
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

Department of Mathematics

The Mathematics 4 course in Wolfram
Mathematica

Bachelor’s Degree Project

Author: Eva Lorencová
Supervisor: Ing. Matěj Tušek, Ph.D.

Academic Year: 2013/2014

Acknowledgments:

I would like to express my profound gratitude to my supervisor Ing. Matěj Tušek, Ph.D. for his expert
guidance and encouragement throughout my work on the project, and thank to Irena Dvořáková, prom. fil.
for language corrections. Finally, I want to express deepest thanks to my family for supporting me during
my studies.

Declaration:

I declare that this project is my own work and I have cited all sources I have used in the bibliography. I
agree that the Department can use it for non-commercial purposes in the future.

In Prague, July 7, 2014 Eva Lorencová

Název práce:

Kurz Matematika 4 ve Wolfram Mathematica

Autor: Eva Lorencová

Obor: Inženýrská informatika

Zaměřenı́: Praktická informatika

Druh práce: Bakalářská práce

Vedoucı́ práce: Ing. Matěj Tušek, Ph.D., Katedra matematiky, Fakulta jaderná a fyzikálně inženýrská,
České vysoké učenı́ technické v Praze

Abstrakt: Práce se zabývá vybranými částmi kurzu Matematika 4. Tento kurz je určený pro studenty
Fakulty jaderné a fyzikálně inženýrské Českého vysokého učenı́ technického v Praze a zahrnuje zejména
diferenciálnı́ a integrálnı́ počet funkcı́ vı́ce proměnných, dále potom základnı́ obyčejné diferenciálnı́
rovnice. Všechny problémy jsou řešeny v počı́tačovém algebraickém systému Wolfram Mathematica.
Některé vybrané pojmy a problémy jsou zpracovány jako interaktivnı́ vizualizace. Dále je numericky
řešen komplexnějšı́ fyzikálnı́ problém. Celá práce je napsaná jako sešit ve Wolfram Mathematica, verze
9.0.

Klı́čová slova: kurz Matematika 4, vizualizace, Wolfram Mathematica.

Title:

The Mathematics 4 course in Wolfram Mathematica

Author: Eva Lorencová

Abstract: The project deals with selected parts of Mathematics 4 course. This course is intended for
students of the Faculty of Nuclear Sciences and Physical Engineering of the Czech Technical University
in Prague and primarily includes multi-variable calculus and basic ordinary differential equations. All
problems are solved in computer algebra system Wolfram Mathematica. Some selected notions and
problems are processed as interactive visualizations. Moreover, a more complex physical problem is
solved numerically. The whole project is written as a notebook in Wolfram Mathematica, version 9.0.

Key words: Mathematics 4 course, visualization, Wolfram Mathematica.

Contents

Preface 6

1 Introduction to Wolfram Mathematica 7
1.1 Wolfram Mathematica . 7
1.2 WolframAlpha . 7

2 The Mathematics 4 course in examples 8
2.1 Differential equations . 8
2.2 Multivariable limits . 9
2.3 Partial derivative . 11
2.4 Directional derivative . 14
2.5 Local extrema . 18
2.6 Constrained extrema . 22
2.7 Double integral . 26

3 Interactive visualizations 32
3.1 Solution to the differential equation . 32
3.2 Directional derivative . 33
3.3 Constrained extrema . 35
3.4 Useful alternative coordinate systems . 37

3.4.1 Polar coordinate system . 37
3.4.2 Spherical coordinate system . 38
3.4.3 Cylindrical coordinate system . 39

3.5 Double integral . 40

4 Bivariate limits 43
4.1 Bivariate limits in Mathematica . 43
4.2 Function doubleLimit . 43

4.2.1 Method of critical paths . 45
4.2.2 Possible issues . 46

5 Ballistic curves 47
5.1 Ballistic trajectory without air resistance . 47
5.2 Ballistic trajectory with air resistance . 47

5.2.1 Drag proportional to velocity . 48
5.2.2 Drag proportional to velocity squared . 49

5.3 Visualization . 49

Conclusion 52

5

Preface
All students of our Faculty have to take the courses of mathematics. To go through this process, they

use books, university textbooks, materials from lectures, etc. We wanted to help them by creating some

interactive study material. For this reason, the project processes one of the courses of mathematics of

our Faculty the Mathematics 4 course.

The project is divided into four main parts. The first part deals with the particular topics of Mathemat-

ics 4 course. For each topic, the most important definitions and theorems are given and some specific

examples solved. The source code written in Mathematica is included.

In the next part, interactive visualizations of some notions and problems are developed. They could be

used not only by students but also by their lecturers as an interactive tool during classes. They are

developed in the spirit of demonstrations at [16] but tailored to the students of our Faculty.

As there is no built-in function for calculating bivariate limits in Mathematica, the third part of the

project contains a function which can calculate some of them.

Finally, as a practical application of the skills developed during the Mathematics 4 course, a physical

problem is solved namely the problem of ballistic curves.

As has been already said, the main goal of the project is to create an interactive tool for students of our

Faculty. They can see that there is another way how to solve a problem and that Mathematica could

help them with the task they are not able to solve due to difficult calculations. Furthermore, some more

difficult and interesting problems are solved.

The whole project will be available on the Internet and is written as a notebook in Mathematica in

order that students could work with it and could change the content in any way they want.

6

1 Introduction to Wolfram Mathematica

1.1 Wolfram Mathematica
Wolfram Mathematica, or simply Mathematica, is a computational software program based on sym-

bolic mathematics. It was invented by Stephen Wolfram in 1988 and is developed by Wolfram

Research. The latest version is available for three major platforms Microsoft Windows, MacOS X,

and Linux (supporting both 32-bit and 64-bit implementations) [7].

Mathematica is divided into two main parts. The code is interpreted by the kernel, whereas the front

end provides the graphical user interface. Much of the content can be edited interactively or generated

by an algorithm [14].

Programming in Mathematica differs from programming in other languages. The code consists of

primitives. For a new user of Mathematica, it can be a problem to find their right combination which

would result in the simplest solution. Furthermore, Mathematica has changed a lot from the first

version even though the core principles remain the same. Obsolete functions have been replaced or

discarded. As many highly specialized functions have been added, the built-in library has increased,

and even the most difficult tasks can be very often resolved in a very simple way [1].

Mathematica is not used only in mathematics and physics. Due to its strength, user-friendly interface,

and possibility of creating interactive modules, it is often utilized in other fields such as biology or

chemistry. Moreover, the source code can be accompanied by the text and the document can be format-

ted with ease, so it is possible to write whole articles using Mathematica only. Later versions also

enable connection with other applications through MathLink protocol, parallel processing, dynamic

interactivity, and high-performance computing. This makes Mathematica a complex tool with a wide

range of applications [3].

1.2 WolframAlpha
Another project developed by Wolfram Research is a computational knowledge engine WolframAlpha.

Unlike search engines, it does not give a list of websites containing the searched information but tries

to give the answer directly by searching the web and using some dynamic computations [6].

WolframAlpha is based on Mathematica (its language and built-in functions). Additional data is

gathered from various websites. For instance, some reports about users of Facebook are generated.

They contain how often they use some specific word, how popular their friends are, etc. [15].

Since WolframAlpha is available on the Internet free of charge, it is very popular among students.

7

2 The Mathematics 4 course in examples

2.1 Differential equations
The Mathematics 4 course deals with three types of ordinary differential equations:

è separable differential equations,

è linear differential equations of 1st degree,

è linear differential equations of nth degree with emphasis on equations with constant coefficients.

In contrast to the hand calculation, Mathematica can handle the above mentioned types of differential

equations with ease. Just use the command DSolve to find the solution.

Example 2.1.1: Find the solution of the equation y’- 2 xy = 3 x2 ãx2

passing through the point

M = H0, 5L [11].

The command DSolve is used to search the solution. The initial condition is represented by the second

equation.

sol = DSolveA9y’@xD - 2 x*y@xD � 3 x2*ãx
2

, y@0D � 5=, y@xD, xE
99y@xD ® ãx2 I5 + x3M==

Let us have a look what the function y looks like.

Plot@y@xD �. sol@@1DD, 8x, -2, 1<, PlotStyle ® Black, ImageSize ® 300D

-2.0 -1.5 -1.0 -0.5 0.5 1.0

-5

5

10

15

Figure 2.1.1: Solution of the differential equation y’- 2 xy = 3 x2 ãx2

.

The domain of y is the set of all real numbers.

Clear@solD;

Example 2.1.2: Find the solution of the equation y’= cosHxL passing through the point M = H0, 1L.

Again, the command DSolve is used.

DSolve@8y’@xD == Cos@xD, y@0D � 1<, y@xD, xD
88y@xD ® 1 + Sin@xD<<

The domain of y are all real numbers.

8

Example 2.1.3: Find the general solution of the equation y’’+ 2 y’+ y = 3 ã-x x+ 1 [11].

DSolveBy’’@xD + 2*y’@xD + y@xD � 3*ã-x* x + 1 , y@xD, xF

::y@xD ®
4

5
ã
-x H1 + xL5�2 + ã-x C@1D + ã-x x C@2D>>

As it can be seen from the solution, DomHyL = H-1, +¥L.

2.2 Multivariable limits
Definition 2.2.1:

Let M Ì Rn and a Î Rn. We say that a is a limit point of M if and only if UΕ
*HaL ÝM ¹ Æ for all

Ε > 0, where UΕ
*HaL is the punctured Ε-neighbourhood of a.

Definition 2.2.2:

Let f :Rn ® R and a be a limit point of the domain of f. The limit of f, as x tends to a, is c Î R,

written as lim
x
®
® a
® f HxL = c if and only if for every Ε > 0 there exists ∆ > 0 such that for all x Î D f ,

0 < °x- a´ < ∆ implies f HxL- c < Ε .

Definition 2.2.3:

Let f :Rn ® R, M Ì Rn, and a
®

 be a limit point of D f ÝM. The limit of f, as x tends to a, with respect

to the set M is c Î R, written as limx
Ó
® a, x

Ó
ÎM f HxL = c, if and only if for every Ε > 0 there exists ∆ > 0

such that for all x Î U∆
* HaL ÝD f ÝM we have f HxL- c < Ε .

Theorem 2.2.1:

Let f :R2 ® R, a = Iax, ayM. If the limit of f, as x tends to a, is equal to c Î R and the sequential

limits exist and are finite, then

limx® ax
Ilimy® ay

f HxLM = limy® ay
Hlimx® ax

f HxLL = c.

Corollary 2.2.1:

If both sequential limits exist and are finite but different, the overall limit does not exist.

Theorem 2.2.2:

Let f :Rn ® R, a be a limit point of D f , and limx
Ó
®a f HxL exists. Then for any A Ì Rn such that a is a

limit point of A,

limx
Ó
®a, x
Ó
ÎA f HxL = limx

Ó
®a f HxL .

Corollary 2.2.2:

Suppose A Ì Rn, B Ì Rn, and a is a limit point of them. If

9

limx
Ó
®a, x
Ó
ÎA f HxL ¹ limx

Ó
®a, x
Ó
ÎB f HxL ,

then the overall limit does not exist.

Example 2.2.4: Let g Hx, yL = xy2

x2+y4
. Show that limHx,yL®H0,0L gHx, yL does not exists.

gAx_, y_E = x*y2

x2 + y4
;

The non-existence of the limit could be confirmed using sequential limits. If the sequential limits

existed and were different, the limit of g would not exist.

Limit@Limit@g@x, yD, y ® 0D, x ® 0D
0

Limit@Limit@g@x, yD, x ® 0D, y ® 0D
0

The sequential limits are the same. Therefore, the decision whether the limit exists cannot be made

using sequential limits. Nonetheless, the limit would be equal to zero provided it existed. Another

method could be used to prove the non-existence of a limit. For instance, approaching (0, 0) via points

which lie on the lines x = ky or y = kx.

Limit@g@k*y, yD, y ® 0D
0

Limit@g@x, k*xD, x ® 0D
0

Again, the result provides no information on the non-existence of the limit. Finally, when we choose

parabolae x = ky2, we will get a significant result.

LimitAgAk*y2, yE, y ® 0E
k

1 + k2

The numerical value of the limits with respect to different parabolae clearly depends on k. Conse-

quently, the overall limit does not exist. The level curves of the function g have the shape of parabolae

x = ky2. Along these parabolae, f attains different constant values.

Clear@gD;

Example 2.2.5: Let f Hx, yL = 2 xy

xy+2 x-y
. Show that limHx,yL®H0,0L f Hx, yL does not exists [11].

fAx_, y_E = 2*x*y

x*y + 2*x - y
;

10

At first, let us have a look what the sequential limits look like.

Limit@Limit@f@x, yD, y ® 0D, x ® 0D
0

Limit@Limit@f@x, yD, x ® 0D, y ® 0D
0

Since they are the same, another method have to be used to prove the non-existence. Try to approach

the point (0, 0) via lines y = kx.

Limit@f@x, yD �. y ® k*x, x ® 0D
0

Although the result is that the limit is 0 on these lines, it is not always true.

f@x, yD �. y ® k*x �� Simplify
2 k x

2 + k H-1 + xL

It is possible to use L’Hospital’s rule for k = 2.

D@2 k*x, xD
D@2 + k*H-1 + xL, xD
2

To summarize, the limit does not exist because we were able to find two different paths on which the

limit is not the same.

Clear@fD;

2.3 Partial derivative
Definition 2.3.4:

Suppose f :Rn ® R is defined in a neighbourhood of a = Ha1, a2, ..., anL. Partial derivative of f at the

point a with respect to the i-th variable is defined as

¶ f

¶ xi

HaL :=

limh®0

f Ha1, a2, ..., ai-1, ai + h, ai+1, ..., anL- f Ha1, a2, ..., ai-1, ai, ai+1, ..., anL
h

if the right-hand side exists and is finite.

Definition 2.3.5:

By a gradient of a function f at the point a is understood

grad f HaL :=
¶ f

¶ x1

HaL, ...,
¶ f

¶ xn

HaL
if all partial derivatives of f at a exist.

11

Remark 2.3.1:

The symbol Ñ f is used for the gradient of f.

Note: The partial derivative of f at the point a with respect to x has a geometric interpretation of the

slope of the tangent at the point Ha, f HaLL to the curve given by the intersection of the plot of f with the

plane that is perpendicular to the domain of f and contains x-axis. Similarly, the partial derivative of f at

a with respect to y. These facts can be nicely illustrated on the function f = 1- x2 - y2 at some

point.

fAx_, y_E = 1 - x2 - y2 ;

a = 80.5, 0.4<;

a3D = Append@a, f �� aD;

gradient = Grad@f@x, yD, 8x, y<D �. 8x ® a3D@@1DD, y ® a3D@@2DD<
8-0.650945, -0.520756<

hemisphere = Plot3D@f@x, yD, 8x, -1, 3<, 8y, -1, 3<,
Mesh ® 88a3D@@1DD<, 8a3D@@2DD<<, MeshStyle ® Thickness@0.003D,
FaceGrids ® 880, 0, -1<<, FaceGridsStyle ® Directive@DottedD,
BoxRatios ® 84, 4, 1<, AxesLabel ® 8x, y, z<,
ColorFunction ® "Aquamarine"D;

The tangents are defined because we know the starting point and the direction vector.

line1Ax_E = gradient@@1DD*Hx - a3D@@1DDL + a3D@@3DD;

line2Ay_E = gradient@@2DD*Hy - a3D@@2DDL + a3D@@3DD;
tangents = 8ParametricPlot3D@8x, a3D@@2DD, line1@xD<, 8x, -1, 3<,

PlotStyle ® 8Thickness@0.003D, Black<D,
ParametricPlot3D@8a3D@@1DD, y, line2@yD<, 8y, -1, 3<,
PlotStyle ® 8Thickness@0.003D, Black<D<;

Other objects are defined to make the illustration more lucid.

planes = Graphics3D@8FaceForm@GrayLevel@0.5DD, EdgeForm@D, Opacity@0.3D,
Polygon@88-1, a3D@@2DD, 0<, 8-1, a3D@@2DD, 1<, 83, a3D@@2DD, 1<,
83, a3D@@2DD, 0<<D,

Polygon@88a3D@@1DD, 3, 0<, 8a3D@@1DD, 3, 1<, 8a3D@@1DD, -1, 1<,
8a3D@@1DD, -1, 0<<D<D;

lines = Graphics3D@8Black, Dashed, Thickness@0.003D,
Line@88-1, a3D@@2DD, 0<, 83, a3D@@2DD, 0<<D,
Line@88a3D@@1DD, -1, 0<, 8a3D@@1DD, 3, 0<<D<D;

point1 = x �. Solve@line1@xD == 0D;

point2 = y �. Solve@line2@yD � 0D;

angle1 = ParametricPlot3DB::x, a3D@@2DD, 0.4 - Hx - point1L2 >>, 8x, 1, 1.15<,
PlotStyle ® 8Thickness@0.003D, Black<F;

angle2 = ParametricPlot3DB::a3D@@1DD, y, 0.4 - Hy - point2L2 >>, 8y, 1.2, 1.31<,
PlotStyle ® 8Thickness@0.003D, Black<F;

12

text1 = Graphics3D@8Style@Text@"Αx", 81.2, a3D@@2DD, 0.15<D, 18D,
Style@Text@"tx", 81, a3D@@2DD, 0.7<D, 18D<D;

text2 = Graphics3D@8Style@Text@"Αy", 8a3D@@1DD, 1.5, 0.13<D, 18D,
Style@Text@"ty", 8a3D@@1DD, 1.2, 0.6<D, 18D<D;

Show@8hemisphere, planes, tangents, lines, angle1, angle2, text1, text2<,
ViewPoint ® 84, 3, 1.3<, ImageSize ® 500D

Figure 2.3.2: Geometric interpretation of the partial derivative.

Show@8hemisphere, planes, tangents, lines, angle1, text1<, ViewPoint ® 80, ¥, 0<,
Ticks ® None, AxesLabel ® 8x, None, z<D

Figure 2.3.3: Geometric interpretation of the partial derivative with respect to x when y is fixed.

Show@8hemisphere, planes, tangents, lines, angle2, text2<, ViewPoint ® 8¥, 0, 0<,
Ticks ® None, AxesLabel ® 8None, y, z<D

Figure 2.3.4: Geometric interpretation of the partial derivative with respect to y when x is fixed.

Clear@f, a2D, a, gradient, hemisphere, line1, line2, tangents, planes,

lines, point1, point2, angle1, angle2, text1, text2D;

13

Example 2.3.6: Calculate
¶ f

¶x
and

¶ f

¶y
of the function f = x3 yy4+y.

fAx_, y_E = x3
*yy4+y;

parcDerX = Simplify@D@f@x, yD, xDD
3 x2 yy+y

4

parcDerY = Simplify@D@f@x, yD, yDD
x3 yy+y

4 I1 + y3 + Log@yD + 4 y3 Log@yDM

Clear@f, parcDerX, parcDerYD;

2.4 Directional derivative
Definition 2.4.6:

Suppose f :Rn ® R is defined in a neighbourhood of a and s
Ó
 is a non-zero vector in Rn. A directional

derivative of f along s
Ó

at a is defined as

¶ f

¶ sÓ HaL :=
1

°sÓ´ limh®0

f Ha + h sÓL- f HaL
h

if the right hand side exists and is finite.

Theorem 2.4.3:

Suppose f :Rn ® R and all partial derivatives at a are continuous. Then f has derivatives in all

directions and

(1)
¶ f

¶ sÓ HaL =
1

°sÓ´ Xgrad f HaL, sÓ\.

Example 2.4.7: Find the directional derivative of f = arctanHxyL along s
Ó = I 2 , 2 M at the point

a = H0, 1L.

fAx_, y_E = ArcTan@x*yD;

s = : 2 , 2 >;

a = 80, 1<;
Definition of the function which can calculate directional derivative of the function of two variables

follows:

directionalDerivativeAf_, s_, a_E :=
HGrad@f@x, yD, 8x, y<D �. 8x ® a@@1DD, y ® a@@2DD<L.s�Norm@sD;

14

directionalDerivative@f, s, aD
1

2

Clear@f, s, aD;

Example 2.4.8: Find the directional derivative of f =
0 x = - y

Hx+ yL sinJ 1

Hx+yL N x ¹ - y
 along s

Ó = H1, -1L
at the point a = H0, 0L.

fAx_, y_E = IfBx � -y, 0, Hx + yL*SinB 1

Hx + yL FF;

s = 81, -1<;

a = 80, 0<;

Plot3D@f@x, yD, 8x, -0.1, 0.1<, 8y, -0.1, 0.1<, ColorFunction ® "Aquamarine",

ViewPoint ® 80, 1, 1<, ImageSize ® 300D

Figure 2.4.5: Function f =
0 x = -y

Hx + yL sinJ 1

Hx+yL N x ¹ -y
 .

Equation (1) can be used if partial derivatives of f at the point a with respect to x and y exist.

derivativeX = D@f@x, yD, xD �. 8x ® a@@1DD, y ® a@@2DD<
0

derivativeY = D@f@x, yD, yD �. 8x ® a@@1DD, y ® a@@2DD<
0

Mathematica gave us the result that
¶ f

¶x
HaL = 0 and

¶ f

¶y
HaL = 0. Nonetheless, it can be proved that it is

incorrect by using the definition of a partial derivative.

15

derX = LimitB 1
h

HHf@x, yD �. 8x ® a@@1DD + h, y ® a@@2DD<L - Hf@x, yD �. 8x ® a@@1DD, y ® a@@2DD<LL, h ® 0F
Interval@8-1, 1<D

derY = LimitB 1
h

HHf@x, yD �. 8x ® a@@1DD, y ® a@@2DD + h<L - Hf@x, yD �. 8x ® a@@1DD, y ® a@@2DD<LL, h ® 0F
Interval@8-1, 1<D

Mathematica returns an interval because the limit does not exist. Thus, the directional derivative must

be calculated directly from the definition.

dirDer =
1

Norm@sD *LimitB
1

h
HHf@x, yD �. 8x ® a@@1DD + h*s@@1DD, y ® a@@2DD + h*s@@2DD<L -
Hf@x, yD �. 8x ® a@@1DD, y ® a@@2DD<LL, h ® 0F

0

Clear@f, s, a, derivativeX, derivativeY, derX, derY, dirDerD;

Example 2.4.9: Find the gradient of g = Ix3 +x+ yM e-x4-y2

- 2 I-x5 -
1

5
y2 + xM e-x2-y2

. Plot g with

several gradient vectors. Find directional derivatives at a = H-1.4, 0.4L along several directions.

gAx_, y_E = Ix3 + x + yM*ã-x4-y2 - 2* -x5 - 1

5
*y2 + x *ã-x

2-y2;

a = 8-1.4, 0.4<;

gradient = Simplify@Grad@g@x, yD, 8x, y<DD;

gradientAtA = gradient �. 8x ® a@@1DD, y ® a@@2DD<;

Plot3D@8g@x, yD<, 8x, -2.5, 2.5<, 8y, -2.5, 2.5<, ColorFunction ® "Aquamarine",

AxesLabel ® 8x, y, z<, MeshStyle ® Darker@BlueD, ImageSize ® 250,

ViewPoint ® 8-2, -2.5, 1<D

Figure 2.4.6: Function g = Ix3 + x + yM e-x4-y2

- 2 I- x5 -
1

5
y2 + xM e-x2-y2

.

16

contours1 = ContourPlot@g@x, yD, 8x, -2.5, 2.5<, 8y, -2.5, 2.5<, Contours ® 14,

ColorFunction ® "Aquamarine"D;
contours2 = ContourPlot@g@x, yD, 8x, -2.5, 0.5<, 8y, -1.5, 1.5<, Contours ® 11,

ColorFunction ® "Aquamarine"D;
gradientField = VectorPlot@gradient, 8x, -2.5, 2.5<, 8y, -2.5, 2.5<,

VectorPoints ® 15, VectorStyle ® Arrowheads@0.02DD;
Show@8contours1, gradientField<, ImageSize ® 250D

Figure 2.4.7: Level curves of function g = Ix3 + x + yM e-x4-y2

- 2 I- x5 -
1

5
y2 + xM e-x2-y2

together with the gradient field.

The gradient of g is perpendicular to level curves at all points. Its length depends on the growth of the

function at the specific point.

scaleParameter = 1.5;

arrow = Graphics@Line@88-0.5, 1�4<, 80, 0<, 8-0.5, -1�4<<DD;
As we demonstrated in the previous figure, the gradient is perpendicular to the level curves of the

function. We can also show that the gradient at a is greater than all directional derivatives at the same

point.

gradientEndPoint = 8gradientAtA@@1DD�scaleParameter + a@@1DD,
gradientAtA@@1DD�scaleParameter + a@@2DD<;

gradientGraphics =

Graphics@8Red, Arrowheads@88.05, 1, arrow<<D, Arrow@8a, gradientEndPoint<D<D;

angles = TableB2*Π* n

12
, 8n, 12<F;

directions = Table@8Cos@angles@@nDDD, Sin@angles@@nDDD<, 8n, 12<D;

dirDerivatives = Table@directionalDerivative@g, directions@@nDD, aD, 8n, 12<D;

dirDerPoints1 =

Table@8Cos@angles@@nDDD*dirDerivatives@@nDD�scaleParameter + a@@1DD,
Sin@angles@@nDDD*dirDerivatives@@nDD�scaleParameter + a@@2DD<, 8n, 6<D;

17

dirDerPoints2 =

Table@8H-1L*Cos@angles@@nDDD*dirDerivatives@@nDD�scaleParameter + a@@1DD,
H-1L*Sin@angles@@nDDD*dirDerivatives@@nDD�scaleParameter + a@@2DD<, 8n, 6<D;

dirDerGraphics = 8Graphics@88Arrowheads@88.05, 1, arrow<<D,
Table@Arrow@8a, dirDerPoints1@@nDD<D, 8n, 6<D<<D,

Graphics@88Arrowheads@88.05, 0, arrow<<D,
Table@Arrow@8dirDerPoints2@@nDD, a<D, 8n, 6<D<<D<;

Labeled@Show@8contours2, gradientGraphics, dirDerGraphics<, ImageSize ® 250D,
PointLegend@8Red, Black<, 8"gradient", "directional derivatives"<,
LegendMarkers ® "�" D, RightD

� gradient

� directional derivatives

Figure 2.4.8: Level curves, gradient, and several directional derivatives of the function

g = Ix3 + x + yM e-x4-y2

- 2 I- x5 -
1

5
y2 + xM e-x2-y2

 at a
®
= H-1.4, 0.4L .

The graph shows directional derivatives of g at a along several directions. The length of each arrow

corresponds to the numerical value of the directional derivative along the arrow. The greatest growth of

the function is in the direction of the gradient.

Clear@g, a, gradient, gradientAtA, contours1, contours2, gradientField,

scaleParameter, arrow, gradientEndPoint, gradientGraphics, angles,

directions, dirDerivatives, dirDerPoints1, dirDerPoints2, dirDerGraphicsD;

2.5 Local extrema
Definition 2.5.7:

Suppose f :Rn ® R is defined on M Ì Rn and a Î M. Then f attains a local minimum or a local

maximum at a with respect to M if and only if there is U HaL such that for all x Î M ÝU HaL,
f HxL ³ f H aL or f Jx® N £ f H aL, respectively.

Similarly, f attains a sharp local minimum or a sharp local maximum at a if and only if for all

x Î M ÝU*HaL, f HxL > f H aL or f HxL < f H aL, respectively.

A point which is either a local minimum or a local maximum is called a local extremum.

Theorem 2.5.4 (The first derivative test):

Let a be a local extremum of f and all partial derivatives of f at a exist. Then

18

¶ f

¶ xi

HaL = 0

and a is called a critical point.

Definition 2.5.8:

Suppose f :Rn ® R and all the second partial derivatives of f at a exist and are continuous. A Hes-

sian matrix of f at a is defined as a square matrix of second partial derivatives

H H f Lij HaL :=
¶ 2 f

¶ xi ¶ x j

HaL.

Theorem 2.5.5 (The second derivative test):

Let HH f L HaL be the Hessian matrix of f at a and a be a critical point.

1. If HH f L HaL is a positive definite matrix, then a is a local minimum point.

2. If HH f L HaL is a negative definite matrix, then a is a local maximum point.

3. If HH f L HaL is indefinite matrix, then a is a saddle point.

Remark 2.5.2:

1. HH f L HaL is a positive definite matrix if and only if all its eigenvalues are positive.

2. HH f L HaL is a negative definite matrix if and only if all its eigenvalues are negative.

3. HH f L HaL is indefinite matrix if and only if some of its eigenvalues are positive and some negative.

Example 2.5.10: Find the local extrema and the saddle points of f = Ix2 - y2M e-x2-y2

2 with respect to

M = 9Hx, yL Î R2 : x2 + y2 < 9=.

fAx_, y_E = Ix2 - y2M*ã -x
2-y2

2 ;

The local extremum points can be roughly estimated from the figure.

Plot3D@8f@x, yD<, 8x, -3, 3<, 8y, -3, 3<, ColorFunction ® "BlueGreenYellow",

ImageSize ® 250, AxesLabel ® 8x, y, z<, ViewPoint ® 81, -1.5, 1.5<D

Figure 2.5.9: Function f = Ix2 - y2M e-x2-y2

2 .

The first derivative test is used in order to find the critical points.

19

a = SolveAD@f@x, yD, xD � 0 && D@f@x, yD, yD � 0 && x2
+ y2

< 9, 8x, y<E
:8x ® 0, y ® 0<, :x ® 0, y ® - 2 >, :x ® 0, y ® 2 >, :x ® - 2 , y ® 0>, :x ® 2 , y ® 0>>

We found five critical points Ha1, ..., a5L. Lets us try to use the second derivative test. We calculate

Hessian matrices and analyze whether ai, i Î {1, ..., 5} is a local extremum point or not.

hessianMatrixAf_, a_E := 88D@f@x, yD, x, xD �. a, D@f@x, yD, x, yD �. a<,
8D@f@x, yD, x, yD �. a, D@f@x, yD, y, yD �. a<<

secondDerivativeTestAmat_E :=
Module@8eigenvs = Eigenvalues@matD<,
If@And �� Positive@eigenvsD, Print@"Local minimum."D,
If@And �� Negative@eigenvsD, Print@"Local maximum."D,
If@And �� NonPositive@eigenvsD,
Print@"The second derivative test cannot be used."D,
If@And �� NonNegative@eigenvsD,
Print@"The second derivative test cannot be used."D,
Print@"Saddle point."DDDDDD;

secondDerivativeTest@hessianMatrix@f, a@@1DDDD
Saddle point.

secondDerivativeTest@hessianMatrix@f, a@@2DDDD
Local minimum.

secondDerivativeTest@hessianMatrix@f, a@@3DDDD
Local minimum.

secondDerivativeTest@hessianMatrix@f, a@@4DDDD
Local maximum.

secondDerivativeTest@hessianMatrix@f, a@@5DDDD
Local maximum.

Now the result can be demonstrated graphically using the ContourPlot command.

contours = ContourPlot@f@x, yD, 8x, -3, 3<, 8y, -3, 3<, Contours ® 10,

ColorFunction ® "BlueGreenYellow", PlotLegends ® Automatic, AxesLabel ® 8x, y<D;
criticalPoints =

Graphics@Table@8Text@Style@"a"i, Black, 17D, 8Hx �. aL@@iDD, Hy �. aL@@iDD + 0.25<D,
PointSize@LargeD, Black, Point@8Hx �. aL@@iDD, Hy �. aL@@iDD<D<, 8i, 5<DD;

20

Labeled@Show@8contours , criticalPoints<, ImageSize ® 250D,
PointLegend@8Black<, 8"critical points"<,
LegendMarkers ® 8Graphics@Point@80, 0<DD<D, RightD

critical points

Figure 2.5.10: Level curves of f = Ix2 - y2M e-x2-y2

2 with the critical points.

There are also built-in functions FindMinimum and FindMaximum in Mathematica which search for

local extrema numerically. However, these functions return only one local extremum point and some-

times are not able to find any solution.

Clear@f, a, contours, criticalPoints, hessianMatrixD;

Example 2.5.11: Find the local extrema and the saddle points of f = x3 + y2 +
1

2
z2 - 3 xz- 2 y+ 2 z

[11].

fAx_, y_, z_E = x3 + y2 + 1

2
*z2 - 3*x*z - 2*y + 2*z;

We will use the same procedure as in the example 2.5.10.

a = Solve@D@f@x, y, zD, xD � 0 && D@f@x, y, zD, yD � 0 && D@f@x, y, zD, zD � 0 , 8x, y, z<D
88x ® 1, y ® 1, z ® 1<, 8x ® 2, y ® 1, z ® 4<<

hessianMatrixAf_, a_E :=
88D@f@x, y, zD, x, xD �. a, D@f@x, y, zD, x, yD �. a, D@f@x, y, zD, x, zD �. a<,
8D@f@x, y, zD, x, yD �. a, D@f@x, y, zD, y, yD �. a, D@f@x, y, zD, y, zD �. a<,
8D@f@x, y, zD, z, xD �. a, D@f@x, y, zD, y, zD �. a, D@f@x, y, zD, z, zD �. a<<

The function secondDerivativeTest from the previous example can be used again.

secondDerivativeTest@hessianMatrix@f, a@@1DDDD
Saddle point.

secondDerivativeTest@hessianMatrix@f, a@@2DDDD
Local minimum.

Clear@f, a, hessianMatrix, secondDerivativeTestD;

21

2.6 Constrained extrema
Definition 2.6.9:

Suppose f :Rn ® R is defined on M Ì Rn and a Î M. Then f attains a local minimum or a local

maximum at a with respect to M if and only if there is U HaL such that for all x Î M ÝU HaL,
f HxL ³ f H aL or f Jx® N £ f H aL, respectively.

Similarly, f attains a sharp local minimum or a sharp local maximum at a if and only if for all

x Î M ÝU*HaL, f HxL > f H aL or f HxL < f H aL, respectively.

A point which is either a local minimum or a local maximum is called a local extremum.

Theorem 2.6.6 (The first derivative test):

Suppose f , g1, g2, ..., gm are functions of n variables and have continuous partial derivatives. Sup-

pose that f has a local extremum with constraints gs = 0, s Î 81, ..., m<, at the point a and õgsHaL ¹ 0

for all s Î 81, ..., m<. Then there are numbers Λ1, Λ2, ..., Λm such that

(2)õf HaL = Λ1 õg1HaL+ Λ2 õg2HaL+ ... + Λm õgmHaL.

The numbers Λ1, Λ2, ..., Λm are called Lagrange multipliers.

Remark 2.6.3:

It is convenient to rewrite (2) as follows,

õLHaL = 0,

where L := f - Λ1 g1 - Λ2 g2 - ... - Λm gm is the so-called Lagrange function. The second derivative

test, which is used for finding (non-constrained) local extrema, can now be also applied on L (instead

of f itself) to find constrained extrema. However, in general it is no longer true that it cannot be

decided about the type of extrema if the Hessian matrix is not positively (or negatively) definite. One

can still restrict the Hessian matrix to the tangent subspace to all constraints and then investigate the

resulting matrix that is effectively lower dimensional. If this matrix is positively or negatively definite,

then a attains its constrained minimum or maximum, respectively [4].

Example 2.6.12: Find the local extrema of f =
1

x
+

1

y
subjected to the constraint

1

x2
+

1

y2
-

1

4
= 0 [11].

fAx_, y_E = 1

x
+
1

y
;

gAx_, y_E = 1

x2
+

1

y2
-
1

4
;

At first, we try the built-in functions Minimize and Maximize.

Minimize@8f@x, yD, g@x, yD == 0<, 8x, y<D

:-
1

2

, :x ® -2 2 , y ® -2 2 >>

22

Maximize@8f@x, yD, g@x, yD == 0<, 8x, y<D

:
1

2

, :x ® 2 2 , y ® 2 2 >>

It can be seen that these functions work just fine in our example. Nevertheless, let us try to solve the

same problem mimicking a hand calculation. The first derivative test helps us to find the critical points

together with corresponding values of the Lagrange multiplier.

a = Solve@D@f@x, yD - Λ*g@x, yD, xD � 0 && D@f@x, yD - Λ*g@x, yD, yD � 0 && g@x, yD � 0 ,

8x, y, Λ<D
::x ® -2 2 , y ® -2 2 , Λ ® - 2 >, :x ® 2 2 , y ® 2 2 , Λ ® 2 >>

In the next step, the Hessian matrix of the Lagrange function is constructed at the critical points.

hessianMatrixAf_, a_E := 88D@f, x, xD �. a, D@f, x, yD �. a<,
8D@f, x, yD �. a, D@f, y, yD �. a<<;

Finally, the function secondDerivativeTest is defined to identify the type of an extremum from the

eigenvalues of the Hessian matrix.

secondDerivativeTestAmat_E := Module@8eigenvs = Eigenvalues@matD<,
If@And �� Positive@eigenvsD, Print@"Local minimum."D,
If@And �� Negative@eigenvsD, Print@"Local maximum."D,
Print@
"Our basic second derivative test is not sufficient. One has to

reduce the Hessian matrix to the subspace that is tangent

to the constraints and then use the second derivative

test on the resulting matrix that is effectively

lower-dimensional."DDDD;
secondDerivativeTest@hessianMatrix@f@x, yD - Λ*g@x, yD, a@@1DDDD

Local minimum.

secondDerivativeTest@hessianMatrix@f@x, yD - Λ*g@x, yD, a@@2DDDD
Local maximum.

Next, it will be graphically demonstrated that at the points where local constrained extrema are

attained, the gradient of f is just a scalar multiple of the gradient of g, i.e., (2) holds. To this purpose,

denote the critical points as follows:

a1 = 8x �. a@@1DD, y �. a@@1DD<;

a2 = 8x �. a@@2DD, y �. a@@2DD<;
Moreover, introduce a function that returns the gradient vector of a function f at a point startPoint

shifted to this startPoint.

arrowsAf_, startPoint_, scaleParameter_, colour_E :=
Module@8gradient, endPoint<,
gradient = Grad@f@x, yD, 8x, y<D �. 8x ® startPoint@@1DD, y ® startPoint@@2DD<;
endPoint = 8gradient@@1DD*scaleParameter + startPoint@@1DD,

gradient@@2DD*scaleParameter + startPoint@@2DD<;
Graphics@8colour, Arrow@8startPoint, endPoint<D<DD

Finally, define all needed graphical objects and combine all of them into an illustrative figure.

23

contoursf = ContourPlotBf@x, yD, 8x, -5, 5<, 8y, -5, 5<,

Contours ® :-2, -1, - 1

2

, -0.5, 0, 0.5,
1

2

, 1, 2>, ContourShading ® False,

ContourStyle ® Blue, MaxRecursion ® 3F;

contoursg = ContourPlot@g@x, yD � 0, 8x, -5, 5<, 8y, -5, 5<, ContourShading ® False,

ContourStyle ® Darker@GreenDD;

b = :-2 2 , 2 2 >;

text =

Graphics@
8Table@8Text@Style@"a"i, Black, 12D, 8Hx �. aL@@iDD + 0.1, Hy �. aL@@iDD - 0.5<D,

PointSize@LargeD, Point@8Hx �. aL@@iDD, Hy �. aL@@iDD<D<, 8i, 2<D,
Text@Style@"b", Black, 12D, 8b@@1DD, b@@2DD - 0.5<D, PointSize@LargeD,
Point@8b@@1DD, b@@2DD<D,
Text@Style@"õfHa1L", Blue, 10D, 8a1@@1DD - 1.2, a1@@2DD - 0.5<D,
Text@Style@"õgHa1L", Darker@GreenD, 10D, 8a1@@1DD, a1@@2DD + 0.7<D,
Text@Style@"õfHa2L", Blue, 10D, 8a2@@1DD - 0.6, a2@@2DD - 1.5<D,
Text@Style@"õgHa2L", Darker@GreenD, 10D, 8a2@@1DD - 0.65, a2@@2DD - 0.02<D,
Text@Style@"õfHbL", Blue, 10D, 8b@@1DD - 0.3, b@@2DD - 1<D,
Text@Style@"õgHbL", Darker@GreenD, 10D, 8b@@1DD + 1, b@@2DD - 0.1<D,
<D;

Show@8contoursf , contoursg, text, arrows@f, a1, 10, BlueD,
arrows@g, a1, 10, Darker@GreenDD, arrows@f, a2, 10, BlueD,
arrows@g, a2, 10, Darker@GreenDD, arrows@f, b, 10, BlueD,
arrows@g, b, 10, Darker@GreenDD<, ImageSize ® 250D

a1

a2b

õf Ha1L

õgHa1L

õf Ha2L

õgHa2L
õf HbL

õgHbL

-4 -2 0 2 4

-4

-2

0

2

4

Figure 2.6.11: Level curves of the function f =
1

x
+

1

y
and the constraint

1

x2
+

1

y2
-

1

4
= 0

together with the gradients of f and the constraint at the critical points.

Gradients of f and g at a1 (local minimum point) are proportional. The same holds true at a2 (local

maximum point). On the other hand, this is not true at the point b which is not a critical point.

Clear@f, g, a, a1, a2, b, contoursf, contoursg, textD;

Example 2.6.13: Find the local extrema of f Hx, yL = Ix2 - y2M ã -x2-y2

2 subjected to the constraint

Hx- 1L2 + Hy- 1L2 = 1

2
.

24

fAx_, y_E = Ix2 - y2M*ã -x
2-y2

2 ;

gAx_, y_E = Hx - 1L2 + Hy - 1L2 - 1

2
;

It can be seen that the constraint is the equation of the circle with the following parameters:

ax = 1;

ay = 1;

radius =
1

2
;

Again, let us start with built-in function.

Minimize@8f@x, yD, g@x, yD � 0<, 8x, y<D

MinimizeB:ã
1

2
I-x2-y2M Ix2 - y2M, -

1

2
+ H-1 + xL2 + H-1 + yL2 � 0>, 8x, y<F

The function f is too complicated and so is its gradient.Therefore, it is not possible to solve the equa-

tion for the critical points symbolically. So try the numerical version of the above used functions.

NMinimize@8f@x, yD, g@x, yD � 0<, 8x, y<D
8-0.628413, 8x ® 0.357463, y ® 1.2952<<

NMaximize@8f@x, yD, g@x, yD � 0<, 8x, y<D
80.628413, 8x ® 1.29521, y ® 0.357463<<

This works pretty well, both for the minimum and the maximum. Nevertheless, we could also try to use

the first derivative test.

a = NSolve@g@x, yD � 0 && D@f@x, yD - Λ*g@x, yD, xD � 0 && D@f@x, yD - Λ*g@x, yD, yD � 0 ,

8x, y, Λ<, RealsD
88x ® 0.357474, y ® 1.29523, Λ ® -0.400399<, 8x ® 1.29523, y ® 0.357474, Λ ® 0.400399<<

Again, we use the functions hessianMatrix and secondDerivativeTest from the previous example in

order to find the Hessian matrix of the Lagrange function at the critical points and identify the type of

an extremum.

secondDerivativeTest@hessianMatrix@f@x, yD - Λ*g@x, yD, a@@1DDDD
Local minimum.

secondDerivativeTest@hessianMatrix@f@x, yD - Λ*g@x, yD, a@@1DDDD
Local minimum.

Clear@f, g, ax, ay, radius, a, arrows, hessianMatrix, secondDerivativeTestD;

Example 2.6.14: The Baraboo, Wisconsin, plant of International Widget Co. uses aluminum, iron, and

magnesium to produce high-quality widgets. The quantity of widgets which may be produced using x

tons of aluminum, y tons of iron, and z tons of magnesium is Q Hx, y, zL = xyz. The cost of raw materi-

als is: aluminum, $6 per ton; iron, $4 per ton; and magnesium, $8 per ton. How many tons of alu-

minum, iron, and magnesium should be used to manufacture 1000 widgets at the lowest possible cost?

[4]

25

Considering the cost of raw materials, the function f can be defined.

fAx_, y_, z_E = 6*x + 4*y + 8*z;

qAx_, y_, z_E = x*y*z - 1000;
We want to minimize the cost, i.e., the function f. Q is the constraint. The Lagrange function can be

defined as:

lagrangeAx_, y_, z_E = f@x, y, zD - Λ*q@x, y, zD;
The first derivative test is used to find the solution. The fourth equation is given by the constraint.

a = Solve@D@lagrange@x, y, zD, xD � 0 && D@lagrange@x, y, zD, yD � 0

&& D@lagrange@x, y, zD, zD � 0 && q@x, y, zD � 0

, 8x, y, z, Λ<, RealsD �� N
88x ® 9.615, y ® 14.4225, z ® 7.21125, Λ ® 0.05769<<

Clear@f, q, lagrange, aD;

2.7 Double integral
In this section, we will consider only double integrals. The transition to higher dimensions can be made

in a similar way.

Definition 2.7.10:

A finite sequence a = x0 < x1 < ... < xn = b, where a < b, is called a partition of the interval Xa, b\.

Definition 2.7.11:

Let 8x0, x1, ..., xn< be a partition of the interval Xa, b\ and 8y0, y1, ..., ym< be a partition of the interval

Xc, d\. Then 9Si, j := Xxi-1, xi\ ´ Xyi-1, yi\ =i=1, j=1

n,m
 is called a partition of the interval Xa, b\´ Xc, d\.

Additionally, measure of the interval I = Xa, b\´ Xc, d\ is defined as Μ HIL = Hb- aL Hd - cL.

Definition 2.7.12:

Suppose f :R2 ® R is bounded on the interval I = Xa, b\´ Xc, d\ and D is a partition of this interval.

Let vi, j = infxÎSi, j
f HxL and Vi, j = supxÎSi, j

f HxL. Then LHD, f L := Úi=1, j=1
n,m

vi, j Μ ISi, jM is called a lower

sum for f on D. Similarly, U HD, f L := Úi=1, j=1
n,m

Vi, j Μ ISi, jM is called an upper sum for f on D.

Definition 2.7.13:

Suppose f :R2 ® R is bounded on the interval I = Xa, b\´ Xc, d\, M Ì R2, and D is a partition of

this interval. Then supM LHD, f L or infM U HD, f L is called a lower Riemann integral or an upper

Riemann integral, respectively. If supM LHD, f L = infM U HD, f L, the function f is said to be Riemann

integrable over I and ÙI f = supM LHD, f L.

Definition 2.7.14:

Let I = Xa, b\´ Xc, d\ and D = 9Sij= be a partition of this interval. Then a norm of D is defined as

°D´ := max Μ ISijM, where 0 £ i £ n and 0 £ j £ m .

Theorem 2.7.7:

Suppose f :R2 ® R is continuous on the interval I = Xa, b\´ Xc, d\ Then ÙI f exists and if 8Dn<n=1
¥ is a

° ´
26

X \ ÙI 8 <n=1

partition sequence such that limn®¥ °Dn´ = 0, then

à
I
f = limn®¥ LHDn, f L = limn®¥ U HDn, f L.

Theorem 2.7.8 (The Fubini theorem):

Suppose f :R2 ® R is continuous on the interval I = Xa, b\´ Xc, d\ Then

à
I
f Hx, yL â x â y = à

a

b

à
c

d

f Hx, yL â y â x = à
c

d

à
a

b

f Hx, yL â x â y.

Definition 2.7.15:

Let F :Rn ® Rs and a be a point of its domain such that for all i Î 81, ..., s< and j Î 81, ..., n< there

exists
¶Fi

¶ x j

HaL. Then Jacobian matrix is, by definition,

¶ F

¶ x
HaL º DHF1, ..., FsL

DHx1, ..., xnL :=

¶F1

¶ x1
º

¶F1

¶ xn

» ¸

¶Fs

¶ x1

¶Fs

¶ xn

HaL.

Definition 2.7.16:

A function F :Rn ® Rn is called regular over an open set M Î Rn if and only if it has a continuous

Jacobian matrix and det
DHΦ1,...,ΦsL
DHΞ1,...,ΞnL HxL ¹ 0 for all x Î M.

Theorem 2.7.9 (The substitution theorem):

Suppose Φ :Rn ® Rn, Φ : HΞ1, ..., ΞnL ® Hx1, ..., xnL is an injective and regular vector function from

P Ì Rn to Q Ì Rn. Then for arbitrary set M Ì Q

à
M

f Hx1, ..., xnL â x1, ..., â xn = à
Φ-1HM L

f IΦ HΞ1, ..., ΞnLM det
DHΦ1, ..., ΦsL
DHΞ1, ..., ΞnL â Ξ1, ..., â Ξn.

Note: In the substitution theorem, the absolute value of Jacobian determinant appears. Substitutions to

the polar, spherical, and cylindrical coordinates systems are used very often. Therefore, here are Jaco-

bian determinants of them:

JacobianDeterminantAf_List, vars_ListE :=
If@Equal �� Map@Dimensions, 8f, vars<D, Simplify@Det@Outer@D, f, varsDDD,
"The dimensions of input parameters are not the same."D

polar = JacobianDeterminant@8Ρ*Cos@ΦD, Ρ*Sin@ΦD<, 8Ρ, Φ<D
Ρ

spherical = JacobianDeterminant@8Ρ*Cos@ΘD*Cos@ΦD, Ρ*Cos@ΘD*Sin@ΦD, Ρ*Sin@ΘD<,
8Ρ, Θ, Φ<D

-Ρ
2 Cos@ΘD

27

As Θ runs from - Π
2

to Π
2

, cos(Θ) is non-negative. Thus, the absolute value of the determinant is Ρ2

cos(Θ) for every Ρ and Θ.

cylindrical = JacobianDeterminant@8Ρ*Cos@ΦD, Ρ*Sin@ΦD, h<, 8Ρ, Φ, h<D
Ρ

Clear@Φ, Θ, h, polar, spherical, cylindricalD;

Example 2.7.15: Find the surface area bounded by the curves y = 2 x2 and y = 1- x.

fAx_E = 2*x2;
gAx_E = 1 - x;

To find the limits of integration, we need to locate intersections of the plots of f and g.

sol = Solve@f@xD � g@xD, xD

:8x ® -1<, :x ®
1

2
>>

Show@
8Graphics@8Style@Text@x �. sol@@1DD, 8Hx �. sol@@1DDL + 0.25, -0.25<D, 12D,

Style@Text@x �. sol@@2DD, 8Hx �. sol@@2DDL + 0.25, -0.25<D, 12D<D,
Plot@8f@xD �. a ® 1, g@xD �. a ® 1<, 8x, -1.1, 1.1<, PlotStyle ® 8Blue, Green<,
PlotLegends ® 8"f@xD", "g@xD"<D<, Axes ® True, Ticks ® None,

GridLinesStyle ® Dashed, ImageSize ® 200,

GridLines ® 88x �. sol@@1DD, x �. sol@@2DD<, 8<<D

-1
1

2

f @xD
g@xD

Figure 2.7.12: Functions f = 2 x2 and g = 1 - x.

The limits of integration are -1 and
1

2
 (with respect to x) and the functions f and g (with respect to y).

Since the surface area is searched, the functions which is to be integrated is just 1.

IntegrateBIntegrateA1, 9y, 2*x2, 1 - x=E, :x, -1, 1

2
>F

9

8

28

This example could be also solved without any knowledge of double integrals. We can calculate the

integral of both g and f from -1 to
1

2
, and the result would be the difference between them.

Clear@f, g, solD;

Example 2.7.16: Calculate the integral Ù ÙM 1

2 x-x2

â x â y, where M is an area bounded by the curves

x = 0, y2 = -x+2.

fAx_E = 1

2*x - x2

;

Let us have a look at M to find the limits of integration:

ShowA
9Graphics@8Style@Text@"2", 82.5, -0.5<D, 12D, Style@Text@"0", 80.5, -0.5<D, 12D<D,
ContourPlotA9x � 0, y2 � -x + 2=, 8x, -3, 3<, 8y, -3, 3<,
ContourStyle ® 8Blue, Green<, PlotLegends ® 9"x = 0", "y2

= - x + 2"=E=,
Axes ® 8True, False<, Frame ® False, Ticks ® None, ImageSize ® 200,

GridLinesStyle ® Dashed, GridLines ® 882<, 8<<E

20

x = 0

y2 = - x + 2

Figure 2.7.13: Curves x = 0 and y2 = - x+2.

Considering the x-axis symmetry, only the area above the x-axis can be integrated and then multiplied

by 2.

2*IntegrateBIntegrateBf@xD, :y, 0, -x + 2 >F, 8x, 0, 2<F

4 2

Clear@fD;

Example 2.7.17: Find the integral Ù ÙM lnIx2 + y2M â x â y, where M is an area in the first quadrant

bounded by the curves x2 + y2 = 1 and x2 + y2 = 4 [11].

fAx_, y_E = Log Ax2 + y2E;

29

Labeled@Show@8Graphics@8Style@Text@"0", 80.25, -0.25<D, 12D,
Style@Text@"1", 81.25, -0.25<D, 12D, Style@Text@"2", 82.25, -0.25<D, 12D<D,

Graphics@8Green, Disk@80, 0<, 2, 80, Pi�2<D, White, Disk@80, 0<, 1, 80, Pi�2<D,
Blue, Circle@80, 0<D, Circle@80, 0<, 2D<D<,

Axes ® True, Frame ® False, Ticks ® None, ImageSize ® 200D,
PointLegend@8Green<, 8"integrated area"<, LegendMarkers ® "à"D, RightD

0 1 2
à integrated area

Figure 2.7.14: Curves x2 + y2 = 1 and x2 + y2 = 4.

Due to the polar symmetry, it is convenient to use the polar coordinates via the substitution

x = Ρ cosHΦL and x = Ρ sinHΦL.
fPolarAΡ_, Φ_E = TransformedField@"Cartesian" ® "Polar", f@x, yD, 8x, y< ® 8Ρ, Φ<D ��

Simplify

LogAΡ2E

The integration is much easier now. As it can be deduced from the figure, Ρ runs from 1 to 2 and Φ

from 0 to 2Π. The Jacobian determinant for polar substitution is Ρ.

IntegrateB
Integrate@fPolar@Ρ, ΦD*JacobianDeterminant@8Ρ*Cos@ΦD, Ρ*Sin@ΦD<, 8Ρ, Φ<D,
8Ρ, 1, 2<D, :Φ, 0,

Π

2
>F �� Simplify

Π -
3

4
+ Log@4D

Clear@f, fPolarD;

Example 2.7.18: Find the integral Ù Ù ÙB I1+ x2 + y2 + z2M- 1

2 â x â y â z, where B is an sphere with radius

1 and centre at the origin [11].

gAx_, y_, z_E = I1 + x2 + y2 + z2M- 12;
The integration domain is a sphere so we use spherical coordinates system.

gSphericalAΡ_, Θ_, Φ_E =
TransformedField@"Cartesian" ® "Spherical", g@x, y, zD, 8x, y, z< ® 8Ρ, Θ, Φ<D ��
Simplify

1

1 + Ρ2

30

The absolute value of Jacobian determinant is, in this case, Ρ2 cosHΘL. Since the integration domain is a

sphere of radius 1, Ρ goes from 0 to 1, Φ from 0 to 2Π, and Θ from - Π
2

to Π
2

 .

IntegrateBIntegrate@Integrate@gSpherical@Ρ, Θ, ΦD*
Abs@JacobianDeterminant@8Ρ*Cos@ΘD*Cos@ΦD, Ρ*Cos@ΘD*Sin@ΦD, Ρ*Sin@ΘD<,
8Ρ, Θ, Φ<DD, 8Ρ, 0, 1<D, 8Φ, 0, 2*Π<D, :Θ, - Π

2
,
Π

2
>F

2 Π J 2 - ArcSinh@1DN

Clear@g, gSphericalD;

Example 2.7.19: Find the integral Ù Ù ÙM zex2+y2

â x â y â z, where

 M = 9Hx, y, zL Î R3 : x2 + y2 £ 4, 2 £ z £ 3= [11].

fAx_, y_, z_E = z*ãx2+y2;
We convert the function f to the cylindrical coordinates.

fCylindricalAΡ_, Φ_, h_E =
TransformedField@"Cartesian" ® "Cylindrical", f@x, y, zD, 8x, y, z< ® 8Ρ, Φ, h<D ��
Simplify

ã
Ρ2 h

The integration domain M is a cylinder with radius 2. Thus, Ρ runs from 0 to 2. Its height h goes from 2

to 3 and Φ must run around full circle. The Jacobian determinant is Ρ.

Integrate@Integrate@Integrate@fCylindrical@Ρ, Φ, hD*
JacobianDeterminant@8Ρ*Cos@ΦD, Ρ*Sin@ΦD, h<, 8Ρ, Φ, h<D, 8Ρ, 0, 2<D, 8Φ, 0, 2*Π<D

8h, 2, 3<D �� Simplify
5

2
I-1 + ã4M Π

Clear@f, fCylindrical, JacobianDeterminantD;

31

3 Interactive visualizations

3.1 Solution to the differential equation
The demonstration depicts the plot of the solution of a chosen differential equation passing through a

point a that is determined by dragging the locator. The equations are of the type y’= f Hx, yL, where

f :R2 ® R is a continuous function. The vector field in the background represents the direction of the

tangent line to the plot of the solution at each point. This field is given just by the right-hand side of the

equation. The particular solution is fixed by the initial condition.

ManipulateB
equation = SwitchAfunction,

"y", y’@xD � y@xD,
"cosHxL", y’@xD � Cos@xD,
"3x2ãx

2

+2xy", y’@xD == 3*x2*ãx2 + 2 x*y@xD
E;

fun = SwitchAfunction,
"y", y,

"cosHxL", Cos@xD,
"3x2ãx

2

+2xy", 3*x2*ãx
2

+ 2 x*y

E;
sol = DSolve@8equation, y@a@@1DDD � a@@2DD<, y@xD, xD;
ShowB:Plot@y@xD �. sol@@1DD, 8x, -5, 5<, PlotRange ® 5, PlotStyle ® BlackD,

VectorPlotB 81, fun<
1 + fun2

, 8x, -5, 5<, 8y, -5, 5<, Axes ® True, Frame ® None,

VectorPoints ® 15, VectorScale ® Small,

VectorStyle ® 8Opacity@0.3D, Arrowheads@0.02D, Thickness@0.001D<F>,
ImageSize ® 220, PlotRange ® 5, AspectRatio ® 1F,

RowA9Control@88a, 81, 1<<, Locator<D,
RowA9LabeledAControlA98function, "y", ""<, 9"y", "cosHxL", "3x2ãx

2

+2xy"==E,
8"y’ ="<, 8Left<E, Spacer@60D,

PaneARowA9" a
Ó
= H", Dynamic@Round@a@@1DD, 0.1DD, ", ",

Dynamic@Round@a@@2DD, 0.1DD, "L"=E, ImageSize ® 80E=E=E,
ControlType ® PopupMenuF

32

y’= 3x2ãx
2

+2xy a= H1.,1.L

Figure 3.1.15: Particular solution to chosen differential equation fixed by selected initial

condition. The vector field represents the direction of the tangent line to the plot at each point.

Clear@equation, fun, sol, a, function, yD;

3.2 Directional derivative
This applet demonstrates geometric interpretation of the directional derivative of the function f along a

given vector s
Ó
 at the point a. The upper inset in the figure shows the graph of f; the point a is depicted

in blue, and the blue line lies in the direction of s
Ó
. The intersection of the graph with the plane, which is

perpendicular to the xy-plane and contains the blue line, is displayed as a dashed line. The lower inset

shows a two-dimensional cut together with the tangent to this intersection. The value of the directional

derivative of f along s
Ó

 at a is just the tangent function of the angle between the tangent and the blue

line. As one varies s
Ó
 (by choosing the value of Φ, which denotes the angle between s

Ó
 and the x-axis),

the directional derivative changes correspondingly.

ManipulateB
ModuleB8f, a, a3D, directionalDerivative, plotf, s, horizontalLine,

tangent, intersections, intersection1, intersection2, cut, plane, point,

tangent2, cut2, plane2, point2<,

fAx_, y_E = 1 -
1

2
*x2 - y2 ;

a = 80.5, 0.7<;
a3D = Append@a, f �� aD;
s = 8Cos@ΦD, Sin@ΦD<;
directionalDerivativeAf_, s_, a_E :=
HGrad@f@x, yD, 8x, y<D �. 8x ® a@@1DD, y ® a@@2DD<L.s;

plotf = Plot3D@f@x, yD, 8x, -2, 3<, 8y, -1, 2<,
PlotRange ® 80, 1<, Mesh ® None, AxesLabel ® Automatic,

FaceGrids ® 880, 0, -1<<, FaceGridsStyle ® Directive@DottedD,
BoxRatios ® 84, 4, 1<, ColorFunction ® "Aquamarine", PlotStyle ® Opacity@0.7DD;

33

horizontalLine = ParametricPlot3D@8a3D@@1DD + s@@1DD*t, a3D@@2DD + s@@2DD*t, 0<,
8t, -10, 10<, PlotStyle ® 8Thickness@0.003D, Blue<D;

tangent = ParametricPlot3D@8a3D@@1DD + s@@1DD*t, a3D@@2DD + s@@2DD*t,
a3D@@3DD + directionalDerivative@f, s, a3DD*t<,
8t, -10, 10<, PlotStyle ® 8Thickness@0.003D, Black<D;

intersections = t �. NSolve@f@a3D@@1DD + s@@1DD*t, a3D@@2DD + s@@2DD*tD � 0, tD;
intersection1 = 8a3D@@1DD + s@@1DD*intersections@@1DD,

a3D@@2DD + s@@2DD*intersections@@1DD<;
intersection2 = 8a3D@@1DD + s@@1DD*intersections@@2DD,

a3D@@2DD + s@@2DD*intersections@@2DD<;
cut = ParametricPlot3D@8a3D@@1DD + s@@1DD*t, a3D@@2DD + s@@2DD*t,

f@a3D@@1DD + s@@1DD*t, a3D@@2DD + s@@2DD*tD<,
8t, intersections@@1DD, intersections@@2DD<,
PlotStyle ® 8Thickness@0.003D, Dashed<D;

plane = Graphics3D@8FaceForm@GrayLevel@0.5DD, EdgeForm@D, Opacity@0.5D,
Polygon@88intersection1@@1DD, intersection1@@2DD, 0<,
8intersection1@@1DD, intersection1@@2DD, 1<,
8intersection2@@1DD, intersection2@@2DD, 1<,
8intersection2@@1DD, intersection2@@2DD, 0<<D<D;

point = Graphics3D@8PointSize ® Large, Blue, Point@Append@a, 0DD<D;
tangent2 = ParametricPlot@8t, a3D@@3DD + directionalDerivative@f, s, a3DD*t<,
8t, -10, 10<, PlotStyle ® 8Thickness@0.003D, Black<D;

cut2 = ParametricPlot@8t, f@a3D@@1DD + s@@1DD*t, a3D@@2DD + s@@2DD*tD<,
8t, intersections@@1DD, intersections@@2DD<,
PlotStyle ® 8Thickness@0.003D, Black, Dashed<D;

plane2 = Graphics@8FaceForm@GrayLevel@0.5DD, EdgeForm@D, Opacity@0.5D,
Polygon@88intersections@@1DD, 0<, 8intersections@@1DD, 1<,
8intersections@@2DD, 1<, 8intersections@@2DD, 0<<D<D;

point2 = Graphics@8PointSize ® Large, Blue, Point@80, 0<D<D;
LabeledB
GraphicsGrid@88Show@8plotf, tangent, horizontalLine, cut, plane, point<,

ViewPoint ® 83, 3, 2<D<,
8Show@8tangent2, cut2, plane2, point2<, PlotRange ® 88-2, 2<, 80, 1.5<<,

AxesStyle ® Blue, ImageSize ® 300, Axes ® 8True, False<, Ticks ® FalseD<<,
Spacings ® 80, 5<D,

PaneBRowB:PaneARowA9"aÓ = H", a3D@@1DD, ", ", a3D@@2DD, "L"=EE,
Spacer@20D,
PaneARowA9"sÓ =H", N@Round@s@@1DD, 0.1DD, ", ", N@Round@s@@2DD, 0.1DD, "L"=EE,
Spacer@20D,
PaneBRowB:" ¶f

¶s
®

HaÓL = ", N@Round@directionalDerivative@f, s, a3DD, 0.01DD>FF>F,

ImageMargins ® 20F, TopFF, 8Φ, 0, 2*Π<, ContinuousAction ® FalseF

34

Φ

a
Ó
= H0.5, 0.7L s

Ó
=H1., 0.L ¶f

¶s
®
HaÓL = -0.4

Figure 3.2.16: Geometric interpretation of directional derivative.

3.3 Constrained extrema

The animation illustrates how the gradient of the function f Hx, yL = Ix2 - y2M ã -x2-y2

2 and the gradient of

the constraint Hx- 1L2 + Hy- 1L2 - 1

2
= 0 look at the points of the constraint. The function f has two

local extremum points subjected to the constraint g. Only at these points, the gradients of f and g are

proportional.

The gradient of f is displayed as a blue arrow, whereas the gradient of g is displayed as a red arrow.

The critical points are represented by pink points. The length and the direction of the arrows corre-

spond to the length and the direction of the gradient.

fAx_, y_E = Ix2 - y2M*ã -x
2-y2

2 ;

gAx_, y_E = Hx - 1L2 + Hy - 1L2 - 1

2
;

ax = 1; ay = 1; radius = 0.5 ;

a = NSolve@g@x, yD � 0 && D@f@x, yD - Λ*g@x, yD, xD � 0 && D@f@x, yD - Λ*g@x, yD, yD � 0 ,

8x, y, Λ<, RealsD
88x ® 0.357474, y ® 1.29523, Λ ® -0.400399<, 8x ® 1.29523, y ® 0.357474, Λ ® 0.400399<<

a1 = 8x �. a@@1DD, y �. a@@1DD<;

a2 = 8x �. a@@2DD, y �. a@@2DD<;

35

arrowsAf_, startPoint_, colour_E :=
Module@8gradient, endPoint, scaleParameter<,
scaleParameter = 1;

gradient = Grad@f@x, yD, 8x, y<D �. 8x ® startPoint@@1DD, y ® startPoint@@2DD<;
endPoint = 8gradient@@1DD*scaleParameter + startPoint@@1DD,

gradient@@2DD*scaleParameter + startPoint@@2DD<;
Graphics@8colour, Arrow@8startPoint, endPoint<D<DD

backGround = 8ContourPlot@f@x, yD, 8x, -2, 4<, 8y, -2, 4<,
Contours ® 10, ColorFunction ® "BlueGreenYellow",

MaxRecursion ® 5, ImageSize ® 250, AxesLabel ® 8x, y<D,
Graphics@Circle@8ax, ay<, radiusDD,
Graphics@8PointSize@LargeD, Pink, Point@8a1@@1DD, a1@@2DD<D<D,
Graphics@8PointSize@LargeD, Pink, Point@8a2@@1DD, a2@@2DD<D<D<;

frames = TableBShow@Append@backGround,
8arrows@f, 8Cos@angleD*radius + ax, Sin@angleD*radius + ay<, BlueD,
arrows@g, 8Cos@angleD*radius + ax, Sin@angleD*radius + ay<, RedD<D,

PlotLabel ® Pane@Row@8"f@", N@Round@Cos@angleD*radius + ax, 0.01DD, ", ",

N@Round@Sin@angleD*radius + ay, 0.01DD, "D = ",

N@Round@f@Cos@angleD*radius + ax, Sin@angleD*radius + ayD, 0.01DD<DDD,
:angle, 0, 2*Π,

Π

50
>F;

Labeled@ListAnimate@Rasterize@ð, "Image"D & �� frames, AnimationRunning ® FalseD,
PointLegend@8Pink, Blue, Red<,
8"critical points", "gradient of f", "gradient of the constaint"<,
LegendMarkers ® 8Graphics@Point@80, 0<DD, "�" , "�" <D, RightD

critical points

� gradient of f

� gradient of constaint

Figure 3.3.17: Gradient of the function Ix2 - y2M ã -x2-y2

2 and the constraint

Hx - 1L2 + Hy - 1L2 - 1

2
= 0 at the points of the constraint.

Clear@f, g, ax, ay, radius, a, a1, a2, arrows, backGround, framesD;

36

3.4 Useful alternative coordinate systems
Transformation from cartesian to one of the following coordinate systems can help us with calculating

integrals when integrated function and/or integration domain have radial, spherical or cylindrical

symmetry.

3.4.1 Polar coordinate system

This is a two-dimensional coordinate system in which each point is determined by the distance from the

origin and the angle from the polar axis. The relationship between these coordinate systems is given by

x = Ρ cosHΦL,
y = Ρ sinHΦL.

PanelBDynamicModuleB8p = 85, 5<<, ColumnB:RowB:Panel@Row@8"Ρ = ",

Dynamic@EuclideanDistance@80, 0<, pDD<D, ImageSize ® 8120, 50<,
Alignment ® 8Center, Center<D, PanelBRowB:"Φ = ", DynamicBIfBp@@2DD > 0,

VectorAngle@81, 0<, pD
Π

,
2*Π - VectorAngle@81, 0<, pD

Π

FF, " Π">F,
ImageSize ® 8120, 50<, Alignment ® 8Center, Center<F>F,

Show@PolarPlot@810<, 8t, 0, 2*Π<, PlotStyle ® Lighter@GrayD,
PolarGridLines ® 880, Pi�2, Pi, 3 Pi�2<, 82, 4, 6, 8<<D, Graphics@8Locator@

Dynamic@pDD, Dynamic@Line@880, 0<, p<DD, Opacity@0.2D<, Axes ® TrueD,
PlotRange ® 88-11, 11<, 8-11, 11<<, ImageSize ® 250D>, Alignment ® CenterFFF

Ρ = 5 2 Φ =
1

4
Π

Figure 3.4.18: Polar coordinate system.

37

3.4.2 Spherical coordinate system

This coordinate system is three-dimensional. The position of a point is specified by the distance from

the pole, the polar angle and the azimuth angle. The cartesian coordinates are determined by

x = Ρ cosHΘ L cosHΦL,
y = Ρ cosHΘ L sinHΦL,

z = Ρ sinHΘ L.

ManipulateB
point = 8Ρ*Cos@angles@@2DDD*Cos@angles@@1DDD,
Ρ*Cos@angles@@2DDD*Sin@angles@@1DDD, Ρ*Sin@angles@@2DDD<;

ShowBGraphics3DB:PointSize@0.015D, Point@pointD,
Thickness@0.003D, Line@880, 0, 0<, point<D, Opacity@0D,
EdgeForm@8Lighter@GrayD, Thickness@0.001D<D,
Cylinder@880, 0, 0<, 80, 0, 0.01<<, ΡD,
EdgeForm@8Black<D,

CylinderB:80, 0, 0<, :
Ρ*Cos@angles@@2DDD*CosAangles@@1DD + Π

2
E

100
,

Ρ*Cos@angles@@2DDD*SinAangles@@1DD + Π
2
E

100
, 0>>, ΡF,

EdgeForm@8Black<D,
Cylinder@880, 0, point@@3DD<, 80, 0, point@@3DD + 0.01<<,
Abs@Ρ*Cos@angles@@2DDDDD,

Lighter@GrayD, Opacity@0.15D, Sphere@80, 0, 0<, ΡD>, ViewPoint ® 81, 0.5, 1<F,
PlotRange ® 88-11, 11<, 8-11, 11<, 8-11, 11<<, ImageSize ® 8250<,
AxesOrigin ® 80, 0, 0<, Axes ® True, Ticks ® All, Boxed ® False,

BoxRatios ® Automatic, SphericalRegion ® TrueF,
ColumnB:Row@8Control@8Ρ, 5, 10<D, Spacer@20D, "Ρ = ", Dynamic@ΡD<D,

RowB
:LabeledBControlB:8angles, 80, 0<, ""<, :0, - Π

2
>, :2*Π, Π

2
>, ImageSize ® Small>F,

8"Φ", "Θ"<, 8Bottom, Left<F, Spacer@160D,
ColumnB:RowB:"Φ = ", DynamicB angles@@1DD

Π

F, " Π">F,

RowB:"Θ = ", DynamicB angles@@2DD
Π

F, " Π">F>F>F>FF

38

Ρ Ρ = 5

Θ

Φ

Φ = 0 Π

Θ = 0.17Π

Figure 3.4.19: Spherical coordinate system.

Clear@pointD;

3.4.3 Cylindrical coordinate system

The cylindrical coordinate system is another three-dimensional coordinate system which is obtained by

replacing x and y with polar coordinates Ρ and Φ and leaving the z coordinate the same, i.e.

x = Ρ cosHΦL
y = Ρ sinHΦL

z = h

39

ManipulateB
point = 8Ρ*Cos@ΦD, Ρ*Sin@ΦD, h<;
Show@Graphics3D@8PointSize@0.015D, Point@pointD,

Thickness@0.003D, Line@880, 0, h<, point<D,
Lighter@GrayD, Opacity@0.15D, Cylinder@880, 0, 0<, 80, 0, h<<, ΡD<,

ViewPoint ® 81, 1, 0.5<D, PlotRange ® 88-11, 11<, 8-11, 11<, 8-11, 11<<,
ImageSize ® 8250<, AxesOrigin ® 80, 0, 0<, Axes ® True, Ticks ® All,

Boxed ® False, BoxRatios ® Automatic, SphericalRegion ® TrueD,
ColumnB:Row@8Control@8Ρ, 1, 7<D, Spacer@40D, "Ρ = ", Dynamic@ΡD<D,

RowB:Control@8Φ, 0, 2*Π<D, Spacer@40D, "Φ = ", DynamicB Φ
Π

F, " Π">F,
Row@8Control@8h, -7, 7<D, Spacer@40D, "h = ", Dynamic@hD<D>FF

Ρ Ρ = 4.15

Φ Φ = 0 Π

h h = 7.

Figure 3.4.20: Cylindrical coordinate system.

Clear@pointD;

3.5 Double integral

This illustration shows how a definite integral of f Hx, yL = 2- 2 sinIx2 + y2M can be calculated using

different numerical methods and the convergence of Riemann sums.

The interval of integration is divided into subintervals according to the number of dividing points. The

approximation is performed by finding the volume of the collection of cuboids. The lengths and widths

of these cuboids are defined by the size of subintervals. Their heights are determined by the approxima-

tion method:

è Lower sum the height is equal to the infimum of f on the specific subinterval.

è Upper sum the height is equal to the supremum of f on the specific subinterval.

40

è Midpoint rule the height is equal to the value of f in the middle of the subinterval [9].

è Trapezoidal rule the height is equal to the average of endpoints of subinterval [9].

The error is increasing or decreasing depending on the number of dividing points and the technique of

approximation.

ManipulateB
ModuleB8f, plotf, plotInterval, plotSize, intervalSize, partition,

intervals, intervals2, fvalue, sum<,
fAx_, y_E = 2 - 2*SinAx2 + y2E;
plotf = Plot3D@f@x, yD, 8x, -1, 1<, 8y, -1, 1<, PlotStyle ® 8Opacity@0.5D, Green<,

Mesh ® None, Boxed ® False, Axes ® NoneD;
plotInterval = 8-1, 1<;
plotSize = plotInterval@@2DD - plotInterval@@1DD;
intervalSize =

plotSize

dividingPoints
;

partition =

Partition@Table@i, 8i, plotInterval@@1DD, plotInterval@@2DD, intervalSize<D,
2, 1D;

intervals = Flatten@Table@8partition@@iDD@@1DD, partition@@jDD@@2DD<,
8i, 1, dividingPoints<, 8j, 1, dividingPoints<D, 1D;

intervals2 =

Flatten@Table@partition@@iDD@@1DD < x < partition@@iDD@@2DD &&
partition@@jDD@@1DD < y < partition@@jDD@@2DD, 8i, 1, dividingPoints<,
8j, 1, dividingPoints<DD;

fvalue = SwitchBmethod,
lowerSum, TableANMinimize@8f@x, yD, intervals2@@iDD<, 8x, y<, PrecisionGoal ® 2D@@

1DD, 9i, 1, dividingPoints2=E,
upperSum,

TableANMaximize@8f@x, yD, intervals2@@iDD<, 8x, y<, PrecisionGoal ® 2D@@1DD,
9i, 1, dividingPoints2=E,

midpointRule,

TableAf@intervals@@iDD@@1DD + intervalSize �2,
intervals@@iDD@@2DD - intervalSize �2D, 9i, 1, dividingPoints2=E,

trapezoidalRule, TableB
1

4
*Hf@intervals@@iDD@@1DD, intervals@@iDD@@2DDD +
f@intervals@@iDD@@1DD + intervalSize, intervals@@iDD@@2DDD +
f@intervals@@iDD@@1DD, intervals@@iDD@@2DD - intervalSizeD +
f@intervals@@iDD@@1DD + intervalSize, intervals@@iDD@@2DD - intervalSizeDL,

9i, 1, dividingPoints2=FF;
sum = NATotalATableAintervalSize2*fvalue@@iDD, 9i, 1, dividingPoints2=EEE;
LabeledBShowA9plotf,

TableAGraphics3D@8Opacity@0.7D, Lighter@YellowD,
Cuboid@8intervals@@iDD@@1DD, intervals@@iDD@@2DD, fvalue@@iDD<,
8intervals@@iDD@@1DD + intervalSize, intervals@@iDD@@2DD - intervalSize,
0<D<D, 9i, 1, dividingPoints2=E=,

ImageSize ® 8250, 250<, BoxRatios ® 81, 1, 1<, Boxed ® FalseE,

41

PaneBColumnB:StandardForm@Panel@Row@8"f@x,yD = ", f@x, yD<DDD,
StandardFormB
PanelBRowB:"à

-1

1

à
-1

1

f@x,yD âxây = ",

N@Integrate@f@x, yD, 8x, -1, 1<, 8y, -1, 1<DD>FFF,
Pane@Row@8"Volume = ", sum<D, ImageMargins ® 20D,
Pane@
Row@8"Error = ",

Abs@sum - N@Integrate@f@x, yD, 8x, -1, 1<, 8y, -1, 1<DDD<DD>,
CenterF, ImageMargins ® 10F, RightFF,

88dividingPoints, 3<, 83, 4, 5, 6, 7, 8, 9, 10<<,
88method, lowerSum<, 8lowerSum, upperSum, midpointRule , trapezoidalRule <<,
ControlType ® 8PopupMenu, PopupMenu<F

dividingPoints 3

method lowerSum

f@x,yD = 2 - 2 SinAx2 + y2E

Ù
-1

1 Ù
-1

1
f@x,yD âxây = 3.50968

Volume = 1.06207

Error = 2.4476

Figure 3.5.21: Approximation of the definite integral of the function 2 - 2 sinIx2 + y2M using

selected methods.

42

4 Bivariate limits

4.1 Bivariate limits in Mathematica
Mathematica does not provide any function for calculating limits of functions of two variables. The

only way is to use the command WolframAlpha which sends the input to WolframAlpha and imports

the output. However, it requires the Internet access.

WolframAlpha@"limit Hx^2*y^2L�Hx^2+y^2L as x®0, y®0", "PodCells"D

: lim8x,y<®80,0<
x2 y2

x2 + y2
,

0
Hassuming variablesare real-valuedL>

Although it looks like it works pretty well, the results of some computations can be incorrect. For

instance, the limit of the function
2 xy

xy+ 2 x- y
, where both x and y tend to zero.

WolframAlpha@"limit H2*x*yL�Hx*y + 2*x - yL as x®0, y®0", "PodCells"D

: lim8x,y<®80,0<
2 x y

x y + 2 x - y
,

0
Hassuming variablesare real-valuedL>

WolframAlpha returns 0 but the limit does not exist as we proved in example 2.2.5

4.2 Function doubleLimit
Due to the insufficient performance of the built-in function limit of WolframAlpha, we have decided to

define our own function named doubleLimit. It consists of three modules, each of which uses a differ-

ent method.

At first, we use the method of sequential limits. If both are finite, this module can determine that either

the limit does not exist or the limit would equal some specific value if it existed.

sequentialLimitsAf_, 9x_, y_= ® 9ax_, ay_=E :=
Module@8seqLim2<,
If@Head@fD === If ÈÈ Head@fD === Piecewise ÈÈ Head@fD === Which ÈÈ

Head@fD === Switch ÈÈ Head@fD === Boole, "The limit may still exist.",

seqLim1 = Limit@Limit@f, y ® ayD, x ® axD;
seqLim2 = Limit@Limit@f, x ® axD, y ® ayD;
If@NumericQ@seqLim1D && NumericQ@seqLim2D && seqLim1 ¹ seqLim2,
"The limit does not exist.",

If@NumericQ@seqLim1D && NumericQ@seqLim2D && seqLim1 == seqLim2,
Row@8"The limit may exist and if it does then it has to be ",

seqLim1, "."<D, "The limit may still exist."DDDD;
The second method how the nonexistence of a limit can be proven is approaching the point at which

the limit is searched via various curves of the form x = ky
i

j . If the function is a polynomial, the curves

are produced for i and j run from 1 to the highest exponent from all of the numerators and denomina-

tors of the variables. In case the function is not polynomial, the highest exponent is increased by 1 in

order to construct lines at least. The output of this module can be that the limit does not exist or what

the limit would be provided it existed.

43

curvesAf_, 9x_, y_= ® 9ax_, ay_=E :=
ModuleB8g, nonexistence, exponents, highestExp, k<,
IfBHead@fD === If ÈÈ Head@fD === Piecewise ÈÈ Head@fD === Which ÈÈ

Head@fD === Switch ÈÈ Head@fD === Boole, "The limit may still exist.",

g = Factor@fD;
nonexistence = False;

exponents = 8Numerator@Exponent@Numerator@gD, 8x, y<DD,
Denominator@Exponent@Numerator@gD, 8x, y<DD,
Numerator@Exponent@Denominator@gD, 8x, y<DD,
Denominator@Exponent@Denominator@gD, 8x, y<DD<;

highestExp = Max@exponentsD + 1;
ForBi = 1, i £ highestExp, i++,

ForBj = 1, j £ highestExp, j++,

lim = LimitBg �. x ® k*Abs@y - ayD
i

j + ax, y ® ayF;
If@HHExponent@Numerator@limD, kD ¹ 0 ÈÈ Exponent@Denominator@limD, kD ¹ 0L &&

Exponent@lim, kD ¹ -InfinityL, 8nonexistence = True, Break@D<,
Unevaluated@Sequence@DDDFF;

If@nonexistence, "The limit does not exist.",

If@NumericQ@limD,
Row@8"The limit may exist and if it does then it has to be ", lim, "."<D,
"The limit may still exist."DDFF;

The purpose of the last module is to find the limit employing the definition. Nonetheless, it can also

state whether or not it exists. The function is maximized and minimized on two-dimensional interval of

the size 2d ´ 2d, where the point at which the limit should be found is in the middle of this interval.

The result of this maximization and minimization are one-variable functions dependent on d. If they

have the same limit as d tends to zero, the searched limit exists and is equal to the their common value.

If they differ, the limit does not exist. This method, which is described at [12], works fine typically for

rational functions.

maxMinMethodAf_, 9x_, y_= ® 9ax_, ay_=E :=
Module@8d, max, min, limMax, limMin<,
max = Maximize@8f, 0 < d < 1 && -d £ x - ax £ d && -d £ y - ay £ d<, 8x, y<D;
min = Minimize@8f, 0 < d < 1 && -d £ x - ax £ d && -d £ y - ay £ d<, 8x, y<D;
limMax = Limit@max@@1DD, d ® 0D;
limMin = Limit@min@@1DD, d ® 0D;
If@HlimMax � Infinity && limMin � -InfinityL ÈÈ
HlimMax � -Infinity && limMin � InfinityL, "The limit does not exist.",

If@! NumericQ@limMaxD ÈÈ ! NumericQ@limMinD, "Function cannot find the limit.",

If@limMax � limMin, limMax, "The limit does not exist."DDDD;
Note that this method can be easily transformed to search limits of more than two-variable functions.

All three methods are used in the following complex module termed doubleLimit.

44

doubleLimitAf_, 9x_, y_= ® 9ax_, ay_=E :=
Module@8possibleLimit, limit, seqLim1, lim<,
possibleLimit = False;

limit = sequentialLimits@f, 8x, y< ® 8ax, ay<D;
If@limit === "The limit does not exist.", limit,

If@limit === Row@8"The limit may exist and if it does then it has to be ",

seqLim1, "."<D, possibleLimit = limitD;
limit = curves@f, 8x, y< ® 8ax, ay<D;
If@limit === "The limit does not exist.", limit,

If@
limit === Row@8"The limit may exist and if it does then it has to be ",

lim, "."<D
&& possibleLimit === False, possibleLimit = limitD;

limit = maxMinMethod@f, 8x, y< ® 8ax, ay<D;
If@limit === "The limit does not exist." ÈÈ NumericQ@limitD, limit,

If@possibleLimit =!= False, possibleLimit,

"Function cannot find the limit."DDDDD;
Here are some examples of applications:

doubleLimitB x
2*y2

x2 + y2
, 8x, y< ® 80, 0<F

0

doubleLimitB 2*x*y

x*y + 2*x - y
, 8x, y< ® 80, 0<F

The limit does not exist.

doubleLimitB x
2 - y2

x2 + y2
, 8x, y< ® 80, 0<F

The limit does not exist.

doubleLimitBCosBΠ* x2

4*x2 + y4
F, 8x, y< ® 80, 0<F

The limit does not exist.

Clear@sequentialLimits, seqLim1, curves, lim, maxMinMethod, doubleLimitD;

4.2.1 Method of critical paths

There is one more method published at [8] which we intended to employ for calculating bivariate

limits. It is used and delineated by Maplesoft in Maple version 17. It is based on so called critical

paths. The function attains its local maximum or minimum subjected to the constraint C, which is a

circle with radius Ρ and centre a = Iax, ayM, if the gradient of the function and the gradient of the

constraint are parallel. Thus, the following equation can be derived:

¶ f

¶ x

¶ C

¶ y
-
¶ f

¶ y

¶ C

¶ x
= 0.

45

Together with the equation of the function, it determines the critical paths. If all limits along these

paths are the same, the bivariate limit exists and equals this common value. On the other hand, if at

least one of them differs, it can be said that the bivariate limit does not exist.

Although it works in theory, the reality is much worse. Function Solve has only limited power how to

find the solution, especially of more complicated equations. Moreover, this method solves the same

kind of examples as the module maxMinMethod.

Taking into consideration these facts, we have decided not to use this method.

4.2.2 Possible issues

The success of finding the bivariate limit depends on the built-in function Limit which does not have to

be so trustworthy as one would expect. For example, the following limit should not exist as the one-

sided limits differ.

LimitB Abs@xD
x

, x ® 0F

1

However, Mathematica declares that it exists because, by default, it computes the limit from the right.

46

5 Ballistic curves
A ballistic curve is a path of a projectile in the gravity field. Besides the gravitational force, there are

other forces acting on the projectile. One of the them is air resistance (also called drag). The earth’s

rotation is neglected, and the height between the projectile and the earth is assumed to be insignificant

in comparison with the earth’s dimensions in order that the gravitational constant would not change.

5.1 Ballistic trajectory without air resistance
The projectile is launched at a velocity of

v
Ó = Ivx, vyM .

The x- and y-component can be expressed as

vx = v cosHΦL ,
vy = v sinHΦL,

where Φ is the angle between x-axis and vector v
Ó
.

Let us assume that the projectile is launched from the point (0, 0). The gravitational force influences

only the vertical component. The trajectory is given by the parametric equations

(3)xHtL = vx t,

(4)yHtL = vy t -
1

2
gt2.

5.2 Ballistic trajectory with air resistance
Air resistance is a kind of force which acts in the opposite way to the motion of an object with respect

to the surrounding fluid [13].

We will consider two kinds of drag linear and quadratic. The former is usually used for lower veloc-

ity, the latter usually for higher velocity [10]. They are given by the equations

FL = -c v
Ó
, @5D

FQ = -c v
Ó2, @5D

where c is the drag coefficient that is used to quantify the drag of an object. It is associated with the

surface area of the object and is obtained from laboratory experiments. The value usually ranges

between 0.4 and 1 [2].

47

5.2.1 Drag proportional to velocity

The total force in x- and y-direction should be expressed as

(5)Fx = max = -cvx

and

(6)Fy = may = -cvy - mg.

Note that only Fy is influenced by the gravitational force. Since the trajectory should be found, the

following differential equations are derived by alteration of (5) and (6):

(7)
â 2 x

â t2
= -

c

m

â x

â t
,

(8)
â 2 y

â t2
= -

c

m

â y

â t
- g.

As equations (7) and (8) are independent, they can be solved separately. The particular solutions are

fixed by the initial conditions x’H0L = vx, y’H0L = vy, xH0L = 0, and yH0L = 0.

DSolveB:x’’@tD � -c* x’@tD
m

, x’@0D � vx, x@0D � 0>, x@tD, tF �� FullSimplify

::x@tD ®
1 - ã

-
c t

m m vx

c
>>

DSolveB:y’’@tD � -c* y’@tD
m

- g, y’@0D � vy, y@0D � 0>, y@tD, tF �� FullSimplify

::y@tD ®
m g m - c g t + c vy - ã

-
c t

m Hg m + c vyL

c2
>>

The equations of the trajectory are

(9)xHtL =
J1- ã- c t

m Nm vx

c
,

(10)yHtL = 1

c2
m Jg m- c g t + c vy - ã

-
c t

m Ig m+ c vyMN.

48

5.2.2 Drag proportional to velocity squared

The total force in x- and y-direction is

Fx = max = -cvx
2,

Fy = may = -cvy
2 - mg.

Thus, the trajectory can be expressed as the following differential equations:

(11)
â 2 x

â t2
= -

c

m

â x

â t

â x

â t

2

+
â y

â t

2

,

(12)
â 2 y

â t2
= -

c

m

â y

â t

â x

â t

2

+
â y

â t

2

- g.

Unlike (7) and (8), equations (11) and (12) are dependent and must be solved as a system of differential

equations. However, Mathematica is not able to solve them analytically. As a consequence, NDSolve is

used instead of DSolve to find numerical solution. Hence, c, m, and g must be equal to some specific

value. The initial conditions are x’H0L = vx, y’H0L = vy, xH0L = 0, and yH0L = 0.

NDSolveB:x’’@tD � - c
m
x’@tD x’@tD2 + y’@tD2 �. 8c ® 1, m ® 1, g ® 9.81<,

y’’@tD � -g - c

m
y’@tD x’@tD2 + y’@tD2 �. 8c ® 1, m ® 1, g ® 9.81<, x’@0D � 1,

y’@0D � 1, x@0D � 0, y@0D � 0>, 8x@tD, y@tD<, 8t, 0, 3<F
88x@tD ® InterpolatingFunction@880., 3.<<, <>D@tD,

y@tD ® InterpolatingFunction@880., 3.<<, <>D@tD<<

NDSolve returns only an approximate function, which differs according to the specific initial conditions.

5.3 Visualization
The trajectory of a projectile is now visualized using the equations (3) and (4) for trajectory without

drag, and (9) and (10) for trajectory with drag proportional to the velocity. Drag proportional to the

velocity squared is determined numerically according to the selected initial conditions. The mass m and

constant c must be fixed for the purposes of visualization (we chose m = 1 and c = 1).

49

ManipulateBModuleB8x1, y1, x2, y2, numSol<,
x1At_E = vx*t;
y1At_E = vy*t - 1

2
*g*t2;

If@f1 � 1, plot1 = ParametricPlot@
88x1@tD �. 8vx ® v0*Cos@Φ0D, Φ ® Φ0, m ® 1, g ® 9.81, c ® 1<,

y1@tD �. 8vy ® v0*Sin@Φ0D, Φ ® Φ0, m ® 1, g ® 9.81, c ® 1<<<, 8t, 0, 3<,
PlotStyle ® BlueD, plot1 = ParametricPlot@0, 8t, 0, 3<DD;

x2At_E =
1 - ã

-
c*t

m *m*vx

c
;

y2At_E =
m* g*m - c*g*t + c*vy - ã

-
c*t

m *Hg*m + c*vyL
c2

;

If@f2 � 1, plot2 = ParametricPlot@
88x2@tD �. 8vx ® v0*Cos@Φ0D, Φ ® Φ0, m ® 1, g ® 9.81, c ® 1<,

y2@tD �. 8vy ® v0*Sin@Φ0D, Φ ® Φ0, m ® 1, g ® 9.81, c ® 1<<<, 8t, 0, 3<,
PlotStyle ® RedD, plot2 = ParametricPlot@0, 8t, 0, 3<DD;

numSol =

NDSolveB:x3’’@tD � - c
m
x3’@tD x3’@tD2 + y3’@tD2 �. 8c ® 1, m ® 1, g ® 9.81<,

y3’’@tD � -g - c

m
y3’@tD x3’@tD2 + y3’@tD2 �. 8c ® 1, m ® 1, g ® 9.81<,

x3@0D � 0, y3@0D � 0, x3’@0D � v0*Cos@Φ0D, y3’@0D � v0*Sin@Φ0D>,
8x3@tD, y3@tD<, 8t, 0, 3<F;

If@f3 � 1, plot3 = ParametricPlot@8x3@tD, y3@tD< �. numSol, 8t, 0, 3<,
PlotStyle ® Darker@GreenDD, plot3 = ParametricPlot@0, 8t, 0, 3<DD;

Show@8plot1, plot2, plot3<, PlotRange ® 880, 11<, 80.1, 6<<, ImageSize ® 400DF,
ColumnB:Control@88v0, 7.5, "v"<, 5, 10<D, ControlB::Φ0, Π

4
, "Φ">, 0,

Π

2
>F,

Row@8Control@88f1, 1, ""<, 80, 1<<D,
Text@Style@ " without drag", Medium, BlueDD<D,

Row@8Control@88f2, 1, ""<, 80, 1<<D,
Text@Style@ " drag proportional to velocity", Medium, RedDD<D,

Row@8Control@88f3, 1, ""<, 80, 1<<D,
Text@Style@ " drag proportional to velocity squared", Medium,

Darker@GreenDDD<D>FF

50

v

Φ

without drag

drag proportional to velocity

drag proportional to velocity squared

2 4 6 8 10

1

2

3

4

5

6

Figure 5.3.22: Trajectory of a projectile without drag and with drag proportional to the velocity

and velocity squared.

51

Conclusion
An interactive tool for students of the Mathematics 4 course has been developed. This project could

help them to understand the problems on many solved examples. The advantages of computer algebra

system Wolfram Mathematica have been demonstrated on particular examples. On the other hand, we

were also able to show that Mathematica is not unfailing and sometimes gives bad results without any

warning.

Since the source code is included for all examples, this project can also help learning the basics of

Mathematica, although it is not the main purpose.

The question of bivariate limits has been discussed. Our own function has been created to find them or

disprove their existence using various methods. It works very good; especially when it is applied to a

rational function, and covers the needs of the Mathematics 4 course.

Furthermore, the problem of ballistic curves has been solved and visualized.

Several interactive visualizations have been developed to help students understand some notions and

problems. Moreover, they could be also used as an interactive tool by lecturers.

In the future, the function for calculating bivariate limits could be upgraded to operate on more difficult

examples. Furthermore, other courses of mathematics could be processed in a similar way to create

complex materials for mathematics courses at our Faculty.

52

Bibliography

[1] Abell, Martha L., and James P. Braselton. Mathematica By Example. 3rd ed. Boston: Academic,
2004. Print.

[2] Halliday, David, Robert Resnick, and Jearl Walker. Fyzika: Část 1 Mechanika. Trans. Petr Dub and
Jan Obdržálek. Brno: VUTIUM, 2000. Print.

[3] Mangano, Sal. Mathematica Cookbook. Sebastopol, CA: O’Reilly, 2010. Print.

[4] Marsden, Jerrold and Alan Weinstein. Calculus III. New York: Springer-Verlag, 1985. Print.

[5] Štoll, Ivan. Mechanika. Prague: Česká Technika, 2010. Print.

[6] About WolframAlpha. Making the World’s Knowledge Computable. N.p., [2014]. Web. 24 June
2014. <http://www.wolframalpha.com/about.html>.

[7] About Wolfram Research. Wolfram Research Company Background. N.p., [2014]. Web. 24 June
2014. <http://www.wolfram.com/company/background.html>.

[8] Bivariate Limits. Updates/Maple17/BivariateLimits – Help. N.p., [2014]. Web. 25 June 2014.
<http://www.maplesoft.com/support/help/Maple/view.aspx?path=updates/Maple17/BivariateLimits>.

[9] Dawkins, Paul. Pauls Online Notes: Calculus II – Approximating Definite Integrals. N.p., [2014].
Web. 24 June 2014.
<http://tutorial.math.lamar.edu/Classes/CalcII/ApproximatingDefIntegrals.aspx>.

[10] Erlichson, Herman. Maximum Projectile Range with Drag and Lift, with Particular Application to
Golf (n.d.): n. pag. 16 June 1982. Web. 24 June 2014.
<http://http://ww2.odu.edu/∼agodunov/teaching/phys420/files/Erlichson.pdf>.

[11] Franc, Jiřı́, and Matěj Tušek. Sbı́rka úloh k předmětu Matematika 4 (MAT4) (n.d.): n. pag. 25 Feb.
2014. Web. 24 June 2014.
<http://kmlinux.fjfi.cvut.cz/∼tusekmat/download/MAT4 sbirka.pdf>.

[12] Michael E2. Finding Limits in Several Variables. Functions. N.p., 18 Mar. 2013. Web. 24 June 2014.
<http://mathematica.stackexchange.com/questions/21544/finding-limits-in-several-variables>.

[13] Wikipedia Contributors. Drag (physics). Wikipedia. Wikimedia Foundation, 18 June 2014. Web.
24 June 2014. <http://en.wikipedia.org/wiki/Drag (physics)>.

[14] Wikipedia Contributors. Mathematica. Wikipedia. Wikimedia Foundation, 22 June 2014. Web. 25
June 2014. <https://en.wikipedia.org/wiki/Mathematica>.

[15] WolframAlpha. Personal Analytics. N.p., [2014]. Web. 24 June 2014.
<http://www.wolframalpha.com/facebook/>.

[16] Wolfram Demonstrations Project. Demonstrations RSS. N.p., [2014]. Web. 24 June 2014.
<http://demonstrations.wolfram.com/>.

53

