
CZECH TECHNICAL UNIVERSITY IN PRAGUE
Faculty of Nuclear Sciences and Physical Engineering

Department of Mathematics

Modular Content Management System
for Creation and Operation www/intranet

Bachelor’s Degree Project

Author: Marek Faltýsek
Advisor: Ing. Petr Vokáč
Academic year: 2004/2005

Prague – 2005

Declaration

I hereby declare that I evolved this Bachelor’s Degree Project by myself and

that all sources used are listed as references.

Prague 31th May, 2005

Acknowledgements

I wish to thank Ing. Petr Vokáč for his advice, suggestions and comments regarding the

subject matter, and Mrs. Alena Faltýsková and Mr. R. Conor O’Neill, M.A. for their

support regarding the linguistic aspects of my work.

4

Abstrakt

Ćılem této práce je vytvořit modulárni, jednoduše rozšǐritelný nástroj pro tvorbu, distribuci,

správu a administraci informaćı pomoćı www prohĺıžeče, funguj́ıćı r̊uznými zp̊usoby pro

r̊uzné uživatele a skupiny. Po prvńı části věnuj́ıćı se úvodu do problematiky a popisuj́ıćı

vlastnosti použitých technoloǵı, je v druhé části pojednáváno o jádru systému, datovém

modelu, př́ıstupu k datovému zdroji a popisuj́ı se zde podrobněji i jednotlivé části zdrojového

kódu. Třet́ı část je dokumentace pro administrátora a dokumentace k modulu staraj́ıćı se o

prezentaci www stránek.

Abstract

The aim of this work was to create a modular, easily scaleable tool for generating, distribut-

ing and administering information by means of a www browser, functioning in different ways

for different individual users and user groups. The first part includes introduction to the

problem and description of the properties of the technologies used, the second deals with the

core of the system, the data model, access to the data source, and provides more detailed

information about the individual parts of the source code. The third and final part consists

of documentation for the administrator and documentation relating to the module which

caters for the presentation of the www pages.

Contents

I Introduction 8

1 Introduction 9
1.1 Content Management System . 9
1.2 Modular CMS . 9
1.3 Goals of this project . 10
1.4 Core of the system . 10
1.5 Modules . 11
1.6 Technology Used . 11

1.6.1 PHP 5 . 11
1.6.2 MySQL with InnoDB engine . 11
1.6.3 HTML . 12
1.6.4 CSS . 12
1.6.5 JavaScript . 12

II Analysis 13

2 Core of the System 14
2.1 DB Access component . 15

2.1.1 DB Request class . 15
2.1.2 DB Result class . 16
2.1.3 DB Line class . 17
2.1.4 Class diagrams . 18

2.2 Data model . 19
2.2.1 Entity Relationship Model . 19
2.2.2 Tables . 19

2.3 Module Handler . 21
2.3.1 Module Class . 23
2.3.2 Form Class . 24
2.3.3 View Class . 26

2.4 Templates . 27
2.5 Authentication . 32

2.5.1 Users and Groups . 32
2.5.2 User Roles . 33
2.5.3 Authentication Class . 34

2.6 Other classes . 35
2.6.1 Message Class . 35

2.7 Additional functions . 36

5

CONTENTS 6

2.8 Views which are not part of any module . 36

3 Modules 38
3.1 Home module . 38
3.2 Mail module . 39
3.3 Forums Module . 40
3.4 Forum module . 41
3.5 Profile module . 42
3.6 Bug reporting module . 43
3.7 Users module . 45
3.8 Administration Module . 46
3.9 Web administration module . 49

III Manuals 52

4 Installation 53
4.1 Requirements . 53
4.2 Installing essential files . 53
4.3 Configuration files . 54

4.3.1 Main configuration file . 54
4.3.2 Database access configuration . 54

4.4 Uploading the system to a database . 54
4.5 Logging in the system . 54

5 Administration 55
5.1 Adding a user . 55
5.2 Adding a group . 55
5.3 Including user into a group . 56
5.4 Editing modules . 57
5.5 Adding a user role . 57
5.6 Editing Forms/Views . 58

6 Running the web 59
6.1 Introduction . 59
6.2 Editor’s interface . 59
6.3 Approver’s interface . 61
6.4 Publication . 61

7 Further screenshots 62

8 Conclusion 68

9 Bibliography 69

List of Figures

2.1 Core of the system - Logical view . 14
2.2 DB Access Component - Classes . 18
2.3 Core of the system - ER diagram - User, group, user roles 19
2.4 Core of the system - ER diagram - Module, Form, View 20

3.1 Bug reporting module - state diagram . 43
3.2 Web administration module - state diagram 49

4.1 Screenshot - Entering the system . 54

5.1 Screenshot - Adding a new user . 55
5.2 Screenshot - Including user into group . 56
5.3 Screenshot - Editing a module . 57
5.4 Screenshot - Adding a user role . 57
5.5 Screenshot - Editing a form or a view . 58

6.1 Screenshot - Editor’s interface . 60
6.2 Screenshot - Approver’s interface . 61
6.3 Screenshot - Presentation . 61

7.1 Screenshot - Mail module . 62
7.2 Screenshot - Module’s additional code example - new mail 62
7.3 Screenshot - Forums module . 63
7.4 Screenshot - Displaying particular forum . 63
7.5 Screenshot - User’s profile editing . 64
7.6 Screenshot - Bug reporting module . 64
7.7 Screenshot - Details of bug and the solution 65
7.8 Screenshot - Examples of messages . 65
7.9 Screenshot - Editing form properties . 66
7.10 Screenshot - Editing the same form properties with maximalised field 66
7.11 Screenshot - Presenting a document to the public 67
7.12 Screenshot - Presenting a document to the public 67

7

Part I

Introduction

8

Chapter 1

Introduction

1.1 Content Management System

With the expansion of information technologies, especially of the internet, it has become

more important to share various kinds of information among all its users. One of the ways

of making this possible is a Content Management System.

Content is defined as any type of digital information, such as, text, graphics, archives, PDF

files, etc.

Management System is defined as a system which allows a user to effectively manage some-

thing.

There are plenty of Content Management Systems available for download nowadays.

They are run on many platforms, are programmed in different languages, and use different

data sources. Examples include PHPNuke, OpenCMS, and Plone, for example. All of these

systems exist to make creating web sites easier even for the amateur.

1.2 Modular CMS

Now it is quite clear what the Content Management System really is. The difference I feel

between ”normal” content management system and ”modular” content management system

is that the modular system should be somehow logically divided. For example, the system

should be divided into one main part - the Core of the system and everything else in the

system, particular operations, should act as stand-alone modules.

The main advantages of the system written like this are

• Easier maintainance

It is much easier to trace errors, repair them, etc. if the system is divided into modules

rather than in contained in a single complete unit.

9

CHAPTER 1. INTRODUCTION 10

• Easier upgrading

Separate upgrades rather than upgrading the whole system each time

It is also much easier for collaborative development to take place in the future. Person A

can be responsible for developing the part of the system responsible for communication with

a database, for example, while person B can be responsible for formatting outputs for end

users.

1.3 Goals of this project

The purpose of this project is to create such modular content management system. The

system core should be stored as files on a www server, while the modules, including their

source codes, should be stored in the database server. This markedly speeds up their de-

velopment and makes administration more comfortable. The system should also make it

possible to display to one group of users modules which others do not see, while showing

another group completely different modules, which are in turn concealed to the first group.

A system designed in this manner will make it posible easily to create a countless number

of different applications working by means of shared connection to the database, and at the

same time use the same differentiation/division of users into groups.

1.4 Core of the system

This part of the system should be responsible for all properties and actions common to all

the modules. One of the most important functions of the core is to link communication

between the particular modules and the database. A given module should be unconcerned

about what exact data source it is using, what exact manufacturer produced the db server

software, what exact version is currently running, etc. The given module is just supposed to

give simple order that it wants to save data to the database or that it wants to get certain

results.

This is job for a component called a DB Access Component. If it is decided that a DB

server should be replaced by another in the future, the only interference to the code is the

replacement of this component. Authentication and role-based access is also often needed.

Therefore, another function of the core should be some kind of mechanism to let a user

log in, log off, and to allow particular users to access elements which are hidden, i.e., not

accessible to other ones.

CHAPTER 1. INTRODUCTION 11

1.5 Modules

Nearly anything could act as a module. There could be a Module for sending short messages

between users, a module for creating and maintaining forums, module for user management,

module for maintaining bug database, etc. These are just a few examples of the functionality

of modules.

Simply put, anything that is dependent on the system while the system is not dependent on

it, should be considered a module.

1.6 Technology Used

As has been stated, the described architetcure will need some Relational Database Manage-

ment System (RDBMS) and some hypertext preprocessor of HTML outputs. There are a

few alternatives how to consider for this purpose. I have chosen PHP server side hypertext

preprocessor and MySQL with InnoDB Engine as a data storage, because PHP has excellent

web documentation, and both (PHP and MySQL) are open sourced software. Because all

the system will be managed and displayed through web browser, a few more technologies will

be used. HTML used for formating outputs, CSS for making these outputs attractive and

flexible, and JavaScript often used for automation HTML forms. A few following sections

which are taken over from various encyclopaedia on the internet and abbreviated tries to

describe what PHP, MySQL, CSS, HTML and JavaScript is.

1.6.1 PHP 5

PHP is a server-side Hypertext Preprocessor. It was created sometime in 1994. PHP script

is enclosed in an HTML document within special PHP tags. This script is executed after

a particular file is opened, processed, and the output is sent to HTTP output. Because

the script is executed by the server, there is no possibility for a client to view the source

code. Thus, it is secure. Nowadays, there is a large number of PHP libraries available for

communication with other protocols (IMAP, SNMP, NNTP, POP3, FTP) or with various

RDBMS (MySQL, PosgreSQL, Oracle, Sybase). Its syntax is similar to Perl or C. Many

improvements including object oriented programming were made with the release of version

5. PHP is written as Open Source.

More information can be found on http://www.php.net

1.6.2 MySQL with InnoDB engine

MySQL is a relational database management system (RDBMS). RDBMS means that the

data are stored in separate tables rather than in one big area. These data are created,

modified, and acquired by Structured Query Language (SQL), which is the most common

CHAPTER 1. INTRODUCTION 12

language used to access databases. MySQL is also open sourced as PHP is and is the most

commonly used open sourced RDBMS in the world.

InnoDB provides MySQL with a transaction-safe ACID (Atomicity, Consistency, Isolation,

Durability) compliant storage engine with commit, rollback, and crash recovery capabilities.

Another helpful feature which InnoDB supports are the foreign keys constraints.

More information is at http://www.mysql.com

1.6.3 HTML

HTML - HyperText Markup Language is the coding language used to create Hypertext

documents for use on the WWW. Basically it is a set of <markup> symbols or codes

inserted in a file that tells the Web browser how to display a Web page’s words and images

for the user. The individual mark up codes are referred to as elements.

1.6.4 CSS

A cascading style sheet (CSS) is used to define how web pages are displayed. The purpose

is to provide more control over the fonts, colours, layout, etc. that go into the web page

than could be provided by raw HTML. Also, since the cascading style sheet file is separate

from the HTML files, it can be shared (or even inherited; a little outside the scope of this

document) by multiple web pages to help provide a consistent look-and-feel across a web

site.

1.6.5 JavaScript

JavaScript (in spite of its name) has nothing whatsoever to do with Java. JavaScript is

an interpreted language built into a browser to provide a relatively simple means of adding

interactivity to web pages. It is only supported on a few different browsers, and tends not to

work in exactly the same way on different versions. Thus its use on the Internet is somewhat

restricted to fairly simple programs. On intranets where there are usually fewer browser

versions in use, JavaScript has been used to implement much more complex and impressive

programms.

Part II

Analysis

13

Chapter 2

Core of the System

The Core of the system consists of three parts. The first is responsible for communication

between the modules and the database. It is called DB Access Component.

The second is responsible for running all the modules, i. e. creating the so called forms,

mapping them with the database, determining which action is supposed to be executed, and

after that its processing, and acquiring data from the db and their parsing using a template

in a particular view.

The last part is the so called Administration Module and is responsible for managing forms

with their actions, and views. This module is also responsible for granting access to partic-

ular elements of the system.

Core of the System

Administration Module
- User Administration
- Module Administration
-- Form Administration
-- View Administration

DB Access Component

Database
Server

(MySQL, PostgreSQL)
(Oracle, Sybase)

Module

Module

Module

Module Handler
- Running modules

View Component

Form Component

DB Component

Figure 2.1: Core of the system - Logical view

14

CHAPTER 2. CORE OF THE SYSTEM 15

2.1 DB Access component

As written above, the DB access component is responsible for linking the Database Server

with the modules. This component should be designed in such a way as to make it easily

replaceable by another db component, in case the Relational Database Management System

changes. For instance, PostgreSQL instead of MySQL. Even though the majority of today’s

RDBMS SQLs are more or less standardized to comply with SQL92 (ANSI/ISO SQL92,

ISO/IEC 9075:1992(E) Information Technology), there are still some differences between

them. Therefore it is neccessary to create such interface for communication between the

modules and the core which will be included in all these DB Access Components (compo-

nent for MySQL, component for PostgreSQL, component for Oracle, etc.)

Every particular component consists of three classes. The first is used for direct communi-

cation with the server, the second is used for parsing given results, and the third for active

mapping of rows in the DB table with the particular object in memory.

2.1.1 DB Request class

To create this class, several attributes: host - hostname or IP address of the computer where

the RDBMS is run, username, password and the name of the particular database where all

the system tables are saved. Having this, one directive is simply placed into the code. The

best way is to put it at one place from where it is distributed throughout the whole code by

means of several includes. Configuration file called config mysql.inc.php located in /config

directory would be appropriate.

$dbh = new DB Request(String host, String username,String password,String dbname);

This directive creates the so called handle, with the aid of which all the operations are later

executed.

Variables

Every instance of the DB Access class has 5 protected variables.

• Username

• Password

• Host name

• DB Name

• Database Handle

CHAPTER 2. CORE OF THE SYSTEM 16

Methods

• public construct(Username, Password, Hostname, DBName)

Constructor of the class. All that happens inside the class when it is being created is

allocation of the respective values to the above mentioned variables.

• protected connect()

This method is called when connection to the database is required. In case of error,

an exception is thrown.

• public execute(query)

By means of this method, an SQL query is run. Firstly it is found whether the DB

handle exists. The handle is created only once per each HTTP session. If there have

been any SQL executions earlier, the handle is already created. If not, a new handle

is created. Once we have a handle, the given query is executed. The obtained results

are saved in the so called associative array, i. e. array([line][array([attribute][value]])

2.1.2 DB Result class

DB result class is used for parsing results given from execute() function of the DB Request

class. It is simple to access particular documents through this class.

Variables

There are 4 variables within this class.

• lines - results formated as an array of DB Lines

• fetch array - results formated as associative array

• pos - current position in the result

• count - number of lines in the result

Methods

• Constructor(fetch array)

The only parameter of this method is the associative array returned by the execute func-

tion of the DB Request class. First of all it is neccessary to decide whether fetch array

results from SQL SELECT, i.e., has at least one element (row), or from SQL INSERT,

SQL UPDATE or SQL DELETE. (or, of course, from SQL SELECT with no returned

results). If it comes from SELECT, all rows of the result are processed while single

DB line instances are being created of which each belongs to a particular row of the

returned result.

CHAPTER 2. CORE OF THE SYSTEM 17

The next step is to adjust the count variable to the number of returned results. Finally,

the results are saved in the form of associative array in the variable called fetch array,

and the position is set at 0.

• getnext()

This method is used to return next DB Line object from the result. If there is no next,

the method sets position to zero and returns FALSE.

• reset()

This method just resets position counter to zero.

• get()

This function is used for easier access to the first row of the result. It works through

operator overloading. When it recieves a request for a non-existing attribute of the

DB Result class, the function tries to return the value of the given attribute from the

first row in the result. For instance, if the result is an array of all users in the system,

it is easy to get the username of the first user just by calling for DB Result.username.

This is very helpful when looking for a single document in the database.

2.1.3 DB Line class

DB Line class is designed to represent a row from a table as an object instance. For example,

if there is a table called users in which the users with their attributes are saved, the instance

of this class has similar structure as the particular row in the table, i. e. particular user. We

can easily get attributes such as username by simple call $user.username, etc. This technique

is called active mapping.

Variables

• data - Array of attributes and their values representing one row in the table.

Methods

• Constructor(line array)

Given array looks like array[attribute]=value

• set(attribute, value)

Method called when overloading the class - sets value of the attribute

• get(attribute)

Method called when overloading the class - returns value of the attribute

CHAPTER 2. CORE OF THE SYSTEM 18

• delete(table, key name, key value)

Tries to find a row in the table with key name having key value and deletes the doc-

ument. Key name and key value can acquire multiple values. If this happens, these

attributes must have the form of array.

• save(table,key name,key value)

Firstly, this method obtains description of the table from the database, assigns existing

values of the current class instance to real, possible attributes of the row in the table,

and after discovering whether a particular row already exists, it determines between

insertion and updating. Again, key name and key values can acquire multiple values.

All the classes cooperate with one another. DB Request is needed for creating DB Result,

which is in turn needed for creating DB Line. There is one exception. There is no need to

create the instance using an array in the constructor when wanting to create a new document.

2.1.4 Class diagrams

DB_Request

#User: String
#Password: String
#Host: String
#Dbname: String
#Handle: Database Handle

+__construct(host,user,password,dbname)
+connect()
+execute(query:string)

DB_Result

-lines: Array of DB_Lines
+fetch_array: Assoc. Array
+pos: int
+count: int

+__construct(fetch_array:array)
+getnext()
+reset()
+__get(parameter:String)

DB_Line

+data: Assoc. Array

+__construct(line_array:Assoc. Array)
+__get(parameter:String)
+__set(parameter:String,value)
+delete(table:String,key_name:String,key_value:String)
+save(table:String,key_name:String,key_value:String)

 0..*

1

Figure 2.2: DB Access Component - Classes

CHAPTER 2. CORE OF THE SYSTEM 19

2.2 Data model

2.2.1 Entity Relationship Model

Figure 2.3: Core of the system - ER diagram - User, group, user roles

2.2.2 Tables

User

Field ID Type PK FK Unique

user id INT(3) Y

username CHAR(20) Y

password CHAR(20)

name CHAR(30)

email CHAR(64)

icq INT(10)

hidden TINYINT(1)

CHAPTER 2. CORE OF THE SYSTEM 20

Figure 2.4: Core of the system - ER diagram - Module, Form, View

User group

Field ID Type PK FK Unique

group id INT(3) Y

username CHAR(20) User.username

group name CHAR(20) User.username

User online

Field ID Type PK FK Unique

username CHAR(20) Y User.username

last operation INT(10)

User role

Field ID Type PK FK Unique

role id INT(4) Y

role name CHAR(20)

actor CHAR(20) User.username

modue name INT(3) Module.module name

CHAPTER 2. CORE OF THE SYSTEM 21

Module

Field ID Type PK FK Unique

module name VARCHAR(32) Y

module code TEXT

module display text VARCHAR(12)

module additional code TEXT

module icon VARCHAR(64)

Form

Field ID Type PK FK Unique

form name VARCHAR(32) Y

module name VARCHAR(32) Y Module.module name

form template TEXT

action parameter VARCHAR(8)

Form action

Field ID Type PK FK Unique

form name VARCHAR(32) Y Form.form name

action name VARCHAR(32) Y

action code TEXT

action role VARCHAR(20)

View

Field ID Type PK FK Unique

view name VARCHAR(32) Y

module name VARCHAR(32) Y Module.module name

select TEXT

view key VARCHAR(32)

view header TEXT

view template TEXT

view footer TEXT

num display elements INT(2)

roll parameter VARCHAR(8)

2.3 Module Handler

To follow the description of Module Handler, which is responsible for running the modules,

it would be usefull to understand what the module is. As mentioned above, everything that

depends on the system core while the system core is not dependent on it should be a module.

CHAPTER 2. CORE OF THE SYSTEM 22

Every module has its own source code, which is written in PHP. This code is executed when

the given module is run. Even though this code can be stored in a file in modules directory

of the directory tree, the most of the modules are stored in the database. This is very useful,

for example, when

• Upgrading - There is no need to change files on the web server. New modules can be

also installed much more easily.

• Administration - Administrator can change the code from any computer having a

web browser

• Access control - Every module is bound with a certain role. The identifier of this

role is automatically set to the name of the module.

Every module refers to particular record in database table called Module. This record

consists of module name (unique identifier), module code, text displayed in the listing of all

modules (in the menu, for example), additional code (code which is executed in listing all

the modules) and module icon.

To clarify what is the additional code, let us use an example. There is a module for sending

and receiving short messages among users. All the modules are displayed as a menu on the

top of the page. If a such user has unread messages in his mailbox it would be usefull to in-

form him about this fact. Therefore, the additional code of the mail module contains a PHP

code which obtains the number of unread messages in current user’s mailbox and prints it out.

The particular module which should be run is determined on the basis of URL parame-

ter go. For example, when the value of URL is index.php?go=Admin, a module identified as

Admin is called.

Apart from name, code, additional code, etc. every module consists of its tables and also

two special elements.

Forms

These elements are used to

• Display HTML forms

• Process sent data (create, update, delete documents)

• Acquire data (display one particular document)

Each form corresponds to a particular DB Line object which is mapped on the database.

Every form has its own template which determines what it looks like in HTML browser.

(for more details about templates see section 2.4) Each form has its own actions. By means

CHAPTER 2. CORE OF THE SYSTEM 23

of these actions, it is possible to work with the document quite easily. The identifier of

particular action is given in URL. All information about the form, its template, codes of its

actions, etc.is stored in database.

Views

Views are used for formatting the results returned from the query. Templates are also very

important for understanding what views really are. (see section 2.4). In the same way as

forms, all the information about views is stored in database.

2.3.1 Module Class

Each module in the system is run by a class called Module.

Attributes

• Module Name - Name and identifier of the module

• Module Code - PHP source evaluated when running the module

• Database Handle - Handle used for communication with database

Methods

• Constructor(Module name)

The first thing done is assigning database handle which is stored in HTTP session.

Then the class attempts to find the module of the given name. In case it is not found,

the constructor throws a message and halts the evaluation. If the module is found,

attributes such as module code and default access are assigned. At the end of creation,

method run() is called.

• run()

First of all it is determined whether the current user has enough permissions. This is

done by means of attribute default access. If the attribute equals 0, function notRe-

stricted() is called, in other cases, the isAllowed() function is used. If everything

regarding permissions is found in order, the code in Module code is evaluated.

• notRestricted(Element)

Returns TRUE if the element is not restricted for the current user. This is done by

means of method access() which is in the Authentification class.

• isAllowed()

Very similar to notRestricted() with only one difference. If there is no record about the

specified element in Access table, FALSE is returned, i. e. the user is not allowed to

CHAPTER 2. CORE OF THE SYSTEM 24

access the particular element. On the other hand, if this situation occurs when calling

the method notRestricted() TRUE is returned.

• includeForm(Form name)

Used for including form into module code.

• includeView(View name)

Including View in module code

• insertView(View name)

Similar to includeView(), with the difference that the output of the view is not printed

out immediatelly, but only returned as String. This is essential when inserting a

particular view into the Form.

This method is often used in templates. To understand it properly, please see the

section 2.4 about Template data type

2.3.2 Form Class

Each form is represented by a class called Form. One of form variables is a handle to the

particular DB Line object which is mapped on the database. Thus, variables of the related

DB Line element can be easily obtained. Meta information about each form is saved in the

database, in a table called Form.

Attributes

• Form Name - Name and also an identifier of the form

• Module Name - Name of the module to which the current form belongs

• Action Parameter - URL parameter used for determining which action should be

used

• DB Keyname - Unique Key (or array) by means of which a particular line can be

found

• DB Keyvalue - Value (or array of values) of the above mentioned key

• DB Table - Name of the table in which a particular row should be located

• Form Action - Multiple actions associated with current form; acquired from Form action

table

• Form Template - Source of the HTML form with embedded values in { }

CHAPTER 2. CORE OF THE SYSTEM 25

Methods

• Constructor(Form name, Module)

Firstly, several variables such as DB handle, Module and Module name are allocated.

Another step of this method is to load HTML form template and action parameter

from the database. Finally, all related form actions are inserted into Form Action

array.

• get(Attribute)

Method using operator overloading. Returns value of given attribute of bound DB Line

object.

• set(Attribute, Value)

Again, uses operator overloading. Adjusts given value to the given attribute in bound

DB Line object

• process()

This method determines which of the form actions should be used. It tries to evaluate

the action whose identifier corresponds to the value of the previously defined action

parameter.

• drawForm

Prints out the source of the HTML form.

• createElement(Table, Keyname, Wheretogo)

This method is used for creating a new entry in the table. It is used when there is

no equivalent stored in the database and needs to be create it. After the operation is

finished, browser is redirected to the specified URL (wheretogo attribute)

• findElement(Table, Keyname, Keyvalue)

Tries to map existing row in the table with current instance of the object. Keyname

and Keyvalue can acquire multiple values.

• updateElement(Table, Keyname, Wheretogo)

This method is used for updating already mapped DB line with attributes held in the

current form instance object. If the appropriate document is found in the database, it

is updated, otherwise a new row in the table is created.

• deleteElement()

Deletes mapped row in the table. If there is no Confirm parameter in URL, it auto-

matically requires confirmation.

CHAPTER 2. CORE OF THE SYSTEM 26

2.3.3 View Class

Attributes

• View name - Name and also identifier of the view

• Module - Pointer to the parent module

• Select - SQL Select

• DB Result - Returned results from the query formated as DB Result

• View header - Template of the view header

• View Template - Template of each row of the view

• View Footer - Template of the footer of the view

• num display elements - Default number of displayed rows in a view

• pos display elements - Temporary variable - current position in a view

• roll parameter - URL parameter used for scrolling pages

Methods

• Constructor(View Name, Module)

Assigning view variables and acquiring view information from the database. This

method tries to find a particular view from a table called View. If there is one, it

assigns other attributes to the instance and afterwards executes SQL query stored in

the database. These results are then saved in DB Result attribute.

• getView()

This function returns formatted results of the view. Every result starts with View

header and ends with View footer. Rows in-between are processed by means of a

template stored in View template.

• drawView()

Runs preceding function getView() and prints out the result.

• drawSimple()

Used for printing out a view which has no template. This function firstly gets the

structure of the results with all possible fields, and then it prints it out.

• drawListing()

This method is used for printing out a bar with the Previous and Next buttons. The

name of the URL parameter is stored in roll parameter variable, default number of

CHAPTER 2. CORE OF THE SYSTEM 27

displayed documents is stored in a variable called num display elements and starting

position is obtained from a variable called pos display elements. After having these,

SQL query is executed with limitation consisting in starting position and the number

of documents.

2.4 Templates

Quite often, there is a need to display something a number of times when changing only

data. This is the reason for the existence of the Template data type. Template is a fragment

of HTML code with embedded identifiers of variables which contains data. These identifiers

are enclosed in {} marks.

The fragment is then passed to function called evalTemplate() which is located in

/functions/globals.inc.php.

By means of this function the given fragment is split into HTML code and PHP code, which

is embedded in {}. After this, everything that is inside { and } is processed by means of PHP

function eval and the original expressions are replaced by the given results. The outcome is

then returned as a string.

Exaple of a template

Let’s imagine there is a HTML template stored in $template variable.

<table>

<tr>

<td> Username </td>

<td> {$username} </td>

</tr>

<tr>

<td> E-mail </td>

<td> {$email} </td>

</tr>

</table>

if there is a PHP code which contains

$username = "Bob";

$email = "bob@yahoo.com";

echo evalTemplate($template);

The result in a web browser of this code will be

CHAPTER 2. CORE OF THE SYSTEM 28

Username Bob

E-mail bob@yahoo.com

However, in this example the context in which function evalTemplate() is called is clear.

Very important for comprehending the correct use of using templates in forms and views is to

understand the context in which the function is being run. When the function is processing

a template for a form or a view, the only variables which can be accessed ”directly” are

those within this function. Therefore, function evalTemplate() needs a few more arguments.

The first is a pointer to a current module whose attributes and functions can be accessed

via $mod (for example $mod->module_name) and the second is a pointer to the currently

processed document. Document properties can be accessed via $doc variable (for example

$doc->username).

Embedding conditions

It is possible to process embedded conditions. The syntax is (Condition)?(TRUE):(FALSE)

In the next example, if the variable $name is empty, string ”Name is empty” is printed out.

{ ((!$name)?"Name is empty":$name) }

Template in views

Templates in views are used for displaying a list of rows (documents) which were returned

by some SQL select. Every view has its own header - fragment of HTML code which is

displayed just before all the particular documents, its footer - a fragment of HTML code

which is displayed just after all documents have been printed out, and the most important

fragment stored in a field, called View template. This template is processed for each row in

the returned result.

Example There is a request to display all users and their e-mails in the database in a

HTML table. There is a view with suitable SQL select which obtains the results. We want

the system to print out the header with names of the fields. Therefore, View header will

look like this:

<table>

<tr>

<td> Username </td>

<td> E-mail </td>

</tr>

To format every row of the result the template should look like this:

CHAPTER 2. CORE OF THE SYSTEM 29

<tr>

<td> {$doc->username} </td>

<td> {$doc->email} </td>

</tr>

Every HTML table has to be also closed. Variable View footer will contain only

</table>

An example of the result of these templates when having two users (Bob, John) will look

like this:

<table>

<tr>

<td> Username </td>

<td> E-mail </td>

</tr>

<tr>

<td> Bob </td>

<td> bob@yahoo.com </td>

</tr>

<tr>

<td> John </td>

<td> john@hotmail.com </td>

</tr>

</table>

Template in forms

Templates are also used in forms. The reason is that one form can be used in multiple

situations. One form can be used for creating a new user while the same one is also suitable

for editing the user. The only difference is in the presence of data. As in view, module and

document variables can be accessed. A simple example will illustrate the usage of a template

in a form.

<form method="POST" action="./index.php?go={ ($doc->doc_id=="")?"create":"update" }">

<input type="HIDDEN" name="doc_id" value="{$doc->doc_id}">

Document name: <input type="text" name="doc_name" value="{$doc->doc_name}">

Document author" <input type="text" name="author" value="{$doc->author}">

<input type="submit" value="Save">

</form>

CHAPTER 2. CORE OF THE SYSTEM 30

If this form is used for creating a new document, action url will contain go=create instead

of go=update. Let’s assume that attribute $doc id is assigned during the first processing of

the form (after submitting the form). Because of this, if the same document is opened with

the same form next time, attribute $doc id is already assigned and the above condition in

action returns string ”update”. The rest of the correspondent fields will be predefined by

means of the HTML attribute VALUE.

Inserting view into the form template

Sometimes it is required to insert a view into the form template.

Everything enclosed in { and } should only return some value. This is done by method

InsertView(View name) which is included in Module class. Let’s imagine, a view called

User select which displays all the users in the system in the form of HTML SELECT field.

This view has the following attributes.

View header:

<select id="recipient">

View footer:

</select>

View template:

<option value="{$doc->username}"> {$doc->username} </option>

Then there is a form for sending short messages to a specified user, and it is more

comfortable to select among all users than to write down their username manually. A

template for a form which sends these messages will contain the following:

<form method="post" action="./send.php?action=send">

Recipient: { $mod->insertView("User_select") }

<hr>

<textarea name="message" rows="5" cols="40">

Write your message here

</textarea>

</form>

The final result in case there are two users will look like

<form method="post" action="./send.php?action=send">

Recipient:

<select name="recipient">

CHAPTER 2. CORE OF THE SYSTEM 31

<option value="bob"> bob </option>

<option value="john"> john </option>

</select>

<hr>

<textarea name="message" rows="5" cols="40">

Write your message here

</textarea>

</form>

CHAPTER 2. CORE OF THE SYSTEM 32

2.5 Authentication

2.5.1 Users and Groups

The overwhelming majority of the system should be accessible only to registered users. Thus,

there has to be a functionality which allows users to log in and log off; it should also be

responsible for granting particular users access to particular elements. To simplify adminis-

tration, users can be divided into groups.

The class responsible for carrying out authentication is called Authentification class. Al-

though this class will be described later, it is necessary to mention it now. The reason is

that it needs to be considered which of several alternatives will be used to store data in the

database.

In this class, there is one important method called access() to which username/group and

identifier of accessed element are given as an argument. For example, user/group called

”ABC” asks for permission to access element called ”forum5”.

The question is how to store information about users and groups, whether divided into

two tables or kept together in just one. If the data are stored in two separate tables (one for

individual users, one for groups), it is quite difficult to detect in the source code whether the

type of query is user-element or group-element. A table with user roles should also include

certain mechanism designed to inform the above mentioned access() function about the type

of query (if it is role-user or role-group query). Another reason for keeping users and groups

in a single table is that in such case, it is possible to have in the table with roles a ”database

integrity constraint foreign key”, which provides some functionality for free. For example,

when a particular user is deleted, all his roles are deleted as well. The reason is that it is

not possible to define two different FOREIGN KEYS from two different tables for a single

field in a single table. The only con of this solution is impossibility of storing additional

information about particular groups, e.g. group description

Hence, entry about group and entry about user is stored in one table. The difference between

entry representing user and entry representing group is that in the latter case, the first letter

of the username equals symbol ”@”. The relation between particular users and particular

groups is stored in a table called User group.

Example Case

We want to create users ABC, DEF, and XYZ, and group called @GROUP1. Group

@GROUP1 should include users ABC and DEF. We will need to insert four entries into

table User and two entries into table User group.

CHAPTER 2. CORE OF THE SYSTEM 33

User table entries

Username Password Name, email, icq ...

ABC abc’s password anything

DEF def’s password anything

XYZ xyz’s password anything

@GROUP1

User group table entries

group name username

@GROUP1 ABC

@GROUP1 DEF

2.5.2 User Roles

Role is the relation between the so called element and the so called actor. An element can

be for example access to a particular module, access to its certain part (permission to edit

and delete documents), permission to administer users, visibility of a certain document, etc.

Actor can mean either a user or a group. Every role is uniquely defined by module name,

user or group, and by role name. If access to the whole module is required, role name must

be empty. On the other hand, if access is required to a particular function within a module,

for example permission to edit or permission to delete a document, the role inside a module

must be uniquely defined by role name. Roles are stored in a table called User role.

Example Case

Supposing there is a module for reporting bugs. There is a group called @editors, which

includes users ABC and DEF, and another two users called MNO and XYZ, who are not

members of any other group. The task is to grant access to all users except user XYZ, and

additionally, to allow users who are members of group @editors to edit and delete the re-

ports. In the source code of the bug reporting module, the identifier of the role, consisting in

permission to edit, equals string ”edit”, and the identifier of the role consisting in permission

to delete equals string ”delete”.

The solution relies upon insertion of 4 entries into User role table. The first two will repre-

sent the relationship between general access to the module on the one hand, and user MNO

and group @editors on the other. Another two entries will connect group @editors with role

edit and role delete.

CHAPTER 2. CORE OF THE SYSTEM 34

User role table entries

Actor Module name Role name

MNO Bug reports

@editors Bug reports

@editors Bug reports edit

@editors Bug reports delete

2.5.3 Authentication Class

Authentication class is used to manage authentication.

Attributes

• access elements - Array with all elements which the particular user is allowed to

access

• dbh - Database Handle

Methods

• construct(Username, Password)

First of all, this method tests whether Username and Password have been given. If

not, drawForm() function is called, in the opposite case login() is called.

• login(Username, Password)

This method assigns db handle and queries the DB server about the user using the

given username and password. After successfull reply, the rest of attributes is assigned,

and via function createSession(), a HTTP session is created. The last step is to update

information about online users.

• updateTimeStamp()

This method updates information about online users and last logins.

• logout()

Method used for logging off. HTTP session is destroyed.

• access(Default Action, Module Name, Element ID)

Method for finding out current user’s permissions to access the given Element ID. The

first step is to get appropriate records from User role table. Default action parameter

is used to choose between two methods of access. If this parameter is set to 0 and there

are no corresponding records in User role table, access is granted. Conversely, if it is set

to 1 and no corresponding records are found, access is denied. If any matching records

in User role table were found, the so called ACL (Access Control List) is created. The

CHAPTER 2. CORE OF THE SYSTEM 35

next step is to find out whether ACL contains an entry connecting the element with

the current username. Returns true (access granted) if it does. The last step is to

discover whether the particular user comes under any of the groups permitted access.

Consequently, all the groups the particular user comes under are loaded and one after

another they are compared with groups which have records in User role table. If any

match is found, access is granted. In the opposite case, it is denied.

• createSession

This method creates HTTP Session, assigns username and user id to corresponding

parameters in the session, and ”hangs” the whole current Authentification class on the

session.

2.6 Other classes

2.6.1 Message Class

Sometimes, the system needs to inform a current user what exactly is happening in the system

at the moment or to ask him what he wants to be done. The message class is responsible

for doing all this, i. e. displaying various messages, warnings, questions, and errors. For

example, information about the fact that the current user has not enough permissions to

access the element he requires.

A message can be of three types:

• Information message - This type is used when the system needs to display infor-

mation meant only for the current user, such as Mail message has been sent. Every

message of this type may be important for the current user but it is definitelly not

important for the administrator of the system.

• Error message - This message is used when there appears any critical error. Most

of such messages relate to problems with connection to the database, missing views,

missing forms, or an attempt to access something which is restricted.

The specified view has not been found

or

You have not enough permissions to access this element

are the typical examples of this type of a message

• Warning - This type of message is used when something goes wrong during execution

but it is not necessary to stop the subsequent processing of the code.

Message you are trying to delete has been already deleted

is an example of this type of a message

CHAPTER 2. CORE OF THE SYSTEM 36

Hovewer, apart from this typology, it is necessary to determine whether the processing

of the rest of the page should be continued or stopped. For example, there is a difference be-

tween an error which occurs when a user has not enough permissions, and an error occuring

when a particular view cannot be found. If someone is trying to access something that is

restricted for him, the system should consider it as a security violation. On the other hand,

absence of a particular view is not an error so serious as to stop the system from drawing

the footer of the page. Therefore, there is a number in every message call which, if it is

odd, makes the system stop. Conversely, if the number is even, the system continues the

processing of the rest of the page.

All the messages are displayed to the user. Hovewer, it may be useful for the administrator

to have a possibility to browse through the list of all the messages. (Except information

messages). Thus, every message call of non-information type is stored into the system table

called System log. Every record consists of date and time, caller (from where in the code it

was called), username, type, and the text of the message.

Attributes

• err - Identifier of the message

• errstr - Text of the message

• errlnk - Return URL

Methods

• construct(err,errstr,errlnk,caller)

Firstly it determines which of the four types of message is involved. If err equals 0

or 1: the message is an error, 2 or 3: information message, 4 or 5: warning, 6 or 7:

question. After this, if err is 0,2,4 or 6, the system continues in evaluating the code, if

not, the system halts.

2.7 Additional functions

Additional functions are saved in a file with filename /functions/globals.inc.php.

2.8 Views which are not part of any module

Views which are not part of any of the modules.

CHAPTER 2. CORE OF THE SYSTEM 37

Menu module

Prints out all modules as horizontal menu. It is displayed at the top of the page.

Module select

HTML SELECT of modules installed in the system

Chapter 3

Modules

3.1 Home module

Home module act as entry page to the system. It only prints information about users who

are online and simple history of their logins.

Tables:

User online
This table is redundant and its information could be stored directly in User table, however,
because of plans of including a user-tracking system, it was inserted into the system.

Field ID Type PK FK Unique Description
username VARCHAR(20) Y User.username
last operation INT(10)

Views:

Users online

A view displaying users who are on-line at the moment.

User logins

A view displaying all users and their last logins.

38

CHAPTER 3. MODULES 39

3.2 Mail module

The mail module is used for sending short messages among the users of the system. Every

message contains sender username, recipient username, and plain text which represents the

subject of the message.

Tables:

Mail message

Field ID Type PK FK Unique Description
message id INT(6) Y
date INT(10)
is read TINYINT(1)
text text
from VARCHAR(20) User.username
to VARCHAR(20) User.username

Forms:

Mail message

This form is responsible for sending messages and deleting them. It has 3 actions:

• Default - Used when no action is called, only draws HTML form.

• Send - This action is used for sending messages.

It assigns appropriate values from HTTP POST and creates a message

• Delete - This action is used for deleting messages.

It recieves message id, finds appropriate document, and deletes it

Views:

Mailbox

This view displays the mailbox. In mailbox either sent or received messages are shown.

Beside every message there is a link containing url for deleting the message.

Users select

This view is included in form Mail message and displays all visible users in the system. It

is printed in a form of HTML select and represents recipient field.

CHAPTER 3. MODULES 40

3.3 Forums Module

This module is used for creating, editing, deleting, and listing all forums in the system.

Particular forums are then maintained by means of a different module called Forum module.

Hovewer, these modules cooperate.

Tables:

Mail message

Field ID Type PK FK Unique Description
forum id INT(3) Y
forum name VARCHAR(30)
forum desc VARCHAR(255)
messages INT(4)
owner VARCHAR(20) User.username
forum category VARCHAR(64) Y

Forms:

Forum

This form is used for creating, editing, and deleting particular forums. It has following the

actions:

• Default - HTML form is drawn

• create - Determines whether forum allready exists (updating) or not (creating). Assigns

appropriate values from HTTP POST and creates/updates record in the table with

forums.

• edit - This action gets forum identifier from URL, finds relevant record in database,

and displays HTML form

Views:

Forums

This view lists all forums in the system. It does not print the forums which are not accessible

for the current user

User roles:

It is possible to restrict access to particular forums. The only way to do this is to create

record in User role table containing user/group and as role name, string ”f ”+[id of the

forum] (forum id attribute). For example, if there is a forum having forum id = 15, the

corresponding role name in User roles will be ”f 15”.

CHAPTER 3. MODULES 41

3.4 Forum module

Forum module is used for displaying a particular forum, writing messages, and deleting them.

It relates to the Forums module described in previous section.

Tables:

Forum message

Field ID Type PK FK Unique Description
message id INT(6) Y
date id INT(10)
text TEXT
username VARCHAR(20) User.username
forum id INT(6) Forums.forum id

Forms:

Forum message

This form is used for writing plain text messages into particular forums. It has 3 actions:

• Default - Draws HTML form

• send - Creates a message in the forum. This action firstly assigns appropriate attributes

from HTTP POST. The next step is to modify the number of all messages in the forum.

• delete - finds corresponding document and deletes it.

Views:

Forum

View is displaying a certain number of latest documents written to forum (10 by default).

Beside each message written by the current user there is a link for deleting the message.

CHAPTER 3. MODULES 42

3.5 Profile module

This module is used for changing information about current user.

Tables:

User

This module works with User table, which is a core table - see section 2.2

Forms:

Profile

Form used for updating current user’s profile. There are 2 actions:

• Default - Draws HTML form

• update - Assigns appropriate values from HTTP POST and stores the document in

the database.

CHAPTER 3. MODULES 43

3.6 Bug reporting module

This module is used for simple reporting of bugs, accepting the reports, and recording

information that the bug has been solved. There are 3 stages in the lifetime of each bug.

The bug is reported by any user of the system who has relevant access to the module. Then,

another user who has corresponding role takes over the problem and if he finds the solution,

he marks the bug as closed and writes down the solution. Every bug can be deleted in any

of these stages by the user who has the relevant role. This process is illustrated by the next

diagram.

Figure 3.1: Bug reporting module - state diagram

Tables:

Requirement

Field ID Type PK FK Unique Description
requirement id INT(3) Y
date created INT(10)
date closed INT(10)
description TEXT
solution TEXT
creator VARCHAR(20) User.username
state num INT(1)
subject VARCHAR(64)

Forms:

Requirement

This form is used for creating, editing, accepting, closing, and deleting bug reports. It has

6 actions:

• Default - Draws HTML form

CHAPTER 3. MODULES 44

• create - Assigns data from HTTP POST, set status to 1 (reported), and creates a

document

• edit - Locates the document in database and draws HTML form

• accept - Changes status to 2 (accepted) and saves the document

• close - Locates the document, saves the solution sent through HTTP POST,

changes state to 2 (closed), and saves the document in the database.

• delete - Locates the document and deletes it.

Requirement view

The form called Requirement view is used just to display information about the ”bug”. It

has 2 actions, however, default action is empty.

• view - Locates the document and draws HTML output.

Views:

Requirements

This is a view which displays all the bug reports sorted out by their state. Beside every

report are two links. The first is used for deleting the bug and it is visible only to users with

the relevant role. The second is for opening the report for editing. Editing can also be done

only by the user with the relevant role.

User roles:

edit - Role of editing, accepting, and closing reports

delete - Role of deleting reports

CHAPTER 3. MODULES 45

3.7 Users module

This module is used either for displaying information about users in the system or adminis-

tering it.

Tables:

User

This module works with User table, which is a core table - see section 2.6

Forms:

User admin

Form used for creating, editing, and deleting users. It has the following actions:

• Default - Draws HTML form

• edit - Locates the document and draws HTML form

• update - Creating/updating user information. The fist step is to decide whether the

user already exists or not. The next step is assignation of attributes from HTTP

POST. Document is then created or updated.

• delete - Locates the document and deletes it

Views:

User admin

This view is displayed only to users who have the corresponding role. Beside every user

there are three links - one for edit, second for delete, and third for sending short messages.

Users

If a current user has no permissions to have the view User admin displayed, the Users view

is drawn. Beside every user there is a link for sending short messages.

User roles:

maintain

- role allowing creation, editing, and deletion users

CHAPTER 3. MODULES 46

3.8 Administration Module

By means of this module, the administrator or another user who has administration role

maintain the system. The module is divided into several submodules: administration of

forms, views, modules, and groups.

Tables:

This module works with the following system tables:

User, User group, User role, Module, Form, Form action, View

See section 2.2 for more information.

Forms:

Admin form

Form used to manage all forms in the system. It has the following actions:

• Default - Prints out HTML form

• create - allocates relevant variables from HTTP POST and creates document

• edit - locates the document and draws HTML form

• update - locates the document and updates it

• delete - locates the document and deletes it.

Admin form action

Administering form actions in the system. It has the following actions:

• Default - Draws HTML form

• create - Assigns relevant data from HTTP POST and creates document

• edit - Locates the document and draws HTML form

• update - Locates the document and updates it

• delete - Locates the document and deletes it

Admin module

Used for administration of modules, with the following actions:

• Default - draws HTML form

CHAPTER 3. MODULES 47

• create - Allocates data from HTTP POST and creates document

• edit - Finds relevant document and draws HTML form

• update - Finds relevant document, assigns data from HTTP POST, and updates the

document

• delete - Finds relevant document and deletes it.

Admin role

Administration of user roles. This form is shown in module administration

• Default - draws HTML form

• edit - locates the document and prints HTML form

• update - creates or updates role. Assigns relevant data and if the document already

has its id (role id), it is updated. If not, a new role is created.

• delete - locates the document and deletes it

Admin user group

Administration of groups. It has the following actions:

• Default - Does nothing.

• edit - Draws HTML form

• insert - Assigns corresponding attributes of HTTP POST and creates a new document

• delete - locates the document and deletes it

Admin view

Administration of views

• Default - Draws HTML form

• create - Assigns corresponding data from HTTP POST and creates a new document

• edit - Locates the document and draws the form

• update - Locates the document, assigns relevant data, and updates them

• delete - Locates the document and deletes it

CHAPTER 3. MODULES 48

Views:

Actor select

This view is used in module administration in Admin role form for selecting either users or

groups

Admin form actions

Admin form actions view is displayed in form administration submodule. Beside every form

action are links to edit and delete

Admin forms

View displayed in form administration submodules. It contains links to edit and delete.

Admin group

Displayed in User/group submodule. It is used for listing groups. It contains a link by means

of which a particular group is selected.

Admin module

Falls into module administration submodule. This view lists all the modules installed in the

system. There are two links - edit and delete.

Admin roles

Falls into submodule which is responsible for administering modules. By means of this view,

all roles related to the selected module are displayed.

Admin user group

Included in user/group submodule. It displays all the users included in the selected group.

The view contains link for removing user from group.

Admin views

Listing of all views in the system. It contains links for editing and deleting the view.

User select

HTML SELECT of all users.

CHAPTER 3. MODULES 49

3.9 Web administration module

Web administration module is used for creating, editing, and subsequently approving and

publishing documents which are then visible to anonymous users of the internet/intranet.

Information contained in each document may have one of three different forms:

• HTML source

• Plain text which is then converted by means of PHPMarkdown filter to HTML

• Blog

Each document can also be linked with one or more files which are then displayed as

attachments. There are 2 roles acting in this module: editor - user, allowed to create and

edit documents, and Approver - responsible for approving, i. e. publishing. The approving

process is shown in the next diagram.

The web admin module is divided into five submodules. The first is for editors, second for

approvers and the rest for editing header, footer, and CSS style.

Figure 3.2: Web administration module - state diagram

Tables:

Asset

Field ID Type PK FK Unique Description
file name VARCHAR(64) Y
doc id INT(4) Y
data MEDIUMBLOB
type VARCHAR(32)

Web profile

Field ID Type PK FK Unique Description
name VARCHAR(32) Y
value TEXT Y

CHAPTER 3. MODULES 50

Document

Field ID Type PK FK Unique Description
doc id INT(4) Y
doc name VARCHAR(32)
abstract TEXT
created INT(10)
updated INT(10)
sortstr VARCHAR(30)
type INT(1)
content LONGTEXT
fullcat VARCHAR(255)
title VARCHAR(64)
parent VARCHAR(20)
state num TINYINT(2)
author VARCHAR(20)INT(6) User.username

Forms:

Document edit

Form used for creating and editing document. It has the following actions:

• Default - Draws HTML form

• create - Creates a document

• new - Used for creating new document with pre-defined parent document.

Parent field is set and the form is printed out.

• edit - Locates the document and draws HTML form

• update - Locates the document, assigns relevant parameters from HTTP POST, and

updates the document.

• delete - Locates the document and deletes it after confirmation.

Document view

This form displays the document. There is a button which sends the document for approval.

It has following actions:

• Default - Does nothing

• view - Locates the document and prints it out

• toapprove - Locates the document and sets state num to 10 (to approve)

CHAPTER 3. MODULES 51

Profile edit

Form used for editing web profile variables such as header, footer, or CSS. It has the following

actions:

• Default - Locates the document in Web profile table and displays the form

• update - Locates the document and updates it

Approval

Form for displaying the document and changing its status to Approved, to Approve, and

Unpublish.

• Default - Does nothing

• approve - Locates the document and change its state to 20 - approved

• return - changes documents state to 0 - created, i. e. returns the document to editor

• unapprove - sets state to 10, i. e. unpublishes the document

• view - Locates the document and displays it.

Asset

Asset form is used for attaching files to documents.

• Default - if document (web page) is selected, the form is drawn

• create - assigns relevant attributes and uploads the file into the table called Asset. If

there is any attachment with the same name, it is replaced by the new one.

• delete - finds relevant attachment in database and deletes it.

Views:

Web documentedit

This view displays all the documents with links to edit, delete, and send document to approve.

Web approval

This view is shown to approvers. It contains links for returning document to the editor,

approving the document, and unpublishing it.

Web parent select

View in a form of HTML SELECT. Used in each document when choosing parent document.

Part III

Manuals

52

Chapter 4

Installation

4.1 Requirements

PHP version 5 and MySQL with InnoDB

PHP sources and binaries are available for free download on http://www.php.net. MySQL

sources and binaries are available on http://www.mysql.com. However, if you are using any

linux distribution which supports any kind of packages, it is highly recommended to install

php and mysql from a package.

Open Community (OC) should work on any operating system having a http server, MySQL,

and support of PHP5.

Nevertheless, this guide describes installation of Linux/Unix system.

4.2 Installing essential files

Although the majority of the code is stored in a database there are a few files which have

to be saved on the disk of WWW server. Most of these files are classes responsible for

communication with database and running the modules, processing views, etc. The rest is

used for displaying outputs of web module to anonymous users.

• Download the latest version from http://kmlinux.fjfi.cvut.cz/˜faltysekm1/oc/

Then copy it to the document-root of your WWW server.

• Unzip the file into the document-root of your WWW server, i. e.

when considering /var/www/htdocs as document-root:

cd /var/www/htdocs & gunzip -c oc-[version].tar.gz | tar -xvf -

In this case, /var/www/htdocs/oc directory should be created

53

CHAPTER 4. INSTALLATION 54

4.3 Configuration files

4.3.1 Main configuration file

The main OC configuration file is called config.inc.php and it is located in the config/

directory. The only variable you have to change is $cms root which represents total path to

the root of open community directory. Considering our previous guide, the variable has to

equal ”/var/www/htdocs/oc”.

4.3.2 Database access configuration

Now it is time to configure variables determining how to connect to the MySQL database.

All these are defined in a file called config mysql.inc.php in the same directory as the main

configuration file. Change $cms mysql host, $cms mysql username, $cms mysql password,

and $cms mysql database to corresponding values.

4.4 Uploading the system to a database

The basics have been done. Now it is necessary to record the basic modules, views, forms,

admin user, and some groups. MySQL create script (or scripts) are saved in install/ directory.

Upload data by means of any MySQL client. The next example shows how to upload data

by means of native mysql client. Replace db name with the appropriate value.

mysql [db_name] -p < db_ver-[version].sql

4.5 Logging in the system

If everything is set up properly, the system should be alive. Open OC in the web browser.

Address should have the shape ”http://YOUR-WEB-SERVER/oc”. The default home page

should be displayed. There is a link to login to the system. If you follow it, login window

will appears. Use ”admin” for username and ”admin” for password.

Figure 4.1: Screenshot - Entering the system

Chapter 5

Administration

5.1 Adding a user

Adding a new user is done in Users module. Follow the link on the top of the page. In the

users section, there is a list with all the users in the system. Below the list there is a form

which, when filled in and submitted, creates a new user.

Figure 5.1: Screenshot - Adding a new user

5.2 Adding a group

Group is added in the same way as the user. The only difference is the need to use @ as

the first character of the username. For example, if the username field equals ”@users”, the

created record will be considered as a group ”users”.

55

CHAPTER 5. ADMINISTRATION 56

5.3 Including user into a group

Including user into a group is done in Admin section. There is a link called ”Group Ad-

ministration”. Follow it and you will see a list with all groups in the system. Select the

group into which you want to include the user. After the group is selected, the select field

containing all the users in the system will appear at the side. Choose a particular user and

press the button on the right. As a result, the user should become included in the group.

Figure 5.2: Screenshot - Including user into group

CHAPTER 5. ADMINISTRATION 57

5.4 Editing modules

The system allows the administrator to change the attributes of each module. Although it

is not recommended, the administrator can change either module code or additional code of

the module. All this can be done in Module administration submodule. Edit the values and

simply press the submit button.

Figure 5.3: Screenshot - Editing a module

5.5 Adding a user role

User role is relation between an element in module and a user. This is why role administration

is located in the module administration submodule. Below module attributes, there is a

simple form with field for selecting so called ”actor” (user or group acting in a role) and the

name of the role.

Figure 5.4: Screenshot - Adding a user role

CHAPTER 5. ADMINISTRATION 58

5.6 Editing Forms/Views

Just as in case of modules, it is not recommended to edit forms and views of the core modules.

However, it can be done by means of admin module, submodule Views or submodule Forms.

Figure 5.5: Screenshot - Editing a form or a view

Chapter 6

Running the web

6.1 Introduction

One of the most important parts in the system is the one responsible for presenting web

pages. This part is bound with a module called Web admin, which is used for creating and

approving particular documents which are to be published.

Any user, if he has appropriate permissions, is able to create web pages. These documents

have to be approved first in order to be visible for anonymous users visiting the web site.

Documents are hiearchicaly classified into categories. To enter the web administration mod-

ule follow the link on the top of the interface of the system. Web admin module has 5

submodules.

• Documents - interface for editors

• Approval - interface for approvers

• Header - Editing the header of each page

• Footer - Editing the footer

• CSS - Cascade Stylesheet definitions

If you do not see some of the submodules it means that you do not have enough permissions,

i. e. you do not have appropriate user roles. Role called ”edit” is for editing while role

”approve” is for approving. The rest of the submodules should be visible to all users who

have access to the web admin module.

6.2 Editor’s interface

Editor’s interface is located in ”Documents” submodule. There is a list of all documents

with several links. ”E” means to edit document, ”D” means to delete document, and ”A”

59

CHAPTER 6. RUNNING THE WEB 60

means to send document for approval. Documents with no links are already approved,

therefore they cannot be edited or deleted. There is one more link ”*” by means of which

the subordinate document is created.

Figure 6.1: Screenshot - Editor’s interface

Creating a document

Below on the page is a form with several fields.

• Doc name - Short name of the document. Identifier also used in the menu

• Title - Longer name of the document. Text is displayed at the top of each document

• Abstract - Summary of the document

• Sortstr - String by means of which the list of documents is sorted

• Type - type of the document (HTML / Plaintext)

• Reference - parent of current document

• Content - Text / HTML / ... the body of the document

If these fields are filled in and the form submitted, the document is created.

Inserting an attachment

If any document is viewed or edited, there is a form for insertion of an attachment be-

low. Simply browse for a file and press ”>>” button. The file should be uploaded. The

attachment is then shown at the bottom of the document.

Sending document to approval

There are two ways to send a particular document to approval. It can be done by clicking on

”A” in the list or by clicking the ”Send to Approve” button while displaying the document.

After the document is sent for approval, there is no way of deleting it or changing its data.

CHAPTER 6. RUNNING THE WEB 61

6.3 Approver’s interface

If current user has appropriate role, he enters this interface by clicking on ”Approval” sub-

module. The list with all documents contain 3 links. ”A” - approve document, ”R” - return

to editors, ”X” - unpublish.

Figure 6.2: Screenshot - Approver’s interface

6.4 Publication

Every page is divided into 4 elements. Header, hiearchical menu, document body, and

footer. How to control header, footer, and document body was described before. Menu is

generated from the list of all approved documents. Documents are shown hiearchicaly and

the menu can expand and collapse. The source of it is written in Javascript and it works

in most of today’s browsers (IE 4+, Mozilla, Firefox). To see the menu and all possibilities

of a presentation, please visit http://kmlinux.fjfi.cvut.cz/˜faltysekm1/oc/ or see the chapter

with extra screenshots which is at the end of this document.

Figure 6.3: Screenshot - Presentation

Chapter 7

Further screenshots

Figure 7.1: Screenshot - Mail module

Figure 7.2: Screenshot - Module’s additional code example - new mail

62

CHAPTER 7. FURTHER SCREENSHOTS 63

Figure 7.3: Screenshot - Forums module

Figure 7.4: Screenshot - Displaying particular forum

CHAPTER 7. FURTHER SCREENSHOTS 64

Figure 7.5: Screenshot - User’s profile editing

Figure 7.6: Screenshot - Bug reporting module

CHAPTER 7. FURTHER SCREENSHOTS 65

Figure 7.7: Screenshot - Details of bug and the solution

Figure 7.8: Screenshot - Examples of messages

CHAPTER 7. FURTHER SCREENSHOTS 66

Figure 7.9: Screenshot - Editing form properties

Figure 7.10: Screenshot - Editing the same form properties with maximalised field

CHAPTER 7. FURTHER SCREENSHOTS 67

Figure 7.11: Screenshot - Presenting a document to the public

Figure 7.12: Screenshot - Presenting a document to the public

Chapter 8

Conclusion

Despite a number of minor mistakes which have not yet been removed due to the limited

time available for the final ”tune-up”, there was a success in creating a simple groupware-

like system which enables user groups to communicate with one another in various ways,

and to publish the results of their communication. Plenty of furtherpossible modules come

to mind - depending on the specific purposes for which the system may be used. Mod-

ules can be easily added and removed. In the future, the created modules and the entire

documentation should be available for downloading on the main pages of the project - i.r.

http://kmlinux.fjfi.cvut.cz/˜faltysekm1/oc/

68

Chapter 9

Bibliography

• Kosek J.: PHP - tvorba interaktivńıch internetových aplikaćı, Grada Publishing, 1999

• Kosek J.: HTML - tvorba dokonalých www stránek, Grada Publishing, 1998

• Schlossnagle, George: Pokročilé programováńı v PHP 5, Zoner Press, 2004

• doc. Ing. Richta K., CSc., Ing. Sochor J., CSc.: Softwarové inženýrstv́ı I, ČVUT, 1996

• Prof. RNDr. J. Pokorný, CSc., Ing. I. Halaška: Databázové Systémy, ČVUT, 2003

• http://www.php.net - PHP project website

• http://www.mysql.com - MySQL project website

• http://www.jakpsatweb.cz - HTML, CSS, and Javascript reference

69

