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Co-Supervisor: Pierre Duclos, Centre Physique Théorique, France
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Chapter 1

Introduction

In this thesis, two physical systems are studied in the framework of non-
relativistic quantum mechanics. While otherwise distinctly different, they
have in common that both point interactions and magnetic fields are present
in both of the systems.

The point interactions are described by singular potentials that are non-
zero only on a discrete set (called singularity points in the 1- and 2-dimension-
al cases occuring in this thesis). Intuitively, the potentials can be described
by �-functions. In order to be applicable as Hamiltonians describing some
systems, the operators with point interactions have to be given a rigorous
sense as self-adjoint operators on Hilbert spaces, as described in detail in
the book [AGHKH1]. The standard approach uses the theory of self-adjoint
extensions of symmetric operators. The resulting operators can be described
by some boundary conditions at singularity points. Different boundary con-
ditions generally correspond to different physical situations.

We now turn our attention to the systems considered in this thesis. The
first system describes the Aharonov-Bohm effect on the background of a ho-
mogeneous magnetic field. The frequently used idealized setup of the effect,
allowing elegant treatment while leading necessarily to singular potentials, is
considered.

The Aharonov-Bohm effect is a purely quantum phenomenon with huge
influence on some fundamental aspects of quantum theory. Its essence lies
in the observation that the motion of a charged particle is influenced by the
existence of electromagnetic fields in the regions which the particle does not
enter. Its significance lies in the conclusion that potentials, rather than fields,
are the relevant entities in quantum mechanics, as contrasted with classical
physics.

Introduced by Aharonov and Bohm in 1959 ([AB1]), the phenomenon
attracted a lot of attention in the literature, with the original paper having
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more than 2,700 citations. However, it was not until 1995 that the idealized
setup was described rigorously by [DŠ] and [AT]. The key to the correct treat-
ment of the system is the very definition of its Hamiltonians. Their singular
potentials have to be precisely defined by the means of the aforementioned
point interactions as done in the two papers. A four-parameter family of
operators is necessary for the a description of the system.

A similar rigorous analysis of the Aharonov-Bohm effect in the presence
of a homogeneous magnetic field was first provided in [EŠV]. The primary
goals were to establish the boundary conditions defining the Hamiltonians,
and to study their spectral properties.

The second system describes the H+
2 molecule, an otherwise unstable ob-

ject whose existence is made possible only by the presence of a strong homo-
geneous magnetic field. Such strong fields change the behavior of the matter
dramatically, confining atoms and molecules into a very narrow cylindrical
shape in the field direction, and rendering the models describing them effec-
tively one-dimensional. Moreover, the existence of further otherwise unstable
forms of matter is made possible. These fields appear e.g. on the surface of
neutron stars.

The system is not explicitly solvable, leaving the investigation of even
its basic properties to different variational, approximative or numerical tech-
niques.

To surpass the insolvability, an approximative approach is developed in
[BD3]. A “one-dimensional” operator with singular potential is constructed.
The convergence to the Hamiltonian of the system in the resolvent norm sense
is proved in the high field limit. The advantage is the precise knowledge of
the bound on the error estimate.

In [BBjpa] and [BBfbs], the H+
2 molecule is treated using this approach.

The main goals are to established the convergence, and to study the ground
state, the equilibrium distance of the nuclei and the energy of the system.

The core of the thesis is formed by the original results reported in three
published articles [EŠV], [BBjpa] and [BBfbs]. The first paper regards the
Aharonov-Bohm effect in the presence of a homogeneous magnetic field. The
latter two papers concern H+

2 molecule in a strong magnetic field.
As to the structure of the text, the point interactions are introduced in

Chapter 2. Chapter 3 is devoted to the Aharonov-Bohm effect, and Chapter
4 concerns matter in strong magnetic fields.
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Chapter 2

Point interactions

In this Chapter, we discuss a special class of quantum mechanical models;
they are called point interaction models. These models are described by
Hamiltonians with potential supported on a discrete set. One of their key
features is that they are solvable – a quality allowing an explicit description
of their spectrum, eigenfunctions and scattering properties.

These models are studied extensively in the literature, and they are used
in an enormous number of applications. When properly defined, they can
serve as approximations to more complicated unsolvable systems; their solv-
ability renders them very useful in this role.

For a study of mathematically rigorous treatment of point interactions,
the best reference is the book [AGHKH1]. Systems in one, two and three
dimensions are described, with one, finite number as well as infinite amount
of singularity points. For every situation, a rigorous way of treatment is
described and some basic results are given. An extensive review of literature
is provided as well.

In this thesis, two different types of point interaction models will occur.
In Chapter 3, a two-dimensional system where the singularity is concen-
trated into one point is studied. In Chapter 4, a one-dimensional system
with two points of singularity is used to describe H+

2 molecule. We will dis-
cuss the methods for their correct definitions in Section 2.2 and Section 2.3,
respectively, after giving some general description of point interactions in
Section 2.1. Therein, we will adhere to the notation and terminology used in
[AGHKH1].
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2.1 General description of point interactions

As said, two examples of systems with point interactions will occur in this
thesis. In their general form, these systems can be described in an intuitive
way by formal operators of the type

H = −Δ +
∑
y∈Y

�y�y(⋅), (2.1)

where Δ is the Laplacian with domain H2,2(ℝd) with d = 1, 2, 3; notice that
Δ is self-adjoint as an operator on L2(ℝd). Further, Y ⊂ ℝd is discrete
(finite or countably infinite) set, with the points y ∈ Y being called sources
or points of singularity, �y is a coupling constant corresponding to y, and �y
is a Dirac �-function at y. In this way, one can regard the operators (2.1) as
describing quantum particle moving under influence of singular, zero-range
potential formed by sources of strength �y located at y.

Now, we will describe the idea that leads to the standard approach to the
singular potentials in point interaction operators. We will consider the case
where Y = {y}, thus H = Δ + ��. For every possible rigorous definition of
H it must hold true that H = −Δ when restricted to the C∞0 (ℝd ∖ {y}). For
d ≥ 4 that would lead to the conclusion that H = −Δ on H2,2(ℝd) since
Δ∣C∞

0
(ℝd ∖ {y}) is essentially self-adjoint. For d = 2, 3 it shows that there

exist a one-parameter family of self-adjoint operators giving precise sense to
−Δ +�y, the parameter being some “renormalized coupling constans”. This
is mathematically formalized using Krein’s theory of self-adjoint extensions.

As to the standard approach itself, the procedure is following. One starts
with some symmetric operator; the singularity points are excluded from the
supports of functions belonging to its domain. Then the theory of self-adjoint
extensions is applied to the symmetric operator, yielding a family of opera-
tors. Each of these self-adjoint extensions is then described by some boundary
condition applied to the functions from its domain at the points of singularity.

Let us note that the point interaction models do not restrict to the type
defined above in (2.1) – some other systems can involve another type of point
interaction such as �′-interaction, or the multiparticle operators of the type

−� +
N∑
i<j

�ij�(xi − xj),

where �ij are coupling constants for the �-interactions between i-th and j-th
particles at xi and xj, respectively.

We will now turn our attention to the types of interaction used in the two
systems we investigate in Chapter 3 and Chapter 4.

4



2.2 Point interactions in two dimensions

In this section, we will describe the correct treatment of the point interaction
supported on one point of singularity in two dimensions. This model was
studied in [AGHKH2], and the results appear in the book [AGHKH1] as
well. The same approach is used in [DŠ] and [AT] to define the Hamiltonians
that describe the Aharonov-Bohm effect in its idealized setup, see Section
3.3.3.

The goal here is to find a rigorous definition of the heuristic operator

H = −Δ− ��(⋅ − y) (2.2)

in L2(ℝ2), where y denotes the point of singularity. According to the general
discussion in the previous section, we should have H' = −Δ' for ' ∈
C∞0 (ℝ2) with '(y) = 0, and therefore we can interpret (2.2) as a self-adjoint
extension of

−Δ∣C∞
0 (ℝ2∖{y}). (2.3)

Let Ḣy be defined as the closure in L2(ℝ2) of the operator (2.3). Then solving
the equation

Ḣ∗y (k) = k (k)

for

Ḣ∗y = −Δ, D(Ḣ∗y ) =
{
g ∈ L2(ℝ2) ∩H2,2

loc (ℝ2 ∖ {y})
∣∣Δg ∈ L2(ℝ2)

}
shows that Ḣy has deficiency indices (1, 1). Then the decomposition of the
Hilbert space is deployed,

L2(ℝ2, d2x) =
∑⊕

m∈ℤ

L2(ℝ+, r dr)⊗ ℂ e{m�,

and the Hamiltonian Ḣy decomposes accordingly. Let lm be formal operators

lm = − d2

dr2
+
m2 − 1

4

r2
, r > 0,m ∈ ℤ.

Denoting ℎ̇m the restriction of Ḣy to sector m, we have that ℎ̇m = lm for
r > 0,m ∈ ℤ, and

D(ℎ̇m) =
{
' ∈ L̷2(ℝ+)

∣∣', '′ ∈ ACloc(ℝ+), lm' ∈ L2(ℝ+)
}
, m ∕= 0,

D(ℎ̇0) =
{
' ∈ L̷2(ℝ+)

∣∣', '′ ∈ ACloc(ℝ+),W (', '±), l0' ∈ L2(ℝ+)
}
.
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Here W denotes the Wronskian, W (g, ℎ)r = g(r)ℎ′(r)− g′(r)ℎ(r) and '± are
some functions.

Operator ℎ̇m is self-adjoint for m ∕= 0, and ℎ̇0 has deficiency indices
(1, 1). Thus ℎ̇0 has a one-parameter family of self adjoint extensions ℎ0,� for
� ∈ (−∞,∞]. It holds true that ℎ0,� = l0 and

D(ℎ0,�) =
{
' ∈ L̷2(ℝ+)

∣∣', '′ ∈ ACloc(ℝ+),W (', '±), l0' ∈ L2(ℝ+),

2��'0 + '1 = 0} , � ∈ (−∞,∞],

where

'0 = lim
r↓0

(
r1/2 ln r

)−1
'(r),

'1 = lim
r↓0

r−1/2
(
'(r)− 1'0(r)r1/2 ln r

)
,

for ' ∈ D(ℎ∗0,�).
It can be seen that the self-adjoint extensions are determined by the

boundary condition 2��'0 + '1 = 0 that depends on the parameter �.

2.3 Point interactions in one dimension

In this section, we will depict the correct treatment of the point interaction
model that will be used later to describe H+

2 molecule. In fact, we will
consider a more general setup with a finite number of point interactions
in one dimension as done in [AGHKH1]. The definition of the H+

2 will be
provided in (4.19).

Let N ∈ ℕ and let Y = {y1, . . . , yN} ⊂ ℝ be the set of sources. We define
operator ḢY on L2(ℝ) by

ḢY = − d2

dx2
, D(ḢY ) =

{
g ∈ H2,2(ℝ) ∣g(yj) = 0, yj ∈ Y, j = 1, . . . , N

}
.

Operator ḢY is closed and has deficiency indices (N,N) which leads to a N2-
parameter family of self-adjoint extensions. In the same way as in [AGHKH1],
we restrict ourselves to the case of so-called separated boundary conditions at
each point yj for i = 1, . . . , N . This gives the following N -parameter family
of self-adjoint extensions

Δ�,Y = − d2

dx2
, (2.4)

D(Δ�,Y ) =
{
g ∈ H2,1(ℝ) ∩H2,2(ℝ ∖ Y ) ∣g′(yj+)− g′(yj−) = �jg(yj)

}
.
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Chapter 3

Aharonov-Bohm effect with
a homogeneous magnetic field

This chapter is devoted to the study of the Aharonov-Bohm effect in the pres-
ence of a homogeneous magnetic field. Rigorous definition of Hamiltonians
is given and the most general description of the system is derived, extend-
ing the results published in literature on this topic. An analysis of spectral
properties is performed. One of its interesting and non-trivial implications
is the fact that changes of parameters of point interactions lead to changes
of spectra of the corresponding operators, showing the physical relevance of
the approach. The results are summarized in paper [EŠV] that lies in the
core of this part.

As to the structure of the text, in Section 3.1, the description of the
Aharonov-Bohm effect as well as of its importance for quantum mechanics
is given. The systems of interest are then rigorously defined in Section 3.2.
Section 3.4 contains the actual results published in [EŠV]. Finally, Sections
3.3 and 3.5 are devoted to the review of literature showing the work in a
broader research context. Here the former section concerns the preceding
research while the latter covers the articles using or citing the results of
[EŠV].

3.1 Aharonov-Bohm effect

The Aharonov-Bohm effect is a quantum-mechanical phenomenon wherein
the motion of a charged particle is influenced by the existence of electromag-
netic fields in the regions which the particle does not enter.

The history of the phenomenon dates from 1959 when Y. Aharonov and
D. Bohm published their famous article “Significance of electromagnetic po-
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tentials in the quantum theory” (cf. [AB1]); the phenomenon then came to
be called the Aharonov-Bohm effect in their honor. However, it would be
fair to remind that a magnetic type of the effect was first predicted already
in 1949 by Ehrenberg and Siday, formulating electron optics by means of a
refractive index represented by scalar and vector potentials (cf. [ES]).

We will discuss the phenomenon in detail in this section. Section 3.1.1
is devoted to the essence of the effect, while its history, experimental con-
firmation and implications to the quantum theory are described in Section
3.1.2.

Throughout this chapter, we will refer to the Aharonov-Bohm effect
shortly as to the AB effect for the sake of convenience.

3.1.1 Significance of electromagnetic potentials in the
quantum theory

The AB effect is of purely quantum character, not corresponding completely
to any classical effect. In classical physics, the fundamental equations of
motion can always be set up entirely by the means of fields, making the
fields the only physically relevant entity. Vector and scalar electromagnetic
potentials play the role of a convenient, yet dispensable mathematical tool
for calculations related to fields.

However, in the quantum theory, the situation is different. One cannot
get rid of the potentials in the Schrödinger eguation which suggests their
possible physical significance. This is what Aharonov and Bohm realized
and discussed in their article [AB1]. Therein, they proposed two electron
interference experiments, too, that would show how the potentials influence
electrons passing through field-free regions.

The main idea is the same for both experiments. An electron beam comes
from the left and is split into two parts. Each of the two halves passes through
some region where no field is present, both parts then are reunited at the right
to form an interference pattern. Any change in the relative phase between
the two beams will cause a shift in the interference pattern. In case of no
external influence on the electrons, the pattern will be determined solely by
the length difference of the two paths.

Then the electric or magnetic field is added as seen in Fig. 3.1 and Fig. 3.2
later on. In both cases, the setup ensures that any contact between the field
and the beams is avoided. Despite that, the phase shift between the two
beams occurs, which leads to observable changes of the interference pattern.
Evidently, there is a change in the physical situation.

As can be seen, the nature of the AB effect is of a dual character and can
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Figure 3.1: Electric AB effect. W1, W2 wave packets, M1, M2 metal cylinders.

be categorized into electric and magnetic effects. We will now discuss both
of them.

Electric AB effect

We begin first with a simple example. We consider a charged particle inside
a “Faraday cage” connected to a generator that makes the potential on the
cage change in time; inside the region, the potential is a function of time only.
Let us denote by H and H0 respectively the Hamiltonian of the system with
the generator on and off, i.e. H = H0 + e', where ' = '(t) is the mentioned
time-dependent scalar potential. Let  and  0, respectively, be the solution
of the corresponding Schrödinger equation. Then we have a relationship
between  and  0 reading

 =  0e−{S/ℏ, S = e

∫
' dt,

which follows from

{ℏ
∂ 

∂t
=

(
{ℏ
∂ 0

∂t
+  0∂S

∂t

)
e−{S/ℏ = (H0 + e') = H .

The only difference between the wave functions is the phase factor e−{ℏS which
has no physical consequences as to the observable results of measuring; both
 and  0 lie in the same one-dimensional subspace of Hilbert space, thus
determining the same state of the system. However, this example shows us
a route to the actual electric AB effect.

The setup of the thought experiment is schematically illustrated in Fig. 3.1.
An electron wave packet is split into two (we will talk about the halves as
of two packets) and then recombined to interfere. Meanwhile, each of the
two packets progresses through a separate long cylindrical metal tube con-
nected again to a generator and playing the role of the Faraday cage from
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the previous example. We want the length of the packets to be much bigger
than their wavelength and much smaller than the length of the cylinders at
the same time. The generators on the pipes are turned on – making thus
scalar (and generally non–equal) potentials '1(t) and '2(t) non-zero – only
during a short time interval when both the packets are well inside one tube
or the other, and turned off otherwise. The field does not penetrate far into
the tubes from their edges, and there is no other external field or poten-
tial present in the system. This ensures that the electrons in both packets
experience merely the corresponding time-dependent potential but no local
electric field. However, a real physical effect in the form of a relative phase
shift between the two packets will occur, as shown below.

When the generators are off (i.e. the potentials are zero), the wave func-
tion is a superposition of the wave functions of both packets, namely

 0 =  0
1 +  0

2.

Turning the generators on and thus applying the potentials on the tubes
causes them to behave as the individual Farraday cages in the previous ex-
ample; this gives

 =  0
1e
{S1/ℏ +  0

2e
{S2/ℏ

where again

Si =

∫
e'i dt.

Evidently, the interference of the two beams depends on the phase difference
(S1 − S2)/ℏ determined solely by the potentials and thus a change in the
interference pattern can be observed even without any influence of the fields.

Magnetic AB effect

We proceed to the second experiment; the setup is shown in Fig. 3.2. A
closely wounded cylindrical solenoid with the center in the origin and oriented
in the direction of the z−axis is introduced. The return magnetic flux is
made to avoid the regions where the electrons are permitted. Again, an
electron beam comes from the left, splits into two parts passing the solenoid
from different sides without touching it, and reunites to form an interference
pattern. Since there is no time dependence, neither making wave packets is
necessary in this case.

By supplying an electric current to the solenoid, a stationary magnetic
field H is created, enclosed completely within the solenoid. However, contrary
to the field, the vector potential A cannot vanish everywhere outside the
solenoid, since the path integral of A along any simple closed trajectory

10



Figure 3.2: Magnetic AB effect

around the solenoid is constant and equal to the total magnetic flux � inside
it, i.e. ∫

H dS =

∮
A dx = �.

The Hamiltonian of the system reads

H =
1

2m

(
−iℏ∇+

e

c
A
)2

.

As with the electric type of effect, we can write the wave function as  0 =
 0

1 +  0
2 for the free case (i.e. when A = 0); here  0

i represent the beam
halves on one or the other side of the solenoid.

Suppose that A ∕= 0 now. If we had a simply connected region where
H = ∇×A = 0, an electron traveling along a path P would acquire a phase

S =
e

ℏ

∫
P

A dx

and therefore the solution for the above Hamiltonian H would be  =
 0e−{S/ℏ. In our situation, the region is multiply connected and  is gen-
erally not single-valued, making it inadmissible as a solution. However, we
can treat both beams independently since they lie in two distinct regions,
each of them being simply connected, and use the above argument individu-
ally for each of them. Thus

 =  0
1e
−{S/ℏ +  0

2e
−{S/ℏ, Si =

e

ℏ

∫
Pi

A dx

with Pi standing for paths of the first and the second beam, respectively.
The phase difference determining the interference then reads

1

ℏ
(S1 − S2) = − e

ℏc

∮
A dx =

e

ℏc
�.
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Evidently, it depends on the value of the flux only. Again, the effect occurs
even though the particles do not experience the field.

The two types of the effect

As said, the AB effect is of dual nature, appearing in both its electric and
magnetic variants. These two effects are however not different phenomena,
but they are rather closely linked. We will describe now what separates and
connects them.

What distinguishes the two variants (from a technical point of view) are
the types of potentials and integrals involved. In the electric AB effect,
scalar, time-dependent electric potentials play the crucial role. On the con-
trary, those appearing in the magnetic AB effect are vector, space-dependent
magnetic potentials. The phase differences determining the interference pat-
terns can be expressed as a time integral in the former variant and a loop
time-independent integral in the latter, namely

1

ℏ
(S1 − S2) =

{ e

ℏ

∫
('1 − '2) dt, (electric type)

− e

ℏc

∮
A dx (magnetic type)

with integration around any closed curve around origin in the second case.
On the other hand, the above integrals show us a connection as well.

They can be looked on as the components of the covariant product of two
four-vectors, namely potential A� = (A,−'/c) and space-time differential
dx� = (dx, c dt). Here, c and x denote respectively the light velocity and the
displacement vector, and ' = '1 + '2 is a total potential of the electric AB
effect. This leads to a relativistic generalization of these integrals in the form

e

ℏ

∮ (
' dt− A

c
dx

)
with the path of integration going over any closed curve in space-time and
' being evaluated in the center of the wave packet. So, if one started only
with the electric AB effect, the described generalization would lead to a
conlusion that the magnetic effect exists as well – in fact, this is exactly the
argumentation used in [AB1].

The essence of the effect is the same for both variants, too. It lies in the
exclusion of the fields from contact with the particles, creating thus a multiply
connected space. This is clearly visible in the case of the magnetic type of
effect, where the excluded region lies in between the two beam halves. For
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the electric variant, the multiply connected region surrounding the excluded
field has to be considered as a region in the space-time.

Finally, the magnetic AB effect can also be observed as an electric effect
in a coordinate system where the incident electron is at rest (c.f. [K]). In [L1]
it was shown that the invariant quantity to a Lorentz transformation can be
given by an electromagnetic flux

∮
A� dx� =

∮
A dx− ' dt.

Magnetic AB effect in detail

A general form of the “magnetic Aharonov-Bohm Hamiltonian”, i.e. the
Hamiltonian of the system with excluded magnetic field, reads

H =
1

2m

(
−{ℏ∇+

e

c
(AAB + A0)

)2

− eV0. (3.1)

Here A0 and V0 denote some ordinary potentials, whose respective electro-
magnetic field may overlap with the domain of the electron, and AAB is the
potential due to the excluded stationary magnetic field. With AAB = 0, the
operator has the form

H0 =
1

2m

(
−{ℏ∇+

e

c
A0

)2

− eV0.

Let us denote  and  0 the solutions of the corresponding Schrödinger equa-
tions for operators H and H0.

The operators and their solution are formally related by the gauge trans-
formation

U(x) = exp

(
− {e
ℏc

∫
x

AAB

)
(3.2)

where the path of integration is any closed curve going through the point x,
and

H = UH0U
−1,  = U 0. (3.3)

If they held true, equations (3.2) and (3.3) would imply that there is no
observable effect of the excluded field on the electron, and thus H and H0

would describe the same systems.
However, the relations are only formal so far. To form a real gauge

transformation and to ensure that  = U 0 is the unique solution of the
Schrödinger equation for H, U must be a single-valued function independent
of the path of integration in (3.2) for given x.

For a simply connected domain of the electron, it suffices that H = ∇×
AAB = 0 within it. Then the above conditions are fulfilled and there is no
observable AB effect.
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Figure 3.3: Excluded regions, excluded magnetic field

Let us suppose the domain is multiply connected, however. If the field is
confined to an excluded region as in Fig. 3.3, then U is generally not single
valued even if H = 0 in the whole domain. Therefore U does not constitute a
gauge transformation, the systems described by H and H0 are different and
the dynamics of the electron in the former system depends on the magnetic
flux �.

This dependence causes all observable phenomena to behave periodically.
As said, the phase shift is gauge invariant and is determined by

(S1 − S2) /ℏ = − e

ℏc

∮
AAB dx =

e

ℏc
�,

therefore the period is equal to London’s unit �0 = 2�ℏc/e.
As a consequence, there is a special case when the AB effect vanishes

even though there is an excluded field. It happens when the flux is an integer
multiple of �0. Then integrating around the excluded field changes U by the
factor exp(2n�{), keeping it single valued.

It is usual to define �, where

� = − e�

2�cℏ
, (3.4)

as a parameter of the AB effect. Due to the gauge symmetry mentioned
above, which can be described as A′AB = AAB+ee{�, n ∈ ℕ, � ∈ [0, 2�] as well,
one can always consider � ∈ (0, 1) without loss of generality. Analogously,
the effect disappears for � ∈ ℕ.

3.1.2 Significance of AB effect in quantum theory

The interpretation proposed by Aharonov and Bohm was not widely accepted
after the publication of [AB1], with some papers even denying the very exis-
tence of the effect, and it was not until 1986 that the effect was experimentally
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demonstrated in a manner satisfying its opponents and described in [TOM+].
Nowadays, there is a widespread agreement about the significance of the ef-
fect. For a detailed historical review with a comprehensive list of references,
see [OP] or the books [PT] and [H2].

History

At the beginning of 1960s, early attempts to demonstrate the effect experi-
mentally were made. The very first one was conducted by Chambers ([C2])
using a tampered whisker in 1960, and followed by several others. Though the
experiments showed the predicted interference shifts, Aharonov and Bohm
stressed in their second paper in 1961 (cf.[AB2]) that they did not serve as
an ideal confirmation, the issue being an insufficient separation of the effect
of vector potentials from that of magnetic fields. Subsequently, special at-
tention was paid to the detention of a pure potential effect in the experiment
by Mölenstedt and Bayh in 1962 ([MB]). However, the level of suppression of
the leakage field was still not perfect, leaving space for a possible alternative
explanation of the interference patterns due to the fields, and denying the
role of potentials.

Simultaneously with these experiments, theoretical discussion about the
interpretation of the effect and about the actual significance of potentials
started, with both supporting and disapproving arguments presented in pa-
pers. The dispute was further fueled by the introduction of the concept of
non-integrable phase factor by Wu and Yang ([WY]); according to them,
the AB effect demonstrated the gauge principle of electromagnetism. There
were also attempts to interpret the effect in the classical framework as an
interaction between the electron and the magnetic field.

Probably the most serious critics were Bocchieri and Loinger, who pro-
duced several articles questioning both theoretical and experimental results.
In [BL] and subsequent papers, they claimed that the effect does not exist
at all, being a purely mathematical construction, and that fields are the only
relevant physical entities. They brought in a lot of arguments supporting
their assertion. The most essential concerned a possibility to choose a gauge
function so that the vector potential vanishes outside the solenoid, a possi-
bility to replace the Schrödinger equation by a set of nonlinear differential
equations containing only fields, the alleged nonexistence of the AB effect for
bound state electrons scattering, as well as the nonexistence of the AB scat-
tering. As for experiments, they claimed the interference pattern can be fully
explained by leakage fields. Their work invoked quite a strong reaction with
several articles advocating Bocchieri’s and Loinger’s conclusion, but with the
majority of papers supporting those of Aharonov and Bohm.
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Figure 3.4: Interference patterns as published in [TOM+]

Experimental proof of the effect

The final experiment was carried out in 1986 by Tonomura et al, resuming
their previous attempts. The results were published in [TOM+].

A tiny toroidal magnet of less than 10 �m was prepared and its surface
covered by a metal layer of superconducting material, and further by a copper
layer. This ensures that there is no possibility of electron penetration into
the magnet, and, due to Meissner effect, the magnetic field cannot pass
the layer and leak outside the toroid. In this setup, no overlap between
the magnetic field and the electron beam is possible. (In fact, these effects
were negligible rather than nonzero, with only 10−6 of the electron wave was
estimated to reach the magnet through the shielding. Moreover, the leakage
fields were measured using electron holography and only those toroid samples
with nonmeasurable leakage were chosen and used.)

Two electron beams then were shined onto the toroid, one passing the
hollow part of it, and the other going outside the toroid. Electron holograms
were formed with a field-emission electron microscope, and the waves were
recombined to form an interference pattern. The pattern was recorded as
a hologram and optically reconstructed using two laser beams. The phase
shift of size 2e��/ℏ appeared with � being the magnetic flux enclosed by the
beams. This proved the existence of the effect. The interference patterns are
depicted in Fig. 3.4.

As a by-product of the experiment, quantization of the flux was proven,
with the interferograms changing abruptly when a superconducting critical
temperature was passed.
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3.2 The systems

In this part, we will provide the definitions of the systems we are interested
in, including some formal operators describing them. We will also define
some commonly used terms here.

After some general remarks in 3.2.1, we will start with the pure AB effect
with no other influence, and its idealized version (in 3.2.2 and 3.2.3). Then a
homogeneous magnetic field will be added into the system in 3.2.4. Finally,
there will be some discussion concerning the choice of boundary conditions
in 3.2.5.

3.2.1 General remarks

From now on, we will concentrate on the magnetic version of the phenomena.
Thus, by the AB effect we will always mean the magnetic Aharonov-Bohm
effect, unless stated otherwise.

For the sake of convenience, we will also introduce the natural units usual
in mathematical literature, i.e. we will put ℏ = e = m = c = 1 from here on.
There will be some few exceptions to the rule in Sections 3.3 and 3.5 where a
review of the related research will be present – we will preserve the notation
standards of the papers cited there.

We will consider spinless particles. Again, there will be exceptions in the
review of the literature later on.

3.2.2 Pure AB effect

We will start with the AB effect with no other influence, i.e. when V0 =
A0 = 0, and AAB ∕= 0 in (3.1). This system is sometimes titled “pure AB
effect” and its formal Hamiltonian reads

H = (−{∇+ AAB)2 = − (∇+ AAB(∇))2 (3.5)

(we do not consider the self-adjointness of the operator here, thus no domain
is specified).

Then, the solenoid is considered parallel with the z−axis, implying the
magnetic field in the form

H(x, y, z) = (0, 0,H(r))

with r2 = x2 + y2. In the general case, H(r) must vanish for r ≥ R, and in
this region the magnetic potential can be taken in the form

A=
{�

2�r2
(−x2dx1 + x1dx2), r2 = x 2

1 + x 2
2 .
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where � signifies the total flux. Then the parameter of the effect � is defined
as in (3.4), namely

� = − �

2�
,

with � ∈ (0, 1) without loss of generality.

3.2.3 Idealized AB effect

Shortly, the idealized AB effect is a combination of the pure AB effect with
a singular potential.

In [AB1], the authors introduced an idealized setup with infinitely thin
solenoid, i.e. in the limit where the diameter of the region with the magnetic
field goes to zero while preserving the value of the total flux. This setup
allows a particulary elegant treatment. It was later on referred to as the
idealized AB effect.

The authors proved that the probability that the particle will traverse
the magnetic field region tends to zero in the limit where the diameter of the
solenoid goes to zero, too. They concluded that the beam can be shielded
from the field by a barrier whose radius is infinitesimally small, and the wave
function would remain intact.

Later on, the question of the appropriateness of the idealized setup was
addressed, e.g. by [PTT] and [T1]. One could refer to an unclear sense
of the separation of the flux from the electron domain when the radius of
the excluded cylinder is zero. However, it was shown that putting the shield
radius equal to some finite a and setting the solenoid radius to a/2, still leads
to a flux-dependent cross section. Moreover, the wave function converges
smoothly to the one computed in [AB1] when a→ 0. In [T1], the substitution
of a toroidal solenoid for an infinite cylinder was discussed.

There are many ways the idealized AB effect (or the solenoid representing
it) is referred to in the literature. The most common are “flux”, “idealized
solenoid”, “singular AB effect” or “thread of a flux”. In the two-dimensional
cases, the point of intersection of the flux with the plane is called “vortex”.

Mathematical description

The idealized AB effect can be formally described by the operator (3.5) with
a singular potential added,

H = (−{∇+ AAB)2 − � �(r) = − (∇+ AAB(∇))2 − � �(r). (3.6)

Here in the last term, � denotes the coupling constant and � is a symbolical
expression of the singularity; its exact meaning is explained in Section 2.2.
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Taking into consideration the translational symmetry with respect to z,
it is possible to reduce the problem to two dimensions only. The Hamiltonian
can then be rewritten in polar coordinates as

HAB = − ∂2

∂r2
− 1

r

∂

∂r
+

1

r2

(
{
∂

∂�
− �

)2

− � �(r).

Here the term � �(r) has to be considered as a symbol standing for a singular
potential in two dimensions, correspondingly.

The formal operator (3.6) may be interpreted as describing the combi-
nation of two interactions: 1. the magnetic interaction due to the pure AB
effect, and 2. the contact interaction of the particle with the solenoid. (How-
ever, some other points of view are possible as well.)

There were several attempts to rigorously define the operator (3.6) and
to handle the inweaved singularity; this is closely connected with the topic
of Section 3.2.5, i.e. the problem of choosing boundary conditions.

The correct treatment of the operator uses the method based on the
theory of self-adjoint extensions (cf. Section 2.2 for the two-dimensional
case); the application of the method and the results will be discussed in
Section 3.3.3.

3.2.4 AB effect and homogeneous magnetic field

The system we are interested in is composed of the idealized AB effect on
the background of a homogeneous magnetic field.

The corresponding formal operator has a similar form as in (3.6), namely

H = (−{∇+ A)2 − � �(r) = − (∇+ A(∇))2 − � �(r), (3.7)

the difference being in the potentials. Here the vector potential A is the
sum of two parts, A = Ahmf +AAB, with the part Ahmf corresponding to the
homogeneous magnetic field in the circular gauge,

Ahmf = − {B
2

(−x2dx1 + x1dx2),

and with the part AAB corresponding to the idealised AB effect,

AAB =
{�

2�r2
(−x2dx1 + x1dx2), r2 = x 2

1 + x 2
2 .

Without loss of generality we may assume that B > 0. As in (3.4), we rescale
the Aharonov-Bohm flux,

� = − �

2�
,
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to have a variable which expresses the number of flux quanta and, as usual,
we make use of the gauge symmetry allowing us to assume that � ∈ (0, 1).
We remind the case � ∈ 2�ℤ is excluded since it is gauge equivalent to the
vanishing AB flux.

Once again, since the newly added magnetic field does not brake the
rotational symmetry, the reduction to a two-dimensional problem remains
feasible. This leads to the expression in polar coordinates in the form

H = −1

r
∂rr∂r +

1

r2

(
m+ � +

Br2

2

)2

.

Since the magnetic field does not bring any new singularity, the issue
of the proper definition of the singular potential is the same as with the
idealized AB effect. The correct investigation of the problem is described in
Section 3.4.

Perturbation of the homogeneous magnetic field

We will mention one possible physical interpretation of this system. Through-
out this thesis, we stick to the following view: first, the idealized AB effect
and its embedded singularity has to be dealt with. Only after that some
other influence, in this case the magnetic field, can be added. However, it is
possible to see it from a different perspective.

One can view the Hamiltonian as the simplest perturbation to the Lan-
dau operator or, in other words, regard the AB flux as the simplest magnetic
perturbation of the homogeneous field. Thus, one can think about the system
as of the simplest (even explicitly solvable) quantum system with inhomoge-
neous magnetic field; as is well known, other systems of this kind are very
difficult to deal with.

3.2.5 Boundary conditions

Throughout the whole Chapter 3, there will be one area of special interest
and importance to us, namely the boundary conditions.

With the magnetic type of the AB effect, there arises a question of be-
havior of the wave packet when it reaches the solenoid border (or better said,
the border of the shield confining the solenoid), regardless of its diameter;
this concerns both the hard-core and the idealized setups, i.e. cases where
R > 0 and R→ 0, with R being the solenoid diameter.

We will consider the idealized setup here. In this case, the problem of
boundary conditions can in fact be transformed to the problem of a correct
definition of singular potentials, and of the Hamiltonians containing them.
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One can view the definition of the operators from three equivalent angles: 1.
treating the singularity included in the potential, 2. choosing the boundary
conditions at the origin, 3. specifying the domains of the operators.

In [AB1], the condition of regularity was imposed on the electron wave,
namely limr→0  (r, �) = 0 in polar coordinates. It seemed to be a natural
choice in agreement with the intuition, the idea being that the wave packet
disappears when reaching the solenoid.

However, it was shown later on that this is not the most general admis-
sible condition from the mathematical point of view ([AW], [dSG]), and that
one can allow the wave function to be singular at the beginning. In this
way, a class of properly defined Hamiltonians depending on the choice of
boundary conditions and describing the system appears. Moreover, it shows
that there are observable differences (changes in the spectrum, differential
cross sections etc.) between the particular systems corresponding to differ-
ent operators. Thus, with restriction to the regular boundary condition full
physical description of the effect is not achieved.

Concerning the idealized AB effect, there are essentially three types of
conditions used in the literature. Firstly, the mentioned regular condition
used e.g. in [AB1] and [R3]. Secondly, conditions allowing singular behavior
of the wave functions separately in p- and s-wave (i.e. in fixed sectors of
angular momentum with m = 0 and m = −1), used e.g. in [GHKL], [GMS],
and [MT]. And lastly, the most general conditions derived simultaneously by
[DŠ] and [AT]. We will study these types of conditions in the following three
parts 3.3.1, 3.3.2, and 3.3.3.

As to the case with the added magnetic field, the literature is sparser
here. Hence, very few such illustrating examples can be found, the only ones
being the condition  (0) = 0 used in [T2], and the regular condition in [C1].
The most general conditions are derived in [EŠV].

3.3 Preceding research

A brief review of literature follows, with the intention to show [EŠV] in its
broader context of preceding work. Amongst the many papers published on
the subject, only few were chosen, selected by two criteria.

Either, the articles are direct predecessors of [EŠV], and thus they con-
sider a similar physical system. The goal is mainly to show the state of the
art at the time of publication.

Or, the articles consider the topics from the similar viewpoint, and hence
illustrate in practice the discussion from the previous part. Here the aim is to
show the evolving approach to the question of boundary conditions and their
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progressive generalization leading at the end to the broadest formulation of
the problem as presented in [DŠ] and [EŠV].

Concerning the second type of articles, a word of explanation is in order.
The systems with only the AB effect on one side and those with the magnetic
field included on the other are essentially different concerning the results,
e.g. when it comes to the subject of spectra. While the former have purely
continuous spectra and only a small number of bound states (and thus the
scattering occurs), the latter have pure point spectra. Thus, we will state here
some results which are not connected to the outcome of [EŠV], e.g. scattering
amplitudes, cross sections etc. Rather then the results themselves how they
were obtained and how they were influenced by the respective definition of
the operators is of more interest to us.

For the same reasons the two physical situations, i.e. the AB effect with
and without the homogeneous magnetic field, are covered in the same sec-
tion. The approach to both systems is analogous, and the similarities in this
attitude are more important than the differences concerning the outputs in
our view.

The key to division of this section are the boundary conditions. The
first three parts are devoted to papers using the three types of them as
mentioned in Section 3.2.5, being in turn the regular condition, the s- and
p-wave approach, and the most general boundary conditions. In all these
parts, the idealized AB effect is treated. Then the literature about the AB
effect and the homogeneous magnetic field follows in Section 3.2.4.

3.3.1 Regular boundary condition

We start with the results of the original article [AB1] and with one of the
most well-known study of the idealized AB effect [R3]. In both of them, the
most simple boundary condition – i.e. the regular one – is used.

Aharonov and Bohm, 1959

The first results were posted in the same article where the idea of the effect
was introduced, in [AB1]. Therein, authors study the problem of the scat-
tering of an electron beam by a magnetic field in the idealized setup, and
obtain an exact solution.

The formula for the scattering cross section

� =
sin2 ��

2�

1

cos2(�/2)
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is computed. Then the stationary scattering method is used, and the asymp-
totic behavior of the wave function is found to be

 ∼ e{kx+{�� +
e{kr

(2�{kr)1/2
sin��

e−{�/2

cos(�/2)
,

where the first part denotes the incident wave, while the second corresponds
to the scattered wave. That gives the scattering amplitude in the form

1√
2�{r′

sin ��
1

cos(�/2)
. (3.8)

According to the general prediction, it follows from these expressions that
the effect vanishes for � = n, and that the cross section reaches its maximum
for � = n+ 1/2.

Ruijsenaars, 1983

In [R3], a detailed analysis of the scattering problem is carried out. Both
idealized and hard-core cases are studied, and for each of them, two slightly
different Hamiltonians are considered, giving thus four different operators.
Then, scattering in all these cases is investigated using the time-dependent
theory based on the wave operators, as well as the time-independent ap-
proach.

Since the hard-core case is studied mainly for the purpose of experimental
testing, only some brief remarks will be made to it. The idealized case will
be mentioned in more detail now. The starting point in [R3] is the formal
operator

HAB = − ∂2

∂r2
− 1

r

∂

∂r
+

1

r2

(
{
∂

∂�
− �

)2

,

from which the two Hamiltonians are derived, using two different approaches.
In the first approach, the operator is decomposed to the sum of operators
acting on angular momentum subspaces, reading

H1 =
∑⊕

m∈ℤ

Hm+� ,

Hm+� = − d2

dr2
− 1

r

d

dr
+

(m+ �)2

r2
.

In the other approach, the operator is written as

H2 = e−i��
(
−∂2

r −
1

r
∂r −

1

r2
∂2
�

)
ei��,
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thus H2 = e−i��H0e
i��, where H0 is the operator for the free case with � = 0.

These operators differ in the interpretation of the expression {∂�−�, and they
have different boundary condition for functions ' in their domain, namely

lim
�↑�

'(�) = lim
�↓−�

'(�)

for the former and
lim
�↑�

'(�) = e−2{�� lim
�↓−�

'(�)

for the latter operator. One can see that even the mathematical definition
alone was ambiguous.

Then the analysis is carried out. Among other results, the S-matrix for
H1 is obtained, as well as the differential cross section in the form

d�

d�
=

1

2�k

sin2 ��

sin2 �/2
;

also the differential cross section for the hard-core case converges to the same
result for kr → 0.

In Appendix, the boundary conditions we are interested in are discussed.
The operator H1 is considered, and in order to define it rigorously, the self-
adjointness of its corresponding restrictions Hm+� is investigated. While
the operators with ∣m + �∣ ≥ 1 are concluded to be essentially self-adjoint,
the possibility of having one-parameter family of s.a. extensions is stated for
∣m+�∣ < 1, and the possibility of having “unorthodox” boundary conditions
is admitted at several places in the text. However, the Dirichlet boundary
condition is imposed in the end, ruling out other s.a. extensions.

3.3.2 The p- and s- waves

The conclusion that the regular boundary condition was too strong a require-
ment was published several times, see the discussion in 3.2.5. As a reaction
to that, the articles [GHKL], [GMS], [MT] appeared, trying to tackle the
problem. In the papers, singular behavior of the wave functions is allowed,
as long as they fulfill some specified boundary conditions.

However, the proposed solutions are not the most general ones since in
all the papers the decompositions to fixed angular momentum sectors is de-
ployed first, and only after that the self-adjoint extensions are being looked
for in each sector separately. Correspondingly, the boundary conditions are
confined to those sectors as well. The deficiency indices are found to be
(1,1) for m = 0 and m = −1, i.e. for the s- and p-waves, leading to a 2-
parameter family of self-adjoint extensions while the correct approach gives

24



4 parameters. All the found self-adjoint operators commute with the angu-
lar momentum operator (which otherwise is not a general feature), and the
possibility of coupling between the sectors is omitted.

Manuel and Tarrach, 1991

In this paper, the authors work with the concept of anyons – the particles
in the two-dimensional space whose wavefunctions acquire a phase different
from ±1 when performing a 2� rotation, being the generalization of boson
and fermion ideas. The concept of contact interactions due to a �−potential
is used as well, and the need of imposing boundary conditions to ensure
the self-adjointness of the system Hamiltonian is discussed. The contact
interactions are linked to the AB effect, the value of the flux determining the
strength of the interactions.

Here, one starts with the formal operator

H = − ℏ2

2M

(
∂2
r +

1

r
∂r +

1

r2
∂2
'

)
+ V (r)

and a phase change exp({�) under rotation of 2�, i.e.

 �(r, '+ 2�) = exp({�) �(r, '),

with � ∈ [0, 2�] counting the windings around the origin. Then magnetic
flux Φ is introduced at the origin, and the particle is given an electric charge
q (with qΦ/ℏc = −�) in the exchange for the multivaluedness of the wave-
function, leading to the gauge transformation

 (r, ') = exp(−{�'/2�) �(r, ') =  (r, '+ 2�),

and to the corresponding operator

H� = − ℏ2

2M

(
∂2
r +

1

r
∂r +

1

r2

(
∂' + {

�

2�

)2
)

+ V (r).

The operator is decomposed using the separation of variables, giving the
equation in r in the form(

− ℏ2

2M

(
d2

dr2
+

1

r

d

dr
− �2

r2

)
+ V (r)

)
�(r) = E�(r) (3.9)

with � = ∣m+ �/2�∣, and m ∈ ℤ.
The boundary conditions are then studied. For V (r) = 0, the solution

� of (3.9) is regularized by u(r) = r��(r) so that the regularity condition
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u(0) = 0 corresponds to the free solution with no flux present. To assure the
self-adjointness of the operators, the boundary condition

u(0)±R2� du(r)

dr2�

∣∣∣∣
r=0

= 0 (3.10)

is imposed at r = 0, with some arbitrary R. The results for zero and negative
values of m are studied. For the s-waves, the scattering is stated to be
present for � < 1, and the phase shift computed. For each sector m < 0, one
eigenvalue is found under the condition � < 1, again.

Here, the regularity condition u(0) = 0 is just a special limiting case of
the general boundary condition (3.10). However, both of these conditions
are applied only in the fixed angular momentum sector, not to the functions
from the domain of the operator H�.

Giaccconi et al, 1996

The paper [GMS] was aimed at dealing with two issues which the authors
considered not being treated correctly so far – namely, the evaluation of the
scattering amplitude in the forward and backward direction, and the problem
of the choice of the boundary conditions.

According to the authors, there were two ways of computing the scat-
tering amplitude in the literature. In the first approach used by [AB1] and
[BCL+], the amplitude was derived directly from the asymptotic behavior of
the stationary scattering states, however losing its meaning in the forward
and backward direction since the asymptotic formula holds true only for
∣' ∕= l�∣, l ∈ ℤ, and ' being the polar coordinates angle. In the second one,
used e.g. by [R3], it was computed from the sum of the partial amplitudes,
causing the problem with the correct definition of the arising delta functions.

In this article, a different method is introduced. It starts with the scat-
tering integral equation, and involves the use of the concept of adiabatic
switching of the interaction from the perturbation theory, as well as the use
of the analytic continuation of the scattering amplitude. To this aim, the
stationary scattering wave function  k is split into three parts – the regular
part, and the s- and p-waves, with the angular momentum n = 0 and n = 1,
respectively. The scattering amplitude according to the regular part,

Fk(') =
1√

2�{k

(
1− cos ��− e−{'

(
e−{�� − 1

)
− sin �� cot

'

2

)
(3.11)

with ' ∕= 2l�, is then computed, being exactly equal to the appropriate
part of the amplitude (3.8) obtained in [AB1]. In the forward direction the
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following expression holds true,

Fk(' = 2l�) =
1√

2�{k
(2(1− cos ��) + {(1 + �) sin��) ,

and the incoming wave is a standard plane wave containing no delta functions.
As for the singular part, it is stated that the condition of regularity at the

origin is too strong for s- and p-waves, and that even with singularities one
can assure the self-adjointness of the Hamiltonian. The deficiency indices
are computed to be (1, 1) for each angular momentum sector, and the most
general asymptotic behavior of the wave function at the origin is obtained as

 (r) ∼
∑
n=0,1

cnr

(n);

for small r, with cn being r−independent and 
n ∈ (0, 1). The exact form
of the s- and p-waves is derived using this boundary condition. Then, it
is concluded that for every couple of parameters corresponding to two s.a.
extensions (one in each sector) there exist two negative eigenvalues, E0 and
E1, and their normalized eigenfunctions orthogonal to the scattering states
are found.

In order to regularize the s- and p- scattering wave functions, limits
En → −∞ are considered. The bound states disappear and the regular
scattering wave functions form the complete orthonormal set that diagonal-
izes the Hamiltonian. The scattering amplitudes for n = 0, 1 are obtained
as

lim
E0→−∞

f0(k;E0) =
1√

2�{k
(e{�� − 1) ,

lim
E1→−∞

f1(k;';E1) =
e−{'√
2�{k

(
e−{�� − 1

)
;

combined with (3.11) they give the formula 3.8. Moreover, the phase shifts
corresponding to the AB effect as well as to the singular potentials are cal-
culated, correcting the formulas given in [MT].

Finally, a brief discussion of the results follows. Taking the limits En → 0
leads to purely singular eigenfunctions. The case of the vanishing AB effect
when � → 0 is studied and corresponding scattering amplitudes for the s-
and p- waves are found, with only the s-wave having a singular part, while
the p-wave not being influenced by the � potential.

3.3.3 Generalized boundary conditions

We will now focus on two simultaneously written articles, namely [DŠ] and
[AT]. We describe them more in detail as they were the first to provide
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a rigorous and mathematically correct treatment of the operators describing
the idealized AB effect. Especially the paper [DŠ] will be of great importance
to us, because it will be closely followed in 3.4, when the magnetic field will
be added into the system.

Correct treatment of the Hamiltonians

In [DŠ] and [AT], the idealized AB setup is considered. Both papers use the
method developed in [AGHKH2] and described in detail in Section 2.2. They
define properly the Hamiltonians involving the singular AB potentials by the
means of the theory of self-adjoint extensions.

In the papers, one starts with the operator

H = − (∇+ AAB(∇))2 ,

with the domain of smooth functions vanishing at the origin, D(H) = C∞0 (ℝ2∖
{0}). Then its closure H̃ is introduced, and all possible self-adjoint extensions

of H̃ are found.
For that, one needs to solve the eigenvalue problem

H̃∗f = ±{f

for the adjoint operator H̃∗ = − (∇+ AAB(∇))2 with domain

D(H̃∗) =
{
 ∈ L2(ℝ2) ∩H2,2

loc (ℝ2 ∖ {0})
∣∣ (∇+ AAB(∇))2  ∈ L2(ℝ2)

}
.

Then the decomposition of the Hilbert space is deployed,

L2(ℝ2, d2x) =
∑⊕

m∈ℤ

L2(ℝ+, r dr)⊗ ℂ e{m�,

with the Hamiltonian decomposing accordingly as

H̃∗ =
∑⊕

m∈ℤ

(H̃∗)m. (3.12)

The eigenvalue problem is then solved in every sector of the angular momen-
tum separately, giving two L2-integrable solutions

f−1
{ (r, �) = N1H

(1)
1−�(kr)e−{�,

f−1
−{ (r, �) = N1e

{�(1−�)/2H
(1)
1−�(kr)e−{�,

f 0
{ (r, �) = N2H

(1)
� (kr)

f 0
{ (r, �) = N2e

{��/2H(1)
� (kr)
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for each of the angular momentum sectors m = −1 and m = 0. Here H
(1)
∣m+�∣

denotes the Henkel function and N1, N2 are some normalization constants.
It follows that the operators H̃∗m are self-adjoint for m ∕= −1, 0, while H̃∗−1

and H̃∗0 have deficiency indices (1,1).

Thus the deficiency indices of H̃ turn out to be (2, 2). In comparison with
the case of point interaction only, where for the free Laplacian the deficiency
indices are found to be equal to (1, 1), it shows that one cannot simply take a
superposition of the results for the AB effect and the point interaction alone.

The self-adjoint extensions are in one-to-one correspondence with 2 × 2
unitary matrices, depending thus on four real parameters. Altogether, the
Hamiltonians describing the system form a five-parameter family. Here, the
last parameter corresponds to the parameter � of the AB effect, denoting its
flux.

The domain of H̃ is found as a consequence of the process, being

D(H̃) =
{
 ∈ D(H̃∗)

∣∣∣ 〈 H̃∗, '〉 =
〈
H̃∗ , '

〉
, ∀' ∈ N{ +N−{

}
(3.13)

where N{, N−{ denote the deficiency subspaces. Due to the decomposition
(3.12), the functions f ∈ D(H̃) decompose correspondingly and it is possible
to write f(r, �) =

∑
m gm(r)(2�)−1/2e{m�. Then the condition in (3.13) is

equivalent to the condition on gm in sectors m = −1, 0 in the form

lim
r→0+

rW (gm, ℎ±)r = 0

where ℎ±(r) = H
(1)
∣m+�∣(

√
±{r) with Im

√
±{ > 0, and W denotes the Wron-

skian, W (g, ℎ)r = g(r)ℎ′(r)− g′(r)ℎ(r).
The self-adjoint extensions HU are expressed by means of unitary opera-

tors U : N{ → N−{ in the form

HUu = H̃v + {f+ − {Uf+ (3.14)

with

D(HU) =
{
u ∈ L2(ℝ2) ∣ u = v + f+Uf+, v ∈ D(H̃), f+ ∈ N{

}
Then  + = c0f

0
{ + c−1f

−1
{ with constants c0, c−1 ∈ ℂ, and U + = c̃0f

0
−{ +

c̃−1f
−1
−{ with c̃j =

∑
l=0,−1 Ũjlcl, j = 0,−1. The unitary matrix Ũ ∈ U(2)

can be represented as

Ũ = e{�
(
a −b
b a

)
, ∣a∣2 + ∣b∣2 = 1.
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Several special cases are then discussed.
The choice Ũ = −1 corresponds to the Hamiltonian of the pure idealized

AB effect with the regular condition studied in [AB1]. In this case the func-
tions from the domain vanish at the origin. There is no point interaction and
the only parameter of the Hamiltonian is the one corresponding to the AB
effect, the magnetic flux �.

If b = 0 then a = e{� for some � , and the extensions are characterized
by parameters � and � . Then the point interaction acts in the two sectors
m = −1, 0 separately, and this leads to the case studied by [GHKL], [GMS],
and [MT], i.e. to the stand-alone boundary conditions for the s- and p-waves.
In general form, however, the coupling between the two sectors is realized.

The choice � = � + � , resp. � = �− � eliminates the point interaction in
the sector m = −1, resp. m = 0.

Having diagonal Ũ means that the extension preserves the angular mo-
mentum.

In general, HU is not rotationally invariant, and therefore the angular
momentum is not a constant of motion.

Resolvents, spectrum and scattering

In both papers, the formulas for resolvent of arbitrary self-adjoint extension
are found by the means of the Krein’s method, using the known resolvent
for the AB Hamiltonian of [AB1] denoted by HAB, and a constructed base
of the deficiency indices.

The spectrum is studied as well, taking advantage od the knowledge of
the resolvent RU = (HU − z)−1, as well as the fact that it is a rank two

perturbation of the resolvent of H̃. It is concluded that

�(HU) = �ac(H
AB) = [0,+∞), �s(H

U) = ∅,

and that at most two eigenvalues (with always negative value) can emerge.
In [DŠ], an analysis of the point spectrum is carried out, and the con-

ditions for having zero, one, and two eigenvalues were found depending on
the boundary conditions. The eigenvectors in the form of a certain linear
combination of function from deficiency spaces are found.

As for the scattering, a complete normalized basis of generalized eigen-
vectors is found. Consequently, the existence and completeness of the wave
operators W± = limr→±∞ e

{tHe−{tH0 is proven. In [AT], the scattering ampli-
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tude is computed in the form

fU� (k, �, �) = fAB� (k, �, �)

+ 4

√
2i�

k
cos
(�

2
�
)
p00(k) (−k2)�

− 2

√
2�

ik

√
2 sin(��) e−i�(1−2�) p−10(k) k ei�

+ 2

√
2�

ik

√
2 sin(��) ei�(1−2�) p0−1(k) k e−i�

− 4

√
2i�

k
sin
(�

2
�
)
p−1−1(k) (−k2)1−�e−i(�−�)

adding to the well known formula of scattering amplitude fAB associated to
HAB four new terms, depending on parameters of the point interaction pij.
In [DŠ], the explicit expressions for the wave operators and the scattering
operator S = (W+)∗W− are computed.

Boundary conditions

Since the formulation of the Hamiltonians given in (3.14) is rather abstract,
a simpler characterization of the operators is derived in [DŠ]. Every self-
adjoint extension is described explicitly by some rigorously defined boundary
conditions.

The asymptotic behavior of the radial parts of the functions from oper-
ators domains is studied, and four linear functionals corresponding to the
two leading terms in sectors m = −1, 0 are introduced, denoted by Φm

l with
m, l = 1, 2. The singular part of any  ∈ D(HU) is written by their virtue,
as well as the explicit boundary conditions characterizing D(HU) in the de-
pendence on U .

This formula is developed further, and the simplest form of boundary
condition is derived from it. The Hamiltonians are parameterized by a matrix
Λ in the form

Λ =

(
u �w

(1− �)w v

)
, u, v ∈ ℝ, w ∈ ℂ,

and the relation between U and Λ is established. The requirement then reads:
 ∈ D(H

∗
) lies in D(HΛ) if and only if(

Φ1
1( )

Φ2
1( )

)
= Λ

(
Φ1

2( )
Φ2

2( )

)
.

This technique is closely followed by [EŠV], and its application on the
case with the magnetic field is described in 3.4.4.
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3.3.4 Systems with the AB effect and magnetic field

The literature devoted to these systems is not as extensive as in the case
of the pure AB effect. Thus, compared to previous three sections focused
on different attitudes towards the definition of AB Hamiltonian, we do not
divide the articles into groups, as this section serves mainly as a review of
the papers published on the subject.

However, an interesting analogy with the previous discussion for the pure
AB effect can be found, concerning the choice of the boundary conditions.
There is an exceptional case in [T2] where the requirement  (0) = 0 is
imposed. Then, the regular boundary condition is used in article [C1], while
in [FP] the separate s- and p-waves approach is followed. None of them thus
leads to the most general results. The situation is different with the papers
[HO] and [N] – they treat the more general problem with more solenoids and
their aim is distinct, hence the discussion about boundary conditions is not
relevant in this case.

Thienel, 2000

The same situation as described in 3.2.4, with the exception of using a spin
1/2 particle, is studied in [T2]. The Hamiltonian (3.7) therefore reads

H =
1

2M

(
p+
∣e∣
c
A

)2

+
∣e∣ℏ
Mc

BzSz.

The main goal of the article is to solve the eigenvalue problem.
The author uses two approaches to the subject and tries to prove that they

do not lead to the right results. Consequently, a new method is introduced
to remove the problems.

The first, “direct” approach tries to solve the eigenvalue problem with
taking the �-distributions into account. The magnetic field is taken as
Bz(r) = B + �Φ�2(r), where B > 0 and �Φ denote the flux of the sin-
gular tube, with � ∈ ℝ and Φ = 2�ℏc/∣e∣. That corresponds to the vector
potential A(x, y) = (Br/2 + �Φ/2�r)e' with the polar coordinates r, ',
leading to the Hamiltonian

H = − 1

4r
∂rr∂r −

1

4r2
(∂' + i�)2 − i

2
(∂' + i�) +

+
1

4
r2 +

(
1 +

�

2r
�(r)

)
Sz

(3.15)

The eigenvalue problem is handled using the commutativity of H� with L̷z
and Sz, and the separation of variables. In the following discussion, the
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condition  (0) = 0 is imposed on solutions  . This, together with the
requirement that each superpartner of any solution must be a solution as well,
leads to a set of eigenvalues that, after being compared with the solutions of
the case with no flux, is declared insufficient.

The second approach is based on taking a limit of systems with cylindri-
cal flux tubes with finite radius R, with R → 0. Inside the tube, another
homogeneous field perpendicular to the plane is considered. The eigenvalue
equation is solved with conditions imposed on the solutions, namely that it
must be regular at the origin and vanish at infinity. Again, the solution set
is stated to be unsatisfactorily small.

Then the new method is suggested. Instead of taking a limit of well
defined systems, the idea is to take a limit of some abstract entities, where
only the limiting system would be interpreted by the means of quantum
mechanics. To this end, all the necessary concepts as scalar product, zero
vector, probability density etc. have to be defined as a limit R → 0 of
the corresponding quantities. This relates to the boundary condition at the
border of the tube in the form

lim
R̃→0

(
 E′,�,m(R̃)R̃

∂

∂r̃
 in
E,�,m(r̃)

∣∣∣∣
r̃=R̃

−  E′,�,m(R̃)R̃
∂

∂r̃
 out
E,�,m(r̃)

∣∣∣∣
r̃=R̃

)
= 0

as well. After the analysis of the boundary condition and some supersym-
metry requirements, the eigenvalues are found. However, compared to the
correct results, some eigenvalues are missing, leading thus to the conclusion
that the corresponding eigenfunctions do not form a complete basis of the
space.

Then some other issues are briefly discussed. The first one is the pertur-
bation theory and the possibility to obtain the eigenvalues for any � from
the exact knowledge of the system for some �0. Then the subject of index
theorems determining the difference between the number of eigenstates cor-
responding to different values of spin, as well as a discussion about symmetry
breaking follows. Finally, the eigenvalue problem for the pure AB effect with
B = 0 is handled, leading again to an uncomplete spectrum.

Shortly, only the standard extension is considered, even with controversy.

Cavalcanti, 2000

The article [C1] arose as a reaction to [T2], disagreeing with its claim that it
is not possible to solve the eigenvalue problem either using the �-distribution
or treating the singular flux as the limit of cylindrical tubes. The author
stated that both methods work well, assuming they are used properly.
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First, starting with (3.15) and solving the eigenvalues equation, it is in-
correct according to [C1] to require the solutions to vanish at the origin, i.e.
to demand  (0) = 0. Instead, it must only hold true that limr→0  (r) = 0
in compliance with [H1] and [G], who studied the case of the idealized AB
effect without the magnetic field as a limiting case of finite size fluxes. This
explains the problem with the vanished eigenvalues of [T2].

For � > 0, the energies are computed to be

En,m,1/2 = n+ 1 +
1

2
(∣m+ �∣+m+ �), n ∈ ℕ,m ∈ ℤ

in concordance with results of [EŠV], and two superpartner eigenstates with
the same energy and opposite spin are found. For � < 0, the eigenvalues
read

En,m,−1/2 = n+
1

2
(∣m+ �∣+m+ �), n ∈ ℕ,m ∈ ℤ

with zero modes being those with n = 0 and m+ � ≤ 0.
Finally, one can arrive at the same results using the limiting finite diam-

eter approach. According to the author, wrong conclusion of [T2] was due
to overlooked solutions of some particular equation.

Falomir and Pisani, 2000

The article [FP] considers the Dirac electron in two dimensions in the pres-
ence of a homogeneous magnetic field and one AB vertex localized at the
origin. The need to use the Neumann’s theory of deficiency indices and to
construct the self-adjoint extensions is discussed thoroughly.

One starts with the Dirac operator H and then its commutation with
the angular momentum operator is exploited, leading to operators Hm (the
restrictions of H to each subspace corresponding to angular momentum m)
in the form

Hm =

(
m {

(
d
dr

+ 1−m+�
r
− r
)

{
(

d
dr

+ m+�
r

+ r
)

−m

)
acting on two-component functions  (r). The domain of Hm is restricted to
D(Hm) = C∞0 (ℝ+) so that it is symmetric, and the deficiency subspaces are
found, with its bases denoted by  +

m and  −m. The operators Hm are discov-
ered to be essentially self-adjoint except for m = 0,−1, where the deficiency
indices are (1, 1). The self-adjoint extensions depending on a parameter 
 are
constructed in both sectors, and the boundary conditions for the functions
 = (�, �)T ∈ D(Hm) are derived as

lim
r→0+

r (��
 − ��
) = 0,
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where �
 and �
 are components of  
 =  + + e{
 −.
The spectra of the self-adjoint extensions H


m and of the other operators
Hm with m ∕= 0,−1 are investigated afterwards. The eigenvalues are stated
to be

� = ±2
√
m2/4 + � +N, N ∈ ℕ, N ≥ −l

for m− � > 1, and

� = ±2
√
m2/4 +N, N ∈ ℕ

for m− � < 0. Moreover, the closure of Hm is studied, with the result that
its corresponding boundary condition is the regular one.

In other words, this means that the extensions are considered merely in
the individual sectors, as well as their respective boundary conditions, not
on the level of operator H. This is the same approach as used in [GHKL],
[GMS], and [MT] in the case of the pure AB effect. Again, coupling of the
sectors is not allowed, leading to the same consequences discussed in 3.3.2.

System with many solenoids

The system investigated in [HO] is similar to ours. Namely, it consists of
a charged particle with spin 1/2 in a two-dimensional magnetic field with
two components: a magnetic field with bounded support (not necessarily
homogeneous), and a ”strongly singular magnetic field”. The latter one is
defined as B0(⋅) =

∑
j 


j�(⋅−aj), and is located in points aj, the coefficients

j denoting the fluxes.

The aim is distinct, however – the authors investigate the dimension of
the kernel of the Dirac-Weyl operator and consider the validity of Aharonov-
Casher Theorem in this case (cf. [AC]), stating that the dimension of the
kernel depends on the total flux Φ =

∫
ℝ2 Bdxdy only. They found out that

in this case, the dimension depends on all the individual fluxes 
j, similar to
what was learned in the case of a strongly singular field only.

The same situation is studied in [N]. Spectral properties are of interest
here, the means are quite different however. The vortices are treated as
dynamical objects with their own kinetic energies. The special one-solenoid
case is studied as well, and the splitting of a finite amount of eigenvalues
from the Landau levels is predicted.
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3.4 Generalized boundary conditions for the

AB effect with a homogeneous magnetic

field

This part is devoted to the study of the system described in 3.2.4. Thus, we
consider a spinless charged quantum particle in two dimensions under the
influence of a homogeneous magnetic field and the idealized AB effect.

This section contains the original results for this topic and is based on
the article [EŠV].

3.4.1 Preliminaries

We consider the symmetric operator (cf. (3.7))

L = −(∇− A(∇))2, D(L) = C∞0 (ℝ2 ∖ {0}).

Then, all the definitions and assumptions from 3.2.4 hold true. Hence the
potential A is given as A = Ahmf + AAB, with

Ahmf = − {B
2

(−x2dx1 + x1dx2),

AAB =
{Φ

2�r2
(−x2dx1 + x1dx2),

r2 = x 2
1 + x 2

2 .

Then equally as before, B > 0, � = −�/2�, and we assume that � ∈ (0, 1).
Our goal is to describe all the self-adjoint extensions of L as well as to
investigate their basic properties.

It is straightforward to determine the adjoint operator L∗,

 ∈ D(L∗) ⇐⇒  ∈ L2(ℝ2, d2x) ∩H2,2
loc (ℝ2 ∖ {0})

and (∇− A(∇))2 ∈ L2(ℝ2, d2x).

Next we can employ the rotational symmetry when using the polar coordi-
nates (r, �) and decomposing the Hilbert space into the orthogonal sum of
the eigenspaces of the angular momentum,

L2(ℝ2, d2x) =
∑⊕

m∈ℤ

L2(ℝ+, r dr)⊗ ℂ e{m�. (3.16)

In the polar coordinates the operator L (and correspondingly L∗) takes the
form

L = −1

r
∂rr∂r +

1

r2

(
−{∂� + � +

Br2

2

)2

.
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The operator L∗ commutes on D(L∗) with the projectors Pm onto the eigen-
spaces of the angular momentum,

Pm (r, �) =
1

2�

∫ 2�

0

 (r, �′) e{m(�−�′) d�′,

and therefore L∗ decomposes in correspondence with the orthogonal sum
(3.16),

L∗ =
∑⊕

m∈ℤ

(L∗)m. (3.17)

Thus we can reduce the problem and work in the sectors RanPm, m ∈ ℤ.
For a given spectral parameter � ∈ ℂ we choose two independent solutions
(except for some particular values of �) of the differential equation(

−1

r
∂rr∂r +

1

r2

(
m+ � +

Br2

2

)2
)
g(r) = � g(r), (3.18)

namely

g1
m(�; r) = r∣m+�∣ F

(
�(m,�), 
(m),

Br2

2

)
exp

(
−Br

2

4

)
,

g2
m(�; r) = r∣m+�∣G

(
�(m,�), 
(m),

Br2

2

)
exp

(
−Br

2

4

)
,

(3.19)

where

�(m,�) =
1

2

(
1 +m+ � + ∣m+ �∣ − �

B

)
,


(m) = 1 + ∣m+ �∣ .
(3.20)

Here F and G are confluent hypergeometric functions [AS, Chp. 13],

F (�, 
, z) =
∞∑
n=0

(�)n z
n

(
)n n!
,

and

G(�, 
, z) =
Γ(1− 
)

Γ(� − 
 + 1)
F (�, 
, z) +

Γ(
 − 1)

Γ(�)
z1−
F (� − 
 + 1, 2− 
, z).

(3.21)
Notice that F (�, 
, z) and G(�, 
, z) are linearly dependent if and only

if � ∈ −ℤ+. Moreover, F (�, 
, z) is an entire function, particularly, it is
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regular at the origin while G(�, 
, z) has a singularity there provided 
 > 1
and � /∈ −ℤ+, and in that case it holds true that

lim
z→0+

z
−1G(�, 
, z) =
Γ(
 − 1)

Γ(�)
.

Thus in the case when 1 < 
 < 2 we have asymptotic behavior, as z → 0+,

G(�, 
, z) =
Γ(
 − 1)

Γ(�)
z1−
 +

Γ(1− 
)

Γ(� − 
 + 1)
+O(z2−
). (3.22)

We shall also need some information about the asymptotic behavior at
infinity. When z → +∞ it holds true that

F (�, 
, z) =
Γ(
)

Γ(
 − �)
(−z)−�

(
1 +O

(
z−1
))

+
Γ(
)

Γ(�)
ezz�−


(
1 +O

(
z−1
))

(3.23)
and

G(�, 
, z) = z−�
(
1 +O

(
z−1
))
.

3.4.2 The standard Aharonov-Bohm Hamiltonian

With the above preliminaries it is straightforward to solve the spectral prob-
lem for the standard AB Hamiltonian as we mentioned in the introduction.
This means to solve the eigenvalue problem

L∗ = � 

with the boundary condition

lim
r→0+

 (r, �) = 0. (3.24)

By virtue of the decomposition (3.17) the problem is reduced to countable
set of equations

(L∗)mf = �f, m ∈ ℤ,

and hence to the differential equations (3.18).
The solution g2

m(�; r) of (3.18) is ruled out because it contradicts the
condition (3.24) and the solution g1

m(�; r) belongs to L2(ℝ+, r dr) if and only
if �(m,�) = −n, with n ∈ ℤ+. Since it holds

F (−n, 1 + �, z) =
n! Γ(� + 1)

Γ(n+ � + 1)
L�n(z), n ∈ ℤ+,
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we get a countable set of eigenvalues,

�m,n = B (m+ � + ∣m+ �∣+ 2n+ 1), m ∈ ℤ, n ∈ ℤ+,

with the corresponding eigenfunctions

fm,n(r, �) = Cm,n r
∣m+�∣ L∣m+�∣

n

(
Br2

2

)
exp

(
−Br

2

4

)
e{m�

where

Cm,n =

(
B

2

) 1
2

(∣m+�∣+1)(
n!

� Γ(n+ ∣m+ �∣+ 1)

)1/2

are the normalisation constants.
As it is well known, if we fix m ∈ ℤ then the functions {fm,n(r, �)}∞n=0

form an orthonormal basis in L2(ℝ+, r dr)⊗ℂ e{m� and so the complete set of
eigenfunctions {fm,n(r, �)}m∈ℤ , n∈ℤ+ is an orthonormal basis in L2(ℝ+, r dr)⊗
L2([ 0, 2� ], d�). Since all the eigenvalues �m,n are real we get this way a well
defined self-adjoint operator which is an extension of L. We convention-
ally call it the standard AB Hamiltonian and denote it by HAB. Thus the
spectrum of HAB is pure point and can be written as a union of two parts,

�(HAB) = �pp(H
AB) = {B(2k + 1); k ∈ ℤ+} ∪ {B(2� + 2k + 1); k ∈ ℤ+}.

Notice that the eigenvalues belonging to the first part are nothing but the
Landau levels. All the eigenvalues B(2k+1) have infinite multiplicities while
the multiplicity of the eigenvalue B(2� + 2k + 1) is finite and equals k + 1.

A final short remark concerning the Hamiltonian HAB is devoted to the
Green function. Naturally, the Green function is expressible as an infinite
series

GAB(z; r1, �1, r2, �2) =
1

2�

∞∑
m=−∞

GAB
m (z; r1, r2) e{m(�1−�2)

where

GAB
m (z; r1, r2) = 2

(
B

2

)∣m+�∣+1

(r1r2)∣m+�∣ exp

(
−1

4
B(r 2

1 + r 2
2 )

)
×
∞∑
n=0

n!

Γ(n+ ∣m+ �∣+ 1)

×
L
∣m+�∣
n (1

2
Br 2

1 )L
∣m+�∣
n (1

2
Br 2

2 )

B(m+ � + ∣m+ �∣+ 2n+ 1)− z
.

39



The radial parts can be rewritten with the aid of the standard construction
of the Green function for ordinary differential operators of the second order,

GAB
m (z; r1, r2) =

(
B

2

)∣m+�∣+1

(r1r2)∣m+�∣ exp

(
−1

4
B(r 2

1 + r 2
2 )

)
×

Γ
(
− w(m, z)

)
Γ(∣m+ �∣+ 1)

F (−w(m, z), ∣m+ �∣+ 1, r<)

×G(−w(m, z), ∣m+ �∣+ 1, r>)

where

w(m, z) =
z

2B
− 1

2
(m+ � + ∣m+ �∣+ 1)

and r< = min(r1, r2), r> = max(r1, r2). This amounts to the identity

∞∑
n=0

n!

Γ(n+ � + 1)

L�n(y1)L�n(y2)

n− w

=
Γ(−w)

Γ(� + 1)
F (−w, � + 1, y<)G(−w, � + 1, y>).

We do not expect that a simpler form for the Green function could be derived
since the Hamiltonian HAB enjoys only possesses rotational symmetry.

3.4.3 Self-adjoint extensions of L

Recalling what has been summarised in Section 3.4.1 it is easy to determine
the deficiency indices. The solution g1

m(±{; r) diverges exponentially at infin-
ity (cf. (3.23)) while g2

m(±{; r) behaves well at infinity but has a singularity
at the origin of the order r−∣m+�∣. Thus g2

m(±{; r) ∈ L2(ℝ+, r dr) if and only
if m = −1 or m = 0. This means that the deficiency indices are (2, 2). For
a basis in the deficiency subspaces N±{ we can choose

{fm,±(r, �) =
1√
2�

Nm g
2
m(±{; r) e{m�; m = −1, 0}.

Thus

f−1,±(r, �) =
1√
2�

N−1 r
1−�G

(
1

2
∓ {

2B
, 2− �, Br

2

2

)
exp

(
−Br

2

4

)
e−{�,

f0,±(r, �) =
1√
2�

N0 r
�G

(
1

2
+ �∓ {

2B
, 1 + �,

Br2

2

)
exp

(
−Br

2

4

)
,

where N−1 and N0 are the normalisation constants making the basis or-
thonormal.
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We shall need the explicit values of N−1 and N0. Using the relation

W�,� (z) = z�+ 1
2 e−z/2G

(
1

2
− � + �, 2� + 1, z

)
where W is the Whittaker function we get

N −2
m =

∫ ∞
0

∣g2
m(±{; r)∣2 rdr

=
1

2

(
2

B

)∣m+�∣+1 ∫ ∞
0

x−1W%,�(x)W%̄,�(x) dx

where

% =
1

2

(
−m− � +

{

B

)
, � =

1

2
∣m+ �∣.

Combining the identities [PBM, 2.19.24.6]∫ ∞
0

x−1W%,�(x)W�,�(x) dx =
�

sin(2��)

×

(
− 1

Γ
(

1
2
− � − �

)
Γ
(

3
2

+ � − %
) 2F1

(
1

2
+ � − �, 1;

3

2
+ � − %; 1

)

+
1

Γ
(

1
2

+ � − �
)

Γ
(

3
2
− � − %

) 2F1

(
1

2
− � − �, 1;

3

2
− � − %; 1

))

and

2F1(a, b; c; z) =

Γ(c) Γ(c− a− b)
Γ(c− a) Γ(c− b) 2F1(a, b; a+ b− c+ 1; 1− z)

+
Γ(c) Γ(a+ b− c)

Γ(a) Γ(b)
(1− z)c−a−b2F1(c− a, c− b; c− a− b+ 1; 1− z)

we arrive at the relation∫ ∞
0

x−1W%,�(x)W�,�(x) dx =
�

sin(2��)(�− %)

×

(
− 1

Γ
(

1
2
− �− �

)
Γ
(

1
2
− %+ �

) +
1

Γ
(

1
2
− �+ �

)
Γ
(

1
2
− %− �

)) .
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Finally we get

N−1 =

(
B

2

) 1
2

(1−�)
√

sin(��)

2�

(
Im

1

Γ
(
−1

2
+ � + {

2B

)
Γ
(

1
2
− {

2B

))−1/2

,

N0 =

(
B

2

) 1
2
�
√

sin(��)

2�

(
Im

1

Γ
(

1
2

+ {
2B

)
Γ
(

1
2

+ �− {
2B

))−1/2

.

Let us have a look at the asymptotic behavior at the origin of the basis
functions in the deficiency subspaces N±{. By (3.19) and (3.22) we have

g2
−1(±{; r) = a−1,± r

−1+� + b−1,± r
1−� +O(r1+�),

g2
0(±{; r) = a0,± r

−� + b0,± r
� +O(r2−�),

(3.25)

where

a−1,± =
Γ(1− �)

Γ
(

1
2
∓ {

2B

) (B
2

)−1+�

, b−1,± =
Γ(−1 + �)

Γ
(
−1

2
+ �∓ {

2B

) ,
a0,± =

Γ(�)

Γ
(

1
2

+ �∓ {
2B

) (B
2

)−�
, b0,± =

Γ(−�)

Γ
(

1
2
∓ {

2B

) .
The coefficients am,±, bm,± are related to the normalisation constants Nm,
for it holds true that

detM−1 = − {

1− �
(N−1)−2, detM0 = − {

�
(N0)−2. (3.26)

where

Mm =

(
am,+ bm,+
am,− bm,−

)
.

Particularly, we shall need the fact that the matrices M−1 and M0 are regular.
Let us now describe the closure of the operator L. By virtue of the

decomposition (3.17) we have

L̄ =
∑⊕

m∈ℤ

L̄m

where L̄m = (L∗) ∗m. As it is well known,  ∈ D(L∗) belongs to D(L̄) if
and only if ⟨ ,L∗'⟩ = ⟨L∗ , '⟩ for all ' ∈ N{ + N−{. Thus (L∗)m = L̄m
for m ∕= {−1, 0}, and if m ∈ {−1, 0} then '(r) e{m� ∈ D((L∗)m) belongs to
D(L̄m) if and only if

lim
r→0+

rW ('(r), g2
m(±{, r)) = 0
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where W (f, g) = (∂rf)g − f ∂rg is the Wronskian. Using the asymptotic
behavior (3.25) and the regularity of matrix Mm we arrive at two conditions

limr→0+(−∣m+ �∣ r−∣m+�∣'(r)− r−∣m+�∣+1∂r'(r)) = 0,

limr→0+(∣m+ �∣ r∣m+�∣'(r)− r∣m+�∣+1∂r'(r)) = 0,

which can be rewritten in the equivalent form,

lim
r→0+

r−2∣m+�∣+1∂r(r
∣m+�∣'(r)) = 0, lim

r→0+
r∣m+�∣'(r) = 0.

But since

r−∣m+�∣∣'(r)∣ ≤ 1

2∣m+ �∣
sup
x∈ ]0,r[

∣x−2∣m+�∣+1∂x(x
∣m+�∣'(x))∣

we finally get a sufficient and necessary condition for '(r) e{m� ∈ D((L∗)m)
to belong to D(L̄), namely

lim
r→0+

r−1+�'(r) = 0 and lim
r→0+

r�'′(r) = 0 if m = −1,

lim
r→0+

r−�'(r) = 0 and lim
r→0+

r−�+1'′(r) = 0 if m = 0.
(3.27)

This shows that if  ∈ D(L∗) = D(L̄) +N{ +N−{ then

 (r, �) =
(
Φ1

1( )r−1+� + Φ1
2( )r1−�) e−{� + Φ2

1( )r−� + Φ2
2( )r�

+ a regular part.

Let us formally introduce the functionals Φk
j on D(L∗),

Φ−1
1 ( ) = lim

r→0+
r1−� 1

2�

∫ 2�

0

 (r, �) e{�d�, (3.28)

Φ−1
2 ( ) = lim

r→0+
r−1+�

(
1

2�

∫ 2�

0

 (r, �) e{�d� − Φ1
1( ) r−1+�

)
, (3.29)

Φ0
1( ) = lim

r→0+
r�

1

2�

∫ 2�

0

 (r, �)d�, (3.30)

Φ0
2( ) = lim

r→0+
r−�

(
1

2�

∫ 2�

0

 (r, �)d� − Φ2
1( ) r−�

)
. (3.31)

Notice that the upper index refers to the sector of angular momentum while
the lower index refers to the order of the singularity. If  ∈ D(L̄) then
according to (3.27) it actually holds Φk

j ( ) = 0 for j = 1, 2, k = −1, 0. On
the other hand, if  ∈ N{ + N−{ and Φk

j ( ) = 0 for all indices j = 1, 2,
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k = −1, 0, then  = 0 (this is again guaranteed by the regularity of the
matrices M−1 and M0).

Let us introduce some more notation. It is convenient to arrange the
functionals Φk

j into column vectors as follows,

Φj( ) =

(
Φ−1
j ( )

Φ0
j( )

)
, j = 1, 2.

Further, applying the functionals to the basis functions inN{+N−{, we obtain
four 2× 2 diagonal matrices. More precisely, set

(Φj,±)kℓ =
√

2�Φk−2
j (fℓ−2,±), j, k, ℓ = 1, 2.

Then

Φ1,± =

(
N−1a−1,± 0

0 N0 a0,±

)
, Φ2,± =

(
N−1b−1,± 0

0 N0 b0,±

)
.

Now it is straightforward to give a formal definition of a self-adjoint ex-
tension HU of the symmetric operator L determined by a unitary operator
U : N{ → N−{. We identify U with a unitary 2× 2 matrix via the choice of
the orthonormal bases {f−1,±, f0,±} in N±{.The self-adjoint operator HU is
unambiguously defined by the condition: HU ⊂ L∗ and  ∈ D(L∗) belongs
to D(HU) if and only if(

Φ1( )
Φ2( )

)
∈ Ran

(
Φ1,+ + Φ1,−U
Φ2,+ + Φ2,−U

)
. (3.32)

However condition (3.32) is rather inconvenient and we shall replace it in the
next section by another one more suitable for practical purposes.

3.4.4 Boundary conditions

To turn (3.32) into a convenient requirement which would involve boundary
conditions we shall need the following proposition. Set

D =

(
1− � 0

0 �

)
.

There is a one-to-one correspondence between the unitary matrices U ∈ U(2)
and the couples of matrices X1, X2 ∈ Mat(2,ℂ) obeying

rank

(
X1

X2

)
= 2 (3.33)
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and
X ∗1 DX2 = X ∗2 DX1 (3.34)

modulo the right action of the group of regular matrices GL(2,ℂ). The one-
to-one correspondence is given by the equality

Ran

(
X1

X2

)
∈ Ran

(
Φ1,+ + Φ1,−U
Φ2,+ + Φ2,−U

)
.

Let us note that the equivalence class of the couple (X1, X2) modulo
GL(2,ℂ) corresponds to a two-dimensional subspace in ℂ4 and hence to a
point in the Grassmann manifold G2(ℂ4). The complex dimension of G2(ℂ4)
equals 4, i.e. dimℝ G2(ℂ4) = 8. The points of G2(ℂ4) obeying the (“real”)
condition (3.34) form a real 4-dimensional submanifold which is diffeomor-
phic, according to the proposition, to the unitary group U(2).

To verify the proposition we first show that to any couple (X1, X2) with
the properties (3.33), (3.34) there are related unique Y ∈ GL(2,ℂ) and
U ∈ U(2) such that (

X1

X2

)
Y = J

(
I
U

)
(3.35)

where we have set

J =

(
Φ1,+ Φ1,−
Φ2,+ Φ2,−

)
=

⎛⎜⎜⎝
N−1a−1,+ 0 N−1a−1,− 0

0 N0a0,+ 0 N0a0,−
N−1b−1,+ 0 N−1b−1,− 0

0 N0b0,+ 0 N0b0,−

⎞⎟⎟⎠ .

Using (3.26) one easily finds that J is regular and

J−1 = {

(
D 0
0 D

)(
Φ2,− −Φ1,−
−Φ2,+ Φ1,+

)
.

Let us introduce another couple of matrices, V+, V− ∈ Mat(2,ℂ), by the
relation (

V−
V+

)
= J−1

(
X1

X2

)
,

thus V± = ∓ {D(Φ2,±X1 − Φ1,±X2). It follows that

V ∗± V± =
(
X ∗1 X ∗2

)( Φ ∗2,±D
2Φ2,± −Φ ∗2,±D

2Φ1,±
−Φ ∗1,±D

2Φ2,± Φ ∗1,±D
2Φ1,±

)(
X1

X2

)
and, consequently,

V ∗−V−−V ∗+V+ =
(
X∗1 X∗2

)( 0 −{D
{D 0

)(
X1

X2

)
= {(X∗2DX1−X∗1DX2)
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for Φj,± and D commute (all of them are diagonal), Φ ∗j,± = Φj,∓ and

−Φ1,+Φ2,− + Φ1,−Φ2,+ = {D−1

(cf. (3.26)). Owing to the property (3.34) we have

V ∗− V− = V ∗+ V+ (3.36)

which jointly with property (3.33) implies that

KerV− = KerV+ = Ker

(
V−
V+

)
= Ker

(
X1

X2

)
= 0.

The only possible choice of the matrices Y and U satisfying (3.35) is

Y = V −1
− , U = V+V

−1
− .

The matrix U is actually unitary because of (3.36).
Conversely, we have to show that any couple of matrices X1, X2 related

to a unitary matrix U according to the rule(
X1

X2

)
= J

(
I
U

)
obeys (3.33) and (3.34). Condition (3.33) is obvious since J is regular and
condition (3.34) is again a matter of a direct computation. In more detail,
since it holds

X ∗1 DX2 −X ∗2 DX1 =
(
I U∗

)
J∗
(

0 D
−D 0

)
J

(
I
U

)
it suffices to verify that

J∗
(

0 D
−D 0

)
J = {

(
I 0
0 −I

)
.

This concludes the proof of the above proposition.
Using this correspondence one can relate to a couple X1, X2 ∈ Mat(2,ℂ)

obeying (3.33) and (3.34) a self-adjoint extension H determined by the con-
dition

 ∈ D(H)⇐⇒
(

Φ1( )
Φ2( )

)
∈ Ran

(
X1

X2

)
. (3.37)

Two couples (X1, X2) and (X ′1, X
′
2) determine the same self-adjoint exten-

sion if and only if there exists a regular matrix Y such that (X ′1, X
′
2) =
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(X1Y,X2Y ). Moreover, all the self-adjoint extensions can be obtained in this
way.

We shall restrict ourselves to an open dense subset in the space of all
self-adjoint extensions by requiring the matrix X2 to be regular. In that case
we can set directly X2 = I and rename X1 = Λ. Thus Λ is a 2× 2 complex
matrix satisfying

DΛ = Λ∗D. (3.38)

The corresponding self-adjoint extension will be denoted HΛ. The condition
(3.37) simplifies in an obvious way. We conclude that HΛ ⊂ L∗ and  ∈
D(L∗) belongs to D(HΛ) if and only if

Φ1( ) = ΛΦ2( ), (3.39)

and this is in fact the sought boundary condition.
Matrices Λ obeying (3.38) can be parametrised by four real parameters

(or two real and one complex). We choose the parameterisation

Λ =

(
u �w̄

(1− �)w v

)
, u, v ∈ ℝ, w ∈ ℂ.

The relation between Λ and U reads

Λ = (Φ1,+ + Φ1,−U)(Φ2,+ + Φ2,−U)−1 (3.40)

(provided the RHS makes sense).
The “most regular” among the boundary conditions is Φ1( ) = 0, i.e.

the one determined by Λ = 0, and the corresponding self-adjoint extension
is nothing but the standard Aharonov-Bohm Hamiltonian HAB discussed in
Section 3.4.2. According to (3.40) HAB corresponds to the unitary matrix

U = −Φ−1
1,−Φ1,+ = diag

{
−

Γ
(

1
2

+ {
2B

)
Γ
(

1
2
− {

2B

) ,−Γ
(

1
2

+ � + {
2B

)
Γ
(

1
2

+ �− {
2B

)} .
3.4.5 The spectrum

Let us now proceed to the discussion of spectral properties of the described
self-adjoint extensions. It is clear from what has been explained up to now
that everything interesting is happening in the two critical sectors of the
angular momentum labeled by m = −1 and m = 0. To state it more formally
we decompose the Hilbert space into an orthogonal sum of the “stable” and
“critical” parts,

ℋ = ℋs ⊕ℋc
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where

ℋs =
∑⊕

m∈ℤ∖{−1,0}

L2(ℝ+, r dr)⊗ ℂ e{m�, ℋc = L2(ℝ+, r dr)⊗ (ℂ e−{� ⊕ ℂ 1).

A self-adjoint extension HΛ decomposes correspondingly,

HΛ = HΛ∣ℋs ⊕HΛ∣ℋc ,

and we know that on ℋs the operator HΛ coincides with the standard AB
Hamiltonian,

HΛ∣ℋs = HAB∣ℋs .

Thus
�(HΛ) = �(HAB∣ℋs) ∪ �(HΛ∣ℋc)

and, as explained in Section 3.4.2,

�(HAB∣ℋs) = {B(2k + 1); k ∈ ℤ+} ∪ {B(2k + 2� + 1); k ∈ ℕ}

where the multiplicity of the eigenvalue B(2k + 1) is infinite while the mul-
tiplicity of the eigenvalue B(2k + 2� + 1) equals k. On the other hand,

�(HAB∣ℋc) = {B(2k + 1); k ∈ ℤ+} ∪ {B(2k + 2� + 1); k ∈ ℤ+}

where all the eigenvalues are simple (the first set is the contribution of the
sector m = −1 while the second one comes from the sector m = 0). Since the
deficiency indices are finite, the Krein’s formula jointly with Weyl Theorem
[RS2, Theorem XIII.14] tells us that the essential spectrum �ess(H

Λ∣ℋc) is
empty for any Λ. Thus the spectrum of HΛ∣ℋc is formed by eigenvalues which
are at most finitely degenerated and have no finite accumulation points.

Let us derive the equation on eigenvalues for the restriction HΛ∣ℋc . Let
� ∈ ℝ. In each of the sectors m = −1, 0 there exists exactly one (up to a
multiplicative constant) solution of the equation (L∗)mf = �f which is L2-
integrable at infinity (with respect to the measure r dr) and we may take for
it the function g2

m(�; r) e{m� (cf. (3.19)). For a second linearly independent
solution one may take g1

m(�; r) e{m� provided �(m,�) ∕∈ −ℤ+ (cf. (3.20)).
If �(m,�) ∈ −ℤ+ then a possible choice of the second linearly independent
solution is

r∣m+�∣H

(
�(m,�), 
(m),

Br2

2

)
exp

(
−Br

2

4

)
where

H(�, 
, z) = z1−
F (� − 
 + 1, 2− 
, z)
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(cf. (3.21)).
Thus � is an eigenvalue of HΛ∣ℋc if and only if there exists a vector

(�, �) ∈ ℂ2 ∖ {0} such that the function

 �(r, �) = � g2
−1(�; r) e−{� + � g2

0(�; r)

satisfies the boundary condition (3.39). Using again (3.19) and (3.22) one
finds that

Φ1( �) =

(
a−1 0
0 a0

)(
�
�

)
, Φ2( �) =

(
b−1 0
0 b0

)(
�
�

)
,

where

a−1 =
Γ(1− �)

Γ
(

1
2
− �

2B

) (B
2

)−1+�

, b−1 =
Γ(−1 + �)

Γ
(
−1

2
+ �− �

2B

) ,
a0 =

Γ(�)

Γ
(

1
2

+ �− �
2B

) (B
2

)−�
, b0 =

Γ(−�)

Γ
(

1
2
− �

2B

) .
This immediately leads to the desired equation on eigenvalues which takes
the form detA = 0 where

A =

(
a−1 0
0 a0

)(
�
�

)
− Λ

(
b−1 0
0 b0

)
.

After the substitution

z =
1

2
− �

2B
, i.e. � = B(1− 2z),

we get

Γ(1− �)Γ(�)

Γ(z)Γ(z + �)

2

B
− Γ(�)Γ(�− 1)

Γ(z + �− 1)Γ(z + �)

(
2

B

)�
u

− Γ(1− �)Γ(−�)

Γ(z)2

(
2

B

)1−�

v

+
Γ(�− 1)Γ(−�)

Γ(z)Γ(z + �− 1)
(uv − �(1− �)∣w∣2) = 0.

To simplify somewhat the form of the equation it is convenient to rescale the
parameters as follows,

� =

(
B

2

)1−�
Γ(�)

Γ(2− �)
u, � =

(
B

2

)�
Γ(1− �)

Γ(1 + �)
v, � =

√
B

2
∣w∣. (3.41)
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Finally we arrive at an equation depending on three real parameters �, �, �,
namely

1

Γ(z) Γ(z + �)
+

�

Γ(z + �− 1) Γ(z + �)
+

�

Γ(z)2
+

� � − �2

Γ(z) Γ(z + �− 1)
= 0.

(3.42)
There is no chance to solve equation (3.42) explicitly apart of some par-

ticular cases. One of them, of course, corresponds to the standard AB
Hamiltonian. This case is determined by the values of parameters � = � =
� = 0 and the roots of (3.42) form the set −ℤ+ ∪ (−� − ℤ+). Consider
also the case when � = � = 0 and � ∕= 0 with the set of roots equal to
−ℤ+ ∪ (−� − ℤ+) ∪ {1 − � + �−2}. Comparing the latter case to the for-
mer one we see that there is one additional root, namely 1− �+ �−2, which
escapes to infinity when � → 0.

In the last particular case one can also consider the limit � → ∞. More
generally, suppose that det Λ ∕= 0, i.e. �� − �2 ∕= 0, replace Λ with tΛ in
(3.39) and take the limit t→∞. The limiting boundary condition reads

Φ2( ) = 0

and the corresponding self-adjoint extension which we shall call H∞ is one
of those omitted when we restricted ourselves to an open dense subset in
the space of all self-adjoint extensions (regarded as a a 4-dimensional real
manifold). Equation (3.42) reduces in this limit to the equation

1

Γ(z) Γ(z + �− 1)
= 0 (3.43)

with the set of roots −ℤ+ ∪ (1− �− ℤ+).
Another case when equation (3.42) simplifies yet it is not solvable explic-

itly is � = 0. This is easy to understand since if � = 0 then the matrix Λ is
diagonal and the two critical sectors of angular momentum do not interfere.
This is reflected in the fact that the equation (3.42) decomposes into two
independent equations,

1

Γ(z)
+

�

Γ(z + �− 1)
= 0,

1

Γ(z + �)
+

�

Γ(z)
= 0.

Let us shortly discuss the dependence of the roots of equation (3.42) on
parameters �, �, �. Since the derivative of the LHS of (3.42) with respect to
z and with the values of parameters (�, �, �) = (0, 0, 0) equals

(−1)mm!

Γ(−m+ �)
∕= 0 for z = −m, and

(−1)mm!

Γ(−m− �)
∕= 0 for z = −m− �,
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where m ∈ ℤ+, the standard Implicit Function Theorem (analytic case) is
sufficient to conclude that the roots are analytic functions in �, �, � at least in
some neighbourhood of the origin (depending in general on the root). Let us
denote by z1,m(�, �, �) and z2,m(�, �, �) the roots of (3.42) regarded as analytic
functions in �, �, � and such that z1,m(0, 0, 0) = −m and z2,m(0, 0, 0) = −�−
m, with m ∈ ℤ+. A straightforward computation results in the following
power series truncated at degree 4.

Set

ℎ0
m(z) =

m∑
j=1

1

j
− 
 −  (z),

ℎ1
m(z) =

�2

6
+

m∑
j=1

1

j2
−  ′(z),

ℎ2
m(z) = −2 �(3) + 2

m∑
j=1

1

j3
−  ′′(z),

where 
 is the Euler constant,  (z) = Γ′(z)/Γ(z) is the digamma function
and � is the zeta function. Then

z1,m(�, �, �) = −m+
(−1)m+1

m! Γ(−1−m+ �)
� +

ℎ0
m(−1−m+ �)

(m!)2 Γ(−1−m+ �)2
�2

+
(−1)m+1 (3ℎ0

m(−1−m+ �)2 + ℎ1
m(−1−m+ �))

2 (m!)3 Γ (−1−m+ �)3 �3

+
(−1)m (1 +m− �)

m! Γ(−1−m+ �)
� �2

+
1

6 (m!)4 Γ(−1−m+ �)4

(
4ℎ0

m(−1−m+ �) (3.44)

×
(
4ℎ0

m(−1−m+ �)2 + 3ℎ2
m(−1−m+ �)

)
+ℎ2

m(−1−m+ �)
)
�4

+
3− 2 (1 +m− �)ℎ0

m(−m+ �)

(m!)2 Γ(−1−m+ �)2
�2�2 + ⋅ ⋅ ⋅ ,
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z2,m(�, �, �) = −�−m+
(−1)m+1

m! Γ(−m− �)
� +

ℎ0
m(−m− �)

(m!)2 Γ(−m− �)2
�2

+
(−1)m+1 (3ℎ0

m(−m− �)2 + ℎ1
m(−m− �))

2 (m!)3 Γ (−m− �)3 �3

+
(−1)m (m+ 1)

m! Γ(−m− �)
� �2

+
1

6 (m!)4 Γ(−m− �)4

(
4ℎ0

m(−m− �) (3.45)

×
(
4ℎ0

m(−m− �)2 + 3ℎ2
m(−m− �)

)
+ℎ2

m(−m− �)
)
�4

+
1− 2 (m+ 1)ℎ0

m(−m− �)

(m!)2 Γ(−m− �)2
�2�2 + ⋅ ⋅ ⋅ .

A similar analysis can be carried out to get the asymptotic behavior of
the roots for �, �, � large. To this end assume that �� − �2 ∕= 0 and set

�′ =
�

�� − �2
, �′ =

�

�� − �2
, � ′ =

�

�� − �2
.

Notice that �′�′ − � ′2 = (�� − �2)−1. Equation (3.42) becomes

�′�′ − � ′2

Γ(z) Γ(z + �)
+

�′

Γ(z + �− 1) Γ(z + �)
+

�′

Γ(z)2
+

1

Γ(z) Γ(z + �− 1)
= 0.

(3.46)
Roots of (3.46) are analytic functions in �′, �′, � ′ at least in some neighbour-
hood of the origin. Again, it would be possible to compute the beginning
of the corresponding power series and to derive formulae similar to those of
(3.44), (3.45) but we avoid doing it here explicitly.

Instead we prefer to plot two graphs in order to give the reader some
impression about how the eigenvalues may depend on the parameters, i.e.
on the boundary conditions. In each graph we choose a line in the parameter
space, {(�t, �t, �t) ∈ ℝ3; t ∈ ℝ}, and we depict the dependence on t of several
first eigenvalues for the corresponding self-adjoint extension restricted to ℋc

(see (3.41) for the substitution). In both graphs we have set � = 0.3 and
B = 1.

Probably the most complete general information which is available about
solutions of equation (3.42) might be the localisation of roots of this equation
with respect to a suitable splitting of the real line into intervals. Let us choose
the splitting into intervals with boundary points coinciding with the roots
of equation (3.43). To get the localisation let us rewrite equation (3.42),
equivalently provided z ∕= −ℤ+ ∪ (1− �− ℤ+), as follows
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interval (1− �,+∞)
conditions number of roots

� ≥ 0 � ≥ 0 �2 > �� 1
� ≥ 0 � ≥ 0 �2 ≤ �� 0
� ≥ 0 −Γ(1− �) < � < 0 no condition 1
� ≥ 0 � ≤ −Γ(1− �) no condition 0
� < 0 � ≥ 0 no condition 1
� < 0 −Γ(1− �) < � < 0 �2 ≥ �� 1
� < 0 −Γ(1− �) < � < 0 �2 < �� 2
� < 0 � ≤ −Γ(1− �) �2 ≥ �� 0
� < 0 � ≤ −Γ(1− �) �2 < �� 1

Figure 3.5: Number of roots in interval (1− �,+∞)

interval (0, 1− �)
conditions number of roots

� ≤ 0 � ≥ −Γ(1− �) 0
� ≤ 0 � < −Γ(1− �) 1
� > 0 � ≥ −Γ(1− �) 1
� > 0 � < −Γ(1− �) 2

Figure 3.6: Number of roots in interval (0, 1− �)

(
Γ(z − 1 + �)

Γ(z)
+ �

)(
Γ(z)

Γ(z + �)
+ �

)
= �2. (3.47)

Put

F�(z) =
Γ(z − 1 + �)

Γ(z)

so that equation (3.47) can be rewritten as

(F�(z) + �) (F1−�(z + �) + �) = �2. (3.48)

It is easy to carry out some basic analysis of the function F�(z). We
have F�

′(z) = F�(z) ( (z − 1 + �) −  (z)). One observes that F�(z) > 0

for z ∈ ]1− �,+∞[ ∪
(∪

m∈ℤ+
]− �−m,−m[

)
, and F�(z) < 0 for z ∈∪

m∈ℤ+
]−m, 1− �−m[ , and in any case F�

′(z) < 0. In the former case
this follows from the fact that  (z) is strictly increasing on each of the
intervals ]0,+∞[ and ]−m− 1,−m[ , with m ∈ ℤ+. In the latter case this
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intervals (−�−m,−m),m ∈ ℤ+

conditions number of roots

� ≥ 0 � ≤ 0 0
� ≥ 0 � > 0 1
� < 0 � ≤ 0 1
� < 0 � > 0 2

Figure 3.7: Number of roots in intervals (−�−m,−m),m ∈ ℤ+

intervals (−1−m,−�−m),m ∈ ℤ+

conditions number of roots

� ≤ 0 � ≥ 0 0
� ≤ 0 � < 0 1
� > 0 � ≥ 0 1
� > 0 � < 0 2

Figure 3.8: Number of roots in intervals (−1−m,−�−m),m ∈ ℤ+

is a consequence of the identity

 (z−1+�)− (z) =
� sin(��)

sin(�z) sin(�(z + �))
+

∫ ∞
0

e−(1−z) t (1− e−(1−�) t
)

1− e−t
dt.

Moreover,

lim
z→+∞

F�(z) = 0, lim
z→(1−�−m)±

F�(z) = ±∞ and F�(−m) = 0 for m ∈ ℤ+.

This also implies that F1−�(z + �) > 0 for every z such that z ∈ ]0,+∞[ ∪(∪
m∈ℤ+

]− 1−m,−�−m[
)

and F1−�(z) < 0 for z ∈
∪
m∈ℤ+

]− �−m,−m[,

in any case F1−�
′(z + �) < 0, and

lim
z→+∞

F1−�(z + �) = 0, lim
z→−m±

F1−�(z + �) = ±∞,

and F1−�(−�−m) = 0 for m ∈ ℤ+.

With the knowledge of these basic properties of the function F�(z) it
is a matter of an elementary analysis to determine the number of roots of
equation (3.48) in each of the intervals ]1− �,+∞[ , ]−m, 1− �−m[ and
]− �−m,−m[ , with m ∈ ℤ+. The result is summarized in the following
tables.

This is to be completed with the simple observation that 1− � is a root
of (3.42) if and only if � = −Γ(1 − �), and −m, with m ∈ ℤ+, is a root if
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- 20 - 10 10 20
t

- 5

5

10

15

eigenvalues depending on t

Figure 3.9: The Hamiltonian is determined by the boundary conditions corre-
sponding to the parameters (�, �, �) = (0.95 t, 0.25 t, 0.25 t), � = 0.3, B = 1.

and only if � = 0, and finally −�−m, with m ∈ ℤ+, is a root if and only if
� = 0.

Let us note that this localization is in agreement with the following gen-
eral result: if A and B are two self-adjoint extensions of the same symmetric
operator with finite deficiency indices (d, d) then any interval J ⊂ ℝ not
intersecting the spectrum of A contains at most d eigenvalues of the operator
B (including multiplicities) and no other part of the spectrum of B [W, §8.3].
Thus in our example if J is an open interval whose boundary points are either
two subsequent eigenvalues of H∞ or the lowest eigenvalue of H∞ and −∞
then any self-adjoint extension HΛ has at most two eigenvalues in J .

3.4.6 Conclusion

A summary of the obtained results follows. The most general admissible
family of Hamiltonians describing the system was properly defined. The
operators were characterized by boundary conditions at the position of sin-
gularity. The spectrum of the standard Hamiltonian was defined explicitly,
showing the splitting of the Landau levels and giving rise to finitely degener-
ated eigenvalues in each gap. The spectral properties of general Hamiltonians
were investigated. Some particular cases were again solved explicitly. For the
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eigenvalues depending on t

Figure 3.10: The Hamiltonian is determined by the boundary conditions
corresponding to the parameters (�, �, �) = (0.95 t,−0.25 t, 0), � = 0.3, B =
1.

general case, the number of newly arising eigenvalues was computed. The
Green function for the standard Hamiltonian was found.

3.5 Further research

The purpose of this section is to show the article [EŠV] in a broader context
of contemporary research. It is divided into two parts.

Section 3.5.1 is devoted to the noticeable work of Mine published in [M]
where the generalization to more AB vortices is accomplished. Section 3.5.2
then gives a review of newer papers related to [EŠV] using its results or
citing it, suggesting thus some directions where the study of similar topics is
heading.

3.5.1 Generalization to the many solenoids problem

A natural generalization of the results of [EŠV] is contained in [M]. Therein,
the system with homogeneous magnetic field and an arbitrary number (in-
cluding the possibility of infinite amount) of idealized solenoids is considered.
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All self-adjoint operators describing the system are found and completely
characterized, and their spectral properties are studied. For finite quantity
of solenoids, the bound on the number of eigenvalues between two neighbour-
ing Landau levels (as well as below the lowest one) is provided. For a special
case of sufficiently faraway points of singularities with uniform boundary
conditions, the spectrum is localized in close vicinity of eigenvalues of some
Hamiltonian with only one solenoid.

Preliminaries

Let us denote ℕ = ℕ ∪ {∞}. The singularities are located in the points
{zj}Nj=1 ⊂ ℝ2, N ∈ ℕ satisfying

R := inf
j ∕=k
∣zj − zk∣ > 0. (3.49)

Then the positive symmetric operator LN whose self-adjoint extensions de-
scribe the system is defined as

LN = (−{∇+ aN)2 ,

D(LN) = C∞0 (ℝ2 ∖ SN).

Here aN ∈ C∞0 (ℝ2 ∖ SN) ∩ L1
loc(ℝ2) are the potetials such that

rot an(z) = B +
N∑
j=1

2��j�(z − zj)

in the distributional sense in D′(ℝ2) for z ∈ ℝ2, with B > 0 being the
parameter of the field and �j ∈ (0, 1)∀j ∈ N the parameters of the point
interaction at the respective points zj. The existence of such potentials was
proven in [A1] and [A2].

The deficiency indices of LN are proved to be (2N, 2N). The self-adjoint
extensions are denoted by HN , and HAB

N is the standard AB Hamiltonian.

Spectral properties

The results concerning the spectral properties of HN are summarized in two
main theorems.

Theorem 1.1. Let N ∈ ℕ and let PI(H) denote the spectral projection of
a self-adjoint operator H corresponding to an interval I and mult{�;H} =
dim Ker(�−H). Then, the following holds:
(i) For any self-adjoint extension HN of LN , we have

mult{(2n− 1)B;HN} =∞, n ∈ ℕ.
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(ii) For the Standard AB Hamiltonian HAB
N , we have

dim RanP(−∞,B)

(
HAB
N

)
= 0,

dim RanP((2n−1)B,(2n+1)B)

(
HAB
N

)
≤ nN, n ∈ ℕ.

(iii) For any self-adjoint extension HN of LN , we have

dim RanP(−∞,B) (HN) ≤ 2N,

dim RanP((2n−1)B,(2n+1)B) (HN) ≤ (n+ 1)N, n ∈ ℕ.

This means that the infinite multiplicity of eigenvalues in Landau levels is
always preserved. Moreover, there is no eigenvalue below the lowest Landau
level for HAB

N and at most 2N of them for arbitrary HN , while between two
Landau levels there are at most nN or (n+ 1)N eigenvalues, respectively.

For the special case mentioned above, the notion of the operator with
uniform boundary conditions has to be introduced. The definition uses the
concept of magnetic translation operators defined in [Z].

Definition 1.2. Let HN be a self-adjoint extension of LN . We say operator
HN has uniform boundary conditions if the following two conditions hold:
(i) There exists � ∈ ℝ, 0 < � < 1 such that �j = � ∀j ∈ N̂ .
(ii) There exists a self-adjoint extension H1 of L1 independent of j such that

D(HN) =
{
u ∈ D(LN

∗)
∣∣∣t−zj(�ju) ∈ D(H1) ∀j ∈ N̂

}
. (3.50)

Here the condition (ii) says that the boundary conditions of HN at the
respective points zj have to be equivalent to the boundary condition of H1

at z. Thus functions from HN have to be just a transformation of functions
from D(H1), using the magnetic translation operators t−zj ; here �j are some
technical auxiliary functions.

Theorem 1.2. Let N ∈ ℕ, N ≥ 2. Let HN be a self-adjoint extension of
LN which has uniform boundary conditions and H1 be the single solenoid
operator appeared in (3.50). Let I = [c, d] be a closed interval satisfying
I ∩ {(2n − 1)B∣n ∈ ℕ} = ∅, c, d /∈ �(H1) and �(H1) ∩ I = {�i}ki=1 (by
Theorem 1.1, �(H1) ∩ I is a finite set).

Then, there exist constants u > 0 and R > 0 dependent only on B, �, I
and H1 satisfying the following assertions:
(i) If R ≥ R0, we have

�(HN) ∩ I ⊂
k∪
l=1

∣�l − �, �l + �∣
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where � = e−uR
2
.

(ii) If R ≥ R0, we have

dim RanPI(HN) = N dim RanPI(H1).

Recall that R = infj ∕=k ∣zj − zk∣ > 0 by (3.49).
Thus, in this large separation case, the eigenvalues of HN differ from those

of H1 by � at most. Moreover, there are exactly nN eigenvalues between
the n-th and (n + 1)-th Landau levels, i.e. the bound (iii) of Theorem 1.1
is reached. Together it means that the solenoids, provided the distances
between them are sufficient, behave ”independently” in some sense, and that
the system is an intuitive generalization of the case with one solenoid with
the respective boundary condition.

Theorem 1.1 is proven using a perturbation of the canonical commutation
relation of the creation and anihilation operators corresponding to HAB

N , and
the proof of Theorem 1.2 follows a method used in [CN].

Characterization of self-adjoint extensions

In what follows, it is assumed that

(∃�−, �+ ∈ ℝ)(∀j ∈ N̂ ,N ∈ ℕ)( 0 < �− ≤ �j ≤ �+ < 1 ).

Moreover, a notation of operators with the upper index � (i.e. H�
1 ) is intro-

duced indicating explicitly the respective value of the flux.
An equivalent of the linear functionals (3.28) is formally introduced for

the case of one solenoid. The operators Ξj : D((L
�j

1 )∗) ∖ D(L
�j

1 ) → ℂ4 are
defined by

Ξj[u] := (Φ
�j

−1(u),Ψ
�j

1 (u),Φ
�j

0 (u),Ψ
�j

0 (u)), [u] ∈ D((L
�j

1 )∗) ∖D(L
�j

1 )

for j ∈ N̂ . Then, each operator Ξj(u) returns the vector with four parameters
of the self-adjoint extension (and thus those of the point interaction), com-
puted for the singular part of the function u from the domain of an arbitrary
self-adjoint extension H

�j

1 ; notice that H
�j

1 ⊂ (L
�j

1 )∗.
Consequently, the generalization to the case with N singularities is im-

plemented by defining the linear operator Ξ : D(LN
∗) ∖D(LN)→ ℂ4N (with

ℂ4N = l2(ℕ) for N =∞) in the form

Ξ[u] := (Ξ1[T1u], . . . ,ΞN [TNu]).

Here Tj are some operators that enabled us to use the operators Ξj on singular
parts of functions from D(LN

∗) as well, bearing in mind that the singular-
ities of L1 and LN are localized in different points in ℝ2. Thus, in fact,
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all the singular points are treated individually and compared to some one-
solenoid extension H

�j

1 . At the end, Ξ(u) returns 4N (or infinitely many)
parameters of point interactions corresponding to some Hamiltonian HN ,
with u ∈ D(HN).

Using Ξ, a set of functions {�(j)
−1,  

(j)
1 , �

(j)
0 ,  

(j)
0 } is found that forms a basis

of the deficiency subspace D(LN
∗) ∖ D(LN). Hence, the domain of LN

∗ is
decomposed as

D(LN
∗) = D(LN)⊕alg ⊕Nj=1[�

(j)
−1,  

(j)
1 , �

(j)
0 ,  

(j)
0 ]�

where ⊕alg denotes the algebraic direct sum.
This allows the following characterization of self-adjoint extensions of Ln.

Theorem 5.11. Let N ∈ ℕ. Let M and J be bounded operators on ℂ4N

satisfying
RanM = RanM, KerM∗J = RanM (3.51)

and

J =

⎛⎜⎜⎝
J�1 0 . . . 0
0 J�2 . . . 0
. . . . . . . . . . . . . . . . . . .
0 0 0 J�N

⎞⎟⎟⎠ , J = 4�

⎛⎜⎜⎝
0 �− 1 0 0

1− � 0 0 0
0 0 0 0
0 0 −� 0

⎞⎟⎟⎠ .

Define an operator HM
N by

D(HM
N ) = {u ∈ D(LN) ∣ Ξ[u] ∈ RanM},
HM
N = (−{∇+ aN)2 .

Then, HM
N is a self-adjoint extension of LN . Moreover, for any self-adjoint

extension HN of LN , there exists a bounded operator M on ℂ4N satisfying
(3.51) and HM

N = HN .

In the case of one solenoid, this proposition is equivalent with the one of
[EŠV]. Then, the following corollary holds true.

Corollary 5.12. The map M 7→ HM
N is a one-to-one correspondence between

the set of the orthogonal projections M on ℂ4N satisfying KerMJ = RanM
and the set of the self-adjoint extensions HN of LN .

A simplified version for special cases is provided as well.

Corollary 5.13. (i) Let N <∞. Then, the condition 3.51 is equivalent to

rankM = 2N, M∗JM = 0,
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where rankM = dim RanM .
(ii) Let N ∈ ℕ. Suppose that the operator M is the (finite or infinite) direct
sum of 4× 4 orthogonal projection matrices, that is,

M =

⎛⎜⎜⎝
M1 0 . . . 0
0 M2 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 . . . MN

⎞⎟⎟⎠ , Mj : 4× 4, M2
j = Mj, M

∗
j = Mj.

Then, the condition 3.51 is equivalent to

rankMj = 2, MjJ�j
Mj = 0 ∀j ∈ N̂ .

3.5.2 Related and citing papers

A very brief review of some other papers related to our subject of interest
and citing the article [EŠV] follows.

The planar system with a charged particle of spin 1/2 under the influence
of two idealized AB fluxes is studied in [GŠ1], generalizing the setup with
one solenoid. The self-adjoint extensions are found and characterized by
boundary conditions at the points of singularity similar to those of [DŠ]
and [EŠV]. The deficiency indices are found to be (4, 4) and a basis of the
deficiency subspace is derived using the knowledge of the spinless Green
function. Finally, the Green function for the spin-1/2 case is constructed
with the use of Krein’s formula. The asymptotic analysis of functions near
the singularity points is heavily used.

The articles [GGS2] and [GGS1] are a continuation of previous work of
the authors, see references therein. They consider the relativistic case and
study the Dirac equation in the so-called magnetic-solenoid field, denoting
the combination of homogeneous magnetic field and flux due to the idealized
AB effect. Self-adjoint extensions are found, and their spectral properties as
well as boundary conditions are briefly investigated.

The time-dependent singular AB flux on the background of a homoge-
neous magnetic field is studied in [AHŠ2]. Here, the value of the flux is
characterized by a C2 monotonous function Φ instead of a real parameter.
The adiabatic theorem is proven. A new theoretical concept has to be in-
troduced, consisting in an association of a propagator to a time-dependent
Hamiltonian in a weaker and more general way than in the standard case,
however still preserving the uniqueness of this connection. The need for this
new way was driven by the studied situation where the standard approach
turned out to be impossible because of too strong requirements on the prop-
agator.
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In [RT], the systems with a homogeneous magnetic field perturbed by
both magnetic and electric fields with compact support are considered. The
spectral properties of corresponding Hamiltonians are studied, with focus
on splitting of Landau levels. The approximate creation and annihilation
operators are used and the asymptotics of the split eigenvalues is found under
some conditions.

The work of [P] concerns a two-dimensional system with charged 1/2-
spin particle and a homogeneous magnetic field with a compact support. Two
specific extensions are compared. The Aharonov-Casher theorem (restricting
the number of zero modes) is proved for one of them, while an approximation
by regular fields is confirmed to be possible only for the other one, leaving
the question of physical plausability unanswered.

The Dirac-Weyl operator for the homogeneous magnetic field and ideal-
ized AB effect was studied in [O].The deficiency indices are stated to be (1, 1).
The spectrum of the standard AB Hamiltonian is studied; no eigenvalue is
found in the sector m = −1. The self-adjoint extensions are characterized
by one parameter, and their spectrum is found.

There is an interest in systems with magnetic field and a AB fluxes placed
in some periodic structures as well.

The two-dimensional system with a perpendicular homogeneous field and
an arbitrary (finite or infinite) quantity of idealized AB fluxes with various
periodic structures such as chains or lattices is considered in [GŠ1]. Zero
modes, i.e. eigenfunctions corresponding to zero energy, are the subject of
interest here, the main goal being to find conditions for their appearance.
To do so, one version of the Aharonov-Casher ansatz is used. Then, the
perturbations in the form of translation and addition of AB solenoids are
addressed. Some consequences such as occurence of oscillations or absolute
continuity of the spectrum are described.

There is a continuation of [M] in the work of Mine and Nomura concerning
a homogeneous magnetic field with arbitrarily many idealized solenoids. In
[MN1], periodically varying fluxes are investigated, while [MN2] concerns
random � magnetic fields. The conditions for having infinitely degenerated
eigenvalues in Landau levels are given, and in the former case a possibility of
occurance of purely continuous spectrum is stated. The spectral properties
are studied.

Then some other physical situations were taken into consideration.
In [H4], the AB effect considered on a circle in two dimensions is investi-

gated. A formal characterization of self-adjoint extensions is found.
The AB effect with its potential supported on a disc is studied in [BM].

Special interest is paid to the Fridrichs extension denoting the standard AB
Hamiltonian. The corresponding parameters of the interaction are investi-
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gated and the lowest eigenvalue is determined.
The paper [IY] considers system with AB effect on a punctured two-

dimensional torus. Properties concerning both geometry and operator theory
are investigated.

The particular self-extension with regular boundary condition describing
the AB effect on the Poincaré disc, i.e. a hyperbolic disc pierced by an AB
flux, is examined in [L3], with the aim to obtain the integral representation
of wavefunctions and the resolvent kernel.
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Chapter 4

Matter in strong magnetic
fields

This chapter is devoted to the study of the H+
2 molecule in strong magnetic

fields. It is the presence of the fields that makes the existence of this oth-
erwise unstable object possible. An explicitly solvable operator with point
interactions is used as an approximation of the original Hamiltonian, and
their convergence in resolvent norm sense is proved in high field limit. The
basic properties of H+

2 are investigated, including the stability and asymp-
totic behaviour of the ground state energy and the equilibrium distance. The
results are summarized in two papers [BBjpa] and [BBfbs] that lie in the core
of this part.

As to the structure of the text, we first introduce the notion of a strong
magnetic field and mention some of its principal properties in Section 4.1.
We explain in detail the approximative method used in the two papers in
Section 4.2. In Section 4.3.1, we establish the systems describing the H+

2 .
The review of the literature focused on strong magnetic fields in general and
on H+

2 molecule in particular is given in Section 4.4. Finally, the full text of
papers [BBjpa] and [BBfbs] form the contents of Section 4.5.

4.1 Strong magnetic fields

Some basic remarks on strong magnetic fields will be made here. In Section
4.1.1, we describe for what values of magnetic field we talk about strong
fields. A short description of change in the matter behaviour will be given
in 4.1.2. Finally, some new functions used throughout the whole chapter will
be introduced in 4.1.3

A detailed review of the literature about strong magnetic fields can be

64



found e.g. in [L2] and books [GHRW] and [SS].
Let us make a short remark about the notation here. Magnetic fields will

be denoted by the symbol B (or some its modification such as B, in some
cases). The symbol H will be reserved for Hamilton operators. This is the
standard notation in the literature concerning strong magnetic fields.

4.1.1 Definition

Shortly, a strong magnetic field is defined as a field of such strength that
the cyclotron energy is much larger than the electrostatic energy needed to
ionize a hydrogen atom, and for which the relativistic effect are negligible at
the same time. The critical range of the field intensity where the conditions
are fulfilled is

2.3505× 109 G≪ B ≲ 4× 1013 G. (4.1)

We first start with establishing the lower critical value. Let us consider
an electron with mass me and charge e under the influence of a uniform
magnetic field B. Then the cyclotron radius is

� =

(
ℏc
eB

)1/2

and we have the cyclotron energy (and the distance between two adjacent
Landau levels) as

ℏ!ce = ℏ
eB

mec
.

The value B0 is defined by setting the cyclotron radius equal to the Bohr
radius, i.e. � = a0, which leads to

B0 =
m2
ee

3c

ℏ3
= 2.3505× 109 G,

giving the lower limit in (4.1). Equivalently, the critical value can be es-
tablished by the requirement ℏ!ce = e2/a0. Subsequently, a dimensionless
magnetic field strength b can be introduced as

b =
B

B0

,

and the condition for strong fields reads b≫ 1.
From the other side, the upper limit is set up so as to prevent the rela-

tivistic effects from being significant. This happens for magnetic fields with
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ℏ!ce ≳ mec
2 where the transverse motion of the electron becomes relativistic,

leading to the upper limit of (4.1) in the form

Brel =
m2
ec

3

eℏ
=
B0

�2
= 4.414× 1013 G;

here � = e2/ℏc is the fine structure constant.
However, in [L2] it is argued that one can use the non-relativistic approach

even for B ≳ Brel. The justification for the claim is twofold. Firstly, the free
electron energy is reduced to E ≃ mec

2 + p2
z/2me for the groundstates; thus,

the electron remains nonrelativistic in the z-direction, i.e. along the field
axis, provided that the binding energy EB is much less than mec

2. Secondly,
the shape of the Landau wavefunction is the same in both relativistic and
nonrelativistic theory. Therefore, as long as EB/(mec

2)≪ 1, the relativistic
effect on bound states can be considered as a small correction according to
[AD]. This way, it is possible to consider values of the field in the region

2.3505× 109 G≪ B ≲ 1016 G.

With increasing density of the matter, this relativistic correction becomes
more important.

4.1.2 Behavior of the matter

According to the definition of strong magnetic fields, the cyclotron energy
(and thus the energy needed for jump to a higher Landau level) is much
higher that the typical Coulomb energy needed to ionize the hydrogen atom.
This leads to a massive qualitative change in the behavior of the matter.

Normally, magnetic effects can be treated as a perturbation to other (es-
pecially electrostatic) forces, an example being Zeeman splitting of a atomic
energy levels. For B ≫ B0, however, the magnetic field itself starts to play
a dominant role, and it is the Coulomb force that now has a perturbative
character. The consequences are as follows.

Electrons in an atom first settle into the lowest Landau level as contrasted
to normal situation whit gradual occupation of orbitals.

Atoms gain the structure of one-dimensional systems. The movement of
the electrons in the directions perpendicular to the field is extremely confined,
with a0 ≫ � ∼ B−1/2, and the electrostatic force bind the electrons along the
magnetic field direction, which makes the atom to attain a narrow cylindrical
shape.

Huge impact on the rules of matter stability is observed. Strong mag-
netic fields guarantee the stability of otherwise unstable system such as the
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H+
2 molecule. Moreover, the covalent bonding allows the needle-like atoms

to form molecular chains along the field direction. Interactions between the
linear chains can then lead to the formation of three-dimensional conden-
sates. The question of formations of new atoms and molecules is discussed
in literature. A short review of literature is contained in Section 4.4.

The depicted behavior changes apply primarily to individual atoms, mo-
lecules and zero-pressure condensed matter. With sufficiently high tempera-
ture or density of the medium, the effects of even the strong magnetic fields
can vanish, see [L2, Section VI].

4.1.3 The Lambert function

Here we introduce some functions that will be used often throughout the
Chapter 4. They will play an important role mainly when scaling operators
with respect to the magnetic fields. In what follows, we will denote by
� = �(B) the unique positive solution of the equation

� + log� =
1

2
logB, (4.2)

which is equivalent to �e� =
√
B. Then, � can be written as

� = W
(√

B
)
,

where W is the principal branch of the Lambert function W (cf. [CGH+]).
The asymptotic behavior

� =
1

2
logB − log(2)B + log 2 +O

(
log(2) B

logB

)
, B →∞,

with log(2)(x) = log log(x) will be interesting for us. Especially, we will use
the fact that � ≃ log(

√
B) for B →∞.

4.2 Approximation by asymptotic models

This section is devoted to the method developed by Duclos and Brummelhuis,
and published consequently in [BD1], [BD2] and [BD3].

We will explain the method on the example of atoms; however, its use is
not limited to those. In this section, atoms with a general finite number of
N electrons with spin are considered in ℝ3. The Born-Oppenheimer approx-
imation is used, and the mass of the nuclei is considered to be infinite. No
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results concerning the case of finite nuclei mass (i.e. when this approximation
is omitted) were published so far.

The method consists of a series of approximations of the original Hamil-
tonian by other three operators in high field limit.

One starts with the original Hamiltonian of the system in Section 4.2.1;
it is called the exact operator (strictly speaking it is not exact as it already
incorporates approximation about the fixed center of mass). Then a spectral
decomposition with respect to the angular momentum is applied, and one
restricts to some its fixed sector.

Subsequently three new Hamiltonians are derived in Section 4.2.2; they
will be denoted ℎeff , ℎC and ℎ�. These three Hamiltonians have a form of
one-dimensional operators, albeit with the values in some vector space. We
will see that they are good approximations since they converge to the exact
Hamiltonian (restricted to fixed angular momentum sector) in the resolvent
norm sense for intensity of the field going to infinity.

Finally, the convergence of these operators is established in the form of
three theorems, including error bounds, in Section 4.2.3. The explanation
contained in this section will closely follow [BD3].

The proofs of the convergence theorem of Section 4.2.3 is then sketched
in Section 4.2.4. Some applications of the method are discussed in Section
4.2.5.

Let us make a short remark on terminology. The operators ℎeff , ℎC and
ℎ� will be given their individual names as effective Hamiltonian, Coulomb
Hamiltonian and �-Hamiltonian, respectively, upon their definitions in Sec-
tion 4.2.2. However, when we will want to refer to all of them as to a group,
we will use the term asymptotical Hamiltonians (due to their high-field con-
vergence properties). We will use this notation in the further sections as
well.

Further discussion about the method in the context of other literature, as
well as its application to other than atomic systems, is contained in Section
4.4.

Throughout this section, we will work in the atomic units.

4.2.1 Spectral decomposition of the exact Hamiltonian

First one has to introduce the starting operator of the system.

The exact Hamiltonian

Let N be the number of electrons and let Z be the charge of the nuclei. The
exact Hamiltonian HS is defined as
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HS =
N∑
j=1

(
1

2

(
1

{
∇j −

1

2
B ∧ rj

)2

+ �j ⋅ B−
Z

∣rj∣

)
+

∑
1≤j<k≤N

1

∣rj − rk∣
. (4.3)

Here subsequently rj = (xj, yj, zj) ∈ ℝ3 denote the coordinates of the j-th
electron, �j its spin, ∇j the gradient with respect to rj, and B = (0, 0, B)
the magnetic field fixed in the z direction; one can take B ≥ 0 without loss
of generality. The spin z-component in the Pauli representation is given by

I ⊗ ⋅ ⋅ ⋅ �zj ⋅ ⋅ ⋅ ⊗ I, �zj =
1

2

(
−1 0
0 1

)
,

and acts on ⊗Ni=1ℂ2. By [KK], it is possible to establish D(HS) so that the
operator HS is essentially self-adjoint on the Hilbert space

ℋ =
N⊕
j=1

L2(ℝ3)⊗ ℂ2.

To define physically relevant system describing the fermionic particles, one
has to restrict ℋ to the subspace of totally antisymmetric functions. This
subspace is composed of functions  (r1, s1, . . . , rN , sN) ∈ L2((ℝ3 × {±1})N)
antisymmetric with respect to 4-tuples (rj, sj), with sj = ±1 standing for
spin up or down, respectively, of the j-th particle. Then �zj acts as the
multiplication operator by sj/2.

It is then possible to get rid of the spin dependence of the operator. Since
HS commutes with spin operators �zj for each j, it decomposes to a direct
sum unitarily equivalent to

⊕
szj∈{±1}

(
HS∣∣

Sz=−NB/2 +
N∑
j=1

(1 + szj)
B

2

)
,

with Sz =
∑N

j=1 �zj standing for the z component of the total spin operator.
Thus, it is possible to fix the spin of the electrons in their szj = −1 states,
and consider only

H = HS∣∣
Sz=−NB/2

acting on ⊗Nj=1L
2(ℝ3) without loss of generality. The operator can be written

as
H = H0 + V

with H0 standing for the free Hamiltonian of mutually noninteracting parti-
cles, and V denotes the potential.
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Spectral decomposition

In order to derive the asymptotic Hamiltonians, the spectral decomposition
of H with respect to the angular momentum is necessary.

One starts with the free Hamiltonian. The operator H0 of the system
then reads

H0 =
N∑
j=1

1

2

((
1

{
∇rj −

1

2
B ∧ rj

)2

−NB

)
.

Since the electrons are independent, it is possible to express H0 as a direct
sum of N one-particle operators H1 where

H1 =

(
Hosc −

B

2
Lz

)
⊗ Iz + Ix,y ⊗

(
−1

2
∂2
z

)
− B

2
⊗ Ix,y,z,

with Lz = −{xj∂yj+{yj∂xj being the angular momentum in the field direction,
Hosc standing for the Hamiltonian of the harmonic oscillator

Hosc = −1

2
Δx,y +

B2

8

(
x2 + y2

)
,

and Iz, Ix,y, Ix,y,z being the identity operators in corresponding coordinates.
Let moreover Πm,n acting on L2(ℝ2) be the orthogonal projections in

the x, y variables onto the one-dimensional subspaces spanned by �m,n ∈
L2(ℝ2), the normalized eigenfunctions of the operator Hosc −B/2 restricted
to the eigenspace of Lz corresponding to the eigenvalue m. Then the spectral
decomposition of H1 has the form

H1 =
⊕

m∈ℤ,n∈ℕ

(
B

2
(2n+ ∣m∣ −m)− 1

2
∂2
z

)
Πm,n

with the orthogonal projection Πm,n = Πm,n ⊗ Iz acting on L2(ℝ3).
Because of the simple structure of H0 as a sum of the one-electron oper-

ators, one can write

H0 =
⊕

m∈ℤN ,n∈ℕN

[
N∑
j=1

(
B

2
(2nj + ∣mj∣ −mj)−

1

2
∂2
zj

)]
Πm,n

where Πm,n acting on L2(ℝ3N) are the eigenvector projections

Πm,n = Πm1,n1 ⊗ ⋅ ⋅ ⋅ ⊗ΠmN ,nN

labeled by N -tuples m = (mi)
n
i=1 ∈ ℤN and n = (ni)

n
i=1 ∈ ℕN .
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The Lowest Landau Band of H0 is defined as

ℒ0 =
⊕

m∈ℕN
0

Ran Πm,0

where 0 = (0, ⋅ ⋅ ⋅ , 0). Subsequently, let FM = ℒ0∩Ker(Lz−M) be the finite-
dimensional space spanned by the lowest Landau states with total angular
momentum M, i.e.

FM =
⊕

m∈Σ(M)

Ran Πm,0

where

Σ(M) =

{
m = (mi)

N
i=1 ∈ ℕN

0

∣∣∣∣∣
N∑
j=1

mj = M

}
.

See the discussion at the end of the section for explanation of these restric-
tions.

Several simple observations can be made. The operator H0 restricted to
ℒ0 equals to the free Laplacian Δz in the field direction. Denoting

Xm(x, y) =
N∏
j=1

�mj ,0(xj, yj), m1, ⋅ ⋅ ⋅ ,mN ≥ 0

(we recall that �mj ,0 are the eigenfunctions of j-th oscillator Hamiltonian),
then ℒ0 is spanned by the tensor products Xm ⊗ u, with u ∈ L2(ℝN), and
Xm ⊗ 1 are generalized eigenvectors of H0 with eigenvalue 0. The functions
Xm are called lowest Landau band states.

The reduction of the Hamiltonians H and H0 is then implemented, using
the fact that both operators commute with the total orbital angular momen-
tum in the field direction

Lz =
N∑
j=1

(
1

{
xj∂yj −

1

{
yj∂xj

)
.

Let PM be the orthogonal projection onto the M-th eigenspace of Lz, with
Lzj = mj and

∑N
j=1mj = M ∈ ℕ0. One then defines the operators

HM = HPM, HM = H0P
M

acting on L2(ℝ3N).
The effective projection ΠM

eff is defined as the orthogonal projection onto
FM, and it reads

ΠM
eff =

∑
m∈Σ(M)

Πm,0. (4.4)
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The complementary projection ΠM
⊥ is then the orthogonal projection on

Ran(ΠM
eff)⊥ ∩ Ran(PM), i.e.

ΠM
⊥ = I − ΠM

eff =
∑

m∈Σ(M)∑
j nj≥0

Πm,n. (4.5)

Let us note that Ran ΠM
eff can be identified with the space L2(ℝN , FM) of

FM-valued L2-functions.
Moreover, it is important to realize that HM, ΠM

eff , FM and other objects
depend explicitly on both M and B.

Fixing of the angular momentum sector

As mentioned above, the restriction is made with respect to the value of the
total angular momentum in the field direction M. The rationale for that step
is as follows.

The subject of our main interest is the spectral behavior of H near its
lowest energy levels. Therefore, it is possible to consider only those sectors of
angular momentum for which that occurs. This in turn leads to the restric-
tion on M to the values from ℕ0 because ℒ0∩RanPM ∕= {0} ⇔M ≥ 0. Since
H−M is unitarily equivalent to HM + MB, it holds true that inf �(HM≥0) <
inf �(HM<0) for every B > 0.

The choice n = 0 is driven by the same reason.
For justification of this fixing, see the discussion in Section 4.4.

Remark on notation Thus from now on, we will always consider M ≥ 0
fixed and work only in the corresponding sector.

For the sake of simplicity, we will omit the upper index M in the following
text. So from now on, we write H instead of HM, H0 instead of HM

0 , and the
same for ΠM

eff , ΠM
⊥ , FM an so forth, unless otherwise stated. Bear in mind that

this will apply to newly defined objects as well – while they will be mostly
restricted to the sector M, the corresponding index will be suppressed.

4.2.2 Asymptotic Hamiltonians

The definitions of the three asymptotic Hamiltonians, serving for an approx-
imative description of the system for large B, will be provided here. Their
respective convergence theorems, showing precisely the character of this ap-
proximation, will be stated later in Section 4.2.3.
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The effective Hamiltonian

The effective Hamiltonian ℎeff is defined as the restriction of H to the lowest
Landau level with fixed value of angular momentum M by the relation

ℎeff = Πeff H Πeff .

It acts on Hilbert space Ran Πeff = Πeffℋ that depends explicitly on B and
M, and is isomorhpic to the space L2(ℝN , F ). One can get rid of the B-
dependence of Ran Πeff by rescaling; this is in fact used in the process of
deriving the other asymptotic operators.

The potential term of ℎeff ,

Veff = ΠeffVΠeff ,

can be interpreted as an operator valued function of z = (z1, ⋅ ⋅ ⋅ , zN) ∈ ℝN ,
with values in the space of linear operators on FM and acting in the natural
way on L2(ℝN

z , F ).
It is thus possible to consider the effective operator ℎeff as one-dimensional

multi-particle Schrödinger operator on the real line in variable z, and write

ℎeff = −1

2
Δz − Z

∑
j

Vj(zj) +
∑
j<k

Vjk(zj − zk). (4.6)

Here the potentials Vj correspond to the interaction between the electron
and the nuclei, while Vjk correspond to inter-electron interactions. They are
defined by projecting the respective Coulomb potentials in (4.3) along Πeff ,

Vj(zj) = Πeff
1

∣rj∣
Πeff

Vjk(zj − zk) = Πeff
1

∣rj − rk∣
Πeff .

By examining of the asymptotic behavior of these potentials for B →∞, the
potentials of the other asymptotic Hamiltonians are found.

We now introduce
ℎeff = ℎeff ⊗ IF

with IF being the identity on F . Finally, it is convenient to complete ℎeff as
follows

Heff = ℎeff ⊕H⊥
where

H⊥ = Π⊥HΠ⊥

is the orthogonal complement of ℎeff . The operator Heff appears later in the
convergence theorem.
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The Coulomb Hamiltonian

Based on the behavior of the potential of the operator ℎeff for large B as
described later in Section 4.2.4, the second asymptotic Hamiltonian will be
established here. For this, we need to define the tempered distribution q on
ℝ as

q(z) = logB �(z) + Pf

(
1

∣z∣

)
. (4.7)

Here

Pf

(
1

∣z∣

)
=

d

dx
(sgn(z) log ∣z∣)

is the finite part of the singular function 1/∣z∣ that regularizes the Coulomb
potential from (4.3) on the line; the derivative is considered in distributional
sense here. Then the finite-dimensional operators

Cj = −Πeff log

(
B

4
(x2

j + y2
j )

)
Πeff

and

Cjk = −Πeff log

(
B

4

(
(xj − xk)2 + (yj − yk)2

))
Πeff ,

both acting on L2(F ), are introduced, stemming from the potentials corre-
sponding to the electron-nuclei and inter-electron interactions, respectively.

The Coulomb Hamiltonian acting on L2(ℝN , F ) is formally defined by

ℎC =− 1

2
Δz − Z

∑
j

(q(zj) + Cj�(zj))

+
∑
j<k

(q(zj − zk) + Cjk�(zj − zk)) ,
(4.8)

the potential being denoted as vC . Let us note that the � and q are the
first two terms in asymptotic expansion of the effective potential; they have
zero-range and long range character, respectively. In q, the part PF(1/z)
influences the electron motion in the field direction, while Cj and Cjk in the
transversal directions.

It is then necessary to provide a rigorous definition of ℎC as a self-adjoint
operator. Let ⟨⋅, ⋅⟩ denote the duality between distributions and test func-
tions, and let (⋅, ⋅) be the inner product on F . Moreover, let Lj, Ljk : ℝN → ℝ
be linear maps such that Lj(z) = zj and Ljk(z) = zj − zk, and introduce
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tC(u) =
1

2
∣∣∇u∣∣2 − Z

∑
j

〈
L∗jq, ∣u∣2

〉
+
〈
(L∗j�, (Cju, u)

〉
+
∑
j<k

〈
L∗jkq, ∣u∣2

〉
+
〈
L∗jk�, (Cjku, u)

〉
.

(4.9)

It can be proven that tC is a well-defined quadratic form on the Sobolev
space H1(ℝN , F ), and that it is bounded from below by −C∣∣u∣∣2, with C
being some constant depending on B,Z,N and M. By the Kato-Lax-Lions-
Milgram-Nelson Theorem (cf. e.g. [RS1, Theorem X.17]), tC defines a unique
self-adjoint operator ℎC . The characterization of the operator domain of ℎC
is provided in Theorem A.1 in [BD3].

Analogically to the effective case, the operator

HC = ℎC ⊕H⊥

appearing in the convergence theorem is established, with ℎC = ℎC ⊗ IF .
We make only a short note concerning the potentials in ℎC and their

relation to the asymptotic expansion of the original Coulomb potential in H
for B →∞. The first order term in this expansion equals to the zero-range �-
interactions appearing in ℎC . The second order term has two parts describing
the long range interactions in both magnetic and transversal directions; they
are represented by Pf (∣z∣−1) and Cj, Cjk, respectively.

The �-Hamiltonian

From the operator ℎC , the last asymptotic Hamiltonian can be derived. The
delta-Hamiltonian acting on L2(ℝN , F ) is defined as

ℎ� = −1

2
Δz + 2�(B)v�

with the potential

v�(z) = −Z
N∑
j=1

�(zj) +
∑
j<k

�(zj − zk); (4.10)

recall that � is defined in (4.2). As can be seen, ℎ� is a simplified version of
the Coulomb Hamiltonian ℎC , with v� preserving only the (modified) leading
term in the potential of ℎC . Contrary to the original coupling constant logB
of (4.7), its counterpart in ℎ� is chosen to be 2�(B), the reasons for that
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being smaller error estimates arising in the convergence theorem and the
fact that, unlike with logB, we have 2�(B) > 0 for all B > 0.

While the Hilbert space ℎ� acts on depends on M, the operator itself is
M-independent, in contrast with the asymptotic Hamiltonians ℎeff and ℎC .
The self-adjointness of the operator is established in the same manner as
with the Coulomb Hamiltonian.

Once again, we set
H� = ℎ� ⊕H⊥

with ℎ� = ℎ� ⊗ IF .

4.2.3 Convergence theorems

This subsection contains the results of the method in the form of convergence
theorems for the asymptotic Hamiltonians ℎeff , ℎC and ℎ� (or better, for
their complete counterparts Heff , HC and H�) defined in Section 4.2.2. The
differences in the bounds can be seen for each version.

It is important to emphasize that we still consider M ≥ 0 fixed. Thus we
should always bear in mind that Heff = HM

eff , HC = HM
C , H� = HM

� , and so
forth.

The effective Hamiltonian

The convergence theorem for the effective Hamiltonian has the following
form.

Theorem 1.1. For � ∈ ℝ denote deff = dist (�, �(ℎeff)). Then there exist
positive constants Beff , ceff and Ceff , which only depend on Z,N and M, such
that for all B ≥ Beff , and all � ∈ ℝ satisfying

cef
�√
B
≤ deff ≤

1

2
�2,

we have that � ∈ �(H), and

∥∥(H − �)−1 − (Heff − �)−1
∥∥ ≤ Ceff

�(B)2

d2
eff

√
B
.

It can be shown that �(ℎeff) = �(Heff) for B ≥ Beff .
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The Coulomb Hamiltonian

The convergence theorem for the Coulomb Hamiltonian has the following
form.

Theorem 1.3. For � ∈ ℝ denote dC = dist (�, �(ℎC)). Then there exists
positive constants BC, cC and CC which depend only on Z, N and M, such
that for all B ≥ BC and all � ∈ ℝ satisfying

cC
�3/2

B1/4
≤ dC ≤

1

4
�2,

we have that � ∈ �(H), and

∥∥(H − �)−1 − (HC − �)−1
∥∥ ≤ CC�

3/2

B1/4d2
C

.

The �-Hamiltonian

The convergence theorem for the �-Hamiltonian has the following form.

Theorem 1.5. For � ∈ ℝ denote d� = dist (�, �(ℎ�)). Then there exist
positive constants B�, c� and C�, depending on N , Z and M, such that for
all B ≥ B� and � ∈ ℝ satisfying

c�� ≤ d� ≤
1

4
�2, (4.11)

we have that � ∈ �(HM), and∥∥(H − �)−1 − (H� − �)−1
∥∥ ≤ C��

d2
�

.

4.2.4 Proofs of the convergence theorems

The proofs of the convergence theorems consist of a sequence of estimates
leading first to the result for the effective Hamiltonian, and from that to
the Coulomb and delta- models. Since the machinery is technically quite
complicated, only the main principles will be sketched, and many technical
assumptions and results will be omitted.

For the sake of lucidity and ease of reference, the various constants emerg-
ing from the bounds will be denoted in the same way as they were established
in [BD3].
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The Feschbach decomposition

The first step is the decomposition of H to its effective part and the rest that
will vanish in the limit. To this aim, some new notation is necessary. Once
again, it is important to stress that fixed M ≥ 0 is considered throughout
the subsection. Therefore, almost all new operators defined here should be
considered as having the M index, i.e. being restricted to some fixed angular
momentum sector.

As said, he Hamiltonian H (now considered in the sector M of Lz) is
written as

H = H0 + V
with

V = −
∑
j

Z

∣rj∣
+
∑
j<k

1

∣rj − rk∣
,

being the potential, and we introduce

T = H0P
M, Teff = ΠeffTΠeff , T⊥ = Π⊥TΠ⊥.

Then we make use of the projectors Πeff , Π⊥ established in (4.4) and (4.5),
and denote as

Veff = ΠeffVΠeff , V⊥ = Π⊥VΠ⊥,

V⊥,eff = Π⊥VΠeff , Veff,⊥ = ΠeffVΠ⊥,

H⊥,eff = Π⊥HΠeff , Heff,⊥ = ΠeffHΠ⊥.

operators acting respectively on Ran Πeff , Ran Π⊥, and between them. Then
the resolvent-like operators

R = (H⊥ − �)−1 ,

RWeff = (ℎeff +W − �)−1 ,

are defined, with
W = −Veff,⊥RV⊥,eff ;

notice that they all depend explicitly on the spectral parameter �.
Then one can finally introduce the above mentioned decomposition and

write H as

H =

(
ℎeff Heff,⊥
H⊥,eff H⊥

)
=

(
Teff + Veff Veff,⊥
V⊥,eff TB⊥ + V⊥)

)
.

In order to compare the resolvents, the Feschbach formula is used to give

(H − �)−1 =

(
RWeff −RWeffVeff,⊥R

−RV⊥,effR
W
eff R +RV⊥,effR

W
effVeff,⊥R

)
(4.12)
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for those � ∈ ℂ for which the right hand side makes sense. After a series of
bounds on all operators on the RHS of (4.12) one arrives to the formula∥∥(H − �)−1 − (ℎeff +W − �)−1 ⊕R

∥∥ ≤ C(37)

dWeff

√
B

(4.13)

for some C(37) and dWeff .

Asymptotic potentials for large fields

The behavior of the potential ℎeff is then studied for large values B of mag-
netic fields, leading to the other asymptotic potentials vC and ℎ� of the
corresponding Hamiltonians.

One starts with the operator ℎeff and eliminates the B-dependence from
the Hilbert space L2(RN , F ) it acts on (more concretely, from the only part
F that depends on B), by using some unitary rescaling of the operators
with respect to B. This leads to some unitarily equivalent space L2(RN , F1).
Moreover, it means that the modified potentials V 1

j , V 1
jk gains independence

of B as well (the B-dependence of original potentials Vj, Vjk stemmed from
sandwiching by projectors Πeff), and it is possible to write

ℎeff = −1

2
Δz − Z

∑
j

√
BV 1

j (
√
Bzj) +

∑
j<k

√
BV 1

jk(
√
B(zj − zk)).

Then the following fact is used. Define R0 =
(

1
2
Δz − �2

)−1
for some

spectral parameter �. If u is a function or tempered distribution ℝN → F ,
then ∥R1/2

0 u∥L2(ℝN ,F ) is a norm on the 1st Sobolev space H1(ℝNF ). A linear
operator A sends H1(ℝN , F ) continuously into H−1(ℝN , F ) if and only if the

L2-operator norm ∥R1/2
0 AR

1/2
0 ∥ is finite.

By controlling this norm for various distributions, it is possible to show
that the potentials Vj, Vjk from (4.6), v� from (4.10), and the parts q, �, Cj
and Cjk from (4.8) are well defined. This allows to establish the potential
vC and leads to introduction of ℎC and ℎ� as of a self-adjoint operators as
described in Subsection 4.2.2.

Bound on resolvents of the asymptotic Hamiltonians

Subsequently, it is necessary to eliminate the term W from (4.13). Using

symmetrized resolvent formula, ∥R1/2
0 AR

1/2
0 ∥-type estimates and some other

computations one can arrive at the bound∥∥RWeff(�)− reff(�)
∥∥ ≤ ceff

�

deff
2
√
B

(4.14)

79



for some ceff , with deff defined in Theorem 1.1.
Finally, by combining (4.13) and (4.14) one can prove the convergence

theorem for the effective Hamiltonian, with the constant Ceff therein being
computed from ceff , c(37) and further constants coming from the other bounds.

Having the theorem for the effective Hamiltonian is the keystone for tran-
sition to both Coulomb and delta Hamiltonians, as it suffices to find the
bound between ℎeff and ℎC (or ℎ�, respectively).

The steps to the Coulomb and �-models are quite straightforward. Using
again the symmetrized resolvent formula and similar arguments as in the
case of ℎeff it is possible to arrive at the analogues of (4.14), namely

∥reff(�)− rC(�)∥ ≤ C ′C
�3/2

d2
CB

1/4
(4.15)

and
∥reff(�)− r�(�)∥ ≤ C ′�

�

d�
2 , (4.16)

again for some C ′C , dC defined in Theorem 1.3, and C ′�, d� defined in The-
orem 1.5, respectively. The convergence theorems for the Coulomb and �-
Hamiltonians (and all respective constants) are derived by combining (4.15)
and (4.16) with the theorem for the effective model.

4.2.5 Application of the results

We describe one potential application of the depicted method, namely an
approximation of the spectrum of the exact Hamiltonian.

Let E� = inf ℎ� be a simple isolated eigenvalue of ℎ�. Then for sufficiently
large B, the exact operator H has a set of eigenvalues with total multiplicity
equal to dimF in the interval (E� − c��

2, E� + c��
2), with c� defined in

(4.11) in Theorem 1.5. Moreover, for the special case when dimF = 1, the
relation ∥Φ−Φ�∥L2(ℝ3N ) = O(�−1), B →∞ holds true for the corresponding
eigenvector Φ of H, and for Φ�(x, y, z) = '�(z)Xm(x, y) with '� being the
corresponding eigenvector of ℎ�.

The rationale of the claim is quite simple. For B > B�, it is known that
�(H�) ⊂ (0,∞) from Theorem 1.5. Therefore, it has to be E� < 0. If E� is an
eigenvalue of ℎ�, then at the same time, E� is an eigenvalue of H� = ℎ�⊕H⊥
with multiplicity of dimF . Let Γ be the circle in the complex plane centered
at E� with radius c��

2. Moreover, let P and P� be the eigenprojections onto
the spectra �(H) and �(ℎ�), respectively, inside Γ. Then for B > B�, it is
possible to prove that dimP = dimP� = dimF which leads to the conclusion
above.
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4.3 Molecule H+
2

This section will be devoted to the definition the physical system that is
investigated in [BBjpa] and [BBfbs]. We introduce the Hamiltonian of the
exact system as well as a one-dimensional asymptotic operator with singular
potential that serves as its approximation. Literature concerning this system
will be discussed in Section 4.4.

4.3.1 The system

The H+
2 molecule consists of two nuclei and one non-relativistic electron con-

sidered in ℝ3. The magnetic field is oriented in the z-direction, and both
the nuclei are aligned along the z-axis as well. We begin by establishing the
Hamiltonian of the system.

The exact Hamiltonian

Let subsequently r = (x, y, z) ∈ ℝ3 be the coordinates of the electron,
� = (�x, �y, �z) the electron spin vector, R = ∣R1−R2∣ the inter-nuclear dis-
tance, with the nuclei being located at R1, R2 ∈ ℝ on the z-axis, Z = (Z1, Z2)
the charges of the nuclei, and B = (0, 0, B) the magnetic field fixed in the z di-
rection; we can takeB ≥ 0 without loss of generality. The Born-Oppenheimer
approximation is considered. Then the Pauli Hamiltonian of the system reads

H =
1

2

(
1

{
∇− 1

2
B ∧ r

)2

+ � ⋅ B− V +
Z1Z2

R
, (4.17)

where V is the electron-nuclei potential

V (r) =
Z1

∣r −R1z∣
+

Z2

∣r +R2z∣

and the term Z1Z2/R corresponds to the interaction between the nuclei.
Operator (4.17) acts on L2(ℝ3), and is the H+

2 -equivalent of the exact Hamil-
tonian HS from (4.3).

The special homonucleus situation is often considered, with Z = Z1 =
Z2 > 0 and −R1 = R2 = R/2.

The �-model

To model the explicitly unsolvable system (4.17), new Hamiltonians using
the zero-range �-potentials instead of the original Coulomb potentials were
proposed in the literature, see Section 4.4 for a more detailed discussion.
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The most frequently used �-Hamiltonian formally reads

ℎ� = −1

2

d2

dx2
− Z1�R1 − Z2�R2 +

Z1Z2

R
(4.18)

with �Ri
(x) = �(x−Ri), i = 1, 2, being the one-dimensional singular-potential

counterpart of the exact operator (4.17) introduced above. The special
homonucleus variant appears often as well.

In order to deal with the singular potentials in (4.18) and define the
operator ℎ� rigorously as an operator acting on L2(ℝ), one can set

ℎ� =− d2

dx2
,

D(ℎ�) =
{
 ∈ H2,1(ℝ) ∩H2,2(ℝ ∖ {R1, R2})

∣∣∣ (4.19)

lim
r↓0

( ′(Ri + ")−  ′(Ri − ")) = 2Zi (Ri), i = 1, 2
}
.

We recall that the model defined here can be regarded as just a special case
of the more general operator established in 2.4. The boundary condition in
(4.19) ensures that ℎ� is self-adjoint (cf. [AGHKH1]), and that it is uniquely
associated to the quadratic form

q�(�,  ) =
1

2
⟨�′,  ′⟩ −

2∑
i=1

Zi�(Ri) (Ri)

D(q�) = H2,1(ℝ).

The quadratic form is densely defined, closed and semibounded. Contrary
to ℎ�, the domain of q� does not depend on Z and R.

Alternatively to (4.18), an re-scaled operator is used often. Here, we
will present it in the special homonucleus case with Z = Z1 = Z2 > 0 and
−R1 = R2 = R/2. Then we have

ℎ� = L2Z2

(
1

2

d2

dx2
− � (z − a)− � (z − a)

)
+
Z2

R
,

where a = RLZ/2.

Basic spectral properties

Several observation about the spectrum of ℎ� can be made based on the
general results, e.g. [AGHKH1, Theorem 2.1.3].
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It holds true that �ess(ℎ�) = �ac(ℎ�) = [0,∞) for all values of the parame-
ters R and Z, and that �sc(ℎ�) = ∅. Moreover, there at most two eigenvalues
in �d(ℎ) ⊂ (−∞, 0).

If �d(ℎ) ∕= ∅, then the lowest energy e0 = min{�d(ℎ)} is nondegenerate
and its associated eigenvector  0 can be chosen strictly positive,  0(x) > 0
for all x ∈ ℝ.

4.4 Review of literature

A short review of literature follows. In section 4.4.1, articles focused on
behavior of matter in strong magnetic fields, and working in a similar way as
[BBjpa] and [BBfbs] are mentioned. In section 4.4.2, few papers concerning
H+

2 molecule are discussed more in detail, and a summary of original results
of [BBjpa] and [BBfbs] is given.

4.4.1 Literature on strong magnetic fields

From the extensive literature concerning strong magnetic field several arti-
cles are shortly mentioned. We are interested primarily in those that use
some approximative methods and asymptotic Hamiltonians, especially those
with the singular potentials described by point interactions. As can be seen,
these papers focus on the spectra of asymptotic Hamiltonians and their rela-
tion to the exact system, and investigate stability of matter and some basic
properties such as equilibrium position and binding energy.

Reviews regarding strong magnetic fields can be found e.g. in [L2] and
books [GHRW] and [SS].

Due to the impossibility to solve the exact system explicitly, the problem
was treated in a number of alternative ways. The techniques used to in-
vestigate the system included variational approach, approximative methods
involving the use of asymptotic Hamiltonians with miscellaneous effective and
zero-range singular potentials, perturbation theory, finite elements method
and numerical computations, and so forth.

The one-dimensional models with singular potentials have been used to
study of the Coulomb problem for more than 50 years, c.f. [F]. These early
papers mainly focused on simple atoms, but there were attempts to deal with
more complex systems, an example being [LY]. As for the H+

2 molecule, the
�-models appeared e.g. in [R2]. Therein, the existence of a stable groundstate
was predicted for Z > 0.374903. In [BW], the H+

2 molecule was investigated
in a different manner: the Coulombic attractive potential was replaced with
harmonic oscillator potentials while the repulsion term remained unchanged.
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The first rigorous treatment of the atomic case appeared in [LSY1] (to-
gether with its twin [LSY2]) and [BSY].

In the paper [LSY1], the framework of the density functionals is used.
The hyper-strong limit is considered Z,B/Z3 → ∞, and it is assumed that
N/Z is uniformly bounded. Then it is proved the ground state of the exact
system can be approximated by the Hartree mean-field model associated to
the �-model.

The paper [BSY] uses a variational approach to the exact Hamiltonian.
The convergence of the ground state energy of H to that of ℎ� is proven on
L2(ℝN), using variational arguments; the angular momentum M is not fixed
during the process.

In both papers, the ground state energy of H is rescaled first; that allows
the comparison with that of ℎ� for a fixed B. The variational approach used
does not guarantee the existence of the ground state, and does not provide
the information on its structure.

In some sense, stronger results were derived using the method of [BD3]
described in detail in Section 4.2. This regards mainly the localization of the
eigenvalues of H as discussed in Section 4.2.5.

The core of the method appeared already in [BD1] and [BD2], and the
most advanced and most general description was summarized in [BD3]. In the
first paper, an atomic ion with N bosonic electrons was studied, and the first
two asymptotic operators ℎeff and ℎ� were introduced. In the second article,
the spin and investigation of fermionic case was added. In the last paper,
the third effective operator ℎC appeared, and detailed study of the whole
process was accomplished. It contains the strongest forms of the convergence
theorems, too.

This method, with some modification, can be applied to some different
systems as well. In [BBjpa] and [BBfbs], the H+

2 molecule is studied by its
means; the results will be mentioned in Section 4.4.2. Notice in particular
that approximation of the ground state energy of the exact Hamiltonian
using the �-model includes explicit error bound, a property gained using the
conclusions of Section 4.2.5.

As an example of other systems where this approach can be used, let us
mention the two-dimensional electronic systems on a cylinder which describe
excitons in carbon nanotubes, see [CDR].

The question under which conditions the state with the lowest energy
occurs was discussed already in [AHS1] and [BS]. According to them, the
ground state is reached for the positive values of angular momentum. More-
over, it was shown by variational computations that the lowest energies of
the ground state are always attained for the parallel orientation of magnetic
and inter-nuclei axes, see e.g. [TV]. Taken that into account, the ground state
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has been proved to occur in the angular momentum m = 0 sector in [AH1].
The point interaction operators are used to model linear chains on n nuclei

as well. With their use, the stability can be predicted and approximative
values of ground state energies for H2+

3 and H3+
4 was found (c.f. [AMS]).

In [FLM], the Coulomb operator ℎC for H+
2 molecule was investigated.

4.4.2 Literature on H+
2 molecule

In this section, a few articles concerning H+
2 molecule will be discussed more

in detail. Most importantly, a short review of results of [BBjpa] and [BBfbs]
will be given. We will mention the results of one of their direct predecessors
[BBDPO] as well. Finally, a new paper [H3] will gain our attention since
some of its results confirm some of those obtained in [BBjpa] and [BBfbs].

Throughout this section, we will sometimes need to express explicitly the
dependence of the energy e on Z, B, L or R. We will do it by writing e.g.
e[R,L, Z] without further notice.

Benguria, Brummelhuis et al., 2004

In [BBDPO], the equilibrium distance and binding energy are numerically
investigated using a perturbative theory. Also the method formalized later
in [BD3] is used.

Not taking the repulsion energy into consideration, the equivalent of the
effective Hamiltonian ℎeff defined in Section 4.2 is derived in the form

ℎLs = −Δz

2
− 1

L2
VL (4.20)

with VL = V +
L + V −L and

V ±L =

∫ ∞
0

e−u(
1
L2

(
z ∓ RL

2

)
+ 2u

B

) du.

Here L = 2W (
√
B/2), see Section 4.1.3. The �-Hamiltonian in established

as

ℎ� = −1

2
Δz − � (z + a)− � (z − a)

where a = RL/2.
Then the perturbation method is deployed. One subsequently denotes a0

the ground state of ℎ�,  0 its corresponding eigenfunction, and

ΔV = ℎLs − ℎ� = �(z + a) + �(z − a)− 1

L2
VL.
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Then approximation of the ground state energy of ℎL to the second order in
perturbation theory is then given by

e2 = e0 + tr(P0ΔV P0)− tr(P0ΔV r̂�ΔV P0)

where P0 is the projector over  0 and r̂� is the reduced resolvent; tr(A)
denotes the trace of an operator A. After fully incorporating the scaling and
repulsion energy, one can compute the energy of the molecule as

E2 = E2[B,R] = L2e2 +
1

R
.

The value of R for which the energy E2 is minimized corresponds to the
equilibrium distance Req between the nuclei, the binding energy being defined
as Eeq = E2[B,Req].

The values of Req and Eeq are computed numerically for a range of mag-
netic field intensities. A good agreement with the results obtained using
variational techniques is reached, see [BBDPO] and references therein. One
can compute the corresponding eigenfunctions explicitly, too.

Later on, the perturbative results concerning the stability bounds ob-
tained in this paper were found very close to those produced later by accu-
rate variational (c.f. [TV]) and finite elements computations (c.f. [AH2]), at
least when the second order computations were used.

Benguria, Brummelhuis et al., 2006

This part contains an overview of the most important results of [BBjpa] and
[BBfbs]. As original results, both articles will be reproduced in full in Section
4.5.

We consider the homonucleus system with equal charges Z = Z1 = Z2 of
the nuclei, and we choose −R1 = R2 = R/2, so (4.17) changes to

H =
1

2

(
1

{
∇− 1

2
B ∧ r

)2

+ � ⋅ B− Z∣∣r − R
2
z
∣∣ − Z∣∣r + R

2
z
∣∣ +

Z2

R
. (4.21)

Let us start with the discussion about the applicability of the machinery
described in Section 4.2, and thus in turn about a possible approximation
of the exact Hamiltonian (4.21) by the asymptotic operators. In a general
setup with an arbitrary position of the nuclei, one could not use this approach
since the total angular momentum Lz in the field direction is not preserved.
However, Lz is a constant of motion in our special case due to the choice
of parallel internuclear and magnetic field axes, and the employment of the
method remains feasible.
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We can thus establish the effective Hamiltonian in the form (4.20) as de-
fined in [BBDPO]. However, we are primarily interested in the �-Hamiltonian

ℎ� = −1

2

d2

dx2
− ZL�

(
z +

R

2

)
ZL�

(
z − R

2

)
+
Z2

R
;

here L = 2W (
√
B/2) which differs slightly from the definition in Section

4.1.3.
Moreover, the applicability of the method allows to derive a theorem

similar to Theorem 1.5 of [BD3]. Here, the proof has to be modified due to
different numbers of electrons and nuclei, leading i.a. to other values of the
constants. However the structure of the molecular convergence theorem is
the same as for the atomic case.

Theorem 1. If d� is the distance of � ∈ ℝ to the spectrum of ℎ�, then there
exist positive constants c�, C� and B�, only depending on Z, such that if
B ≥ B� and c�L ≤ d� ≤ L2/4, then � is in the resolvent set of H, and

∣∣(H − �)−1 − (H� − �)−1∣∣ ≤ C�
L

d2
�

.

Using the explicit solvability of the �-model, two eigenvalues of ℎ� are
explicitly found. Based on the analysis of the condition infR{e0 − e∞} < 0,
with e0 being the ground state energy and e∞ = limR→∞ e[R,L, Z] the energy
in the separated atoms limit, the following stability theorem is derived.

Theorem 2. The energy curve e0[R,L, Z]− e∞ has:
(i) a global strictly negative minimum if Z/L ≤ 0.3205;
(ii) has a local minimum (corresponding to a resonance of the molecule) if

0.3205 < Z/L < 0.4398 and
(iii) does not have a local minimum if Z/L > 0.4398.

The asymptotic behavior of the equilibrium re and the corresponding
molecule energy ee = e[re, L, Z] are given by

req =
1

2L3/2 Z1/2

(
1 +

5

4
� +

45

32
�2 +O(�3)

)
,

emin =− 2Z2L2

(
1− 2� +

5

4
�2 +O(�3)

)
,

giving a starting position for the perturbative computations described in
[BBDPO]. A prediction of existence of He3+

2 is made as well.
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Finally, the the arguments of Section 9 of [BD3] (and summarized here in
Section 4.2.5), are used to conclude that the ground state energy E0 of the
exact Hamiltonian H can be estimated by its �-counterpart, namely

∣E0 − e0∣ ≤ c�L,

this bound being uniform inR. The technical difficulties caused by the second
eigenvalue e1 of ℎ�, blocking the fulfillment of the assumptions in Theorem
1.5 of [BD3], are avoided by deploying the symmetry argument. Thus, it is
proved that the equilibrium distance Re of the exact system lies between the
two roots of the equation

emin + c�L = e[R,L, Z]− c�L.

That leads to this last theorem.

Theorem 3. For sufficiently large B, ground state energy and equilibrium
distance of the H+

2 -molecule (4.21) is given by, respectively

E0[L,Z] = −2L2Z2 + 4Z5/2L3/2 +O(L),

and

Req =
1

2L3/2 Z1/2
+O

(
L−7/4

)
.

The convergence of H+
2 to its united atom limit He+ is then discussed,

and it can formally be described as

E
H+

2
0 (B)

EHe+

0 (B)
→ 1, B →∞.

However, two caveats are mentioned, being the relativistic effect and inaccu-
racy caused by the infinity nuclei mass approximation.

Hogreve, 2009

In 2009, a new analysis of the H+
2 system appeared in [H3]. Therein, the

system is described by the Hamiltonians

ℎ = −1

2

d2

dx2
− Z1�R1 − Z2�R2

and

H = ℎ+
Z1Z2

R
.

88



Based on properties of the corresponding quadratic form, analytic depen-
dence of eigenvalues and eigenvectors on Z and R is proven. Based on that,
the following analogy of the molecular virial theorem is established: If R > 0
and e ∈ �d(ℎ), then

de

dR
= −2R−1e+R−1⟨V ⟩

where ⟨V ⟩ = −
∑2

i=1⟨ ,Zi�Ri
 ⟩. For equilibria Re of H, and for correspond-

ing energy ee = e[Re, Z] and eigenstate  e that implies

−Re

2∑
i=1

Zi ∣ e(Ri)∣2 = 2ee +
Z1Z2

Re

.

Then the electronic curves, i.e. the eigenvalues e = e[R,Z] considered as
functions of R and Z, are then studied. First, the united atom limit R ↓ 0 is
examined.

Theorem 4.1. If Z1+Z2 > 0, then for R ↓ 0 the ground state energy behaves
as

e0 = −(Z1 + Z2)2/2 + 2(Z1 + Z2)Z1Z2R +O(R2).

If Z1 = −Z2 = Z > 0, then upon R ↓ 0 the ground state energy hits the
continuum in the united atoms limit with

e0 = −2Z4R2 +O(R3).

If the ground state or excited energy is absorbed into �ess(ℎ) at Ra = (Z−1
1 +

Z−1
2 )/2 > 0, then the approach R ↓ Ra to the continuum is characterized by

e0 = −2(Z−1
1 + Z−1

2 )−2(R−Ra)
2 +O((R−Ra)3).

Then the bounds from below and above, corresponding to the united and
separated atoms limits, respectively, are established.

Theorem 4.2. If Z1, Z2 > 0, then all energies e ∈ �d(ℎ) are bounded below
by the ground state energy of the united atoms limit, i.e., for all R ≥ 0

e ≥ e0[0, Z] = −(Z1 + Z2)2/2.

Upper bounds on the ground state energy are provided by the separated atoms
limit energies, i.e., for all R ≥ 0

e0 < min
i=1,2

e0[0, (Zi, 0)] = −(max{Z1, Z2})2/2.

In the presence of a negative charge, Z1 > 0, Z2 < 0, the latter bound turns
into a lower bound such that for all R ≥ 0

e > e0[0, (Z1, 0)] = −Z2
1/2.
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This is then used to prove the final theorem that focuses on the monotony
of the electronic curves.

Theorem 4.3. If Z1, Z2 > 0, then the electronic ground state curve e0 is
strictly monotonously increasing in R ≥ 0. In case that −Z1 ≤ Z2 < 0, the
ground state curve is strictly monotonously decreasing.

As a final step, a stability analysis is preformed. It is showed that the
behavior in this aspect is the same as compared to the exact system (4.18).
Here, the key role plays the asymmetry characterized by the ratio Z1/Z2.
With respect to that quantity, three potential modes can occur: stability,
metastability with the dissociation possible due to tunneling, and instability
where the potential barrier disappears. Taking fixed ratios � = Z2/Z1, the
following results are stated.

Stability holds for 0 < Z
(c)
1 (�) with

Z
(c)
1 (�) = sup{Z1 > 0∣Ee < E∞}.

Here Ee = E[Re, Z] is the energy at the equilibrium position (defined as the
leftmost minimum of e[R,Z] with respect to r, or Re = ∞ if there is no
minimum), and E∞ = E[∞, Z] = limR→∞E[R,Z] is the separated atoms
limit energy.

Then, metastable regime occurs for Z
(c)
1 < Z1 < Z

(m)
1 where

Z
(m)
1 = sup{Z1 > Z

(c)
1 (�)∣Ee < sup

R≥Re

E}.

Both Z
(c)
1 and Z

(m)
1 are then derived. First, one has that

Z
(c)
1 (�) = max

1≤�≤1+�
{(4��)−1(1− �2) log((�− 1)(�−1�− 1))}

For homonuclear systems with Z1 = Z2 = Z and � = 1 the following value is
found,

Z(c) = max
1≤�≤2

{(2�)−1(1− �2) log(�− 1) = 0.320483362463 . . .

agreeing exactly with the value found in [BBjpa] and [BBfbs].

The same holds true for Z
(m)
1 with the general formula

Z
(m)
1 = max

1≤�≤1+�{
(�− 1)(�−1�− 1)(log(�− 1)(�−1�− 1))

2(2�− 1− � − �−1�(�− 1)(�−1�− 1) log(�− 1)(�−1�− 1))

}
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and the special homonuclear value

Z(m) = max
1≤�≤2

{
(�− 1)2(log(�− 1))2

�− 1− �−1(�− 1)2 log(�− 1)

}
= 0.439841890466 . . .

confirming [BBjpa] and [BBfbs] again.

4.5 Original results

This section contains the original results as published in the articles [BBjpa]
and [BBfbs]. They are stated in full, the former in Section 4.5.1, and the
latter in Section 4.5.2.
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4.5.1 Asymptotic behaviour of the equilibrium nuclear
separation for the H+

2 molecule in a strong mag-
netic field
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Abstract We consider the hydrogen molecular ion H+
2 in the fixed nuclear

approximation, in the presence of a strong homogeneous magnetic field. We
determine the leading asymptotic behaviour for the equilibrium distance be-
tween the nuclei of this molecule in the limit when the strength of the mag-
netic field goes to infinity.

1 Introduction

One dimensional Hamiltonians with delta function interactions have been
used for a long time as toy models in atomic physics (see, e.g., [5], and
references therein). However, with the study of matter in the presence of
strong magnetic fields, these models have become more physically relevant.

It is now well established that atoms and molecules in the presence of a
strong uniform magnetic field behave like systems in one dimension. In fact,
a strong magnetic field confines the electrons to Landau orbitals which are
orthogonal to the direction of the applied magnetic field. In this manner,
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only the behaviour of the electrons along the direction of the magnetic field
is subject to the influence of their Coulomb interaction with the nuclei, or
to the interaction among themselves. Since one can extend the results of [4,
section 9], to the present molecular case, this genuine molecular case reduces
effectively to the one dimensional ion model where coulombic interactions
between the electron and the nuclei are replaced by delta point interactions,
see (1) below.

2 The asymptotic model

Our model consists of two nuclei, each one of nuclear charge Z, separated
by a distance R. As we have discussed in the Introduction, for large values
of the magnetic field, the molecule we are considering is described by an
asymptotic model defined by the following Hamiltonian,

H = L2Z2

[
p2
z

2
− �

(
z − RLZ

2

)
− �

(
z − RLZ

2

)]
+
Z2

R
, (1)

acting on L2(ℝ) ( see [1] for more details). The parameter L that appears
in this Hamiltonian depends on the strength of the magnetic field and it is
given explicitly by L = 2W (

√
B/2), where W is the Lambert function [6].

If one considers the function y(x) = x exp(x), for x ∈ [0,∞), the Lambert
function is its inverse, i.e., x = W (y). It is elementary to derive the following
asymptotics:

L = logB − 2 log(logB) +O
(

log(logB)

logB

)
, B →∞.

The ground state energy of this system, which is a function of R, Z, and L,
can be computed in closed form in terms of the Lambert function, and it is
given by

E(R,L, Z) = −L2 Z2�
2
0

2
+
Z2

R
, (2)

where

�0 ≡ 1 +
W (RLZe−RLZ)

RLZ
.

The first term in (2) is the electronic energy, while the second term is just
the Coulomb repulsion between the nuclei.

In this section we study the dependence of the ground state energy E, of
the asymptotic model, on the nuclear separation R. In particular, we shall
determine for which values of the parameters Z and L, the asymptotic model
exhibits binding.
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Let

F (x) ≡ 1

2

(
x+W (xe−x)

)2
. (3)

In terms of F (x), the ground state energy of H can be written as

E(R,L, Z) = −F (RLZ)

R2
+
Z2

R
=
L2 Z2

x

(
Z

L
− F (x)

x

)
, (4)

where x = RLZ. When the nuclei are infinitely apart, the ground state
energy of H is given by

Eat = −Z
2L2

2
. (5)

As usual, we define the binding energy of the molecule as the difference

EB = sup
R

[Eat − E(R,L, Z)] . (6)

The molecule will exist (in the frame of this asymptotic model) if and only if
EB > 0, i.e., if Eat − E(R,L, Z) > 0 for some R ∈ (0,∞). In case EB > 0,
we will denote Req the value of R which maximizes Eat −E(R,L, Z). Req
is the actual separation between the nuclei of the molecule described by the
asymptotic model.

In terms of x = RLZ and the Lambert function, we can write

Eat − E(R,L, Z) =
L2 Z2

x

(
J(x)− Z

L

)
, (7)

where

J(x) ≡ F (x)

x
− x

2
=

(2x+W (xe−x))W (xe−x)

2x
. (8)

Using (7), we see that there will be a molecule in the asymptotic model
provided there is an x for which J(x) > Z/L. One can readily check that the
function J(x) is positive in (0,∞), J(0) = 0 and limx→∞ J(x) = 0. Moreover,
J(x) has only one maximum in (0,∞), located at xJ ≈ 0.84, and J(xJ) ≈
0.3205, see lemma 1 in Appendix. Thus, if (Z/L) < J(xJ), the molecule
exists (in other words, there is a global minimum of −Eat +E(R,L, Z), and
therefore EB > 0.

In case Z/L > J(xJ), the molecule will not bind. However, there could
still be a local minimum of −Eat + E(R,L, Z) in (0,∞). If there is a local
minimum, but EB ≤ 0, we will say that there is a resonance. To study local
minima, we compute

∂E

∂R
(R,L, Z). (9)
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Using (4) and the properties of the Lambert function we can express,

∂E

∂R
(R,L, Z) =

LZ

R2

(
G(x)− Z

L

)
, (10)

where, as before, x = RLZ, and

G(x) ≡ (x+W (xe−x))2W (xe−x)

x(1 +W (xe−x)
. (11)

Using the properties of the Lambert function, one can check that the
function G(x) is positive in (0,∞), G(0) = 0, limx→∞G(x) = 0. Moreover,
G(x) has a unique maximum in this interval, attained at xG ≈ 1.95, and
G(xG) ≈ 0.4398, see lemma 2 in Appendix. One can compare the functions
J and G defined above. It turns out that J(x) ≥ G(x) if 0 ≤ x ≤ xJ ,
whereas J(x) ≤ G(x), if xJ ≤ x < ∞, hence G(xJ) = J(xJ) (i.e., both
functions agree at the maximum of J). From (10) and the properties of G we
see that if Z/L > G(xG), −Eat +E(R,L, Z) does not have a local minimum
in (0,∞). On the other hand, if J(xJ) < Z/L < G(xG), −Eat + E(R,L, Z)
has a local minimum, i.e., we will have a resonance.

We can summarize our discussion above in the following theorem. See
also Figure 1 below.

Theorem 1. For the system described by the Hamiltonian (1), the energy
curve −Eat + E(R,L, Z),
a) has no local minimum if G(xG) ≈ 0.44 < Z

L
,

b) has a local minimum if J(xJ) ≈ 0.32 < Z
L
< G(xG) ≈ 0.44.

c) has a global minimum (i.e, there is binding) if Z
L
< J(xJ) ≈ 0.32. We

denote by Req the position of this minimum.

For fixed nuclear charge Z, Z/L can be made arbitrarily small by choosing
the strength of the magnetic field sufficiently large, since L = 2W (

√
B/2).

Hence, for sufficiently large B, −Eat + E(R,L, Z) will have a global mini-
mum. In this case, it follows from (10) that the position of this minimum is
given by

Req =
1

LZ
G−1(

Z

L
). (12)

If Z/L≪ 1, we get from (12) and (A.20) in the Appendix that

Req =
1

2

1

L3/2 Z1/2
+

5

8

1

L2
+

45

64

Z1/2

L5/2
+

1

L2
O

(
Z

L

)
. (13)
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0.84 1.95
RLZ

0.32

0.44
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L

Nothing

Resonance

Bound state

J,G

Figure 4.1: Graphs of J (thick solid curve), G (thick dashed curve). and
Z/L (thin horizontal lines)

For Z/L ≪ 1, the minimum value of the energy, E(Req, L, Z) can be ob-
tained, to leading order, using (4), (13), and (A.17) in the Appendix. Thus
we obtain,

Emin ≡ E(Req, L, Z) = −2Z2L2

(
1− 2� +

5

4
�2 +O(�3)

)
, (14)

where we have set � =
√
Z/L.

For our discussion below, it is convenient to give the asymptotic behaviour
of the whole energy curve, E(R,L, Z), for large values of the magnetic field
(i.e., for large values of L). Using (4) and the asymptotic properties of F (x),
given in the Appendix, see (A.17), we obtain

E(R,L, Z) =
L2Z2

x

(
Z

L
− 2x+ 4x2 − 10x3 +O(x4)

)
(15)

with x = RLZ. This asymptotic behaviour is valid for values of R such that
R≪ 1

LZ
.

3 The leading behaviour of the nuclear separation of
the H+

2 molecule in the presence of a strong magnetic
field

With the help of the calculations on the asymptotic model of Section 2, we
will compute the leading behaviour of the equilibrium nuclear separation of
the H+

2 molecule, in the limit when the strength of the magnetic field goes to
infinity. Since we are interested in the H+

2 molecule, we set Z = 1 throughout
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this section. Denote by req the equilibrium distance between the nuclei of
the H+

2 molecule in the presence of a strong magnetic field. Here we will
prove the following estimate for req.

Theorem 2.

req =
1

2L3/2
+O(L−

7
4 ), as B →∞ (16)

where L = 2W (
√
B/2) and W is the Lambert function ([6]).

In [4], we have said that the ground state energy of the H+
2 molecule can

be estimated in terms of the ground state energy of the asymptotic model,
using the norm–resolvent convergence method developed by Brummelhuis
and Duclos in [4]. We will denote by E(R,L, 1) the ground state energy of
the aymptotic model studied in Section 2, for Z = 1 and by e(R,L, 1) the
ground state energy of the asymptotic model. As said in [1], for B large
enough one has,

E(R,L, 1)− �− ≤ e(R,L, 1) ≤ E(R,L, 1) + �+, (17)

where �± are positive constants that only depend on L. Moreover,

�+ + �− = c L (18)

where c is a constant, independent of L and R. These two above equations
can be derived with the method of [4], see in particular Theorem 1.5 and
section 9, there.

In section 2, we have computed the equlibrium distance, Req (13), and
the minimum energy, Emin, (14) for the asymptotic delta–model. Given
these values and the error estimates embodied in (17) and (18) above, we
can estimate the actual separation of the nuclei of the H+

2 molecule in the
presence of a strong magnetic field. In the figure, we have pictured the
energy curve for the asymptotic model, E(R,L, 1), as well as the curves
E(R,L, 1) ± �±. Recall that we denote by req the equilibrium distance of
the nuclei of the real molecule in the presence of a strong magnetic field; it
follows from the figure that

R1 < req < R2 (19)

where R1 and R2 are the solutions of the equation

Emin + �+ = E(R,L, 1)− �−

i.e.,
Emin + cL = E(R,L, 1); (20)
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R2R1 req
R

E

Figure 4.1: A sketch of the curves R→ E(R,L, Z) and R→ E(R,L, Z)±�±
with the points R1,2 and req

one can see easily that they both go to 0 as L→∞, see the end of Appendix.
Replacing the asymptotic behaviour (14) for Emin (with Z = 1), and (15)
for E(Ri, L, 1) in (20), we get

−2L2

(
1− 2L−1/2 +

5

4
L−1 +O(L−3/2)

)
+ cL =

=
L2

x

(
1

L
− 2x+ 4x2 − 10x3 +O(x4)

)
,

(21)

where x = RiL (since Z = 1). It follows that

(1− 2L
1
2x)2 = (c− 5

2
)x+ 10x3L+O(x4L) +O(L−

1
2x). (22)

Assume now that L
1
2x is not bounded, this would mean that there exists a

subsequence of L values so that L
1
2x → ∞. Substituting this sequence in

(22) gives:

4Lx2 ∼ (c− 5

2
)x+ 10x3L ∼ 10x3L

since x2L→∞; however this is a contradiction. Using in (22) that RiL
3
2 =

xL
1
2 is bounded gives

Ri =
1

2L
3
2

+O(L−
7
4 ).

which proves the theorem.
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Appendix

Definition 1. We define the function J(x) as

J(x) ≡ W (y) +
W (y)2

2x
, (A.1)

for all 0 ≤ x < ∞, where y = x exp(−x), and W denotes the Lambert
function, i.e., the nonnegative solution of W (x) exp(W (x)) = x. Since in the
sequel W as well as its derivative is always evaluated at y = x exp(−x), we
shall sometimes omit this argument.

In our next lemma, we prove some properties of J(x) needed in the main
body of the manuscript.

Lemma 1. The function J(x) is positive in (0,∞), it is real analytic, it has
a unique maximum, with value max J ∼ 0.32 taken at xJ ∼ 0.84.

Proof. That J is positive in (0,∞) follows immediately from (A.15) and the
definition of W . The Lambert function is real analytic. Moreover, for small
values of its argument, W (y) = y + O(y), thus W (y)2/2x will be also real
analytic in (0,∞). Hence, we need only prove that J has a unique critical
point (a maximum) in (0,∞). Taking the derivative of (A.15) with respect
to x, we get,

dJ

dx
=
dW

dy

dy

dx
+W

dW

dy

dy

dx

1

x
− W (y)2

2x2
. (A.2)

From the definition of the Lambert function, it follows that

dW

dy
=

W (y)

y(1 +W (y))
, (A.3)

and from the definition of y = x exp(−x) we have

dy

dx
=
y

x
(1− x). (A.4)

Using (A.16), (A.3), and (A.18) we get,

dJ

dx
=

W (y)

2(1 +W (y))x2
j(x), (A.5)

where we have set

j(x) = 2x(1− x) + 2W (y)(1− x)−W (y)(1 +W (y)). (A.6)
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Since W is positive in (0,∞), the sign of j(x) determines the sign of dJ/dx.
The function j(x) is clearly negative for x > 1. On the other hand, we can
rewrite,

j(x) = x(1− 2x) + x(1− 2W (y)) +W (y)(1−W (y)). (A.7)

Since W (y) ≤ y, and y = xe−x < x ≤ 1/2, if 0 ≤ x ≤ 1/2, it follows from
(A.7) that j(x) > 0 for all x ∈ (0, 1/2). Using (A.3) and (A.18), we can
compute,

x(1+W (y))j′(x) = x(1+W )[2(1−2x)−2W ]+(1−x)W [(1−2x)−2W ]. (A.8)

In the interval (1/2, 1) each of the terms on the right side of (A.8) is negative.
Hence, j(x) is decreasing in (1/2, 1). In summary, j(x) > 0 in (0, 1/2), j(x)
is strictly decreasing in (1/2, 1)and j(x) < 0 in (1,∞). From here it follows
that j(x) has a unique zero in (0,∞). If we denote xJ this zero, it follows
from the proof that 1/2 < xJ < 1. Numerically, xJ ≈ 0, 84.

Definition 2. We define the function G(x) as

G(x) ≡ W (y)(x+W (y))2

x(1 +W (y))
, (A.9)

for all 0 ≤ x < ∞ where, as before, y = x exp(−x), and W denotes the
Lambert function. Concerning the function G(x), in our next lemma, we
prove some properties needed in the main body of the manuscript.

Lemma 2. The function G(x) is positive in (0,∞), it is real analytic, it
has a unique maximum maxG ∼ 0.44 taken at xG ∼ 1.95. Moreover, the
functions J(x) and G(x) intersect at a unique point in (0,∞) precisely at
x = xJ .

Proof. Let’s begin by proving that G and J only cross at xJ , i.e., at the
maximum point of J(x). From (A.15) and (A.9), we see that the equation
G(x) = J(x) can be simplified to read,

2x− 2x2 − 2xW = W 2 −W.

which is precisely the condition j(x) = 0 (see equation (A.7) above), which
has only one solution which we have denoted by xJ .

Now, using (A.9), (A.3) and (A.18), after some simplifications we can
write,

dG

dx
=

(W + x)W

x2(1 +W )2
g(x), (A.10)
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where we have set

g(x) ≡ 2W (y)(1− x) + (x−W (y))(1 +W (y)) +
1

1 +W (y)
(W + x)(1− x).

(A.11)
If x < 1, the first and the last term of (A.11) are positive. On the other
hand, y < x and W (y) < y imply that the second term is also positive.
Thus, g(x) > 0 if 0 < x < 1. Moreover, we can regroup terms in (A.11) to
write

(1 +W (y))g(x) = (2− x)(W (y) + x)− xW (y)2 −W (y)3. (A.12)

From (A.12) it follows that g(x) < 0 if x > 2. Finally, we can compute

�(x) ≡ x(1 +W (y))[(1 +W )g]′, (A.13)

using as before (A.3) and (A.18). After several simplifications, we get,

�(x) = 2W (1− x) + 2xW 2(x− 2) + 2(1− x)x+ 2W 3(x− 2)− (x2 −W 2)W.
(A.14)

If 1 < x < 2, the first four terms of (A.14) are negative. The last term is also
negative, since W < x. In summary, (1 +W )g(x) > 0 in (0, 1), (1 +W )g(x)
is strictly decreasing in (1, 2)and (1 + W )g(x) < 0 in (2,∞). From here it
follows that g(x) has a unique zero in (0,∞). If we denote xG this zero, it
follows from the proof that 1 < xG < 2. Numerically, xG ≈ 1, 95.

We continue this appendix by giving the leading behaviour of several
special functions that are used in this manuscript. We begin with the leading
behaviour of the Lambert function. From the definition of W we have,

W (x) = x− x2 +
3

2
x3 − 8

3
x4 +O(x5). (A.15)

In fact, W (x) =
∑∞

n=1 x
n(−n)n−1/n!. From (A.15) it follows that

W (xe−x) = x− 2x2 + 4x3 − 28

3
x4 +O(x5). (A.16)

For the function F (x), defined by (3) we have

F (x) = 2x2
[
1− 2x+ 5x2 +O(x3)

]
. (A.17)

Hence, for J(x) defined by (8) we obtain,

J(x) =
3

2
x− 4x2 + 10x3 +O(x4). (A.18)
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whereas for the function G(x), defined by (11) we get

G(x) = 4x2
[
1− 5x+ 20x2 +O(x3)

]
. (A.19)

From (A.19) we obtain the leading behaviour of G−1(x), which is given by

G−1(x) =
1

2
x1/2 +

5

8
x+

45

64
x3/2 +O(x5/2). (A.20)

We end up this appendix by proving that both roots R1 and R2 of the
equation Emin + �+ = E(R,L, 1)− �− tends to 0 as L→∞, see the proof
of theorem 2. This is clear for R1 since it bounded by Req. Then one has
thanks to (14)

E(R2, L, 1) = cL+ Emin ∼ −2L2. (A.21)

Assume first that R2L is bounded below at least for a subsequence of values
L which tends to ∞. Then on this subsequence one has

E(R2, L, 1) ∼ −L2F (R2L)

(R2L)2

since F (x)/x is bounded below by a positive constant on [x0,∞[, x0 > 0.
Using that F (x)/x2 < 2 on all intervals [x0,∞[, x0 > 0 this contradict
(A.21). Thus one has R2L→ 0 as L→∞.
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Laboratoire affillié à la FRUMAM, Luminy Case 907, F-13288 Marseille Cedex 9,
France

4 Instituto de Ciencias Basicas, Facultad de Ingenieria, Universidad Diego Portales, Av.
Ejercito No. 441, Casilla 298-V, Santiago, Chile

5 Department of Mathematics, Faculty of Nuclear Science and Physical Engineering, Tro-
janova 13, 12000 Prague, Czech Republic

Abstract We show that under the influence of a strong uniform magnetic
field the energy of the H+

2 -ion at the 0-th order Born-Oppenheimer approxi-
mation goes over into that of the corresponding united atom limit, He+.

1 Introduction

Atoms and molecules in a strong uniform magnetic field of strength B will
effectively behave like systems in one dimension, since the field will ‘freeze’
the motion of the electrons perpendicular to the field into Landau orbitals.
The electrons will only be free to move along the field-direction, under
the influence of one-dimensional effective potentials induced by the origi-
nal Coulomb interactions. In the high field limit, these effective potentials
are well-approximated by zero-range �-interactions, with a B-dependent cou-
pling constant. This physical picture can be given a rigorous mathematical
foundation for atoms and molecules having infinitely heavy nuclei aligned
along the field direction, with the successive approximations holding true in
the fairly strong sense of norm-convergence of resolvents, and explicit error
bounds ([1, 2, 4, 3, 5]).This can be used to draw rigorous conclusions, for the
original atomic or molecular Hamiltonian, from the �-model, which in one-
electron cases is elementary solvable. We illustrate this by a detailed study
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of the H+
2 -molecule in a strong magnetic field, for which we prove that the

equilibrium distance between the nuclei tends to 0 as the field strength tends
to infinity, and the ground state energy tends to that of its united atom limit.

2 The Asymptotic Model

We consider a non-relativistic one-electron homonuclear diatomic molecule
with fixed nuclei of charge Z in a strong homogeneous magnetic field B = Bẑ,
where ẑ is the unit vector in the z-direction. If the inter-nuclear distance is
R, then the Pauli-Hamiltonian for the molecule, in atomic units, is:

H =
1

2
∣p− 1

2
r ∧ B∣2 + � ⋅ B− V +

Z2

R
, (1)

where V is the electron-nuclei potential:

V (r) =
Z

∣r − R
2
ẑ∣

+
Z

∣r + R
2
ẑ∣
, (2)

and � = (�x, �y, �z) the electron spin vector, given by the Pauli matrices.
The conversion to the field strength in Gauss is done by multiplication of B
by B0 := m2

ee
3c/ℏ3 =≃ 2.35 109 G. In [5], it was shown that atomic Hamil-

tonians in strong magnetic fields can be approximated, in norm-resolvent
sense, by a hierarchy of effective Hamiltonians describing one-dimensional
atoms on the line. The machinery of [5] is still applicable to the molecular
case, provided the nuclear axes are taken parallel to B, to ensure that to-
tal electron-angular momentum in the field direction is preserved (this is no
longer true for arbitrary orientations). The simplest of the effective Hamilto-
nians of [5], [4], giving the lowest order approximation, is the �-Hamiltonian,
which in the present case is given by

ℎ� =
1

2
p2
z −

∑
±

ZL�

(
z ± R

2

)
+
Z2

R
. (3)

Here L = L(B) := 2W (
√
B/2), W : [−e−1,∞) → ℝ being the princi-

pal branch of the Lambert function, defined as the unique real solution of
W (x)eW (x) = 1 which is positive for positive x; see e.g. [6]. Note that ℎ� still
depends on B, through L. We have that L(B) ≃ logB as B →∞.

Under the reasonable assumption that the electron is in an s-state (this
is not essential), ℎ� will approximate H in the following sense: let Π0 be
the orthogonal projection onto the lowest Landau band of the ‘free’ operator
1
2
∣p− 1

2
r∧B∣2) with m = 0, and let Π⊥0 be the projection onto the orthogonal

complement; Π0 commutes with H, and ℎ� has a natural interpretation as
an operator on Ran(Π0). Let H� := ℎ�Π0 +H(B)Π⊥0 . Then:
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Theorem 1. (compare [5], thm. 1.5) If d�(�) is the distance of � ∈ ℝ to
the spectrum of ℎ�, then there exist positive constants c�, C� and B�, only
depending on Z, such that if B ≥ B� and c�L ≤ d�(�) ≤ L2/4, then � is in
the resolvent set of H, and

∣∣(H − �)−1 − (H� − �)−1∣∣ ≤ C�
L

d�(�)2
. (4)

The spectrum of HΠ⊥0 turns out to be positive, and d�(�) > 0 will im-
ply that � < 0, since the essential spectrum of ℎ� already contains [0,∞).
Theorem 1 allows us to deduce information about the negative bound states
of H from those of ℎ�. Equation (4) may look strange as an approximation
result, since the L in the left hand side goes to∞. However, the ground state
energy of ℎ� is of the order of −cL2 in absolute value, and the same can then
be shown to be the case for H, see below. In [1]-[3], as re-scaled version of
theorem 1 was used.

The �-model is explicitly solvable, and ℎ� can be shown to have two
eigenvalues,

e0 = e0(R,L, Z) = −1

2
(LZ)2

(
1 +

W (xe−x)

x

)2

+
Z2

R
,

e1 = e1(R,L, Z) = −1

2
(LZ)2

(
1 +

W (−xe−x)
x

)2

+
Z2

R
. (5)

where x := RLZ; note that −xe−x ≥ −e−1, for all x ≥ 0. The corresponding
eigenfunctions can also be computed explicitly, cf. [1]. The ground state
energy of ℎ� is e0, and the molecule will bind iff infR [e0(R,L, Z)− eat] < 0,
where eat = −Z2L2/2, the ground state energy when the two nuclei are at
infinite distance. The equilibrium distance req is the value of R for which
e0(R,L, Z) − eat is minimized. The following theorem summarizes the situ-
ation for the �-model (numerical values are given to 4 decimal places):

Theorem 2. (cf. [2]) The energy curve e0(R,L, Z)− eat has:
(i) a global strictly negative minimum if Z/L ≤ 0.3205;
(ii) has a local minimum (corresponding to a resonance of the molecule) if
0.3205 < Z/L < 0.4398 and
(iii) does not have a local minimum if Z/L > 0.4398

To find the equilibrium distance, one computes that ∂Re(R,L, Z) =
R−2LZ [G(x) − ZL−1], where G(x) := x−1(1 + W )−1(x + W )2W , where
W = W (xe−x). The function G(x) is found to be strictly increasing on
the interval [0, xG] where G(xG) = 0.4398. Hence req = G−1(Z/L) for
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Z/L < 0.4398. The ground state energy of molecule in the ℎ�-model is
emin = e(req, L, Z). Their asymptotic behavior as L→∞ is given by:

req =
1

2L3/2 Z1/2

(
1 +

5

4
� +

45

32
�2 +O(�3)

)
, (6)

emin =− 2Z2L2

(
1− 2� +

5

4
�2 +O(�3)

)
, (7)

where � =
√
Z/L. Although ℎ� does not, by itself, provide numerically very

good approximations for the ground-state energy and equilibrium distance
of the real H+

2 -molecule for magnetic fields in the physically relevant range of
3×109 − 4×1013 Gauss, it can be used as the starting point of a perturbative
calculation, as was done in [1]. The equilibrium distance and binding energy
of the H+

2 molecule computed there were found to be in good agreement with
earlier variational calculations. One consequence of these computations is
the prediction of the existence, in fields B ≥ 1013 G, of He 3+

2 , a new atomic
system, and a further example of the binding-enhancing properties of strong
magnetic fields.

3 Equilibrium nuclear separation for H+
2

Using the arguments of [5], section 9, it can be shown that the ground state
energy E0 = E0(R,L, Z) of H can be estimated in terms of that of ℎ� by

∣E0(R,L, Z)− e0(R,L, Z)∣ ≤ c�L,

uniformly in R (recall that the constant c� of theorem 1 is independent
of R). One encounters a technical difficulty due to the existence of the
second eigenvalue e1 of ℎ� which, for large fields, becomes exponentially close
to e0, and prohibits a lower bound for the isolation distance of e0 of the
type required for theorem 1. However, all Hamiltonians under consideration
commute with the z-parity operator Pz : z → −z, and if we decide right
from the start to work in the Pz = 1-eigenspace of even functions in z,
e1 will not exist, and one can proceed as before. Using this estimate of
∣E0 − e0∣ < c�L and the fact that e0(L,Z,R) has a global minimum of order
O(−L2) if Z/L ≤ 0.3205, one then shows, for sufficiently large B (and L),
that the equilibrium distance Req of the true molecule (1) lies between the
two roots R = R1 and R = R2 of the equation

emin + c� L = e(R,L, Z)− c� L . (8)

A detailed analysis of this equation, using the known asymptotic large L-
behavior of e(R,L, Z) = x−1L2Z2 (L−1Z − 2x+ 4x2 − 10x3 +O(x4)), x =
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RLZ, and of emin then shows that R1,2 = (2L3/2Z1/2)−1 +O(L−7/4) (cf. [2],
section 3). Hence:

Theorem 3. For sufficiently large B, ground state energy and equilibrium
distance of the H+

2 -molecule (1) is given by, respectively

E0(L,Z) = −2L2Z2 + 4Z5/2L3/2 +O(L), (9)

and

Req =
1

2L3/2 Z1/2
+O

(
L−7/4

)
. (10)

4 Discussion

By theorem 3, the internuclear distance tends to 0 as B → ∞. Despite
the electrostatic repulsion between the two nuclei, a single electron suffices,
under the influence of a strong magnetic field, to bring them arbitrarily close
to each other. This is again an example of the binding-enhancing effect of
strong magnetic fields. Furthermore, as B → ∞, emin → −2Z2L2, which
is the ground-state of 1

2
p2
z − 2ZL�(z), a one-dimensional He+-like ion with

�-potentials. By [5], section 9, the ground-state EHe+

0 (B) of the true He+-ion
in a strong magnetic field will lie within a distance of O(L) of −2Z2L2. It
follows therefore that

E
H+

2
0 (B)

EHe+

0 (B)
→ 1, B →∞. (11)

The conclusion is that as field strength increases, the H+
2 -model goes over into

its United Atom Limit, the He+-ion. Several caveats are of course in order
here. First of all, for values of B ≥ 4× 1013 Gauss, for which the electron’s
rest-mass becomes larger or equal than the lowest Landau level, our non-
relativistic model should be replaced by a relativistic one (and ultimately
of course nuclear effects will start to play a role). Next, the fixed-nuclei
approximation is not realistic, and vibrational, and possibly also rotational,
motions should be taken into consideration.
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Chapter 5

Conclusion

This thesis was devoted to the study of two quantum mechanical systems.
For both systems, results in the form of published papers were obtained. The
list of publications follows at the the end of this section, together with the
list of citations.

Chapter 3 concerned the Aharonov-Bohm effect. First, the definition of
the effect was introduced, followed by a short overview of its history and of
some consequences it has in quantum theory. A definition of the system de-
scribing the effect was discussed with an emphasis on the choice of boundary
conditions. A review of the literature was provided, focused on the idealized
Aharonov-Bohm effect and its description by operators with singular poten-
tials. Finally, the idealized Aharonov-Bohm effect on the background of a
homogeneous magnetic field was investigated in detail.

Chapter 4 concerned matter in strong magnetic fields. The strong mag-
netic field regime was briefly described and its consequences for behavior of
matter was mentioned. The approximative method introduced by [BD3] was
explained in detail, and systems describing H+

2 molecule were established.
Finally, some properties of H+

2 molecule in the presence of strong magnetic
fields were investigated using the aforementioned method.

Aharonov-Bohm effect with a homogeneous magnetic
field

In Chapter 3, a rigorous analysis of the system describing the idealized
Aharonov-Bohm effect in the presence of a homogeneous magnetic field was
provided. In some sense, it was a follow-up to the previous papers [DŠ]
and [AT] where the pure idealized Aharonov-Bohm effect was studied. The
method for defining the operators with point interaction, based on the theory
of self-adjoint extensions and described in [AGHKH1], was used. The results
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were the following.
The most general admissible family of Hamiltonians describing the system

was properly defined. The operators were characterized by boundary condi-
tions at the position of singularity. The spectrum of the standard Hamilto-
nian was defined explicitly, showing the splitting of the Landau levels and
giving rise to finitely degenerated eigenvalues in each gap. The spectral prop-
erties of general Hamiltonians were investigated. Some particular cases were
again solved explicitly. For the general case, the number of newly arising
eigenvalues was computed. The Green function for the standard Hamilto-
nian was found.

H+
2 molecule in a strong magnetic field

In Chapter 4, H+
2 molecule in a strong magnetic field was analysed. The

method of [BD3] was deployed, and a one-dimensional operator ℎ� with point
interactions was established. This explicitly solvable model, serving as an
approximation of the original Hamiltonian H for large values of the magnetic
field B, was then used to compute some basic properties of the molecule. The
results were the following.

The convergence theorem for the operator ℎ� was established, including
the bound on the error estimate. The conditions for stability, resonance and
instability of the molecule were derived in terms of the nuclei charge and the
magnetic field. The asymptotic behavior of the ground state energy and the
equilibrium distance were computed.

113



List of publications
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[DŠ] L. Da̧browski and P. Šťov́ıček, Aharonov-Bohm effect with �-type inter-
action, J. Math. Phys. 39 (1998), 47–62.

[ES] W. Ehrenberg and R.E. Siday, The refractive index in electron optics
and the principles of dynamics, Proc. Phys. Soc. B 62 (1949), 8–21.
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