𝑘−30 ∑
𝑦∈ℳ=𝑘

𝐴(𝑦))

Multiplying this equality by 𝑒T and applying the definition of 𝑝𝑘 , we get

𝑝𝑛 = 𝑆(𝐴𝑛−10 𝑒T +
𝑛−3
∑
𝑘=0

𝐴𝑛−𝑘−30 𝑝𝑘)

Noticing that 𝐴0𝑒 = 𝑒 = 𝑝0 and 𝐴30 = 𝐴20, we can further simplify:

𝑝𝑛 = 𝑆(𝑝0 +
𝑛−3
∑
𝑘=0

𝐴𝑛−𝑘−30 𝑝𝑘) = 𝑆(𝑝𝑛−3 + 𝐴0𝑝𝑛−4 + 𝐴20
𝑛−5
∑
𝑘=0

𝑝𝑘)

By subtracting two adjacent terms, we can transform this into a linear recurrence:

𝑝𝑛 − 𝑝𝑛−1 = 𝑆(𝑝𝑛−3 − 𝑝𝑛−4 + 𝐴0𝑝𝑛−4 − 𝐴0𝑝𝑛−5 + 𝐴20𝑝𝑛−5) = 𝑆𝑝𝑛−3 + 𝑇𝑝𝑛−4 + 𝑈𝑝𝑛−5.

■

We can easily transform the order-5 recurrence relation on 9-dimensional vectors shown in Theo-
rem 4.3 into an order-1 recurrence relation on 45-dimensional vectors, 𝑞𝑛 = 𝐵𝑞𝑛−1, by denoting

𝑞𝑛 ≔
⎛
⎜
⎜
⎜
⎝

𝑝𝑛
𝑝𝑛−1
𝑝𝑛−2
𝑝𝑛−3
𝑝𝑛−4

⎞
⎟
⎟
⎟
⎠

, 𝐵 ≔
⎛
⎜
⎜
⎜
⎝

𝐼 0 𝑆 𝑇 𝑈
𝐼 0 0 0 0
0 𝐼 0 0 0
0 0 𝐼 0 0
0 0 0 𝐼 0

⎞
⎟
⎟
⎟
⎠

,

CHAPTER 4. COUNTING AVERAGE OPTIMAL REPRESENTATIONS 40

where 𝐼 is the 9 × 9 identity matrix and 0 is the 9 × 9 zero matrix. It trivially follows that 𝑞𝑛 = 𝐵𝑛−4𝑞4.
In order to get a better idea of how this sequence grows, we need to find the Jordan canonical form of
𝐵, which involves calculating its characteristic polynomial and eigenvalues. If 𝜆 is an eigenvalue of 𝐵
and 𝑣 the corresponding eigenvector, we have 𝐵𝑣 = 𝜆𝑣 . If we denote by 𝑥 the last 9 components of 𝑣 ,
the equality implies that

𝑣 =
⎛
⎜
⎜
⎜
⎝

𝜆4𝑥
𝜆3𝑥
𝜆2𝑥
𝜆𝑥
𝑥

⎞
⎟
⎟
⎟
⎠

and the first row of the block matrix gives the equation

𝜆4𝑥 + 𝑆𝜆2𝑥 + 𝑇𝜆𝑥 + 𝑈𝑥 = 𝜆𝜆4𝑥,

equivalently written as
((𝜆4 − 𝜆5)𝐼 + 𝜆2𝑆 + 𝜆𝑇 + 𝑈)𝑥 = 0.

Since 𝑥 is a non-zero vector (otherwise 𝑣 would be zero, therefore by definition not an eigenvector), we
have

det ((𝜆4 − 𝜆5)𝐼 + 𝜆2𝑆 + 𝜆𝑇 + 𝑈) = 0.
It remains to calculate the determinant of (𝜆4 − 𝜆5)𝐼 + 𝜆2𝑆 + 𝜆𝑇 + 𝑈 , giving us the characteristic poly-
nomial of 𝐵. Although this can be done manually, the process is tedious and error-prone, so it is better
to use a computer program involving a symbolic computation library such as SymPy. The program is
listed in Appendix A. The resulting polynomial is

𝜆12(𝜆−1)8(𝜆6−𝜆2+2)(𝜆7−𝜆6−8𝜆4+3𝜆3+𝜆2−2𝜆+2)(𝜆12−4𝜆9+2𝜆8+8𝜆6−4𝜆5+𝜆4+8𝜆3+4).

The spectral radius is Λ ≈ 2.27348, a root of the polynomial 𝜆7 − 𝜆6 − 8𝜆4 + 3𝜆3 + 𝜆2 − 2𝜆 + 2. Its
algebraic multiplicity is 1, so 𝐵 can be expressed in Jordan canonical form:

𝐵 = 𝑅 (Λ 𝐽) 𝑅
−1, 𝑅 ∈ ℂ45×45, 𝐽 ∈ ℂ44×44, 𝜌(𝐽) < Λ.

By transposing both sides, we also get the Jordan canonical form of 𝐵T:

𝐵T = (𝑅−1)T (Λ 𝐽T) 𝑅
T

Theorem 4.4. Let 𝐴𝑁 be the average number of optimal representations across all Gaussian integers
with a 3-NAF representation of length at most 𝑁 . Then

𝐴𝑁 = (𝑑 + 𝑜(1)) ⋅ (Λ2)
𝑁
,

where Λ ≈ 2.27348 as shown above and 𝑑 ≈ 0.76257.
Proof. By definition, we can express

𝐴𝑁 = ∑𝑁
𝑘=0 𝑒𝑝𝑘
|ℳ≤𝑁 |

.

CHAPTER 4. COUNTING AVERAGE OPTIMAL REPRESENTATIONS 41

Let us first examine the last term of the sum:

𝑒𝑝𝑁 = 𝑒𝑞𝑁 = 𝑒𝑅 (Λ
𝑁−4

𝐽𝑁−4) 𝑅−1𝑞4.

Since the spectral radius of 𝐽 is less than Λ, we have 𝐽𝑁−4
Λ𝑁−4 → 0 as 𝑁 → ∞, therefore

lim𝑁→∞
𝑒𝑝𝑁
Λ𝑁−4 = 𝑒𝑅𝑒T𝑒𝑅−1𝑞4 = 𝑅1,1𝑅−11,∘𝑞4.

𝑅1,1 is simply the first component of an eigenvector of 𝐵 corresponding to Λ and, as can be seen from

the Jordan canonical from of 𝐵T, 𝑅−11,∘ = ((𝑅−1)T∘,1)
T
is the transpose of an eigenvector of 𝐵T corre-

sponding to Λ. However, although eigenvectors are determined up to a multiplicative constant, we
cannot choose them arbitrarily. Specifically, they have to satisfy 𝑅−1∘,1𝑅1,∘ = 𝑒𝑅𝑅−1𝑒T = 1. Given an
arbitrary eigenvector 𝑣 of 𝐵 and 𝑢 of 𝐵T, both corresponding to Λ, we can normalize them to get

lim𝑁→∞
𝑒𝑝𝑁
Λ𝑁−4 = 𝑣1𝑢T

𝑢T𝑣 𝑞4.

Using the Stolz–Cesàro theorem, we can create an asymptotic estimate for the numerator in the ex-
pression for 𝐴𝑁 :

lim𝑁→∞
∑𝑁

𝑘=0 𝑒𝑝𝑘
Λ𝑁 = lim𝑁→∞

𝑒𝑝𝑁
Λ𝑁 − Λ𝑁−1 = 𝑣1𝑢T𝑞4

(Λ4 − Λ3)𝑢T𝑣 .

Now let us consider the denominator. In the proof of Theorem 2.5, we have determined that

|ℳ≤𝑁 | = 𝑎𝑁 = 𝛼2𝑁 + 𝛽𝜅𝑁 + 𝛾 ̄𝜅𝑁 ,

where |𝜅| = |−1+√7i2 | < 2. Therefore,

lim𝑁→∞
|ℳ≤𝑁 |
2𝑁 = 𝛼 .

We can determine from the initial conditions of 𝑎𝑁 that 𝛼 = 31
15 . Combining the two results, we get

lim𝑁→∞ (Λ2)
−𝑁

𝐴𝑁 = 15
31 ⋅ 𝑣1𝑢T𝑞4

(Λ4 − Λ3)𝑢T𝑣 ≕ 𝑑 ,

which was to be proven. Calculating the eigenvectors and a numeric approximation of 𝑑 is an exercise
for a computer program, which is listed in Appendix A. ■

Chapter 5

Generating optimal representations

In Chapters 3 and 4, we have demonstrated that sufficiently large Gaussian integers have many
optimal representations in the extended Penney system, which makes them suitable for ensuring re-
dundancy in cryptographical applications. To minimize predictability, it is necessary to have a way to
choose a uniformly random optimal representation of a given integer. The transducer introduced in
Chapter 3 provides a simple and efficient algorithm for accomplishing this, which will be described in
this chapter.

The idea of generating random representations for cryptographic purposes was studied in [7] for
the case of the signed binary system, although the algorithm developed in this paper generates all
representations of a given number, not only the optimal ones. The idea of generating only optimal
representations (still for the signed binary system) was suggested in [3].

Theorem 5.1. Let 𝑥 ∈ ℤ[i] with 3-NAF extended Penney system representation 𝑂𝑑1 ⋯𝑂𝑑𝑛 . Then the
following algorithm generates a uniformly random optimal representation of 𝑥 :
1: 𝑞 ← 0
2: for 𝑖 ≔ 1, … , 𝑛 do
3: 𝑒1, … , 𝑒𝑘 ≔ edges of 𝐺̃ going to vertex 𝑞 with output label 𝑂𝑑𝑖
4: for 𝑗 ≔ 1,… , 𝑘 do
5: 𝑞𝑗 ≔ starting vertex of 𝑒𝑗
6: 𝑤𝑗 ≔ (𝐴𝑑𝑖+1 ⋯𝐴𝑑𝑛)𝑟 ,1, where 𝑟 is the index of vertex 𝑞𝑗 in the matrices
7: end for
8: 𝑗 ≔ element of {1, … , 𝑘} chosen randomly with weights 𝑤1, … , 𝑤𝑘
9: Write the input label of 𝑒𝑗 to the program output

10: 𝑞 ← 𝑞𝑗
11: end for

Proof. The algorithm starts in the vertex 0 and makes a backward walk with the correct edge colors,
deciding randomly at each step where to go and ending back in 0. By Lemma 3.10, Lemma 3.14 and the
construction of 𝐺̃, such walks correspond to all optimal representations of 𝑥 , so we just need to prove
that the walk is uniformly randomly chosen. Consider the 𝑖-th step. Each edge 𝑒1, … , 𝑒𝑘 presents one
option for where to go next. If we choose a particular edge 𝑒𝑗 , we will have to finish the walk from
the vertex 𝑞𝑗 , using the remaining output labels 𝑂𝑑𝑖+1 , … , 𝑂𝑑𝑛 . By Lemma 3.18, there are exactly 𝑤𝑗 such
walks, where 𝑤𝑗 is defined as in the algorithm. The probability of using the edge 𝑒𝑗 is 𝑤𝑗

∑𝑘
𝑙=1 𝑤𝑙

. If we

inductively assume that the algorithm will work correctly from the next step onward, then each of the
walks after using 𝑒𝑗 has a 1

𝑤𝑗
probability to be chosen (conditioned on 𝑒𝑗 being chosen in the current

42

CHAPTER 5. GENERATING OPTIMAL REPRESENTATIONS 43

step). Therefore, the probability of using 𝑒𝑗 and then choosing any particular continuation is 1
∑𝑘

𝑙=1 𝑤𝑙
.

Since this does not depend on 𝑗 or the particular walk chosen, the distribution is uniform. (Note that
if 𝑤𝑗 = 0, the edge 𝑒𝑗 will never be used, so the division by zero in the conditional probability is not a
problem.) ■

Note. It can be seen that if the products 𝐴𝑑𝑖+1 ⋯𝐴𝑑𝑛 for all 𝑖 are computed at once, the time complexity
of the algorithm is 𝒪(𝑛). Notice that after computing each product, only the first column needs to be
stored.

Example. Consider the number 𝑥 ≔ 2 + i. It has three optimal representations: 𝑥 = [100i]𝛽P =
[i0i]𝛽P = [i1]𝛽P , with the first one being the 3-NAF representation, consisting of blocks 𝑂1⋯𝑂−i. The
algorithm starts at 𝑞 ← 0 and looks at all edges with label 𝑂1 going into 0. There are 𝑘 = 2 such edges:

𝑒1 ∶ 0 001∣001−−−−−−→ 0 and 𝑒2 ∶ 1 000∣001−−−−−−→ 0. Therefore, we label 𝑞1 ≔ 0, 𝑞2 ≔ 1 and calculate the weights
using the product of the matrices of the remaining blocks, which in our case is only 𝑂−i:

𝑤1 = (𝐴−i)1,1 = 1 (because the first row of matrices corresponds to the vertex 0)
𝑤2 = (𝐴−i)2,1 = 2 (because the second row of matrices corresponds to the vertex 1)

This means that we have two options:

1. 𝑤1
𝑤1+𝑤2

= 1
3 probability to set 𝑞 ← 𝑞1 = 0 and output 001. Then we look at edges going into 0

with output label 𝑂−i, which are 𝑒1 ∶ 0 00i∣00i−−−−−→ 0 and 𝑒2 ∶ −i 000∣00i−−−−−→ 0, so 𝑞1 = 0, 𝑞2 = −i. There
are no remaining blocks, so weights are going to be calculated using the identity matrix, which
naturally corresponds to the requirement to end the backward walk in the vertex 0:

𝑤1 = 𝐼1,1 = 1 (because the first row of matrices corresponds to the vertex 0)
𝑤2 = 𝐼5,1 = 0 (because the fifth row of matrices corresponds to the vertex −i)

Since only the first edge has a non-zero weight, the algorithm is guaranteed at this point to output
00i, which gets us the representation (100i)𝛽P .

2. 𝑤2
𝑤1+𝑤2

= 2
3 probability to set 𝑞 ← 𝑞2 = 1 and output 000. Then we consider edges going into 1

with output label 𝑂−i. There are 𝑘 = 5 such edges:

𝑒1 ∶ 0 i0i∣00i−−−−−→ 1

𝑒2 ∶ 0 0i1∣00i−−−−−→ 1

𝑒3 ∶ 1 0i0∣00i−−−−−→ 1

𝑒4 ∶ i
i00∣00i−−−−−→ 1

𝑒5 ∶ 1 + i
i0i∣00i−−−−−→ 1

By the same logic as above, 𝑤1 = 𝑤2 = 1 and 𝑤3 = 𝑤4 = 𝑤5 = 0, so the algorithm is going to 1 ∶ 1
randomly choose between 𝑒1 and 𝑒2, outputting either i0i or 0i1, which form the two remaining
optimal representations.

CHAPTER 5. GENERATING OPTIMAL REPRESENTATIONS 44

From the above two cases, it is clear that each of the three optimal representations has a 1
3 probability

of being output, which is what we wanted to achieve.

Conclusion

Wehave investigated properties of the positional numeration systemwith 𝛽 = i−1, 𝒟 = {0, ±1, ±i}.
We provided simple proofs of previously known results: every Gaussian integer has a unique 3-NAF
representation, which is always optimal and an average digit of such a representation has only a 1

4
probability to be non-zero.

As a new result, in Chapter 3, we developed a transducer for converting any representation in the
extended Penney system to the equivalent 3-NAF representation. We reduced this transducer to only
permit optimal representations as the input, meaning that there is a bijection between the possible
paths in the graph and all optimal representations of a given number. We used this to calculate the
maximum number of optimal representations a Gaussian integer can have if its 3-NAF representation
has a given length, as well as which exact Gaussian integers achieve this maximum. The result, stated
in Theorem 3.30, is similar to that in [4], except with a different recurrent sequence.

In Chapter 4, we used the transducer from Chapter 3 to give an asymptotic estimate for the average
number of optimal representations across all numbers whose 3-NAF representation does not exceed a
given length. This estimate is stated in Theorem 4.4. It is analogous to a result about signed binary
representations in [4], except less precise; the details are discussed at the beginning of the chapter.

Finally, in Chapter 5, we showed a simple algorithm for generating a uniformly random extended
Penney system representation of a given Gaussian integer, which uses a “reversed” form of the reduced
transducer shown in Chapter 3. This algorithm, shown in Theorem 5.1, can potentially be generalized
to other numeration systems, as long as a similar transducer is constructed.

As a potential application, these results show that for cryptographical algorithms based on complex
integers, the extended Penney system is a suitable candidate for achieving high performance if only
optimal representations are used, as well as high redundancy due to the exponentially growing number
of optimal representations.

45

Appendix A

Programs

This chapter lists computer programs which implement algorithms or perform computations men-
tioned in the project.

All programs arewritten in Python 3. The SymPy symbolic computation library is used for symbolic
calculations.

The programs are only for demonstration purposes and not optimized for performance. Some of
them use sub-optimal algorithms for the sake of simplicity.

46

APPENDIX A. PROGRAMS 47

Implementing basic arithmetic and divisibility testing on Gaussian integers, along with constants
necessary for working with the extended Penney system.

from typing import NamedTuple

class GaussianInteger(NamedTuple):
re: int
im: int

def __add__(x, y):
return GaussianInteger(x.re + y.re, x.im + y.im)

def __sub__(x, y):
return GaussianInteger(x.re - y.re, x.im - y.im)

def __mul__(x, y):
return GaussianInteger(x.re * y.re - x.im * y.im,

x.re * y.im + x.im * y.re)
def __truediv__(x, y):

Note: Returns the corrent result only if x is divisible by y.
n = y.re**2 + y.im**2
return GaussianInteger((x.re * y.re + x.im * y.im) 〪ひ n,

(x.im * y.re - x.re * y.im) 〪ひ n)
def divisible_by(x, y):

return x ㋻㌴ (x / y) * y

def __pow__(x, n):
result = GaussianInteger(1, 0)
for _ in range(n):

result ⷒ= x
return result

def __repr__(x):
if x.re ㋻㌴ 0 and x.im ㋻㌴ 0: return "0"
re = "" if x.re ㋻㌴ 0 else str(x.re)
sign = "+" if x.re ㏽㋬ 0 and x.im > 0 else "-" if x.im ㋻㌴ -1 else ""
im = "" if abs(x.im) ㄂ㄈ 1 else str(x.im)
i = "" if x.im ㋻㌴ 0 else "i"
return re + sign + im + i

zero = GaussianInteger(0, 0)
β = GaussianInteger(-1, 1)
β_cube = GaussianInteger(2, 2)
nonzero_digits = [GaussianInteger(1, 0), GaussianInteger(0, 1),

GaussianInteger(-1, 0), GaussianInteger(0, -1)]
all_digits = [zero] + nonzero_digits

APPENDIX A. PROGRAMS 48

Implementing basic arithmetic and divisibility testing on Eisenstein integers.

from typing import NamedTuple

class EisensteinInteger(NamedTuple):
re: int
om: int

def __add__(x, y):
return EisensteinInteger(x.re + y.re, x.om + y.om)

def __sub__(x, y):
return EisensteinInteger(x.re - y.re, x.om - y.om)

def __mul__(x, y):
return EisensteinInteger(x.re * y.re - x.om * y.om,

x.re * y.om + x.om * y.re - x.om * y.om)
def __truediv__(x, y):

Note: Returns the corrent result only if x is divisible by y.
n = y.re**2 - y.re * y.om + y.om**2
return EisensteinInteger((x.re * y.re - x.re * y.om + x.om * y.om) 〪ひ n,

(x.om * y.re - x.re * y.om) 〪ひ n)
def divisible_by(x, y):

return x ㋻㌴ (x / y) * y

def __pow__(x, n):
result = EisensteinInteger(1, 0)
for _ in range(n):

result ⷒ= x
return result

def __repr__(x):
if x.re ㋻㌴ 0 and x.om ㋻㌴ 0: return "0"
re = "" if x.re ㋻㌴ 0 else str(x.re)
sign = "+" if x.re ㏽㋬ 0 and x.om > 0 else "-" if x.om ㋻㌴ -1 else ""
om = "" if abs(x.om) ㄂ㄈ 1 else str(x.om)
ω = "" if x.om ㋻㌴ 0 else "ω"
return re + sign + om + ω

APPENDIX A. PROGRAMS 49

Finding the 3-NAF representation of a given Gaussian integer in the extended Penney system.

from gaussian_integer import GaussianInteger, zero, β, β_cube, nonzero_digits

def to_3naf(x: GaussianInteger) -> list[GaussianInteger]:
digits = []
while x ㏽㋬ zero:

if x.divisible_by(β):
digits += [zero]
x /= β

else:
for d in nonzero_digits:

if (x - d).divisible_by(β_cube):
digits += [d, zero, zero]
x = (x - d) / β_cube
break

Reverse the representation to start with the most significant digit
digits.reverse()
Remove the two leading zeros
return digits[2⵼]

def to_3naf_blocks(x: GaussianInteger):
The same algorithm, but returns blocks instead of digits.
blocks = []
while x ㏽㋬ zero:

if x.divisible_by(β):
blocks.append((zero,))
x /= β

else:
for d in nonzero_digits:

if (x - d).divisible_by(β_cube):
blocks.append((zero, zero, d))
x = (x - d) / β_cube
break

Reverse the representation to start with the most significant digit
blocks.reverse()
return blocks

APPENDIX A. PROGRAMS 50

Calculating the number of optimal representations of a given Gaussian integer.

from gaussian_integer import GaussianInteger, zero, β, β_cube, nonzero_digits
from functools import cache

def min_weight(x: GaussianInteger) -> int:
Finds the Hamming weight of the 3-NAF representation of x,
which is known to be minimal among all representations.
nonzeros = 0
while x ㏽㋬ zero:

if x.divisible_by(β):
x /= β

else:
for d in nonzero_digits:

if (x - d).divisible_by(β_cube):
nonzeros += 1
x = (x - d) / β_cube
break

return nonzeros

@cache
def num_representations(x: GaussianInteger, weight: int) -> int:

Finds the number of representations of x with the given Hamming weight.
if x ㋻㌴ zero:

return int(weight ㋻㌴ 0)
elif weight ㋻㌴ 0:

return 0
elif x.divisible_by(β):

return num_representations(x / β, weight)
else:

return sum(num_representations((x - d) / β, weight - 1) for d in nonzero_digits)

def num_optimal_representations(x: GaussianInteger) -> int:
return num_representations(x, min_weight(x))

APPENDIX A. PROGRAMS 51

Calculating the maximal number of optimal representations for a Gaussian integer whose 3-NAF
representation has a given length. Note that this is subtly different from the task of finding such an
integer whose 3-NAF representation has a given weight. However, it turns out that since such integers
always have exactly two zeros between every pair of non-zero digits in their 3-NAF representation,
these two tasks are easily convertible to each other.

from gaussian_integer import GaussianInteger, zero, β, nonzero_digits
from gaussian_3naf import to_3naf
from gaussian_optimal_reprs import num_optimal_representations
from typing import Iterator

def integers_with_3naf_len(k: int) -> Iterator[GaussianInteger]:
Iterates over all integers whose 3-NAF representation has a length of k.
if k ㄂ㄈ 0:

yield zero
else:

for d in nonzero_digits:
p = d * β ** (k - 1)
for x in integers_with_3naf_len_max(k - 3):

yield p + x

def integers_with_3naf_len_max(n: int) -> Iterator[GaussianInteger]:
Iterates over all integers whose 3-NAF representation has a length of at most k.
for k in range(max(n + 1, 1)):

yield from integers_with_3naf_len(k)

def most_optimal_representations(
n: int,

) -> tuple[int, list[GaussianInteger], list[list[GaussianInteger]]]:
Returns the maximum number of optimal representations
for an integer whose 3-NAF representation has length exactly n,
the list of integers for which it is reached
and the list of their 3-NAF representations.
maximum = 0
xs = []
for x in integers_with_3naf_len(n):

optimal_reprs = num_optimal_representations(x)
if optimal_reprs > maximum:

maximum = optimal_reprs
xs = [x]

elif optimal_reprs ㋻㌴ maximum:
xs.append(x)

return (maximum, xs, [to_3naf(x) for x in xs])

APPENDIX A. PROGRAMS 52

Constructing the graph 𝐺̃ that can be used for reasoning about optimal representations in the ex-
tended Penney system.

from gaussian_integer import GaussianInteger, zero, β, β_cube, all_digits, \
nonzero_digits

from typing import NamedTuple
from sympy import Matrix

class Edge(NamedTuple):
start: GaussianInteger
end: GaussianInteger
input: list[GaussianInteger]
output: list[GaussianInteger]

vertices = [zero,
GaussianInteger(1, 0), GaussianInteger(0, 1),
GaussianInteger(-1, 0), GaussianInteger(0, -1),
GaussianInteger(1, 1), GaussianInteger(-1, 1),
GaussianInteger(-1, -1), GaussianInteger(1, -1)]

edges = []
for q0 in vertices:

for q1 in vertices:
if q1 * β ㋻㌴ q0:

edges.append(Edge(q0, q1, (zero,), (zero,)))
for r in all_digits:

for x in all_digits:
for y in all_digits:

for z in all_digits:
weight = (

(x ㏽㋬ zero) + (y ㏽㋬ zero) + (z ㏽㋬ zero) - (r ㏽㋬ zero)
)
if (

weight ㄂ㄈ (q0 ㋻㌴ zero) - (q1 ㋻㌴ zero)
and z * β * β + y * β + x + q0 ㋻㌴ q1 * β_cube + r

):
edges.append(Edge(q0, q1, (z, y, x), (zero, zero, r)))

blocks = [(zero,)] + [(zero, zero, r) for r in nonzero_digits]
A = {}
for block in blocks:

matrix = [[0] * 9 for _ in range(9)]
for e in edges:

if e.output ㋻㌴ block:
matrix[vertices.index(e.end)][vertices.index(e.start)] += 1

A[block] = Matrix(matrix)

APPENDIX A. PROGRAMS 53

Calculating the determinant of the matrix (𝜆4 − 𝜆5)𝐼 + 𝜆2𝑆 + 𝜆𝑇 + 𝑈 as a part of determining the
average number of equivalent representations in the extended Penney system.

from sympy import *

A_0 = Matrix([
[1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],

])
S = Matrix([

[4, 1, 1, 1, 1, 0, 0, 0, 0],
[4, 2, 2, 0, 0, 2, 0, 0, 0],
[4, 0, 2, 2, 0, 0, 2, 0, 0],
[4, 0, 0, 2, 2, 0, 0, 2, 0],
[4, 2, 0, 0, 2, 0, 0, 0, 2],
[1, 0, 1, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0, 0, 0, 0],

])
I = eye(9)
T = S * (A_0 - I)
U = S * A_0 * (A_0 - I)
λ = Symbol("λ")
p = factor(((λ**4 - λ**5) * I + λ**2 * S + λ * T + U).det())
pretty_print(p)

APPENDIX A. PROGRAMS 54

Calculating the multiplicative constant 𝑑 in Theorem 4.4.

from sympy import *

A_0 = Matrix([
[1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],

])
S = Matrix([

[4, 1, 1, 1, 1, 0, 0, 0, 0],
[4, 2, 2, 0, 0, 2, 0, 0, 0],
[4, 0, 2, 2, 0, 0, 2, 0, 0],
[4, 0, 0, 2, 2, 0, 0, 2, 0],
[4, 2, 0, 0, 2, 0, 0, 0, 2],
[1, 0, 1, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0, 0, 0, 0],

])
I = eye(9)
T = S * (A_0 - I)
U = S * A_0 * (A_0 - I)
O = zeros(9, 9)
λ = Symbol("λ")
Λ = CRootOf(λ**7 - λ**6 - 8 * λ**4 + 3 * λ**3 + λ**2 - 2 * λ + 2, 2)
x = Matrix([4] + [4 + 2 / Λ**3] * 4 + [1] * 4)
y = Matrix([[4 * Λ**4] + [(Λ - 1) * Λ**3] * 4 + [(Λ**2 + 2) * (Λ - 1)] * 4])
v = BlockMatrix([[Λ**4 * x], [Λ**3 * x], [Λ**2 * x], [Λ * x], [x]]).as_explicit()
u = BlockMatrix([[

y,
y * (Λ**2 * S + Λ * T + U) / Λ**4,
y * (Λ**2 * S + Λ * T + U) / Λ**3,
y * (Λ * T + U) / Λ**2,
y * U / Λ,

]]).as_explicit()
e = Matrix([1, 0, 0, 0, 0, 0, 0, 0, 0])
q_4 = BlockMatrix([[(S + S**2) * e], [S * e], [S * e], [S * e], [e]]).as_explicit()
d = v[0, 0] / u.dot(v) * u.dot(q_4) / (Λ**4 - Λ**3) * 15 / 31
print(N(d))

APPENDIX A. PROGRAMS 55

Calculating the average number of optimal representations of all Gaussian integers whose 3-NAF
representation is up to a certain length, in order to experimentally confirm the calculation of the con-
stant 𝑑 in Theorem 4.4.

from gaussian_integer import GaussianInteger, zero, β, nonzero_digits
from gaussian_3naf import to_3naf
from gaussian_optimal_reprs import num_optimal_representations
from typing import Iterator
from sympy import *

def integers_with_3naf_len(k: int) -> Iterator[GaussianInteger]:
Iterates over all integers whose 3-NAF representation has a length of k.
if k ㄂ㄈ 0:

yield zero
else:

for d in nonzero_digits:
p = d * β ** (k - 1)
for x in integers_with_3naf_len_max(k - 3):

yield p + x

def integers_with_3naf_len_max(n: int) -> Iterator[GaussianInteger]:
Iterates over all integers whose 3-NAF representation has a length of
at most k.
for k in range(max(n + 1, 1)):

yield from integers_with_3naf_len(k)

def average_optimal_reprs(n: int) -> float:
Returns the average number of optimal representations
across all integers whose 3-NAF representation has length at most n.
optimal_reprs = 0
integers = 0
for x in integers_with_3naf_len_max(n):

optimal_reprs += num_optimal_representations(x)
integers += 1

return optimal_reprs / integers

λ = Symbol("λ")
Λ = N(CRootOf(λ**7 - λ**6 - 8 * λ**4 + 3 * λ**3 + λ**2 - 2 * λ + 2, 2))

for n in range(1, 20):
Calculates an approximation for the constant d for small values of n.
print(n, average_optimal_reprs(n) / (Λ / 2) ** n)

APPENDIX A. PROGRAMS 56

Implementing the algorithm fromTheorem 5.1 for generating a uniformly randomoptimal extended
Penney system representation of a Gaussian integer.

from gaussian_integer import GaussianInteger, zero, all_digits
from G_tilde import vertices, edges, A
from penney_3naf import to_3naf_blocks
from sympy import *
import random

def random_optimal_repr(x: GaussianInteger) -> list[GaussianInteger]:
result = []
q = zero
O = to_3naf_blocks(x)
n = len(O)
P = [None] * n
P[n - 1] = eye(9)
for i in range(n - 1, 0, -1):

P[i - 1] = A[O[i]] * P[i]
for i in range(n):

e = [edge for edge in edges if edge.end ㋻㌴ q and edge.output ㋻㌴ O[i]]
k = len(e)
w = [P[i][vertices.index(edge.start), 0] for edge in e]
[edge] = random.choices(e, w)
result += edge.input
q = edge.start

Remove leading zeros
i = 0
while i < len(result) and result[i] ㋻㌴ zero:

i += 1
return result[i⵼]

Bibliography

[1] C. Heuberger, D. Krenn: Optimality of the Width-𝑤 Non-adjacent Form: General Characterisa-
tion and the Case of Imaginary Quadratic Bases, arXiv:1110.0966v1 (2011), https://doi.org/10.
48550/arXiv.1110.0966; Journal de théorie des nombres de Bordeaux, Volume 25 no. 2 (2013),
pp. 353–386, https://doi.org/10.5802/jtnb.840.

[2] C. Heuberger, D. Krenn: Analysis of width-𝑤 non-adjacent forms to imaginary quadratic bases, Jour-
nal of Number Theory, Volume 133, Issue 5 (2013), https://dx.doi.org/10.1016/j.jnt.2012.
08.029.

[3] P. J. Grabner, C. Heuberger: On the Number of Optimal Base 2 Representations of Integers, Des Codes
Crypt, Volume 40 (2006), pp.25–39, https://doi.org/10.1007/s10623-005-6158-y.

[4] J. Tůma, J. Vábek: On the number of binary signed digit representations of a given weight, Commen-
tationes Mathematicae Universitatis Carolinae, Volume 56, Issue 3 (2015), pp. 287–306, https:
//dml.cz/manakin/handle/10338.dmlcz/144345.

[5] W. Penney: A “Binary” System for Complex Numbers, Journal of the ACM, Volume 12, Issue 2
(1965), pp. 247–248, https://doi.org/10.1145/321264.321274.

[6] G.W. Reitwiesner: Binary arithmetic, Advances in Computers, Volume 1 (1960), pp. 231–308,
https://doi.org/10.1016/S0065-2458(08)60610-5, not open-access.

[7] N. Ebeid, M. A.Hasan: On Randomizing Private Keys to Counteract DPA Attacks, Selected Areas in
Cryptography (2003), Lecture Notes in Computer Science, Volume 3006, https://doi.org/10.
1007/978-3-540-24654-1_5.

[8] U. Güntzer, M. Paul: Jump interpolation search trees and symmetric binary numbers, Informa-
tion Processing Letters, Volume 26, Issue 4 (1987), pp. 193–204, https://doi.org/10.1016/
0020-0190(87)90005-6, not open-access.

[9] A. Avizienis: Signed-Digit Numbe Representations for Fast Parallel Arithmetic, IRE Transactions on
Electronic Computers, Volume EC-10, Issue 3 (1961), pp. 389-400, not open-access.

[10] Ch. Frougny, E. Pelantová, M. Svobodová: Minimal digit sets for parallel addition in non-standard
numeration systems. Journal of Integer Sequences, Volume 16 (2013).

[11] Z.Masáková, E. Pelantová, M. Svobodová: Algebraické metody v teoretické informatice, Depart-
ment of Mathematics FNSPE CTU in Prague (2023), pp. 1–7, https://people.fjfi.cvut.cz/
pelanedi/ALTI_k_vystaveni.pdf.

[12] N. P. Brousentsov, J. Ramil Alvarez: Ternary Computers: The Setun and the Setun 70, Advances in
Information and Communication Technology, Volume 357 (2011).

57

https://doi.org/10.48550/arXiv.1110.0966
https://doi.org/10.48550/arXiv.1110.0966
https://doi.org/10.5802/jtnb.840
https://dx.doi.org/10.1016/j.jnt.2012.08.029
https://dx.doi.org/10.1016/j.jnt.2012.08.029
https://doi.org/10.1007/s10623-005-6158-y
https://dml.cz/manakin/handle/10338.dmlcz/144345
https://dml.cz/manakin/handle/10338.dmlcz/144345
https://doi.org/10.1145/321264.321274
https://doi.org/10.1016/S0065-2458(08)60610-5
https://doi.org/10.1007/978-3-540-24654-1_5
https://doi.org/10.1007/978-3-540-24654-1_5
https://doi.org/10.1016/0020-0190(87)90005-6
https://doi.org/10.1016/0020-0190(87)90005-6
https://people.fjfi.cvut.cz/pelanedi/ALTI_k_vystaveni.pdf
https://people.fjfi.cvut.cz/pelanedi/ALTI_k_vystaveni.pdf

BIBLIOGRAPHY 58

[13] N. P. Brousentsov, S. P.Maslov, J. Ramil Alvarez, E. A. Zhogolev: Development of ternary computers
at Moscow State University, https://www.computer-museum.ru/english/setun.htm.

[14] Jin Y. Yen: An algorithm for finding shortest routes from all source nodes to a given destination in
general networks, Quarterly of Applied Mathematics, Volume 27 (1970), pp. 526–530, https://
doi.org/10.1090/qam/253822.

https://www.computer-museum.ru/english/setun.htm
https://doi.org/10.1090/qam/253822
https://doi.org/10.1090/qam/253822

	Introduction
	Basics
	Positional numeration systems
	NAF binary representations
	Complex integers
	Exercises

	w-NAF representations of complex integers
	Gaussian integers
	Eisenstein integers

	Counting maximum optimal representations
	Transducer
	Transducer as an oriented graph
	Simplifying the graph
	Converting to a matrix problem
	Solving the matrix problem

	Counting average optimal representations
	Generating optimal representations
	Conclusion
	Programs
	Bibliography

