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List of notations

⌊x⌋ floor function, ⌊x⌋ = max{k ∈ Z|k ≤ x}

⌈x⌉ ceiling function, ⌈x⌉ = min{k ∈ Z|k ≥ x}

N set of natural numbers, {1, 2, 3, . . . }

N0 set of natural numbers including zero, {0, 1, 2, . . . }

Z set of integers

Q field of rational numbers

R field of real numbers

C field of complex numbers

Z[x] ring of polynomials with integer coefficients

Q[x] ring of polynomials with rational coefficients

A alphabet, a finite set of symbols

A∗ set of finite words over an alphabet A

AN set of infinite words over an alphabet A

Zβ set of β-integers

Z−β set of (−β)-integers

A abbreviated notation of an expression −A

τ golden mean, number 1+
√
5
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Introduction

Nonstandard number systems have applications in many different fields of science. For ex-

ample, redundant number systems, where several representations of one number are possi-

ble, allow to design parallel algorithms and thus speed the arithmetical operations up. This

is useful mainly when manipulating large numbers, e.g. in cryptography. Nonstandard

number systems with irrational base are particulary useful in modeling of quasicrystals.

Representation of real numbers in the form

x =
∑
i≤k

xiβ
i with xi ∈ R

for a general real β > 1 was first considered by A. Rényi in 1957 [17]. In 2009, S. Ito and

T. Sadahiro [12] introduced a new number system with a negative base −β < −1. The

expansion of numbers in this number system is an analogy to the positive-based number

system, however, certain properties of the new number system are essentially different.

We mostly study the properties of (−β)-integers. These are the numbers that can be

expressed using only non-negative powers of the base (−β) where β is a quadratic Pisot

number. In the introductory chapter, we explain the necessary notation and facts from

number theory and combinatorics on words. Then we present the theory of positional

number systems with a general real base α, and then recall some results obtained in

both positive- and negative-based number systems. The author’s original contribution is

situated in Chapters 3 and 4. First we show that the set of (−β)-integers equipped with a

suitable operation ⊕ forms a group with properties similar to rational integers. Then we
study arithmetical properties of negative-based number systems and discuss the number

of fractional digits arising from arithmetical operations on the set of (−β)-integers.

This work was supported by the Grant Agency of the Czech Technical University in

Prague, grant No. SGS11/162/OHK4/3T/14 and Czech science foundation grant GAČR

201/09/0584.
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Chapter 1

Preliminaries

1.1 Number theory

Let us first recall necessary notations and facts from number theory.

A complex number α is called algebraic if it is a root of a polynomial f ∈ Q[x]. Among

such polynomials, there is the unique one that is monic (the coefficient at the highest

power of x is equal to 1) and of minimal degree. This polynomial is called the minimal

polynomial of α and the degree of α is defined as the degree of its minimal polynomial.

The minimal polynomial is irreducible and hence it has n = degf distinct roots. These are

called the (Galois) conjugates of α, denoted αi, i ∈ {2, 3, . . . ,degf}. It is also interesting
that the set A of all algebraic numbers is an algebraically closed field, i.e. any polynomial
g ∈ A[x] has roots in A.

Let α ∈ C. The extension of the field Q by α (denoted Q(α)) is the smallest subfield

(inclusion-wise) of C containing α, that is,

Q(α) =
∩

{T | T is a subfield of C, α ∈ T} .

If α is an algebraic number of degree n then

Q(α) = {a0 + a1α+ · · ·+ an−1α
n−1 | ai ∈ Q}.

It also means that Q(α) as a linear space over the field Q has dimension n and elements

(1, α, α2, . . . , αn−1) form a base of Q(α) over Q.

For given fields F, g, a mapping σ : F → G that satisfies

σ(x+ y) = σ(x) + σ(y) and σ(xy) = σ(x)σ(y)

is called an isomorphism of the fields F,G. The only subfields of C isomorphic to Q(α)

for α ∈ A are Q(αi), where αi is a Galois conjugate of α. The fields Q(α) and Q(αi) are

isomorphic with isomorphism

σi : a0 + a1α+ · · ·+ an−1α
n−1 7→ a0 + a1αi + · · ·+ an−1α

n−1
i . (1.1)
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When α is a quadratic number, i.e. α is of degree 2, then Q(α) = Q(α′), where α′ is the

Galois conjugate of α. Then Q(α) has exactly two automorphisms: the identity and (1.1).

In this case, the image of x ∈ Q(α) under the non-identical automorphism will be usually

denoted x′.

An algebraic number α ∈ A is called an algebraic integer, if it is a root of a monic
polynomial f ∈ Z[x]. The minimal polynomial of an algebraic integer is also a monic
polynomial with integer coefficients. The set of algebraic integers is not closed under

inversion, so it is not a field, but it forms a subring of C.

A very important subclass of algebraic integers are numbers whose Galois conjugates lie

in the unit circle.

Definition 1. An algebraic integer β > 1 is called a Pisot number if all its Galois conju-

gates satisfy |βi| < 1.

If an algebraic integer satisfies |βi| ≤ 1 and it is not a Pisot number then it is called a

Salem number.

Although a description of Pisot numbers using coefficients of their minimal polynomial is

not known in general, it is simple in the quadratic case.

Proposition 1. A number β > 1 is a quadratic Pisot number if and only if it is a root

of one of the following polynomial for m,n ∈ N

x2 −mx− n , m ≥ n ≥ 1 ,

x2 −mx+ n , m+ 2 ≥ n ≥ 1 .

An algebraic integer β is called a unit if 1
β is also an algebraic integer. There is another

equivalent characterization of algebraic units: an algebraic number β is a unit if and only

if the absolute term of its minimal polynomial is ±1. For example, quadratic Pisot units

are the roots of

x2 −mx− 1 , m ≥ 1 ,

x2 −mx+ 1 , m ≥ 3 .

The algebraic units also form an interesting structure – it is a multiplicative subgroup of

(C, ·).

1.2 Combinatorics on words

Let A be a nonempty set of symbols, also called an alphabet. By A∗ and AN we denote

the set of all finite and infinite sequences over A, respectively. The elements of these sets

are called words or strings. In A∗, the operation concatenation is defined by the natural

prescription

(a1a2 . . . am) ◦ (b1b2 . . . bn) = a1a2 . . . amb1b2 . . . bn.
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This operation is associative and has a neutral element, the empty word ϵ that also belongs

to A∗. The set (A∗, ◦) is a monoid and the symbol ◦ is usually omitted.

The k-th power of u ∈ A∗ is defined as

uk = u ◦ u ◦ · · · ◦ u︸ ︷︷ ︸
k−times

and the periodic repetition as

uω = u ◦ u ◦ · · · ∈ AN.

A word u is called a factor (subword) of the word w if there exist words a ∈ A∗, b ∈ A∗∪AN

such that w = aub. If a, b ̸= ϵ then u is called a proper factor. If a = ϵ or b = ϵ then u is

called a prefix or suffix of w, respectively.

The space AN can be equipped with a metric ρ, defined by the following prescription: for

a, b ∈ AN we put

ρ(a, b) = 2−n , where n = inf{k ≥ 1|ak ̸= bk}

with the convention 2−∞ = 0 , which happens if and only if a = b . With the metric ρ, AN

is a compact topological space. In order to extent the metric to the elements of A∗ , we

“complete” them to infinite words by a symbol δ /∈ A . Then we use the metric defined on

the space (A ∪ {δ})N .

An ordering of strings is also defined.

Definition 2. Let A be a linearly ordered set. We say that u = u1u2u3 · · · ∈ AN is

lexicographically smaller than v = v1v2v3 · · · ∈ AN (denoted a ≺lex b), if there exists

k ∈ N, such that

1. ui = vi for i < k

2. uk < vk .

We say that u is alternately smaller than v (denoted u ≺alt v), if there exists k ∈ N, such
that

1. ui = vi for i < k ,

2. uk < vk for k even, or uk > vk for k odd.

Definition 3. Let us have a set S ⊂ AN and let F ⊂ AN ∪ A∗, such that ∀x ∈ AN the

following properties are satisfied:

1. A string x belongs to S if and only if no element w ∈ F is a factor of x.

2. Each proper factor of a string w ∈ F belongs to S.

Then F is called the set of forbidden strings in S.
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Chapter 2

Positional number systems

A positional number system is given by a real base α with |α| > 1 and a finite set of digits

A ⊂ R, also called the alphabet. If x ∈ R can be represented as

x =

k∑
i=−∞

xiβ
i with xi ∈ A,

we say that x has an α-representation in A and we write

x = xk . . . x0 •α x−1 . . . .

The indexing of the coefficients might vary in this text, but the symbol •α always denotes
the position between positive and negative powers of the base. The representation is said

to be finite, if it has the form xk . . . x0 •α x−1 . . . x−ℓ0
ω. The repetition of zeroes might be

omitted as well as α in the symbol •α when the base is clear from the context. It is also
known that the assumption of each x ∈ R having at least one representation in A implies
that #A ≥ |α|. The question is how to obtain a α-representation of x ∈ R.

Definition 4. Given a base α ∈ R, |α| > 1, a finite alphabet A ⊂ R, and a bounded
interval J such that 0 ∈ J . Let D : J → A be a mapping such that the transformation
T (x) := αx−D(x) maps J → J . Then the corresponding representation of x is

dα,J ,D(x) := x1x2x3 · · · ∈ AN, where xi = D
(
T i−1(x)

)
. (2.1)

Moreover, it holds that x = •αdα,J ,D(x). This follows from the prescription for T, where

for x ∈ J we have x = D(x)
α + T (x)

α . Since the value of T (x) is in J , we can use the formula

for T (x), i.e. T (x) = D(T (x))
α + T 2(x)

α . Then

x =
D(x)

α
+

D (T (x))

α2
+

T 2(x)

α2

and in the limit

x =
D(x)

α
+

D (T (x))

α2
+

D
(
T 2(x)

)
α3

+ . . . . (2.2)
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A very important fact is that the definition determines one particular representation of

x ∈ J . This is crucial for defining some important sets, e.g. the set of numbers with finite

α-expansion or the set of α-integers.

In order to find a α-representation of other real numbers, let us consider the set

∪
i∈Z

αiJ =


R+ if J = [0, c) and α > 1,

R− if J = (−c, 0] and α > 1,

R otherwise.

When x ∈
∪

i∈Z α
iJ is to be represented in the base α, one first finds an integer k such

that
x

αℓ
∈ J , ∀ℓ ≥ k. (2.3)

Note that such exponent k does not exist when zero is the end-point of J and α < −1.

Therefore we will not consider these choices of J . If (2.3) is satisfied, the α-representation

of x
αk ∈ J can be obtained in the form (2.2), which implies

x = αk

(
D
(

x
αk

)
α

+
D
(
T
(

x
αk

))
α2

+
D
(
T 2
(

x
αk

))
α3

+ . . .

)
,

that is, if

dα,J ,D

( x

αk

)
= z1z2z3 . . . (2.4)

then

x = z1z2z3 . . . zk •α zk+1 . . . . (2.5)

The condition (2.3) ensures that the representation of x is independent of the chosen

power k of α in (2.4) when the initial zero coefficients are omitted. An example of possible

problems that may occur if x ∈ J but x
α /∈ J will be shown in Section 2.2. This leads to

the following definition.

Definition 5. Let x ∈
∪

i∈Z α
iJ and let k ∈ N0 satisfy x

αi ∈ J , ∀i ≥ k. If( x

αk

)
= z1z2z3 . . .

then

z1z2z3 . . . zk •α zk+1 . . .

is called the (α,J , D)-expansion of x.

A string u ∈ AN such that u = dα,J ,D(x) for some x ∈ J is called (α,J , D)-admissible.

If J and D are clear from the context, we speak about α-expansions and α-admissibility.

As we will see, in many cases the admissibility of a string might be decided by some

ordering criterion and consequently described by a set of forbidden strings. The special role

in the admissibility criterion play the expansion of the boundaries of J (see [8] and [13]).

In “conventional” number systems (binary, decimal, . . . ), we are used to perform an

ordering of numbers on the real line using the lexicographic ordering of their expansions.

This approach, under some assumptions, is valid for every positional number system. The

following fact is proved for example in [11].
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Proposition 2. Let α,A,J and D be as in Definition 4. Let numbers x, y ∈ J and let
dα,J ,D(x) = x1x2x3 . . . and dα,J ,D(y) = y1y2y3 . . . be their α-expansions. Then

• if α > 1 and D(x) is non-decreasing then

x < y ⇐⇒ x1x2x3 · · · ≺lex y1y2y3 . . . ,

• if α < −1 and D(x) is non-increasing then

x < y ⇐⇒ x1x2x3 · · · ≺alt y1y2y3 . . . .

For x, y /∈ J we use the so-called radix order of their (α,J , D)-expansions. It means we

align them according to the powers of the base, complete the expansions by zeroes from

the left side to have the same length, and use the corresponding order (lexicographical or

alternate).

Example 1. We want to order (α,J , D)-expansions x = xk . . . x0 • x−1 . . . and y =

yℓ . . . y0 • y−1 . . . , where k ≥ ℓ. First, y is completed with k − ℓ zeros to obtain the string

y′ = 0 . . . 0︸ ︷︷ ︸
k−ℓ

yℓ . . . y0 • y−1 . . . . Then we compare the strings

xkxk−1xk−2 . . . and 0 . . . 0︸ ︷︷ ︸
k−ℓ

yℓyℓ−1yℓ−2 . . .

in case of lexicographical order or alternate order with k odd, or the strings

0xkxk−1xk−2 . . . and 0 . . . 0︸ ︷︷ ︸
k−ℓ+1

yℓyℓ−1yℓ−2 . . .

in case of alternate order when k is even.

2.1 The Rényi number system

In 1957, A. Rényi in [17] introduced a number system with a base β > 1. This number sys-

tem can be described by specifying α,J , D in Definition 4 to be: β > 1,J = [0, 1) , D(x) =

⌊βx⌋. The alphabet of this number system is Aβ = {0, 1, . . . , ⌈β − 1⌉}. For this choice of
β,J , D, we will denote dβ,J ,D(x) = dβ(x) and the representation of x in Definition 5 will

be called the β-expansion of x and denoted ⟨x⟩β . Since J ⊂ R+ and β > 1, it is impossible

to extent the β-expansion to negative real numbers. Naturally, we use the symbol “minus”

for describing negative numbers.

The condition for deciding admissibility of a given string u ∈ AN
β was given by W. Parry

in 1960 [16]. Let us recall that, in this case, a string of digits is called admissible if it is a

β-expansion of some x ∈ [0, 1) .

Theorem 1 (W. Parry). A string u over integers is β-admissible if and only if

0ω ≼lex ũ ≺lex lim
ε→0+

dβ(1− ε)

for every suffix ũ of the string u.
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Let us make some comments on the theorem. The expression d∗β(1) = limε→0+ dβ(1 − ε)

is called the infinite Rényi expansion of unity and is a limit with respect to the topology

on AN. However, it does not have to be computed as a limit. We can obtain d∗β(1) from

the Rényi expansion of unity

dβ(1) = t1t2t3 . . . , where ti = ⌊βT i−1(1)⌋

by the prescription

d∗β(1) =


(
t1 · · · tm−1(tm − 1)

)ω
if dβ(1) = t1 · · · tm0ω , tm ̸= 0 ,

dβ(1) otherwise.

From the Parry lexicographic condition it might be possible to derive the set of forbidden

strings, i.e. the set of strings F that satisfies: “u ∈ AN
β is admissible if and only if u

does not contain any element of F as its substring.” This is possible if d∗β(1) is eventually
periodic. Moreover, if d∗β(1) is purely periodic then the set of forbidden strings is finite.

Example 2. Let β = τ = 1+
√
5

2 (the so called Golden mean), the greater root of x2−x−1.

Since ⌊τ⌋ = 1 , the alphabet is Aτ = {0, 1} . Now we derive the coefficients of dτ (1)

• t1 = ⌊τ · 1⌋ = 1 ,

• t2 = ⌊τT 1
τ (1)⌋ = ⌊τ(τ · 1− ⌊τ · 1⌋)⌋ = ⌊τ2 − τ⌋ = ⌊1⌋ = 1 ,

• t3 = ⌊τT 2
τ (1)⌋ = ⌊τTτ (τ − 1)⌋ = ⌊τ(τ2 − τ − ⌊τ2 − τ⌋)⌋ = 0 ,

• ti = 0 for all i ≥ 4 because Tτ (0) = 0.

We have

dτ (1) = 110ω , d∗τ (1) = (10)ω

and subsequently by Theorem 1 we obtain the condition of admissibility

0ω ≼lex x̃ ≺lex (10)ω.

The set of forbidden string is

F = {11, (10)ω} .

Let us focus on some interesting sets related to the Rényi numeration systems. The set of

numbers with finite expansion is defined as

Fin(β) = {x ∈ R | ⟨|x|⟩β = xk . . . x0 •β x−1 . . . x−ℓ0
ω}.

Note that Fin(β) is symmetrical with respect to zero. It is also easy to prove that Fin(β)

is dense in R for any β > 1.

An interesting question is, under what conditions Fin(β) forms a subring of R, i.e. when
Fin(β) is closed under addition, subtraction and multiplication. In that case we say that β

9



satisfies the finiteness property or simply (F). A result by Ch. Frougny and B. Solomyak [9]

shows that if Fin(β) is a ring then β is a Pisot number without any positive conjugate.

However, the reverse implication does not hold and describing bases β satisfying (F) is

still an open problem.

We also consider the set of β-integers, analogy to rational integers Z. It is defined as

Zβ = {x ∈ R | ⟨|x|⟩β = xk . . . x0 • 0ω}.

We are mostly interested the following three questions:

1. When Zβ is a ring.

2. When Fin(β) is a ring, i.e. β satisfies (F).

3. How many fractional digits has the result of addition, subtraction or multiplication

of β-integers.

The first question can be answered easily. It is a well known fact that Zβ is a ring if and

only if β is an integer. For, ⌊β⌋ + 1 /∈ Zβ if β /∈ Z. The second question is still an open
problem. As we mentioned, it was proved [9] that (F) implies β is a Pisot number without

positive conjugate. However, the converse does not hold and for the description of such

bases only partial results are obtained for bases of small degree [2]. Since the distance

between consecutive β-integers is at most 1, Zβ is always relatively dense. However, it

does not have to be uniformly discrete.

Let us focus on the third question. For this purpose we define quantities denoting the

number of fractional digits that may arise in a result of arithmetical operations

L⊕(β) = min{l ∈ N0 | ∀x, y ∈ Zβ , x+ y ∈ Fin(β) ⇒ x+ y ∈ β−lZβ} ,

L⊗(β) = min{l ∈ N0 | ∀x, y ∈ Zβ , x · y ∈ Fin(β) ⇒ x · y ∈ β−lZβ} .

As we do not consider infinite β-expansions, this definition allows L⊕(β), L⊗(β) to be

finite even though Fin(β) may not be a ring. Moreover, for β with (F), it might seem to

be possible to find a sequence (an, bn)n∈N such that the length of the fractional part of

an + bn or an · bn tends to infinity. However, this is not possible since (F) implies β is a
Pisot number and that implies finite values of L⊕(β), L⊗(β) (see [4]).

Derivation of L⊕(β) and L⊗(β) is a difficult problem which has been (almost) solved only

for quadratic Pisot numbers and a small class of cubic Pisot numbers. For example, for

quadratic Pisot units, these values have been derived in [5].

Theorem 2. • For β > 1 root of x2 −mx− 1 m ≥ 1 is

L⊕(β) = 2 = L⊗(β) .

• For β > 1 root of x2 −mx+ 1 m ≥ 3 is

L⊕(β) = 1 = L⊗(β) .
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The values of L⊕(β) and L⊗(β) for other quadratic Pisot numbers are also studied

in [3], [10] and finally [7].

Theorem 3. Let β > 1 be a root of x2 = mx+ n with m ≥ n ≥ 1. Then

L⊕(β) = 2m if m = n

and

L⊕(β) = 2

⌊
m+ 1

m− n+ 1

⌋
if m > n.

Theorem 4. Let β > 1 be a root of x2 = mx− n with m− 2 ≥ n ≥ 1. Then

L⊕(β) = 1 if n = 1 or m ≥ 3n+ 1

and ⌊
m− 2

m− n− 1

⌋
≤ L⊕(β) ≤

⌈
m− 1

m− n− 1

⌉
otherwise.

2.2 The Ito-Sadahiro number system

In 2009, S. Ito and T. Sadahiro introduced a number system with negative base −β < −1

having similar properties as the Rényi number systems. The analogies are that the digits

belong to a non-negative and minimal alphabet, the interval J is of unit length, and the
prescription for the digit function D is similar, precisely

A−β = {0, 1, . . . , ⌊β⌋}, J =

[
− β

β + 1
,

1

β + 1

)
, and D(x) =

⌊
−βx+

β

β + 1

⌋
.

In this case, we denote d−β,J ,D(x) = d−β(x) and the representation of x in Definition 5

is called the (−β)-representation of x and denoted ⟨x⟩−β . We use ℓβ and rβ to denote the

left- and the right-end of the interval J , respectively.

Since
∪

n≥0 J n = R, any real number can be expanded without using the minus sign. Let
us justify the requirement (2.3). If the (−β)-expansion of ℓβ is

d−β(ℓβ) = d1d2d3 . . .

then

d−β

(
ℓβ

(−β)2

)
= 1d1d2d3 . . .

instead of the expected string

00d1d2d3 . . . .

This is caused by x
−β = rβ not being in J . In fact, we would have countably many real

numbers with two admissible (−β)-representations,

d1d2 . . . dn •−β dn+1 . . . and 1d1d2 . . . dn+1 •−β dn+2 . . . .

Therefore, we choose only one of them by requiring (2.3). Consequently,

d−β(ℓβ) = d1d2d3 . . . but ⟨ℓβ⟩−β = 1d1 • d2 . . . . (2.6)
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Example 3. For quadratic Pisot numbers, we have the following expansions of ℓβ .

1. For β > 1 satisfying β2 = mβ − n, m− 2 ≥ n ≥ 1 is d−β(ℓβ) = [(m− 1)n]ω.

2. For β > 1 satisfying β2 = mβ + n, m ≥ n ≥ 1 is d−β(ℓβ) = m (m− n)ω.

The analogy of Theorem 1 describing admissible (−β)-expansions was derived in [12] and

uses the alternate order.

Theorem 5. A string u over integers is (−β)-admissible if and only if

d−β(ℓβ) ≼alt ũ ≺alt lim
ε→0+

d−β(rβ − ε)

for every suffix ũ of the string u.

In [12] it was also shown that we can obtain limε→0+ d−β(rβ − ε) from d−β(ℓβ) by an

explicit prescription, namely

d∗−β(rβ) =

(0d1d2 . . . dm−1(dm − 1))ω if d−β(ℓβ) = (d1 . . . dm)ω , d1 ̸= dm ,m odd,

0d1d2d3 . . . otherwise.

According to Proposition 2, for the Ito-Sadahiro number system we obtain

x ≤ y ⇐⇒ ⟨x⟩−β ≼alt ⟨y⟩−β .

It means that the ordering of real numbers corresponds to the alternate order of their

(−β)-representations.

The set of numbers with finite (−β)-expansion is defined as

Fin(−β) = {x ∈ R | ⟨x⟩−β = xn . . . x0 •−β x−1 . . . x−ℓ0
ω}.

Note that unlike in positive base number system, Fin(−β) is defined on the real line

without using the absolute value. Hence Fin(−β) is not symmetrical with respect to zero.

Although it is even not known whether Fin(−β) is dense in R for general β > 1, the

following properties of Fin(−β) have been shown in [14] and [15].

Proposition 3. Fin(−β) = {0} if and only if β < 1+
√
5

2 .

Theorem 6. Let β > 1 be the root of x2 −mx+ n for m− 2 ≥ n ≥ 1. Then Fin(−β) is

a ring.

Theorem 7. Let β > 1 be the root of x2−mx−n for m ≥ n ≥ 1. Then Fin(−β) is closed

under addition but not under subtraction.

Of course, the set of (−β)-integers can be also defined by the natural way

Z−β = {x ∈ R | ⟨x⟩−β = xn . . . x0 •−β 0ω}.
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As in the Rényi system, Z−β is a ring if and only if β ∈ N, unless β ∈
(
1, 1+

√
5

2

)
, when

Z−β = {0} is the trivial ring according to Proposition 3. The set of (−β)-integers is not

relatively dense or uniformly discrete in general (see [18]).

In many cases, the lengths of distances between consecutive elements of Z−β can be com-

puted from dβ(ℓβ) and their ordering can be described as a fixed point of a morphism

on the alphabet coding the lengths (see [1]). For quadratic Pisot numbers, we have two

lengths of distances in Z−β .

Proposition 4. Let ∆0,∆1 denote the lengths of distances between consecutive (−β)-

integers. Then

{∆0,∆1} =


{1, mβ } for β root of x2 −mx−m,m ≥ 1,

{1, 1 + n
β} for β root of x2 −mx− n,m > n ≥ 1,

{1, 2− n
β} for β root of x2 −mx+ n,m− 2 ≥ n ≥ 1.

.

One can also observe the number of fractional digits arising from the arithmetical opera-

tions. In analogy with the Rényi number system we define

L⊕(−β) = min{l ∈ N0 | ∀x, y ∈ Z−β , x± y ∈ Fin(−β) ⇒ x± y ∈ (−β)−lZ−β} , (2.7)

L⊗(−β) = min{l ∈ N0 | ∀x, y ∈ Z−β , x · y ∈ Fin(−β) ⇒ x · y ∈ (−β)−lZ−β} . (2.8)

The following theorem, proven in [14], might be helpful for an estimation of the values

L⊕(−β), L⊗(−β).

Theorem 8. Let β be an algebraic number, and let β′ be one of its conjugates satisfying

|β′| < 1. Denote
H := sup{|z′| | z ∈ Z−β} ,

K := inf{|z′| | z ∈ Z−β \ (−β)Z−β} .
(2.9)

If K > 0, then
1

|β′|L⊕
≤ 2H

K
and

1

|β′|L⊗
≤ H2

K
. (2.10)

Moreover, if the supremum or infimum in (2.9) is not reached, then strict inequality holds

in both of (2.10).

Using Theorem 8, the following values have been derived for quadratic Pisot units in [14]

and [15].

Theorem 9. 1. Let β > 1 be a root of x2 − x− 1. Then L⊕(−β) = 2 = L⊗(−β).

2. Let β > 1 be a root of x2 −mx− 1 for m ≥ 2. Then L⊕(−β) = 1 = L⊗(−β).

3. Let β > 1 be a root of x2 −mx+ 1 for m ≥ 3. Then L⊕(−β) = 2 = L⊗(−β).

An estimation of L⊕ and L⊗ for the remaining quadratic Pisot numbers is the aim of

Chapter 4 in this work.

13



Example 4. Let us take as a base the negative value of the so-called golden mean, i.e.

β = 1+
√
5

2 = τ, the greater root of x2 − x− 1. Then

J =

[
− τ

τ + 1
,

1

τ + 1

)
=

[
−1

τ
,
1

τ2

)
and D(x) =

⌊
−τx+

1

τ

⌋
and the coefficients of the expansion of ℓβ are computed as follows. We have

d1 = D(T 0(ℓβ)) = D(ℓβ) =

⌊
−τ

(
−1

τ

)
+

1

τ

⌋
=

⌊
1 +

1

τ

⌋
= ⌊τ⌋ = 1.

Since

T (ℓβ) = −τ

(
−1

τ

)
−D(ℓβ) = 0

and T (0) = D(0) = 0, the rest of digits are zeros, i.e. d−β(ℓβ) = 10ω. According to

Theorem 5, the limit expansion of rβ is d∗(rβ) = 010ω and the condition for a string

u ∈ AN to be admissible is that

10ω ≼alt ũ ≺alt 010
ω

for all suffixes ũ of the string u.

The set of forbidden strings is

F = {1 02k−11 | k ∈ N} ∪ {0 1 0ω}.

Note that the string 10ω is admissible while the string 010ω is not.

Let us derive the values L⊕(−τ) and L⊗(−τ) using Theorem 8. The Galois conjugate of

τ is − 1
τ . For a number z =

∑k
i=0 zi (−τ)i ∈ Z−β we have

0 ≤ z′ =

k∑
i=0

zi

(
1

τ

)i

<

+∞∑
i=0

1 ·
(
1

τ

)i

= τ2.

Hence H = τ2 and the supremum is not reached.

One might think that all elements of the set Z−τ \ (−τ)Z−τ are in the form

z = akak−1 . . . a1a0 • 0ω, a0 ̸= 0,

so we can use 1• to estimate the value K. However, 1• ∈ (−τ)Z−τ since 1• = 110• and
therefore

K = inf{|z′| | z ∈ Z−τ \ (−τ)Z−τ} ̸= 1 .

Here the infimum is reached for z = 11• = 0 • 1 and hence

K = 1 +
1

τ
= τ.

As a result we have

τL⊕ <
2H

K
=

2τ2

τ
≤ τ4

τ
= τ3
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which implies L⊕(−τ) ≤ 2. For the multiplication we have

τL⊗ <
H2

K
=

τ4

τ
= τ3

and hence L⊗(−τ) ≤ 2.

By using the examples

1111 •+1111• = 110000 • 11

and

1111 • ×1111• = 11100 • 11,

we get L⊕(−τ) ≥ 2 and L⊗(−τ) ≥ 2, respectively.

Altogether we obtain the result

L⊕(−τ) = 2 = L⊗(−τ).
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Chapter 3

(−β)-integers as a group

The aim of this chapter is to describe the set of (−β)-integers as a group with a suitable

operation ⊕. Since Z−β is countable, one can find a mapping φ : Z−β −→ Z and define
the operation ⊕ as

bm ⊕ bn = bm+n, ∀m,n ∈ Z.

Then the group (Z−β ,⊕) is isomorphic to Z. We will show that when β is a quadratic

Pisot unit, it is possible to use this approach to obtain a group such that operation ⊕ is
compatible with standard addition of real numbers, i.e. there exists a constant C < +∞
such that

|(x⊕ y)− (x+ y)| ≤ C, for any x, y ∈ Z−β

and we will determine the value of C. Moreover, when an operation ⊖ : Z−β → Z−β is

defined as a ⊖ b = a ⊕ (⊖b), where ⊖b is the inverse element of b in the group (Z−β ,⊕),

the operation ⊖ is compatible with subtraction in R.

This result is in analogy with [6] where compatibility of addition is shown for Zβ with

β > 1 being a quadratic Pisot unit. We consider here Z−β for the same class of numbers

β.

Definition 6. Let u = (ui)i∈Z be an integer sequence. Let

M :=

{
k∑

i=−ℓ

xi(−β)i | xi ∈ Z

}

denote the set of numbers with a finite (−β)-representation. Then we define the mapping

ϕ : M → Z by the prescription

ϕ :
k∑

i=−ℓ

xi(−β)i 7→
k∑

i=−ℓ

xiui.

The definition is correct when the mapping ϕ is independent on chosen representation of

x. This can be ensured by choosing β an algebraic integer and u as a solution of a linear

16



Figure 3.1: The enumeration of Z−τ integers

recurrence having the minimal polynomial of (−β) as its characteristic polynomial, that

is, if β is a root of

xn + an−1x
n−1 + · · ·+ a1x+ a0

then u is a solution of

(−1)nun + (−1)n−1an−1un−1 + · · ·+ (−1)a1u1 + u0 = 0.

When u is selected to have this property, the mapping ϕ is independent on the chosen

representation of x in the base (−β).

In the following text, we denote the (−β)-integers by elements of an increasing sequence

(bn)n∈Z such that

Z−β = {bj | j ∈ Z}, where b0 = 0 and bj < bj+1. (3.1)

We will present several lemmas and propositions for three classes of quadratic Pisot num-

bers first. The summary is situated to the very end of this chapter.

3.1 Case β2 = β + 1

In this case we choose the sequence u = (ui)i∈Z by the prescription

1. uk+2 = −uk+1 + uk;

2. u0 = 1, u−1 = −1.

To illustrate the sequence u, let us write down first few members:

. . . u−2 = 0, u−1 = 1, u0 = 1, u1 = −2, u2 = 3 . . . .

The following lemma proven in [19] describes the lengths of gaps between consecutive

(−β)-integers.

Lemma 5. Let x < y be consecutive (−β)-integers. Then either y = x+ 1 or y = x+ 1
β .

Lemma 6. The mapping ϕ from Definition 6 has the following properties:

1. ϕ(x+ y) = ϕ(x) + ϕ(y), ϕ(−x) = −ϕ(x);

2. ϕ(bj) = j,∀j ∈ Z;

17



3. ϕ restricted to Z−β is a bijection.

Proof. 1. This property follows from

ϕ(x+ y) =

k∑
−ℓ

(xi + yi)ui =

k∑
−ℓ

xiui +

k∑
−ℓ

yiui = ϕ(x) + ϕ(y).

2. • ϕ(b0) = ϕ(0) = 0 and ϕ(b1) = ϕ(1) = 1 directly from the definition.

• Assume that the statement is true for bj . According to Proposition 5, it holds
that

bj+1 =

bj + 1•

bj + 11•
and bj−1 =

bj − 1•

bj − 1 1•

where we write numbers 1 and 1
β = β − 1 as their (−β)-representations. We

have

ϕ(bj+1) = ϕ(bj + 1•) = ϕ(bj) + ϕ(1•) = ϕ(bj) + ϕ(b1) = j + 1,

ϕ(bj−1) = ϕ(bj − 1•) = ϕ(bj)− ϕ(1•) = ϕ(bj)− ϕ(b1) = j − 1,

ϕ(bj+1) = ϕ(bj)− ϕ(10•)− ϕ(1•) = j − (−2)− 1 = j + 1,

ϕ(bj−1) = ϕ(bj) + ϕ(10•) + ϕ(1•) = j + (−2) + 1 = j − 1.

We used ϕ(10•) = u1 = −2 and ϕ(1•) = u0 = 1.

3. This is a consequence of the step 2.

Note that obviously, the map ϕ is not injective on Fin(−β), because every integer is the

image of some element of Z−β ⊂ Fin(−β).

For quadratic numbers, let us denote Z[β] = {aβ+ b | a, b ∈ Z}. For quadratic Pisot units
we also have Z[β] = Z[ 1β ] = { a

β + b | a, b ∈ Z} since 1
β = m− β or 1

β = −m+ β. That also

means that when x ∈ Z[β] then x′ ∈ Z[β]. That is because x = aβ + b ⇒ x′ = ± a
β + b ∈

Z[ 1β ] = Z[β]. We will use this fact later.

Let us recall the following statement from [19] which uses the Galois image x′ of elements

x of the field Q(β).

Lemma 7. Let β satisfy β2 = β + 1. Then

Z−β = {x ∈ Z[β] | x′ ∈ [0, β2)}.

Lemma 8. Let x, y ∈ Z−β , where β satisfies β2 = β+1. Then there exist unique g, h ∈ Z−β

and η, µ ∈ {0, 1}, such that

x+ y = g +
η

β2
and x− y = h− µ

β2
.
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Proof. For x, y ∈ Z−β we put z = x+ y. According to Lemma 7, 0 ≤ z′ = x′ + y′ < 2β2.

We will distinguish two cases:

• If 0 ≤ z′ < β2 then z = x+ y ∈ Z−β , so the statement is true for η = 0.

• If β2 ≤ z′ < 2β2, we put g := z − β−2, i.e. g′ = z′ − β2. We used that β′ = − 1
β .

Then we have

0 ≤ g′ < β2,

which means, by Lemma 7, g ∈ Z−β and

x+ y = z = g +
1

β2
.

The proof for the subtraction is similar. We put w = x − y. According to Lemma 7, we

have −β2 < w′ < β2. Then

1. If 0 ≤ w′ < β2, then w = x− y ∈ Z−β, or

2. If −β2 < w′ < 0, then we put h := w + β−2. Then h′ = w′ + β2 ∈
(
0, β2

)
, i.e.

h ∈ Z−β and w = x− y = h− β−2.

To prove the uniqueness, we assume p ± η
β2 = q + ± µ

β2 , i.e. (p − q) ± (η − µ)β−2 = 0. If

p = q then necessarily η = µ and vice versa. The case p ̸= q and η − µ ∈ {−1, 1} leads to
a contradiction since one cannot have

1

β
≤ |p− q| = |(µ− η)β−2| = 1

β2
,

where we use that distances between consecutive (−β)-integers are 1 or 1
β .

Definition 7. For β > 1 satisfying β2 = β+1 we define the operations ⊕,⊖ : Z−β → Z−β

as

x⊕ y = g and x⊖ y = h

with g, h ∈ Z−β being as in Lemma 8.

Proposition 9. Let (bj)j∈Z be the sequence of (−β)-integers satisfying (3.1). Then

1. bn ⊕ bm = bn+m,

2. bn ⊖ bm = bm−n.

Proof. By Lemma 7, we have bm + bn = g + ηβ−2 and hence bm ⊕ bn = g with g ∈ Z−β .

Then

ϕ(bm ⊕ bn) = ϕ(g) = ϕ(g) + ηu−2︸ ︷︷ ︸
=0

= ϕ(g) + ϕ(η(−β)−2) = ϕ(g + ηβ−2) = ϕ(bm + bn) = m+ n = ϕ(bm+n).

We used u−2 = 0 and the additivity of ϕ shown in Lemma 6. Hence the expressions

bm ⊕ bn = g ∈ Z−β and bm+n ∈ Z−β must be equal, since ϕ is a bijection on Z−β. The

proof for the subtraction is similar.
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3.2 Case β2 = mβ + 1, m ≥ 2

Here we choose a similar recurrent prescription for u, but with different boundary condi-

tions. As one can see below, this is because of different length of the distances between

two consecutive elements of Z−β . We define u to satisfy

1. uk+2 = −muk+1 + uk;

2. u0 = 1, u−1 = 0.

First, we need to prove that the analogy of Lemma 6 is true for β roots of x2−mx−1, where

m ≥ 2. Proof of statements 1 and 3 is a straightforward analogy. To prove the second

statement of Lemma 6, we will use the fact of having different boundary conditions. The

gaps between the elements of Z−β are now 1 = 1• and 1 + 1
β = 1 • 1. Since ϕ(1•) = 1

and ϕ(1 • 1) = ϕ(1•) + ϕ(0 • 1)︸ ︷︷ ︸
=−u−1=0

= 1, the analogy of Lemma 6 also holds for β satisfying

β2 = mβ + 1.

In this case, the element of Z−β can be also characterized by its image under the non-

identical automorphism of Q(β). The following lemma was proved in [19].

Lemma 10. For β satisfying β2 = mβ + 1, where m ≥ 2, is

Z−β = {x ∈ Z[β] | x′ ∈ [0, β)}.

Lemma 11. Let β > 1 satisfy β2 = mβ + 1 for m ≥ 3. Then for any x, y ∈ Z−β there

exist the unique g, h ∈ Z−β and η, µ ∈ {0, 1} such that

1. x+ y = g − η
β ,

2. x− y = h+ µ
β .

Proof. For x, y ∈ Z−β we put z = x+ y and w = x− y. According to the Lemma 10 is

0 ≤ z′ < 2β and − β < w′ < β.

We will distinguish three cases.

1. If 0 ≤ z′ < β (or 0 ≤ w′ < β) then z ∈ Z−β (or w ∈ Z−β) and the statement is true

for η = 0 (or µ = 0).

2. If β ≤ z′ < 2β, we put g := z + β−1, i.e. g′ = z′ − β. Then we have 0 ≤ g′ < β,

which means g ∈ Z−β and x+ y = z = g − 1
β .

3. If −β < w′ < 0, we put h := w − β−1, i.e. h′ = w′ + β ∈ (0, β) and hence

x− y = w = h+ 1
β with h ∈ Z−β.
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To prove the uniqueness, let us assume that

h± α

β
= g ± γ

β

for h, g ∈ Z−β and α, γ ∈ {0, 1}. Clearly, if h = g then α = γ and vice versa. Otherwise,

h− g = ± γ
β which is not possible since according to Proposition 4, it holds that |h− g| ≥

1.

Definition 8. For β > 1 satisfying β2 = mβ + 1,m ≥ 2 we define the operations ⊕,⊖ :

Z−β → Z−β as

x⊕ y = g and x⊖ y = h

where g, h ∈ Z−β are as in Lemma 11.

Proposition 12. Let β > 1 satisfy β2 = mβ+1 for m ≥ 2 and let (bj)j∈Z be the sequence

of (−β)-integers satisfying (3.1). Then

bn ⊕ bm = bn+m and bn ⊖ bm = bm−n.

Proof. Let bm + bn = g − ηβ−1 and bm ⊕ bn = g with g ∈ Z−β . Then

ϕ(bm ⊕ bn) = ϕ(g) + η ϕ(0 • 1)︸ ︷︷ ︸
=u−1=0

= ϕ(g − ηβ−1) = ϕ(bm + bn) = m+ n = ϕ(bm+n).

The proof for subtraction is analogical.

3.3 Case β2 = mβ − 1

In this case the sequence u is chosen as the solution of

1. uk+2 = −muk+1 − uk,

2. u0 = 1, u−1 = −1.

Thus we have

. . . , u−2 = m− 1, u−1 = −1, u0 = 1, u1 = 1−m,u2 = m2 −m− 1, . . . .

The distances between consecutive elements of Z−β are 1 = 1• and 2 − 1
β = 2 • 1, thus

their images under the mapping ϕ from Definition 6 are

ϕ(1•) = u0 = 1 = ϕ(2 • 1) = 2u0 + u−1.

Hence the analogy of Lemma 6 still holds for this class of bases.

The characterization of elements of Z−β using nonidentical automorphism in Q(β) (also

proved in [19]) is:
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Proposition 13.

Z−β =

{
x ∈ Z[β] | x′ ∈

(
−β − 1

β + 1
, β

β − 1

β + 1

)}
.

Lemma 14. Let x, y ∈ Z−β . Then there exist unique η, µ ∈ {−1, 0, 1} and g, h ∈ Z−β

such that

x+ y = g + η

(
m− 1

−β
+

1

(−β)2

)
,

x− y = h+ µ

(
m− 1

−β
+

1

(−β)2

)
.

Proof. First we show that the numbers −β−1
β+1 and β β−1

β+1 have infinite (−β)-expansion.

That is because

−β − 1

β + 1
= − β

β + 1
− 1

(−β)

1

1− 1
(−β)

, (3.2)

where we have a (−β)-representation

− β

β + 1
= ℓβ = • d1d2d3 · · · = • [(m− 1)n]ω (see Example 3)

and the second term in 3.2 is the series

+∞∑
i=−1

(−β)i = •1ω.

Thus we have the (−β)-expansion⟨
−β − 1

β + 1

⟩
−β

= •(d1 − 1)(d2 − 1)(d3 − 1) · · · = •(m− 2) 0 (m− 2) 0 . . .

which implies −β−1
β+1 /∈ Fin(−β). Also β β−1

β+1 /∈ Fin(−β) since it is just the same number

multiplied by the base and therefore

β
β − 1

β + 1
= (m− 2) • 0 (m− 2) 0 . . . .

For x, y ∈ Z−β is x ± y ∈ Fin(−β) ⊂ Z[β] since β is a quadratic Pisot unit and Fin(−β)

is a ring. Then also (x ± y)′ ∈ Z[β] and since it can be written as a finite addition or
subtraction of β’s and 1’s, then (x ± y)′ ∈ Fin(−β). Therefore it is not possible that

(x± y)′ = −β−1
β+1 /∈ Fin(−β). Hence we do not consider the values −β−1

β+1 and β β−1
β+1 as the

ends of intervals in the rest of the proof.

Let us prove the statement for addition. According to Proposition 13, for x, y ∈ Z−β it

holds (x+ y)′ ∈
(
−2β−1

β+1 , 2β
β−1
β+1

)
. We distinguish several cases:

1. If (x+ y)′ ∈
(
−β−1

β+1 , β
β−1
β+1

)
=: Ω then clearly x+ y ∈ Z−β .

2. The case (x + y)′ ∈
(
−2β−1

β+1 ,−
β−1
β+1

)
=: Ω1 will be solved as a subcase of Case 5.,

since Ω1 ⊂ Ω∗
1.
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Figure 3.2: Transformations of the intervals for addition

3. If (x+ y)′ ∈
(
β β−1
β+1 , 2β

β−1
β+1

)
= Ω2, we put

g := x+ y −
(
m− 1

−β
+

1

(−β)2

)
.

The left-end of Ω2 will transform as

β
β − 1

β + 1
+ (m− 1)β − β2 = −β − 1

β + 1

which is the left-end of Ω. Again, the length of Ω2 is smaller than the length of Ω,

so z′ ∈ Ω and hence

x+ y = g +

(
m− 1

−β
+

1

(−β)2

)
,

where g ∈ Z−β .

For subtraction we have

(x− y)′ ∈ (−(β − 1), β − 1) .

We distinguish three more cases.

4. If (x− y)′ ∈ Ω then clearly x− y ∈ Z−β .

5. If (x − y)′ ∈
(
−(β − 1),−β−1

β+1

)
=: Ω∗

1, we put h = x − y + m−1
−β + 1

(−β)2
, i.e. h′ =

(x− y)′ − (m− 1)β + β2. Since the left-end of Ω∗
1 is transformed as

−β + 1− (m− 1)β + β2 = 0

and the length of Ω∗
1 is the same as the length of

(
0, β β−1

β+1

)
, we have

Ω∗
1 − (m− 1)β + β2 =

(
0, β

β − 1

β + 1

)
⊂ Ω.

Therefore h′ ∈ Ω which implies

h = (x− y) +
m− 1

−β
+

1

(−β)2
∈ Z−β

and

x− y = h−
(
m− 1

−β
+

1

(−β)2

)
.
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Figure 3.3: Transformations of the intervals for subtraction

6. The case (x − y)′ ∈
(
β β−1
β+1 , β − 1

)
=: Ω∗

2 is in fact solved in Case 3. of addition

because Ω∗
2 ⊂ Ω2.

For x+ y /∈ Z−β , we have presented the unique way of shifting (x+ y)′ /∈ Z−β inside

of the interval Ω (see Figure 3.2). For x+ y ∈ Z−β is

x+ y ±
(
m− 1

−β
+

1

(−β)2

)
/∈ Z−β ,

since z′ would be transformed outside of Ω (see Figure 3.2 and 3.3). This proves the

uniqueness of η. The proof of the uniqueness for subtraction is analogical.

Definition 9. Let β > 1 satisfy β2 = mβ − 1 for m ≥ 3. Then we define the operations

⊕,⊖ : Z−β → Z−β as

x⊕ y = g and x⊖ y = h

with g, h ∈ Z−β as in Lemma 14.

Theorem 10. Let β > 1 satisfy β2 = mβ − 1 for m ≥ 3 and let (bj)j∈Z be the sequence

of (−β)-integers satisfying (3.1). Then

1. bm ⊕ bn = bm+n,

2. bm ⊖ bn = bm−n.

Proof. Let bm + bn = g + η
(
m−1
−β + 1

(−β)2

)
. Then we have

ϕ(bm ⊕ bn) = ϕ(g) = ϕ(g) + η[(m− 1)u−1 + u−2]︸ ︷︷ ︸
=0

= ϕ
(
g + η

(
−(m− 1)β−1 + β−2

))
= ϕ(bm + bn) = m+ n = ϕ(bm+n).

The proof for subtraction is analogical.
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The compatibility of ⊕ and ⊖ with the operations +,− in R is in fact the corollary of
Propositions 9, 12 and 3.3. This fact follows from

bm + bn = g + ξ = bm ⊕ bn + ξ = bm+n + ξ

which means not only that the operations ⊕ are compatible with C = ξ but that the

(m+ n)-th integer is a good approximation of the summation of m- and n-th integer.

The neutral element in the group (Z−β ,⊕) is b0 = 0 since bj + b0 = bj+0 = bj , ∀j ∈ Z and
hence the inverse element of bj is b−j . Then

bm − bn = h+ ξ = bm ⊖ bn + ξ = bm−n + ξ = bm ⊕ (⊖ bn) + ξ.

This proves that the operation ⊖ is the addition of an inverse element and is compatible
with subtraction in R with C = ξ.
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Chapter 4

Estimations of L⊕(−β) and
L⊗(−β) for quadratic Pisot
numbers

In this chapter we try to estimate the values L⊕(−β) and L⊗(−β) defined as (2.7) and (2.8)

for quadratic Pisot numbers. These values for quadratic Pisot units have been already

determined in [14] and [15].

Usually the easiest and the most straightforward approach follows from Theorem 8. How-

ever, there is a class of quadratic Pisot numbers for which the value K equals to zero.

That makes Theorem 8 impossible to use. Still, we will be able to obtain a partial result

on L⊕(−β) for this class. For the class of quadratic Pisot number with negative Galois

conjugate, we do the estimation on L⊕(−β), L⊗(−β) and derive the exact bound on the

number of fractional digits arising from addition of (−β)-integers.

Let us first present the sets of forbidden strings for quadratic Pisot numbers.

Proposition 15. 1. Let β > 1 satisfy β2 = mβ − n for m− 2 ≥ n ≥ 1. Then

F = {(m− 1)A | A ≤ n− 1}

∪ {0 [(m− 1)n]ω} .

2. Let β > 1 satisfy β2 = mβ + n for m ≥ n ≥ 1. Then

F = {m (m− n)2kC | C ≤ m− n− 1 , k ∈ N0} (4.1)

∪{m (m− n)2k+1D | D ≥ m− n+ 1 , k ∈ N0} (4.2)

∪{0m (m− n)ω}. (4.3)
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4.1 Case β2 = mβ − n

First, we present a class of numbers, including a subset of quadratic Pisot numbers, for

which is using Theorem 8 not possible since K = 0.

Proposition 16. Let β > 1 be an algebraic number with a Galois conjugate β′ ∈ (0, 1)

and let
⌊

1
(β′)2

⌋
≤ ⌊β⌋ − 1. Then the value K = inf{|z′| | z ∈ Z−β \ (−β)Z−β} equals to

zero.

Proof. We shall find the sequence (zn)n∈N of (−β)-integers in Z−β \ (−β)Z−β such that

limn→+∞ z′n = 0. Here z′n stands for the image of zn under the field isomorphism induced

by the Galois conjugate β′ ∈ (0, 1).

Let us denote γ = 1
β′ > 1. Since 1

γ = β′ ∈ (0, 1), we are able to obtain its expansion in the

positive base γ2 in the form

1

γ
=

+∞∑
i=1

bi
(γ2)i

.

We put

zn := bn 0 bn−1 0 . . . b2 0 b1 1 •−β .

This (−β)-representation is a (−β)-expansion since the assumption
⌊

1
(β′)2

⌋
= ⌊γ2⌋ ≤

⌊β⌋ − 1 implies that the maximal digit ⌊γ2⌋ of the alphabet of γ2-expansions is strictly
smaller than the maximal digit ⌊β⌋ of (−β)-expansion. Since the (−β)-expansion of zn
does not contain the maximal digit ⌊β⌋ − 1, it has to be admissible, as can be seen from

Theorem5 realizing that the first digit of d−β(ℓβ) is equal ⌊β⌋.

Then we have

z′n = 1 + b1(−β′) + b2(−β′)3 + · · ·+ bn(−β′)2n−1

= 1 +
1

(−β′)

(
b1(−β′)2 + b2(−β′)4 + · · ·+ bn(−β′)2n

)
= 1− γ

(
b1γ

2 + b2γ
4 + · · ·+ bnγ

2n
)︸ ︷︷ ︸

→γ−1

−→ 0.

We show that for a large class of quadratic Pisot numbers with positive conjugate, the

value K equals to zero. For β > 1 root of x2−mx+n, n2 ≥ m2

m−2 we can do an estimation⌊
1

(β′)2

⌋
=

⌊
β2

n2

⌋
≤
⌊
m2

n2

⌋
≤ m− 2 ≤ ⌊β⌋ − 1.

Hence we have to use other methods to estimate L⊕(−β) or L⊗(−β). Estimation of the

value L⊗(−β) is a very difficult problem and we will focus only on L⊕(−β).
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Lemma 17. Let β > 1 satisfy β2 = mβ − n for m − 2 ≥ n ≥ 1. Then x + y ∈ Fin(−β)

for every x ∈ Fin(−β), y ∈ {0, 1, . . . ,m− n− 1}. Moreover, let

⟨x⟩−β = xk . . . x0 • x−1 . . . x−r 0
ω where x−r ̸= 0.

Then one of the following statements is true.

1. ⟨x+ y⟩−β = zj . . . z0 • z−1 . . . z−r 0
ω ,

2. ⟨x+ y⟩−β = zj . . . z0 •X1Y1 . . . XlYl (x−r +m− n)n 0ω,

3. ⟨x+ y⟩−β = zj . . . z0 •X1Y1 . . . Xl[x−r − (m− n− 1)] (m− n)n 0ω ,

where Xi ∈ {m− n− 1, . . . ,m− 2} and Yi ∈ {0, 1, . . . , n− 1}.

Proof. Let us first realize that since β is the root of x2 −mx + n, we have the following

representations of 0,

1 m n • = 1 m n • = 0 ,

where A is a compact form of −A. By repeated application of this relation, we obtain for

every k ∈ N,

1 (m− 1) [(m− n− 1) (m− n− 1)]k (m− n) n • = 0

1 (m− 1) (m− n− 1) [(m− n− 1) (m− n− 1)]k (m− n) n • = 0
(4.4)

Adding y ∈ {0, 1, . . . ,m− n− 1} to a number x written as an admissible digit string may
result in a non-admissible digit string, which, nevertheless, represents the number x + y.

We show that x+y belongs to Fin(−β) by providing its finite (−β)-expansion. In order to

see that the two strings represent the same number, one can verify that the second one is

obtained from the first one by adding digit-wise a zero which is in the form (4.4). We give

a list of cases. One verifies by inspection that the list contains all cases of non-admissible

strings that arise from admissible ones by adding y.

According to Proposition 15, a digit string may be non-admissible by breaking one of the

two conditions, namely, either it is not over the alphabet {0, 1, . . . ,m− 1}, or it contains
the subsequence (m− 1)A, where A ≤ n− 1.

Case 1. Consider an x ∈ Fin(β) such that its (−β)-expansion has digit x0 ≥ (m− y) at

(−β)0, and the digit at position (−β)−1, denote it by C, is at least n. Find k ∈ {0, 1, 2, . . . }
such that we have a representation of x+ y in the form

x+y = · · · A B [(m−1) n]k (x0+y) • C · · · where the string A B ̸= (m−1) n . (4.5)

Case 1.1. First take B = 0. To the representation (4.5) of the number x + y we add

digit-wise a representation of 0,

x+ y = · · · A 0 [(m−1) n]k (x0 + y) • C · · ·

0 = 1 (m−1) [(m−n−1) (m−n−1)]k (m−n) • n

x+ 1 = · · · (A+1) (m−1) [n (m−1)]k z0 • C−n · · ·
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Here we have

z0 = x0 + y −m+ n ≤ x0 +m− n− 1−m+ n = x0 − 1 ≤ m− 2.

Since B = 0 in the (−β)-expansion of x, we necessarily have A ≤ m − 2. Therefore also

the resulting representation of x+ y is admissible as (−β)-expansion of x+ y.

The case B ≥ 1 is divided into two subcases.

Case 1.2. Let B ≥ 1 and k = 0. Again, we add to the non-admissible representation of

x+ y in the form (4.5) a suitable representation of 0,

x+ y = · · · A B (x0 + y) • C · · ·

0 = 1 m • n

x+ y = · · · A (B−1) z0 • C−n · · ·

Here we have, by the assumption x0 ≥ m − y, that z0 = x0 + y − m ≥ 0. Since A B ̸=
(m− 1) n, the resulting representation of x+ y is the (−β)-expansion of x+ y.

Case 1.3. Let B ≥ 1 and k ≥ 1. In this case we rewrite

x+ y = · · · A B (m−1) n [(m−1) n]k−1 (x0 + y) • C · · ·

0 = 1 (m−1) (m−n−1) [(m−n−1) (m−n−1)]k−1 (m−n) • n

x+ y = · · · A (B−1) 0 (m−1) [n (m−1)]k−1 z0 • C−n · · ·

Here z0 = x0 + y − m + n ≤ m − 2 and AB ̸= (m − 1)n , therefore the result is

(−β)-admissible.

Case 2. Consider an x ∈ Fin(β) such that its (−β)-expansion has digit x0 ≤ m − 1 − y

at the position (−β)0. In order that after adding y one obtains a non-admissible string

different from Case 1, necessarily the digit C at position (−β)−1 satisfies C ≤ n − 1.

Denote by M the set of pairs of digits

M :=
{
X Y

∣∣ X ∈ {m− n− 1, . . . ,m− 2}, Y ∈ {0, 1, . . . , n− 1}
}
. (4.6)

Then we can find k, l ∈ {0, 1, 2, . . . } such that

x+ y = · · · A B [(m−1) n]k (x0+y) • C X1 Y1 · · ·Xl Yl D E · · · (4.7)

where the string A B ̸= (m−1) n and the string D E does not belong to M . Denote by

p1, p2 the (−β)-integers

p1 = 1 (m−1) [(m−n−1) (m−n−1)]k •

p2 = 1 (m−1) (m−n−1) [(m−n−1) (m−n−1)]k •

and by z1, z2 the following numbers with only (−β)-fractional part,

z1 = • [(m−n−1) (m−n−1)]l (m−n) n

z2 = • [(m−n−1) (m−n−1)]l (m−n−1) (m−n) n
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Using (4.4) one can easily see that pi + zj = 0 for i, j ∈ {1, 2}. We shall work separately
with the (−β)-integer and (−β)-fractional part of x+ y.

First consider the (−β)-fractional part of x + y. Recall that C ≤ n − 1 and the string
D E /∈ M . If D ≤ m− n− 2 or D = m− n− 1 (the latter implies E ≥ n), then we add
z1 to the (−β)-fractional part of x+ y. We obtain

• C X1 Y1 · · · Xl Yl D E · · ·

• (m−n−1) (m−n−1) (m−n−1) · · · (m−n−1) (m−n) n

• C+m−n−1 X1−(m−n−1) Y1+m−n−1 · · · Xl−(m−n−1) Yl+m−n D+n E · · ·
(4.8)

The resulting fractional part is an admissible digit string. If D ≥ m − n (which implies
E ≥ n), then we add z2 to the (−β)-fractional part of x+ y. We obtain

• C X1 Y1 · · · Xl Yl D E · · ·

• (m−n−1) (m−n−1) (m−n−1) · · · (m−n−1) (m−n−1) (m−n) n

• C+m−n−1 X1−(m−n−1) Y1+m−n−1 · · · Xl−(m−n−1) Yl+m−n−1 D−m+n E−n · · ·
(4.9)

Again, the resulting string is admissible.

Let us now take the (−β)-integer part of x + y. Recall that A B ̸= (m−1) n. If B = 0,

then to the (−β)-integer part of x+ y we add p2, if B ≥ 1, we add p1. For B = 0 we have

· · · A 0 [(m−1) n]k (x0 + y) •

1 (m−1) [(m−n−1) (m−n−1)]k (m−n−1) •

· · · (A+1) (m−1) [n (m−1)]k z0 •

For B ≥ 1 we have

· · · A B [(m−1) n]k−1 (m− 1) n (x0 + y) •

1 (m−1) [(m−n−1) (m−n−1)]k−1 (m−n−1) (m−n−1) •

· · · A (B−1) 0 [(m−1) n]k−1 (m− 1) z0 •

For B ≥ 1 and k = 0 we have

· · · A B (x0 + y) •

1 (m−1) •

· · · A (B−1) z0 •

In all cases, the result is an admissible string with the last digit z0 satisfying n ≤ z0 ≤
m − 2. Concatenating such a string with an admissible digit string resulting from the

(−β)-fractional part, we obtain an admissible digit string. Therefore, we have provided a
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prescription to rewrite the original non-admissible representation of x+y of the form (4.7)

by adding 0 in the form pi + zj , into the (−β)-expansion of x+ y.

The sum of numbers x = xk . . . x0 •x−1 . . . x−r and y ∈ {0, 1, . . . ,m−n−1} is in the form
x + y = zℓ . . . z0 • z−1 . . . z−r when Case 1. or (4.8) happens. When x−r 0 = Yl D as in

(4.8), the sum is clearly in the form

⟨x+ y⟩−β = zℓ . . . z0 • (x−1 + γ) (x−2 − γ)(x−3 + γ) . . . (x−r+1 − γ)(x−r +m− n)n

where γ = m− n− 1.

When x−r 0 0 = Xl Yl D as in (4.9) then

⟨x+ y⟩−β = zℓ . . . z0 • (x−1 + γ) (x−2 − γ)(x−3 + γ) . . . (x−r+1 + γ)(x−r − γ) (m− n)n

where γ = m− n− 1. This completes the proof.

Lemma 18. Let x ∈ Z−β and y =
∑k

i=0 yi(−β)i, yi ∈ {0, 1, . . . ,m − n − 1}. Then
x+ y ∈ 1

(−β)2
Z−β .

Proof. We add the number y digit by digit from the “most-left” one, that is, first we add

yi(−β)i where i = max{j | yj ̸= 0} and we repeat this procedure until the whole y is
added to x.

Let us consider the case when we added yi(−β)i and new fractional digits appeared for

the first time. Then according to Lemma 17 we have x+ yi(−β)i in the form

⟨x+ yi(−β)i⟩−β = · · · ziX1Y1 · · ·XlYl (x0 +m− n) • n 0ω

or

⟨x+ yi(−β)i⟩−β = · · · ziX1Y1 · · ·Xl[x0 − (m− n− 1)] • (m− n)n 0ω

where Xj ∈ {m − n + 1, . . . ,m − 2}, Yj ∈ {0, 1, . . . , n − 1}, and zi denotes a position of

(−β)i.We distinguish two cases of what can happen when the next digit after yi is added.

1. If the next digit is to be added is at the position (−β)i−2t (i.e. to the position where

Yt is), then we have

zi = Yt + yi−2t ≤ (n− 1) + (m− n− 1) ≤ m− 2.

Therefore we can add yi(−β)i digit-wise without making a forbidden string. No new

fractional digit was made and the result is in the form

⟨x+ yi(−β)i + yi−2t⟩−β = . . . zi−2tXt+1Yt+1 . . . XlYl • (m− n)n.

That means the addition of next digit will happen in the same manner.
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2. If the next digit is to be added is at the position (−β)i−(2t−1), where Xt is, and

xi−(2t−1) + yi−(2t−1) ≥ m − 1, notice that the string beginning with xi−2t is in the

form

X̃1 Ỹ1 . . . X̃s ỸsDE

with X̃j ∈ {m − n − 1, . . . ,m − 2}, Yj ∈ {0, . . . , n − 1} and D ≥ (m − n), E ≥ n.

In that case we use the rewriting rule (4.9). In fact, since we rewrite the suffix

(Yl+m−n)n 0ω 7→ Yl 0 0
ω, the fractional digits created when adding yi(−β)i vanished

in this step.

We showed that when fractional digits appear (at most two of them), we can either add

the next digit directly (without rewriting) or the fractional digits disappear during the

next rewriting. This completes the proof.

Lemma 19. Let β > 1 satisfy β2 = mβ − n for m− 2 ≥ n ≥ 1. Then every x ∈ Z−β has

a (−β)-representation in the form −x =
∑

j≥−1 xj(−β)j with j ∈ {0, 1, . . . ,m}.

Proof. Let −x = xk . . . x0• with xi ∈ {0,−1,−2, · · · − (m− 1)}. We will apply the rule

xi+1xixi−1 7→ (xi+1 + 1)(xi +m)(xi−1 + n)

at every position where xi < 0 starting from i = k up to i = 0. Notice that since xi−1

can change from negative to positive when xi < 0, it matters that we apply the rule from

i = k to i = 0 and not in the opposite order. We show that using this algorithm we obtain

a (−β)-representation of −x over the alphabet {1, . . . ,m} in the form

−x = yk+1 . . . y0 • y−10
ω. (4.10)

Let us assume we the algorithms is rewriting the first position xi < 0. We have

xi+1xixi−1 7→ (xi+1 + 1)(xi +m)(xi−1 + n) where xi+1 = 0, xi < 0.

Here xi will be rewritten either to (xi+m) ≤ m−1 or (xi+m+1) ≤ m (in the next step),

depending on the digit xi−1. If −n ≤ xi−1 ≤ 0, then algorithm will not put +1 to the i-th

position. If −(m− 1) ≤ xi−1 < −n then xi−1 + n < 0 and the algorithm also rewrites

(xi +m)(xi−1 + n)xi−2 7→ (xi +m+ 1)(xi−1 + n+m)(xi−2 + n).

Here (xi+m+1) ≤ −1+m+1 = m and (xi−1+n+m) ≤ −(n+1)+n+m = m− 1. At

most +1 can be added to the (i− 1)-th position and therefore the resulting string is over

the alphabet {0, 1, . . . ,m}.

The fractional digits appears for example when rewriting −1• 7→ 1 (m− 1) • n.

Lemma 18 together with Lemma 19 give us the following theorem.
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Theorem 11. Let β satisfy β2 = mβ − n. Then L⊕(−β) ≤ 2
⌈

m
m−n−1

⌉
+ 1.

Proof. When adding x, y ∈ Z−β , one can write x+ y = x+ y(1) + y(2) + · · ·+ y(N), where

N =
⌈

m−1
m−n−1

⌉
and

y(i) =
∑
j≥0

y
(i)
j , with y

(i)
j ∈ {0, 1, . . . ,m− n− 1}.

During each addition, according to Lemma 18, at most two new fractional can be created,

which means x+ y ∈ 1
(−β)2N

Z−β.

For y ∈ Z−β is −y ∈ 1
−βZ−β and hence we consider (−β)(−y) ∈ Z−β first. Then we follow

the same principle. According to Lemma 19, we can write (−β)(−y) = y(1) + y(2) + · · ·+
y(M), where M =

⌈
m

m−n−1

⌉
and

y(i) =
∑
j≥0

y
(i)
j , with y

(i)
j ∈ {0, 1, . . . ,m− n− 1}.

When subtracting (−β)x − (−β)y, only 2M fractional digits can appear, which means

(−β)(x − y) ∈ 1
(−β)2M

Z−β or in other words x − y ∈ 1
(−β)2M+1Z−β . This completes the

proof.

Numerical experiments showed that this estimation of L⊕(−β) should be close to the

actual value, however, no example for which L⊕(−β) = 1
(−β)2M+1Z−β was found so far.

4.2 Case β2 = mβ + n

Let us first try to derive L⊕(−β) using Theorem 8. When m = n, the string mmm. . .m0ω

is (−β)-admissible. Hence we can do an estimation of H as

0 ≤ z′ =

k∑
i=0

zi(−β′)i =

k∑
i=0

zi

(
n

β

)i

<

+∞∑
i=0

m

(
n

β

)i

=
mβ

β − n
= H.

The casem = n = 1 has been already solved in [15] and therefore we can takem ≥ 2. Then

it always holds 1• ∈ Z−β\(−β)Z−β (does not hold in the case m = n = 1, see Example 4)

and hence K = 1.

Then we obtain (
β

m

)L⊕

=

(
1

β′

)L⊕

< 2
mβ

β −m
= 2β2

and consequently L⊕ < ln 2β2

ln β
m

. Using the estimations β < m+ 1 and

β

m
= 1 +

1

β
> 1 +

1

m+ 1
> e

1
m+2

we finally get

L⊕(−β) <
ln 2(m+ 1)2

ln e
1

m+2

= (m+ 2) ln
[
2(m+ 1)2

]
. (4.11)
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The analogical approach can be used to obtain an estimation of L⊗ in the form

L⊗ <
ln(m+ 1)4

ln e
1

m+2

< 4(m+ 2) ln(m+ 1).

When m > n, the string mmm. . .m(m− 1)0ω is admissible (unlike mmm. . .m0ω). Then

H = mβ
β−n − 1 and K = 1 which follows from the same approach as in the case m = n.

Substituting these values into Theorem 8 we obtain(m
n

)L⊕
<

(
β

n

)L⊕

<
2H

K
= 2

(
mβ

β − n
− 1

)
= 2β

β − 1

β − n
< 2

(m+ 1)2

m− n

and hence

L⊕(−β) < logm
n
2
(m+ 1)2

m− n
=

ln 2 + 2 ln(m+ 1)− ln(m− n)

ln m
n

.

Analogically we obtain

L⊗(−β) < 2 logm
n

(m+ 1)2

m− n
=

4 ln(m+ 1)− 2 ln(m− n)

ln m
n

.

The results above lead to the following proposition.

Proposition 20. Let β > 1 satisfy β2 = mβ + n for m ≥ n ≥ 1. Then

1. for m > n are

L⊕(−β) <
ln 2 + 2 ln(m+ 1)− ln(m− n)

ln m
n

and

L⊗(−β) <
4 ln(m+ 1)− 2 ln(m− n)

ln m
n

.

2. for m = n ≥ 2 are

L⊕ < (m+ 2) ln
[
2(m+ 1)2

]
and L⊗ < 4(m+ 2) ln(m+ 1).

This estimation can be useful when m ≫ n. For example, assumption m−n ≥ 2
(
m+1
m

)2
n2

gives us L⊕ ≤ 1. That means, in fact, that L⊕ = 1, for 1 (m− 1) •+1• = 0 • n.

For a large subclass of quadratic Pisot numbers with negative conjugate, we have been

able to obtain precise number of fractional digits arising from addition of (−β)-integers.

For this purpose, we define the quantity denoting the number of fractional digits that may

arise from addition as

L+
⊕(−β) = min{l ∈ N0 | ∀x, y ∈ Z−β , x+ y ∈ Fin(−β) ⇒ x+ y ∈ (−β)−lZ−β}.

First, let us present a lemma whose part was given in [15].
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Lemma 21. Let β > 1 be root of x2 −mx− n, m ≥ n ≥ 1. Then

x :=

N∑
i=0

ai(−β)i ∈ Fin(−β)

for arbitrary ai ∈ {0, 1, . . . ,m}. Moreover, x ∈ Z−β except when both m > n and a0 = m,

in which case x ∈ 1
−βZ−β. Also, when m > n and x = aN . . . a1a0• with a0, a1 ̸= m, then

⟨x⟩−β = xk . . . x1 a0 • .

Proof. Consider the (−β)-representation aNaN−1 . . . a0• of x. If it is not the (−β)-

expansion of x, then aNaN−1 . . . a00
ω contains one of forbidden strings listed in Propo-

sition 15. We shall rewrite the left-most forbidden string in aNaN−1 . . . a00
ω by adding

a suitable (−β)-representation of 0. The new (−β)-representation of x is ‘better’ than

aNaN−1 . . . a00
ω in the way that the left-most forbidden string starts at a lower power of

(−β). Such rewriting does not add non-zero digits to the right, (unless we deal with the

last occurring forbidden string). Therefore, by repeating such rewriting rules, we finish

in finitely many steps with a (−β)-representation which does not contain any forbidden

strings, i. e. it is the (−β)-expansion of x.

Since β is a root of x2 −mx− n, we have

1 m n • = 1 m n • = 0 . (4.12)

(Here for a digit d we write d instead of −d.)

We distinguish several cases, according to the type of the left-most forbidden string (cf.

Proposition 15).

Case 1. Consider first that m > n and take the forbidden string (4.1), together with two

digits A,B in the (−β)-representation of x at higher powers of (−β),

. . . A B m (m− n)2k C . . . k ∈ N0, C ≤ m− n− 1 . (4.13)

The way to rewrite the forbidden string depends on the digits A,B.

Subcase 1.1. Let B = 0, and consequently A ∈ {0, 1, . . . ,m − 1}. (Otherwise A0m is
also forbidden, which contradicts the fact that we take the left-most forbidden string.) We

rewrite
. . . A 0 m (m− n)2k C . . .

. . . A+ 1 m (m− n) (m− n)2k C . . .

It is easy to verify that now no forbidden string occurs left from the digit C, which was

our aim.

Subcase 1.2. Let in (4.13) be B ̸= 0 and k ≥ 1. Then

. . . A B m (m− n) (m− n)2k−1 C . . .

. . . A B − 1 0 m (m− n)2k−1 C . . .

Again, the latter may contain a forbidden string only starting from the digit C.
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Subcase 1.3. Let B ̸= 0 and k = 0. We write

. . . A B m C . . .

. . . A B − 1 0 C + n . . .

where the latter has no forbidden strings up to the digit C + n.

Case 2. Take the forbidden string (4.2) which occurs for both m > n and m = n,

. . . A B m (m− n)2k+1 D . . . k ∈ N0, D ≥ m− n+ 1 . (4.14)

The rewriting is analogous to subcases 1.1. and 1.2., subcase 1.3. now has no analogue.

Subcase 2.1. Let B = 0, and consequently A ∈ {0, 1, . . . ,m− 1}. We rewrite

. . . A 0 m (m− n)2k+1 D . . .

. . . A+ 1 m (m− n) (m− n)2k+1 D . . .

where the latter has no forbidden strings up to the digit D.

Subcase 2.2. Let in (4.14) be B ̸= 0. Then

. . . A B m (m− n) (m− n)2k D . . .

. . . A B − 1 0 m (m− n)2k D . . .

where the latter has no forbidden strings up to the digit D.

For m ̸= n, the situation when the last nonzero digit can be affected is Case 3. Con-

sider m = n. According to Proposition 15 it remains to solve the case that the only

forbidden string in the (−β)-representation of x is 0m at the end. Necessarily, the (−β)-

representation ends with A0m, where A ≤ m− 1. We rewrite

. . . A 0 m

. . . A+ 1 m 0

By that, we have shown that x ∈ Fin(−β). In order to show x ∈ Z−β , note that in all

cases except subcase 1.3, the rewriting of the forbidden string did not influence the digits

starting from C (resp. D) to the right. Thus, if the original (−β)-representation of x

had vanishing digits at negative powers of (−β), then the same is valid for the rewritten

(−β)-representation of x. The only case where new non-zero digits at negative powers of

(−β) may arise, is 1.3 for m > n, and that only if x = aNaN−1 . . . a0• = . . . ABm•, i. e.
a0 = m.

For m ̸= n, when the digit a0 ̸= m is to be rewritten, only Subcase 1.3. when a0 = C

has to be considered. However, Subcase 1.3 requires that a1 = m. This completes the

proof.

Theorem 12. Let β > 1 satisfy β2 = mβ + n for m ≥ 2n and let x, y ∈ Z−β . Then

L+
⊕(−β) ≤

1 for m ≥ 2n+ 1 or m = 2, n = 1,

2 for m = 2n, n ̸= 1.
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Proof. The assumption m ≥ 2n in both cases implies 2(m − n) ≥ m. Therefore y ∈ Z−β

can be written as

y = y(1) + y(2) =
∑
j≥0

yj(−β)j +
∑
j≥0

y∗j (−β)j

with yj , y
∗
j ∈ {0, 1, . . . ,m− n} and with the coefficient y0 satisfying y0 ≤ m− n− 1. This

is possible since necessarily the digit at the power (−β)0 of y is y0 ≤ m−1 since the string

m 0ω is forbidden in y ∈ Z−β .

Let us add the number y ∈ Z−β from the “most-left” position, i.e. first we add yi(−β)i

where i = max{j | yj ̸= 0}. If xi + yi ≤ m then we sum the digits and rewrite the result

x+ y1(−β)i into its (−β)-expansion. According to Lemma 21 we have x+ yi(−β)i ∈ Z−β

or x + yi(−β)i ∈ 1
−βZ−β when i = 0 and x0 + y0 = m. Then we move to the next digit

which we add a (−β)-expansion. In the latter case we added the whole y(1).

Let us now consider the case when xi + yi ≥ m + 1. By iterating the rewriting rule

0 = 1mn = 1m,n, we obtain the following representations of zero for k ∈ N0.

0 = 1 m+ 1 (m− n+ 1)
k

m− n n

= 1 (m− 1) (m+ n) n

= 1 (m− 1) (m+ n+ 1) (m− n+ 1)
k

(m− n) n

When xi + yi ≥ m+ 1, we distinguish several cases.

Case 1. Let xi+2xi+1xi = A 0xi where necessarily A ≤ m − 1 since m 0 is a forbidden

string.

Case 1a. When xi + yi ≤ m+ n. Then we rewrite

x+ yi(−β)i = · · · A 0 (xi + yi) · · ·
0 = 1 m n

x+ yi(−β)i = · · · (A+1) m (xi + yi − n) · · ·

Here xi + yi − n ∈ {m− n+ 1, . . . ,m}.

Case 1b. If xi + yi ≥ m + n + 1 and there is an integer l ∈ N such that the (−β)-

representation of x+yi(−β)i is in the following form with Xi ≥ m−n+1 and Yi ≤ m−n,

we rewrite

x+ yi(−β)i = · · · A 0 (xi + yi) X1 · · · Xl−1 Xl Y

0 = 1 (m− 1) (m+ n+ 1) γ . . . γ (m− n) n

x+ yi(−β)i = · · · (A+1) (m−1) zi (X1−γ) · · · (Xl−1−γ) Xl−(m− n) Y+n

where γ = m− n+ 1. The latter (−β)-representation of x+ yi(−β)i is over the alphabet

A = {0, 1, . . .m} and uses only non-negative powers of (−β), except if Y = 0 is at the

position of (−β)−1.

Case 1c. When xi + yi ≥ m+ n+ 1 and l = 0 we rewrite

x+ yi(−β)i = · · · A 0 (xi + yi) Y · · ·
0 = 1 (m− 1) (m+ n) n

x+ yi(−β)i = · · · (A+1) m (xi + yi − (m+ n)) (Y + n) · · ·
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Case 2a. Let xi+1xi = B xi where B ≥ 1. Again, we find an integer l ∈ N, such that
the (−β)-representation of x+ yi(−β)i is in the following form with Xi ≥ m− n+ 1 and

Yi ≤ m− n.

x+ yi(−β)i = · · · B (xi + yi) X1 · · · Xl−1 Xl Y

0 = 1 (m+ 1) γ · · · γ (m− n) n

x+ yi(−β)i = · · · (B−1) zi (X1 − γ) · · · (Xl−1−γ) Xl−(m− n) Y+n

where γ = m − n + 1. Again, the latter (−β)-representation of x + yi(−β)i is over the

alphabet A = {0, 1, . . . ,m}.

Case 2b. When xi+1xi = B xi with B ≥ 1 and l = 0 we rewrite

x+ yi(−β)i = · · · B (xi + yi) Y · · ·
0 = 1 m n

x+ yi(−β)i = · · · (B−1) (xi + yi −m) (Y + n) · · ·

After adding yi(−β)i we rewrite the result into its (−β)-expansion and according to

Lemma 21 either x + yi(−β)i ∈ Z−β or x + yi(−β)i 1
−β ∈ Z−β . The latter can be hap-

pen in two cases and we will show that when x + yi(−β)i ∈ 1
−βZ−β , the rest of y(1) can

be added and ⟨x+ y(1)⟩−β = zN . . . z0 • n.

The first case is when x0 = Y = m − n. In that case, it is possible to add all the digits

yj , 1 ≤ j < i since Xj − γ + yj ≤ m. Then

x+
∑

1≤j<i

yj(−β)j = · · ·Cm • 0ω = · · · (C − 1) 0 • n,

where we used 1m •n = 0 and the fact that C ̸= 0, since C = Xl − (m−n) ≥ 1 (in Cases

1b. and 2a.) or C = xi + yi − (m− n) ≥ 1 (in Case 1c.) and finally C = xi + yi −m ≥ 1

in Case 2b. Now the digit y0 can be added and x+ y(1) = · · · (C − 1) y0 • n.

In the second case, we have Xl Y = x0 0. Then all the digits yj , 0 ≤ j < i can be added

for the same reason as above, and we have x+ y(1) = · · · z0 • n. Moreover, the coefficient
z0 = Xl − (m− n) + y0 satisfies z0 ≤ m− 1 (recall that y0 ≤ m− n− 1).

In both cases we have x + y(1) = · · ·Z • n with Z ≤ m − 1 and therefore according to

Lemma 21, the (−β)-expansion of x+ y(1) is in the form

⟨x+ y(1)⟩−β = zk . . . z0 • n.

The addition of y(2) is similar to adding y(1). When x + y(1) ∈ Z−β , it has been already

shown that one can obtain at most one fractional digit when adding y(2). Note that now

we can have y∗0 = m−n while we required y0 ≤ m−n− 1. However, this requirement was

important only for showing that if x + y(1) /∈ Z−β then ⟨x⟩−β = · · · • n. When we have

x+ y(1) = · · · •n, then either x+ y(1)+ y(2) = · · · •n or x+ y(1)+ y(2) = · · · • (2n) (if cases
1b., 1c., 2a or 2b happen, in that case we have •n = •Y ). Obviously, for 2n + 1 ≤ m is

x + y = · · · • (2n) ∈ 1
−βZ−β and for 2n = m is x + y = · · · • (2n) = · · · •m ∈ 1

(−β)2
Z−β

according to Lemma 21.
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The fact that for n = 1 and m = 2 is L+
⊕(−β) = 1 gives Theorem 2.

To show that the bound on L+
⊕(−β) is precise, we present two examples.

Example 5. For 2n < m we have 1 (m− 1) •+1• = 1m• = 0 • n /∈ Z−β .

Example 6. For 2n = m, n ≥ 2 we consider the following representation of zero.

0 = 1mn 0 0 •+1mn 0 •+2 (2m) (2n) •+2 (2m) • (2n) + 1 • mn

= 1 (m− 1) (m+ n+ 2) (2m− n+ 2) (2m− 2n+ 1) • 0n

Clearly, the number x := mm (m− 1)•−β ∈ Z−β . Then for the sum x+ x we have

2x = 0 0 (2m) (2m) (2m− 2) • 0 0

0 = 1 (m− 1) (m+ n+ 2) (2m− n+ 2) (2m− 2n+ 1) • 0 n

2x = 1 (m− 1) (m− n− 2) (n− 2) (2n− 3) • 0 n

The latter (−β)-representation of 2x is admissible for n ≥ 2 and therefore the bound given

by Theorem 12 can be reached.

From now on we will focus on estimating L+
⊕(−β) for β root of x2 −mx− n for 2n > m.

Lemma 22. Let β > 1 satisfy β2 = mβ + n for 2n ≥ m + 1. Let x ∈ Fin(−β), ⟨x⟩−β =

xk . . . x0 • x−1 . . . x−r0
ω with x−r ̸= 0 and y =

∑
i≥0 yi(−β)i, yi ∈ {0, 1, . . . ,m − n + 1}.

Then it holds that

1. If r ≥ 1 then x+ y ∈ 1
(−β)r+1Z−β .

2. If r ≤ 0 and y0 ≤ m− n then x+ y ∈ 1
−βZ−β .

3. If r ≤ 0 and y0 = m− n+ 1 then x+ y ∈ 1
(−β)2

Z−β .

Proof. We will add the number y =
∑

j≥0 yj(−β)j from the most-left digit yi where

i = max{j | yj ̸= 0} and then we add to the result yi−1(−β)i−1 etc. until we add the

whole number y.

First, let us realize that when xi + yi ≤ m for i ̸= 0, we have a (−β)-representation

of x + yi(−β)i over the alphabet A = {0, 1, . . . ,m}, and according to Lemma 21 is x +

yi(−β)i ∈ Z−β or x+ yi(−β)i ∈ 1
−βZ−β when yi = y0, x0 + y0 = m and m > n.

When xi + yi ≥ m + 1, we distinguish several cases. Note that xi + yi ≤ m + n since

yi ≤ m− n+ 1 ≤ n. We show, how x+ yi(−β)i can be rewritten to a representation over

the “right” alphabet A−β = {0, 1, . . . ,m}.

Case 1. If x+ yi(−β)i is in the following form with A ≤ m (which is necessary since m 0

is forbidden), we shall rewrite.

x+ yi(−β)i = · · · A 0 (xi + yi) · · ·
0 = 1 m n

x+ yi(−β)i = · · · A+ 1 m zi · · ·
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the latter (−β)-representation is over the alphabet A−β .

Case 2. Here is B ∈ {1, 2, . . . ,m} and Y ≤ m− n. In this case we rewrite x+ yi(−β)i as

x+ yi(−β)i = · · · B (xi + yi) Y · · ·
0 = 1 m n

x+ yi(−β)i = · · · B − 1 zi (Y + n) · · ·

The result is over the right alphabet.

Case 3. We find an integer l ∈ N and digits Xi ∈ {m− n+ 1, . . . ,m}, Y ≤ m− n , such

that we have x+ yi(−β)i in the form

x+ yi(−β)i = · · · B (xi + yi) X1 . . . Xl−1 Xl Y · · ·
0 = 1 m+ 1 (m− n+ 1) . . . (m− n+ 1) (m− n) n

x+ yi(−β)i = · · · B − 1 z0 (X1−γ) . . . (Xk − γ) (Xl −m+ n) Y + n · · ·

where we denote γ = m− n+ 1. Of course, the latter representation is over the alphabet

A−β .

Let us discuss when new fractional digits arise in the (−β)-expansion of x+ yi(−β)i.

If a new fractional digits appears when Case 2. happens then necessarily Y = x−1 and

yi = y0. That means we added the whole number y and we have x + y = · · · • n. Then

according to Lemma 21 is x+ y ∈ 1
−βZ−β.

Let us study the case when Case 3. causes a direct (before doing an expansion) appearing

of a new fractional digit. We distinguish three cases:

1. If −r > −1 and Y = 0 = a−r−1, one can directly add all yj , 0 ≤ j < i since

γ = m − n + 1 ≥ yi was subtracted from these positions. Then we have x + y ∈
1

(−β)r+1Z−β .

2. Let r ≤ 0, i.e. x ∈ Z−β , and y0 ≤ m− n. In order to obtain fractional digits caused

by Case 3., we have Y = x−1 = 0 and consequently we can add all the digits

yj , 1 ≤ j ≤ i.

(a) When y0 ≤ m−n, it can be also directly added. Since the last digit is x−1 = n,

it holds x+ y ∈ 1
−βZ−β .

(b) When y0 = m− n+ 1, we can add yj , 1 ≤ j ≤ i and (y0 − 1)(−β)0 = m− n to

obtain x + y − 1 ∈ 1
−βZ−β as was proven above. Then for m > n we already

have (x+ y − 1) + 1 ∈ 1
(−β)2

Z−β since 1 ≤ m− n.

(c) When m = n, we can either add y0 = m− n+ 1 = 1 directly (i.e. x0 ≤ m− 1)

or we can first rewrite x+ y− y0 = . . .m •m 7→ . . . (m− 1) • 0m. Then we can

add y0 = 1 to obtain x+ y = . . .m • 0m ∈ 1
(−β)2

Z−β .

3. The last problem to consider is when x0 = m− n = Y in Cases 2. and 3. Then we

rewrite

x+ yi(−β)i = . . . zim• 7→ (zi − 1) 0 • n,
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(Case 2.) or (Xl − m + n)m• 7→ (Xl − m + n − 1) 0 • n (Case 3.) and y0 can be

added. In this case, the result belongs to 1
−βZ−β .

According to Lemma 21, no new fractional digit appears when doing the (−β)-expansion

in all cases.

Theorem 13. Let β > 1 satisfy β2 = mβ + n for m ≤ 2n+ 1. Then

L+
⊕(−β) ≤


⌈

m
m−n+1

⌉
for m

2 < n ≤ m− 1,

m+ 1 for m = n.

Proof. We can write x+ y = x+
∑N

i=1 y
(i), where

y(i) =
∑
j≥0

y
(i)
j (−β)j with y

(i)
j ∈ {0, 1, . . . ,m− n+ 1}

and y
(1)
0 ≤ m − n for m > n. The statement of the theorem is then a straightforward

application of Lemma 22.

In order to show that the estimation of L+
⊕(−β) given in Theorem 13 is precise for m = n,

we give an example which show that the bound can be reached.

Example 7. For β > 1 satisfying β2 = mβ + m is x := m
∑m+3

i=0 (−β)i ∈ Z−β . We
consider the following (−β)-representation of zero.

1 m (m+ 1) (m+ 1) 1 1 1 . . . 1 2 (m+ 1) • m m 0

1 (m+ 1) 1 1 . . . 1 1 1 • 1 0 m

1 (m+ 1) 1 . . . 1 1 1 • 1 1 0 m
. . .

...
...

...
. . .

1 (m+ 1) 1 1 • 1 1 . . . 1 0 m

1 m (m+ 1) (m+ 2) (m+ 3) (m+ 4) . . . (2m) (m+ 1) (2m) • 1 2 . . . (m− 1) m m

We will sum x + x and rewrite the digit-wise addition using the (−β)-representation of

zero mentioned above.

2x = (2m) (2m) (2m) . . . (2m) (2m) (2m) •
0 = 1 m (m+ 1) (m+ 2) (m+ 3) . . . (2m) (m+ 1) (2m) • 1 2 . . . m m

2x = 1 m (m− 1) (m− 2) (m− 3) . . . 0 (m− 1) 0 • 1 2 . . . m m

The result does not contain any forbidden string and thus it is a (−β)-expansion with

m+ 1 fractional digits. Hence L+
⊕(−β) = m+ 1.

In order to obtain the value L⊕(−β) one must show analogical statements also for sub-

traction. Some steps to prove such statements have been already made and we conjecture

that the number of fractional digits arising from subtraction will not exceed the values

derived in Theorems 12 and 13.
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Conclusions

This work was devoted to the study of the arithmetical properties of the set of (−β)-

integers when β is a quadratic Pisot number. In Chapter 3 we have shown that when β is

a quadratic Pisot unit, the set Z−β with a suitable operation ⊕ forms a group and that
this operation is compatible with addition in R, that is, there exists C > 0, such that

|(x+ y)− (x⊕ y)| ≤ C,

and we determined the value of C. Moreover, if an operation ⊖ is defined as x ⊖ y =

x ⊕ (⊖ y), where ⊖ y denotes an inverse element of y in (Z−β ,⊕), then ⊖ is compatible
with subtraction in R.

In Chapter 4 we studied the bound on the number of fractional digits arising from arith-

metical operations on Z−β .We derived a bound on the addition, subtraction and multipli-

cation of (−β)-integers in the case when β > 1 satisfies β2 = mβ+n for m ≥ n ≥ 1.When

2n ≤ m or m = n, we were able to derive a precise value of L+
⊕(−β), i.e. the maximal

number of fractional digits arising from a summation of (−β)-integers. Determination of

this value also for the case 2n− 1 ≥ m remains an open problem as well as determination

of the exact values for the subtraction and multiplication for this class of numbers.

For a class of quadratic Pisot numbers β satisfying β2 = mβ − n for m − 2 ≥ n ≥ 1

we derived a bound on L⊕(−β). However, this bound seems to be rough and therefore a

better estimation remains as an open problem. Moreover, the bound on the number of

fractional digits appearing after a multiplication of (−β)-integers is unknown at all.

A recently discovered problem is related to describing bases β for which is

Z−β =

∑
i≥0

ai(−β)i | ai ∈ {0, 1, . . . , ⌊β⌋}

 .

It has been shown that the bases β with d−β(ℓβ) = (m 0)k 0ω and d−β(ℓβ) = (m 0)k mω

have this property. This might be useful for showing the relation between arithmetical

operations in the (−β)-number system and finite automatons.
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