1. How do you say the following numbers? Choose the correct option.

1 The year 2005:
a) twenty hundred and five
(b) two thousand and five
c) twenty five
d) twenty hundred five
2. $\$ 1=\mathrm{DM}$ 1.46. The exchange rate is:
a) one point four six Deutschmarks to the dollar
b) one forty-six Deutschmarks for a dollar
c) one dollar equalling Deutschmarks one point four six
d) one dollar making one four six Deutschmarks

3 The period from about 1994 to about 1996:
a) the midnineties
b) the medium nineties
c) the middling nineties
d) the midway nineties

4 Seven correct answers in a test of ten items. The result is:
a) seven over ten right
b) seven out of ten right
c) seven on ten right
d) seven right over ten

5 The dimensions of a rectangle 3 metres in length and 2 metres in width:
a) three for two
b) three by two
c) three across two down
d) three to two
6. The result of an opinion survey:
a) One of ten people think that...
b) One in ten people think that...
c) One to ten people think that...
d) One over ten people think that...
2. Write the following in words rather than in figures.
a) 2% of the British population owned 90% of the country's wealth in 2006.
b) $0^{\circ} \mathrm{C}=32^{\circ} \mathrm{F}$
c) 62.3% of adults have false teeth.
d) $2 / 3+1 / 4 \times 4^{2}=142 / 3$
e) $2,769,425$ people live here
3. Read the following records aloud:
a) Oxygen accounts for 46.6% of the earth's crust.
b) The nearest star to earth is Proxima Centauri. It is
$33,923,310,000,000 \mathrm{~km}$ from earths.
c) The highest waterfall in the world is Angel Falls in Venezuela with a drop of 979 km .
d) The top coffee-drinking country in the world is Finland where 964 cups per annum are consumed per head of the population
e) The tallest church in the world is the Chicago Methodist Temple which is 173 m or 568 ft high.
f) The second commonest item of lost property on London transport is the mobile phone. 19,453 mobile phones were handed in to London transport lost property offices in 2015.
g) The smallest country in the world is the Vatican City with an area of 0.4 sq km .

ADDITION AND SUBTRACTION

Numbers

A
In every number each digit has a certain place value, and the position of a digit in a number gives the digit its value. From right to left these values are units, tens, hundreds, thousands, ten thousands, and so on. For example, in the four-digit number 9,547 , the digit 7 has a value of 7 units, the 4 is in the tens place and has a value of 4 . tens (400 units), the 5 is in the hundreds place with a value of 5 hundreds (500 units), and the 9 in the thousands place has a value of 9 thousands (9,000 units).

B
Technicians and engineers are more concerned with concrete numbers. A concrete number is one that is connected with a particular quantity or object and therefore consists of two parts. The first part is a number which tells us how much; the second part specifies the unit of measurement or object and tells us what. For example, 60 cycles, 25 ohms, 10 microfarads, and 30 henrys are concrete numbers. In Chap. 11 you will study some interesting methods of dealing with concrete numbers as applied to units and dimensions relating to electricity and electronics.

C
An abslract number is one that has no reference to any quantity or object. For example, the number 16 , when used by itself, is an $a b-$ stract number. In general, you will be concerned with abstract numbers only when dealing with basic mathematical principles and procedures.

D

Our system of numbers is composed of the 10 digits $1,2,3,4,5,6,7,8$, 9 , and 0 . All numbers consist of combinations of these digits. Arithmetic consists of the relations of numbers and the methods of computing with numbers.

E

In general, concrete numbers should be added only when they are related to the same kind of units or things. For example, it would not make sense to add 47 ohms and 2 horsepower. However, this rule cannot be followed blindly because it would be sensible to add 40 resistors and 35 capacitors to obtain 75 parts, or objects. Here, we would be adding parts, or things.

Addition

The word "plus" indicates addition and is denoted by + . The equality sign $=$ means "is equal to." Thus, in the language of mathematics $6+8=14$. In English this says that 6 plus 8 is equal to 14 . The quantity, or number, obtained by adding two or more numbers is known as the sum of those numbers. Therefore, as indicated above, the sum of 6 and 8 is 14 .

A commonfraction, as distinguished from a decimal fraction (Chap. 5), is an indicated division of two whole numbers and expresses one or more of the equal parts into which a thing is divided. For example, the common fraction $\frac{5}{6}$ has two meanings, either that 5 is to be divided by 6 or that something has been divided into 5 of 6 equal parts.

The number above the line of a fraction, the dividend, is called the numerator of the fraction. The number below the line, the divisor, is called the denominator of the fraction. Note that the numerator
states how many of the equal parls that are contained in the denominator. Thus,

$$
\text { A fraction }=\frac{\text { numerator }}{\text { denominator }}=\frac{\text { how many parts }}{\text { number of equal parts }}
$$

A fraction in which the numerator is less than the denominator is called a proper fraction. $1 / 3,5 / 8$, and $13 / 13$ are proper fractions.

An improper fraction is one containing a numerator equal-to or greater than the denominator. $4 / 4,9 / 9,3 / 2$, and $9 / 4$ are improper fractions.

When working with fractions, it is necessary to make frequent use of the following important principles.
1 The numerator and the denominator of a fraction can be multiplied by the same number, except zero, without changing the value of the fraction.
2 The numerator and the denominator of a fraction can be divided by the same number, except zero, without changing the value of the fraction.
example 1

$$
\frac{4}{5}=\frac{4 \times 3}{5 \times 3}=\frac{12}{15}=\frac{4}{5}
$$

EXAMPLE $2 \frac{12}{15}=\frac{12 \div 3}{15 \div 3}=\frac{4}{5}=\frac{12}{15}$
It will be noted that no new principles are involved in performing these operations, because multiplying or dividing both numerator and denominator by the same number, except zero, is the same as multiplying or dividing the fraction by 1 .

DIFTEBEXITIALS

For a system having one independent property which we shall denote by x, let P denote a dependent property.

$$
P=P(x),
$$

and $\triangle P$ denote the change of P in a change of state fromastate 0 . According to Taylor's theorem, we may express ΔP in the form

$$
\Delta P=\frac{1}{1!}\left(\frac{d P}{d x}\right) \Delta x+\frac{1}{21}\left(\frac{d^{2} p}{d x^{2}}\right) \Delta x^{2}+\ldots ., \quad(1
$$

where $(d P / d x),\left(d^{2} p / d x^{2}\right), \ldots$ are the derivatives of P with respect to x evaluated at state 0 , and Δx the change of x in the change of atate under consideration.

Equation (1) may be written in the form

$$
\begin{equation*}
\Delta P=\left(\frac{d P}{d x}\right) \Delta x+R, \tag{2}
\end{equation*}
$$

where R is a quantity for which

$$
\begin{equation*}
\lim _{\Delta x \rightarrow 0}\left(\frac{B}{\Delta x}\right)=0 . \tag{3}
\end{equation*}
$$

As in the differential calculus, we shall denote the quantity $(d P / d x) \Delta x$ by $d P$ and will call it the differential of P. Thus

$$
\begin{equation*}
d P \equiv\left(\frac{d P}{d x}\right) \Delta x \tag{4}
\end{equation*}
$$

This expression defines the differential of a dependent property. Differentials may be used in algebraic relations only if the relation applies for all values of Δx. For example the relation

$$
d P=0
$$

implies

$$
\left(\frac{d P}{d x}\right)=0 .
$$

Similarly, the relationship

$$
d \mathbb{N}=d \mathbf{M}
$$

between the differentials of dependent properties s and M impiies

$$
\left(\frac{d M}{d x}\right)=\left(\frac{d M}{d x}\right),
$$

whereas the relationship

$$
\begin{equation*}
d B=(d M)^{2} \tag{a}
\end{equation*}
$$

implies

$$
\begin{equation*}
\left(\frac{d S}{d I}\right)=0=\left(\frac{d M}{d I}\right) \tag{b}
\end{equation*}
$$

For，（a）can be wittan as

$$
\left(\frac{\partial g}{d x}\right) \Delta==\left(\frac{d M}{d x}\right)^{2}(\Delta z)^{2}
$$

which falid for all values of Δx only if（b）is true．It follows that a relatianisip betwea differentisis of dependent properties is merely a representation of a relationship between derivetifes．

2ha change Δx of the independent varisble x during any change of stato Is also cellad the differsntiel of x and is denoted by dx．Hence

$$
\begin{equation*}
d x=\Delta x \tag{5}
\end{equation*}
$$

Accordingly；we may write for the differential aP of P

$$
d P=\left(\frac{d P}{d x}\right) \Delta x=\left(\frac{d P}{d x}\right) d x
$$

Tha bore definiticas cas be generalized to systems of meny independent variablea．Accordingly，the differential dp of a property of a eystem having independent proporties $x_{1}, x_{2}, \ldots ., x_{n}$ is defined by the relationship

$$
\begin{equation*}
d P=\left(\frac{\partial P}{\partial x_{1}}\right) d x_{1}+\left(\frac{\partial P}{\partial x_{2}}\right) d x_{2}-\ldots+\left(\frac{\partial P}{\partial x_{n}}\right)_{x_{1}} d x_{n} \tag{6}
\end{equation*}
$$

220

$$
d x_{1} \pm \Delta x_{1}, d x_{2} \equiv \Delta x_{2}, \ldots \ldots, d x_{n} \equiv \Delta x_{n},
$$

and（ $\left.\partial P / \partial x_{1}\right) x_{1}$ is the partial derivative of P with reapect to x_{k} ． holding all other independant properties $x_{i}(i \neq k)$ constant．

Hot to read the main methematical symbols and signs：

+ plus［óplas）－plus
－minus［nastop］－minus
\pm plus or minusť́plas o：meines］－plus nobo ninus
∞ infinity［in＇finiti］，infinite［＇infinit］－nokonexno，nokonečný
a．x（a times x［＇ei＇taivé gks］－a krát x 。
ax $\left\{\begin{array}{l}a \operatorname{multiplied} b y x \\ a x \text {［ei eks］ax maltiplaid bai eks］－a nasobeno } x\end{array}\right.$
a：x a divided by［［＇ei di vaidid bai oks］－a deleno x
a／x \｛a over i［etorvor eks］－a lomeno
$=$ equals［ikkwals］，is equal to［iz iskied te］－rovnáse，je rovno
 ku b jako x máa kou y
$\equiv \quad$ Identically oqual to［ai＇dentikali＇i：kwal ta］－identicky rovny，to－ tožaý
\neq does not equal［Cdes not＇ $1:$ kimpl］－nerová se
$=$＊ 18 approxisately equal to［＇iz o＇proksimitli＇i：kmal tə］－je přibližne rovno
$>$ greater thon［greito $\delta ⿰ ⿱ 亠 䒑 n]$－vat xín nez

\geq greater thanor oqual to［＇greita don or＇1：knal tol］－vetý nez nebo
（）jarenthoses［pa reno1gi：z］，round brackets［＇raund＂brekits］－

kulate sévorky

[] brackets, square brackets ['gkwe ibr akits] - hraznts piforky
\{ \} braces ['breisis] - sležent stuorky
(... brackets opened ['brsokits 'supond] - sévorky, oterłít sévorkn
..7) brackots closed ['bremits 'klouxd] - sévorky, zévorka se savie.
\widetilde{a} a tilde ['oi 'tilds]-a a vinovtcou
a^{*} a star ['oi 'sta:] - a 8 hresdickou
a
a bar ['e1 'ba:] -a s pruhen
E
a double bar ['a1 'dabl 'ba:] - a a dverea proby
a dash ['81 'dsex̆] - a cárkou
a subsoript n ['ei 'sabskript 'en], a subn ['ei 'seb 'en] -
a s inderean n
a sub one ['01 'sab 'wan] - a jedna
a sub two ['01 'seb 'tu:] -a dvé
absolute value of a ['abselu:t 'valju ov '日i] - absolutni hodnota 2 a
n 1 n factorial ['on fex'to:ripl] - n faktorial
\rightarrow tends to ['tendz ta], approaches [a'prouxia] T bliž se
\Rightarrow implies [im'plaiz] - implikuje
A capital a ['kopitl 'ei] - veliké E , A
Řecká abeceda


```
Mathematical operations :
Addition [g'di总on] - scitani
to acid ['god] - scitat
plus ['plas]-plus
5+7=12 five plus sevon equals tmelve
                                    18
                                    makcos
                                    are
                                    is oqual to
a+b=c a plus b equals o
Subtraction [sab"tr oek\an] - odečitáni
to subtract [sob'trakt] - odecitat
minus ['mainәs-] - minus
9-3=6 nine minus thres equals six
a-b = c a minus b equals c
Multiplication [,maltipli'keišan] - násobeni
to multipiy ['maltiplai] - násobit
x , . multiplied by, times - násobeno, krát
1x [ once ['wans ]
2x : trice ['twais]
3x three times (etc.)
5x; = 15. five times three is fifteen
ab = c (times) b equals c
Division [di'vižon] - delonl
to divide [di'vaid] - delit
: divided by
6:2 = 3 six divided by two is three
a : b = c a divided by b equals c
Raising to the power ['reiziך tə \(\delta \partial\) 'pauz] - mocneni
to raise to the power of [ta 'reiz to \delta\partial 'pauar av]-umocnit na
power ['pauz] - mocnins
exponent [eks'pounznt] - exponent, moonina
superscript ['sfu:poskript] - vie, co se plse u \isla nahore, opakem je.
subscript ['sabskript] - våe, co se pife u Xisla dole - inder
52 five squared ['skwe\partiald]
a a cubed ['kju:bd]
a
(a+b)2
x}\mp@subsup{x}{}{2}+\mp@subsup{y}{}{2}\quadx\mathrm{ squared plus y squared
(a+b)3 a plus b all cubed
Dal&1 mocniny se troř1 : to + clen + řadova clslovka :
84
a n a to the nth
an+1}\quada\mathrm{ to the n plus one
(am}\mp@subsup{)}{}{n}\quada\quad\mathrm{ to the mth all to the nth
```


 to extract the./nth/root/out/ of [iks'traskt] - odeocñovat index, n. X. Indioes ['indoles; indiai:m]. - odmocnitel root ['ru:t] - koren
$\begin{array}{ll}\sqrt{a} & \text { the square root of a ['skwe }] \text {] } \\ \sqrt[3]{a} & \text { the onbe ['kju:b] root of } a, \text { a to the one third }\end{array}$
Dalki odmocniny se troǐi : urcitý clen + radova Cislova + root of
$\sqrt[4]{a}$
$\sqrt[n]{a}$
$\sqrt[x]{a}$
$\sqrt[3]{a}$
the fourth root of a
the nth root of a, to the one over n
the xth root of a, a to the ons over x
the minus cube root of a, Casteji: a to the minus one third

Fractions ['frrokhonz] - zlowky

numerator ['njuimoreito] - Xitatel
denominator [di'nomineite]- jmenovatel
fraction line ['frəekor "lain]- slomkora cara
1/2 ahalf, ['ha:f], one half
$1 / 3$ one third
1/4 ons quartar, one fourth
 novateli řadová. Je-li Xitatel v̌tłi nez 1, je jmenovatel v možnén Xisle, tj. na konci je -s. Je-li jmenovatel sexoncen na jednickax, Cteme jej jako
 "lomeno" jako "over" [auvj].

3/2 three halves ['ha:vz]
$2 / 5$ two fifths ['fifes]
4/10 four tenths
$a / b \quad a$ over b
5/21 five over twenty-one
b) decimal fractions ['desimol 'frsekzonz] - desetinne slomky Misto desetinné Cárky bývá tečka (decizal point ['desimol 'point])
 tečaou se Xtou jednotlive, před desetinaou teckou jako celek.
0

nought	$[$ no:t $]$
o nero	$[$ eur $]$
zereu $]$	

.10 .1 point one, nought point one

equation [1 kweizon]
to evaluate [1'valjueit]
expression [iks'prešan]
to follow ['folou] (FROM)
for [10:], [12]
to generalize ['dženəralaiz]
hence ['hens]
to hold, held, held ['hzuld; 'held]
to imply [im'plai]
in the form [in $\delta \partial$ "fo:m] of
independent (of) [,indi'pendont]
independent variable [tindi'pendont \quad verriabl $]$
let [let]
merely ['mioli]
partial ['pa;sol]

property ['propati]
quantity ['rwontiti]
relation [ri'leifon] (between)
relationship [ri'leišaňip]
representation [,reprizen'teišan]
respect [ris'pekt]
similarly (to) ['similali]
state ['steit]
theorem ["Oizrom]
thus [' $\delta \mathrm{sa}$]
true ['tru:]
under consideration ['andə kən,sido'reišan]: uvažovaný
valid (for) ['valid]
variable (n.) ['veariəbl]
where ['wว:]
wheress [weวr'zz]
with respect to [wid ris'pekt to]
thence [' δ ens]
whence ['wens]
rovnice
ryporitat
จýraz
plynout (z), následovat (za), sledovat
nebot
zevěeobecnit
odtud plyne, z Choz
ponechávat, držet, platit (o zákomu)
zahrnovat, implikovat, plynout (z)
ve traru
nezávislý
nezátislá promenná
necht, budiz
pouse
parciání
parciálni derivace
vlastnost
množstri, veličina
vztah (mezi)
vatah
vyjádřenf.
ohled
podobnĕ, obdobne
stav
poučka, taorem
tak, z toho, tedy
pravdivý, vłrný, pravý
plataý (pro)
proměnná
kde
kdežto
dle (mat.)
odtamtud plyne, tudiz
odkud plyne, tudiz

