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Prologue

This thesis was written within the scope of “Cotutelle agreement” between two univer-
sities: Czech Technical University and Université Paris VII. To accomplish one of the
articles of this agreement the author has to present a summary of the construed work
in both universities’ languages. Accordingly, this prologue gives requested summaries,
which are essentially translations of the appropriate parts of the English introduction. A
reader who does not speak any of these beautiful languages should therefore — without
worry — move on directly to Introduction starting on page 1.

Ceské shrnuti

Tato prace se vénuje numeraénim systémim, jejich algebraickym a kombinatorickym
vlastnostem a aritmetice s nimi spojené.

Nejznaméjsimi numeracénimi systémy jsou tak zvané pozi¢ni systémy, coz jsou sys-
témy dané celo¢iselnou bézi (zédkladem) b > 1 a abecedou cifer (koeficientii) Ap. Celé
¢islo x se v takové soustavé vyjadiuje jako

z=xpb" 4 4 zob® + 21b+ 0,

kde z; € A,. Nami bézné pouzivand desitkova soustava je piikladem pozi¢niho systému
s bazi b =10 a Ajp = {0,...,9}.

V této praci studujeme obecné&jsi numeracni systémy, znadmé jako systémy beta-
numeracni. KliCovym pojmem v této teorii je tzv. beta-rozvoj, ktery zavedl Reényi [94].
Beta-numera¢ni systémy se od béZnych pozi¢nich systémi lisi pfedev§im tim, Ze pfi-
poustéji, aby bazi bylo libovolné realné &islo 5 > 1.

Pokud zvolime ( celé, dostaneme samoziejmé standardni pozi¢ni systém tak jak
je popsan vySe. Bude-li v8ak (3 necelé, narazime pifi zkouméni vlastnosti takovychto
soustav na né&kolik neobvyklych a nepravidelnych (tj. zévisejicich na zékladu ) jevi.

V prvni fadé zjistime, Ze redlnd ¢&isla maji v téchto systémech vice p¥ipustnych
reprezentaci. Abychom se vyhnuli pfipadnym problémim s nejednoznac¢nosti, musime
ur¢it jednu reprezentaci, kterd bude ,primus inter pares‘. Tuto roli hraje nejvétsi z
reprezentaci daného &isla pii lexikografickém uspofadéni; nazyvame ji [B-rozvojem a
ziskame ji pomoci hladového algoritmu.

Analogicky béZnym systémim definujeme dvé podmnoZiny realnych &sel: mnoZinu
Zg ¢isel, jejichz rozvoj ma prazdnou zlomkovou ¢ast a mnozinu Fin(3) ¢isel, jejichz

iii



iv PROLOGUE

rozvoj ma kone¢nou zlomkovou ¢ast, tedy od jistého indexu dal jsou vSechny koeficienty
v rozvoji rovny nule. MnoZinu Zg miZeme chapat jako zobecnéni mnoZiny celych cisel,
jeji prvky nazyvame (-celd ¢isla.

Tyto dvé mnoZiny nemusi byt pfi obecné zvoleném 3 uzaviené vici aritmetickym
operacim. Presnéji feCeno mnoZina Zg neni uzavfend vici aritmetickym operacim pro
zadny necely zéklad ; mnozina Fin(/3) uzaviena vici aritmetickym operacim byt mtize
a nemusi. V pfipadé, Zze Fin(3) uzaviena je, fekneme, Ze [ méa tak zvanou ,Finite-
ness property“ (vlastnost kone¢nosti). V souc¢asné dobé& neni znama 7adné algebraicka
charakteristika Cisel 8, kterad tuto vlastnost maji.

Poznamenejme, Ze naprosto zasadni roli v celé teorii S-numerace hraji Pisot &isla.
Pisot &islo 8 > 1 je algebraické celé ¢islo, pro které jsou vSechny ostatni kofeny jeho
minimélniho polynomu v absolutni hodnoté ostfe mensi nez jedna. Nejznaméj§im Pisot
Cislem je zlaty fez.

Tato prace je rozdé€lena do péti kapitol. Prvni kapitola shrnuje potfebné matematické
znalosti. PFipomindme pojmy z teorie algebraickych ¢isel a v8echny potiebné definice a
znadmé vysledky tykajici se kombinatoriky na slovech a kone¢nych automati.

V kapitole 2 za¢indme vlastni studium numeraénich systémi zaloZzenych na (-rozvo-
jich. Napted zavedeme v8echny potiebné pojmy a poté shrneme znamé vysledky tykajici
se oblasti, kterymi se budeme zabyvat v nésledujicich kapitolach. Jedna se o vysledky
tykajici se Finiteness property, odhadid maximalntho poétu nenulovych zlomkovych ko-
eficienti, které vznikaji pii aritmetice J-celych &isel, a slozitosti nekoneénych slov pii-
druzenych k témto soustavam.

Kapitola 3 se zabyva aritmetickymi vlastnostmi S-numera¢nich soustav. Definujeme
zde minimdlni zakdzané Tetézce a s jejich pomoci odvodime jednu nutnou podminku
(Tvrzeni 3.1.2) a dvé podminky postacujici (Véty 3.1.3 a 3.1.5) pro to, aby § mélo
Finteness property.

Poté se zamérime na vyse zminény problém zlomkovych ¢asti. Jak jiz vime, mnoZina
Zg neni uzaviena vaci aritmetickym operacim. Nasim cilem je nalézt hodnoty Lg(03)
a Lg(f), které udavaji maximalni moznou délku zlomkové ¢asti B-rozvoje souctu a
sou¢inu dvou [-celych &isel pro dané (.

Nejprve nékolika riznymi zptsoby pouZijeme d¥ive zndmou metodu (Guimond et
al. [69]) a ziskdme tak horni odhady na Lg () a Lg () pro zobecnéné Tribonacci ¢islo,
tj. Pisot ¢islo 8 s minimalnim polynomem z3 — mz? — 2 — 1, kde m > 2, a pro t¥idu
kubickych Pisot &sel # s minimélnim polynomem 23 — az? — bz + 1, kde a > 2 a
1<b<a-—1.

Poté diskutujeme nevyhody této metody a uvadime metodu jinou (Véta 3.3.1), ktera
je schopné v nékterych problematickych pfipadech pomoci. Pokazdé kdyz odvodime
horni odhad na pocet zlomkovych koeficienti, uvaddime i odhad dolni, ziskany pomoci
pocitacového programu pisotarith proviadéjiciho aritmetické operace v Pisot sousta-
véch.

V kapitole 4 studujeme jiny zptsob reprezentace ¢isel, ktery ackoli je mirné odlisny
od f(-rozvoju, je s nimi silné svazany. Nazyvame tento zplsob a-adickd reprezentace a,
v podstaté feceno, je to reprezentace pomoci pozi¢niho systému se zédkladem «, kde «
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je ¢islo algebraicky sdruZené s néjakym Pisot ¢islem 3.

Na zakladé zndmé véty o periodickych S-rozvojich dokdzeme, Ze &islo patii do té-
lesa Q(«) tehdy a jen tehdy, kdyZz méa posléze periodicky a-adicky rozvoj (Véta 4.2.3).
Poté zkoumame rozvoje &isel z okruhu Z[a~!] v p¥ipadech, kdy 3 ma Finiteness pro-
perty. Ve specidlnich pfipadech, kdy je § kvadraticka Pisot jednotka, navic diskutujeme
jednozna¢nost /nasobnost a-adickych rozvoji prvka Z[a~!]. Odvodime také algoritmus,
pomoci kterého je mozné generovat a-adické rozvoje racionélnich ¢isel.

Na konci kapitoly zkoumame algoritmy pro aritmetické operace v jedné dané sou-
stavé, a to v soustavé jejiz zéklad je ¢islo algebraicky sdruzené se zlatym Fezem 7.

Kapitola 5 se vénuje palindromické sloZitosti nekone¢nych aperiodickych slov ug.
Tato slova jsou definovana jako pevné body substituce pfidruzené k jednoduchym Parry
¢islim. DokéZeme nutnou podminku pro to, aby slovo ug obsahovalo nekone¢né mnoho
palindromii (Lemma 5.1.1). Pro systémy, které tuto podminku spliiuji odvodnime vztah
mezi klasickou a palindromickou slozitosti (Véta 5.2.6) a poté kompletné popiSeme mno-
zinu palindromt v ug, jeji strukturu a vlastnosti.

Résumé francais

Ce travail est consacré aux systémes de numération, aux propriétés algébriques et
combinatoires de ces systémes et & leur arithmétique.

Les systémes de numération les plus connus sont les systémes de position, c’est-a-
dire les systémes définis par une base b et un alphabet de chiffres Ay o b > 1 est un
entier. On représente un entier  dans tel systéme de numération sous la forme

x =" 4 - 4 29b® 4 210 + 20,

ou x; € Ap. Notre systéme décimal est un bon exemple du systéme de position avec
b=10et A1p ={0,...,9}.

L’objet de ce travail est une étude de systémes de numération plus généraux réunis
sous le nom de beta-numération, qui se base sur les beta-développements introduits par
Rényi [94]. La beta-numération se distingue de la numération en base entiére en ce
qu’elle admet n’importe quel nombre réel 8 > 1 comme base.

Bien siir si on prend [ entier on obtient un systéme de position classique. Par contre
si 0 n’est pas entier on rencontre plusieurs phénomeénes extraordinaires et irréguliers
dans ces systémes.

En premier lieu, un nombre réel peut avoir plusieurs représentations en base 5. On
associe & tout nombre réel x une représentation canonique, appelé le 5-développement
de x. Le (3-développement d’un nombre x est lexicographiquement plus grand que toute
[O-représentation de x et il peut étre obtenu par 1’algorithme glouton.

Tout comme dans les systémes de numération en base entiére on définit deux sous-
ensembles de nombres réels : 'ensemble Zg des nombres tels que leur $-développement
a une partie fractionnaire vide (appelé nombres [-entiers) et ’ensemble Fin(3) des
nombres tel que leur G-développement a une partie fractionnaire finie.
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En général ces deux ensembles ne sont pas stables pour I’addition et la multiplication.
Notamment, Zg n’est stable pour ces opérations que si 3 est un entier. La stabilité de
lensemble Fin(3) dépend de . Dans le cas ot Fin(3) est stable on dit que (§ a la
propriété de finitude. Rappelons qu’il n’y a pas de caractéristique algébrique connue
des nombres (3 ayant cette propriété. Notons que les nombres de Pisot (dont l'exemple
le plus connu est le nombre d’or) jouent un role fondamental dans cette théorie.

Ce travail est organisé en cinq chapitres. Dans le premier, nous rappelons les connais-
sances mathématiques nécessaires pour cette thése. On y trouve les notations et les
définitions de la théorie algébrique des nombres, de la combinatoire des mots et aussi
de la théorie des automates finis.

Dans le deuxiéme chapitre, nous commencons ’étude de la G-numération. Nous
introduisons les notations nécessaires et nous récapitulons des résultats déja connus
pour les domaines qui seront étudiés dans les chapitres suivants. Nous rappelons les
résultats concernant la propriété de finitude, les valeurs déja connues de la fonction de
complexité des mots associés & ces systémes, et les estimations du nombre maximal des
chiffres fractionnaires qui apparaissent lorsque on effectue la somme ou le produit de
deux nombres [(-entiers.

Le chapitre 3 s’occupe des propriétés arithmétiques de la S-numération. Nous déri-
vons une nouvelle condition nécessaire (Proposition 3.1.2) et deux conditions suffisantes
(Théoréme 3.1.3 et 3.1.5) pour la propriété de finitude. Ensuite nous nous concentrons
sur le probléme sus-mentionné des longueurs maximales des parties fractionnaires. Nous
nous intéressons aux valeurs Lg () et Lg(5) qui indiquent la longueur maximale de la
partie fractionnaire de la somme et du produit de deux (-entiers.

Nous appliquons une méthode connue (Guimond et al. [69]) pour calculer les estima-
tions supérieures de Lg(3) et Lg(5) dans le cas de nombres de Tribonacci généralisés,
c.-a-d. les nombres de Pisot dont le polynéme minimal est de la forme 23 — ma? — 2 —1,
m > 2, et aussi dans une autre classe de nombres de Pisot avec polynéme minimal de
la forme 22 —az? —br+1,a>2,1<b<a-—1.

Ensuite nous discutons les désavantages de cette méthode et nous donnons une autre
méthode (Théoréme 3.3.1) qui peut aider dans certains cas particuliers. Dans tous les
cas quand nous trouvons une borne supérieure nous donnons aussi une borne inférieure
obtenue a l'aide du programme pisotarith (voir Appendice B).

Dans le chapitre 4 nous étudions une autre facon de représenter les nombres. Elle
est un peu différente de la B-numération mais y est relié en méme temps. Il s’agit de la
représentation a-adique, c’est-a-dire du systéme de position dont la base est un nombre
«, qui est conjugué algébrique d’'un nombre de Pisot 8. Sur la base du résultat connu
sur les 3-développements périodiques nous montrons qu’un nombre z est un élément du
corps Q(«) si et seulement si son développement a-adique est ultimement périodique &
gauche (Théoréme 4.2.3).

Ensuite, nous nous intéressons au développement des éléments de ’anneau Z[a 1],
de plus nous examinons soit leur univocité soit leur multiplicité dans le cas ou 3 est
un nombre de Pisot quadratique unitaire. On construit aussi un algorithme qui fait
des calculs de développements a-adiques de nombres rationnels. En dernier lieu, nous
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étudions des algorithmes qui réalisent les opérations arithmétiques dans un systéme
particulier dont la base est le conjugué du nombre d’or.

Le chapitre 5 est consacré & la complexité palindromique des mots infinis apério-
diques ug qui sont point fixe d'une substitution associée & un nombre de Parry simple
3. Nous montrons une condition nécessaire pour que le mot ug contiennent un nombre
infini de palindromes (Lemme 5.1.1).

Pour les systémes satisfaisant cette condition, nous donnons une relation entre la
complexité en facteurs et la complexité palindromique (Théoréme 5.2.6). Nous donnons
aussi une description compléte de ’ensemble des palindromes, de sa structure et de ses
propriétés.



viii PROLOGUE



Introduction

This work is devoted to the study of some non-standard numeration systems from an
algebraic and combinatorial point of view. Particular emphasis will be put on the
algorithms performing arithmetic operations.

All the systems we will be dealing with are cases of the so-called positional nu-
meration systems, which term is used to express that a number in such a system is
represented by an ordered set of characters where the value of the character depends on
the position. The most common representatives of these systems are systems given by
an integer base b > 1 and by an alphabet of digits A;. An integer x is in such a system
expressed as

z=xpb" 4 4 zob® + 21b+ 0,

where the coefficients x; are elements of the alphabet A;. Our conventional decimal
system is a particular case with b = 10 and A9 = {0,1,...,9}.

Even though the decimal system is nearly the only one system used in our everyday
lives, the history shows that it has not always been the case [102]. Other variants and
slight modifications of positional system given above were used in mankind’s history,
e.g. the sexagesimal system (base 60) used by Babylonians, see Barrow [24]:

“ .. a positional numeration system appeared for the first time in Babylon
about 3000 B.C. It was created as an extension of the old additive system
with the base 60 so that it incorporated a positional information... this ad-
vance was not without problems, Babylonian system was in fact a hybrid of
a positional and an additive system...”

or a system with base 20 used by Maya Indians, see Knuth [78]:

“Fized-point positional notation was apparently developed first by Maya In-
dians in central America 2000 years ago; their base 20 system was highly
developed. But Spanish conquerors destroyed nearly all of the Maya books
on history and science, so we do not know how sophisticated they had become
at arithmetic.”

Some remains of these systems can be observed even nowadays — think over the way
we measure time or angles.

The third independent invention of a positional numeration system was the Hindu-
Arabic notation system (decimal system), which took place in India about 600 A.D.
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That system eventually became the international standard for numeration. The first
actual written zero as we know it today also appeared in India.

Note that the “leading role” of the decimal system is not true in at least one area
of human activities, namely the area of computers, which is, for electronic reasons,
internally addicted to the binary system.

All the systems whose base is a positive integer are essentially the same, their al-
gebraic and arithmetic properties are all alike, not going against the “common sense”
and corresponding to our experience with the decimal system. However, even in this
domain interesting facts were observed in the past. For instance, addition in the usual
binary system (base b = 2, alphabet Ay = {0,1}), takes a time proportional to the size
of the data. But if we permit signed coefficients, taken in the alphabet A = {—1,0,1},
addition becomes realizable in parallel in a time independent of the size of the data, see
Avizienis [18]. The benefits of using signed coefficients have already been observed by
Cauchy [49]:

“Let us assume that in the notation of a number we place a sign — above a
digit corresponding to a certain order, to erpress that this digit is taken with
the minus sign.”

“When numbers are expressed as we have described before, [.. .| arithmetical
operations will become much more simpler.”

However, as we have pointed out before, since all the systems having for base a
positive integer are essentially the same, new interesting questions had not arisen until
one considered some generalizations. Let us recall some of them briefly.

Mized radiz representations are obtained by taking a sequence of integers (an)n>0
such that ag = 1 and a,, > 1 for all n > 1. We then derive from (a,),>0 another
sequence (up)n>o defined by partial products of (ay)n,>0 by setting u, = apa; - - an. A
positive integer IV is represented as

k
1=0

If the digits d; are taken such that 0 < d; < a;y1, the representation of any positive
integer N is unique. This system was for example used to give a constructive proof of
the generalized Chinese Reminder Theorem by Fraenkel [58].

The factorial numeration system, used e.g. by Lehmer (see Chapter 1 of [28]) for
ranking permutations, is essentially a special case of mixed radix representation, ob-
tained by taking a,, = n+ 1 and hence having u,, = (n+1)! (here-from comes the name
of the system).

Finally, there is a family of systems whose basis is given as a recurrent sequence
(un)n>0, a famous example of which is the numeration system given by the sequence
of Fibonacci numbers (F,,)n>0, where Fy = 1, F1 = 2 and F,, 9 = F41 + F), for all
non-negative n. By a result of Zeckendorf [107]' we know that every positive integer

'This result is dated 1939, but was not published by Zeckendorf until 1972.
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N can be represented in this system with coefficients in the alphabet {0,1} and that
the representation is unique if we refrain from using two consecutive Fibonacci numbers
anywhere in a representation, and if there are no leading zeroes.

All these systems are basically special cases of a general numeration system given
by a strictly increasing infinite sequence of positive integers (uy)n>0 whose first element
is equal to one, as studied by Fraenkel [59]. Concerning representations of positive
integers in such system, we have the following result.

Theorem ([59]). Let 1 = uy < up < ug < --- be a sequence of integers. Then
any non-negative integer N has precisely one representation in the system given by
(Un)n>0 of the form N = Zf:o d;u;, where the d; are mon-negative digits satisfying
updy + -+ + Updy < Upt1 for allm >0, and dy # 0.

So far, all the systems we were describing were designated for the representation of
integers. However, it is not a difficult task to modify them to represent real numbers.
In the case of a system with an integer base b this modification is quite straightfor-
ward — one only needs to use negative powers of b. A real number x is then represented
as
r=apb 4+ b tag+z b dr b

Another example of a system representing real numbers is the so-called Cantor
numeration system, based on the following theorem due to Cantor.

Theorem. Let (qi)72 | be a sequence of integers greater than one. Then any real number
x can be uniquely expressed in the form

Q1Q2“‘Qk7

where cg € 7, and ¢y, are integers such that 0 < cp < qr fork=1,2,... and ci, < qx — 1
holds for an infinite number of indices k.

One can see these Cantor expansions as a generalization either of the mixed radix
representation or of the positional system with base b for real numbers. Indeed, if
qr =b>2forall k=1,2,... we obtain nothing but the previously described positional
system with the base b.

Cantor expansion have been used for example by Claude et al. [45] to decide the
randomness of sequences with letters taken from different alphabets (i.e. from alphabets
of different cardinality).

Numeration systems studied in this thesis are yet another generalization of the
positional system customized to the representation of real numbers. They are based
on the so-called (-expansions, introduced by Rényi [94]. The base in this theory is,
in general, a real number G > 1. Indeed, if § is an integer, we get the standard
positional system with an integer base. On the other hand, when ( is not an integer
new phenomena arise.
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There is an algorithm due to Rényi [94], the so-called greedy algorithm, which allows
to give a representation in a base 3 > 1 (called the (-expansion) to any non-negative
real number. The digits (or coefficients) are integers in the interval [0, 3).

The first important property of this system is that there might exist other represen-
tations of a number, on the same canonical alphabet of digits. The representation given
by the greedy algorithm is the greatest one in the radix order of all the S-representations
of the same number. The study of the set of §-expansions has been carried out in many
contributions, see in particular [1, 37, 40, 61, 65, 74, 87, 94, 98|.

In this work, we will be concerned with the set Zg of real numbers = such that
the [-expansion of |z| uses only non-negative powers of 3. These numbers are called
B-integers, and have been extensively studied as they appear in several fields, such
that for instance mathematical formalization of quasicrystals, i.e. non-crystallographic
materials displaying long-range order, since they define one-dimensional Delaunay sets
with finite local complexity.

The first quasicrystal was discovered in 1984 [100]: it is a solid structure presenting a
local symmetry of order 5, i.e. a local invariance under rotation of 27/5, and it is linked
to an irrational number — the golden ratio 7 — and to the Fibonacci substitution. The
Fibonacci substitution ¢, is the canonical substitution associated with 7-numeration
system, given by

0—01, 1—0.

It defines a quasiperiodic self-similar tiling of the positive real line, and it is a historical
model of a one-dimensional quasicrystal. The description and the properties of this
tiling use a T-numeration system.

A more general theory has been elaborated with Pisot numbers for base, see [23, 44].
In this formalization, the set Zg of 3-integers labels the nodes of the quasi-periodic self-
similar tiling associated with /3.

Note that so far, all the quasicrystals discovered by physicists present local symmetry
of order 5 or 10, 8, and 12, and are modelled using quadratic Pisot units, namely the
golden ratio for order 5 or 10, 1 + /2 for order 8, and 2 + /3 for order 12.

Another important set is the set Fin(() of real numbers x such that = has a finite
(-expansion.

In general, the sets Zg and Fin(3) are not closed under arithmetical operations.
More precisely, when [ is not an integer, Zg is not closed and the closeness of Fin(f3)
under these operations depends on the base (.

When Fin(3) = Z[37!], the number §3 is said to satisfy the Finiteness property (F).
It has been showed [65] that Property (F) implies that 3 is a Pisot number. Property
(F) plays a significant role in in several domains of S-numeration, and hence this result
stresses the importance of Pisot numbers in this theory.

Let us recall at least two reasons why we are so interested in Property (F). First
it is an interesting property from the arithmetic point of view, which amounts to the
question of whether Fin(() has a ring structure or not, and, therefore, it characterizes
the arithmetic simplicity of a given S-numeration system.

Secondly, it is connected with the fractal tiling generated by Pisot numbers. The
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[-expansions when ( is a Pisot number have a close connection with a tiling of the Eu-
clidean space. Rauzy [93] constructed a domain with a fractal boundary connected with
the Pisot number 3 whose minimal polynomial is 3 — 22 — z — 1. Later, Thurston [104]
gave a construction of such a tiling for a general Pisot number. These results were later
extended by other authors [72, 77].

In this framework, Property (F) was shown to be a sufficient condition for an impor-
tant property of the fractal tiling: say that 3 is a Pisot number of degree m satisfying
Property (F). Then the set of inner points of 7, — the domain given by Rauzy’s and
Thurston’s construction — is dense in 7, and its boundary is nowhere dense in R™ !,
see [2, 6]. This means that 7, is a tile.

This work is organized into six chapters. The first one is a preliminary chapter
summarizing all necessary mathematical background. We recall there notions from
the theory of algebraic numbers, we present definitions and results from the field of
combinatorics on words, which are necessary especially for the fifth chapter, and also
from the domain of finite automata, which is mostly needed for discussions of arithmetics
in given numeration systems.

In Chapter 2 we begin the study of numeration systems based on [-expansions.
After introducing (-expansions and all related notions, we give a survey of known
results on topics which we will be dealing with in subsequent chapters. This comprises
in particular the arithmetical properties of G-numeration systems, namely the Finiteness
property and the estimates on the number of fractional digits arising under addition
and multiplication of S-integers. We also recall the combinatorial properties, that is
the study of the subword complexity of infinite words associated with G-numeration
systems.

In Chapter 3 we continue the study of the arithmetic issues of S-numeration systems.
At first we address the Finiteness property. We define a notion of minimal forbidden
words and we give one necessary (Proposition 3.1.2) and two sufficient conditions (The-
orem 3.1.3 and 3.1.5) for the Finiteness property in terms of these minimal forbidden
words.

Then we turn ourselves to the arithmetics of elements in Zg. As we have said before
this set is not closed under arithmetic operations for a non-integer base 3. However,
the (-expansion of the sum (or the product) of two [-integers may have only a finite
number of fractional digits. We are interested in finding the maximal length of such
an arising fractional part for a given base . These maxima are denoted by Lg () and
Lg () respectively.

First, we address a method to estimate these maxima due to Guimond at al. [69].
We apply it to the generalized Tribonacci number, i.e. to the algebraic integer 3 with
minimal polynomial 23 — maz? —x — 1, m > 2. We obtain the following results

5 < Lg(B) <6 form=2,
4 < Lg(B) <5 for m >3,
4 < Lg(B) <6 form > 2.

Then we apply it to a class of totally real cubic Pisot units 3, whose minimal
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polynomial is of the form 2% —axz? —b+1, where a > 2 and 1 < b < a— 1 and we obtain
the following upper estimates

Le(B)

<2 for all a > a¢ for some qag,
Lg(B) <3 fora > 2.

We also find exact values for the “boundary cases” of this class, that is, for b = 1 and
forb=a-1

forb=1,a>3 Lg(B) =2 and Lg(B) =3,
forb=a-1,a>3 Le(B) =1 and Lg(f)=2.

Then we discuss weaknesses of this method and we develop another one (Theo-
rem 3.3.1), partly solving these issues. As an example illustrating the second method
we propose a cubic Pisot number $ with minimal polynomial > — 2522 — 152 — 2 and
we find exact values

Lo(B)=5 and  Lg(B) =7,

for this number j.

In all cases, when we estimate an upper bound of a number of fractional digits, we
also provide a lower bound obtained by means of the computer program pisotarith
— the program performing arithmetics in S-numeration systems [11]. Naturally, we try
to make the gap between these two bounds as small as possible.

The last section of this chapter is devoted to the algorithm for the addition of
eventually periodic [-expansions in a general Pisot base. We describe the algorithm
used in the program pisotarith and even though we did not succeed in providing a
proof of the correctness of the algorithm we at least discuss ideas and directions of a
possible proof.

In Chapter 4 we study another way of representation of numbers, different from the
representations based on [-expansions, but strongly connected with them. It is called
the a-adic representation and it is a representation of complex (or real) numbers in the
positional numeration system with the base «, where « is an algebraic conjugate of a
Pisot number 3.

Based on a result of Bertrand and Schmidt, we prove that a number belongs to Q(«)
if and only if it has an eventually periodic a-adic expansion (Theorem 4.2.3). Then we
consider a-adic expansions of elements of the extension ring Z[a 1] when 3 satisfies
the Finiteness property (F). In the particular case that 3 is a quadratic Pisot unit, we
inspect the unicity and/or multiplicity of a-adic expansions of elements of Z[a~!]. We
also provide an algorithm to generate a-adic expansions of rational numbers. Finally,
we propose methods to perform arithmetic operations in one particular a-adic system,
namely in the system whose base is given by the conjugate of the golden mean 7.

Chapter 5 is devoted to the study of palindromic structure of infinite aperiodic
words ug, which are fixed points of substitutions associated to simple Parry numbers.
Palindromic complexity of an infinite word is strongly related to its factor complexity
and hence this chapter extends the paper of Frougny et al. [63] studying the factor
complexity of ug.
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We first show a necessary condition for the word ug to contain infinitely many
palindromes. Numbers 3 satisfying this condition have been introduced and studied
in [60] from the point of view of linear numeration systems. Confluent linear numeration
systems are exactly those for which there is no propagation of the carry to the right in the
process of normalization, which consists of transforming a non-admissible representation
on the canonical alphabet of a number into the admissible S-expansion of that number.
Such a number 3 is known to be a Pisot number, and will be called a confluent Pisot
number.

Then we determine the palindromic complexity of ug when [ is a confluent Pisot
number, that is P(n), the number of palindromes in ug of length n. In the description
of P(n) we use the notions introduced in [63] for the factor complexity. The connection
of the factor and palindromic complexity is not surprising. For example, in [9] the
authors give an upper estimate of the palindromic complexity P(n) in terms of the
factor complexity C(n).

We show that if the length of palindromes is not bounded, which is equivalent to
limsup,,_,, P(n) > 0, then

Pn+1)+Pn)=Cn+1)—-C(n)+2, for n e N.

We then give a complete description of the set of palindromes, its structure and
properties. The exact palindromic complexity of the word ug is given in Theorem 5.5.1.

In the last part of the chapter we study the occurrence of palindromes of an arbitrary
length in the prefixes of the word ug, when (3 is a confluent Pisot number.
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Chapter 1

Preliminaries

In this chapter we provide an introduction to several fields of mathematics necessary
in the rest of the work. We also establish a unified notation for most of the classical
notions appearing elsewhere in the thesis.

Since the thesis is devoted to the study of algebraical and combinatorial properties
of non-standard numeration systems, namely systems where the base is an algebraic
number, we start with notions from algebraic number theory (Section 1.1), then we
present definitions and results from combinatorics on words (Section 1.2) and also from
the theory of finite automata (Section 1.3), which will be needed during the discussions
of arithmetics in the studied numeration systems.

As usual, we use the following notations: R denotes the set of real numbers, Q
denotes the set of rational numbers, 7 denotes the set of integers, C denotes the set of
complex numbers and N denotes the set of non-negative integers. The cardinality of a
finite set S is denoted by #5S.

Let R be a ring. A polynomial ring R[X] over R is defined to be the set of all
polynomials of the form ag + a1 X + asX?+ - a, X", where a; € R.

1.1 Algebraic numbers

In this section we essentially follow a classical textbook by Stewart and Tall [103].

We say that a complex number o € C is an algebraic number if it is algebraic over Q,
that is, if it is a root of a non-zero monic polynomial with coefficients in Q. Moreover,
a complex number « is said to be an algebraic integer if there exists a monic polynomial
with integer coefficients, say g € Z[X], such that g(«) = 0. In other words

Q"+ ap 10" M4+ ag =0,
where a; € Z for all i.

Let o be an algebraic number. Then there exists a monic polynomial f € Q[X] of
least degree such that f(«) = 0. This polynomial is uniquely determined, it is called
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the minimal polynomial of a and its degree is said to be the degree of a. If the constant-
term ag of the minimal polynomial of an algebraic integer « is equal to +1, « is said to
be a unit.

Note that the set of all algebraic numbers forms a subfield of the field of complex
numbers C, usually denoted by A.

Let a € C be an algebraic number of degree n. Let us denote by Z[a] the minimal
subring of C containing o and Z and by Q(«) the minimal subfield of C containing «
and Q. The following proposition gives an explicit description of this field.

Proposition 1.1.1. Let « be an algebraic integer of degree n. Then
Q(a) = {ap + a1 + a0® + -+ ap 10"t | ag,...,an—1 € Q}.

Given a € A of degree n, its minimal polynomial f € Q[X] factors over C as

where we put a = o). The numbers a?, ..., o™ are the algebraic conjugates of c.

They are all algebraic numbers with the same minimal polynomial f, and, moreover,
they are all distinct.

Since a®@,...,a™ are also algebraic numbers, they naturally generate their own
fields Q(a9)). These fields are very similar to Q(c) (and so one to each other). In fact
they are isomorphic under isomorphisms induced by assignments a +— a9, Formally,
one may define an isomorphism g; : Q(a) — Q(a9)) by setting o;(g(a)) = g(a?)),
where g € Q[X]. In the case that we consider only one resp. two conjugates of « we use
instead of o, resp. a® the notation o/, resp. o, and similarly we use ¢, resp. ¢” for
9(a), resp. g(a®).

There are several classes of algebraic integers that play an important role in number
theory and its applications. The classification of an algebraic integer into one of these
classes is derived from the modulus of its algebraic conjugates. An algebraic integer
o > 1 is said to be

e a Pisot number if max; <, |a\)| < 1,
e a Salem number if maxij<, |a(j)| =1,

e a Perron number if maxij<, |aV)] < a.

We conclude this section with a short note on extension rings. Let us consider
extension rings Z[3], Z[3~!] and Z[3, 3. Obviously, Z[3] C Z[3,3~'] and Z[3"] C
Z[B, 371]. Moreover,

e if 3 is an algebraic integer, then Z[3, 37! C Z[371],

e if 3 is an algebraic unit, then Z[3, 37! C Z[3] and so Z[3] = Z[371].
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1.2 Combinatorics on words

For a survey of various aspects of combinatorics on words the reader is referred to the
series of Lothaire’s books [80, 81], more details on substitutions can be found in Pytheas
Fogg [90].

1.2.1 Finite and infinite words

Let A be an ordered finite set, called alphabet. Its elements, most of the time denoted
either by digits {0,1,...,d— 1} or by characters {ag,a1,...,a4_1}, are called letters. A
word w = wiws - - - Wy, is a finite string of letters in A, the length n of a word w is denoted
by |w|. The empty word is denoted by e. Ordinarily, we define a concatenation of two
words u = uguy -+ - Uk, and v = vguy - - - v; by uv = uguy - - - upveuy - - - v;. The set of all
(finite) words over an alphabet A is denoted by A*. This set with the concatenation as
a binary operation and with the empty word as an identity forms a monoid, called the
free monoid generated by A.

An infinite sequence u = (up)pen = ugujug--- of letters in A is called a right
infinite word. The set of infinite words, is denoted by AN. A word u € AN is said to be
eventually periodic if it is of the form u = vz¥, where v,z € A*, z #cand 2% = zzz---.

A factor of a (finite or infinite) word w is a finite word w such that w = wjuw, for
some words wy,ws. If wy = € then wu is called a prefiz of w, if moreover ws # ¢ then u
is called a proper prefix of w. Similarly if wy = € then u is a suffiz of w, and it is called
proper suffiz if in addition w; # . For an infinite word u we denote by L, (u) the set
of its factors of length n. The language of an infinite word wu is defined as

L(u):= | Ln(w).

neN

An infinite word u = (uy)n>0 is said to be recurrent if each of its factors occurs
infinitely often; formally, for any factor w = wy - - - w,, of u the set {i € N | u; - - ujyy, =
w} of occurrences of w is infinite. Moreover, if the set of occurrences has bounded gaps
for any factor w, then u is called uniformly recurrent (or minimal). Equivalently, we
say that u is uniformly recurrent if for any n there exists R(n) > 0 such that for any
i € N the set of factors of length n in the finite word w;u;t1 - - u;y g(n) coincides with
Ln(u).

The lexicographic order, sometimes called alphabetic order, on words is defined as
follows. For two words u, v, we say that u is less in lexicographic order than v, denoted
by u <jex v, if u is a proper prefix of v or if there exist factorizations v = wau’ and
v = whv' with a,b € A and a < b.

In the sequel, we will be using the three following operations on words.

e The shift operator o acts on AN by o(uguy---) = ujug - - -.

e For a word w = wy - - Wywp41 - - - With a prefix v = wy - - wy, we define v—lw :=

W41 Wh4-2 "+ " -
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e On the set A* one defines the operation ~ which to a finite word w = wy -+ - wy,
associates w = wy, - - - wy, called the reversal of w. A finite word w € A* for which
w = w is called a palindrome.

All notions so far defined for right infinite words can be analogously introduced for
left infinite words u € AN, written in the form u = - - - usujug, and for two-sided infinite
words u = - - u_ou_juguius - - -, the set of two-sided infinite words is denoted by AZ.
If for a two-sided infinite words the position of the letter indexed by 0 is important, we
introduce pointed two-sided infinite words, u = -+ - u_su_1|uguiug - - .

1.2.2 Factor complexity and palindromic complexity

The factor complezity function is a classical way to quantify the diversity of an infinite
sequence. The complexity function C, : N — N of a sequence u associates to any positive
integer n the cardinality #L,,(u), that is

Cu(n) = #H{w € L(u) | Jw] =n}.

Obviously, the complexity is a non-decreasing function and we can bound its values
as Cu(l) < Cu(n) < (#A)" for any positive integer n. The existence of sequences
admitting both extremal values of the complexity is demonstrated by the following
examples.

Ezxzample. A periodic sequence over the binary alphabet © = 010101 - - - has complexity
Cu(n) = 2 for every n.

Example. The Champernowe sequence v = 011011100101110-- -, obtained by con-
catenating the binary expansions of integers 0, 1,2, ..., has complexity C,(n) = 2" for
every n.

Concerning the ability of the complexity function to measure the disorder of a se-
quence we have the following result on the complexity of periodic sequences by Coven
and Hedlund.

Proposition 1.2.1 ([51]). Let u € AN. Then the following conditions are equivalent
(i) u is eventually periodic,

(i) Cy(n) is a bounded function,

(15i) there exists an integer n such that Cy(n) < n.

By the previous Proposition the lowest possible value of the complexity for a non
(eventually) periodic sequence is C,(n) = n + 1 for all n > 1. This is probably one
of the facts that gave rise to a quite extensive study of the family of sequences having
this precise value of complexity, see for example Chapter 2 in [81]. These sequences
are known by the name of Sturmian sequences (words), given to them by Morse and
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Hedlund [86]. Since for a Sturmian word C, (1) = 2, any Sturmian word is necessarily
over a two letter alphabet.

There is a natural question, evoked by Proposition 1.2.1: what are the functions
from N to N which may be the complexity function of a sequence u. No definite answer
to this question is known, but a couple of necessary and sufficient conditions has been
already found. Some sufficient conditions established by listing examples can be found
in [57], the necessary conditions are

e C,(n) is non-decreasing,
o Cy(n+m) < Cyu(n)Cy(m) for any n,m € N,
e whenever C,(n+ 1) = Cy(n) for some n then C,(n) is bounded,

o Cy(n) < (#A)™, if Cu(n) < (#A)™ for some n, then there exists a real number
k < #A such that Cy,(n) < k",

e if there exists a such that C,(n) < an for all n, then the first difference of com-
plexity AC,(n) = Cy(n + 1) — Cyu(n) < Ka? for all n, for a universal constant
K [47, 48],

o if ACy(n) = Cy(n+ 1) — Cy(n) is bounded, the set of n such that AC,(n + 1) >
AC,(n) has density zero [8].

Before introducing the palindromic complexity let us denote by Pal(u) the set of all
palindromes contained in a word u. The palindromic complezity of u, is the function
P. : N — N that associates to a nonnegative integer n the number of palindromes of
length n in L(u),

Pu(n) :=#{w € Pal(u) | |w| =n}.

Obviously, we have P,(n) < Cyu(n) for all n € N. Close relation between factor and
palindromic complexity was given by Allouche et al.

Proposition 1.2.2 ([9]). Let u = upuiug--- be an infinite non-eventually periodic
sequence on a finite alphabet. Then, for all n > 1, we have

16 n
Pu(n) < - Cu<n—|— LZD :
When there is no room for confusion we will usually omit the subscript « in both

Cu(n) and Py(n).

A powerful tool for the determination of the complexity are the so-called left or
right special factors, introduced by Cassaigne [48]. Let w be a factor of a sequence
u e AN, w € L(u). A right extension (respectively left extension) of the factor w is a
word wa (respectively aw), where a € A, such that wa (respectively aw) is also element
of £(u). The number of right (respectively left) extensions of a factor w is called the
right (respectively left) degree of w, denoted by degg(w) (respectively deg (w)). We
say that w is a left special factor of the infinite word w if its left degree is at least 2.
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Similarly, if the right degree of a factor w is at least 2, then w is a right special factor
of u.

All these just introduced notions can be used to characterize Sturmian words. Let
u be a binary infinite word. The following are equivalent

(1) w is Sturmian,
(ii

) Cu(n) =n—+1forallneN,
(iii) for any n € N there exists exactly one right and one left special factor of length n,
)

(iv) there is exactly one palindrome of length n for any n even, and there are exactly
two palindromes of length n for any n odd.

The characterization using palindromes is due to Droubay and Pirillo [54]. Other equiv-
alent combinatorial definitions of a Sturmian word by means of balance, mechanical
words or return words can be found for example in survey papers by Berstel [33, 81].

Infinite words which have for each n € N at most one left special and at most
one right special factor are called episturmian words, this class was introduced as a
generalization of Sturmian words to an arbitrary alphabet by Droubay et al. [53].

Arnouz-Rauzy words (AR words) [17] of order d are special cases of episturmian
words; they are defined as aperiodic words over a d-letter alphabet such that for each n
there exist exactly one left special factor w; and exactly one right special wsy factor of
length n, and, moreover, these special factors satisfy degy (w;) = degg(w2) = d. This
definition implies that the complexity of Arnoux-Rauzy word is equal to (d — 1)n + 1.

The palindromic complexity of Arnoux-Rauzy words is also known [75, 52]: there is
exactly one palindrome of length n if n is even and exactly d palindromes of length n if
n is odd.

Another generalization of Sturmian words to words over a d-letter alphabet is the
infinite words coding the d-interval exchange transformation |76, 92]. In a generic case
the factor complexity is the same as for AR words [76], namely C(n) = (d — 1)n+ 1 for
n > 1. On the other hand the palindromic structure of these words is more complicated.
The existence of palindromes of arbitrary length depends on the permutation which
exchanges the intervals. For d = 3 the result is given in [52], for general d in [21].

Analogically to the case of factor complexity, for the study of the palindromic
complexity it is important to define the palindromic extension. If for a palindrome
p € Pal(u) there exists a letter a € A such that apa € Pal(u), then we call the word
apa a palindromic extension of p.

1.2.3 Substitutions

Let us recall that morphism on a free monoid A* is a mapping ¢ that fulfills p(uv) =
w(u)p(v) for all u,v € A*. Obviously, for determining the morphism it suffices to define
¢(a) for all @ € A. The action of a morphism can be naturally extended on right infinite
words by the prescription

o(uguiug - -+ ) = @(ug)e(uy )e(ug) - - .
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An infinite sequence u € AN is called a fized point of ¢ if p(u) = u. A morphism for
which ¢(a) # € for all a € A is called a non-erasing morphism. If, moreover, there
exists a letter a € A such that ¢(a) = aw for some non-empty word w € A*, the
non-erasing morphism ¢ is called a substitution. Any substitution has at least one fixed
point, namely lim, . ¢"(a).

For a substitution ¢ over a d-letter alphabet A = {ay,...,aq_1} we define its inci-
dence matriz as a d x d integer matrix M, given by (M.,)i; = |¢(a;)|a,, i-e. the element
(1,7) of the incidence matrix is equal to the number of occurrences of the letter a; in
p(aj)-

Note that for any morphism ¢ the mapping ¢™ is also a morphism and for its
incidence matrix we have Myn = (M,,)".

A substitution ¢ over an alphabet A is called primitive if there exists a positive
integer k such that for every pair of letters (a;,a;) € A2 the letter a; occurs in ¢*(a;).
Equally, we can say that a substitution ¢ is primitive if there exists a positive integer
k such that M;f is a positive matrix.

Similarly, one can extend the action of a morphism to left infinite words. For a
pointed two-sided infinite word u = ---wu_gu_1|upujug --- we define the action of a
morphism ¢ by ¢(u) = - p(u_2)e(u_1)|e(ug)e(ur)p(uz)---. One can also define
analogically the notion of a fixed point.

1.3 Automata

The classical textbook on the theory of automata is the work of Eilenberg [55], the most
recent summary book on finite automata was written by Sakarovitch [96], automata over
infinite words are covered by Perrin and Pin [89, Chap. 1].

An automaton over an alphabet A, denoted A = (A,Q, E, I, F), is a directed graph
with labels in an alphabet A. The set () is set of its vertices, called states, I C Q is set
of its initial states, ' C @ is set of final states and E C Q@ X A x @ is the set of labeled
edges, called transitions. If (p,a,q) € E one usually writes p — ¢. The automaton is
said to be finite if its set of states is finite.

A computation (or path) c in A is a finite sequence of transitions such that

al az a3 an

C=4qo q1 q2 qn -

Such a path is usually denoted by ¢ = gy — ¢y, where the finite word a := ajas - - - an
is the label of the computation c. The computation is successful if it starts in an initial
state and ends in a final state. The behavior of A, denoted by |.A|, is a subset of A* of
labels of successful computations of A. Sometimes it is also said that an automaton A
recognizes a language £(A) C A*, where L(A) = | A|.

An automaton A is called unambiguous if for all p,q € @ and for all words w € A*
there exist at most one path in 4 going from p to g labeled by w. An automaton A is
called deterministic if for any pair (p,a) € @ x A there exists at most one state ¢ € Q
such that p — ¢ is a transition of A.
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FEzxample. Let us illustrate the previous definitions on the automaton Agp in Figure 1.1.
Agp has 2 states, denoted 0 and 1, both of them are final, the state 0 is also initial. It
is a deterministic automaton and its behavior |Agp| = 0* U 0*1(00*1)*0* is the set of
finite words over {0, 1} not containing 11 as a factor.

0 l 1

Figure 1.1: The Fibonacci automaton Agp.

An automaton 7 = (A*x B*,Q, E, I, F) over a monoid A* x B* is called a transducer
from A* to B*. Its transitions are labeled by pairs of words (u,v) € A* x B*, u is called

input word and v is called output word. If (p, (u,v),q) € E one usually writes p o, q.
A transducer is said to be finite if the of its edges F is finite.
A computation ¢ in 7 is a finite sequence

w1 vy uz|va ug|vs Un |Vn
C=dqo q1 q2 T dn -

The label of computation c¢ is (u,v) := (ujug---up,v1v2---vy). The behavior of a
transducer 7 is defined as above, that is, as the set of successful computations of 7. In
this case it is a relation R C A* x B* and 7 is said to compute (realize) R. If for any
word u € A* there exists at most one word v € B* such that (u,v) € R then R is a
function.

A transducer is called real-time if input words of all its transitions are letters in A
(i.e. the transitions are labeled in A x B*). The underlying input (respectively output)
automaton of a transducer 7 is obtained by omitting the output (respectively input)
labels of each transition of 7.

In the usual setting a transducer 7 is assumed to operate “as we do”, that is, it
is reading its input (and writing its output) from left to right. Sometimes it may be
more suitable to reverse the direction of the computation, that is, to have a machine
reading/writing from right to left. In the latter case we stress this fact by saying that
T is a right transducer.

A transducer is said to be sequential if it is real-time, it has a unique initial state
and its underlying input automaton is deterministic. A function is called sequential if
it can be realized by a sequential transducer. A subsequential transducer (7,p) is a
pair of a sequential transducer 7 over A* x B* and of a function p : F — B*, called
final function, where F is the set of final states of 7. A pair (u,v) € A* x B* is in the
behavior of a subsequential transducer (7, p) if there exists a successful computation

D o, g in 7 and a word vy € B*, vy = p(q) such that v = vyve. A function is called
subsequential if it can be realized by a subsequential transducer.
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FEzrample. Transducer 7Ty, in Figure 1.2 is a right subsequential transducer with the
final function p given by p(0) = ¢ and p(1) = 1. It realizes addition in the binary
numeration system, that is for an input word u over the alphabet A = {0, 1,2} the
corresponding output word is a word v over the alphabet B = {0,1} having the same
numerical value in the positional system with base 2.

|20

0]1
1

Figure 1.2: Transducer 7y;, realizing addition in the binary numeration system.

The notion of an automaton (and of a transducer) can be generalized to the case
of infinite words. A Biichi automaton A= (A,Q, E,I,F) is an automaton such that a
computation ¢ in A is an infinite sequence of consecutive transitions

al az a3

C=4qo q1 q2

A computation is said to be successful if it starts in a initial state, gy € I, and if it visits
infinitely often the set of final states.

A transducer over infinite words is defined in a similar way, as a Biichi automaton
over a monoid AN x BN,

For automata and transducers, the set of states (J can be also infinite countable,
see [89].
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Chapter 2

Beta-numeration

In this chapter we give an introductory overview of the positional numeration systems
based on the so-called [-expansions, first inspected by Reényi [94]. In the first part
we present basic notions connected with the representation of real numbers in these
systems, then we discuss problems connected with the arithmetic, that is, the question
of whether the set of finite representations in a given system has a ring structure or not
and also the problem of the number of fractional digits arising under the arithmetic of
integers. The last section gives a survey of combinatorial properties of these systems —
we recall results on the structure of the set of integers, the definition of the canonical
substitution associated with these systems and the known values of subword complexity
of infinite words generated by this substitution.

2.1 Beta-expansions

2.1.1 Definitions

Let 3 > 1 be a real number. A representation in base 3 (or simply a (-representation)
of a real number x > 0 is an infinite sequence (x;);<k, such that z; € N and

=08 +ap 1 B Bt aot a1 o4

for a certain k € Z. We denote a [-representation of a number z by (z)s and we use
usual radix scale for it

(T)p = TpTp—1 " T1TQ e T_1T_2 " if k>0,
(£)3=0000---00zpzf_1---  ifk <0,
—k—1 digits

the symbol . is called the fractional point. If a (-representation of x ends in infinitely
many zeros, it is said to be finite and the ending zeros are omitted.

The (-value is a function 73 defined on the set of S-representations (x;);<j by the
prescription

m3(Tpxp—1 ) = leﬂi .

k<i

19
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A particular -representation — called (3-expansion [94] — is computed by the so-
called greedy algorithm.

Algorithm 2.1.1. Let z € R be a real number, denote by |x|, respectively by {x}, the
integer part, respectively the fractional part, of the number x.

1. Find k € Z such that BF < x < gFt1,

2. Set xy = |x/B*] and ry, := {x/3F}.

3. Fori <k, let z; = |frit1] and r; = {Briy1}.
Then (x;)i<y s the 3-expansion of x, denoted by (x)3.

The (-expansion of a number x is the greatest one among its [-representations in
the “slightly modified” lexicographical order, usually called radiz order: Let (y;)i<; be a
B-representation of a positive number x with y; # 0 and (x;);< be the S-expansion of
x. Then either [ < k or Il = k and ygyr_1--- is lexicographically smaller than or equal
to xpxp_1---.

The digits z; obtained by the greedy algorithm are elements of the alphabet Ag =
{0,1,...,[B] — 1}, called the canonical alphabet.

Note that unlike the positional systems whose base is a positive integer, for general
B > 1 a (-representation of x is not unique even on Ag.

For z € [0,1) the B-expansion (x)s can be generated using the 8-transformation of
the unit interval, which is a piecewise linear map T3 : [0,1] — [0,1) given by

Ts(x) == {pz}.

The sequence dg(x) = x1x2---, where coeflicients x; are obtained by iterating the
(B-transformation as

zi = BT (2)]

coincide for each real = € [0,1) with the (-expansion of x generated by the greedy
algorithm.

The difference between these two methods appears in the case of the number x = 1.
The natural expansion of 1 in an arbitrary positional system, and also the expansion gen-
erated by the greedy algorithm, is (1) 3 = 1.0“. On the other hand, the S-transformation
generates

dg(l) =tita---, where ;= LﬁTﬁi_l(l)J .

dg(1) is called the Rényi ezpansion of unity. Obviously, the numbers ¢; are non-negative
integers smaller than (3, t; = | 3] and

1= itzﬁ—i. (2.1)
=1
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The notion of Rényi expansion of unity is very important for it plays a central role
in the theory of -expansions. Based on dg(1) we define dg(l) by putting

ds(1) if (1
dz(l) =
A {(tl'”tm—l(tm —1))* ifdg(l

is infinite,

-ty is finite.

Example. Let 7 be the golden mean, that is, 7 = 2 Tterating the 3-transformation

and by the previous definition one has
d-(1) =11 and dx(1) = (10)¥
On the other hand, for example in the case of § = 3+_2\/g both sequences coincide

dp(1) = dj(1) = 21¥.
Let dg([0, 1)) be the set defined as follows

d([0,1)) := {dp(z) [ 2 € [0,1)} .

The sequence dj(1) is the supremum of this set. The set dg([0,1)) is shift invariant,
that is, it is invariant with respect to the shift operator o and we have the following
commutative diagram

0,1) —2- 0,1

a0 | [0

ds([0,1)) —— dp([0,1)).

By definition we have mg o dg(z) = x, and hence [0,1) C Wﬁ(AE). However, Ag 7
dg([0,1)). If a word ajag--- € Ag is contained in dg([0,1)), it is said to be admissible.

The above mentioned role of dg(1) (or better said of dj3(1)) is that it permits us to
distinguish [-expansions from non-admissible S-representations by characterizing those
words, which are admissible. This is done by the so-called Parry condition.

Theorem 2.1.2 ([87]). A [(-representation (x;);<k of a real number x > 0 is its (3-
expansion if and only if for all j < k the sequence x;x;_1x;_2--- 1is strictly lexicograph-
ically smaller than the sequence djs(1).

The previously alluded important role of Pisot numbers in the field of G-numeration
(and in some sense also the simplicity of Pisot numbers) in this theory is given by the
following Theorem due to Bertrand.

Theorem 2.1.3 ([37, 38]). Let 3 be a Pisot number. Then dg(1) is eventually periodic
and the set dg([0,1)) is recognized by a finite automaton.

Let C be a finite alphabet of digits. The normalization on C is the function vo
which maps a [-representation (w;);<) of a real number = with digits w; € C, to the j-
expansion of x. By result of Frougny, it is known that the normalization is computable
by a finite state automaton if 3 is a Pisot number.
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Theorem 2.1.4 ([61]). If 5 is a Pisot number, then the normalization function vc is
computable by a finite letter-to-letter transducer on any finite alphabet C' of digits.

The reciprocal has been proved by Berend and Frougny.

Theorem 2.1.5 ([29]). The normalization vo in base [ is computable by a finite
transducer on any finite alphabet of digits C if and only if 8 is a Pisot number.

The set of all real numbers x for which the [-expansion (z;)i>; of |z| is finite is
denoted by Fin(8). For > 0 the number Z?:o z;3" is called the (-integer part of x
and ), 4 x;3" is called the B-fractional part of x.

We define also the so-called (3-integers as the real numbers whose -expansion has
no fractional part, the set of 3-integers is denoted by Zg,

Zg = {:13 eR| (Jz])p = wk---xlxo.}.
Ezxzample. Let 7 be the golden mean. Then the set of 7-integers is
Zp={...,—13 -1 —1,—7%, —7,—1,0,1,7, 72,72 + 1,73,.. .},

as drawn in Figure 2.1.

Figure 2.1: Some elements of the set Z;.

For x € Fin(3) we define the length of the fractional part as the minimal [ € N such
that 8!z € Zg. This [ is denoted by fp(z). From this definition we have for z € Fin(3)

(i) fp(z) =0 if and only if z € Zg,

(ii) fp(xz) =1>11if and only if (|z|)g = x - - Toex_1 - - - x_;, with z_; # 0.

2.1.2 Classification of Parry numbers

According to the form of Rényi expansion of unity we define two subclasses of real
numbers, as introduced by Parry [87]. A real § > 1 is called a Parry number (or [3-
number) if dz(1) is finite or eventually periodic and it is called a simple Parry number
(or simple S-number) if dz(1) is finite. Hence, by Theorem 2.1.3, a Pisot number is a
Parry number.

Clearly a Parry number is an algebraic integer. On the other hand, it is a difficult
task to characterize Parry numbers among the algebraic integers, however some partial
results have been already found. We give in this section a summary on this topic.

The most general result on the question of the algebraic nature of Parry numbers is
given by following theorem (proved e.g. in [81]).
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Theorem 2.1.6. Let 8 > 1 be a Parry number. Then 3 is a Perron number.

The following result on Pisot numbers has been proved independently by Bertrand-
Mathis and by Schmidt.

Theorem 2.1.7 ([37],[98]). If 5 is a Pisot number then each element of Q(3) N[0,1)
has an eventually periodic (-expansion.

Schmidt further gives a partial converse by proving the following theorem.

Theorem 2.1.8 ([98]). Let 8 > 1 be a real number, and assume that each element of

QnN[0,1) has an eventually periodic 3-expansion. Then (3 is either a Pisot or a Salem
number.

Finally, Schmidt also conjectures that Theorem 2.1.7 is true also for Salem numbers,
that is, if § is a Salem number then each element of Q(/) N [0,1) has an eventually
periodic B-expansion.

Ezample. 1t is worth pointing out that there are Parry numbers that are neither Pisot
nor Salem. For instance for the root 5 ~ 3.616 of the equation z* — 323 — 222 — 3 the
Rényi expansion of unity is dg(1) = 3203, and 3 has a conjugate a ~ —1.096.

Parry number

Simple Parry
number

Salem
number

Pisot number Property (F)

Figure 2.2: The classification of Parry numbers

The study of $-expansions in the case of Salem numbers — towards the conjecture of
Schmidt — was pursued by Boyd [41, 42]. He gave an affirmative answer to a particular
version of this conjecture in the case of Salem numbers of degree 4.
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Theorem 2.1.9 ([41]). Each Salem number of degree 4 is a Parry number.

Further, he gave [42] a heuristic probabilistic argument that predicts that almost all
Salem numbers of degree 6 are Parry numbers. Moreover, it predicts that for each fixed
even degree d > 8 there should be a positive proportion of Salem numbers of degree d
which are Parry numbers, as well as a positive proportion that are not Parry numbers.
The last prediction given seems to impugn a legitimacy of Schmidt’s conjecture.

Remark 2.1.10. Boyd’s consideration of only algebraic numbers of even degree is due
to the result of Salem [97] stating that the degree d of any Salem number is even and
d>4.

A nice figure by Akiyama [5] summarizing the classification of Parry numbers given
in this section is in Figure 2.2 (The Finiteness property (F) is discussed in Section 2.2.1).

2.2 Arithmetical properties

2.2.1 Finiteness property (F)

The so-called Finiteness property (F) of numeration systems is closely related not only
to arithmetics on these systems, but for example also to the dual Pisot tiling gener-
ated by these systems, see papers by Akiyama [2, 4|, Akiyama and Sadahiro [6] and
Thurston [104].

Property (F) was introduced by Frougny and Solomyak [65], when they asked if

Fin(g) = Z[3'] (2.2)

holds for a given 3. We say that a number [ satisfying (2.2) has Property (F). Other
way to interpret Property (F) is to ask whether the set Fin((3) has a structure of a ring.

Clearly, one of the inclusions, namely Fin(3) C Z[371], holds by the definition of the
set Fin(f) for any algebraic integer 3. Concerning the other direction, authors showed
in [65] the necessary condition.

Theorem 2.2.1 ([65]). Let Z[3~!] C Fin(8). Then 3 is a Pisot number and dg(1) is
finite.

However, the converse is not true; examples can be found by means of the following
Proposition.

Proposition 2.2.2 ([1]). Let § > 1 be a real algebraic integer with a positive real
conjugate. Then (3 does not have Property (F).

To find a simple algebraic characterization of Pisot numbers satisfying (F) is an
open problem up to now, even though there is an algorithm by Akiyama to determine
whether Property (F) holds for a given Pisot number /3 or not. Its essence is given by
another result of [1].
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Theorem 2.2.3 ([1]). Let 3 be a Pisot number of degree m. Then [ has Property (F)
if and only if every element of

c(B) = {mEZ[ﬁ] ‘ 0<z=2W <1,z0) §% sz,S,...,m}

has a finite S-ezpansion. Here 9 with i = 2,...,m are the conjugates of x € Q(B).

Indeed, the set C'(3) is finite. Therefore to check Property (F) it is enough to inspect
the B-expansions of finitely many elements of Z[/].

Let 8 be a Pisot number with minimal polynomial
Mg(z) = 2% —ag_129™" — - a1z —aq. (2.3)

Several authors have found some sufficient conditions in terms of coefficients in Mg(x)
for 3 to have Property (F). We list them below.

Theorem 2.2.4 ([65]). If the coefficients in (2.3) fulfill ag—1 > ag—2 > -+ > ap > 0,
then [ has Property (F).

Theorem 2.2.5 ([71]). If the coefficients in (2.3) fulfill agz—1 > ag—o2+---+ai1+ag >0
with a; > 0, then [ has Property (F).

Theorem 2.2.6 ([3]). Let 3 be a cubic Pisot unit with minimal polynomial x® — asx? —
a1x — ag. Then the following statements are equivalent

(i) 8 has Property (F),
(ii) ap=1, a2 >0 and -1 < a; <as+1,

(ii1) dg(1) is finite.

2.2.2 Number of fractional digits

The second question arising when we consider the arithmetics on [-expansions is con-
nected to the fact that if 3 is not an integer the set Zg is not closed under arithmetic
operations. In particular, |3] € Zg, but [3] + 1 ¢ Zg.

Ezample. Let 7 be the golden mean. We have |7| = 1 and the number 2 (seen as the
addition 1 + 1) can be expanded as

2 = ].c + ]_c == 10 +0011 = 1.11 == 10001,
where the equality 1.0 = 0.11 comes from the minimal polynomial 72 = 7 4 1.

Hence, besides the question whether the result of an arithmetic operation on Fin(/)
has a finite S-expansion, studied in previous section, we are also interested in describing
the maximal length of the resulting fractional part. Since it is possible to convert
z,y € Fin(B) by multiplication by a common suitable factor 5* into elements of Zg, for
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the description of fractional parts of results of addition and multiplication it is enough
to study the following quantities.

Lo = L (8) = max { fp(z +y) | 7,y € Zg,x +y € Fin(3)},
Lo = Leo(8) = max { fp(z-y) | 2,y € Zy,a -y € Fin(B)} .

The maximum of an unbounded set is defined to be +oc. In [2] it is shown that for
a Pisot number [, one has Lg(3) < +o00. In [69] the same result is given for Lg(f).
The most recent result on finiteness of these bounds was given by Bernat.

Theorem 2.2.7 ([30]). The quantities Ly (3) and Lg(B) are finite if 3 is a Perron
number.

There exists a method for determining upper estimates on the constants Lg () and
Lg(f). It stems from a theorem given by Guimond et al. [69]. The idea of the theorem
is quite simple and in some way it has already been used by Messaoudi [83], and Gazeau
and Verger-Gaugry [66].

Theorem 2.2.8 ([69]). Let 3 be an algebraic number, 3 > 1, with at least one conjugate
B satisfying

H :=sup{|?| | 2 € Zg} < 4,
K :=inf{|?/| | z€Zsg\ BZLs} >0,

where 2’ denotes the image of z € Q(8) under the field isomorphism ' : Q(3) — Q(3').

Then
( 1 )L@(ﬁ) B 2 J ( 1 >L®(ﬂ) B 2
— — an — —_—.
el K 3] K

In the Theorem above we require the existence of at least one conjugate of 3 such
that the constant H is finite and K is positive. To decide whether K > 0 or K =0 is
quite complicated. A sufficient condition for a number (3 so that K = 0 will be discussed
later, cf. section 3.2.4.

On the other hand, a sufficient condition for a certain class of 3 so that K > 0 was
given by Akiyama [2]. He proved that for § a Pisot unit satisfying Property (F), the
origin is an inner point of the central tile in the conjugated plane, i.e. of the closure
of the set {2’ | z € Zg}. This implies that K is positive for all conjugates of such a
number £.

Let us summarize some known results on the values of Lg(3) and Lg(5).

e Knuth [79]: Ly (3) =2 for 8> 1 root of 22 =z + 1.

e Burdik et al. [44]

for 3 root of equation 2>

1 =mzr—1,m>3,
Lg(B) = Lg(B) =2 for (3 root of equation 2 = max +1, m > 1.
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e Guimond et al. [69]
(i) B root of 22 = 2m — n, where m,n € N and m > n + 2.
Le(B) < 3mlnm,
Lg(B) <4mlnm.
(ii) B root of 22 = xm + n, where m,n € N and m > n.

Lg(B) =2m form=mn,
2{ mt1 JgL@ﬁ)gQ[LW form >n,

m—n+1 m—n+1

and
Lg(B) < 4Lg(B)loge(m +2).

e Messaoudi [84]: Lg(3) <5 for 3 real root of the equation 23 = 22 + z + 1.

2.3 Combinatorial properties

2.3.1 Properties of Zg

Besides the fact that the set Zg is not closed under arithmetic operations, there is
another difference from the case where (3 is an integer. There is more than one possible
gap (in terms of the length) between neighbors in Zg (see Figure 2.1). The following
theorem due to Thurston provides a complete characterization of these gaps.

Theorem 2.3.1 ([104]). Let § > 1 be a Parry number. Then the lengths of gaps
between neighbors in Zg take values in the set {Ag, A1, ...} where

(e}

Uiti .
Aizzk—z, forieN.
k=1 B

From the definition of dg(1) it is obvious that the largest distance between neigh-

boring [-integers is
00 t
No=) =1
k=1 p

Obviously, by Theorem 2.3.1, there is only a finite number of different gaps between
neighbors in Zg for 3 being a Parry number, simple or not.

Let us denote the lengths of gaps by letters a; := A;. Then the sequence of gaps
between the neighbors in set ZE uniquely defines an infinite word associated with (3,
denoted by ug, over the alphabet {ag,ar,...}.

2.3.2 Associated substitution

With every Parry number one can associate a canonical substitution ¢z = ¢, such that
the above defined word ug is a unique fixed point of . Substitution ¢ is defined in the
following way [56].
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Simple case. Let § be a simple Parry number and let dg(1) = ¢; - - - t;5,. The alphabet

of the substitution is A, = {ao,...,am—1} and we define
plai) = ag taiy forall 0<i<m-—1, (2.4a)
p(am-1) = ag". (2.4b)

Non-simple case. Let § be a non-simple Parry number and let m, p be minimal such
that dg(1) =t1 -+ tm(tm+1 - - tmyp)”. The alphabet A, is A, = {ao,...,amyp—1} and
we define

o(a;) = aga;q forall0<i<m+p—1, (2.5a)
A - (2.5Db)

t
pamtp-1) = ag""”

As a consequence of this characterization we have the fact that the incidence matrix
M, of the canonical substitution of any Parry number has one of the following forms

ty to e e ety t1 ty o e e by
1 0 v e e 0 1 0 -0 e enn 0
0 0

M, = 0 M, = .
0 -+ -+ 0 1 0 0 -« -« 0 1 0

It has been proved by Canterini and Siegel [46] that any substitution of Pisot type
(that is a substitution for which the characteristic polynomial of its incidence matrix
is the minimal polynomial of a Pisot number) is primitive. We give below a proof that
the same is true for all Parry numbers.

Proposition 2.3.2. Let ¢ be a canonical substitution associated to a Parry number (.
Then ¢ is primitive.

Proof. Let G = (V, E) be a graph with n vertices. Its adjacency matrix is defined to
be a n x n matrix B = (bj;)nxn with rows and columns labeled by graph vertices. The
element b;; = 1 if there is an edge going from vertex i to vertex j and b;; = 0 otherwise.

There is a result from graph theory saying that if B = (b;;)nxn is the adjacency
matrix of a graph G, then B = (b )nxn displays for all i,j < n the number b}; of
walks of length k from the vertex i to the vertex j. Recall that a walk of length & in
a graph G = (V, E) is a sequence of vertices and edges viejvges - - - exvgy1 such that
v; €V, e € E and v; Ei—)'l)i_i_l isan edgein G foralli =1,... k.

Consider graphs in Figure 2.3 and their adjacency matrices By and Bs. In the first
case there is a walk of length at most n — 1 from vertex 1 to any other vertex and also
a walk of length at most n — 1 from any vertex to vertex 1. By virtue of the loop in
vertex 1 (that is to say by using this loop repeatedly as many times as needed) we can
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2.3.1: A graph with matrix Bs. 2.3.2: A graph with matrix Ba.

Figure 2.3: Graphs having adjacency matrices By and Ba

find a walk of length exactly 2n — 2 between any pair of vertices. This implies that for
all 4,j <n the entry bj; of B2 s bi; > 1. Hence

B2 >0. (2.6)

In the second case there is a walk of length at most n — 1 from vertex 1 to any other
vertex and also a walk of length at most k := max{n —m + 1,m + 1} from any vertex
to vertex 1. Using the same argument as in the previous case, by virtue of the loop in
vertex 1 we can find a walk of length exactly n + k — 1 between any pair of vertices.
This implies that for all 4, j < n the entry b;; of Byt s bi; > 1. Hence

Byt > 0, (2.7)

Let 8 be a simple Parry number, ¢ its canonical substitution. Let us denote the
dimension of M, by n x n (i.e. n =m). Then

ty ty e e et 1 0 - - 0 1
R R 1 0 et v i 0
0 0

M, = 0 2 S 0 =B,
O -~ --- 0 1 0 0O -«- -« 0 1 0

and hence Mg”_2 > 0 by (2.6).
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Let 8 be a non-simple Parry number with dg(1) = ¢1 -ty (tmt1 - - tmtp), and let
¢ be its canonical substitution. Since m,p are minimal possible then either ¢,,, > 0 or
tmtp = 0 and t,, > 1. In the first case we have M, > B of corresponding dimensions,
i.e. n = m + p. The primitivity is obtained by Mg”_z > 0 as in the simple case.

In the latter case (i.e. ty4p = 0 and t,, > 1) we have

tr bty o tm o by 1 0 -~ 1 - 0
1 0 cor oo e 0 1 0 o e o 0
0 0
Mcp = > = B2
1 1
0O -+ -« 0 1 0 0O -+ -« 0 1 0
where n = m + p. Therefore M:,}Jrk_l > 0 by (2.7), which completes the proof. O

2.3.3 Subword complexity

The problem of the subword complexity of infinite words ug associated with Parry
numbers is so far not completely solved, however, at least an asymptotic bound is
known, since all these words are fixed points of primitive substitutions, their factor
complexity is at most linear [91]. Concerning the exact values of C,;, obviously the
simplest task is to determine its values for words ug which are elements of some known
class of infinite words.

Among the words ug over a binary alphabet, i.e. in the cases dg(1) = t;t2 and
dg(l) = t1ts, it is simple to determine, which ug correspond to Sturmian words and
hence have complexity Cy;(n) = n+ 1. The matrices of canonical substitutions in these

two cases are
_ft1 1o _t1 1o
M¢_<1 0) and M¢_<1 1)

It is follows from [85] that if a Sturmian word is a fixed point of a substitution ¢ with
a matrix M, then
M, e {AeN>?| det A=+1}.

Therefore ug being a Sturmian word implies that dg(1) = ¢;1 or dg(1) = t1(¢t; — 1)~.
The converse is obvious from the form of corresponding canonical substitutions .

The second class of infinite words with known values of complexity is the one of
Arnoux-Rauzy words (AR words). Let us recall that an AR word of order m has
complexity Cy,(n) = (m — 1)n + 1. It has been shown [63] that for a simple Parry
number f3, the word ug is AR if and only if dg(1) = s™11; a similar result concerning
non-simple Parry numbers is as follows. Recall that the language of an Arnoux-Rauzy
word is closed under reversal. By a result of Bernat [32] we have that a word ug
associated with a non-simple Parry number ( is closed under reversal if and only if
dg(l) = stv.
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Other results on the complexity of the sequences ug for 3 being a Parry number
were obtained by Frougny et al. [63]. Their results, covering a class of simple Parry
numbers, are as follows.

Theorem 2.3.3 ([63]). Let 8 > 1 such that dg(1) = tity---ty, and either t; >
max{tg, e ,tm_l} orti=ta=:-=1tym_1.

1. Suppose that t,, = 1. Then we have

Cn)=(m-1)n+1.

2. Suppose that t,, > 1. Then the complexity of the infinite word ug satisfies

(m—1n+1<C(n) <mn.

In the later case the authors gave the precise value in terms of the coefficients of the
linear recurrent system associated with (3, see Bertrand [39].
Concerning the subword complexity of ug associated with non-simple Parry num-

bers, much less is known. Exact values of complexity are known only for some special
cases, cf. [63, 22, 64].
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Chapter 3

Arithmetics of (-expansions

This chapter pursues further the arithmetic issues of the [-numeration systems. At
first we inspect the Finiteness property (F). We obtain new necessary and sufficient
conditions so that ( satisfies it; these conditions are expressed in terms of the so-called
minimal forbidden words.

Then we turn ourselves to the previously discussed problem of the maximal number
of fractional digits arising under arithmetic operations of B-integers. At first, we use a
method due to Guimond et al. (Theorem 2.2.8). We apply it to obtain upper estimates
in the case where 3 is a generalized Tribonacci number, that is, the algebraic integer
with minimal polynomial of the form 3 —ma? —x— 1, m > 2. In the Tribonacci
case (m = 1), we obtain that 5 < Lg(8) < 6 and 4 < Lg(8) < 5. The exact bound
Lg(8) = 5 has been obtained by Bernat [31]. For m > 2 we get

5< Lg(B) <6 form =2,
4<Lg(B) <5 for m > 3,
4<Lg(B) <6 for m > 2.

We then consider the case of totally real cubic Pisot units with minimal polynomial
of the form 23 —az? —bxr +1,a>2and 1 <b < a — 1. We show that

Lg(B) <2 for all a > a¢ for some ag,
Lg(B) <3 fora > 2.

We also find exact values for the “boundary cases” of this class, that is, for b = 1 and
forb=a-1

forb=1,a>3 Le(B) =2 and Lg(B)

3,
forb=a—-1,a>3 Lg(B)=1 and Lg(B)=2.

Even though the assumptions of Theorem 2.2.8 are not very strict, it is easy to see
that this method is not able to provide estimates in all the cases. We discuss these
problematic cases and then we provide another method, partly solving these issues (on
the other hand this second method is limited to Pisot numbers only).

33
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At the end of the chapter we study the algorithm performing addition in an arbitrary
Pisot numeration system. Note that this algorithm has been implemented in the form
of the program pisotarith, see Appendix B.

The first section (On the Finiteness property (F)) and the third section (Bounds
on Lg(B), Lg(B) for Pisot numbers (Cut-and-project method)) of this chapter have
been published in the Bulletin of the Belgian Mathematical Society [14]. A part of the
second section, namely the application of the first method for finding the upper bounds
on Lg(B) and Lg(B) for the generalized Tribonacci base, is the subject of a paper
accepted for publication in Journal of Automata, Languages and Combinatorics [16].

3.1 On the Finiteness property (F)

In this section we shall investigate some necessary and some sufficient conditions for 3,
in order that Fin((3) is a ring. According to the definition, Fin((3) contains both positive
and negative numbers. Therefore we first justify why, in order to decide about Fin(3)
being a ring, it is enough to study only the question of addition of positive numbers.

Proposition 3.1.1. Let § > 1.
(i) If dg(1) is infinite, then Fin(53) is not a ring.

(1) If dg(1) is finite, then Fin(f) is a ring if and only if Fin(5) is closed under addition
of positive elements.

Proof. (i) Let dg(1) = tytats ... be infinite. Then (2.1) implies

1 ti—1 ty 3
1— == TR 3.1
5T TR (31)
Since (t; — 1)tats... <jex dg(1), the expression on the right hand side of (3.1) is the
[-expansion of 1 — 371 which therefore does not belong to Fin(s).
(ii) Let

(3.2)

and let Fin(() be closed under addition of positive numbers. Consider arbitrary x €
Fin(f) and arbitrary ¢ € Z such that 2 > 3°. Then the -expansion of z has the form
z = > " a3, where n > ¢. Repeated application of (3.2) allows us to create a

representation of z, say x = Zf:_ 1 Zif3* such that &, > 1. Then

-1
(@ — 1B+ D #f

i=—M

is a finite B-representation of  — 3¢. Such a representation can be interpreted as a sum
of a finite number of positive elements of Fin(/3), which is, according to the assumption,
again in Fin(f).
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It suffices to realize that subtraction  — y of arbitrary x,y € Fin(3), v >y > 0
is a finite number of subtractions of some powers of 3. Therefore Fin(3) being closed
under addition of positive elements implies being closed under addition of arbitrary
x,y € Fin(p).

Since multiplication of numbers z,y € Fin(f) is by the distributive law addition of
a finite number of summands from Fin(/3), the proposition is proved. O

Let us mention that dg(1) infinite does not exclude Fin(f3) closed under addition of
positive elements, see Remark 3.1.6.

From now on, we focus on addition = + y for z,y € Fin(8), z,y > 0. As we have
already explained before, since the sum and the product of two numbers from Fin([3)
can be converted by multiplication by a suitable factor 5* into the sum or the product
of two (-integers, it suffices to consider z,y € Zg.

Let z,y € Zg, x,y > 0 with S-expansions z = > ;_, i 0F, y = > o yi3*. Then
Y orol@k + yr) 3" is a B-representation of the sum x 4 3. If the sequence of coefficients
(T + Yn)(Tn-1 + Yn—1) - -+ (xo + yo) verifies the Parry condition (Theorem 2.1.2), we
have directly the S-expansion of x 4+ y. In the opposite case, the sequence must contain
a non-admissible (also called forbidden) word.

Special role in our consideration play the so-called minimal forbidden words.

Definition. Let 8 > 1. A forbidden word wgur_1---ug of non-negative integers is
called minimal, if

(1) ug—1---up and uy - - - uy are admissible, and
(ii) w; > 1 implies uy - - - w1 (u; — 1)uj—q1 - - - ug is admissible, for all i = 0,1,... k.

Obviously, a minimal forbidden word wgup_1---ug contains at least one non-zero
digit, say u; > 1. The word is a (-representation of the addition of two [-integers
2= upBF + - F w1 f F (u — DB+ u f -+ up and w = B The B-
expansion of a number is lexicographically the greatest among all its 5-representations,
and thus if the sum z + w belongs to Fin(f3), then there exists a finite S-representation
of z+4w lexicographically strictly greater than ugug_1 - - - ug, (the S-expansion of z+w).

We have thus shown the following necessary condition.

Proposition 3.1.2 (Property T). If Fin(3) is closed under addition of two positive
numbers, then 8 must satisfy the following property:

For every minimal forbidden word ugug_1---ug there exists a finite sequence v, - - - vy
of non-negative integers, such that

1. k.l <n,
2. v+ B = w4+ ui B+ o,

3. VU1V >lex 000 ug---ug-

(n—k’)times
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The rewriting of the S-representation z = w3+ - -+uy f+ug on a lexicographically
strictly greater (-representation z = v, 3" + - - - + vy 3¢ will be called a transcription.

In general we shall apply the transcription on a (-representation of a number z in
the following way. Every [-representation of z which contains a forbidden word can be
written as a sum of a minimal forbidden word (7 (ugB* + --- 4+ w13 4+ ug) and of a -
representation of some number Z. The new transcribed (-representation of z is obtained
by digit-wise addition of the transcription 37 (v, 3" 4 - -+v,3%) of the minimal forbidden
word and the (-representation of Z.

Obviously, the transcribed S-representation of z is lexicographically strictly greater
than the original one. This transcription may be repeated until the [-representation
does not contain any forbidden word. In general, it can happen that the procedure may
be repeated infinitely many times. Following two theorems provide sufficient conditions,
in order that this situation is avoided.

Theorem 3.1.3. Let 8 > 1 satisfy Property T, and suppose that for every minimal
forbidden word ugu_1 - - - ug we have the following condition:

If vyvp_1 - - - vg is the lexicographically greater word corresponding to ugug_1 - - - ug in the
sense of Property T, then

Up+vp1+-+v SupF+upg_1+---+ug.

Then Fin(B) is closed under addition of positive elements. Moreover, for every
positive x,y € Fin(f3), the B-expansion of x+y can be obtained from any B-representation
of x + y using finitely many transcriptions.

Proof. Without loss of generality, it suffices to decide about finiteness of the sum x + y,
where x,y € Zg, (x)g = Tp - - - x120e and (Y)g = Yn - - - Y1Yoe-

We prove the theorem by contradiction, i.e. suppose that we can apply a transcrip-
tion to the [(-representation (x + y)g infinitely many times.

We find M € N such that z+y < M1, Then the S-representation of z+y obtained
after the k-th transcription is of the form

M .
x+y:Zc§-k)BZ,

=y,

where ¢, is the smallest index of non-zero coefficient in the [-representation after the
k-th step.

Since for every exponent ¢ € Z there exists a non-negative integer f; such that
z+y < f;3, we have that ¢¥) < f; for every step k.

i

Realize that for every index p € Z, p < M, there are only finitely many sequences
cMCM—1 - - Cp satisfying 0 < ¢, < f; forall ¢ = M, M —1,...,p. Since in every step k
the sequence CE\Z) cg\]f[)_l .-+ lexicographically increases, we can find for every index p the

step k, so that the digits cg\'f[), cg\’f[)_l, ceey c,(,k) are constant for £ > k. Formally, we have

(VpeZ,p< M)3r eN)(VE €N, k> r)(Vi € Z, M >i>p)(c™ =) (3.3)

)
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Since by assumption of the proof, the transcription can be performed infinitely many
times, it is not possible that the digits cz(.ﬁ) for i < p are all equal to 0. Let us denote

by r the maximal index r < p with non-zero digit, i.e. ¢} > 1.

In order to obtain the contradiction, we use the above idea (3.3) repeatedly. For
p =0 we find Kk =t kK1 and r =: r; satisfying

M ri—1
TH+y= chﬁl)ﬁi + c,(n’fl)ﬁ“ + Z cl(-nl)ﬁ" )
i=0

i=le,

In further steps k > x; the digit sum Zz‘]\io cl(.k) remains constant, since the digits
(k) (=1) (k)
c

¢; ' remain constant. The digit sum zi:m . > 1, because the sequence of digits

lexicographically increases. For every k > k1 we therefore have

M M
S > 1.
=0

=

We repeat the same considerations for p = r1. Again, we find the step k =: kKo > K
and the position r =: ro < r1, so that for every k > ko

M M
S > 1Y

=79 =71

In the same way we apply (3.3) and find steps k3 < kg4 < k5 < --- and positions
r3 > 14 > 1r5 > --- such that the digit sum Zf‘irs cgﬁs) increases with s at least by 1.
Since there are infinitely many steps, the digit sum increases with s to infinity, which
contradicts the fact that we started with the finite digit sum ) ;' (2 + yx) and the

transcription we use do not increase the digit sum. O

Let us comment on the consequences of the proof for § satisfying the assumptions of
the theorem. The (-expansion of the sum of two (-integers can be obtained by finitely
many transcriptions where the order in which we transcribe the forbidden words in the
(B-representation of x + y is not important. However, the proof does not provide an
estimate on the number of steps needed. Recall that for rational integers the number of
steps depends only on the number of digits of the summed numbers. It is an interesting
open problem to determine the complexity of the summation algorithm for -integers.

In order to check whether [ satisfies Property T we have to know all the minimal
forbidden words. When dg(1) = tit2---t,,, a minimal forbidden word has one of the
forms

(t1+1), ti(ta+1), tita(ts+1), ..., tite...tmo(tm1+1), t1...tm_1tm.

Note that not all the above forbidden words must be minimal. For example if § has the
Rényi expansion of unit being dg(1) = 111, the above list of words is equal to 2, 12,
111. However, 12 is not minimal.
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Theorem 2.2.4 on closeness of Fin(3) under addition in the case where dg(1) is finite
with decreasing digits, is a consequence of our Theorem 3.1.3.

Corollary 3.1.4 ([65]). Let dg(1) =t1---ty, t1 >ty > -+ >ty > 1. Then Fin(f) is
closed under addition of positive elements.

Proof. We shall verify the assumptions of Theorem 3.1.3. Consider the forbidden word
tita---ti—1(t; + 1), for 1 <i < m — 1. Clearly, the following equality is verified

0B+ (i) B B+ (1) =
= B4 (t; —tip1) B+ (tg — i) B2+ -+ (tei — t) 3™
b1 BT e, BT

The assumption of the corollary assures that the coefficients on the right hand side
are non-negative. The digit sum on the left and on the right is the same. Thus

100---0(t1 — tit1)(t2 — tiva) -+ (tm—i — tm)

i times

is the desired finite word lexicographically strictly greater than Otqte---t;—1(t; + 1).
It remains to transcribe the word t1ts... %1ty into the lexicographically greater
word 10 0...0. |
——

m times

The conditions of Theorem 3.1.3 are however satisfied also for other irrationals that
do not fulfil assumptions of 3.1.4. As an example we may consider the minimal Pisot
number. It is known that the smallest among all Pisot numbers is § solution of the
equation 23 = x + 1, and dg(1) = 10001. The number 3 thus satisfies the relations

B=p+1 and p=p'+1.

The minimal forbidden words are 2, 11, 101, 1001, and 10001. Their transcription
according to Property T is the following:

92 = ﬁQ +ﬁ_5
B+1 = p3
ﬁ2 +1 = 63 +ﬁ_3
Br1 = gypgo
gyl = @
The digit sum in every transcription is smaller than or equal to the digit sum of the
corresponding minimal forbidden word. Therefore Fin((3) is according to Theorem 3.1.3

closed under addition of positive numbers. Since dg(1) is finite, by Proposition 3.1.1
Fin(p) is a ring. This was shown already in [3].

In the assumptions of Theorem 3.1.3 the condition of non-increasing digit sum can
be replaced by another requirement.We state it in the following theorem. Its proof uses
the idea and notation of the proof of Theorem 3.1.3.
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Theorem 3.1.5. Let 8 > 1 be an algebraic integer satisfying Property T, and suppose
that at least one of its conjugates, say (3, belongs to (0,1). Then Fin(B3) is closed
under addition of positive elements. Moreover, for every positive x,y € Fin(f3), the
B-expansion of x + y can be obtained from any (-representation of x + y using finitely
many transcriptions.

Proof. If it was possible to apply a transcription on the [-representation of x + y in-
finitely many times, then we obtain the sequence of 3-representations

M .
x—{—y:chk)ﬁZ,

i=0),

where the smallest indices of the non-zero digits ¢; satisfy limg_ ., £ = —oo. Here we
have used the notation of the proof of Theorem 3.1.3. Now we use the isomorphism
between algebraic fields Q(3) and Q(8’) to obtain

M
k .
(«T+y), _ x'—i—y/ _ ZCE )(51)1 > (5l)ék )

=),
The last inequality follows from the fact that 5’ > 0 and cgk) > (0 for all £ and 4. Since
B < 1 we have limy ()% = +oc, which is a contradiction. O
Remark 3.1.6. Let us point out that an algebraic integer § with at least one conju-
gate in the interval (0,1) must have an infinite Rényi expansion of unit. Such [ has
necessarily infinitely many minimal forbidden words. The only examples known up to
now of (3 satisfying Property T and having a conjugate 3 € (0,1) have been treated
in [65], namely those which have eventually periodic dg(1) with period of length 1,

dg(l) =ttty - tm_l(tm)w , witht; >t > >t 1 >ty, > 1. (3.4)

In such a case every minimal forbidden word has a transcription with digit sum strictly
smaller than its own digit sum. Thus closure of Fin() under addition of positive
elements follows already by Theorem 3.1.3. This means that we don’t know any [ for
which Theorem 3.1.5 would be necessary.

From the above remark one could expect that the closure of Fin(/3) under addition
forces that the digit sum of the transcriptions of minimal forbidden words is smaller
than or equal to the digit sum of the corresponding forbidden word. It is not so. For
example let 3 be the solution of 2% = 222 + 1. Then dg(1) = 201 and the minimal
forbidden word 3 has the B-expansion

1 1 1

AN

The digit sum of this transcription of 3 is equal to 4. If there exists another tran-
scription of 3 with digit sum < 3, it must be lexicographically strictly larger than 3

3=0+
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and strictly smaller than 10.0111, because the (-expansion is lexicographically greatest
among all representations of a number. It can be shown easily that a word with the
above properties does not exist. In the same time Fin(/3) is closed under addition by
Theorem 2.2.5.

On the other hand, Property T is not sufficient for Fin(3) to be closed under addition
of positive elements. As an example we can mention a § with dg(1) = 100001. Such 3
satisfies 3% = 3° + 1. Among the conjugates of 3 there is a pair of complex conjugates,
say 3, 3" = (', with absolute value |3'| = |3"| = 1.0328. Thus 3 is not a Pisot number
and according to Theorem 2.2.1, Fin(/3) cannot be closed under addition of positive
elements.

However, Property T is satisfied for 3. All minimal forbidden words can be tran-
scribed as follows:

2 = B+ 4+ T+ 450+

B+1 = B+ 0+ +p8%+577
Pl = B+gS+5 7448
Pl = gepgS+gT

B4l = B +g°

Fr1 = g

The expressions on the right hand side are desired transcriptions, since they are finite
and lexicographically strictly greater than the corresponding minimal forbidden words.

3.2 Bounds on Ls(f) and Lg(8) (One conjugate method)

As we have mentioned earlier, Fin(/3) can be a ring only for 3 a Pisot number. However,
it is meaningful to study upper bounds on the number of fractional digits that appear
as a result of addition and multiplication of S-integers also in the case that Fin(53) is
not a ring.

In this section, we address the method for determining upper estimates on Lg(/3)
and Lg(3) due to Guimond et al. [69], which was stated in the previous chapter.

We use it to obtain upper estimates on Lg (/) and Lg (/) for the Tribonacci number,
for generalized Tribonacci numbers and for a class of totally real cubic Pisot units. Note
that this method is applicable even in the case that § is not a Pisot number.

For a convenience, let us recall the theorem providing the method for determining
the upper estimates.

Theorem 3.2.1 ([69]). Let 5 be an algebraic number, 3 > 1, with at least one conjugate
B satisfying

H :=sup{|?/| | z € Zg} < 40,
K :=inf{|?/| | z € Zs\ BZs} >0,
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where 2z’ denotes the image of z € Q(3) under the field isomorphism ' : Q(3) — Q(5).
Then
< 1 >L® 2H J ( 1 >L® H?
— < — an — < —.
5] K 15| K

Remark 3.2.2. One can do two very simple observations on H and K.

e Since H > sup{|f#'|¥ | k € N}, the condition H < -+oo implies that || < 1.
Moreover, in this case we have

5]
1—1g

H<Y || =
=0

o If 3 € (0,1), we have for 2 € Zg \ fZg that |2/| = 3" ;2z(8')" > 29 > 1. The
value 1 is achieved for z = 1. Therefore K = 1.

If the considered algebraic conjugate 3’ of 3 is negative or complex, it is complicated
to determine the value of K and H. However, for obtaining bounds on Lg(3), Lg(5)
it suffices to have a “reasonable” estimates on K and H. In order to determine a good
approximation of K and H we introduce some notation. For n € N we shall consider
the set

E, ={2€Zs|0<z<p"}.

In fact this is the set of all ag+a18+---+a,_13" " where a,,_1 - - - a1ag is an admissible
[B-expansion. We denote

Min, := min{|?'| | z € E,, 2 ¢ Zs}, (3.5a)
Max,, := max{|?’| | z € E,}. (3.5b)

Lemma 3.2.3. Let 3 > 1 be an algebraic number with at least one conjugate |3'] < 1.
Then

(i) For all n € N we have H < H,, := ll\ffbxf‘bn

(i) For all n,m € N we have K > K, := Min,, — |6'"H and K > K, := Min,, —
|8’ Hipn.-

(iit) K > 0 if and only if there exists n,m € N such that K, ;, > 0.
Proof. (i) Let z € Zg. Then z = vazo b;3* and we can write

2< (bo+biB++ by 1)+ B an + a1 8+
Using triangle inequality we have

Max
B e e L
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ii) Let z € Zg \ Zg3. Then z = ]\i b;3', by # 0. Again, by the triangle inequality

& &) =0
n—1 ) N ) N )
> ougt| =) b > b
=0 =n

i=n
Hence taking the infimum on both sides we obtain K > IA(n Using the same inequality
and the fact that

|| > - > Min,, — |3|" > Min, — |§'|"H = K,, .

Min,, — |8'|"H > Min,, — |3|"H,,
for all m € N we have K > K, ,,.

(iii) From the definition of Min,, it follows that Min, is a decreasing sequence with
lim,, .o Min,, = K. If there exists n,m € N such that Min,, —|3'|"H,, > 0 we have K >
0 from (ii). The opposite implication follows easily from the fact that lim,, o Ky m = K
for any m. O

For a fixed 3, the determination of Max,, resp. of Min,, for small n is relatively easy.
It suffices to find the maximum resp. minimum of a finite set with small number of
elements. If for such n we have K,, = Min,,—|8'["H > 0 (or Ky, 5, = Min,,—|3'|"Hy, > 0
for some m), we obtain the bounds on Lg(3) and Lg(3) using Theorem 2.2.8. We
illustrate this procedure on 3 solution of 3 = x? 4+ x + 1, the so-called Tribonacci
number in the next section.

3.2.1 Lg(B), Lg(P) for the Tribonacci number

Let 3 be the real root of 22 = 22 + x + 1, that is, the so-called Tribonacci number. The
arithmetics on (-expansions was already studied in [84, 83]. Messaoudi finds the upper
bound on the number of S-fractional digits for the Tribonacci multiplication as 9 and
later improves the estimation to 5. Arnoux, see [83], conjectures that Lg(8) = 3. We
refute the conjecture of Arnoux and we find the bound for Lg(53), as well.

It turns out that the best estimates on Lg (), Lg(3) are obtained by Theorem 2.2.8
with approximation of K by I/(\'n for n = 9. By inspection of the set F9 we obtain

Ming = |1+ 8% + 8% + 87| = 0.5465,
Maxg = |1 + 3" + 3% = 1.5444 .

Consider y € Zg, y = Ziv:o ai3*. Then from the triangle inequality

26
Z ak/B/k’—IS

8 17
k k—9
‘y/|§ Zakﬂ/ +‘5/|9 Zakﬂl +‘5/|18 4.
k=0 k=9 k=18
Max
< Maxy (L1687 +191 + ) = 1505

In this way we have obtained an upper estimate on H,ie. H < % This implies
9 Maxg

Ko = Ming — |3'|°H > Ming — |3/| o
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Hence

1\ om Maxg , o Maxg \ ' .
— =g — — = 7.
<\5’|> <K SEHopp (Mmg TP 7.5003,
H2
K

1 Lg(B8) M 2 M -1
<W> < ( % > <Ming—|ﬁ’|9 aX9> = 6.1908.

1—|p°
( 1)’ 1\° 1\’
) = 4.58%0 — ) =6.2222 ) =8.4386
|ﬁ’|> ’ <|ﬁ’|> ’ (Iﬁ’l) ’

we conclude that Lg(5) <6, Lg(5) < 5.

In order to determine the lower bounds on Lg (), Lg(/3) we have used a computer
program [11] to perform additions and multiplications on a large set of 3-expansions.
As a result we have obtained examples of a sum with 5 and product with 4 fractional

IN

1—|6'°

Since

digits, namely:
1001011010 4 1001011011 = 10100100100.10101
110100100101101 x 110100100101101 = 110010001000100001001001011011.0011
We can thus sum up our results as

Let us note that recently the exact bound for addition, Lg(3) = 5, was obtained by
Bernat [31].

3.2.2 Lg(f), Ly(B) in generalized Tribonacci base

In this section we will give result on Lg (/) and Lg(/5) in the case of cubic units g > 1,
roots of

x3:mx2+x+1, m>1.

We call such base 3 the generalized Tribonacci number, since the Tribonacci case is
obtained for m = 1. The equation z® = ma? + z + 1 has a unique real solution .
It satisfies m < 8 < m + 1. The other two roots 3 and (3" are mutually complex
conjugates || = |5”| < 1. Obviously, we have

BEE =1, B+ 45 =

We have dg(1) = m11. Therefore the digits in a S-expansion take values in {0,1,...,m}

and the Parry condition implies for ag,aq,...,ar € N that
k
Zaiﬁ’ is a f-expansion <= @;a;_10;_2 <jex m11 foralli=2,3,...,k.
i=0

Such numbers  have Property (F) by Theorem 2.2.4 or 2.2.6.
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Our aim is to provide estimates on the quantities Lg (), Ly () for these generalized
Tribonacci numbers 3. Since the Tribonacci case m = 1 has already been solved, we
consider m > 2.

Lower bounds on Lg(3), Lg(8) can be clearly obtained by determining the length
of the fractional part of the sum, respectively product, of some suitably chosen elements
x,y € Lg.

Proposition 3.2.4. Let 3 be the real root of x> = ma® +x + 1. Then

L@(ﬁ>z{5 orm =2 @) 24, frmz2,
4 form>3,
Proof. We have for m = 2,
B+ B2 +28) - (B +2) =28 +2+ 87+ 571+ 677,
2x (B0 +28° +283 + 52 +2) =BT+ 85 +28* + 28+ 82 +237 3 + 574,

and for m > 3,

(mB® +m) + (mp® +m) = 2x (mB>+m) =
= 4 (m = 1B+ (m — )" +26 +
+(m=3) +(m-1)2+257+ 57"
|

Below, we are going to derive the estimates on the upper bounds of Lg(5) and
Lg(8). The method used to find these estimates is the same one as in the previous
section, using Max, and Min,, with the exception that here we compute values of Max,
and Min, in a more general way — for a class of numbers and not for a fixed number
g.

Recall from the definition of Max, and Min, (equations (3.5b) and (3.5a)) that both
of them are calculated using the modulus |2’| of the image of (-integers |z| < 5P under
the field morphism. It turns out to be more convenient to study the square of this
quantity.

Let us consider a B-integer z, such that |z| < P, i.e. z is of the form z = ag+ a1 6+
as %+ - Fap_1 (BP~1, where the integer coefficients a; satisfy the admissibility condition
a;a;—10;—92 <lex m1l. Since the conjugates of 3 are mutually complex conjugates we
have

p—1 p—1 - p—lp-1 o
|Z/|2 — Z’Z” _ Z az‘ﬁﬂ Z ajﬁ'” _ Z Z az‘ajﬁﬂﬁ”] )
i=0 3=0 i=0 j=0
We use the relation 833" = 1 to derive for j > 1,
;06" + a;a;8° 8" = a; .ﬁ’j—ii +a; ﬁ”j—ii _ Qidj 2§R(ﬁfj—i)
a;a; aja; = a;a; 5 a;a;j 5= g )
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Substituting this to the expression for |2/|2, we obtain
Pl 2 . -
ZP=3 % + Y % 2R(57 7). (3.6)
k=0 0<i<j<p—1
Therefore, |2/|? is a real quadratic form of integer variables ag,ay, ... ;ap—1. In order

to express it in a simpler form, we need to determine the coefficients 2%(5" J ~"). Let us
denote cj, := 2R(8'"). For calculation of ¢, we find a recurrent formula,

crer = (8% + B%)(B' + 87) = B+ BEB" 4 B + 5
= ckar + BB (B 4 Y

= Ck+1 +

—Cl—1 -
g

Let us enumerate several initial coefficients,

=2, (3.72)
¢ =— <% + %) , (3.7b)
o= (575 w) @1
SO T RN 610

2 4 7 6 4 1
TRR R TE R

Note that for m > 3 the coefficients satisfy ¢; < 0, co <0, ¢3 > 0 and ¢4 > 0.

Our aim is to find Max, and Min, for suitable p, ¢ so that the bounds on Lg(3),
Lg () obtained by Theorem 2.2.8 are the best possible. Computer experiments show
that optimal constants are H3, K53, that is to say the values of H,, and K, , change
too little with increasing n,m and do not provide better estimates on the values of
Lg(B) and Lg(B). Thus we need to calculate Maxs and Mins.

Since we are interested in Maxs, the real quadratic form |z
plifies to

(3.7e)

’|? to be examined sim-

12 2 Ei gi a1a2
Q1(az,a1,a0) == |2'|° = aj + 3 + 7 + apaycy + apazce + B

In order to calculate the value of Max3 we have to find the maximum of the quadratic
form @Q1(as2,a1,ap) on the set

St :={(az,a1,a0) € Z3 | 0 <a; <m, asarag <iex m1l}. (3.9)

Ct. (38)

Similarly, for calculation of Minj, we use the quadratic form

je_ o, G a3 a3 i
QQ(CL4, as,ag, ai, ao) = ’Z ‘ =ay+ ﬁ + @ + @ + @ + apaicy + agasca+
a1az ajas a1aq a2a3 a2a4 azay4
+ apascs + agagcy + 3 c1+ 3 co + 3 c3 72 c1+ 7 co + 7 cr. (3.10)
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We have to find a minimum of this quadratic form on the set
S := {(a4,a3,a2,a1,a0) € Z° | m > a; > 0,a9 > 0 and ajypa1ax < mil}. (3.11)

The condition ag # 0 in the definition of set S corresponds to the condition z € Zg\ fZg
in the definition of Min,,.

For finding the extremal values of the quadratic forms, we inspect the first differences
of the quadratic form for each variable a;, each time fixing all yet appointed values of
the variables. The difference in a variable q; will be denoted

Ay, =Q(..;a;+1,...)—Q(-..,a4...),

where a; < m — 1 and the variables a;, j # 7 take values at most m. Using this method
we prove the following result.

Proposition 3.2.5. Let 3 > 1 be the real root of the equation x> = maz?® +x + 1 for
m €N, m>2. Then

Maxz = max{ |2] ‘ z € Lg, |7| <ﬁ3} =m,

—92 1 3
Mins = min{|?| | z € Zg\ fZg, \zy<55}:{ B +1) for m >

11+28% 426" form=2.

Proof. Determining Mins. In the case m = 2 the set Sp defined in (3.11) has only
79 elements. It is easy to enumerate them one by one and to find the value of Mins.
Therefore, from now on we will consider m > 3.

1) Difference A,,. The inspected first difference of the quadratic form Q2 is

Ay =2a9 + 1+ cra1 + caaz + c3a3 + caaq .

Since ag > 1, ¢; <0, 2 <0, c3 >0, ¢4 >0and ay,...,aq €{0,...,m} we have
Ag, 23+mcl+m02:3—m<%+ﬁ%)—m(%—%—%—ﬁ%)
23—%’50,

where the last inequality follows from the fact that m = |3].
Therefore, the form is increasing in the variable ag and so the minimum is reached
at the smallest possible value of ag, i.e. at ag = 1. From now on we will consider ag = 1.

2) Difference A,,. The inspected difference is

201 +1 a a a
= ! +01+01—2+62—3+63 4

3 R

Since ¢; < 0, ¢3 < 0, ¢3 > 0 we have

Ag,
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The right side of the inequality is strictly greater than zero for a; > 2. The minimum
is therefore reached for either aq =0, a1 =1 or a1 = 2.

3) Difference A,,. The inspected difference is

2a9 +1 4ot L + ay
Co 61 61 Co—5 .
B g 62 B

For the difference A,, := Q2(a4,as,a2 + 1,a1,a0) — Q2(as,as,az,a1,ap) one needs to
consider only as < m — 1. Since c1,co < 0, we obtain

Ay, =

A 2m —1 2m—-1 2m—-1 1 1
a2§7+c2: 52 — 62 —@:—@<0.

The quadratic form is decreasing in the variable az and the minimum is reached for the
highest possible (w.r.t. Parry’s condition) value of as.

4) Difference A,,. The inspected difference is
2a3 + 1
3 g ﬁ2 ﬁ?’ '

We have shown that the minimum of the quadratic form is reached for a; € {0,1,2}.
It is suitable to discuss the cases a; € {0,1} and a; = 2 separately.

Agy = TR Y

Let us assume a; € {0,1}. Since ag,a4 < m < 8 and ¢1, ¢y < 0 we have

2(m—1 1
A _B3+03+B+B+52:%+@>0.
This means that for a; € {0,1} the minimum of the form is reached for a3 = 0.
Moreover, we already know that the minimum is reached for the highest possible value
of ag (w.r.t. Parry’s condition), therefore, we will inspect following candidates for the
minimum (a4,0,m — 1,1,1) and (a4,0,m,0,1).
The discussion for a; = 2 will be postponed for this moment.

5) Difference A,,. The inspected difference is

2&4 +1
JAIIE +cq4+ Cg —|— 62 + 01
“ Bl B 52 53
For the quintuple (a4,0,m — 1,1,1) we obtain
1 m—1
A, +c4+c3—=+co—5— > 0.
54 B 3

Hence we have the first candidate for the point where the form Q2(aq4,as,as,a1,ap)
reaches its minimum

q1:=(0,0,m —1,1,1).
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For the quintuple (a4,0,m,0,1) we obtain

2m +1 m
AV ST-FCAL-FCQ@

Second candidate for the point where the form Q2(a4, as, az, a1, ag) reaches its minimum
is

<0.

g2 == (m,0,m,0,1).

Here, we get back to the case a; = 2. We inspect the difference A,, for the quintuple
(aq,as3,a2,2,1). Note that due to the Parry’s condition ay < m — 1. We can estimate

A >1 2 m—1 m 2 2m —1 3
a4_@_‘_64_‘_633_‘_62?4_61@_@4_7_@

Hence we have to inspect the candidate (0, as, az,2,1).

> 0.

We treat separately the the case a3 = m, which implies as = 0. So we have the
third candidate
q3 ‘= (07 m, Oa 2> 1)

and the cases a3 < m — 1, where according to the negativity of A,, the value of
corresponding variable is ag = m — 1. The difference A,, for the quintuple (0, a3, m —
1,2,1) is
2a3 + 1 2 m—1 2a3—2m+6 1—m 2 1
——a— tc3t+ a5+ = + - = — =5 -

3 B B2 B3 B B> e
It is easy to see that for az < m — 3 the A,, < 0 and that for a3 > m — 2 the A,; > 0.
Therefore the fourth candidate for the minimum is

Ay, =

qge = (0,m—2m—1,2,1).

By computing the values of the quadratic form @5 in the points g1, ¢, ¢3 and g4 we

obtain 12
(ﬂ’%) = Q2(q1) < min{Q2(q2), Q2(q3), Q2(q4) } -

Therefore, Min2 = ~%(8 + 1)? for m > 3.

Determining Maxg. Similarly as in the previous part of the proof we will now
inspect the first differences of the quadratic form ) in the individual variables.

From the definition of Maxs we need to determine the maximal value of ()1 over the
set S1, which allows the coefficients ag, a1, ag take any values in {0,1,...,m} with the
admissibility condition. However, it is sufficient to consider ag > 0, since ()1 reaches its
maximum on such a point. Otherwise, we would have

Maxg = |0 + alﬁ' + CLQ(ﬁ/)2| = |ﬁ’||a1 + azﬁ/| < |ﬁ/|MaX2 < Maxsy

which is in contradiction with Maxy < Maxs.
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The inspection of the difference A,, of the quadratic form @); is very similar to the
one of ()5 in the first part of the proof. We have

ACLO - 2&0 + 1 +aic; + azxco 3

ap > 1, c;1 <0 and ¢ < 0. Hence

3
Aa, 23+m61—|—m6223—7m >0,

the form is increasing in the variable ap and so the maximum is reached for the highest
possible value of ag (w.r.t. Parry’s condition).

Since

2a1 + 1 as
3 +crapg + 1 3
is a linear function in the variable a; and the coefficient % at aq is positive, the difference
A,, is either positive for all values of a; or negative for all values of a; or negative for
some initial values of a1 and then positive, regardless of the values of ag and as.
Anyway, the maximum in the variable a; is reached for some extremal value of a;.
The same reasoning works also for the maximum in the variable as.

Ay =

One can easily see that there are only six candidates fulfilling preceding conditions
on the values of the variables as, a1 and ag:

as ai ao
a1 0 0 m
Q2 0 m—1 m
q3 0 m 1
gl lm—1 m—1 m
qs | m—1 m 1
Q6 m 0 m

Finally, by computing the values of the quadratic form @Q1(as,ai,ap) in the points
qi,-..,q¢ we have

1. Q1(0,0,m) = m?.

2. @1(0,m—1,m)=m +(m ? —m(m—l)( +i) <m?.

3. Ql(O,m,l)zl—l—%z—m(%—kﬁ%) < m2.

4 Qulm — Lom — Lm) = m? ¢ @5 00l g (4 1)
= (m =17 (5 +ﬁ3)—m<m—1>(2—ﬁ—%—5—3—m)<m2-

5. Q1(m —1m1)—1+%+(m_21)2—m<

/N
Qlw
ﬁ]H
~—— @~
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2
6. Ql(m,O,m):m2+rg—2—m2<%—%—%—%) <m?.

Therefore, Maxg = m? and the proposition is proved.
O

Remark 3.2.6. It is noteworthy that a similar computation as in the proof of Propo-
sition 3.2.5 using real quadratic forms and their differences was the bottleneck of [6]
and [67] in studying topology of Thurston-Rauzy fractals associated with S-expansions.

Preceding Proposition gives us the values of Maxs and Mins. According to the
definitions of H,, and K, , we have for m > 3,

Maxg m33/2

BRI

Hj

and
p+1 m

RN TCE

Now, we will use these values to obtain upper estimates on the value of Lg ().

K53 =Mins — |3/|°H; =

Theorem 3.2.7. Let 3 > 1 be the real root of the equation x> = ma?+x+1 for m € N.

Then
4 < Lg(B) form >3,

<5
5< Lg(B) <6 form=2.
Proof. The upper bound Lg(5) < 6 for m = 2 can be easily checked numerically. Since

2H  2H; 1\’

according to the Theorem 2.2.8 we have Lg () < 6.
Let us assume m > 3. Again according to the Theorem 2.2.8 we have

1\ om 2mH,
7)) K STy
5,3

We will prove the inequality

2H;  2mpB3/? 1 < 1

— 33/2 _ 1 B+1 = 14716
K5,3 ﬁ / 1 W — 75(53%—1) |ﬁ |

(3.12)

which implies Lg () < 5.
After a few simple operations the inequality (3.12) is transformed into

omBY? +mpB < (B+1)(3%%-1). (3.13)
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For m > 4 the proof of the inequality (3.13) will be based on the fact that 5 >
(Y2 4+ 2. which holds since

B>F242 & (B-22>48 & mﬁ+1—|—%—4ﬁ+4>ﬁ.

Now we estimate the left hand side of (3.13)

mV 2 4 5112 < §m < 9V (i ) = A~ 1) =

=B -1)(B+1) = (B+1)(B** - B < (B+1)(B? - 1),

which proves (3.13).
In the omitted case m = 3, the inequality (3.13) can be proved directly. O

The following theorem yields the main result for multiplication — the estimates of
the value of Lg ().

Theorem 3.2.8. Let 3 > 1 be the real root of the equation 2 = ma?+x+1 form € N,
m > 2. Then

4< Lg(B) <6.
Proof. Let us assume m > 3. According to the Theorem 2.2.8 it suffices to show
E < H?»2 _ m2 1 _ 1
K ~— Ks3 (1—p73/2)2 % _ 5—5/21_[%3/2 137

which can be transformed into
L+m)B+ B2+ (m+2)B+1> (m+2)8+m?+2) 2. (3.14)
By m < 3 < m+ 1 we can estimate the left hand side of (3.14) as
(1+m)B°+ 3+ (m+2)8+1>
(1+m)m3 +m?+ (m+2)m+1>m3(1 +m) +m?,

whereas the right hand side as

((m+2)8+m?+2) 3% <
((m+2)(m +1) + m? + 2)(m + 1)*/% < 3m?(m + 1)3/?
where the last inequality holds for m > 4. The omitted cases will be treated separately
at the end of the proof.
Using last two estimates we have
3m?m+12 <m? +mP(1+m).

It is easy to check that this inequality holds for m > 10.

Since our estimates were too rough to check the validity of (3.14) for m < 9, we
verified the proposition numerically for these cases as well as for the case m = 2 which
was omitted at the beginning of the proof, see Appendix A. O
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Let us mention that computer experiments support the hypothesis that Lg(5) = 4
for m > 2.
3.2.3 Lg(B), Lg(PB) for a class of totally real cubic Pisot units

We conclude the study of Lg (), Lg(5) by means of the method 2.2.8 by providing
results for several other cubic Pisot units.

Let us recall results by Akiyama and Bassino giving complete characterization of
minimal polynomials and Rényi expansions of unity for cubic Pisot units.

Lemma 3.2.9 (Akiyama [3]). Let 5 > 1 be a cubic number with minimal polynomial
M(B) = 23 — az® — bz — c. (3.15)
Then (B is a Pisot number if and only if both inequalities
b—1| <a+c and (¢ —b) < sgn(c)(1 + ac)
hold.

Proposition 3.2.10 (Bassino [25]). Let 3 > 1 be a cubic Pisot unit. Then the Rényi
expansion of unit is given by the following table.

coefficients in M () | ds(1)
c=1 0<a b=a+1 (a+1)(0)(0)(a)(1)
1<a 0<b<a (a)(b)(1)
2<a b= -1 (a—1)(a—1)(0)(1)
3<a —a+1<b<-2|(a—1)(a+b—1)(a+b)~
c=-1 2<a 1<b<a-1 (@)((b—1)(a—1))¥
3<a —a+3<b<0 |(a—1)(a+b—1)(a+b—2)¥

The results obtained in the previous two sections refer to the second line of the
table from Proposition 3.2.10. Below we derive the estimates on the values of Lg ()
and Lg () for cubic Pisot numbers § whose minimal polynomial is of the form

2 —ar®—br+1 where 2 <aand 1 <b < -2,

Note that since the product of two complex conjugated numbers is a non-negative
number, the fact that ¢ = —1 implies that the algebraic conjugates (', 5" of 3 are real
numbers having different sign, i.e. ' € (0,1), 5” € (—1,0). Hence, by Remark 3.2.2, K
=1 for 7.

Proposition 3.2.10 gives us dg(1) = a((b —1)(a — 1))*. For z € Zg, z = > 1 2/}’
we have
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From the minimal polynomial (3.15) one can derive in the usual way the following
relations between roots and coefficients, namely

ﬁ + ﬁ/ + " — a, (317&)

/8/8/ _'_55// _'_5/5// — —b, (317b)

BE'B" = —-1. (3.17¢)

Let us recall that a+1 > 3 > a, 3/ € (0,1) and 3" € (—1,0). From (3.17a) we have

1 1
Frp'=a-p<0 = |B1<I8" = FF<IFFI=5<.
Hence

lim 3'(a,b) =0, (3.18)

a—0o0

independently on b.

Case b=1

We will at first treat the case b = 1 separately; the minimal polynomial of 3 is of the

form

a:3—ax2—x+1,

and therefore from (3.16) we obtain

1 1

For a > 3 the positive root 3’ lies in (0, %) Therefore using the Theorem 2.2.8 we

can write
1\ Le®-1 1 1\ Le(®)-1 1\ Le ) - 1
:(5) <)) =) e

Le(B) < 2.

For a = 2 we have Lg(f) < 3, directly from Theorem 2.2.8.
The constant Lg(3) can be estimated independently on a, since

L (8) 4
(3) " <=(5)

Lg () < 3.

The lower bounds are obtained due to

hence

hence

fora > 2 (a—1)14a=100.01
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and

for a =2 2x12=111.01
fora >3 (a—1)ax10(a—1)1(a—-1)0(a—1) (a—1)=
—10(a—2)10a0(@—-2)02.0(a—3)1

The results are summarized in the following table

[ @M =a0(-1)* ]
a=2[2<Ly<3 2<Lg<3
a Z 3 LEB =2 L@ = 3

Case2<b<a—-1

The inequalities from Theorem 2.2.8, using (3.16) for H,

1 LEB(B) CL—]. 1 L®(ﬁ) CL—]. 2
<@> <21_5,+2 and <@> <<1_5,+1>

can be transformed as follows

n (29=8
@ and  Lg(8)) < bndg () 1= — "
i () i ()

Concerning values of bndg (') and bndg(5') we have following results.

Lg(0) < bndg(8) =

Proposition 3.2.11. Let dg(1) = a((b — 1)(a — 1))“ be the Rényi expansion of unit
with a > 2 and 2 < b < a— 1. Then there exists ag such that for all a > ag we have
Ly(B) < 2.

Proof. Using ﬁ > a we can estimate

) ln2+lna+ln<#>

1n(a)

_6l _6l
,_m(%F) w5
bndg (5) = < —
w(Z)
—8'/a
In2 4 74 _ln(llfﬁ' )

O

Proposition 3.2.12. Let dg(1) = a((a — 2)(a — 1))* be the Rényi expansion of unit
witha > 2 and 2 <b<a—1. Then Lg(B) <3 for all a > 2.
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Proof. To prove the proposition it is enough to show that bndg < 4, i.e.

(G m() — e o

Since ' € (0,1) we have

a— [ . _a
1-5 " 1-p
and if we show that
a 1

the inequality (3.19) will be proved.
The inequality (3.20), or equivalently a(3')2 < 1 — ', can be shown by using the
minimal polynomial of 5, i.e.

a@)+0 -1=B)P-0-18=5(8)-0b-1)<8(3)-1)<O0.
O

The bounds obtained in Propositions 3.2.11 and 3.2.12 above are not always the
best ones. We have seen already that for b = 1 in almost all cases values of Lg () and
Lg(0) actually reach the estimates. On the other hand in the second extremal case, i.e.
b= a — 1, the opposite is true.

Case b=a -1
We will show Lg(5) < 1, that is, bndg < 2 or
a—03 1

25 <G (3.21)

From (3.17b) we can estimate

B—p ~ B+ 5 =a-1

S S AN S
—F=F _ﬁ<a ! ﬁ>>a+1<a ! a>

1 1
1 _nl - _1__ /
> ﬁ>a+1<a a>+ﬂ

hence

1 1 2+ 1
ﬁ'<1—?<a—1——>: +a. (322)
a
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The terms on both sides of (3.21) can be estimated as

2
a—f 2a(a +1) a+1 1
21—5’<(a—1—l) and <2+é) <—(5’)2'

a

and since the inequality

2
2a(a + 1) a+1
1—1) = \231
(a=1-3) Ta

1\? 1
2a(a + 1) <2+—> < (a+1)? <a—1——>
a a
2 1
8a+8+ = <a>—2— -
a a
5 3
0<a®—8a—10— —
a

holds on the interval [10, 00), the estimate Lg(5) < 1 is valid for all a > 10.
To solve the remaining cases we numerically checked the inequality (obtained from

Theorem 2.2.8)
1\ % 1 2H
— < — < — ,
I A\ K

fora =3,...,9, see Appendix A.
The estimate on Lg(8) < 2, i.e. bndg < 3 is obtained in a similar way. The

inequality to be proved is
a—pB\? - 1
1-p (8

Again, using (3.22), the term on the left, respectively on the right side of the inequality
can be estimated by

a—B\* a*(a+1)? ar1)’ 1
(=5 <oty = (57) <o

The inequality

1

1 3
8a°+ 120+ 6+ = <a®—a® —a+3+ >+ =
a a a

1

2
0<a®—9a*-13a -3+ >+
a a
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holds on the interval [11,00) and therefore the estimate Lg () < 2 holds for all a > 11.
As before, to solve the remaining cases the inequality (from Theorem 2.2.8)

1\’ 1\> H?
— < — < — ,
5) =) <%
was checked numerically for a = 3,...,10, see Appendix A.
The following examples of addition

fora =2 1+12=100.01
fora>3 a(a—2)+1=100.1

and multiplication
for a > 2 ax(a—1l)a=(a—-1)1(a—1)«01

give us lower bounds on values of Lg(3) and Lg ().

The results are summarized in the following table

[ GO =a@=9a-1" |
a=22<Lg<3 2<Lg<3
CLZ?) L@:l L®:2

3.24 Case K =0

The method of estimation of Lg () and Lg(3) based on Theorem 2.2.8 cannot be used
in case that K = 0. It is however difficult to prove K = 0 for a given algebraic 8 and
its conjugate (’. Particular situation is solved by the following proposition.

Proposition 3.2.13. Let 3 > 1 be an algebraic number and ' € (—1,0) its conjugate
such that 5—}2 < |B]. Then K = 0.
Proof. Set v := (/"% Digits in the ~-expansion take values in the set {0,1,...,[v]}.
Since [v] < [B] — 1 and the Rényi expansion of unit dg(1) is of the form dg(1) =
| B]tats - - -, every sequence of digits in {0,1,...,|v]} is lexicographically smaller than
dg(1) and thus is an admissible §-expansion.

Since 1 < —3' ! < 4, the y-expansion of —3' ' has the form

B = tar ey ey (3.23)

where all coefficients ¢; < |3 — 1.

Let us define the sequence z, := 1 + co3 + 1% 4+ 8% + -+ + ¢, 32" 1. Clearly,
2n € L\ BLg and 2, := 1+ ' (co + 18> + 28 + -+ cu8”™"). According to (3.23)
we have lim,,_. 2, = 0 = lim,,_. |2},|. Finally, this implies K = 0. O
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As an example of an algebraic number satisfying assumptions of Propositions 3.2.13
is 3 > 1 solution of the equation x> = 2522 + 152 + 2. The algebraic conjugates of
B = 25.5892 are 3’ = —0.38758 and 3” = —0.20165, and so K = 0 for both of them.
Hence Theorem 2.2.8 cannot be used for determining the bounds on Lg (3), Lg(3). We
thus present another method for finding these bounds and illustrate it further on the
above mentioned example.

Note that similar situation happens infinitely many times, for example for a class of
totally real cubic numbers, solutions to z3 = pS22 + p*z + p, for p > 3. Theorem 2.2.8
cannot be applied to any of them which justifies utility of a new method.

3.3 Bounds on Ls(f), Ly(B) for Pisot numbers (Cut-and-
project method)

The second method for determining upper bounds on Lg(3), Lg (/) studied here is
applicable to 8 being a Pisot number. This method is based on the so-called cut-and-
project scheme.

Let 8 > 1 be an algebraic integer of degree d, let 53, ..., 3®) be its real conju-

gates and let gt gl+2) — gls+1)  gld-1)  5(d) — 3(d-1) be its non-real con-
jugates. Then there exists a basis 1, @o, ..., Zg of the space R? such that every
Z = (ag,ay,...,aq-1) € Z% has in this basis the form

T=a1Z1 + asZo + -+ + gy,

where
ar=ag+a1B+azf’+ - +aq 18 =2 € Q(B)

and

a; = 20 fori=2,3,...,s,

aj = R(zY)) fors<j<d, j odd,

aj = I(2)) for s < j<d, j even.
Technical details of the construction of the basis 71, &, . . ., £4 can be found in [2, 69, 66].

Note that the ring Z[5] can be geometrically interpreted as a projection of the lattice

Z% on a suitable chosen straight line in R%. The correspondence (ag,ai,...,aq—1) —

ap + a1+ azB? + -+ aq_1 471 is a bijection of the lattice Z¢ on the ring Z[/3)].
In the following, we shall consider 3 an irrational Pisot number. Important property

that will be used is the inclusion
Zg C Z|f]. (3.24)

Let us recall that Zg is a proper subset of Z[3], since Z[f] is dense in R as a projection
of the lattice Z¢, whereas Zg has no accumulation points. Since Z[/3] is a ring,

L+ Zg C Z[5] and ZLg X Lg C Z[3] .
Consider an = € Zg with the S-expansion z =Y, _, apB*. Then

S a8 < 3 ja 0] = U
k=0 =

20| = _ P
k=0

1— |80
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for every i = 2,3,...,d. Therefore we can define
H; := sup{|z9| | z € Zs} (3.25)
The inclusion (3.24) thus can be precised to
Zg c{zx e Z|f]| |29 < Hi, i =2,3,...,d}.

Another important property needed for determination of bounds on Lg(3), Lg(5) is
the finiteness of the set

C(llal27‘”7ld) = {ZII GZ[/B} ‘ |ZE‘ <l17 ‘x(l)‘ < liai:2737"'7d}7

for every choice of positive I1,ls,...,lg. A point ag+ a1 + --- + ag_18% " belongs to
C(ly,la,. .. 1) only if the point (ag,a1,...,aq—1) of the lattice Z¢ has all coordinates
in the basis 71, ..., Z; in a bounded interval (—1;,[;), i.e. (ap,a1,...,aqs_1) belongs to
a centrally symmetric parallelepiped. Every parallelepiped contains only finitely many
lattice points.

Let us mention that notation C(l1,ls,...,ls) is kept in accordance with [2], where
Akiyama finds some conditions for Fin(3) to be a ring according to the properties of
C(ly,la,...,1z). Our aim here is to use this set for determining the bounds on the length
of the (-fractional part of the results of additions and multiplications in Zg.

Theorem 3.3.1. Let § be a Pisot number of degree d, and let Ho, Hs, ..., Hy be
defined by (3.25). Then

Lg(B) < max{fp(r) | r € Fin(8)NC(1,3Hs,3Hs3,...,3Hy)},
Lg(B) < max{fp(r) | r € Fin(8) N C(1, H3 + Ha, ..., Hj + Hg)} .

Proof. Consider z,y € Zg such that x +y > 0, x +y € Fin(53). Set z := max{w € Zg |
w < x4+ y}. Then r := x + y — z is the S-fractional part of x + y and thus r € Fin(f)
and fp(r) = fp(x+y), and 0 < r < 1. Numbers z, y, z belong to the ring Z[3] and hence
also r € Z[f]. From the triangle inequality

P = 2@ 4+ - 20 <30,

for all ¢ = 2,3,...,d. Therefore r belongs to the finite set C(1,3H2,3Hs,...,3H,),
which together with the definition of Lg(/3) gives the statement of the theorem for
addition. The upper bound on Lg () is obtained analogically. O

3.3.1 Application to 3 solution of 2% = 2522 + 152 + 2

We apply Theorem 3.3.1 on 8 > 1 solution of the equation z3 = 2522 + 15z + 2. Recall
that such [ satisfies the conditions of Proposition 3.2.13 for both conjugates 3, 3" and
thus Theorem 2.2.8 cannot be used for determining the bounds on Lg(3), Lg(5).

The Rényi expansion of unit is dg(1) = (25)(15)(2). Since the minimal polynomial
of (3 satisfies the assumptions of Theorem 3.1.3, the set Fin(f) is a ring.



60 CHAPTER 3. ARITHMETICS OF pB-EXPANSIONS

In case that some of the algebraic conjugates of 3 is a real number, the bounds from
Theorem 3.3.1 can be refined. In our case 3 is totally real. Let = € Zg, z = Y -, a; 3"
Since 3’ < 0, we have

n n o0
, , , 25
¥ = Zai(ﬁ,)z < Z ai(8)" < 22(25)(5,)2Z = 1_5° = H;.
i=0 =0, i=0
7 even
The lower bound on 2’ is
n n )
2= a(8) > Y a(B) > §'H.
=0 =0,
i odd
Similarly for 2" we obtain
25
ﬁ//HQ <$//< 1_76”2 = H2‘

Consider x,y € Zg such that = +y > 0. Again, the S-fractional part of z + y has the
form r = 2 4+ y — 2z for some z € Zg. Thus

(2ﬁ, — 1)H1 = ﬁ,Hl —I—ﬁ,Hl —Hi < r'=2a +y' -7 <H{+ H — ﬁ,Hl = (2 — ﬁ,)Hl
(25// _ 1)H2 <7’// — JZ‘// + y// _ Z//< (2 _ ﬂ//)Hg

We have used a computer to calculate explicitly the set of remainders r = A+ BG+
CB3?, A, B,C € Z, satisfying

0< A+BB+Cp%> <1
(28' = 1)H1 < A+ BB +Cp? <(2— B H,
(28" —=1)Hy < A+ BB" + CB" < (2 — ") H,
where for 5/, 3" we use numerical values, (see Section 3.2.4). The set has 93 elements,
which we shall not list here. For every element of the set we have found the correspond-

ing (-expansion. The maximal length of the S-fractional part is 5. Thus Lg(3) < 5.
On the other hand, for (z)s = (y)g = (25)(0)(25)« one have

(z+y)s = (1)(24)(12)(11)«(23)(0)(14)(13)(2) .
Thus we have found the exact value
Le(B)=5.

In order to obtain bounds on Lg(3), we have computed the list of all r = A+ BB +
CB3?, A, B,C € Z, satisfying the inequalities

0< A+Bp+Cp? <1

BH? —H < A+ Bf +CpB* <H} - f'H,
B"HZ — Hy< A+ BB" + CB" < H3 — 3" H,
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In this case we have obtained 8451 candidates on the S-fractional part of multiplication.
The longest of them has 7 digits. The lower bound is obtained via multiplying (z)s =
(y)g = (25)s because

(z x y)g = (24)(10)+(21)(24)(16)(7)(16)(13)(2) .
Therefore
Ly(B)=7.

Let us mention that the above method can be applied also for example to the case
of Tribonacci number, but the bounds obtained in this way are not better than those
from Theorem 2.2.8. We get Lg(5) < 6, Lg(5) < 6.

3.4 Addition in Pisot numeration systems

As we have seen earlier, suppose that J satisfies the assumptions of Theorem 3.1.3.
As a consequence, the sum of two (-integers can be obtained by a finite number of
transcriptions, as described in the proof. On the other hand, we know (Theorem 2.1.7)
that every x € Q(() has finite or eventually periodic -expansion for any Pisot number
(. Therefore it was quite reasonable to try to find an algorithm performing addition,
which would comply with eventually periodic expansions, and, moreover, which would
work in any Pisot numeration system.

In this section we present such an algorithm — or strictly speaking — we present a
general normalization algorithm supplemented by a procedure telling how to compute
a (-representation of the result beforehand.

3.4.1 Computing a (-representation of the sum

As we have mentioned above the algorithm is composed of two parts: the first one consist
in computing a [-representation of the result (usually non-admissible and not over the
canonical alphabet), the second one consists in normalization of such a representation.
The heart of the process used during the first step lies in the following two facts.

Fact 3.4.1. Let xj - 2oex—1- T (Tom-1Z—m—2 - Tom—p)* be a [-representation
of a real number x. Then xy - ToeZ—1 - TopTm—1(T—m—2 " Tom—pT_m—1)* 15 also
a B-representation of x.

Fact 3.4.2. Let xj -+ oex—1- T (Tom-1Z—m—2 - Tom—p)* be a [-representation
of a real number x. Then xj - xgex_1 - Ty ((T_pm_1Z_m—2- ‘-x_m_p)l)“’ 18 also a
B-representation of the number u, for any positive integer | € N.

Using period transformations described by both previous facts we are able to obtain
the desired representation of x 4+ y for any x,y with eventually periodic S-expansions.
First we shift the period of x or y so that they start with a coefficient belonging to the
same power of 3. Then we stretch the periods to the length equal to the least common
multiple of their original lengths. Finally, the result is obtained by a simple digit-wise
addition.
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Ezample. Let x and y have following representations

(z)5 = 1.13(312)“,
(y)p = 2.0212(10)“ .

According to the instructions, we the shift period of (x)s 2 positions to the left

(z)5 = 1.1331(231)“
(y)p = 2.0212(10)“

and stretch both periods to the length 6

(z)5 = 1.1331(231231)*
(y)5 = 2:0212(101010) .

Representation of z + y is then obtained by digit-wise addition
(z 4+ y)p = 3.1543(332241)“ .

3.4.2 Normalization algorithm

For the simplification of the following description of the algorithm, we additionally
request two rather technical conditions on the representation, namely, we want the
input representation as well as the output expansion to have empty integer part, which
can be simply accomplished by multiplication by a suitable power of (.

Algorithm 3.4.3. Input: a (3-representation, that is, a sequence s = 0e51S983 -+ over
a finite alphabet of digits.

Output: A sequence § = 04515253 - - over the canonical alphabet Az such that m3(s) =
m3(3).

Note that for clarity reason we omit Os in both s and .

1 begin

2 while not admissible(s) do

3 s := step_A(s);

4 test_reoccurrence(s);

5 while Ji: s; <0 do

6 s := step_ B(s);

7 test reoccurrence(s);
8 §:=s,

9 end

Now we will separately describe the functions appearing in the algorithm. Let s()
denote the sequence s in its state before the i-th transcription (transcriptions are done
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by functions step A and step_ B). During the description of the functions we will use
the following notation: if w = wiws --- is a word then s @ w denotes the word obtained
by digit wise addition of w to s starting from the coefficient si, that is

SPpw = 8189 - ‘Sk—l(sk +wl)(8k+1 —|—ZU2) cee

Function step_A(s). Let us note that due to the condition on the line 5 of the
algorithm, the sequence s(¥) has only non-negative coefficients every time it is used as
a parameter of the function step A. This implies that the non-admissibility of s() has
to be caused by a factor that is lexicographically greater than dj(1).

Let A; be the smallest integer such that

o (sW) Z1ex di(1), (3.26)
then the transcription used to banish non-admissibility (3.26) is
st . — 50 ®a, L1ty . (3.27)

Obviously, the transcription (3.27) may create some negative coefficients in s. The
algorithm deals with them by using another transcription, given by the function step B.
One can see (line 5 of the algorithm) that this function is used (after each transcrip-
tion (3.27)) repeatedly as long as there are any negative coefficients.

Function step B(s). Let us inspect the first step of type B, directly following a
step of type A. Let B;i1 be the smallest integer such that sgzﬂ 41 < 0. Then the
transcription used is

s(i+2) . g(i+1) By, Ltita- - . (3.28)

Of course, one single use of this transcription does not have to banish all the negative
coefficients, it can even create one new (namely the coefficient at 5~5i+1). Nevertheless,
it follows from (3.26) that there exists » > A; 4+ 1 such that

SEQH e 31(21 =ttty tr—a—1 and 5,@ >tr_a;

hence, after applying (3.27) to s(¥)

sgj;li =0,... ,sffjll) =0 and st > 0, (3.29)
where necessarily B;11 > r. If there remains a negative coefficient in s(*2) then it is
either one of those created in step A (or strictly speaking it is a negative coefficient
created by (3.27), possibly increased afterwards by some ¢, by (3.28)), or it is a co-
efficient —1 at 3~Bi+1 (this is possible in the case when we had s%:rll) = 0). In the
later case several numbers of successive applications of (3.28) will banish the mentioned
coefficient —1. Since the transcription (3.28) will every time shift this —1 one position
to the left as long as there is a zero in front of it, the exact number of these steps is
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(i+1)
Biy1+1
The existence of such a non-zero coefficient is ensured by (3.29).

Finally, since we created only a finite number of negative coefficients in step A,
after a finite number of employment of step_ B we will obtain a representation, say sU),
formed only by non-negative coefficients. Consequently, sU) is either admissible and
the algorithm stops (by the condition on line 2), or another step of type A follows.

We give below an example illustrating the so far described functions of the algorithm.
The function test reoccurrence, which is used to stop the running of the algorithm in
more complicated cases, is not necessary here, so we postpone its description for the
moment.

given by the number of zeros between s and its first non-zero neighbor to the left.

Ezample. Let dj(1) = 3(12)~. We will add the numbers (z)g = 1 and (y)s = 312. The

[-representation of the result is (z + y)g = s() = 0313. The process of transcriptions
follows

1. In the first step A; = 2, and we obtain s() = 1001(T 2)~.

2. There is a negative coefficient in the representation, hence the condition on line 5 is
passed and the next step is of the type B. We have By = 4 and s©) = 10002(11)~.

3. Since there is still a negative coefficient (sé?’) = —1), the condition on line 5 is

passed again. This time Bs = 5 and hence s®*) = 100012(21)~.

4. Representation s*) computed in the previous step does not contain any negative
coefficient, and, moreover, it does not pass the non-admissibility condition on the
line 2. Therefore it is the wanted (-expansion of x + y.

Function test reoccurrence(s). The algorithm may stop in two possible ways. Either
by fulfilment of the admissibility condition on the line 2, or by finding a “re-occurrence”
on line 4 or 7. The idea of the re-occurrence is based upon the following fact.

Fact 3.4.4. Let s%) and s\9) be two B-representations obtained in course of the normal-
ization, such that

s =w u ¥,
sU) =w 2w v,
where w € A} is the longest common prefiz of s and sYU), u,v € 7%, z € A and Aj >

|lwz| or Bj > |wz| (depending on the type of the j-th step). Then we will subsequently
obtain

s020-9) = 2 2 w ¥,

sOH30-D) =y 2 2 2 w V¥,



3.4. ADDITION IN PISOT NUMERATION SYSTEMS 65
Hence the re-occurrence during the normalization will come into being if for two
steps, say ¢ and j with ¢ < j, following is fulfilled

e both steps are of the same type, either of the type A with A; < A; (and we denote
H; = A; and H; = A;), or of the type B with B; < B; (and we denote H; = B;
and Hj = B])

e if w is the longest common prefix of s(Y and s() then

@ ) ) )
Slwl+1 Sjwl+2 " T SH—(Hy—|w|)+1 SH—(H—|w|)+2
* the word G).G) LG (.6) ()
§i=s1"s5 s (S "%—(m—w))

is admissible in the G-numeration system.

If all three conditions are satisfied we can stop the algorithm and return § as the result,
that is, as the S-expansion of mz(s(1)).

We provide here another example, this time more complicated and requiring the test
of re-occurrence for the algorithm to be stopped.

Ezample. Let dg(1) = 2011, i.e. dj3(1) = (2010)~. We want to find the sum of (1) =1

and (y)s = 2. The starting representation is (z + y)s = s(!) = 03. The running of the
algorithm is the following one

s =03
A =1 s =11(01T02)
By=3 sB) = 117(1010)*
B3 =2 s =101(1112)
By=5 s®) = 10110(1221)*
As =6 () =101102(0201)~
Ag=5 s =101110(0101)*
B;=9 s®) = 101110017 (1020)*
Bs =8 59 = 101110001 (1122)¥
Ag =11 510 =10111000112(0201)*
Ajp =10 s =10111000120(0101)*

By =14

Indeed, s(*V) is not an admissible S-expansion, but if we look at the 7. step and the 11.
step we see that

e both are of the same type, with 9 = By < By = 14,
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e the longest common prefix of s(M and s is w = 1011100, i.e. lw| =17,
e relevant suffixes sg) sg) .-+ =(1010)* and 8%1) sﬁl) --» = (1010)“ are identical,
e the word § =1011100(01200)“ is admissible.

Since all the conditions of re-occurrence are fulfilled, § is the final result.

Finiteness of the normalization algorithm. Let s and § be as in the description
of Algorithm 3.4.3. Then we denote by R(i) the longest common prefix of s(*) and ,
that is, “the already correct part of the representation before the k-th step.”

We can do following observations on the length of R(7).

e At the beginning of each step of type A, we have A; > |R(7)|. Otherwise, s(*)
would be of the form drawn in Figure 3.4.2.

non-admissible factor

() () ‘(i) @ (0 (0)
51752 "'SAi-',-l"'S|R(z’)LS\R(z‘)|+15\R(z‘)|+2”'

prefix common with §

Figure 3.1: The situation where A; < |R(i)|

However, under the assumption that the coefficients in s(*) are non-negative before
each application of the transcription of the type A, a representation of the form
drawn in Figure 3.4.2 is lexicographically greater than the -expansion §. This is
in contradiction with the definition of S-expansions.

e In addition to previous fact we can exclude the possibility 4; = |R(¢)| at the
beginning of each step of the type A. Let us suppose the converse, i.e. we have
steps I and J, such that I < J, both are of the type A, all the step between them
are of the type B, and Ar = |R(I)|.

It follows from the description of the algorithm that no step of type B between [
and J can affect coefficients with indices less than of equal to A;. Hence we have
s and s/) of the form drawn in Figure 3.4.2.

Again, due to the assumption of the non-negativity of all the coefficients in s(/),
this representation is lexicographically greater than [-expansion §, which is the
contradiction.

These two observations allow us to formulate following lemma.

Lemma 3.4.5. Leti = 1,2,... be the indices of the steps in the normalization algorithm.
Then the length of R(i) is a non-decreasing function of i.

However, to prove that the algorithm can be stopped after a finite number of steps,
we would need to prove a stronger statement.
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non-admissible factor

oD (1) n .M (1)
Ieosi7 o SRy =1 8RS IR+ SIR(D+2

J

prefix common with §

D ) W )
Joosi sy -1 Siry T U SR SR

Figure 3.2: The situation where A; = |R(7)]

Conjecture 3.4.6. Let Let © = 1,2,... be the indices of the steps in the normalization
algorithm. Then the length of R(i) is not eventually stationary, that is, there does not
exists an index I such that |R(I)| = |R(i)| for all i > I.

Concerning a possible proof of Conjecture 3.4.6, note that each step of Type A
lexicographically increases the transcribed [-representation. In the case of finite repre-
sentations this fact is clearly enough to prove that the algorithm would eventually stop.
However, we are working with representation which are, on principle, right-infinite and
one can imagine a situation in which the algorithm would perform transcription every
time more far to the right without returning back “to the end of R(4)” for some i.

On the other hand, considerable amount of computations was done using this algo-
rithm (cf. Appendix B) and no case which would not eventually stop was observed.

Now let us assume that we were able to show the validity of Conjecture 3.4.6. This
would mean that after a finite number of steps one would have |R(i)| > m + p, where
m and p are lengths of the pre-period, respectively of the period of (z + y)g. Therefore
the algorithm would thereafter produce a periodic output and so it would be stopped
by finding the re-occurence.

This implies that the algorithm would work also for 3 not being a Pisot number
provided that (z + y)3 is finite or eventually periodic.
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Chapter 4

Alpha-adic expansions

In this chapter we study another mode of representation of numbers, different from the
representations based on (3-expansions, but strongly connected with them. It is called
the a-adic representation and, roughly speaking, is a representation of a complex (or
real) number in a form of (possibly) left infinite power series in «, where « is a complex
(or real) number of modulus less than 1.

We have two sources of inspiration — the S-numeration systems on one hand and
the p-adic numbers (representations of numbers in the form of left infinite power series
in a prime p) on the other hand. However, contrary to the usual p-adic numbers the base
of the a-adic system is in modulus smaller than one. This fact implies an important
advantage over the usual p-adic expansions, since we do not have to introduce any
special valuation for the series to converge.

As seen before, in the f-numeration numbers are right infinite power series. The
deployment of left infinite power series has been used by several authors for differ-
ent purposes. Vershik [105] (probably the first use of the term fibadic expansion) and
Sidorov and Vershik [101] use two-sided expansions to show a connection between sym-
bolic dynamics of toral automorphisms and arithmetic expansions associated with their
eigenvalues and for study of the Erdds measure (more precisely two-sided generaliza-
tion of Erdos measure). Two-sided beta-shifts have been studied in full generality by
Schmidt [99]. Ito and Rao [73], and Berthé and Siegel [36] use representations of two-
sided (-shift in their study of purely periodic expansions with Pisot unit and non-unit
base. The realization by a finite automaton of the odometer on the two-sided (-shift
has been studied by Frougny [62].

Left-sided extensions of numeration systems defined by a sequence of integers,
like the Fibonacci numeration system, have been introduced by Grabner, Liardet and
Tichy [68], and studied from the point of view of the odometer function. The use (at
least implicit) of representations infinite to the left is contained in every study of the
Rauzy fractal [93], especially in a study of its border, see e.g. Akiyama [2], Akiyama
and Sadahiro [6] or Messaoudi [82].

Finally, there is a recent paper by Sadahiro [95] on multiply covered points in the
conjugated plane in the case of cubic Pisot units having complex conjugates. Sadahiro’s

69
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approach to the left infinite expansions is among all mentioned works the closest one to
our own.

This chapter is organized as follows. First we define a-adic expansions in the case
where « is an algebraic conjugate of a Pisot number 5. Recall that, by the results of
Bertrand and Schmidt a positive real number belongs to the extension field Q(5) if and
only if its J-expansion (which is right infinite) is eventually periodic (Theorem 2.1.7).
Thus it is natural to try to get a similar result for the a-adic expansions. We prove
that a number belongs to the field Q(«) if and only if its a-adic expansion is eventually
periodic to the left with a finite fractional part. Note that the fields Q(«) and Q(f3) are
identical, but our result includes also negative numbers, that means one can represent
by a-adic expansions with positive digits also negative numbers without utilization of
the sign.

Further on, we consider a-adic expansions of elements of the ring Z[a~!] in the case
when (3 satisfies the Finiteness property (F). We give two algorithms for computing
these expansions — one for positive and one for negative numbers. Finally, in the
case of quadratic Pisot units, we study the unicity of the expansions of elements of
the ring Z[a~!]. We give an algorithm for computing an a-adic representation of a
rational number and we discuss normalization of such representation by means of a
finite transducer.

In the last section we discuss the arithmetics of eventually periodic a-adic expansions
from a more practical point of view. We limit ourselves to one particular irrationality
— the golden mean 7 — and we provide arithmetic algorithms on the ring of left infinite
eventually periodic expansions. Similarly to the addition in a general Pisot base, an
algorithm of an arithmetic operation is composed of two parts: at first we compute an
a-adic representation of the result, which is normalized afterwards.

The normalization is carried out by a non-sequential transducer, which is constructed
for this purpose. To this transducer one then applies the determinization algorithm (the
usual subset construction), however, the resulting machine is an infinite transducer with
a countable number of states. We show that with a suitable preprocessing of input words
only a finite portion of the transducer is used. This and the fact that the output is an
eventually periodic word permits us to stop the computation after a finite number of
steps.

The first part (the four sections concerning the algebraic properties of a-adic ex-
pansions) have been submitted for publication in Theoretical Computer Science [13],
while a preliminary version of the same work has been published in the proceedings of
the conference Words’05 [12]. The last section (the arithmetics of 7-adic expansions)
has been published in the proceedings of the conference CANT 2006 [10].

4.1 Alpha-adic expansions

Arrangement. Throughout the whole chapter [ will stand for a Pisot number such
that dg(1) =t¢;---t, and o will be one of its algebraic conjugates.
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Definition. An a-adic representation of a number x € C is a left infinite sequence
(x;)i>— such that z; € Z and

1 k

z=-+xa triatarotrat+ - +a_pa”

for a certain k € Z. It is denoted (z) = -+ x1Tgex_1 -+ - T_.

Definition. A (finite, right infinite or left infinite) sequence is said to be weakly ad-
missible if all its finite factors are lexicographically less than or equal to d%(l), which is
equivalent to the fact that each factor of length ¢ is less than ¢; - - - £y in the lexicographic
order.

If an o-adic representation (x;);>_x of a number z is weakly admissible it is said to be
an a-adic expansion of x, denoted

Oc<:1:> = .- Z1Tgex_1" " " T_} -

Ezxzample. Let G be the golden mean, that is the Pisot number with minimal polynomial
2?2 — 2 — 1. We have dg(1) = 11 and dj(1) = (10)~. Hence the sequence (10)* is
a forbidden factor of any (-expansion. On the other hand, “(10)010.1 is an a-adic
expansion of —2.

Remark 4.1.1. Although the S-expansion of a number is unique, an a-adic expansion
is not. For instance in the a-adic system associated with the golden mean, the number
—1 has two a-adic expansions

o{=1) = “(10).
o{—1) = “(10)0.1

Analogous to the case of (-representations we define for a-adic representations the
a-value function 7, and the normalization function v¢ on a digit alphabet C.

4.2 Eventually periodic a-adic expansions

In order to prove the main theorem about eventually periodic expansions, we need two
technical lemmas.

Lemma 4.2.1. Let y € (0,1) be a real number with the purely periodic [(3-expansion
(W)p = 0e(y—1---y—p)*. Then o(~y') =“(y-1--y—p):0.

Proof. Suppose y = % + 0+ yﬁ;pp + % 4+ ---, which can be also written y =
% o ey ﬁ% Conjugating the equation we obtain y’ = =1 + ... + L2 4 g—;
Hence —y' = y_10P7! + -+ + y_, — y/aP that is o(—y') = “(y—1---y_p)e0, which
completes the proof. O

Lemma 4.2.2. Let x € (0,1) be a number with finite 3-expansion (x)g = Qex_1 - T_p,
then o{(x') is of the form “(t1---tp_1(ty — 1))up -+ - UgeU_1 -+ - U_pp.
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Proof. Let (x)3 = Osx—1 ---2_, with z_,, # 0. By conjugating it and by changing the
sign of its coefficients we obtain an a-adic representation of —z/, o(—2') = 077 --- T,
where d denotes the signed digit —d. If we subtract —1 from the last non-zero coefficient
Z_, and replace it by an a-adic expansion of —1, o(—1) = “(t1---t;—1(tg — 1))s, we
obtain another representation, which is eventually periodic with a pre-period of the
form of a finite word over the alphabet {—|f3],...,[3]}. Finally, an a-adic expansion
of —z' is simply obtained by the normalization of the pre-period (cf. Algorithm 4.3.2
and Example 4.3). O

Lemma 4.2.1 and 4.2.2 allow us to derive from Theorem 2.1.7 a characterization of
numbers with eventually periodic a-adic expansions. The main difference with Theo-
rem 2.1.7 is that the version for a-adic expansions includes also negative numbers, that
is one can represent by a-adic expansions with positive digits also negative numbers
without the necessity of utilization of the sign.

Theorem 4.2.3. Let o be a conjugate of a Pisot number 3. A number x’ has an
eventually periodic a-adic expansion if and only if v’ € Q(«).

Proof. <=: Let z’ have an eventually periodic a-adic expansion, say
/
a<$> :w(xk_i_p...xk_i_l)xk---:vo.w_l---:U_j‘

Let o/ :=* z;0f and v/ := 7P, 2:a%. Then «/,v' € Z]a~!] and
1=—) i=k+1 )

which proves the implication.

=: Let x € Q(6) N [0,1). According to Theorem 2.1.7 the (-expansion of z is
eventually periodic, say (z)g = 0ex_1 - Z_p(T—p—1- - T_p—p)*. In the case where the
period of (z)g is empty, an eventually periodic a-adic expansion of —z’ is obtained by
Lemma 4.2.2.
Let us assume that the period of ()3 is non-empty and let us denote its value by

y = m5(06(Z_(nt1) - T (ntp))) s

therefore

-1 T—n Y
B pro B

Conjugating the equation we obtain
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According to Lemma 4.2.1 we know how to obtain an a-adic expansion of —y’, hence
an a-adic representation of —z’ can be obtained by digit wise addition

@) T )T ) Top e Ty Tty
C(a) e (—w)
w($—(n+1) T $—(n+p))$—(n+1) T T—p e (w—(p+1) —x_q) - (:L'—(n—i-p) —T_p)

Therefore we have ,(—2') of the form “(¢; - - - ¢p)u, where w is a finite word, obtained by
the normalization of the pre-period = _ (1) T pe(T_(pr1) = T—1) ** (T_(np) — T—n)-
Note that this pre-period can be seen as a difference between two finite expansions and
so the normalization will not interfere with the period.

Now let > 1, z € Q(3). Indeed, there exists a positive integer N such that 2 < V.
Hence t :=1— BLN € Q(B)N[0,1). As we have proved before the number —¢ = ;—1:, -1
has an eventually periodic a-adic expansion. Therefore an eventually periodic a-adic
expansion ,(z’) is simply obtained by adding 1 to a(j—;v — 1), followed by shifting the
fractional point N positions to the left. O

4.3 Expansions in bases with Finiteness property (F)

In the previous section we proved a general theorem characterizing a-adic expansions of
elements of the extension field Q(«). If we add one additional condition on 3, namely
that it fulfills Property (F), we are able to characterize the expansions of elements of
the ring Z[a '] more precisely.

Proposition 4.3.1. Let a be a conjugate of a Pisot number (3 satisfying Property (F).
For any x € Z[B~ '], its conjugate 2’ has at least one a-adic expansion. This expansion
is finite and (') = (x)g.

Proof. Since (3 has Property (F), Fin(3) = Z[37!] and any = € Z[3!]; has a finite

fB-expansion, say ¥ = ) ;. x;(. By conjugation we have 2’ =Y. . z;a’. O

The proof of Proposition 4.3.1 shows us a way how to compute an a-adic expansion
of a number 2’ which is a conjugate of x € Z[37!],. The same task is a little bit more
complicated in the case where 2’ is a conjugate of an x € Z[37!]_. An a-adic expansion
of such a negative number z’ is computed by Algorithm 4.3.2 below.

Algorithm 4.3.2. Let x € Z[3~!]_. An a-adic expansion of ' is obtained as follows.

1. Use the greedy algorithm to find the B-expansion of —x, say

n
8
~—

=@
I
Q
0
8
\;
I

xkaaawo.x_laaaw_‘j’
with x_; # 0. This expansion is finite since (3 satisfies Property (F).

2. By changing the sign of coefficients in the erpansion, x; — —x;, we obtain
an a-adic representation of x' in the form of a finite word over the alphabet

{-18],...,—1,0}.
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3. Subtract —1 from the rightmost non-zero coefficient x_; and replace it by an o-
adic expansion of —1, o(—=1) =“(t1---ty_1(t¢ — 1)). The representation of ' has
now a periodic part “(t1---ty_1(tg — 1)) and a pre-period, which is a finite word
over the alphabet {—|3],...,|0]}

4. Finally, the a-adic expansion of x' is simply obtained by the normalization of the
pre-period. Note that the pre-period can be seen as a difference between two finite
expansions and so the normalization will not interfere with the period.

Ezample. Let § be the golden mean, « its conjugate. Recall that for example ,(—1) =
“(10)s. We compute an a-adic expansion of the number —4. The (-expansion of 4 is
101. 01, so 101.01 is an a-adic representation of the number —4. Now we subtract —1
from the rightmost non-zero coefficient and replace it by ,(—1) as follows

=

101.0
“(10)1010+10
©“10)1111.10

[a—y

Since the normalization of the pre-period 1111.10 gives 0100.001, the expansion is
o{—4) = “(10)0100.001.

Proposition 4.3.3. Let « be a conjugate of a Pisot number [ satisfying Property (F).
For any x € Z[3~Y]_, its conjugate =’ has at least { different a-adic expansions, which
are eventually periodic to the left with the period “(ty---ti—1(ty — 1)).

Proof. First, we show that the number —1 has ¢ different a-adic expansions. Recall
that —1 + mg(dg(1)) = 0, hence —a* + afm,(ds(1)) — 1 = —1. Therefore we have the
first expansion

al=1) =" (tr- - tea(ty —1)). (4.1)

Now we successively use the equality —a’ + a?m,(dg(1)) —1=—1for j=¢—1,...,1
to obtain the other ¢ — 1 representations. For given j this equation is

—od i ad T et (b =) a4t = 1
If we replace the coefficient —1 at o/ by its expansion (4.1) we have
a1y =ty - to_1(te — 1))ty -+ tjpr(tj — D)atj_1---tg. (4.2)

Note that periods of expansions obtained in (4.2) are mutually shifted, they are situated
on all possible ¢ positions. That is why all these expansions are essentially distinct.
The only difficulty would arise if t; = 0 for some j and hence we would obtain the
coefficient —1 at o by equation (4.2). If this is the case we take the pre-period and
normalize it

tl s tj+1(tj — 1)-tj_1 s tg ’lg Uy - Ujoljq1 - Usj
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where C' = {-1,0,...,|8]}. An a-adic expansion of —1 then will be
o(=1) =“(t1-te—1(te — 1))ur - ujorjn - u;

Then we consider an x € Z[3~!]_. Using the ¢ different expansions of —1 in Algo-
rithm 4.3.2 gives us ¢ different a-adic expansions of the number z’. O

Note that, conversely, if an expansion of a number 2’ is of the form “ (¢ - - ty_1(ty —
1))uev, then 2z belongs to Z[371]_.

Ezample. Let $ of minimal polynomial z3 — 22 — 1; such a number is Pisot and
satisfies Property (F) [3]. We have dg(1) = 101 and dj(1) = (100)“. Let a be one of
its (complex) conjugates. The number —1 has three different a-adic expansion

a(=1) = “(100).
o{—1) = “(100)0.01
o{—1) = “(100)01.00001

Since to = 0 the normalization of the pre-period was necessary to obtain an admissible
expansion for j = 2.

4.4 Quadratic Pisot units

This section is devoted to quadratic Pisot units, i.e. to the algebraic units 3, with
minimal polynomials of the form 2 —az — 1, a € Z,. Then o = —3~!. The Rényi
expansion of unity is dg(1) = al for such a number [, which satisfies Property (F), by
Theorem 2.2.4. The canonical alphabet is A = {0,...,a}.

4.4.1 Unicity of expansions in Z|[j]

We first establish a technical result.

Proposition 4.4.1. Let « be the conjugate of a quadratic Pisot unit 3. Let #(x) :
R — N be the function counting the number of different a-adic expansions of a number
x. Then (#(x) < 400 for any x € R.

Proof. Let x € R and let ,(z') = uev be an a-adic expansion of z’. Then
mp(sv) € Z[B] N [0,1),

L8] (4.3)
1—|of
Let D, := {(mg(ev), ma(sv)) | a(2’) = uev}. Clearly by (4.3), D, is a subset of [0,1) x R
with uniformly bounded cardinality, that is to say there exists a constant B such that
#D, < B for all z € R.

Now suppose that there is a number y € R such that v/ has an infinite number

of a-adic expansions. Indeed, there exists a constant N such that =™y’ has B + 1

different fractional parts. This is in contradiction with the above proved fact that the
number of different fractional parts is uniformly bounded for z € R. U

|7/ — 7o ()| = |ma(ue)] <
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Let us note that Proposition 4.4.1 is conjectured to be valid for all Pisot numbers
with Property (F). In the case that [ is a cubic Pisot unit with complex conjugates
satisfying Property (F), Sadahiro [95] has proved that the above result holds true.

Proposition 4.4.2. Let 3 be a quadratic Pisot unit. Let x € Z[(]+. Then x’ has a
unique a-adic expansion, which is finite and such that (z') = (x)g.

Proof. By Proposition 4.3.1 any number 2’ € Z[3]; has a finite expansion ,(z') =
Tj - - ToeZ_1---Z_j. Let us suppose that 2’ has another a-adic expansion (necessarily
infinite)

al@) = Uy UGU_ Uy -

Subtracting these two expansions of ' and normalizing the result we obtain an admis-
sible expansion of zero of the form - - - uj3up2VL 1 - - - Voov_1 - - v_p, with v_,, # 0. By
shifting and relabeling

0= a'z, (4.4)

where (2;)i>0 is an admissible sequence with zp # 0. The admissibility condition implies

21 €40,...,a—1}. Since a = —(3~! one can rewrite (4.4) as
) Z4 zZ1 Z3 z5
2wttt =5+t mt ot (4.5)
BBt g BB
LS:= RS:=
The coefficients z; for i > 1 belong to {0,...,a}, hence by summing the geometric series

on both sides of (4.5) we obtain LS € [1,a+ %] and RS € [0,1— %] which is absurd. O

To prove an analogue of Proposition 4.4.2 stating the unicity of a-adic expansions
for the elements of Z[3]_ we first need the following Lemma.

Lemma 4.4.3. If a number z has an eventually periodic a-adic expansion then all its
a-adic expansions are eventually periodic.

Proof. We have already shown that if a number x has a finite a-adic expansion then
this expansion is unique.
Let us consider a number z’ with an eventually periodic expansion

a([]j‘/> = w(mk—‘,-p . xk+1)mk ceeXpel_q1 - x_j . (46)

For the sake of contradiction let us assume that 2’ has another a-adic expansion, which
is infinite and non-periodic

o2y = ugugeu_q - Uy, (4.7)
Put v/ := o kD — Ta(0ezy - - - zox_1 - - - x_;). Hence from (4.6) we have

a<?/> =“(Thyp - Thy1)e0. (4.8)
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From (4.7), defining vg41ev5 - - - vov_1 - - - v_q as the word obtained by normalization of
the result of digit-wise subtraction uyqqeuy - - - urugu_1 - - U_p, — Oy - - - Tox_1 - - - T_3,
we have

oY) = Uk 3Up L2V 100k + +  VOU_1 - U_g (4.9)
which is non-periodic.
Equation (4.8) gives us another formula for y', namely
Y =Py — o (0epyp - Tht1) .-

Iterating this formula on the non-periodic expansion (4.9) yields infinitely many different
a-adic expansions of the number 3. This is in the contradiction with the statement of
Lemma 4.4.1. O

Proposition 4.4.4. Let 3 be a quadratic Pisot unit. Let v € Z[B]—. Then 2’ has

exactly two eventually periodic a-adic expansions with period “(a0).

Proof. At first, we prove that the number —1 has no other a-adic expansions than those
from Proposition 4.3.3. Since all a-adic expansions of —1 have to be eventually periodic,
we will discuss only two cases: when the period is “(a0) and when it is different.

1. Consider an a-adic expansion of —1 with the period “(a0)
ol{—1) =“(a0)dy, - - - dped—1 - - - d_;,
1= p . (dy - doed_y - --d_j).
The number —1 + o**! is the conjugate of f¥t! — 1 € Z[f], and as such has a

unique a-adic expansion. Therefore there cannot be two different pre-periods for
a given position of the period.

2. Suppose that —1 has an a-adic expansion with a different period

ol=1) = “(dpyp - dpsr)ge - - dged_1 -+ d_;.
Let P’ := mq(dg4p - - - dgt1). Then

/

1= ak+11 —— F a(di e doed g - ood ),

and by taking the conjugate we obtain

P
1= ﬂk+17 —I—’]Tﬁ(dk <o dped_q -+ 'd_j) .

1— v
Therefore p
ma(dg -+ doed_1---d_j) +1 = 5’”1%,
N————
<L oen

which is a contradiction.

Validity of the statement for numbers 2’ € Z[a]_, 2’ # —1, is then a simple conse-
quence of Algorithm 4.3.2. O
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4.4.2 Representations of rational numbers

In this subsection we inspect a-adic expansions of rational numbers. We give below an
algorithm for computing an a-adic representation of a rational number ¢ € Q, |¢| < 1.
The algorithm for computing ,(g) is a sort of a right to left normalization — it consists
of successive transformations of a representation of ¢, and it gives as a result a left
infinite sequence on the canonical alphabet A.

Let x1, 2 and x3 be rational digits, and define the following transformation

¥ (@) (x2) (1) = (23 — ([21] — 21)) (@2 + a([2z1] — 21))([21]) - (4.10)
Note that this transformation preserves the a-value.

Algorithm 4.4.5. Input: ¢ € QN (—1,1).
Output: a sequence s = (s;);>0 of AV such that >0 sial = q.

begin
S0 ‘= (5
for i > 1do s; :=0;
1 :=0;
repeat
Si428i415; = V(8i425i415i);
=14 1;
end

Since the starting point of the whole process is a single rational number, after each
step there will be at most two non-integer coefficients — rational numbers with the
same denominator as q.

Denote st the resulting sequence after step i; thus sV = “0q and, for i >

O,ls(”l) = --sgf:ll)sgigl)sgigl)sgil)sgiﬂ)---séHl) where the 'digits séiﬂ) = 50, ---,
sz(.ZH) = s; are integer digits of the output, and the factor sgigl)sz(.gl)sgﬁl) is under

consideration. Note that for j > ¢ + 3, the coefficients s§i+1) are all equal to 0. Thus

the next iteration of the algorithm gives zp(sgigl)sgigl)sgil)) = 35122)85122)52(1432).

Lemma 4.4.6. After every step i of the algorithm, the coefficients satisfy:

(i+1) (i+1)

® 55 =250,...,5 = s; belong to A

. sgfll) €(-1,a)

. sg:;l) € (—1,0].

Proof. We will prove the statement by induction on the number of steps of the algorithm.
The statement is valid for ¢ = 0 due to the assumption |¢| < 1.
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By Transformation (4.10) we have zb(sgigl)sgigl)sgil)) = sgigz)sgigz)sgi?), thus

sl(.flz) = [sgiﬁl)} €ZnN|0,al,
st = s a0 - s € (< 1,a)

+2 7 7
s — (s8] — sty € (<1,0].

O

Since the factor 82(1432)82('122)81('1432) after step ¢ + 1 is uniquely determined by the

factor sgigl)sgigl)sgfll), and the coefficients sgfll) and sgf:al) are uniformly bounded, as

a corollary we get the following result.

Proposition 4.4.7. Algorithm 4.4.5 generates an «-adic representation of q which is
eventually periodic.

Example. We compute an a-adic representation of the number % in the case dg(1) =
31.

1
2
13 1
2 2 2
1 3
-3 35 1
131
2 2 2
1
112 1
131
2 2 2
1 3
-1 3 0 1 2 1

Because the prefix (—1)(2) which arises after step 3 is the same as the one which arises

after step 0, the same sequence of steps (with the same results) will follow from now on.
Therefore the a-adic representation computed by the algorithm is o (3) = “(012)1.. It
happens that, in this particular case, this is an a-adic expansion of a(%)

4.4.3 Normalization

Unfortunately, Algorithm 4.4.5 does not give directly an admissible a-adic expansion in
general. In this section we discuss the normalization of such a non-admissible output.
Since the output word is a word on the canonical alphabet, its only possible non-
admissible factors are either of the type a™b with n > 1, b # a or of the type “a. The
following result shows that the latter case will not appear.

Proposition 4.4.8. The number of consecutive letters a’s in an output word of Algo-
rithm 4.4.5 is bounded for all g € QN (—1,1).

Proof. We will prove the result by contradiction. Let us assume that from some step
on, say from step ¢, the output of the algorithm is composed only of letters a’s. This
means that the output is of the form --- [V4|[V5][V2][Vi]v, where v has length i + 1,
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and for each £ > 1, [Vi| = a. We have Vj = sgil), and V5 = sl(-f:;) +a([V1] = V).
Iterating twice the transformation v, we get

Vi = —([Vi—2] = Vi—o) + a([Vi—1] — V1) for k> 3. (4.11)

From Relation (4.11) and the fact that V; > a — 1 one get

= é + é(m_ﬂ Vi) < (V] = Vir). (4.12)

Then iterating (4.12) we obtain an explicit estimate for ([Vj] — V%)

1 1
([Vil] = Vi) > 1= P E(U/k—ﬂ — V1)
1 1 1 1
124 (125 (Vo] - Vi
> a+a< a+a(|>Vk 2~| Vk 2))
1 1
=1- ﬁ + ﬁ(ﬂ/’k_ﬂ — Vk_Q)
1 1
>1- g g(Wk—:ﬂ — Vi—3)
>...
1 1
>1=gm gl -W)

Since sz(.f:al) € (—1,0] we can estimate

a—1<Vy=s' 4 a([Vil =) < a([Vi] = W),

which gives 1 — 1 < ([V;] — V4). Therefore we have

1 1 1 1

Finally, by inequality (4.13) and the fact that a — 1 < Vi < a, we obtain a bound on V}

1

Vi = =([Vi2] = Viz) +a[Via] —aVh1 <a—1+4—=. (4.14)
~ ~ S—_—— a

1 —q2 a2
<—ak_2—l =a <a—a

Suppose that we are computing an a-adic expansion of a rational number ¢ with

denominator p € N. Find the smallest K such that %D > GKI,Q . Since any V4 is a fraction

with denominator p, by (4.14) we have Vi = % < a—l—i—aK%g, which implies Vg < a—1.
This is in contradiction with the assumption that a — 1 < V}, for all £ > 1. O

Proposition 4.4.9. Let w be an output of Algorithm 4.4.5 for a number ¢ € QN(—1,1)
and let W be the image of w under the normalization function, vs(w) = w. Then W is
left eventually periodic with no fractional part.
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Proof. First of all, a number (3 such that dg(1) = al is a so-called confluent Pisot number
(cf. [60]). For these numbers, it is known that the normalization on the canonical
alphabet does not produce a carry to the right. This assures that w will have no
fractional part and that we can perform normalization starting from the fractional
point and then just read and write from right to left.

We have shown earlier that for a given rational number g the number of consecutive
letters a’s in an output word w is bounded, moreover the proof of Proposition 4.4.8
gives us this upper bound. We give here a construction of a right sequential transducer
7T performing the normalization of such a word w.

Define Ap := A\ {0}, and let C be the bound on the number of consecutive letters
a in a word w. Because the result of the normalization of non-admissible factors of w
depends on the parity of the length of blocks of consecutive a’s, the transducer 7 has to
count this parity. This is done by memorizing the actually processed forbidden factors;
the states of the transducer are labeled by these memorized factors.

Transducer 7 is constructed as follows

... . . 0|0
e The initial state is labeled by the empty word ¢, and there is a loop ¢ ‘—> €.

e There are states labeled by a single letter h € Ay connected with the initial state

h 0|0h
by edges ¢ ——|E—> h and h |—> €. These states are also connected one with each

- N
other by edges ¢ 7, j where i,j € Ap, j # a. Finally there is a loop h LA h on
each state h € Ay, h # a.

e For each h € Ay there is a chain of consecutive states a*h, where k = 1,...,C —1,

linked by edges a*h ok, a**t1h. Moreover, there are edges a*h 3k, ¢ + 1 where

u=(0a)™0(h —1) for k =2m+ 1 and u = (0a)™0(a — 1)h for k = 2m + 2.

The edges a*h ok, a!T'h are these which count the number of consecutive letters a

in a forbidden factor, whereas the edges a*h LN 1+ 1 are these which, depending on
the parity of the length k of a run a”, replace a forbidden factor by its normalized
equivalent.

One can easily check that the transducer is input deterministic, and thus right
sequential. Clearly the output word is admissible. Since the image by a sequential
function of an eventually periodic word is eventually periodic (cf. [55]), the image w is
eventually periodic. O

The following is just a rephrasing.

Theorem 4.4.10. Let 3 be a quadratic Pisot unit. Any rational number ¢ € QN(—1,1)
has an eventually periodic a-adic expansion with no fractional part.

Remark that there exist rational numbers larger than 1 such that the a-adic ex-
pansion has no fractional part. We have shown in Example 4.4.2 that for dg(1) = 31,
o{2) =%(012)1.. Thus 4(2) = “(012)2. has no fractional part.
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Remark 4.4.11. Let us stress out that the analogue of Propositions 4.4.2 and 4.4.4
has been proved by Sadahiro for the case that ( is a cubic Pisot unit with complex
conjugates satisfying Property (F). The extension of these results to other Pisot units
satisfying Property (F) is an open problem.

4.5 Arithmetics of eventually periodic tau-adic expansions

In this last section we discuss more practically the arithmetics of eventually periodic a-
adic expansions. We consider one particular irrationality, the golden mean 7. We denote
by Fep(7') the set of all real numbers which have their tau-adic expansions eventually
periodic to the left. By Theorem 4.2.3, Fo,(7') is a ring. We give below algorithms
to perform ring arithmetic operations in Fe, (7). More precisely, we construct a trans-
ducer with a countable number of states to perform addition, subtraction is reduced to
two additions, and for multiplication, we give an algorithm which uses additions and
subtractions.

4.5.1 Determinization of a transducer

In the construction which follows, we will need to determinize a transducer. Note that
there is a known algorithm (cf. Choffrut [50], Béal and Carton [26]) to determinize a
real-time transducer realizing a sequential function. We recall here the description of this
algorithm due to Béal and Carton, slightly changed for the case of right subsequential
transducer.

Let 7 = (A x B*,Q,FE,I,F) be a real-time transducer labeled in A x B*. Its
deterministic equivalent — the subsequential transducer (Zget, p) — is defined as follows.
A state P of Tyt is a set P = {(g;,w;) € Q x B*| i € N}, where ¢; is a state of 7 and w;
is a word over B. The transition (P, a), where a € A is a letter from the input alphabet
is determined by the set R,(P) defined by

alu

Ro(P) := {(q},uw;) | there exist (¢;,w;) € P and ¢; — ¢} € E'}.

If R,(P) is empty, there is no transition from P input labeled by a. Otherwise, let v
be the longest common suffix of words ww; for all pairs (¢}, uw;) € R,(P) and

P' = {(gf,uwv™) | (g;, uw;) € Ra(P)}.
Then there is a transition P~ P'. The initial state of Taer s J = {(i,e) | i € T}.
Finally, a state P is final if it contains at least one pair (g;, w;) where ¢; is a final state
of 7. The final function p then maps such final state P to the word w;.

In the case of a sequential transducer over infinite words there exists also an algo-
rithm to determinize such a transducer (cf. Béal and Carton [26], [27]). This algorithm
(in the simplified case of a transducer having all its states final) differs from the previous
one in two points. First, it specially deals with the so-called constant states (a constant
state is a state ¢ € @ such that all infinite paths starting in ¢ have the same output
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label regardless their input labels); second, it uses a deterministic Biichi automaton
recognizing the domain of the function realized by the transducer to insure that the
output is infinite only when the input belongs to the domain of the function.

4.5.2 Addition

General principle. Similarly to the addition in a general Pisot base, all three arith-
metic algorithms for the 7-adic system are composed of two parts. Again, the first
one consists in computing a representation of the result and the second one consists in
normalization of such a representation.

The computation of a representation is very similar to that one described in the
section 3.4, with the exception that Facts 3.4.1 and 3.4.2 have to be changed in the
sense of the “direction” of the period.

Fact 4.5.1. Let “(Um+p - Um42Um+1)Um - - UgeU_1 - - - U_}, be a T-adic representation
of a real number u. Then “(Umi1Umtp - Um+2)Umt1Upm - - Ugel—1 - - - U_}, @S also a
T-adic representation of u.

Fact 4.5.2. Let “(Upmp -+ Um41)Um - - UgeU—1 - - - U_}, De a T-adic representation of a
real number u. Then “((Umqp - Umg1) U -+ - Ugeti_1 . .. u_y, 15 also a T-adic represen-
tation of the number u, for any positive integer | € N.

Let z,y € Fep(7'). We want to find a representation of z = = + y. First we shift
period of = or of y so that they start with a coefficient belonging to the same power of
7/. Then we stretch the periods to the length equal to the least common multiple of

their original lengths. Finally the result is obtained by a simple digit-wise addition.

Normalization. We describe a transducer 7 — a finite non-deterministic transducer
performing right to left normalization on alphabet {0, 1,2} in the 7-numeration system
(hence also in 7-adic numeration system), with the additional condition on the input
word that every coefficient 2 is surrounded by at least one 0 from each side. This
condition is equivalent to the input word being a digit wise sum of two expansions in
the T-numeration system.

It is known that the sum of two tau-integers in the T-numeration system is a number
with at most two fractional digits in its 7-expansion [44]. Hence if 2 is the rightmost
non-zero coefficient in the 7-adic representation of z, obtained in the previous step,
the process of normalization will affect at most coefficients with indices greater than
or equal to k — 2. To avoid technical difficulties we, without loss of generality, request
that the input words for 7 begin with 00 (once more we recall that the transducer is
working from right to left, hence the factor 00 is supposed to be on the right end of
the representation of z). In what follows coefficients of the input word will be denoted
...Qpag_1...a1ao (hence ap = a3 = 0) and coefficients of the output word will be
coobpbe 1 .. b1y
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We denote the initial state of 7 by qo. Then we have the starting part of the
transducer

00je
qgo — q1
g 10 7y a0 200, @ 2% 00,
g 12 0w « Hoo ey @ EUSP!
q1 0|L1()) 12 qn 2|0—0} Ol(d) q 2L09 11(6) .

We now describe the synchronous part of the transducer. Its states are denoted by
words of length two, with dydy representing the polynomial d;7+dy and the signed digit

a|by

—1 being denoted by 1. Transitions are of the form dydy — d}d}, if ay + (do +d17) =
b + (dyT + dyT2).

Moreover, there are several states having the same numerical value, but different
conditions on incoming edges. This is mainly due to the fact that there is a condition
on the input word too. In those cases the states having same numerical value are
distinguished by subscripts — the subscript (a) is used for the state whose incoming
edges are input-labeled by zeros and ones, subscript (b) for the state with entirely zero
input-labeled incoming edges, subscript (¢) for a state with incoming edge labeled by
2|1 and subscript (d) for a state with incoming edge labeled by 2/|0. Note that two
edges belonging to the starting part of the transducer 7 are exceptions from these
rules, since their output labels are of the length three — in this case we have to see a
label ay|bibg_1br_2 as a label ag|bg.

All the states of the transducer are final. The synchronous part of the transducer
7T is drawn in Figure 4.1. Following proposition easily follows.

0[0

0[0

0/0

2[0

Figure 4.1: The synchronous part of the transducer 7.
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Proposition 4.5.3. Apart from the starting part the rest of T is a letter-to-letter trans-
ducer with zero delay (i.e. when the transducer reads the input letter aj it writes the
output letter by). Moreover, if d|d, is the state reached after the k-th step (i.e. after
writing the coefficient by of the output word) we have

k k

D ai(7) = (dy (7 + dpm) (7 D b7

=0 i=0

Remark 4.5.4. Should the transducer 7 be used to normalize finite words, for sim-
plicity we would suppose that the input and output word are of the same length, i.e.
there is enough zeros in the front (recall that we are working from right to left) of each
input word for the automaton arrive into the state 00,), this state would be the only
one final state.

Now let us assume that we would like to really use the transducer 7 to perform the
normalization (that is to say to implement the adding machine). A non-deterministic
transducer over infinite words does not seem to be the best suitable machine for this
task.

In Subsection 4.5.1, we recalled two algorithms to determinize a sequential trans-
ducer. It was suitable for determinization of a transducer over finite words (in the first
case) and over infinite words (in the second case). As we have mentioned before, they
differ mainly by two things — the second one specially deals with the so-called constant
states and it also uses a deterministic Biichi automaton recognizing the domain of the
function realized by the transducer to insure that the output is infinite only when the
input belongs to the domain of the function. Nevertheless, it can be easily checked that
our transducer 7 has no constant states and, moreover, we will employ the transducer
only on words surely belonging to the domain of the normalization function (hence there
is no need of the above mentioned deterministic Biichi automaton). Therefore we do
not have to apply the second algorithm.

Let us for a while forget that our function is not sequential and apply the first
determinization algorithm to transducer 7. We obtain a transducer, say Zge, with
an infinite countable number of states. However, while performing the algorithm it
is easy to see that the resulting transducer 7. is virtually composed of two parts:
the “non-repeating part” (counting 11 states) and the “repeating part” (the rest of the
transducer).

)

The “non-repeating” part of the transducer 7ge is in Figure 4.2. The states P1(§ to

Pl(i) are the first states of the repeating part, the state J is the only one initial state
and the double circled states Py, P; and Py are the states where edges returning from
the repeating part reenter the non-repeating part (see below).

The states of the repeating part of the transducer 74, are denoted by symbols
Pj(z). The subscript indicates the type of the state, i.e. the set of states of transducer
7 “contained” in state Pj, whereas the superscript indicates the length of memorized

words, i = |wy| for all pairs (gx,wy) in P](Z)
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2|e

Pll

Figure 4.2: The synchronous part of the transducer 7.

There are five different types of states P; in the repeating part!

P{i) = {000, %), (11(g), %), (12, %)}

Py = {0y, %), (01(q), %)}

Py = {(00(4),%), (00(s), %), (12,%), (12, %)}
Py = {(11g), %), (01(gy, %)}

Pl = {(00(a, %), (110), %), (12,%), (11(5), %)}

We can organize the repeating part of 7je into the levels according to the super-
scripts of the states within.

All the transitions between the states inside the repeating part have empty output

'The symbol * stands for some nonempty word of length i admissible in the T-numeration system



4.5. ARITHMETICS OF TAU-ADIC EXPANSIONS 87

.—C”i Gl Gl

0]
Py - /<P12 )“’

Ole

Ole

G *’

Ole
. /
Ole //—(67\ /
(P12’ ) 12 Py’ )-—

- (p®
P12 ]_|E \P10 )
Ole
-~(P (P (PO PY- >
13 1|€ \" 13 J 1‘5 \"13 J 1‘6 13

Figure 4.3: First four levels of the periodic part of the transducer 7je.

word, transitions of the repeating part between those levels are then the following ones

i) Ol 5(i+1 i) Ol 5(i+1
L Il i
i) e 5(i+1 i) 2le (i1
S S
i) Ole 5(i+2 i) e 5+l
CHES S

i) Ole i+1
P1(4) —>P1(2 .

The first four levels of the repeating part are drawn in Figure 4.3.

In addition to the edges inside the repeating part, there are also the so-called “return
edges”, i.e. the edges aiming back to the non-repeating part (note that for clarity reasons
these are not drawn in Figure 4.3).

p e p o p@ A p
pi vz p p® 2 p
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where
o — <k2(01)001 for i = 2k
27 ®Do1)0 for i =2k + 1
e — k=20 1) 0 for i = 2k
5 <k2(01)001 for i = 2k + 1
s — 0F201)001 fori=2k
YT 00%®201)100 fori=2k+1.

Ezample. We will normalize the representation ,/(z) = “(0111010)02000 using the
transducer 7ge;. The path in Zge is the following one?

Used transition Output
J%Poz{ql,OO} €
Py 2% Py = {(00(4), 00), (004, 00), (11, 10), (12,01)} 0
Py 25 py = {(11,), 100), (014, 001)} 0
Py 25 P = {(00,4),1001), (11, 0001), (12,0100), (11 sy, 0001)} 0
pw %, Pl( ) = {(00(4),01001), (004, 01001), (12,00001), (12, 10100)} 0
P 25 PO = {(004),101001), (114, 001001), (12,010100)} 0
Y ) - , ,

{(00(4),0101001), (00, 0101001), (12,0001001), (12, 1010100)} 0
P 2E P = {(004,),10101001), (114, 00101001), (12,01010100)} 0
P 1 By = {(11(4, 01), (010, 00)} 01010010
Py 25 Py = {(11(),100), (014, 001)} 01010010
Py — Lle P(4) Ol P(5) -~ from now on steps 5 to 11 are reoccurring | 01010010

The 7-adic expansion of z is therefore ,/(z) = “(0101001)0.

The transducer 7j.; realizes the same function as the transducer 7. Unfortunately,
since the normalization function v¢ is not sequential, it has an infinite number of states;
we have to deal with this fact.

It turns out that if we get rid of a few particular cases, which can be treated sep-
arately, only a finite portion of the transducer 73.; will be actually used during the
normalization.

Obviously, the cases resulting in the use of the whole transducer Zj.¢ (or strictly
speaking use of an infinite number of different states of 7g.) are those for which a
prefix of the input word is an input label of some path in the repeating part of Zget,
which never uses any return edge (i.e. never returns back to the non-repeating part).
We will treat these cases first.

2In the column Qutput is not written the output label of the actual transition, but the whole so far
generated output word.
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Since all the edges inside the repeating part of 74t have empty output and so the
input using infinite part of 74 will cause the transducer only to read and write nothing
from some coefficient on, we will call those cases as “infinite reading” cases. They are
simply characterized by the following lemma.

Lemma 4.5.5. The prefiz of an eventually periodic input word triggering the infinite
reading in Tget 4s one of the following words “ (1), “(01), “(002), “({01,002}*).

Proof. Let us denote the discussed prefix by w. We will successively inspect all possible
infinite paths in the repeating part of 7., according to the state in which they begin.
Input labels of those paths will be prefixes w triggering the infinite reading.

1. The path starts in state Pl(é). There is only one transition leaving Pl(é) in the
repeating part of transducer, namely Pl(é) L Pl(;rl). Indeed the prefix w = v0 is
a concatenation of the letter zero and a word v — some prefix triggering infinite

reading, starting in the state of type Pi».
(4)

2. The path starts in state P1i . Just as in the case of state P1(é) there is only one
) Ole plit1)

transition leaving Pﬁ), namely Pﬁ — P, . Hence w = v0, where v is some
prefix triggering infinite reading, starting in the state of type Pi4.

3. The path starts in state Pl(;). There are two possibilities for the path leaving

this state. It can either be Pl(;) L, Pl(éH) O, Pl(;+2) which means there is
a factor 01 in w (recall that the automaton is working from right to left) or
Pl(;) 2, Pl(frl) Ole, Pl(i”) LA Pf;+3) implying the factor 002 in w. Therefore
the path advancing from state of type Pjo to another state of the same type using
only the first possibility will have “(01) as its input label, while the path using
only the second possibility will have “(002) as its input. Indeed there are also

paths using both possibilities and hence having “({01,002}*) as their input.

4. The path starts in Pl(?. Then it either proceeds with an infinite number of transi-

tions Pl(é) LA P1(§+1) and hence w = “(1) or the transition Pl(é) Sk, Pl(flﬂ) is used

for some j. In the later case the prefix is w = v(1)*, where v is a prefix triggering
infinite reading, starting in the state of type Py4.

5. The path starts in state Pl(fl). Also in this case there is only one transition Pl(fl) D,
Pl(;rl) and so w = v0, where v is a prefix triggering infinite reading, starting in

the state of type Pis.
O

Now we will show how to pre-process the input words having one of the prefixes
listed in Lemma 4.5.5.

1. The input word z (7-adic representation of = + y) has prefix “(01), or one can say
“(10)1. We distinguish two sub-cases
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a) There are less than two zeros in front of “(10)1. Indeed, there are three
possibilities, namely ©(10)102u, “(10)110u, “(10)111u. Since “(10)11 is -
adic expansion of zero, all those three possibilities lead to the normalization
of a finite word, which is again a finite word (the coefficient 2 in the first case
has to be substituted by 1001 to create zero-valued prefix “(10)11).

b) There are at least two zeros in front of the prefix “(10)1 in the representation
of z, i.e. z is of the form “(10)100u. Normalizing the word 00u we obtain
either 10v; or a word lexicographically smaller or equal to 0lvy where v;
is an admissible word possibly starting with 1, whereas vy is an admissible
word starting with 0. In the first case by concatenating the prefix we have
“(10)110v; which has been already discussed in Item a), hence the 7-adic
expansion of z is ;/(z) = vy, while in the second case the word “(10)10vy is
already admissible 7-adic expansion.

2. The input word z has prefix composed of the factors 01 and 002. The following

operation shows how to shift a block 002 “one position” to the left

0 10 0 2f0 1

111
111
00 2/0 101

while the following operation is used to modify two consecutive 002 blocks

0 100 2Jo 0 2]0 1

1 11
111
1 11

0 1[0 1][o 1]fo 1]0 1

Indeed, blocks 002 are treated by pairs — we shift the right block next to the other
one and then turn them into sequence of blocks 01. If the number of blocks 002 is
odd, the last one can be paired with its next occurrence (i.e. with the occurrence
in the next period). By turning all the factors 002 into factors 01 we transform a
representation of z into the form discussed in the Case 1.

. The input word z has a prefix composed of factors 002. Obviously, using the above

mentioned operation for turning two consecutive blocks 002 into three blocks 01
transforms the representation into the representation of the form discussed in the
Case 1.

. The input word z has prefix “(1). We use the following transformation

“(11)11
©(10)11
“(10)00

which once again leads back to the Case 1.



4.5. ARITHMETICS OF TAU-ADIC EXPANSIONS 91

There are four simple pre-processing transformations that turn any input word trig-
gering infinite reading either directly into its 7-adic expansion or into a finite word,
which can be simply normalized.

In all other cases, only a finite portion of the transducer 7ge; is used during the
normalization. Obviously, the computation can enter the repeating part of the trans-
ducer, but since the prefix of the input word is not any of those from Lemma 4.5.5,
every time the computation enters the repeating part it eventually uses some return
edge to go back to the non-repeating part. Indeed, we need only a finite portion of Zget
to normalize these representations.

Therefore, in fact, we have a deterministic transducer performing normalization.
Since the result is eventually periodic, the computation done by the transducer can be
stopped after a finite number of steps.

We can formulate the following Algorithm.

Algorithm 4.5.6. Let z,y € Fep(7'). The T-adic ezpansion of sum x +y is obtained
as follows.

1. Compute a T-adic representation of z = x + vy, using Facts 4.5.1 and 4.5.2.

2. Check whether the prefix of the obtained representation is one of the prefixes trig-
gering infinite reading (Lemma 4.5.5). If so, pre-process the prefix in the corre-
sponding way.

3. Check whether the representation begins with 00, otherwise append zeros in front
of it.

4. Normalize the representation, using deterministic transducer Te;. Since the result
will be eventually periodic, the computation done by the transducer can be stopped
after a finite number of steps.

4.5.3 Subtraction

Let 2,y € Fep(7'). We want to find the 7-adic expansion of x —y. The first step is
the same as for addition. By simple digit wise subtraction (using Facts 4.5.1 and 4.5.2)
we find a 7-adic representation of x — y, denoted by z = ,/(x — y). Obviously, the
coefficients of z are from the alphabet {—1,0,1}. Without loss of generality, we can
suppose that z has no fractional part. Normalization is then done using the following
algorithm.

Algorithm 4.5.7. Let z be a T-adic representation of v —y.

1. Define a partition of z into three other representations u, Voaq and Veyen, such that
this partition preserves the numerical value 7/ (z) = w0 (u) + 7 (Vodd) + T (Veven )
and

e u is obtained from z by putting all the negative coefficients equal to zero
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® Voqd s obtained from z by keeping only negative coefficients which belong to
the odd powers of T/

® Uoven 1S Obtained from z by keeping only negative coefficients which belong to
the even powers of T/

2. Modify voad and Veven by transformation
Uodd ‘= Vodd + “(10)e11 and Voven ‘= Veven + “(01)e1, (4.15)

which does not change numerical values of the representations, since both added

sequences are representations of zero. Hence we have u,Vodd, Veven € {0, 1} and
~ ~ ,

7TT’(“’)7 7"-T’(Uodd)a 7Tﬂ-’(veven) € fep (T )

3. A T-adic expansion of x — y is obtained by performing two consecutive additions
('LL + 6odd) + 6even-

Ezample. Let (z) = “(0100)10.0 and - (y) = “(0100)1«0. Then by digit wise sub-
traction we obtain ./(z —y) = 2 = “(0110)11.0. The partition is following one.

u = “(0100)10.0
Voad = “(0010)00.0
vl qq = “(1000)10.11
Veven = 1.0

Vhen = “(01)01.

Corollary 4.5.8. The partition construction in Algorithm 4.5.7 allows us to compute
a T-adic expansion from an eventually periodic T-adic representation over any finite
alphabet of digits:

1. Dispart the T-adic representation to be normalized into u, vVogq and Veyen-

2. Use transformation (4.15) on vogq and Veyen S many times as needed to get rid
of all negative coefficients.

3. The result is obtained by adding (u + Vodd) + Veven, €ach of them seen as a sum of
finite number of elements from the set Fep(7').

4.5.4 Multiplication

The operation of multiplication is different from addition and subtraction. Even though
the usual naive way to perform the multiplication — a series of successive additions —
seems to be an infinite process, in the case of eventually periodic expansions it can be
used, but it needs more careful investigation.

We start with the simplest case of two purely periodic 7-adic expansions, say ,/(x) =
“(xg...x0)e and (y) =“(yr...Yo)e.
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At first, let us assume that there is only one non-zero coefficient in /(y), say yn,
0 < n < [. In this case the multiplication will consist of successive summation of x
multiplied by (7/)"*! for i > 0 (i.e. summation of copies of ,.(x) every time shifted
[ positions to the left). This process produces a representation with a “re-occurring
pattern”: after summation of k shifted copies of ,/(z), the period of (k + 1) copy of
() is exactly aligned with the period of the 15 copy, while in the copies in-between
it appears in all other possible “shift positions”; the period of the (k + 2)"d copy is
aligned with the period of the 2" copy and so on. Therefore, the sum will be composed
of blocks of the length m, where m = lem(k, 1), such that each coefficient in a block
is by ¢ greater than the coefficient at the same position one block to the right, where
¢ =k + -+ + xo is the sum of the coefficients in the period of ,(x)

p@y) = (zm+2¢) (21 +2) (Zm +6) - (22 +6)(21 +6) 2m - 2221+ (4.16)

15 block

3™ block 214 block

Ezample. Let (x) = “(10010) and (y) = “(01). Then ¢ = 2 and the process of
computing of a block-representation (4.16) starts as follows.

1001010010
0101001010
0100101001
0010100101
1010010100
1001010010
0101001010
0100101001
0010100101
1010010100

1001010010

0101001010
0100101001
0010100101
1010010100
10010[10010]
01010010
010010
0010

10

1001010010
01010010
010010
0010

10

6656555454

4434333232

2212111010

Boxes emphasize the alignment of periods of the 1%% and of the 6! copy of the repre-
sentation.

Recall that we have two non-admissible 7-adic representations of zero (obtained by
adding 1 to representations of —1), namely “(10)11 and “(01)«011. Hence their digit-
wise sum — as well as any multiple of this sum by a constant integer — is also a T-adic
representation of zero. Among others ,/(0) = “(s¢)es(2¢)s.

Let us take the block-shaped representation (4.16) and successively subtract from it
shifted representations 0™ (“(s5)s(25)s) for i > 1. One can easily see that the fractional
point of the i-th subtracted representation is aligned with the barrier between blocks 4
and 7+ 1, for all 4 > 1.

After first subtraction, the first block (the right most block) will be changed into
(zm — $)(Zm-1 — 26)(2m—2 — §)(2m—3) - - (21), the second block into z,, - z92z; (thus
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into the form of the first block prior to the subtraction), the third block into (z, +
¢)+-+(22+¢)(21 + ) and so on.

The second subtraction will not affect the first block, the second block will be
changed into (2, —<)(Zm-1—2¢)(zZm-2—5)(zm—3) - - - (21), the third block into z, - - - 2921
and so on. Indeed, after all the subtractions we will have an eventually periodic T-adic
representation

T/ (:Ey) = w((zm - ()(Zm—l - 2§)(Zm—2 - ()(Zm—3) T (Z2)(z1))'7

which obviously still does not have to be an admissible 7-adic expansion. However,
normalization of such a representation can be done as stated in Corollary 4.5.8.

Ezample (Continuation). Let us take the representation obtained in the previous
example and successively subtract ¢ (¥(2)+2(4)2), ¢ > 1 from it.

6656555454

2222222222

4434333232

2222222222

2212111010

4434333232

2222222222

2212111010
242

2111010

2212111010

0212111010

0212111010

0212111010

0212111010

©0212111010)

Now suppose that there are more than one non-zero coefficient in ./ (y). Indeed, we
can treat them one by one each time pursuing the above described algorithm for the case
where ,/(y) has only one non-zero coefficient. Doing this we transform a multiplication
of two elements form F, into a sum of a finite number of elements from F,.

Finally, let us suppose that x or y (or both) are not purely periodic. In the case
where y is not purely periodic we just have to add a finite number of shifted copies of
z (i.e. of elements of Fe, (7)) to the result, whereas in the case where x is not periodic
we can treat its pre-period and its period separately, that is, the period is treated as
described above, whereas the pre-period is done by adding a finite number of shifted
copies of y.



Chapter 5

Palindromic complexity of infinite
words associated with simple Parry
numbers

One of the reasons motivating the study of combinatorial properties of infinite words as-
sociated with S-numeration systems is the fact that, in general, infinite aperiodic words
over a finite alphabet are suitable models for one-dimensional quasicrystals, i.e. non-
crystallographic materials displaying long-range order, since they define one-dimensional
Delaunay sets with finite local complexity.

For the description of physical properties of these materials it is important to know
the combinatorial properties of the infinite aperiodic words, such as the factor complex-
ity, which corresponds to the number of local configurations of atoms in the material,
or the palindromic structure of the aperiodic words, describing local symmetry of the
material. The palindromic structure of the infinite words has been proved important
for the description of the spectra of Schréodinger operators with potentials adapted to
aperiodic structures [70].

This chapter is devoted to the description of the palindromic structure of the infinite
words ug associated with a simple Parry number 8. We first show a necessary condition
on dg(1) for the word ug to contain infinitely many palindromes (Lemma 5.1.1). Num-
bers (3 satisfying this condition are the so-called confluent Pisot numbers [60]. Then we
determine the palindromic complexity of ug when (3 is a confluent Pisot number.

We show that if the length of palindromes is not bounded, which is equivalent to
limsup,,_,., P(n) > 0, then

Pn+1)+Pn)=C(n+1)—C(n) + 2, for n e N. (5.1)

In general it is has been shown [20] that for a uniformly recurrent word w with
limsup,, ., P(u) > 0 the inequality

Pn+1)+Pn) <C(n+1)—C(n)+2

95
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holds for all n € N. Moreover, the authors proved Formula (5.1) to be valid for infinite
words coding the r-interval exchange. Finally, it is known that the Formula (5.1) holds
also for Arnoux-Rauzy words [9] and for complementation-symmetric sequences [52].

We then give a complete description of the set of palindromes, its structure and
properties. The exact palindromic complexity of the word ug is given in Theorem 5.5.1.

In the last part of the chapter we study the occurrence of palindromes of an arbitrary
length in the prefixes of the word ug, when 3 is a confluent Pisot number. It is known [53]
that every word w of length n contains at most n + 1 different palindromes. The value
by which the number of palindromes differs from n+1 is called the defect of the word w.
Infinite words whose every prefix has defect 0 are called full. We show that whenever
limsup,,_,,, P(n) > 0, the infinite word ug is full.

The content of this chapter is essentially the same as the content of the article
accepted for publication in Annales de I'Institut Fourier [15].

5.1 Words ug with a bounded number of palindromes

The infinite word ug associated with a Parry number (3 is a fixed point of a primitive
substitution. This implies that the word ug is uniformly recurrent [90].

Lemma 5.1.1. If the language L(u) of a uniformly recurrent word u contains infinitely
many palindromes, then L(u) is closed under reversal.

Proof. From the definition of a uniformly recurrent word wu it follows that for every
n € N there exists an integer R(n) such that every arbitrary factor of u of length R(n)
contains all factors of u of length n. Since we assume that Pal(u) is an infinite set,
it must contain a palindrome p of length > R(n). Since p contains all factors of u of

length n, and p is a palindrome, it contains with every w such that |w| = n also its
reversal w. Thus w € L(u). This consideration if valid for all n and thus the statement
of the lemma is proved. O

Note that this result was first stated, without proof, in [53]. The fact that the
language is closed under reversal is thus a necessary condition so that a uniformly
recurrent word has infinitely many palindromes. The converse is not true [34].

For infinite words ug associated with simple Parry numbers 3 the invariance of
L(ug) under reversal was studied by Frougny et al.

Proposition 5.1.2 ([63]). Let § > 1 be a simple Parry number such that dg(1) =
tito -t -

(i) The language L(ug) is closed under reversal, if and only if

Condition (C): ti=to="=tmpm_1.

(it) The infinite word ug is an Arnouz-Rauzy word if and only if Condition (C) is
satisfied and t,, = 1.
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Corollary 5.1.3. Let 8 be a simple Parry number which does not satisfy Condition
(C). Then there exists ng € N such that P(n) =0 for n > ny.

Numbers 3 satisfying Condition (C) have been introduced and studied in [60] from
the point of view of linear numeration systems. Confluent linear numeration systems are
exactly those for which the normalization on the canonical alphabet does not produce a
carry to the right. A number [ satisfying Condition (C) is known to be a Pisot number,
and will be called a confluent Pisot number.

Let (3 be a confluent Pisot number with dg(1) = tita-- - tp,. Set
ti=t1 =ty =+ =ty_1 and CRECE

From the Parry condition for the Rényi expansion of 1 it follows that ¢ > s > 1. Then
A, =1{0,1,...,m — 1} and the canonical substitution ¢ is of the form

0(i)=0'Gi+1) foral0<i<m-—1,

p(m—1)=0°%. (5.2)

Note that in the case s = 1, the number  is an algebraic unit, and the corresponding
word ug is an Arnoux-Rauzy word, for which the palindromic complexity is known.
Therefore in this chapter we often treat separately the cases s > 2 and s = 1.

5.2 Palindromic extensions in ug

Let us recall that for an Arnoux-Rauzy word u (and thus also for a Sturmian word)
it has been shown that for every palindrome p € L(u) there is exactly one letter a in
the alphabet, such that apa € L£(u), i.e. any palindrome in an Arnoux-Rauzy word has
exactly one palindromic extension [52]. Since the length of the palindromic extension
apa of p is |apa| = |p| + 2, we have for Arnoux-Rauzy words P(n + 2) = P(n) and
therefore

Pus(2n) =P,

us(0) =1 and Pug(2n + 1) = Py, (1) = #A,.

Determining the number of palindromic extensions for a given palindrome of ug is
essential also for our considerations here. However, let us first introduce the following
notion.

Definition. We say that a palindrome p; is a central factor of a palindrome ps if there
exists a finite word w € A* such that py = wp;w.

For example, a palindrome is a central factor of its palindromic extensions.
The following simple result can be easily obtained from the form of the substitu-
tion (5.2), and is a special case of a result given in [63].

Lemma 5.2.1 ([63]). All factors of ug of the form X0™Y for X,Y # 0 are the following

X0'1, 10'X with X € {1,2,...,m — 1}, and 10°*°1. (5.3)
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Remark 5.2.2. 1. Every pair of non-zero letters in ug is separated by a block of
at least t zeros. Therefore every palindrome p € L(ug) is a central factor of a
palindrome with prefix and suffix 0f.

2. Since p(A,) is a suffix code, the coding given by the substitution ¢ is uniquely
decodable. In particular, if wi € L(ug) is a factor with the first and the last letter
non-zero, then there exist a factor wy € L(ug) such that 0'w; = ¢(w2).

Proposition 5.2.3.
(i) Let p € L(ug). Then p € Pal(ug) if and only if ¢(p)0' € Pal(ug).

(i) Let p € Pal(ug). The number of palindromic extensions of p and o(p)0' is the
same, i.e.

#{a € A, | apa € Pal(ug)} = #{a € A, | ap(p)0'a € Pal(ug)}.

Proof. (i) Let p = wowy ---wy—1 € L(ug). Let us study under which conditions the
word (p)0?! is also a palindrome, i.e. when
p(wo)p(wr) - p(wn-1)0" = 0'p(wp—1) - p(w1)p(wo) - (5.4)

The substitution ¢ has the property that for each letter a € A, it satisfies p(a) =
07 tp(a)0!. Using this property, the equality (5.4) can be equivalently written as

o(p) = p(wo) - p(wn—1) = p(wn-1) - - - p(wo) = p(p) -

As a consequence of unique decodability of ¢ we obtain that (5.4) is valid if and only if
p=0p
(ii) We show that for a palindrome p it holds that

apa € Pal(ug) <= bp(p)0'b € Pal(ug), whereb=a+1 (modm),

which already implies the equality of the number of palindromic extensions of palin-
dromes p and ¢(p)0*.

Let apa € Pal(ug). Then

()0 (p)o(a)0! 0f(a + 1)p(p)0t(a+1)0t, fora#m—1,
a a)0’ =
Pepe 0%p(p)0t+s fora=m—1,
is, according to (i) of this proposition, also a palindrome, which has a central factor
(a+ 1)p(p)0i(a + 1) for a # m — 1, and 0p(p)0'0 for a = m — 1.

On the other hand, assume that bp(p)0'b € Pal(ug). If b # 0, then using point 1. of
Remark 5.2.2, we have 0°bp(p)0'60" = ¢ ((b—1)p(b—1))0" € Pal(ug). Point (i) implies
that (b —1)p(b—1) € Pal(ug) and thus (b—1)p(b — 1) is a palindromic extension of p.
If b = 0, then Lemma 5.2.1 implies that 10°¢(p)0°0°1 € L(ug) and so 1o ((m —1)p(m —
1)0) € L(ug), which means that (m — 1)p(m — 1) is a palindromic extension of p. [



5.2. PALINDROMIC EXTENSIONS IN Ug 99

Unlike Arnoux-Rauzy words, in the case of infinite words ug with dg(1) =tt---ts,
t > s > 2, it is not difficult to see using Lemma 5.2.1 that there exist palindromes

which do not have any palindromic extension. Such a palindrome is for example the
word 0f+s—1,

Definition. A palindrome p € Pal(ug) which has no palindromic extension is called a
mazimal palindrome.

It is obvious that every palindrome is either a central factor of a maximal palindrome,
or is a central factor of palindromes of arbitrary length.

Proposition 5.2.3 allows us to define a sequence of maximal palindromes starting
from an initial maximal palindrome. Put

UM =gttt U™ = U0, forn>2. (5.5)

Lemma 5.2.1 also implies that the palindrome 0! has for s > 2 two palindromic
extensions, namely 00°0 and 10°1. Using Proposition 5.2.3 we create a sequence of
palindromes, all having two palindromic extensions. Put

v =0, v =™t forn>2. (5.6)

Remark 5.2.4. Tt is necessary to mention that the factors U™ and V(™ defined above
play an important role in the description of factor complexity of the infinite word wug.
Let us cite several results for ug invariant under the substitution (5.2) with s > 2, taken
from [63], which will be used in the sequel.

(1) Any prefix w of ug is a left special factor which can be extended to the left by
any letter of the alphabet, that is, aw € L(ug) for all a € A,, or equivalently

degy,(w) = #A,.

(2) Any left special factor w which is not a prefix of ug is a prefix of U™ for some
n > 1 and such w can be extended to the left by exactly two letters.

(3) The words U™, n > 1 are maximal left special factors of ug, i.e. U (g is not a
left special factor for any a € A,. The infinite word ug has no other maximal left
special factors.

(4) The word V(™ is the longest common prefix of ug and U (") moreover, for every
n > 1 we have
V| < [U™] < [y ) (5.7)

(5) For the first difference of factor complexity we have

m if [V®]<n<|U®| for some k> 1,

m—1 otherwise.

AC(n) = {

Now we are in position to describe the palindromic extensions in ug. The main
result is the following one.



100 CHAPTER 5. PALINDROMIC COMPLEXITY

Proposition 5.2.5. Let ug be the fized point of the substitution ¢ given by (5.2) with
parameters t > s > 2, and let p be a palindrome in ug. Then

(i) p is a mazimal palindrome if and only if p= U™ for some n > 1;
(i1) p has two palindromic extensions in ug if and only if p = V™ for somen > 1;

(i%) p has a unique palindromic extension if and only if p # U™, p # V™ for all
n > 1.

Proof. (i) Proposition 5.2.3, point (ii) and the construction of U™ imply that U™ is
a maximal palindrome for every n. The proof that no other palindrome p is maximal
will be done by induction on the length [p| of the palindrome p.

Let p be a maximal palindrome. If p does not contain a non-zero letter, then
using Lemma 5.2.1, obviously p = U, Assume therefore that p contains a non-zero
letter. Point 1. of Remark 5.2.2 implies that p = 0/p0’, where p is a palindrome.
Since p is a maximal palindrome, p ends and starts in a non-zero letter. Otherwise, p
would be extendible to a palindrome, which contradicts maximality. From point 2. of
Remark 5.2.2 we obtain that p = 0'p0! = p(w)0! for some factor w. Proposition 5.2.3,
point (i), implies that w is a palindrome. Point (ii) of the same proposition implies that
w has no palindromic extension, i.e. w is a maximal palindrome, with clearly |w| < |p|.
The induction hypothesis implies that w = U for some n > 1 and p = p(U™)0! =
U(n-i—l).

(ii) and (iii) From what we have just proved it follows that every palindrome p #
U™, n > 1, has at least one palindromic extension. Since we know that V(™ has
exactly two palindromic extensions, for proving (ii) and (iii) it remains to show that if
a palindrome p has more than one extension, then p = V(") for some n > 1.

Assume that ipi and jpj are in L(ug) for i,j € Ay, i # j. Obviously, p is a left
special factor of ug. We distinguish two cases, according to whether p is a prefix of ug,
or not.

e Let p be a prefix of ug. Then there exists a letter & € A, such that pk is a
prefix of ug and using (1) of Remark 5.2.4, the word apk € L(ug) for every letter
a € A,, in particular ipk and jpk belong to L(ug). We have either k # i, or
k # j; without loss of generality assume that & # 4. Since L(ug) is closed under
reversal, we must have kpi € L(ug). Since ipi and kpi are in L(ug), we obtain
that pi is also a left special factor of ug, and pi is not a prefix of ug. By (2) of
Remark 5.2.4, p is the longest common prefix of ug and some maximal left special
factor U™ therefore using (4) of Remark 5.2.4 we have p = V(.

o If p is a left special factor of ug, which is not a prefix of ug, then by (2) of
Remark 5.2.4, p is a prefix of some U and the letters i, j are the only possible
left extensions of p. Since p # U™, there exists a unique letter k such that pk is a
left special factor of ug and pk is a prefix of U (") i.e. the possible left extensions of
pk are the letters 4, j. Since by symmetry kp € L(ug), we have k =i or k = j, say
k = i. Since jpk = jpi € L(ug), we have also ipj € L(ug). Since by assumption
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ipi and jpj are in L(ug), both pi and pj are left special factors of ug. Since p is
not a prefix of ug, neither pi nor pj are prefixes of ug. This contradicts the fact
that k is a unique letter such that pk is left special.

Thus we have shown that if a palindrome p has at least two palindromic extensions,
then p = V"), O

From the above result it follows that if n # [V*)|, n # |[U®)| for all & > 1, then
every palindrome of length n has exactly one palindromic extension, and therefore
P(n +2) = P(n). Inequalities in (4) of Remark 5.2.4 further imply that |V @] £ [U®)|
for all 4, k > 1. Therefore the statement of Proposition 5.2.5 can be reformulated in the
following way

1 if n=|V®|,
Pn+2)—Pn) =< -1 if n=|UF],

0 otherwise .

Point (5) of Remark 5.2.4 can be used for deriving for the second difference of factor
complexity

1 if n=|V®|,
A%C(n) = AC(n+1)—AC(n) =4 -1 if n=|U®)],
0 otherwise .
Therefore we have for s > 2 that
P(n+2)—Pn)=AC(n+1)—AC(n),
for all n € N. We thus can derive the following theorem.
Theorem 5.2.6. Let ug be the fized point of the substitution (5.2). Then
P(n+1)+P(n) =AC(n) + 2, for neN.

Proof. Let the parameter s in the substitution (5.2) be s = 1. Then ug is an Arnoux-
Rauzy word, for which

Pn+2)—Pn)=0=ACn+1)—AC(n).
For s > 2 we use P(n+2) — P(n)

AC(n+1) — AC(n) derived above. We have

3

Pn+1)+P(n)=P0)+P1)+>» (Pi+1)—P@i—1))

7

Il
—

=1+m+ Zn:(AC(i) — AC(i — 1)) =14+ m+ AC(n) — AC(0) =
=1

=1+m+ AC(n)—C(1)+C(0) = AC(n) + 2,
where we have used P(0) = C(0) = 1 and P(1) = C(1) = m = #A,. O
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Remark 5.2.7. According to (5) of Remark 5.2.4, we have AC(n) < #A,. This implies
P(n+1)+P(n) < #A,+ 2, and thus the palindromic complexity is bounded.

5.3 Centers of palindromes

We have seen that the set of palindromes of ug is closed under the mapping p — ¢(p)0°.
We study the action of this mapping on the centers of the palindromes. Let us mention
that the results of this section are valid for 5 a confluent Pisot number with ¢t > s > 1,
i.e. also for the Arnoux-Rauzy case.

Definition. Let p be a palindrome of odd length. The center of p is a letter a such
that p = waw for some w € A*. The center of a palindrome p of even length is the
empty word.

If palindromes p1, p2 have the same center, then also palindromes ¢(p;)0¢, (p2)0?
have the same center. This is a consequence of the following lemma.

Lemma 5.3.1. Let p,q € Pal(ug) and let q be a central factor of p. Then ©(q)0" is a
central factor of p(p)0?.

Proof. Since p = wqw for some w € A%, we have ¢(p)0* = p(w)p(q)e(w)0", which is
a palindrome by point (i) of Proposition 5.2.3. It suffices to realize that 0! is a prefix
of ¢(w)0!. Therefore we can write p(p)0' = p(w)p(q)0'0~tp(w)0t. Since |p(w)| =
|0~ tp(w)0t|, the word ((q)0! is a central factor of ¢(p)0¢. O

Note that the statement is valid also for ¢ being the empty word.

The following lemma describes the dependence of the center of the palindrome ¢(p)0?
on the center of the palindrome p. Its proof is a simple application of properties of the
substitution ¢, we will omit it here.

Lemma 5.3.2. Let p; € Pal(ug) and let p2 = p(p1)0".
(i) If p1 = wiawy, where a € Ay, a # m — 1, then ps = wa(a + 1)ws, where wy =

o(wy)0¢.

s+t—1

(i) If p1 = wi(m —1)wy and s+t is odd, then po = woOwsy, where wy = p(w1)0™ 2

(15i) If p1 = wi(m — 1)wy and s+t is even, then py = wowso, where wo = gp(wl)OS;t.

ol

(iv) If py = wiwy and t is even, then py = wowe, where wy = p(w;)02.
(v) If p1 = wiwy and t is odd, then ps = woOwsy, where we = go(wl)O%.

Lemmas 5.3.1 and 5.3.2 allow us to describe the centers of palindromes V(") which
are in case s > 2 characterized by having two palindromic extensions.

Proposition 5.3.3. Let V(") be palindromes defined by equations (5.6).
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(i) If t is even, then for every n > 1 the empty word € is the center of V™ and V()
is a central factor of V(1)

(i) If t is odd and s is even, then for every n > 1 the letter i =n —1 (mod m) is the
center of VW and V") is a central factor of V("+m),

(i13) Ift is odd and s is odd, then for everyn > 1, V(™) has the empty word e for center
if n =0 (mod (m + 1)), otherwise it has the letter i = n — 1 (mod (m + 1)) for
the center. Moreover, V™ is a central factor of V(m+n+1),

Proof. If t is even, then the empty word ¢ is the center of V(1) = 0f. Using Lemma 5.3.1
we have that ¢(e)0* = V() is a central factor of p(V())0! = V(). Repeating the
utilization of Lemma 5.3.1 we obtain that V(™ is a central factor of V(1) Since ¢ is
the center of V(1) it is also the center of V(™) for all n > 1.

If t is odd, the palindrome V(! has center 0 and using Lemma 5.3.2, V@ has center
1, V) has center 2, ..., V(™ has center m — 1. If moreover s is even, then V (™+1) hag
again center 0. From (ii) of Lemma 5.3.2 we see that 05 is a central factor of V("+1)
which implies that V(1) = 0f is a central factor of V"t In case that s is odd, then
V(™) having center m — 1 implies that V(™1 has center £ and V("2 has center 0.
Using (v) of Lemma 5.3.2 we see that V(1) = 0% is a central factor of V(™+2), Repeated
application of Lemma 5.3.1 implies the statement of the proposition. O

As we have said, every palindrome p is either a central factor of a maximal palin-
drome U™ for some n > 1, or p is a central factor of palindromes with increasing
length. An example of such a palindrome is V™, for n > 1, which is according to
Proposition 5.3.3 the central factor of palindromes of arbitrary length. According to the
notation introduced by Cassaigne in [48] for left and right special factors extendible to
arbitrary length special factors, we introduce the notion of infinite palindromic branch.
We will study infinite palindromic branches in the next section.

5.4 Infinite palindromic branches

Definition. Let v = - - - v3vpv; be a left infinite word in the alphabet A,. Denote by v
the right infinite word v = vyvoug - - .

o Let a € A,. If for every index n > 1, the word p = v,v,-1---viavive -~ v, €
Pal(ug), then the two-sided infinite word vav is called an infinite palindromic
branch of ug with center a, and the palindrome p is called a central factor of the
infinite palindromic branch vav.

o If for every index n > 1, the word p = vyvp—1---V1V1V2 - - v, € Pal(ug), then
the two-sided infinite word vv is called an infinite palindromic branch of ug with
center €, and the palindrome p is called a central factor of the infinite palindromic
branch vv.
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Since for Arnoux-Rauzy words every palindrome has exactly one palindromic ex-
tension, we obtain for every letter a € A, exactly one infinite palindromic branch with
center a; there is also one infinite palindromic branch with center &.

Obviously, every infinite word with bounded palindromic complexity P(n) has only
a finite number of infinite palindromic branches. This is therefore valid also for ug.

Proposition 5.4.1. The infinite word ug invariant under the substitution (5.2) has for
each center c € A, U {e} at most one infinite palindromic branch with center c.

Proof. Lemma 5.3.2 allows us to create from one infinite palindromic branch another
infinite palindromic branch. For example, if vav is an infinite palindromic branch with
center a # m— 1, then using (i) of Lemma 5.3.2, the two-sided word ¢(v)0!(a+1)0t¢(v)
is an infinite palindromic branch with center (a + 1). Similarly for the center m — 1
or €. Obviously, this procedure creates from distinct palindromic branches with the
same center ¢ € A, U {e} again distinct palindromic branches, for which the length of
the maximal common central factor is longer than the length of the maximal common
central factor of the original infinite palindromic branches. This would imply that ug
has infinitely many infinite palindromic branches, which is in contradiction with the
boundedness of the palindromic complexity of ug, see Remark 5.2.7. O

Remark 5.4.2. Examples of infinite palindromic branches can be easily obtained from
Proposition 5.3.3 as a centered limit of palindromes V(#») for a suitably chosen subse-
quence (kp)nen and n going to infinity, namely

e If t is even, then the centered limit of palindromes V(™ is an infinite palindromic
branch with center e.

e If t is odd and s even, then the centered limit of palindromes V¥ +mn) for k =
1,2,...,m is an infinite palindromic branch with center k — 1.

e If ¢ is odd and s odd, then the centered limit of palindromes V(k+(m+1n) for f —
1,2,...,m is an infinite palindromic branch with center £ — 1, and for k =m +1
it is an infinite palindromic branch with center e.

Corollary 5.4.3.

(i) If s is odd, then ug has ezactly one infinite palindromic branch with center c for
every c € A, U {e}.

(it) If s is even and t is odd, then ug has ezactly one infinite palindromic branch with
center ¢ for every c € Ay, and ug has no infinite palindromic branch with center ¢.

111) If s is even and t is even, then ug has exactly one infinite palindromic branch with
B
center €, and ug has no infinite palindromic branch with center a € A,.

Proof. According to Proposition 5.4.1, ug may have at most one infinite palindromic
branch for each center ¢ € A,U{e}. Therefore it suffices to show existence/non-existence
of such a palindromic branch. We distinguish four cases according to the parity of s
and t.



5.4. INFINITE PALINDROMIC BRANCHES 105

(a)

(b)

Let s be odd and t odd. Then an infinite palindromic branch with center c exists
for every ¢ € AU {e}, by Remark 5.4.2.

Let s be odd and t even. The existence of an infinite palindromic branch with
center ¢ is ensured again by Remark 5.4.2. For determining the infinite palindromic
branches with other centers, we define a sequence of words

w = 0, wntl) — ¢(W(”))0t, neNn>1.

Since s 4 t is odd, using (i) and (ii) of Lemma 5.3.2, we know that W is a
palindrome with center i = n — 1 (mod m). In particular, we have that 0 = W)
is a central factor of W™D Using Lemma 5.3.1, also W™ is a central factor of
W (m+n) for all n > 1. Therefore we can construct the centered limit of palindromes
W (k+mn) for n going to infinity, to obtain an infinite palindromic branch with center
k—1forallk=1,2,...,m.

Let s be even and ¢ be odd. Then an infinite palindromic branch with center ¢ exists
for every ¢ € A, by Remark 5.4.2. A palindromic branch with center ¢ does not
exist, since using Lemma 5.2.1 two non-zero letters in the word ug are separated
by a block of 0’s of odd length, which implies that palindromes of even length must
be shorter than ¢ + s.

Let s and ¢ be even. The existence of an infinite palindromic branch with center
is ensured again by Remark 5.4.2. Infinite palindromic branches with other centers
do not exist. The reason is that in this case the maximal palindrome U®) = gt+s—1
has center 0 and using Lemma 5.3.2 the palindromes U @ py® ... UM have
centers 1,2,...,m — 1, respectively. For all n > m the center of U™ is the empty
word e. If there existed an infinite palindromic branch vav, then the maximal
common central factor p of va? and U@t would be a palindrome with center a
and with two palindromic extensions. Using Proposition 5.2.5, p = V*) for some
k. Proposition 5.3.3 however implies that for ¢ even the center of V%) is the empty
word ¢, which is a contradiction.

Remark 5.4.4. The proof of the previous corollary implies the following facts.

1. In case t odd, s even, ug has only finitely many palindromes of even length, all of
them being central factors of UM = ot+s—1,

2. In case t and s are even, ug has only finitely many palindromes of odd length and
all of them are central factors of one of the palindromes UM, U@ .. ylm)
with center 0,1,...,m — 1, respectively.
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5.5 Palindromic complexity of ug

The aim of this section is to give explicit values of the palindromic complexity of ug.
We shall derive them from Theorem 5.2.6, which expresses P(n) + P(n + 1) using the
first difference of factor complexity; and from (5) of Remark 5.2.4, which recalls the

results about C(n) of [63].

Theorem 5.5.1. Let ug be the fized point of the substitution (5.2), witht > s > 2.

(i) Let s be odd and let t be even. Then
P2n+1) =

2, if V| <on<|Uk

P(2n) =
1, otherwise.

(i) Let s and t be odd. Then

7

m+1, if |V
P2n+1) = with k Zm
m, otherwise.
(2, if VO] <2n<|Uk
P(2n) = with k =m
1, otherwise.

(11i) Let s be even and t be odd. Then

m+2, if |V
P2n+1)=<m, if 2n+1< |V,
m+ 1, otherwise.
1, if 2n <|UW],
P(2n) =
0, otherwise.

(iv) Let s and t be even. Then

k< on+1<|UM|Y,
T
0,
m+ 2,
P(2n) =

#{k<m | 2n<|[VO|},
m+1,

)| for some k,

| <2n+1< U for some k
(mod (m + 1)),

)| for some k
(mod (m + 1)),

| <2n+1<|UB| for some k > 2,

if 2n+1<|UM)|,

otherwise.

if VP <2n<|U®)
for some k> m+1,

if 2n < |V

otherwise.
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Proof. We prove the statement by cases.

()

(i)

(iii)

(iv)

Let s be odd and ¢ be even. It is enough to show that P(2n+1) = m for all n € N.
The value of P(2n) can then be easily calculated from Theorem 5.2.6 and (5) of
Remark 5.2.4.

From (i) of Corollary 5.4.3 we know that there exists an infinite palindromic branch
with center cfor all ¢ € A,. This implies that P(2n+1) > m. In order to show the
equality, it suffices to show that all maximal palindromes U*) are of even length,
or equivalently, have ¢ for center. Since both ¢ and ¢ + s — 1 are even, 0t = V(1)
is a central factor of 0'**~1 = UM, Using Lemma 5.3.1, V(¥ is a central factor
of U™ for all k> 1. According to (i) of Proposition 5.3.3, V(*) are palindromes
of even length, and thus also the maximal palindromes U®*) are of even length.
Therefore they do not contribute to P(2n + 1).

Let s and ¢ be odd. We shall determine P(2n) and the values of P(2n + 1) can be
deduced from Theorem 5.2.6 and (5) of Remark 5.2.4.

From (i) of Corollary 5.4.3 we know that there exists an infinite palindromic branch
with center e. Thus P(2n) > 1 for all n € N. Again, V(!) = 0 is a central factor
of UM = 0t+5=1 and thus V* is a central factor of U®) for all & > 1. A
palindrome of even length, which is not a central factor of an infinite palindromic
branch must be a central factor of U®*) for some k, and longer than [V (*)|. Since
|UR)| < |V EFD| < JU*+D)] (cf. (5) of Remark 5.2.4), at most one such palindrome
exists for each length. We have P(2n) < 2. It suffices to determine for which £,
the maximal palindrome U®) is of even length, which happens exactly when its
central factor V%) is of even length and that is, using (iii) of Proposition 5.3.3,
for k=0 (mod (m+1)).

Let s be even and ¢ be odd. According to (1) of Remark 5.4.4, all palindromes of
even length are central factors of U1) = 0'+5=1. Therefore P(2n) = 1if 2n < |UW)|
and 0 otherwise. The value of P(2n + 1) can be calculated from Theorem 5.2.6
and (5) of Remark 5.2.4.

Let s and ¢t be even. Using (2) of Remark 5.4.4, the only palindromes of odd
length are central factors of U®) for k=1,2,...,m. Therefore P(2n+1) =0 for
2n 41 > |[U™)|. If 2n + 1 < |U™)|, the number of palindromes of odd length is
equal to the number of maximal palindromes longer than 2n 4+ 1. The value of
P(2n) can be calculated from Theorem 5.2.6 and (5) of Remark 5.2.4.

O

For the determination of the value P(n) for a given n, we have to know lengths
[V®)| and |U®)|. In [63] it is shown that

k—1
VI =Y "G, and U= VW4 (s - 1)Ggy
i=0
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where (G, is a sequence of integers defined by the recurrence

G0:17
Gn=t(Gp-1+---+Gp)+1, fori1<n<m-1,
Gn =t(Gp-1+ -+ Gpomt1) + sGn_m, forn>m.

The sequence (G, )nen defines the canonical linear numeration system associated with
the number 3, see [39] for general results on these numeration systems. In this particular
case, (G )nen defines a confluent linear numeration system, see [60] for its properties.

5.6 Substitution invariance of palindromic branches

Infinite words ug are invariant under the substitution (5.2). One can ask whether also
their infinite palindromic branches are invariant under a substitution. In case that an
infinite palindromic branch has as its center the empty word &, we can use the notion
of invariance under substitution as defined for pointed two-sided infinite words. We
restrict our attention to infinite palindromic branches of such type.

Recall that an infinite palindromic branch of ug with center ¢ exists, (according to
Corollary 5.4.3), only if in the Rényi expansion of unit is dg(1) = tt-- - ts, t is even, or
both ¢ and s are odd. Therefore we shall study only such parameters.

Let us first study the most simple case, dg(1) = t1 for ¢t > 1. Here (3 is a quadratic
unit, and the infinite word ug is a Sturmian word, expressible in the form of the me-
chanical word o0,

fta,o(n) = |(n+1)a+ o] — [na+0o|, neN,

where the irrational slope « and the intercept p satisfy a = p = % The infinite
palindromic branch with center ¢ of the above word ug = pq,, is a two-sided Sturmian
word with the same slope o = %, but intercept % Indeed, two mechanical words
with the same slope have the same set of factors independently on their intercepts, and

moreover the Sturmian word p, 1 is an infinite palindromic branch of itself, since
12

Na,%(”) = ua7%(—n —1), forallneZ.
Therefore if v = uaé(O)ua,%(l)ua’%@) .-+, then vv is the infinite palindromic branch
of ug with the center e.

Since the Sturmian word ., coincides with ug, it is invariant under the substitution
©. As a consequence of [88], the slope « is a Sturm number, i.e. a quadratic number in
(0,1) such that its conjugate o’ satisfies o’ ¢ (0,1), (using the equivalent definition of
Sturm numbers given in [7]).

The question about the substitution invariance of the infinite palindromic branch vv
is answered using the result of [19] (or also [35, 106]). It says that a Sturmian word whose
slope is a Sturm number, and whose intercept is equal to %, is substitution invariant as
a two-sided pointed word, i.e. there exists a substitution ¢ such that v|v = (v)|¥(v).
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Ezample. The Fibonacci word ug for dg(1) = 11 is a fixed point of the substitution

¢(0) =01, (1) =0.

Its infinite palindromic branch with center ¢ is

VU for v = 010100100101001001010- - -
which is the fixed point lim,,_, o, 1™ (0)[1)"(0) of the substitution
$(0) = 01010, (1) = 010.

Let us now study the question whether infinite palindromic branches in ug for general
dg(1) =tt---ts with ¢ even, or ¢t and s odd, are also substitution invariant. It turns out
that the answer is positive. For construction of a substitution ¥ under which a given
palindromic branch is invariant, we need the following lemma.

Lemma 5.6.1. Let vv be an infinite palindromic branch with center €. Then the left
infinite word v = - - - v3VoUy satisfies

v= go(v)O% for t even,
t

v = ()™(03 )02 fort and s odd.
Proof. Let t be even and let vv be the unique infinite palindromic branch with center &.
Recall that v? is a centered limit of V(™). Consider arbitrary suffix veyr of v, i.e. VufUsuf
is a palindrome of ug with center . Denote w := QO('USHf)O%. Using (iv) of Lemma 5.3.2
the word p = ww is a palindrome of ug with center e. We show by contradiction that
w is a suffix of v.

Suppose that p = ww is not a central factor of vv, then there exists a unique n such
that p is a central factor of U, Then according to Proposition 5.2.5, p is uniquely
extendible into a maximal palindrome. In that case we take a longer suffix v/ ; of v,
so that the length of the palindrome p’ = w'w’, w' := gp(véuf)O% satisfies [p/| > |U™)|.
However, p’ (since it contains p as its central factor) is a palindromic extension of p,
and therefore p’ is a central factor of U™ which is a contradiction. Thus QD('USHf)O% is
a suffix of v for all suffixes vyt of v, therefore v = go(v)()%.

Let now s and ¢ be odd. If vy, is a suffix of the word v, then vg,tUsys is a palindrome
of ug with center . Using Lemma 5.3.2, the following holds true.

t—1

wo = 90(7)suf)0T — woOwy € Pal(u5)
wy = @(wp)0* = wilw; € Pal(ug)
wy = @(wy)0" = wo2Ws € Pal(ug)

I

Wm—1 = So(wm—2)0t wm_l(m — 1)@m_1 € Pal(u5)

s+t
we = p(wWp—1)0 2

I

weWe € Pal(ug)
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Together we obtain

s+t

t—1 m—
we = " (vgur) ™ (072 )™ 1 (01) -+ 02(0")p(01)0 2

Since ¢™(0) = ™ 1(08)™2(0!) - - - p(0)0%, the word w, can be rewritten in a simpler

form
41 t—s

2)02

t—1 t—s
we = @™ (Usur) ™ (072 )™ (00072 = ™ (gur) 0™ (0

Since we is again a suffix of v, the statement of the lemma for s and ¢ odd holds true. O

Theorem 5.6.2. Let ug be the fized point of the substitution ¢ given by (5.2), and let
vv be the infinite palindromic branch of ug with center €. Then the left-sided infinite
word v 1s invariant under the substitution ¢ defined for all letters a € {0,1,...,m — 1}

by

wlp(a)w, where w = 02, for t even,

b(a) = s

w o™ (a)w, where w=¢™(0 2 )02 , fort ands odd.

Moreover, if t is even, then 1 (a) is a palindrome for all a € A, and v0 as a pointed
sequence 1is invariant under the same substitution 1.

Proof. First let us show that the substitution 1 is well defined.

o Let ¢ be even. Since 02 is a prefix of @(a) for all a € {0,1,...,m — 2} and
w(m — 1) = 0°, therefore 0% is a prefix of o(m — 1)03 —0° 3.

e Let t and s be odd. Let us verify that w is a prefix of " (a)w.

—S

)OtT is a prefix of

t+1
2

— If a # m — 1, we show that w = ¢™(0

P a) = " (0'(a+ 1)) = ¢™(0

)0 T ) (1)
Tt suffices to show that 02" is a prefix of gom(O%). For t = s it is obvious.
Fort > s > 1 we obtain ¢ > 3 and so cpm(O%) = <pm(0)g0m(0¥) and clearly
02 is a prefix of ©™(0).

— If a=m — 1, then

t—s t+1 t—s

P (m — Djw = ™ (0°)¢™(0°7)0'2" = ™ (07 )™ (0)¢™ (0° 10" .

Since 02" is a prefix of ©™(0), the correctness of the definition of the sub-
stitution ¢ is proved.

Now it is enough to prove that ¢ (v) = v. Lemma 5.6.1 says that in the case that ¢ is
even the left infinite word v = - - - v3vgv; satisfies v = p(v)w. Thus we have

(o) = - bleshblea)b(en) = - w0 p(ug (s ww ™ plua)w =
= plug)p(o)p(ow = pl)w = v.
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In case that ¢ and s are odd, the proof is the same, using ™! instead of ¢.
If ¢ is even, it is clear from the prescription for ¢, that ¢(a) is a palindrome for any
letter a, which implies the invariance of the word vv under . O

Let us mention that for ¢, s odd the words v¥(a), a € A,, may not be palindromes.
In that case the right-sided word v is invariant under another substitution, namely

—_~—

a — 1(a). Nevertheless even for t,s odd it may happen that (a) is a palindrome for
all letters. Then the two-sided word vv is invariant under . This situation is illustrated
on the following example.

Ezample. Consider the Tribonacci word, i.e. the word ug for dg(1) = 111. It is the
fixed point of the substitution

which is in the form (5.2) for t = s = 1 and m = 3. Therefore w = ©3(0) = 0102010.
The substitution v, under which the infinite palindromic branch vv of the Tribonacci
word is invariant, is therefore given as

P(0) == wlpH0)w = 0102010102010,
P(1) = wlp*()w = 01020102010,
¥(2) = wlp*(2w = 0102010.

Note that the substitution ¢ has the following property: the word (a) is a palindrome
for every a € A,.

5.7 Number of palindromes in the prefixes of us

In [53] the authors obtain an interesting result which says that every finite word w
contains at most |w| + 1 different palindromes. (The empty word is considered as a
palindrome contained in every word.) Denote by P(w) the number of palindromes
contained in the finite word w. Formally, we have

Pw) <|w|+1 for every finite word w.

The finite words w for which the equality is reached are called full (as suggested in [43]).
An infinite word wu is called full, if all its prefixes are full. In [53] the authors have shown
that every Sturmian word is full. They have shown the same property for episturmian
words.

The infinite word ug can be full only if its language is closed under reversal, i.e. in
the simple Parry case for dg(1) = tt---ts, t > s > 1. For s > 2 such words are not
episturmian, nevertheless, we shall show that they are full. We shall use the notions
and results introduced in [53].

Definition. A finite word w is said to satisfy property Ju, if there exists a palindromic
suffix of w which is unioccurrent in w.
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Clearly, if w satisfies Ju, then it has exactly one palindromic suffix which is unioc-
current, namely the longest palindromic suffix of w.

Proposition 5.7.1 ([53]). Let w be a finite word. Then P(w) = |w|+ 1 if and only if
all the prefizes W of w satisfy Ju, i.e. have a palindrome suffiz which is unioccurrent in

w.
Theorem 5.7.2. The infinite word ug invariant under the substitution (5.2) is full.

Proof. We show the statement using Proposition 5.7.1 by contradiction. Let w be a
prefix of ug of minimal length which does not satisfy Ju, and let X 0F be a suffix of w
with X # 0.

First we show that k£ € {0,t + 1}. For, if 1 < k < tor t+ 2 < k, then ¢ is the
maximal palindromic suffix of w0~! if and only if 0¢0 is the maximal palindromic suffix
of w. Since 0g0 occurs at least twice in w, then also ¢ occurs at least twice in w01,
which is a contradiction with the minimality of w.

Define

w0’ if w has suffix X #£ 0,

wy =
w0s~1  if w has suffix X0, X £0.

For the maximal palindromic suffix p of w denote

0tp0? if w has suffix X #0,
p1 =
0°5='p0°~! if w has suffix X0, X #£0.

Since in ug every two non-zero letters are separated by the word 0' or 0°%, we
obtain that

(i) pp is the maximal palindromic suffix of w;.

(ii) the position of centers of palindromes p and p; coincide in all occurrences in ug.

Since p occurs in w at least twice, also the palindromic suffix p; occurs at least twice
in wy, i.e. the word wy is a prefix of ug which does not satisfy Ju.
From the definition of w; it follows that

wy = go(u?)()t

for some prefix w of ug. Thus the maximal palindromic suffix p; of wy is of the form
p1 = p(p)0t, where p is a factor of 1. According to point (i) of Proposition 5.2.3, p is a
palindrome, and the same proposition implies that p is the maximal palindromic suffix
of w. Since p; occurs at least twice in wq, also p occurs at least twice in w. Therefore
w does not satisfy the property Ju. As

@] < ()] < fwl,

we have a contradiction with the minimality of w. O
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5.8 On non-simple Parry numbers

The study of palindromic complexity of an uniformly recurrent infinite word is interest-
ing in the case that its language is closed under reversal. Infinite words ug associated
to Parry numbers 3 are uniformly recurrent.

For non-simple Parry number (3, the condition under which the language of the
infinite word ug is closed under reversal has been stated by Bernat [32]. He has shown
that the language of ug is closed under reversal if and only if 3 is a quadratic number,
i.e. a root of minimal polynomial X2 —aX + b, with a > b+ 2 and b > 1. In this case
dg(l) = (a — 1)(a — b — 1)“. The palindromic complexity of the corresponding infinite
words ug is described in [22].

Infinite words ug for non-simple Parry numbers 3 are thus another example for
which the equality

P(n)+P(n+1)=AC(n)+2

is satisfied for all n € N. According to our knowledge, among all examples of infinite
words satisfying this equality, the words ug (for both simple and non-simple Parry
number 3) are exceptional in that they have the second difference A2C(n) # 0.
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Chapter 6

Conclusion

We have seen in course of this thesis several problems or questions which remain un-
solved or opened. As a conclusion, instead of usual duplication of what have been
already written in the introduction section, we will summarize these problems here in
one common place.

Arithmetics. Concerning the arithmetic properties, the “most wanted” answer is a
(simple) algebraic characterization of numbers 3 for which the Finiteness property holds,
or equivalently, to characterize numbers 3 for which the set of 3-expansions with a finite
fractional part has a ring structure.

However, to give a full answer to this question is a very difficult task and it seems to
be beyond out present horizon of feasibility. Hence we propose here a simpler question
connected with Property (F). We gave a sufficient condition for Property (F) to hold in
the terms of the minimal forbidden words (Theorem 3.1.3), but the examples illustrating
this result were already known to satisfy Property (F). Therefore the first step towards
a characterization of numbers satisfying Property (F) — at least from our point of view
— could be to find new numbers 3 such that the transcription of each of its minimal
forbidden words has the sum of its digits smaller than the word itself has. Note that he
term “a new number 37 is used in the sense that  should not belong to some known
class of numbers satisfying Property (F), cf. Theorems 2.2.4, 2.2.5 and 2.2.6.

A second problem we would like to address in the future is the proof of the correctness
of the algorithm performing addition in a general Pisot base.

Alpha-adic expansions. In the area of a-adic expansions the most evident open
question is the unicity /multiplicity of a-adic expansions of elements of the extension
ring Z[a~!] for numbers /3 of higher degree, or in general the problem to compute (or
at least estimate) the number of a-adic expansions of a given number z.

Another possible approach to expansions in conjugates of a Pisot number 3 would
be to assume a simultaneous expansion of a number in all the conjugates of 3, that is,
in the form of a d — 1 dimensional vector in the case where 3 has degree d. On one
hand this would be quite different from the approach we have used in this thesis, on the
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other hand this concept would allow us to use previous results concerning the tiling of
the conjugated plane.

In the last section of this chapter we have seen (at least implicitly) another open
problem, which in general could be stated as: what are the tools that transform
eventual periodicity into eventual periodicity. Obvious answer are sequential func-
tions/transducers, but it seems that this is not a necessary condition, that the concept
of the sequentiality is unnecessarily strong and that even functions/machines that are
not sequential can preserve eventual periodicity.

Combinatorics. In the chapter dealing with the palindromic complexity of infinite
words associated with simple Pisot numbers we found a necessary condition under which
ug contains infinitely many palindromes. For words satisfying this condition we then
performed computation of the palindromic complexity. In other cases the palindromic
complexity eventually vanishes, i.e. P(n) = 0 from some ng on, but it still may be
interesting to compute these initial non-zero values of P(n).



Appendix A

Numerical evidences

In this appendix we supply numerical evidences to two proofs from Chapter 3. In both
cases we needed to show the validity of some inequality for positive integers. However,
using algebraic manipulations and estimates we succeeded for all but a few values of
a given parameter. The validity of inequalities for these unsolved cases is numerically
confirmed here.

A.1 Proof of Theorem 3.2.8

The aim of the proof was to show the validity of inequality (3.14), which was the
following one

1+m)B+ 2+ (m+2)8+1> ((m+2)8+m?+2) 32, (3.14)

where m € N, m > 2 and (3 is a generalized golden mean, that is, an algebraic integer
with minimal polynomial 2% — ma? — 2 — 1, m > 2. Using algebraic manipulations we
were able to show the validity of the inequality for m > 10.

Let us denote by L(m) and R(m) the value of the left-hand side and right-hand
side of (3.14), respectively. Computed values of L(m) and R(m) for m = 2,...,9 are
summarized in Table A.1. Note that all numbers in the table are rounded.

Since in all lines of the table the value of L(m) is strictly greater than the corre-
sponding value of R(m), Theorem 3.2.8 holds for all m > 2.

A.2 TInequalities in Section 3.2.3

The aim was to show the upper estimates Lg () < 1 and Lg(3) < 2 for 3 being a cubic
Pisot unit with minimal polynomial of the form 23 — ax? — (a — 1)z + 1 (cf. Page 56).
Using algebraic manipulations we were able to show the validity of estimates for a > 11.

To show the validity of Lg(8) < 1 and Lg(8) < 2 for a = 3,...,10 it is enough,
according to Theorem 2.2.8, to check the following inequalities

1 Lg(B) 2H 1 Lg(B) H2
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or by combining terms in (A.1) into one inequality and using the fact that K =1

APPENDIX A. NUMERICAL EVIDENCES

m B L(m) R(m)

2 2.5468 67.2317 65.7910
3 3.3830 184.2256 173.6937
4 4.2876 439.2222 388.2062
5 5.2279 922.2122 760.1705
6 6.1877 1747.1990 1346.8336
7 7.1592 3052.1854 2211.1840
8 8.1380 4999.1724 3421.4714
9 9.1216 7774.1605 5050.8299

Table A.1: Values of 3, L(m) and R(m)

1
— <2H <

1\?2 1\?
— H? = .
) << (5)

5/

Computed values confirming the validity of (A.2) are summarized in Table A.2.

2 3

a L 2H (5) H? (5)

3 2.9122 8.0918 8.4811 16.3693 24.6988
4 3.9488 10.0347 15.5932 25.1738 61.5750
5 4.9663 12.0170 24.6636 36.1022 122.4858
6 5.9760 14.0096 35.7127 49.0675 213.4197
7 6.9821 16.0060 48.7491 64.0480 340.3691
8 7.9861 18.0040 63.7772 81.0359 509.3292
9 8.9889 20.0028 80.7997 100.0279 726.2970
10 9.9909 22.0020 99.8179 121.0223 997.2704

Table A.2: Values of terms in (A.2)




Appendix B

Program pisotarith

This appendix gathers two individual manuals for the program pisotarith. The first
one is an installation manual giving a short overview of standard installation instruc-
tions. The second one is a user manual, focused on the batch front-end to the library,
which is used for batch processing of data files.

B.1 Installation manual

An actual version of the pisotarith program can be downloaded from the home site
of the author

http://linux.fjfi.cvut.cz/ ampy/
in the form of a tarball package. Usual procedure to compile should be used

tar -zxvf pisotarith-w.x.y-z.tar.gz
cd pisotarith-w.x.y-z/src
make

where w.x.y-z stands for the actual version of the package. Apart from make (all),
there are two other possible targets of make, namely batch and cgi. The batch target
builds the pisotarith-batch front-end used for performing batches of computations
(see Section B.2 of this Appendix). The cgi target builds the pisotarith-cgi front-
end used as a cgi script on a web server. An example of a www-page with input form
for this script can be found in the directory pisotarith-w.x.y-z/www.

B.2 User manual

This section provides a short help for the options of the batch front-end of the
program. Note that if a long option shows an argument as mandatory, then it is
mandatory for the equivalent short option too. If an argument, which is marked as
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mandatory, is not specified on the command line, the program asks for its value directly
after the start.

-p --operation {a,s,m} default: a
Sets the operation to be performed on expansions: a stands for addition, s for
subtraction and m for multiplication.

-n --notest
If this option is used the program does not test for the re-occurrence during
the normalization. This can speed up computation and lower the amount of
memory. On the other hand, it should be used with case, since in the case when
the result is eventually periodic the normalization algorithm cannot stop when
the re-occurrence is not being tested.

-i --input FILE1 [FILE2]  mandatory
Specifies input file(s) to be used. If only FILE1 is specified the computation is
performed for all the pairs of expansions in this file, otherwise it is performed for
all the pairs such that the first member of the pair is taken from FILE1 and the
second one from FILE2.

-0 --output FILE mandatory
Specifies the output file into which the results will be printed.

-d --digits N  default: 0
By default the results of all the computations performed are printed in the output
file. By using this option the user may specify the minimal number of fractional
digits N the expansion has to have to be printed.

-r --progressive
Changes the way the results are printed on the output in the following way: at the
beginning of the computation sets the --digits parameter to 0 and then its value
is progressively increased, that is, as soon as a result having d fractional digits is
found (and printed on the output), the parameter --digits is set to d + 1.

-f --finite
If this option is used all results having an infinite (eventually periodic) expansion
are not printed on the output.

-1 --logfile FILE
Sets the name of the log file. The program prints into it the summary of used
options and possibly also indicators of the progress of computation (according to
the options -v and --verbose_step).

-v --verbose N  default: 0
Set the level of the verbose mode. For the value 0 no messages are printed in the
output, for the value 1 the overview of values of parameters and also the progress
of computation are printed on the output.
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--verbose_step N  default: 1
If --verbose is set to 1, the program prints on the output a message after every
N expansions in the first file have been processed.

-8 --silent
Program does not print on the standard output prompts for mandatory arguments,
which were not specified on the command line (Rényi expansion, input file(s),
output file).

-h --help
Prints a shortened variant of this manual on the standard output and exits.
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List of Symbols

Symbols used in this work are listed in the following table. Each symbol is supplemented
with a short description and with the number of the page where it is used for the first

time.

A*
AN

J-expansion of x............ 20
[-representation of x ....... 19
lexicographically smaller.... 11
integer part of z............ 20
infinite iteration............ 11
reverse operator ............ 12
fractional part of z......... 20
cardinality of a set........... 9
finite automaton............ 15
finite alphabet.............. 11
set of finite words over A ... 11
set of infinite words over A . 11
canonical alphabet of a (-
numeration system ......... 20
set of complex numbers...... 9
complexity of a word u .. ... 12
Rényi expansion of unity ... 20
empty word ................ 11
set of numbers with finite (-
eXpansion .................. 22
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Pal(u)

Qe

morphism or substitution... 14

canonical substitution associ-

ated with B................. 27

maximal number of fractional
digits arising under addition of
[-integers 26

maximal number of fractional
digits arising under multiplica-
tion of (-integers 26

language of a word u

set of factors of length n in a
word u 11

incidence matrix of a substitu-

15
minimal polynomial of 3.... 25
set of non-negative integers.. 9
normalization function......

palindromic complexity of a
word u 13

set of palindromic factors in a
word u 13

(B-value function............
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set of rational numbers ...... 9

extension field generated by an
algebraic number av......... 10

set of real numbers .......... 9

isomorphism of fields Q(«) and
QaW)y. .o 10

ring of polynomials over R... 9

shift operator............... 11

LIST OF SYMBOLS

transducer.................. 16
(B-transformation ........... 20

fixed point of substitution asso-
ciated with G............... 27

set of integers................ 9

extension ring generated by an
algebraic number o......... 10

set of (-integers ............ 22
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