
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

Department of Mathematics

The Mathematics 4 course in Wolfram
Mathematica

Bachelor’s Degree Project

Author: Eva Lorencová
Supervisor: Ing. Matěj Tušek, Ph.D.
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Preface
All students of our Faculty have to take the courses of mathematics. To go through this process,  they

use books, university textbooks, materials from lectures, etc. We wanted to help them by creating some

interactive study material.  For this  reason,  the project  processes one of the courses of mathematics of

our Faculty  the Mathematics 4 course.

The project is divided into four main parts. The first part deals with the particular topics of Mathemat-

ics 4 course.  For each topic,  the most important definitions and theorems are given and some specific

examples solved. The source code written in Mathematica is included.

In the next part, interactive visualizations of some notions and problems are developed. They could be

used  not  only  by  students  but  also  by  their  lecturers  as  an  interactive  tool  during  classes.  They  are

developed in the spirit of demonstrations at [16] but tailored to the students of our Faculty.

As  there  is  no  built-in  function  for  calculating  bivariate  limits  in  Mathematica,  the  third  part  of  the

project contains a function which can calculate some of them.

Finally, as  a  practical  application of the skills developed during the Mathematics 4 course,  a  physical

problem is solved  namely the problem of ballistic curves.

As has been already said, the main goal of the project is to create an interactive tool for students of our

Faculty.  They can  see  that  there  is  another  way how to  solve  a  problem and  that  Mathematica  could

help them with the task they are not able to solve due to difficult calculations. Furthermore, some more

difficult and interesting problems are solved.

The  whole  project  will  be  available  on  the  Internet  and  is  written  as  a  notebook  in  Mathematica  in

order that students could work with it and could change the content in any way they want.
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1 Introduction to Wolfram Mathematica

1.1 Wolfram Mathematica
Wolfram Mathematica,  or  simply Mathematica,  is  a  computational  software  program based  on  sym-

bolic  mathematics.  It  was  invented  by  Stephen  Wolfram  in  1988  and  is  developed  by  Wolfram

Research.  The  latest  version is  available  for  three  major  platforms  Microsoft  Windows,  MacOS X,

and Linux (supporting both 32-bit and 64-bit implementations) [7].

Mathematica  is  divided into  two main  parts.  The  code  is  interpreted  by the  kernel,  whereas the  front

end provides the graphical user interface. Much of the content can be edited interactively or generated

by an algorithm [14].

Programming  in  Mathematica  differs  from  programming  in  other  languages.  The  code  consists  of

primitives. For a new user  of Mathematica,  it  can be a problem to find their  right combination which

would  result  in  the  simplest  solution.  Furthermore,  Mathematica  has  changed  a  lot  from  the  first

version  even  though  the  core  principles  remain  the  same.  Obsolete  functions  have  been  replaced  or

discarded.  As  many highly specialized  functions  have  been  added,  the  built-in  library  has  increased,

and even the most difficult tasks can be very often resolved in a very simple way [1].

Mathematica is  not  used only in mathematics and physics. Due to its  strength, user-friendly interface,

and  possibility  of  creating  interactive  modules,  it  is  often  utilized  in  other  fields  such  as  biology or

chemistry. Moreover, the source code can be accompanied by the text and the document can be format-

ted  with  ease,  so  it  is  possible  to  write  whole  articles  using  Mathematica  only.  Later  versions  also

enable  connection  with  other  applications  through  MathLink  protocol,  parallel  processing,  dynamic

interactivity, and  high-performance computing.  This  makes  Mathematica  a  complex tool  with  a  wide

range of applications [3].

1.2 WolframAlpha
Another project developed by Wolfram Research is a computational knowledge engine WolframAlpha.

Unlike search engines, it does not give a list of websites containing the searched information but tries

to give the answer directly by searching the web and using some dynamic computations [6].

WolframAlpha  is  based  on  Mathematica  (its  language  and  built-in  functions).  Additional  data  is

gathered  from  various  websites.  For  instance,  some  reports  about  users  of  Facebook  are  generated.

They contain how often they use some specific word, how popular their friends are, etc. [15].

Since WolframAlpha is available on the Internet free of charge, it is very popular among students.
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2 The Mathematics 4 course in examples

2.1 Differential equations
The Mathematics 4 course deals with three types of ordinary differential equations:

è separable differential equations,

è linear differential equations of 1st degree,

è linear differential equations of nth degree with emphasis on equations with constant coefficients.

In contrast  to the hand calculation,  Mathematica can handle the above mentioned types of differential

equations with ease. Just use the command DSolve to find the solution.

Example  2.1.1:  Find  the  solution  of  the  equation  y’- 2 xy = 3 x2 ãx2

passing  through  the  point

M = H0, 5L [11].

The command DSolve is used to search the solution. The initial condition is represented by the second

equation.

sol = DSolveA9y’@xD - 2 x*y@xD � 3 x2*ãx
2

, y@0D � 5=, y@xD, xE
99y@xD ® ãx2 I5 + x3M==

Let us have a look what the function y looks like.

Plot@y@xD �. sol@@1DD, 8x, -2, 1<, PlotStyle ® Black, ImageSize ® 300D

-2.0 -1.5 -1.0 -0.5 0.5 1.0

-5

5

10

15

Figure 2.1.1: Solution of the differential equation y’- 2 xy = 3 x2 ãx2

.

The domain of y is the set of all real numbers.

Clear@solD;

Example 2.1.2: Find the solution of the equation y’= cosHxL passing through the point M = H0, 1L.

Again, the command DSolve is used.

DSolve@8y’@xD == Cos@xD, y@0D � 1<, y@xD, xD
88y@xD ® 1 + Sin@xD<<

The domain of y are all real numbers.
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Example 2.1.3: Find the general solution of the equation y’’+ 2 y’+ y = 3 ã-x x+ 1  [11].

DSolveBy’’@xD + 2*y’@xD + y@xD � 3*ã-x* x + 1 , y@xD, xF

::y@xD ®
4

5
ã
-x H1 + xL5�2 + ã-x C@1D + ã-x x C@2D>>

As it can be seen from the solution, DomHyL = H-1, +¥L.

2.2 Multivariable limits
Definition 2.2.1:

Let  M Ì Rn  and  a Î Rn.  We  say  that  a  is  a  limit  point  of  M  if  and  only  if  UΕ
*HaL ÝM ¹ Æ for  all

Ε > 0, where UΕ
*HaL is the punctured Ε-neighbourhood of a.

Definition 2.2.2:

Let  f :Rn ® R  and  a  be  a  limit  point  of  the  domain  of  f.  The  limit  of  f,  as x  tends  to  a,  is  c Î R,

written as lim
x
®
® a
® f HxL = c if and only if for every Ε > 0 there exists ∆ > 0 such that for all x Î D f ,

0 < °x- a´ < ∆ implies f HxL- c < Ε .

Definition 2.2.3:

Let f :Rn ® R, M Ì Rn, and a
®

 be a limit point of D f ÝM. The limit of f, as x tends to a, with respect

to the set M is c Î R, written as limx
Ó
® a, x

Ó
ÎM  f HxL = c, if and only if for every Ε > 0 there exists ∆ > 0

such that for all x Î U∆
* HaL ÝD f ÝM we have f HxL- c < Ε .

Theorem 2.2.1:

Let  f :R2 ® R,  a = Iax, ayM.  If  the  limit  of  f,  as  x  tends  to  a,  is  equal  to  c Î R  and  the  sequential

limits exist and are finite, then 

limx® ax
Ilimy® ay

f HxLM = limy® ay
Hlimx® ax

f HxLL = c.

Corollary 2.2.1:

If both sequential limits exist and are finite but different, the overall limit does not exist.

Theorem 2.2.2:

Let f :Rn ® R, a be a limit point of D f , and limx
Ó
®a f HxL exists. Then for any A Ì Rn  such that a is a

limit point of A,

limx
Ó
®a, x
Ó
ÎA f HxL = limx

Ó
®a f HxL .

Corollary 2.2.2:

Suppose A Ì Rn, B Ì Rn, and a is a limit point of them. If
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limx
Ó
®a, x
Ó
ÎA f HxL ¹ limx

Ó
®a, x
Ó
ÎB f HxL ,

then the overall limit does not exist.

Example 2.2.4: Let g Hx, yL = xy2

x2+y4
. Show that limHx,yL®H0,0L gHx, yL does not exists. 

gAx_, y_E = x*y2

x2 + y4
;

The  non-existence  of  the  limit  could  be  confirmed  using  sequential  limits.  If  the  sequential  limits

existed and were different, the limit of g would not exist.

Limit@Limit@g@x, yD, y ® 0D, x ® 0D
0

Limit@Limit@g@x, yD, x ® 0D, y ® 0D
0

The  sequential  limits  are  the  same.  Therefore,  the  decision  whether  the  limit  exists  cannot  be  made

using  sequential  limits.  Nonetheless,  the  limit  would  be  equal  to  zero  provided  it  existed.  Another

method could be used to prove the non-existence of a limit. For instance, approaching (0, 0) via points

which lie on the lines x = ky or y = kx.

Limit@g@k*y, yD, y ® 0D
0

Limit@g@x, k*xD, x ® 0D
0

Again,  the  result  provides  no  information on  the  non-existence of  the  limit.  Finally, when we choose

parabolae x = ky2, we will get a significant result.

LimitAgAk*y2, yE, y ® 0E
k

1 + k2

The  numerical  value  of  the  limits  with  respect  to  different  parabolae  clearly  depends  on  k.  Conse-

quently, the overall limit does not exist. The level curves of the function g have the shape of parabolae

x = ky2. Along these parabolae, f attains different constant values.

Clear@gD;

Example 2.2.5: Let f Hx, yL = 2 xy

xy+2 x-y
. Show that limHx,yL®H0,0L f Hx, yL does not exists [11].

fAx_, y_E = 2*x*y

x*y + 2*x - y
;
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At first, let us have a look what the sequential limits look like.

Limit@Limit@f@x, yD, y ® 0D, x ® 0D
0

Limit@Limit@f@x, yD, x ® 0D, y ® 0D
0

Since they are the same, another method have to be used to prove the non-existence. Try to approach

the point (0, 0) via lines y = kx.

Limit@f@x, yD �. y ® k*x, x ® 0D
0

Although the result is that the limit is 0 on these lines, it is not always true.

f@x, yD �. y ® k*x �� Simplify
2 k x

2 + k H-1 + xL

It is possible to use L’Hospital’s  rule for k = 2. 

D@2 k*x, xD
D@2 + k*H-1 + xL, xD
2

To summarize, the limit does not exist because we were able to find two different paths on which the

limit is not the same. 

Clear@fD;

2.3 Partial derivative
Definition 2.3.4:

Suppose f :Rn ® R  is defined in a neighbourhood of a = Ha1, a2, ..., anL. Partial derivative of f at the

point a with respect to the i-th variable is defined as

¶ f

¶ xi

HaL :=

limh®0

f Ha1, a2, ..., ai-1, ai + h, ai+1, ..., anL- f Ha1, a2, ..., ai-1, ai, ai+1, ..., anL
h

if the right-hand side exists and is finite.

Definition 2.3.5:

By a gradient of a function f at the point a is understood 

grad f HaL :=
¶ f

¶ x1

HaL, ...,
¶ f

¶ xn

HaL
if all partial derivatives of f at a exist.
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Remark 2.3.1:

The symbol Ñ f is used for the gradient of f.

Note:  The partial  derivative of f  at  the  point  a  with respect  to  x  has  a  geometric interpretation of the

slope of the tangent at the point Ha, f HaLL to the curve given by the intersection of the plot of f with the

plane that is perpendicular to the domain of f and contains x-axis. Similarly, the partial derivative of f at

a  with  respect  to  y.  These  facts  can  be  nicely  illustrated  on  the  function  f = 1- x2 - y2  at  some

point.

fAx_, y_E = 1 - x2 - y2 ;

a = 80.5, 0.4<;

a3D = Append@a, f �� aD;

gradient = Grad@f@x, yD, 8x, y<D �. 8x ® a3D@@1DD, y ® a3D@@2DD<
8-0.650945, -0.520756<

hemisphere = Plot3D@f@x, yD, 8x, -1, 3<, 8y, -1, 3<,
Mesh ® 88a3D@@1DD<, 8a3D@@2DD<<, MeshStyle ® Thickness@0.003D,
FaceGrids ® 880, 0, -1<<, FaceGridsStyle ® Directive@DottedD,
BoxRatios ® 84, 4, 1<, AxesLabel ® 8x, y, z<,
ColorFunction ® "Aquamarine"D;

The tangents are defined because we know the starting point and the direction vector.

line1Ax_E = gradient@@1DD*Hx - a3D@@1DDL + a3D@@3DD;

line2Ay_E = gradient@@2DD*Hy - a3D@@2DDL + a3D@@3DD;
tangents = 8ParametricPlot3D@8x, a3D@@2DD, line1@xD<, 8x, -1, 3<,

PlotStyle ® 8Thickness@0.003D, Black<D,
ParametricPlot3D@8a3D@@1DD, y, line2@yD<, 8y, -1, 3<,
PlotStyle ® 8Thickness@0.003D, Black<D<;

Other objects are defined to make the illustration more lucid.

planes = Graphics3D@8FaceForm@GrayLevel@0.5DD, EdgeForm@D, Opacity@0.3D,
Polygon@88-1, a3D@@2DD, 0<, 8-1, a3D@@2DD, 1<, 83, a3D@@2DD, 1<,
83, a3D@@2DD, 0<<D,

Polygon@88a3D@@1DD, 3, 0<, 8a3D@@1DD, 3, 1<, 8a3D@@1DD, -1, 1<,
8a3D@@1DD, -1, 0<<D<D;

lines = Graphics3D@8Black, Dashed, Thickness@0.003D,
Line@88-1, a3D@@2DD, 0<, 83, a3D@@2DD, 0<<D,
Line@88a3D@@1DD, -1, 0<, 8a3D@@1DD, 3, 0<<D<D;

point1 = x �. Solve@line1@xD == 0D;

point2 = y �. Solve@line2@yD � 0D;

angle1 = ParametricPlot3DB::x, a3D@@2DD, 0.4 - Hx - point1L2 >>, 8x, 1, 1.15<,
PlotStyle ® 8Thickness@0.003D, Black<F;

angle2 = ParametricPlot3DB::a3D@@1DD, y, 0.4 - Hy - point2L2 >>, 8y, 1.2, 1.31<,
PlotStyle ® 8Thickness@0.003D, Black<F;
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text1 = Graphics3D@8Style@Text@"Αx", 81.2, a3D@@2DD, 0.15<D, 18D,
Style@Text@"tx", 81, a3D@@2DD, 0.7<D, 18D<D;

text2 = Graphics3D@8Style@Text@"Αy", 8a3D@@1DD, 1.5, 0.13<D, 18D,
Style@Text@"ty", 8a3D@@1DD, 1.2, 0.6<D, 18D<D;

Show@8hemisphere, planes, tangents, lines, angle1, angle2, text1, text2<,
ViewPoint ® 84, 3, 1.3<, ImageSize ® 500D

Figure 2.3.2: Geometric interpretation of the partial derivative.

Show@8hemisphere, planes, tangents, lines, angle1, text1<, ViewPoint ® 80, ¥, 0<,
Ticks ® None, AxesLabel ® 8x, None, z<D

Figure 2.3.3: Geometric interpretation of the partial derivative with respect to x when y is fixed.

Show@8hemisphere, planes, tangents, lines, angle2, text2<, ViewPoint ® 8¥, 0, 0<,
Ticks ® None, AxesLabel ® 8None, y, z<D

Figure 2.3.4: Geometric interpretation of the partial derivative with respect to y when x is fixed.

Clear@f, a2D, a, gradient, hemisphere, line1, line2, tangents, planes,

lines, point1, point2, angle1, angle2, text1, text2D;
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Example 2.3.6: Calculate 
¶ f

¶x
and 

¶ f

¶y
of the function f = x3 yy4+y.

fAx_, y_E = x3
*yy4+y;

parcDerX = Simplify@D@f@x, yD, xDD
3 x2 yy+y

4

parcDerY = Simplify@D@f@x, yD, yDD
x3 yy+y

4 I1 + y3 + Log@yD + 4 y3 Log@yDM

Clear@f, parcDerX, parcDerYD;

2.4 Directional derivative
Definition 2.4.6:

Suppose f :Rn ® R  is defined in a neighbourhood of a and s
Ó
 is a non-zero vector in Rn. A directional

derivative of f along s
Ó

at a is defined as

¶ f

¶ sÓ HaL :=
1

°sÓ´ limh®0

f Ha + h sÓL- f HaL
h

if the right hand side exists and is finite.

Theorem 2.4.3:

Suppose  f :Rn ® R  and  all  partial  derivatives  at  a  are  continuous.  Then  f  has  derivatives  in  all

directions and

(1)
¶ f

¶ sÓ HaL =
1

°sÓ´ Xgrad f HaL, sÓ\.

Example  2.4.7:  Find  the  directional  derivative  of  f = arctanHxyL  along  s
Ó = I 2 , 2 M  at  the  point

a = H0, 1L.

fAx_, y_E = ArcTan@x*yD;

s = : 2 , 2 >;

a = 80, 1<;
Definition  of  the  function  which  can  calculate  directional  derivative  of  the  function  of  two variables

follows:

directionalDerivativeAf_, s_, a_E :=
HGrad@f@x, yD, 8x, y<D �. 8x ® a@@1DD, y ® a@@2DD<L.s�Norm@sD;
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directionalDerivative@f, s, aD
1

2

Clear@f, s, aD;

Example 2.4.8: Find the directional derivative of f =
0 x = - y

Hx+ yL sinJ 1

Hx+yL N x ¹ - y
  along s

Ó = H1, -1L
at the point a = H0, 0L.

fAx_, y_E = IfBx � -y, 0, Hx + yL*SinB 1

Hx + yL FF;

s = 81, -1<;

a = 80, 0<;

Plot3D@f@x, yD, 8x, -0.1, 0.1<, 8y, -0.1, 0.1<, ColorFunction ® "Aquamarine",

ViewPoint ® 80, 1, 1<, ImageSize ® 300D

Figure 2.4.5: Function f =
0 x = -y

Hx + yL sinJ 1

Hx+yL N x ¹ -y
 .

Equation (1) can be used if partial derivatives of f at the point a with respect to x and y exist.

derivativeX = D@f@x, yD, xD �. 8x ® a@@1DD, y ® a@@2DD<
0

derivativeY = D@f@x, yD, yD �. 8x ® a@@1DD, y ® a@@2DD<
0

Mathematica gave us the result that 
¶ f

¶x
HaL = 0 and 

¶ f

¶y
HaL = 0. Nonetheless,  it  can be proved that it  is

incorrect by using the definition of a partial derivative.
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derX = LimitB 1
h

HHf@x, yD �. 8x ® a@@1DD + h, y ® a@@2DD<L - Hf@x, yD �. 8x ® a@@1DD, y ® a@@2DD<LL, h ® 0F
Interval@8-1, 1<D

derY = LimitB 1
h

HHf@x, yD �. 8x ® a@@1DD, y ® a@@2DD + h<L - Hf@x, yD �. 8x ® a@@1DD, y ® a@@2DD<LL, h ® 0F
Interval@8-1, 1<D

Mathematica returns an interval because the limit does not exist. Thus, the directional derivative must

be calculated directly from the definition.

dirDer =
1

Norm@sD *LimitB
1

h
HHf@x, yD �. 8x ® a@@1DD + h*s@@1DD, y ® a@@2DD + h*s@@2DD<L -
Hf@x, yD �. 8x ® a@@1DD, y ® a@@2DD<LL, h ® 0F

0

Clear@f, s, a, derivativeX, derivativeY, derX, derY, dirDerD;

Example  2.4.9:  Find  the  gradient  of  g = Ix3 +x+ yM e-x4-y2

- 2 I-x5 -
1

5
y2 + xM e-x2-y2

.  Plot  g  with

several gradient vectors. Find directional derivatives at a = H-1.4, 0.4L along several directions.

gAx_, y_E = Ix3 + x + yM*ã-x4-y2 - 2* -x5 - 1

5
*y2 + x *ã-x

2-y2;

a = 8-1.4, 0.4<;

gradient = Simplify@Grad@g@x, yD, 8x, y<DD;

gradientAtA = gradient �. 8x ® a@@1DD, y ® a@@2DD<;

Plot3D@8g@x, yD<, 8x, -2.5, 2.5<, 8y, -2.5, 2.5<, ColorFunction ® "Aquamarine",

AxesLabel ® 8x, y, z<, MeshStyle ® Darker@BlueD, ImageSize ® 250,

ViewPoint ® 8-2, -2.5, 1<D

Figure 2.4.6: Function g = Ix3 + x + yM e-x4-y2

- 2 I- x5 -
1

5
y2 + xM e-x2-y2

.
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contours1 = ContourPlot@g@x, yD, 8x, -2.5, 2.5<, 8y, -2.5, 2.5<, Contours ® 14,

ColorFunction ® "Aquamarine"D;
contours2 = ContourPlot@g@x, yD, 8x, -2.5, 0.5<, 8y, -1.5, 1.5<, Contours ® 11,

ColorFunction ® "Aquamarine"D;
gradientField = VectorPlot@gradient, 8x, -2.5, 2.5<, 8y, -2.5, 2.5<,

VectorPoints ® 15, VectorStyle ® Arrowheads@0.02DD;
Show@8contours1, gradientField<, ImageSize ® 250D

Figure 2.4.7: Level curves of function g = Ix3 + x + yM e-x4-y2

- 2 I- x5 -
1

5
y2 + xM e-x2-y2

 

together with the gradient field.

The gradient of g is perpendicular to level curves at all points. Its length depends on the growth of the

function at the specific point.

scaleParameter = 1.5;

arrow = Graphics@Line@88-0.5, 1�4<, 80, 0<, 8-0.5, -1�4<<DD;
As  we  demonstrated  in  the  previous  figure,  the  gradient  is  perpendicular  to  the  level  curves  of  the

function. We can also show that the gradient at a is greater than all directional derivatives at the same

point.

gradientEndPoint = 8gradientAtA@@1DD�scaleParameter + a@@1DD,
gradientAtA@@1DD�scaleParameter + a@@2DD<;

gradientGraphics =

Graphics@8Red, Arrowheads@88.05, 1, arrow<<D, Arrow@8a, gradientEndPoint<D<D;

angles = TableB2*Π* n

12
, 8n, 12<F;

directions = Table@8Cos@angles@@nDDD, Sin@angles@@nDDD<, 8n, 12<D;

dirDerivatives = Table@directionalDerivative@g, directions@@nDD, aD, 8n, 12<D;

dirDerPoints1 =

Table@8Cos@angles@@nDDD*dirDerivatives@@nDD�scaleParameter + a@@1DD,
Sin@angles@@nDDD*dirDerivatives@@nDD�scaleParameter + a@@2DD<, 8n, 6<D;
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dirDerPoints2 =

Table@8H-1L*Cos@angles@@nDDD*dirDerivatives@@nDD�scaleParameter + a@@1DD,
H-1L*Sin@angles@@nDDD*dirDerivatives@@nDD�scaleParameter + a@@2DD<, 8n, 6<D;

dirDerGraphics = 8Graphics@88Arrowheads@88.05, 1, arrow<<D,
Table@Arrow@8a, dirDerPoints1@@nDD<D, 8n, 6<D<<D,

Graphics@88Arrowheads@88.05, 0, arrow<<D,
Table@Arrow@8dirDerPoints2@@nDD, a<D, 8n, 6<D<<D<;

Labeled@Show@8contours2, gradientGraphics, dirDerGraphics<, ImageSize ® 250D,
PointLegend@8Red, Black<, 8"gradient", "directional derivatives"<,
LegendMarkers ® "�" D, RightD

� gradient

� directional derivatives

Figure 2.4.8: Level curves, gradient, and several directional derivatives of the function 

g = Ix3 + x + yM e-x4-y2

- 2 I- x5 -
1

5
y2 + xM e-x2-y2

 at a
®
= H-1.4, 0.4L .

The  graph  shows directional  derivatives  of  g  at  a  along  several  directions.  The  length  of  each  arrow

corresponds to the numerical value of the directional derivative along the arrow. The greatest growth of

the function is in the direction of the gradient.

Clear@g, a, gradient, gradientAtA, contours1, contours2, gradientField,

scaleParameter, arrow, gradientEndPoint, gradientGraphics, angles,

directions, dirDerivatives, dirDerPoints1, dirDerPoints2, dirDerGraphicsD;

2.5 Local extrema
Definition 2.5.7:

Suppose  f :Rn ® R  is  defined  on  M Ì Rn  and  a Î M.  Then  f  attains  a  local  minimum  or  a  local

maximum  at  a  with  respect  to  M  if  and  only  if  there  is  U HaL such  that  for  all  x Î M ÝU HaL,
f HxL ³ f H aL or f Jx® N £ f H aL, respectively.

Similarly,  f  attains  a  sharp  local  minimum  or  a  sharp  local  maximum  at  a  if  and  only  if  for  all

x Î M ÝU*HaL, f HxL > f H aL or f HxL < f H aL, respectively.

A point which is either a local minimum or a local maximum is called a local extremum.

Theorem 2.5.4 (The first derivative test):

Let a be a local extremum of f and all partial derivatives of f at a exist. Then 
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¶ f

¶ xi

HaL = 0

and a is called a critical point.

Definition 2.5.8:

Suppose f :Rn ® R  and all  the second partial  derivatives of  f  at  a exist  and are continuous.  A Hes-

sian matrix of f at a is defined as a square matrix of second partial derivatives 

H H f Lij HaL :=
¶ 2 f

¶ xi ¶ x j

HaL.

Theorem 2.5.5 (The second derivative test):

Let HH f L HaL be the Hessian matrix of f at a and a be a critical point.

1. If HH f L HaL is a positive definite matrix, then a is a local minimum point.

2. If HH f L HaL is a negative definite matrix, then a is a local maximum point.

3. If HH f L HaL is indefinite matrix, then a is a saddle point.

Remark 2.5.2:

1. HH f L HaL is a positive definite matrix if and only if all its eigenvalues are positive.

2. HH f L HaL is a negative definite matrix if and only if all its eigenvalues are negative.

3. HH f L HaL is indefinite matrix if and only if some of its eigenvalues are positive and some negative.

Example  2.5.10:  Find  the  local  extrema  and  the  saddle  points  of  f = Ix2 - y2M e-x2-y2

2  with  respect  to

M = 9Hx, yL Î R2 : x2 + y2 < 9=.

fAx_, y_E = Ix2 - y2M*ã -x
2-y2

2 ;

The local extremum points can be roughly estimated from the figure.

Plot3D@8f@x, yD<, 8x, -3, 3<, 8y, -3, 3<, ColorFunction ® "BlueGreenYellow",

ImageSize ® 250, AxesLabel ® 8x, y, z<, ViewPoint ® 81, -1.5, 1.5<D

Figure 2.5.9: Function f = Ix2 - y2M e-x2-y2

2 .

The first derivative test is used in order to find the critical points.
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a = SolveAD@f@x, yD, xD � 0 && D@f@x, yD, yD � 0 && x2
+ y2

< 9, 8x, y<E
:8x ® 0, y ® 0<, :x ® 0, y ® - 2 >, :x ® 0, y ® 2 >, :x ® - 2 , y ® 0>, :x ® 2 , y ® 0>>

We  found  five  critical  points  Ha1,  ...,  a5L.  Lets  us  try  to  use  the  second  derivative  test.  We  calculate

Hessian matrices and analyze whether ai, i Î {1, ..., 5} is a local extremum point or not.

hessianMatrixAf_, a_E := 88D@f@x, yD, x, xD �. a, D@f@x, yD, x, yD �. a<,
8D@f@x, yD, x, yD �. a, D@f@x, yD, y, yD �. a<<

secondDerivativeTestAmat_E :=
Module@8eigenvs = Eigenvalues@matD<,
If@And �� Positive@eigenvsD, Print@"Local minimum."D,
If@And �� Negative@eigenvsD, Print@"Local maximum."D,
If@And �� NonPositive@eigenvsD,
Print@"The second derivative test cannot be used."D,
If@And �� NonNegative@eigenvsD,
Print@"The second derivative test cannot be used."D,
Print@"Saddle point."DDDDDD;

secondDerivativeTest@hessianMatrix@f, a@@1DDDD
Saddle point.

secondDerivativeTest@hessianMatrix@f, a@@2DDDD
Local minimum.

secondDerivativeTest@hessianMatrix@f, a@@3DDDD
Local minimum.

secondDerivativeTest@hessianMatrix@f, a@@4DDDD
Local maximum.

secondDerivativeTest@hessianMatrix@f, a@@5DDDD
Local maximum.

Now the result can be demonstrated graphically using the ContourPlot command.

contours = ContourPlot@f@x, yD, 8x, -3, 3<, 8y, -3, 3<, Contours ® 10,

ColorFunction ® "BlueGreenYellow", PlotLegends ® Automatic, AxesLabel ® 8x, y<D;
criticalPoints =

Graphics@Table@8Text@Style@"a"i, Black, 17D, 8Hx �. aL@@iDD, Hy �. aL@@iDD + 0.25<D,
PointSize@LargeD, Black, Point@8Hx �. aL@@iDD, Hy �. aL@@iDD<D<, 8i, 5<DD;

20



Labeled@Show@8contours , criticalPoints<, ImageSize ® 250D,
PointLegend@8Black<, 8"critical points"<,
LegendMarkers ® 8Graphics@Point@80, 0<DD<D, RightD

critical points

Figure 2.5.10: Level curves of f = Ix2 - y2M e-x2-y2

2 with the critical points.

There  are  also  built-in  functions  FindMinimum  and  FindMaximum  in  Mathematica  which  search  for

local extrema numerically. However, these functions return only one local  extremum point  and some-

times are not able to find any solution.

Clear@f, a, contours, criticalPoints, hessianMatrixD;

Example  2.5.11:  Find  the  local  extrema and  the  saddle  points  of  f = x3 + y2 +
1

2
z2 - 3 xz- 2 y+ 2 z

[11].

fAx_, y_, z_E = x3 + y2 + 1

2
*z2 - 3*x*z - 2*y + 2*z;

We will use the same procedure as in the example 2.5.10.

a = Solve@D@f@x, y, zD, xD � 0 && D@f@x, y, zD, yD � 0 && D@f@x, y, zD, zD � 0 , 8x, y, z<D
88x ® 1, y ® 1, z ® 1<, 8x ® 2, y ® 1, z ® 4<<

hessianMatrixAf_, a_E :=
88D@f@x, y, zD, x, xD �. a, D@f@x, y, zD, x, yD �. a, D@f@x, y, zD, x, zD �. a<,
8D@f@x, y, zD, x, yD �. a, D@f@x, y, zD, y, yD �. a, D@f@x, y, zD, y, zD �. a<,
8D@f@x, y, zD, z, xD �. a, D@f@x, y, zD, y, zD �. a, D@f@x, y, zD, z, zD �. a<<

The function secondDerivativeTest from the previous example can be used again.

secondDerivativeTest@hessianMatrix@f, a@@1DDDD
Saddle point.

secondDerivativeTest@hessianMatrix@f, a@@2DDDD
Local minimum.

Clear@f, a, hessianMatrix, secondDerivativeTestD;
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2.6 Constrained extrema
Definition 2.6.9:

Suppose  f :Rn ® R  is  defined  on  M Ì Rn  and  a Î M.  Then  f  attains  a  local  minimum  or  a  local

maximum  at  a  with  respect  to  M  if  and  only  if  there  is  U HaL such  that  for  all  x Î M ÝU HaL,
f HxL ³ f H aL or f Jx® N £ f H aL, respectively.

Similarly,  f  attains  a  sharp  local  minimum  or  a  sharp  local  maximum  at  a  if  and  only  if  for  all

x Î M ÝU*HaL, f HxL > f H aL or f HxL < f H aL, respectively.

A point which is either a local minimum or a local maximum is called a local extremum.

Theorem 2.6.6 (The first derivative test):

Suppose  f , g1, g2, ..., gm  are  functions  of  n  variables  and  have  continuous  partial  derivatives.  Sup-

pose that f has a local extremum with constraints gs = 0, s Î 81, ..., m<, at the point a and õgsHaL ¹ 0

for all s Î 81, ..., m<. Then there are numbers Λ1, Λ2, ..., Λm such that

(2)õf HaL = Λ1 õg1HaL+ Λ2 õg2HaL+ ... + Λm õgmHaL.

The numbers Λ1, Λ2, ..., Λm are called Lagrange multipliers.

Remark 2.6.3:

It is convenient to rewrite (2) as follows,

õLHaL = 0,

where  L := f - Λ1 g1 - Λ2 g2 - ... - Λm gm  is  the  so-called  Lagrange  function.  The  second  derivative

test, which is used for finding (non-constrained) local extrema, can now be also applied on L (instead

of  f  itself)  to  find  constrained  extrema.  However,  in  general  it  is  no  longer  true  that  it  cannot  be

decided about the type of  extrema if  the Hessian matrix is  not  positively (or negatively)  definite.  One

can still restrict the Hessian matrix to the tangent subspace to all constraints and then investigate the

resulting matrix that is effectively lower dimensional. If this matrix is positively or negatively definite,

then a attains its constrained minimum or maximum, respectively [4].

Example 2.6.12: Find the local extrema of f =
1

x
+

1

y
subjected to the constraint 

1

x2
+

1

y2
-

1

4
= 0 [11].

fAx_, y_E = 1

x
+
1

y
;

gAx_, y_E = 1

x2
+

1

y2
-
1

4
;

At first, we try the built-in functions Minimize and Maximize.

Minimize@8f@x, yD, g@x, yD == 0<, 8x, y<D

:-
1

2

, :x ® -2 2 , y ® -2 2 >>
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Maximize@8f@x, yD, g@x, yD == 0<, 8x, y<D

:
1

2

, :x ® 2 2 , y ® 2 2 >>

It can be seen that  these functions work just  fine in our example. Nevertheless,  let  us try to solve the

same problem mimicking a hand calculation. The first derivative test helps us to find the critical points

together with corresponding values of the Lagrange multiplier.

a = Solve@D@f@x, yD - Λ*g@x, yD, xD � 0 && D@f@x, yD - Λ*g@x, yD, yD � 0 && g@x, yD � 0 ,

8x, y, Λ<D
::x ® -2 2 , y ® -2 2 , Λ ® - 2 >, :x ® 2 2 , y ® 2 2 , Λ ® 2 >>

In the next step, the Hessian matrix of the Lagrange function is constructed at the critical points.

hessianMatrixAf_, a_E := 88D@f, x, xD �. a, D@f, x, yD �. a<,
8D@f, x, yD �. a, D@f, y, yD �. a<<;

Finally,  the  function  secondDerivativeTest  is  defined  to  identify  the  type  of  an  extremum  from  the

eigenvalues of the Hessian matrix.

secondDerivativeTestAmat_E := Module@8eigenvs = Eigenvalues@matD<,
If@And �� Positive@eigenvsD, Print@"Local minimum."D,
If@And �� Negative@eigenvsD, Print@"Local maximum."D,
Print@
"Our basic second derivative test is not sufficient. One has to

reduce the Hessian matrix to the subspace that is tangent

to the constraints and then use the second derivative

test on the resulting matrix that is effectively

lower-dimensional."DDDD;
secondDerivativeTest@hessianMatrix@f@x, yD - Λ*g@x, yD, a@@1DDDD

Local minimum.

secondDerivativeTest@hessianMatrix@f@x, yD - Λ*g@x, yD, a@@2DDDD
Local maximum.

Next,  it  will  be  graphically  demonstrated  that  at  the  points  where  local  constrained  extrema  are

attained, the gradient of f is just a scalar multiple of the gradient of g,  i.e.,  (2) holds. To this purpose,

denote the critical points as follows:

a1 = 8x �. a@@1DD, y �. a@@1DD<;

a2 = 8x �. a@@2DD, y �. a@@2DD<;
Moreover,  introduce  a  function  that  returns  the  gradient  vector  of  a  function  f  at  a  point  startPoint

shifted to this startPoint.

arrowsAf_, startPoint_, scaleParameter_, colour_E :=
Module@8gradient, endPoint<,
gradient = Grad@f@x, yD, 8x, y<D �. 8x ® startPoint@@1DD, y ® startPoint@@2DD<;
endPoint = 8gradient@@1DD*scaleParameter + startPoint@@1DD,

gradient@@2DD*scaleParameter + startPoint@@2DD<;
Graphics@8colour, Arrow@8startPoint, endPoint<D<DD

Finally, define all needed graphical objects and combine all of them into an illustrative figure.
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contoursf = ContourPlotBf@x, yD, 8x, -5, 5<, 8y, -5, 5<,

Contours ® :-2, -1, - 1

2

, -0.5, 0, 0.5,
1

2

, 1, 2>, ContourShading ® False,

ContourStyle ® Blue, MaxRecursion ® 3F;

contoursg = ContourPlot@g@x, yD � 0, 8x, -5, 5<, 8y, -5, 5<, ContourShading ® False,

ContourStyle ® Darker@GreenDD;

b = :-2 2 , 2 2 >;

text =

Graphics@
8Table@8Text@Style@"a"i, Black, 12D, 8Hx �. aL@@iDD + 0.1, Hy �. aL@@iDD - 0.5<D,

PointSize@LargeD, Point@8Hx �. aL@@iDD, Hy �. aL@@iDD<D<, 8i, 2<D,
Text@Style@"b", Black, 12D, 8b@@1DD, b@@2DD - 0.5<D, PointSize@LargeD,
Point@8b@@1DD, b@@2DD<D,
Text@Style@"õfHa1L", Blue, 10D, 8a1@@1DD - 1.2, a1@@2DD - 0.5<D,
Text@Style@"õgHa1L", Darker@GreenD, 10D, 8a1@@1DD, a1@@2DD + 0.7<D,
Text@Style@"õfHa2L", Blue, 10D, 8a2@@1DD - 0.6, a2@@2DD - 1.5<D,
Text@Style@"õgHa2L", Darker@GreenD, 10D, 8a2@@1DD - 0.65, a2@@2DD - 0.02<D,
Text@Style@"õfHbL", Blue, 10D, 8b@@1DD - 0.3, b@@2DD - 1<D,
Text@Style@"õgHbL", Darker@GreenD, 10D, 8b@@1DD + 1, b@@2DD - 0.1<D,
<D;

Show@8contoursf , contoursg, text, arrows@f, a1, 10, BlueD,
arrows@g, a1, 10, Darker@GreenDD, arrows@f, a2, 10, BlueD,
arrows@g, a2, 10, Darker@GreenDD, arrows@f, b, 10, BlueD,
arrows@g, b, 10, Darker@GreenDD<, ImageSize ® 250D

a1

a2b

õf Ha1L

õgHa1L

õf Ha2L

õgHa2L
õf HbL

õgHbL

-4 -2 0 2 4

-4

-2

0

2

4

Figure 2.6.11: Level curves of the function f =
1

x
+

1

y
and the constraint 

1

x2
+

1

y2
-

1

4
= 0 

together with the gradients of f and the constraint at the critical points.

Gradients  of  f  and  g  at  a1  (local  minimum point)  are  proportional.  The  same  holds  true  at  a2  (local

maximum point). On the other hand, this is not true at the point b which is not a critical point.

Clear@f, g, a, a1, a2, b, contoursf, contoursg, textD;

Example  2.6.13:  Find  the  local  extrema  of  f Hx, yL = Ix2 - y2M ã -x2-y2

2  subjected  to  the  constraint

Hx- 1L2 + Hy- 1L2 = 1

2
.
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fAx_, y_E = Ix2 - y2M*ã -x
2-y2

2 ;

gAx_, y_E = Hx - 1L2 + Hy - 1L2 - 1

2
;

It can be seen that the constraint is the equation of the circle with the following parameters:

ax = 1;

ay = 1;

radius =
1

2
;

Again, let us start with built-in function.

Minimize@8f@x, yD, g@x, yD � 0<, 8x, y<D

MinimizeB:ã
1

2
I-x2-y2M Ix2 - y2M, -

1

2
+ H-1 + xL2 + H-1 + yL2 � 0>, 8x, y<F

The function f  is too complicated and so is its gradient.Therefore, it  is not possible to solve the equa-

tion for the critical points symbolically. So try the numerical version of the above used functions.

NMinimize@8f@x, yD, g@x, yD � 0<, 8x, y<D
8-0.628413, 8x ® 0.357463, y ® 1.2952<<

NMaximize@8f@x, yD, g@x, yD � 0<, 8x, y<D
80.628413, 8x ® 1.29521, y ® 0.357463<<

This works pretty well, both for the minimum and the maximum. Nevertheless, we could also try to use

the first derivative test.

a = NSolve@g@x, yD � 0 && D@f@x, yD - Λ*g@x, yD, xD � 0 && D@f@x, yD - Λ*g@x, yD, yD � 0 ,

8x, y, Λ<, RealsD
88x ® 0.357474, y ® 1.29523, Λ ® -0.400399<, 8x ® 1.29523, y ® 0.357474, Λ ® 0.400399<<

Again,  we  use  the  functions  hessianMatrix  and  secondDerivativeTest  from  the  previous  example  in

order to find the Hessian matrix of the Lagrange function at the critical points and identify the type of

an extremum. 

secondDerivativeTest@hessianMatrix@f@x, yD - Λ*g@x, yD, a@@1DDDD
Local minimum.

secondDerivativeTest@hessianMatrix@f@x, yD - Λ*g@x, yD, a@@1DDDD
Local minimum.

Clear@f, g, ax, ay, radius, a, arrows, hessianMatrix, secondDerivativeTestD;

Example 2.6.14: The Baraboo, Wisconsin, plant of International Widget Co. uses aluminum, iron, and

magnesium to produce high-quality widgets. The quantity of widgets which may be produced using x

tons of aluminum, y tons of iron, and z tons of magnesium is Q Hx, y, zL = xyz. The cost of raw materi-

als  is:  aluminum,  $6  per  ton;  iron,  $4  per  ton;  and  magnesium,  $8  per  ton.  How  many tons  of  alu-

minum, iron, and magnesium should be used to manufacture 1000 widgets at the lowest possible cost?

[4]
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Considering the cost of raw materials, the function f can be defined.

fAx_, y_, z_E = 6*x + 4*y + 8*z;

qAx_, y_, z_E = x*y*z - 1000;
We want to  minimize the  cost,  i.e.,  the  function f.  Q  is  the  constraint.  The  Lagrange function can  be

defined as:

lagrangeAx_, y_, z_E = f@x, y, zD - Λ*q@x, y, zD;
The first derivative test is used to find the solution. The fourth equation is given by the constraint.

a = Solve@D@lagrange@x, y, zD, xD � 0 && D@lagrange@x, y, zD, yD � 0

&& D@lagrange@x, y, zD, zD � 0 && q@x, y, zD � 0

, 8x, y, z, Λ<, RealsD �� N
88x ® 9.615, y ® 14.4225, z ® 7.21125, Λ ® 0.05769<<

Clear@f, q, lagrange, aD;

2.7 Double integral
In this section, we will consider only double integrals. The transition to higher dimensions can be made

in a similar way.

 

Definition 2.7.10:

A finite sequence a = x0 < x1 < ... < xn = b, where a < b, is called a partition of the interval Xa, b\.

Definition 2.7.11:

Let 8x0, x1, ..., xn< be a partition of the interval Xa, b\ and 8y0, y1, ..., ym< be a partition of the interval

Xc, d\.  Then  9Si, j := Xxi-1, xi\ ´ Xyi-1, yi\ =i=1, j=1

n,m
 is  called  a  partition  of  the  interval  Xa, b\´ Xc, d\.

Additionally, measure of the interval I = Xa, b\´ Xc, d\ is defined as Μ HIL = Hb- aL Hd - cL.

Definition 2.7.12:

Suppose f :R2 ® R  is bounded on the interval I = Xa, b\´ Xc, d\ and D is a partition of this interval.

Let  vi, j = infxÎSi, j
f HxL  and  Vi, j = supxÎSi, j

f HxL.  Then  LHD, f L := Úi=1, j=1
n,m

vi, j Μ ISi, jM  is  called  a  lower

sum for f on D. Similarly, U HD, f L := Úi=1, j=1
n,m

Vi, j Μ ISi, jM is called an upper sum for f on D.

Definition 2.7.13:

Suppose  f :R2 ® R  is  bounded  on  the  interval  I = Xa, b\´ Xc, d\,  M Ì R2,  and  D  is  a  partition  of

this  interval.  Then  supM LHD, f L or  infM U HD, f L  is  called  a  lower  Riemann  integral  or  an  upper

Riemann integral, respectively. If supM LHD, f L = infM U HD, f L, the function f is said to be Riemann

integrable over I and ÙI f = supM LHD, f L.

Definition 2.7.14:

Let  I = Xa, b\´ Xc, d\  and  D = 9Sij=  be  a  partition  of  this  interval.  Then  a  norm  of  D  is  defined  as

°D´ := max Μ ISijM, where 0 £ i £ n and 0 £ j £ m .

Theorem 2.7.7:

Suppose f :R2 ® R  is continuous on the interval I = Xa, b\´ Xc, d\ Then ÙI f exists and if 8Dn<n=1
¥  is a

° ´
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X \ ÙI 8 <n=1

partition sequence such that limn®¥ °Dn´ = 0, then

à
I
f = limn®¥ LHDn, f L = limn®¥ U HDn, f L.

Theorem 2.7.8 (The Fubini theorem):

Suppose f :R2 ® R is continuous on the interval I = Xa, b\´ Xc, d\ Then

à
I
f Hx, yL â x â y = à

a

b

à
c

d

f Hx, yL â y â x = à
c

d

à
a

b

f Hx, yL â x â y.

Definition 2.7.15:

Let F :Rn ® Rs  and a be a point of its domain such that for all i Î 81, ..., s< and j Î 81, ..., n< there

exists 
¶Fi

¶ x j

HaL. Then Jacobian matrix is, by definition,

¶ F

¶ x
HaL º DHF1, ..., FsL

DHx1, ..., xnL :=

¶F1

¶ x1
º

¶F1

¶ xn

» ¸

¶Fs

¶ x1

¶Fs

¶ xn

HaL.

Definition 2.7.16:

A function F :Rn ® Rn  is  called regular  over an open set  M Î Rn  if  and only if  it  has a continuous

Jacobian matrix and det
DHΦ1,...,ΦsL
DHΞ1,...,ΞnL HxL ¹ 0 for all x Î M.

Theorem 2.7.9 (The substitution theorem):

Suppose  Φ :Rn ® Rn,  Φ : HΞ1, ..., ΞnL ® Hx1, ..., xnL  is  an  injective  and  regular  vector  function  from

P Ì Rn to Q Ì Rn. Then for arbitrary set M Ì Q

à
M

f Hx1, ..., xnL â x1, ..., â xn = à
Φ-1HM L

f IΦ HΞ1, ..., ΞnLM det
DHΦ1, ..., ΦsL
DHΞ1, ..., ΞnL â Ξ1, ..., â Ξn.

Note: In the substitution theorem, the absolute value of Jacobian determinant appears. Substitutions to

the polar, spherical,  and cylindrical coordinates systems are used very often. Therefore, here are Jaco-

bian determinants of them:

JacobianDeterminantAf_List, vars_ListE :=
If@Equal �� Map@Dimensions, 8f, vars<D, Simplify@Det@Outer@D, f, varsDDD,
"The dimensions of input parameters are not the same."D

polar = JacobianDeterminant@8Ρ*Cos@ΦD, Ρ*Sin@ΦD<, 8Ρ, Φ<D
Ρ

spherical = JacobianDeterminant@8Ρ*Cos@ΘD*Cos@ΦD, Ρ*Cos@ΘD*Sin@ΦD, Ρ*Sin@ΘD<,
8Ρ, Θ, Φ<D

-Ρ
2 Cos@ΘD
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As  Θ  runs  from  - Π
2

to  Π
2

,  cos(Θ)  is  non-negative.  Thus,  the  absolute  value  of  the  determinant  is  Ρ2

cos(Θ) for every Ρ and Θ.

cylindrical = JacobianDeterminant@8Ρ*Cos@ΦD, Ρ*Sin@ΦD, h<, 8Ρ, Φ, h<D
Ρ

Clear@Φ, Θ, h, polar, spherical, cylindricalD;

Example 2.7.15: Find the surface area bounded by the curves y = 2 x2 and y = 1- x.

fAx_E = 2*x2;
gAx_E = 1 - x;

To find the limits of integration, we need to locate intersections of the plots of f and g.

sol = Solve@f@xD � g@xD, xD

:8x ® -1<, :x ®
1

2
>>

Show@
8Graphics@8Style@Text@x �. sol@@1DD, 8Hx �. sol@@1DDL + 0.25, -0.25<D, 12D,

Style@Text@x �. sol@@2DD, 8Hx �. sol@@2DDL + 0.25, -0.25<D, 12D<D,
Plot@8f@xD �. a ® 1, g@xD �. a ® 1<, 8x, -1.1, 1.1<, PlotStyle ® 8Blue, Green<,
PlotLegends ® 8"f@xD", "g@xD"<D<, Axes ® True, Ticks ® None,

GridLinesStyle ® Dashed, ImageSize ® 200,

GridLines ® 88x �. sol@@1DD, x �. sol@@2DD<, 8<<D

-1
1

2

f @xD
g@xD

Figure 2.7.12: Functions f = 2 x2 and g = 1 - x.

The limits of integration are -1 and 
1

2
 (with respect to x) and the functions f and g (with respect to y).

Since the surface area is searched, the functions which is to be integrated is just 1.

IntegrateBIntegrateA1, 9y, 2*x2, 1 - x=E, :x, -1, 1

2
>F

9

8
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This  example  could  be  also  solved  without  any knowledge of  double  integrals.  We  can  calculate  the

integral of both g and f from -1 to 
1

2
, and the result would be the difference between them.

Clear@f, g, solD;

Example 2.7.16: Calculate the integral Ù ÙM 1

2 x-x2

â x â y, where M is an area bounded by the curves

x = 0, y2 = -x+2.

fAx_E = 1

2*x - x2

;

Let us have a look at M to find the limits of integration:

ShowA
9Graphics@8Style@Text@"2", 82.5, -0.5<D, 12D, Style@Text@"0", 80.5, -0.5<D, 12D<D,
ContourPlotA9x � 0, y2 � -x + 2=, 8x, -3, 3<, 8y, -3, 3<,
ContourStyle ® 8Blue, Green<, PlotLegends ® 9"x = 0", "y2

= - x + 2"=E=,
Axes ® 8True, False<, Frame ® False, Ticks ® None, ImageSize ® 200,

GridLinesStyle ® Dashed, GridLines ® 882<, 8<<E

20

x = 0

y2 = - x + 2

Figure 2.7.13: Curves x = 0 and y2 = - x+2.

Considering the x-axis symmetry, only the area above the x-axis can be integrated and then multiplied

by 2.

2*IntegrateBIntegrateBf@xD, :y, 0, -x + 2 >F, 8x, 0, 2<F

4 2

Clear@fD;

Example  2.7.17:  Find  the  integral  Ù ÙM lnIx2 + y2M â x â y,  where  M  is  an  area  in  the  first  quadrant

bounded by the curves x2 + y2 = 1 and x2 + y2 = 4 [11].

fAx_, y_E = Log Ax2 + y2E;
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Labeled@Show@8Graphics@8Style@Text@"0", 80.25, -0.25<D, 12D,
Style@Text@"1", 81.25, -0.25<D, 12D, Style@Text@"2", 82.25, -0.25<D, 12D<D,

Graphics@8Green, Disk@80, 0<, 2, 80, Pi�2<D, White, Disk@80, 0<, 1, 80, Pi�2<D,
Blue, Circle@80, 0<D, Circle@80, 0<, 2D<D<,

Axes ® True, Frame ® False, Ticks ® None, ImageSize ® 200D,
PointLegend@8Green<, 8"integrated area"<, LegendMarkers ® "à"D, RightD

0 1 2
à integrated area

Figure 2.7.14: Curves x2 + y2 = 1 and x2 + y2 = 4.

Due  to  the  polar  symmetry,  it  is  convenient  to  use  the  polar  coordinates  via  the  substitution

x = Ρ cosHΦL and x = Ρ sinHΦL.
fPolarAΡ_, Φ_E = TransformedField@"Cartesian" ® "Polar", f@x, yD, 8x, y< ® 8Ρ, Φ<D ��

Simplify

LogAΡ2E

The integration is  much easier  now. As  it  can  be  deduced  from the  figure,  Ρ  runs  from 1  to  2  and  Φ

from 0 to 2Π. The Jacobian determinant for polar substitution is Ρ.

IntegrateB
Integrate@fPolar@Ρ, ΦD*JacobianDeterminant@8Ρ*Cos@ΦD, Ρ*Sin@ΦD<, 8Ρ, Φ<D,
8Ρ, 1, 2<D, :Φ, 0,

Π

2
>F �� Simplify

Π -
3

4
+ Log@4D

Clear@f, fPolarD;

Example 2.7.18: Find the integral Ù Ù ÙB I1+ x2 + y2 + z2M- 1

2 â x â y â z, where B is an sphere with radius

1 and centre at the origin [11].

gAx_, y_, z_E = I1 + x2 + y2 + z2M- 12;
The integration domain is a sphere so we use spherical coordinates system.

gSphericalAΡ_, Θ_, Φ_E =
TransformedField@"Cartesian" ® "Spherical", g@x, y, zD, 8x, y, z< ® 8Ρ, Θ, Φ<D ��
Simplify

1

1 + Ρ2
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The absolute value of Jacobian determinant is, in this case, Ρ2 cosHΘL. Since the integration domain is a

sphere of radius 1, Ρ goes from 0 to 1, Φ from 0 to 2Π, and Θ from - Π
2

to Π
2

 . 

IntegrateBIntegrate@Integrate@gSpherical@Ρ, Θ, ΦD*
Abs@JacobianDeterminant@8Ρ*Cos@ΘD*Cos@ΦD, Ρ*Cos@ΘD*Sin@ΦD, Ρ*Sin@ΘD<,
8Ρ, Θ, Φ<DD, 8Ρ, 0, 1<D, 8Φ, 0, 2*Π<D, :Θ, - Π

2
,
Π

2
>F

2 Π J 2 - ArcSinh@1DN

Clear@g, gSphericalD;

Example 2.7.19: Find the integral Ù Ù ÙM zex2+y2

â x â y â z, where

 M = 9Hx, y, zL Î R3 : x2 + y2 £ 4, 2 £ z £ 3= [11].

fAx_, y_, z_E = z*ãx2+y2;
We convert the function f to the cylindrical coordinates.

fCylindricalAΡ_, Φ_, h_E =
TransformedField@"Cartesian" ® "Cylindrical", f@x, y, zD, 8x, y, z< ® 8Ρ, Φ, h<D ��
Simplify

ã
Ρ2 h

The integration domain M is a cylinder with radius 2. Thus, Ρ runs from 0 to 2. Its height h goes from 2

to 3 and Φ must run around full circle. The Jacobian determinant is Ρ.

Integrate@Integrate@Integrate@fCylindrical@Ρ, Φ, hD*
JacobianDeterminant@8Ρ*Cos@ΦD, Ρ*Sin@ΦD, h<, 8Ρ, Φ, h<D, 8Ρ, 0, 2<D, 8Φ, 0, 2*Π<D

8h, 2, 3<D �� Simplify
5

2
I-1 + ã4M Π

Clear@f, fCylindrical, JacobianDeterminantD;
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3 Interactive visualizations

3.1 Solution to the differential equation
The demonstration depicts  the plot  of the solution of a chosen differential equation passing through a

point  a  that  is  determined by dragging the  locator.  The  equations  are  of  the  type y’= f Hx, yL,  where

f :R2 ® R  is a continuous function. The vector field in the background represents the direction of the

tangent line to the plot of the solution at each point. This field is given just by the right-hand side of the

equation. The particular solution is fixed by the initial condition.

ManipulateB
equation = SwitchAfunction,

"y", y’@xD � y@xD,
"cosHxL", y’@xD � Cos@xD,
"3x2ãx

2

+2xy", y’@xD == 3*x2*ãx2 + 2 x*y@xD
E;

fun = SwitchAfunction,
"y", y,

"cosHxL", Cos@xD,
"3x2ãx

2

+2xy", 3*x2*ãx
2

+ 2 x*y

E;
sol = DSolve@8equation, y@a@@1DDD � a@@2DD<, y@xD, xD;
ShowB:Plot@y@xD �. sol@@1DD, 8x, -5, 5<, PlotRange ® 5, PlotStyle ® BlackD,

VectorPlotB 81, fun<
1 + fun2

, 8x, -5, 5<, 8y, -5, 5<, Axes ® True, Frame ® None,

VectorPoints ® 15, VectorScale ® Small,

VectorStyle ® 8Opacity@0.3D, Arrowheads@0.02D, Thickness@0.001D<F>,
ImageSize ® 220, PlotRange ® 5, AspectRatio ® 1F,

RowA9Control@88a, 81, 1<<, Locator<D,
RowA9LabeledAControlA98function, "y", ""<, 9"y", "cosHxL", "3x2ãx

2

+2xy"==E,
8"y’ ="<, 8Left<E, Spacer@60D,

PaneARowA9" a
Ó
= H", Dynamic@Round@a@@1DD, 0.1DD, ", ",

Dynamic@Round@a@@2DD, 0.1DD, "L"=E, ImageSize ® 80E=E=E,
ControlType ® PopupMenuF
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y’= 3x2ãx
2

+2xy a= H1.,1.L

Figure 3.1.15: Particular solution to chosen differential equation fixed by selected initial 

condition. The vector field represents the direction of the tangent line to the plot at each point.

Clear@equation, fun, sol, a, function, yD;

3.2 Directional derivative
This applet demonstrates geometric interpretation of the directional derivative of the function f along a

given vector s
Ó
 at the point a. The upper inset in the figure shows the graph of f; the point a is depicted

in blue, and the blue line lies in the direction of s
Ó
. The intersection of the graph with the plane, which is

perpendicular to the xy-plane and contains the blue line, is displayed as a dashed line. The lower inset

shows a two-dimensional cut together with the tangent to this intersection. The value of the directional

derivative of  f  along s
Ó

 at  a  is  just  the  tangent  function of  the  angle between the  tangent  and  the  blue

line.  As one varies s
Ó
 (by choosing the value of Φ,  which denotes the angle between s

Ó
 and the x-axis),

the directional derivative changes correspondingly.

ManipulateB
ModuleB8f, a, a3D, directionalDerivative, plotf, s, horizontalLine,

tangent, intersections, intersection1, intersection2, cut, plane, point,

tangent2, cut2, plane2, point2<,

fAx_, y_E = 1 -
1

2
*x2 - y2 ;

a = 80.5, 0.7<;
a3D = Append@a, f �� aD;
s = 8Cos@ΦD, Sin@ΦD<;
directionalDerivativeAf_, s_, a_E :=
HGrad@f@x, yD, 8x, y<D �. 8x ® a@@1DD, y ® a@@2DD<L.s;

plotf = Plot3D@f@x, yD, 8x, -2, 3<, 8y, -1, 2<,
PlotRange ® 80, 1<, Mesh ® None, AxesLabel ® Automatic,

FaceGrids ® 880, 0, -1<<, FaceGridsStyle ® Directive@DottedD,
BoxRatios ® 84, 4, 1<, ColorFunction ® "Aquamarine", PlotStyle ® Opacity@0.7DD;
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horizontalLine = ParametricPlot3D@8a3D@@1DD + s@@1DD*t, a3D@@2DD + s@@2DD*t, 0<,
8t, -10, 10<, PlotStyle ® 8Thickness@0.003D, Blue<D;

tangent = ParametricPlot3D@8a3D@@1DD + s@@1DD*t, a3D@@2DD + s@@2DD*t,
a3D@@3DD + directionalDerivative@f, s, a3DD*t<,
8t, -10, 10<, PlotStyle ® 8Thickness@0.003D, Black<D;

intersections = t �. NSolve@f@a3D@@1DD + s@@1DD*t, a3D@@2DD + s@@2DD*tD � 0, tD;
intersection1 = 8a3D@@1DD + s@@1DD*intersections@@1DD,

a3D@@2DD + s@@2DD*intersections@@1DD<;
intersection2 = 8a3D@@1DD + s@@1DD*intersections@@2DD,

a3D@@2DD + s@@2DD*intersections@@2DD<;
cut = ParametricPlot3D@8a3D@@1DD + s@@1DD*t, a3D@@2DD + s@@2DD*t,

f@a3D@@1DD + s@@1DD*t, a3D@@2DD + s@@2DD*tD<,
8t, intersections@@1DD, intersections@@2DD<,
PlotStyle ® 8Thickness@0.003D, Dashed<D;

plane = Graphics3D@8FaceForm@GrayLevel@0.5DD, EdgeForm@D, Opacity@0.5D,
Polygon@88intersection1@@1DD, intersection1@@2DD, 0<,
8intersection1@@1DD, intersection1@@2DD, 1<,
8intersection2@@1DD, intersection2@@2DD, 1<,
8intersection2@@1DD, intersection2@@2DD, 0<<D<D;

point = Graphics3D@8PointSize ® Large, Blue, Point@Append@a, 0DD<D;
tangent2 = ParametricPlot@8t, a3D@@3DD + directionalDerivative@f, s, a3DD*t<,
8t, -10, 10<, PlotStyle ® 8Thickness@0.003D, Black<D;

cut2 = ParametricPlot@8t, f@a3D@@1DD + s@@1DD*t, a3D@@2DD + s@@2DD*tD<,
8t, intersections@@1DD, intersections@@2DD<,
PlotStyle ® 8Thickness@0.003D, Black, Dashed<D;

plane2 = Graphics@8FaceForm@GrayLevel@0.5DD, EdgeForm@D, Opacity@0.5D,
Polygon@88intersections@@1DD, 0<, 8intersections@@1DD, 1<,
8intersections@@2DD, 1<, 8intersections@@2DD, 0<<D<D;

point2 = Graphics@8PointSize ® Large, Blue, Point@80, 0<D<D;
LabeledB
GraphicsGrid@88Show@8plotf, tangent, horizontalLine, cut, plane, point<,

ViewPoint ® 83, 3, 2<D<,
8Show@8tangent2, cut2, plane2, point2<, PlotRange ® 88-2, 2<, 80, 1.5<<,

AxesStyle ® Blue, ImageSize ® 300, Axes ® 8True, False<, Ticks ® FalseD<<,
Spacings ® 80, 5<D,

PaneBRowB:PaneARowA9"aÓ = H", a3D@@1DD, ", ", a3D@@2DD, "L"=EE,
Spacer@20D,
PaneARowA9"sÓ =H", N@Round@s@@1DD, 0.1DD, ", ", N@Round@s@@2DD, 0.1DD, "L"=EE,
Spacer@20D,
PaneBRowB:" ¶f

¶s
®

HaÓL = ", N@Round@directionalDerivative@f, s, a3DD, 0.01DD>FF>F,

ImageMargins ® 20F, TopFF, 8Φ, 0, 2*Π<, ContinuousAction ® FalseF
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Φ

a
Ó
= H0.5, 0.7L s

Ó
=H1., 0.L ¶f

¶s
®
HaÓL = -0.4

Figure 3.2.16: Geometric interpretation of directional derivative.

3.3 Constrained extrema

The animation illustrates how the gradient of the function f Hx, yL = Ix2 - y2M ã -x2-y2

2  and the gradient of

the  constraint  Hx- 1L2 + Hy- 1L2 - 1

2
= 0  look  at  the  points  of  the  constraint.  The  function  f  has  two

local  extremum points  subjected to the constraint  g.  Only at  these points,  the gradients of f  and g  are

proportional. 

The gradient  of  f  is  displayed as  a  blue  arrow, whereas the  gradient  of  g  is  displayed as  a  red  arrow.

The  critical  points  are  represented  by  pink  points.  The  length  and  the  direction  of  the  arrows  corre-

spond to the length and the direction of the gradient.

fAx_, y_E = Ix2 - y2M*ã -x
2-y2

2 ;

gAx_, y_E = Hx - 1L2 + Hy - 1L2 - 1

2
;

ax = 1; ay = 1; radius = 0.5 ;

a = NSolve@g@x, yD � 0 && D@f@x, yD - Λ*g@x, yD, xD � 0 && D@f@x, yD - Λ*g@x, yD, yD � 0 ,

8x, y, Λ<, RealsD
88x ® 0.357474, y ® 1.29523, Λ ® -0.400399<, 8x ® 1.29523, y ® 0.357474, Λ ® 0.400399<<

a1 = 8x �. a@@1DD, y �. a@@1DD<;

a2 = 8x �. a@@2DD, y �. a@@2DD<;
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arrowsAf_, startPoint_, colour_E :=
Module@8gradient, endPoint, scaleParameter<,
scaleParameter = 1;

gradient = Grad@f@x, yD, 8x, y<D �. 8x ® startPoint@@1DD, y ® startPoint@@2DD<;
endPoint = 8gradient@@1DD*scaleParameter + startPoint@@1DD,

gradient@@2DD*scaleParameter + startPoint@@2DD<;
Graphics@8colour, Arrow@8startPoint, endPoint<D<DD

backGround = 8ContourPlot@f@x, yD, 8x, -2, 4<, 8y, -2, 4<,
Contours ® 10, ColorFunction ® "BlueGreenYellow",

MaxRecursion ® 5, ImageSize ® 250, AxesLabel ® 8x, y<D,
Graphics@Circle@8ax, ay<, radiusDD,
Graphics@8PointSize@LargeD, Pink, Point@8a1@@1DD, a1@@2DD<D<D,
Graphics@8PointSize@LargeD, Pink, Point@8a2@@1DD, a2@@2DD<D<D<;

frames = TableBShow@Append@backGround,
8arrows@f, 8Cos@angleD*radius + ax, Sin@angleD*radius + ay<, BlueD,
arrows@g, 8Cos@angleD*radius + ax, Sin@angleD*radius + ay<, RedD<D,

PlotLabel ® Pane@Row@8"f@", N@Round@Cos@angleD*radius + ax, 0.01DD, ", ",

N@Round@Sin@angleD*radius + ay, 0.01DD, "D = ",

N@Round@f@Cos@angleD*radius + ax, Sin@angleD*radius + ayD, 0.01DD<DDD,
:angle, 0, 2*Π,

Π

50
>F;

Labeled@ListAnimate@Rasterize@ð, "Image"D & �� frames, AnimationRunning ® FalseD,
PointLegend@8Pink, Blue, Red<,
8"critical points", "gradient of f", "gradient of the constaint"<,
LegendMarkers ® 8Graphics@Point@80, 0<DD, "�" , "�" <D, RightD

critical points

� gradient of f

� gradient of constaint

Figure 3.3.17: Gradient of the function Ix2 - y2M ã -x2-y2

2  and the constraint

Hx - 1L2 + Hy - 1L2 - 1

2
= 0 at the points of the constraint.

Clear@f, g, ax, ay, radius, a, a1, a2, arrows, backGround, framesD;
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3.4 Useful alternative coordinate systems
Transformation from cartesian to one of the following coordinate systems can help us with calculating

integrals  when  integrated  function  and/or  integration  domain  have  radial,  spherical  or  cylindrical

symmetry. 

3.4.1 Polar coordinate system

This is a two-dimensional coordinate system in which each point is determined by the distance from the

origin and the angle from the polar axis. The relationship between these coordinate systems is given by

x = Ρ cosHΦL,
y = Ρ sinHΦL.

PanelBDynamicModuleB8p = 85, 5<<, ColumnB:RowB:Panel@Row@8"Ρ = ",

Dynamic@EuclideanDistance@80, 0<, pDD<D, ImageSize ® 8120, 50<,
Alignment ® 8Center, Center<D, PanelBRowB:"Φ = ", DynamicBIfBp@@2DD > 0,

VectorAngle@81, 0<, pD
Π

,
2*Π - VectorAngle@81, 0<, pD

Π

FF, " Π">F,
ImageSize ® 8120, 50<, Alignment ® 8Center, Center<F>F,

Show@PolarPlot@810<, 8t, 0, 2*Π<, PlotStyle ® Lighter@GrayD,
PolarGridLines ® 880, Pi�2, Pi, 3 Pi�2<, 82, 4, 6, 8<<D, Graphics@8Locator@

Dynamic@pDD, Dynamic@Line@880, 0<, p<DD, Opacity@0.2D<, Axes ® TrueD,
PlotRange ® 88-11, 11<, 8-11, 11<<, ImageSize ® 250D>, Alignment ® CenterFFF

Ρ = 5 2 Φ =
1

4
Π

Figure 3.4.18: Polar coordinate system.
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3.4.2 Spherical coordinate system

This coordinate system is three-dimensional. The position of a point  is  specified by the distance from

the pole, the polar angle and the azimuth angle. The cartesian coordinates are determined by

x = Ρ cosHΘ L cosHΦL,
y = Ρ cosHΘ L sinHΦL,

z = Ρ sinHΘ L.

ManipulateB
point = 8Ρ*Cos@angles@@2DDD*Cos@angles@@1DDD,
Ρ*Cos@angles@@2DDD*Sin@angles@@1DDD, Ρ*Sin@angles@@2DDD<;

ShowBGraphics3DB:PointSize@0.015D, Point@pointD,
Thickness@0.003D, Line@880, 0, 0<, point<D, Opacity@0D,
EdgeForm@8Lighter@GrayD, Thickness@0.001D<D,
Cylinder@880, 0, 0<, 80, 0, 0.01<<, ΡD,
EdgeForm@8Black<D,

CylinderB:80, 0, 0<, :
Ρ*Cos@angles@@2DDD*CosAangles@@1DD + Π

2
E

100
,

Ρ*Cos@angles@@2DDD*SinAangles@@1DD + Π
2
E

100
, 0>>, ΡF,

EdgeForm@8Black<D,
Cylinder@880, 0, point@@3DD<, 80, 0, point@@3DD + 0.01<<,
Abs@Ρ*Cos@angles@@2DDDDD,

Lighter@GrayD, Opacity@0.15D, Sphere@80, 0, 0<, ΡD>, ViewPoint ® 81, 0.5, 1<F,
PlotRange ® 88-11, 11<, 8-11, 11<, 8-11, 11<<, ImageSize ® 8250<,
AxesOrigin ® 80, 0, 0<, Axes ® True, Ticks ® All, Boxed ® False,

BoxRatios ® Automatic, SphericalRegion ® TrueF,
ColumnB:Row@8Control@8Ρ, 5, 10<D, Spacer@20D, "Ρ = ", Dynamic@ΡD<D,

RowB
:LabeledBControlB:8angles, 80, 0<, ""<, :0, - Π

2
>, :2*Π, Π

2
>, ImageSize ® Small>F,

8"Φ", "Θ"<, 8Bottom, Left<F, Spacer@160D,
ColumnB:RowB:"Φ = ", DynamicB angles@@1DD

Π

F, " Π">F,

RowB:"Θ = ", DynamicB angles@@2DD
Π

F, " Π">F>F>F>FF
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Ρ Ρ = 5

Θ

Φ

Φ = 0 Π

Θ = 0.17Π

Figure 3.4.19: Spherical coordinate system.

Clear@pointD;

3.4.3 Cylindrical coordinate system

The cylindrical coordinate system is another three-dimensional coordinate system which is obtained by

replacing x and y with polar coordinates Ρ and Φ and leaving the z coordinate the same, i.e.

x = Ρ cosHΦL
y = Ρ sinHΦL

z = h
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ManipulateB
point = 8Ρ*Cos@ΦD, Ρ*Sin@ΦD, h<;
Show@Graphics3D@8PointSize@0.015D, Point@pointD,

Thickness@0.003D, Line@880, 0, h<, point<D,
Lighter@GrayD, Opacity@0.15D, Cylinder@880, 0, 0<, 80, 0, h<<, ΡD<,

ViewPoint ® 81, 1, 0.5<D, PlotRange ® 88-11, 11<, 8-11, 11<, 8-11, 11<<,
ImageSize ® 8250<, AxesOrigin ® 80, 0, 0<, Axes ® True, Ticks ® All,

Boxed ® False, BoxRatios ® Automatic, SphericalRegion ® TrueD,
ColumnB:Row@8Control@8Ρ, 1, 7<D, Spacer@40D, "Ρ = ", Dynamic@ΡD<D,

RowB:Control@8Φ, 0, 2*Π<D, Spacer@40D, "Φ = ", DynamicB Φ
Π

F, " Π">F,
Row@8Control@8h, -7, 7<D, Spacer@40D, "h = ", Dynamic@hD<D>FF

Ρ Ρ = 4.15

Φ Φ = 0 Π

h h = 7.

Figure 3.4.20: Cylindrical coordinate system.

Clear@pointD;

3.5 Double integral

This  illustration  shows  how a  definite  integral  of  f Hx, yL = 2- 2 sinIx2 + y2M  can  be  calculated  using

different numerical methods and the convergence of Riemann sums.

The interval of integration is divided into subintervals according to the number of dividing points. The

approximation is performed by finding the volume of the collection of cuboids. The lengths and widths

of these cuboids are defined by the size of subintervals. Their heights are determined by the approxima-

tion method:

è Lower sum  the height is equal to the infimum of f on the specific subinterval.

è Upper sum  the height is equal to the supremum of f on the specific subinterval.
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è Midpoint rule  the height is equal to the value of f in the middle of the subinterval [9].

è Trapezoidal rule  the height is equal to the average of endpoints of subinterval [9].

The error is increasing or decreasing depending on the number of dividing points and the technique of

approximation.

ManipulateB
ModuleB8f, plotf, plotInterval, plotSize, intervalSize, partition,

intervals, intervals2, fvalue, sum<,
fAx_, y_E = 2 - 2*SinAx2 + y2E;
plotf = Plot3D@f@x, yD, 8x, -1, 1<, 8y, -1, 1<, PlotStyle ® 8Opacity@0.5D, Green<,

Mesh ® None, Boxed ® False, Axes ® NoneD;
plotInterval = 8-1, 1<;
plotSize = plotInterval@@2DD - plotInterval@@1DD;
intervalSize =

plotSize

dividingPoints
;

partition =

Partition@Table@i, 8i, plotInterval@@1DD, plotInterval@@2DD, intervalSize<D,
2, 1D;

intervals = Flatten@Table@8partition@@iDD@@1DD, partition@@jDD@@2DD<,
8i, 1, dividingPoints<, 8j, 1, dividingPoints<D, 1D;

intervals2 =

Flatten@Table@partition@@iDD@@1DD < x < partition@@iDD@@2DD &&
partition@@jDD@@1DD < y < partition@@jDD@@2DD, 8i, 1, dividingPoints<,
8j, 1, dividingPoints<DD;

fvalue = SwitchBmethod,
lowerSum, TableANMinimize@8f@x, yD, intervals2@@iDD<, 8x, y<, PrecisionGoal ® 2D@@

1DD, 9i, 1, dividingPoints2=E,
upperSum,

TableANMaximize@8f@x, yD, intervals2@@iDD<, 8x, y<, PrecisionGoal ® 2D@@1DD,
9i, 1, dividingPoints2=E,

midpointRule,

TableAf@intervals@@iDD@@1DD + intervalSize �2,
intervals@@iDD@@2DD - intervalSize �2D, 9i, 1, dividingPoints2=E,

trapezoidalRule, TableB
1

4
*Hf@intervals@@iDD@@1DD, intervals@@iDD@@2DDD +
f@intervals@@iDD@@1DD + intervalSize, intervals@@iDD@@2DDD +
f@intervals@@iDD@@1DD, intervals@@iDD@@2DD - intervalSizeD +
f@intervals@@iDD@@1DD + intervalSize, intervals@@iDD@@2DD - intervalSizeDL,

9i, 1, dividingPoints2=FF;
sum = NATotalATableAintervalSize2*fvalue@@iDD, 9i, 1, dividingPoints2=EEE;
LabeledBShowA9plotf,

TableAGraphics3D@8Opacity@0.7D, Lighter@YellowD,
Cuboid@8intervals@@iDD@@1DD, intervals@@iDD@@2DD, fvalue@@iDD<,
8intervals@@iDD@@1DD + intervalSize, intervals@@iDD@@2DD - intervalSize,
0<D<D, 9i, 1, dividingPoints2=E=,

ImageSize ® 8250, 250<, BoxRatios ® 81, 1, 1<, Boxed ® FalseE,

41



PaneBColumnB:StandardForm@Panel@Row@8"f@x,yD = ", f@x, yD<DDD,
StandardFormB
PanelBRowB:"à

-1

1

à
-1

1

f@x,yD âxây = ",

N@Integrate@f@x, yD, 8x, -1, 1<, 8y, -1, 1<DD>FFF,
Pane@Row@8"Volume = ", sum<D, ImageMargins ® 20D,
Pane@
Row@8"Error = ",

Abs@sum - N@Integrate@f@x, yD, 8x, -1, 1<, 8y, -1, 1<DDD<DD>,
CenterF, ImageMargins ® 10F, RightFF,

88dividingPoints, 3<, 83, 4, 5, 6, 7, 8, 9, 10<<,
88method, lowerSum<, 8lowerSum, upperSum, midpointRule , trapezoidalRule <<,
ControlType ® 8PopupMenu, PopupMenu<F

dividingPoints 3

method lowerSum

f@x,yD = 2 - 2 SinAx2 + y2E

Ù
-1

1 Ù
-1

1
f@x,yD âxây = 3.50968

Volume = 1.06207

Error = 2.4476

Figure 3.5.21: Approximation of the definite integral of the function 2 - 2 sinIx2 + y2M using 

selected methods. 
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4 Bivariate limits

4.1 Bivariate limits in Mathematica
Mathematica  does  not  provide  any  function  for  calculating  limits  of  functions  of  two  variables.  The

only way is  to  use  the  command WolframAlpha  which sends  the  input  to  WolframAlpha and imports

the output. However, it requires the Internet access. 

WolframAlpha@"limit Hx^2*y^2L�Hx^2+y^2L as x®0, y®0", "PodCells"D

: lim8x,y<®80,0<
x2 y2

x2 + y2
,

0
Hassuming variablesare real-valuedL>

Although  it  looks  like  it  works  pretty  well,  the  results  of  some  computations  can  be  incorrect.  For

instance, the limit of the function 
2 xy

xy+ 2 x- y
, where both x and y tend to zero.

WolframAlpha@"limit H2*x*yL�Hx*y + 2*x - yL as x®0, y®0", "PodCells"D

: lim8x,y<®80,0<
2 x y

x y + 2 x - y
,

0
Hassuming variablesare real-valuedL>

WolframAlpha returns 0 but the limit does not exist as we proved in example 2.2.5

4.2 Function doubleLimit
Due to the insufficient performance of the built-in function limit of WolframAlpha, we have decided to

define our own function named doubleLimit. It consists of three modules, each of which uses a differ-

ent method.

At first, we use the method of sequential limits. If both are finite, this module can determine that either

the limit does not exist or the limit would equal some specific value if it existed.

sequentialLimitsAf_, 9x_, y_= ® 9ax_, ay_=E :=
Module@8seqLim2<,
If@Head@fD === If ÈÈ Head@fD === Piecewise ÈÈ Head@fD === Which ÈÈ

Head@fD === Switch ÈÈ Head@fD === Boole, "The limit may still exist.",

seqLim1 = Limit@Limit@f, y ® ayD, x ® axD;
seqLim2 = Limit@Limit@f, x ® axD, y ® ayD;
If@NumericQ@seqLim1D && NumericQ@seqLim2D && seqLim1 ¹ seqLim2,
"The limit does not exist.",

If@NumericQ@seqLim1D && NumericQ@seqLim2D && seqLim1 == seqLim2,
Row@8"The limit may exist and if it does then it has to be ",

seqLim1, "."<D, "The limit may still exist."DDDD;
The second method how the  nonexistence of a  limit  can be  proven is  approaching the  point  at  which

the limit is searched via various curves of the form x = ky
i

j . If the function is a polynomial, the curves

are produced for i and j run from 1 to the highest exponent from all of the numerators and denomina-

tors of the variables. In case the function is not polynomial, the highest exponent is increased by 1 in

order to construct lines at least. The output of this module can be that the limit does not exist or what

the limit would be provided it existed.
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curvesAf_, 9x_, y_= ® 9ax_, ay_=E :=
ModuleB8g, nonexistence, exponents, highestExp, k<,
IfBHead@fD === If ÈÈ Head@fD === Piecewise ÈÈ Head@fD === Which ÈÈ

Head@fD === Switch ÈÈ Head@fD === Boole, "The limit may still exist.",

g = Factor@fD;
nonexistence = False;

exponents = 8Numerator@Exponent@Numerator@gD, 8x, y<DD,
Denominator@Exponent@Numerator@gD, 8x, y<DD,
Numerator@Exponent@Denominator@gD, 8x, y<DD,
Denominator@Exponent@Denominator@gD, 8x, y<DD<;

highestExp = Max@exponentsD + 1;
ForBi = 1, i £ highestExp, i++,

ForBj = 1, j £ highestExp, j++,

lim = LimitBg �. x ® k*Abs@y - ayD
i

j + ax, y ® ayF;
If@HHExponent@Numerator@limD, kD ¹ 0 ÈÈ Exponent@Denominator@limD, kD ¹ 0L &&

Exponent@lim, kD ¹ -InfinityL, 8nonexistence = True, Break@D<,
Unevaluated@Sequence@DDDFF;

If@nonexistence, "The limit does not exist.",

If@NumericQ@limD,
Row@8"The limit may exist and if it does then it has to be ", lim, "."<D,
"The limit may still exist."DDFF;

The purpose  of  the  last  module  is  to  find the  limit  employing the  definition.  Nonetheless,  it  can  also

state whether or not it exists. The function is maximized and minimized on two-dimensional interval of

the size 2d  ´  2d,  where the point  at  which the limit should be found is  in the middle of this interval.

The  result  of  this  maximization and  minimization  are  one-variable  functions  dependent  on  d.  If  they

have the same limit as d tends to zero, the searched limit exists and is equal to the their common value.

If they differ, the limit does not exist. This method, which is described at [12], works fine typically for

rational functions.

maxMinMethodAf_, 9x_, y_= ® 9ax_, ay_=E :=
Module@8d, max, min, limMax, limMin<,
max = Maximize@8f, 0 < d < 1 && -d £ x - ax £ d && -d £ y - ay £ d<, 8x, y<D;
min = Minimize@8f, 0 < d < 1 && -d £ x - ax £ d && -d £ y - ay £ d<, 8x, y<D;
limMax = Limit@max@@1DD, d ® 0D;
limMin = Limit@min@@1DD, d ® 0D;
If@HlimMax � Infinity && limMin � -InfinityL ÈÈ
HlimMax � -Infinity && limMin � InfinityL, "The limit does not exist.",

If@! NumericQ@limMaxD ÈÈ ! NumericQ@limMinD, "Function cannot find the limit.",

If@limMax � limMin, limMax, "The limit does not exist."DDDD;
Note that this method can be easily transformed to search limits of more than two-variable functions.

All three methods are used in the following complex module termed doubleLimit.
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doubleLimitAf_, 9x_, y_= ® 9ax_, ay_=E :=
Module@8possibleLimit, limit, seqLim1, lim<,
possibleLimit = False;

limit = sequentialLimits@f, 8x, y< ® 8ax, ay<D;
If@limit === "The limit does not exist.", limit,

If@limit === Row@8"The limit may exist and if it does then it has to be ",

seqLim1, "."<D, possibleLimit = limitD;
limit = curves@f, 8x, y< ® 8ax, ay<D;
If@limit === "The limit does not exist.", limit,

If@
limit === Row@8"The limit may exist and if it does then it has to be ",

lim, "."<D
&& possibleLimit === False, possibleLimit = limitD;

limit = maxMinMethod@f, 8x, y< ® 8ax, ay<D;
If@limit === "The limit does not exist." ÈÈ NumericQ@limitD, limit,

If@possibleLimit =!= False, possibleLimit,

"Function cannot find the limit."DDDDD;
Here are some examples of applications:

doubleLimitB x
2*y2

x2 + y2
, 8x, y< ® 80, 0<F

0

doubleLimitB 2*x*y

x*y + 2*x - y
, 8x, y< ® 80, 0<F

The limit does not exist.

doubleLimitB x
2 - y2

x2 + y2
, 8x, y< ® 80, 0<F

The limit does not exist.

doubleLimitBCosBΠ* x2

4*x2 + y4
F, 8x, y< ® 80, 0<F

The limit does not exist.

Clear@sequentialLimits, seqLim1, curves, lim, maxMinMethod, doubleLimitD;

4.2.1 Method of critical paths

There  is  one  more  method  published  at  [8]  which  we  intended  to  employ  for  calculating  bivariate

limits.  It  is  used  and  delineated  by  Maplesoft  in  Maple  version  17.  It  is  based  on  so  called  critical

paths.  The  function  attains  its  local  maximum or  minimum subjected  to  the  constraint  C,  which  is  a

circle  with  radius  Ρ  and  centre  a = Iax, ayM,  if  the  gradient  of  the  function  and  the  gradient  of  the

constraint are parallel. Thus, the following equation can be derived:

¶ f

¶ x

¶ C

¶ y
-
¶ f

¶ y

¶ C

¶ x
= 0.
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Together  with  the  equation  of  the  function,  it  determines  the  critical  paths.  If  all  limits  along  these

paths  are  the  same,  the  bivariate  limit  exists  and  equals  this  common value.  On  the  other  hand,  if  at

least one of them differs, it can be said that the bivariate limit does not exist.

Although it works in theory, the reality is much worse. Function Solve  has only limited power how to

find  the  solution,  especially  of  more  complicated  equations.  Moreover,  this  method  solves  the  same

kind of examples as the module maxMinMethod.

Taking into consideration these facts, we have decided not to use this method.

4.2.2 Possible issues

The success of finding the bivariate limit depends on the built-in function Limit which does not have to

be  so  trustworthy as  one  would expect.  For  example,  the  following limit  should  not  exist  as  the  one-

sided  limits differ.

LimitB Abs@xD
x

, x ® 0F

1

However, Mathematica declares that it exists because, by default, it computes the limit from the right. 
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5 Ballistic curves
A ballistic curve is a path of a projectile in the gravity field. Besides the gravitational force, there are

other  forces  acting  on  the  projectile.  One  of  the  them is  air  resistance  (also  called  drag).  The  earth’s

rotation is neglected, and the height between the projectile and the earth is assumed to be insignificant

in comparison with the earth’s dimensions in order that the gravitational constant would not change.

5.1 Ballistic trajectory without air resistance
The projectile is launched at a velocity of 

v
Ó = Ivx, vyM .

The x- and y-component can be expressed as

vx = v cosHΦL ,
vy = v sinHΦL,

where Φ is the angle between x-axis and vector v
Ó
.

Let us  assume that  the  projectile  is  launched from the  point  (0,  0).  The  gravitational force influences

only the vertical component. The trajectory is given by the parametric equations 

(3)xHtL = vx t,

(4)yHtL = vy t -
1

2
gt2.

5.2 Ballistic trajectory with air resistance
Air resistance is a kind of force which acts in the opposite way to the motion of an object with respect

to the surrounding fluid [13].

We will consider two kinds of drag  linear and quadratic. The former is usually used for lower veloc-

ity, the latter usually for higher velocity [10]. They are given by the equations

FL = -c v
Ó
, @5D

FQ = -c v
Ó2, @5D

where c is the drag coefficient that is used to quantify the drag of an object. It is associated with the

surface  area  of  the  object  and  is  obtained  from laboratory experiments.  The  value  usually ranges

between 0.4 and 1 [2].
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5.2.1 Drag proportional to velocity

The total force in x- and y-direction should be expressed as

(5)Fx = max = -cvx

and

(6)Fy = may = -cvy - mg.

Note  that  only  Fy  is  influenced  by  the  gravitational  force.  Since  the  trajectory  should  be  found,  the

following differential equations are derived by alteration of (5) and (6): 

(7)
â 2 x

â t2
= -

c

m

â x

â t
,

(8)
â 2 y

â t2
= -

c

m

â y

â t
- g.

As equations  (7)  and  (8)  are  independent,  they can  be  solved separately.  The  particular  solutions  are

fixed by the initial conditions x’H0L = vx, y’H0L = vy, xH0L = 0, and yH0L = 0.

DSolveB:x’’@tD � -c* x’@tD
m

, x’@0D � vx, x@0D � 0>, x@tD, tF �� FullSimplify

::x@tD ®
1 - ã

-
c t

m m vx

c
>>

DSolveB:y’’@tD � -c* y’@tD
m

- g, y’@0D � vy, y@0D � 0>, y@tD, tF �� FullSimplify

::y@tD ®
m g m - c g t + c vy - ã

-
c t

m Hg m + c vyL

c2
>>

The equations of the trajectory are

(9)xHtL =
J1- ã- c t

m Nm vx

c
,

(10)yHtL = 1

c2
m Jg m- c g t + c vy - ã

-
c t

m Ig m+ c vyMN.
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5.2.2 Drag proportional to velocity squared

The total force in x- and y-direction is

Fx = max = -cvx
2,

Fy = may = -cvy
2 - mg.

Thus, the trajectory can be expressed as the following differential equations: 

(11)
â 2 x

â t2
= -

c

m

â x

â t

â x

â t

2

+
â y

â t

2

,

(12)
â 2 y

â t2
= -

c

m

â y

â t

â x

â t

2

+
â y

â t

2

- g.

Unlike (7) and (8), equations (11) and (12) are dependent and must be solved as a system of differential

equations. However, Mathematica is not able to solve them analytically. As a consequence, NDSolve is

used instead of DSolve  to find numerical solution.  Hence,  c,  m,  and g  must be equal to some specific

value. The initial conditions are x’H0L = vx, y’H0L = vy, xH0L = 0, and yH0L = 0.

NDSolveB:x’’@tD � - c
m
*x’@tD* x’@tD2 + y’@tD2 �. 8c ® 1, m ® 1, g ® 9.81<,

y’’@tD � -g - c

m
*y’@tD* x’@tD2 + y’@tD2 �. 8c ® 1, m ® 1, g ® 9.81<, x’@0D � 1,

y’@0D � 1, x@0D � 0, y@0D � 0>, 8x@tD, y@tD<, 8t, 0, 3<F
88x@tD ® InterpolatingFunction@880., 3.<<, <>D@tD,

y@tD ® InterpolatingFunction@880., 3.<<, <>D@tD<<

NDSolve returns only an approximate function, which differs according to the specific initial conditions.

5.3 Visualization
The  trajectory of  a  projectile  is  now visualized  using  the  equations  (3)  and  (4)  for  trajectory without

drag,  and  (9)  and  (10)  for  trajectory  with  drag  proportional  to  the  velocity.  Drag  proportional  to  the

velocity squared is determined numerically according to the selected initial conditions. The mass m and

constant c must be fixed for the purposes of visualization (we chose m = 1 and c = 1). 
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ManipulateBModuleB8x1, y1, x2, y2, numSol<,
x1At_E = vx*t;
y1At_E = vy*t - 1

2
*g*t2;

If@f1 � 1, plot1 = ParametricPlot@
88x1@tD �. 8vx ® v0*Cos@Φ0D, Φ ® Φ0, m ® 1, g ® 9.81, c ® 1<,

y1@tD �. 8vy ® v0*Sin@Φ0D, Φ ® Φ0, m ® 1, g ® 9.81, c ® 1<<<, 8t, 0, 3<,
PlotStyle ® BlueD, plot1 = ParametricPlot@0, 8t, 0, 3<DD;

x2At_E =
1 - ã

-
c*t

m *m*vx

c
;

y2At_E =
m* g*m - c*g*t + c*vy - ã

-
c*t

m *Hg*m + c*vyL
c2

;

If@f2 � 1, plot2 = ParametricPlot@
88x2@tD �. 8vx ® v0*Cos@Φ0D, Φ ® Φ0, m ® 1, g ® 9.81, c ® 1<,

y2@tD �. 8vy ® v0*Sin@Φ0D, Φ ® Φ0, m ® 1, g ® 9.81, c ® 1<<<, 8t, 0, 3<,
PlotStyle ® RedD, plot2 = ParametricPlot@0, 8t, 0, 3<DD;

numSol =

NDSolveB:x3’’@tD � - c
m
*x3’@tD* x3’@tD2 + y3’@tD2 �. 8c ® 1, m ® 1, g ® 9.81<,

y3’’@tD � -g - c

m
*y3’@tD* x3’@tD2 + y3’@tD2 �. 8c ® 1, m ® 1, g ® 9.81<,

x3@0D � 0, y3@0D � 0, x3’@0D � v0*Cos@Φ0D, y3’@0D � v0*Sin@Φ0D>,
8x3@tD, y3@tD<, 8t, 0, 3<F;

If@f3 � 1, plot3 = ParametricPlot@8x3@tD, y3@tD< �. numSol, 8t, 0, 3<,
PlotStyle ® Darker@GreenDD, plot3 = ParametricPlot@0, 8t, 0, 3<DD;

Show@8plot1, plot2, plot3<, PlotRange ® 880, 11<, 80.1, 6<<, ImageSize ® 400DF,
ColumnB:Control@88v0, 7.5, "v"<, 5, 10<D, ControlB::Φ0, Π

4
, "Φ">, 0,

Π

2
>F,

Row@8Control@88f1, 1, ""<, 80, 1<<D,
Text@Style@ " without drag", Medium, BlueDD<D,

Row@8Control@88f2, 1, ""<, 80, 1<<D,
Text@Style@ " drag proportional to velocity", Medium, RedDD<D,

Row@8Control@88f3, 1, ""<, 80, 1<<D,
Text@Style@ " drag proportional to velocity squared", Medium,

Darker@GreenDDD<D>FF
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Figure 5.3.22: Trajectory of a projectile without drag and with drag proportional to the velocity 

and velocity squared.
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Conclusion
An interactive  tool  for  students  of  the  Mathematics  4  course  has  been  developed.  This  project  could

help them to understand the problems on many solved examples. The advantages of computer algebra

system Wolfram Mathematica have been demonstrated on particular examples. On the other hand, we

were also able to show that Mathematica is not unfailing and sometimes gives bad results without any

warning.

Since  the  source  code  is  included  for  all  examples,  this  project  can  also  help  learning  the  basics  of

Mathematica, although it is not the main purpose.

The question of bivariate limits has been discussed. Our own function has been created to find them or

disprove their  existence using various methods.  It works very good; especially when it  is  applied to a

rational function, and covers the needs of the Mathematics 4 course.

Furthermore, the problem of ballistic curves has been solved and visualized.

Several  interactive  visualizations  have  been  developed  to  help  students  understand  some notions  and

problems. Moreover, they could be also used as an interactive tool by lecturers.

In the future, the function for calculating bivariate limits could be upgraded to operate on more difficult

examples.  Furthermore,  other  courses  of  mathematics  could  be  processed  in  a  similar  way to  create

complex materials for mathematics courses at our Faculty.
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