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List of Notation

We use the bold face for vectors in R” and we follow the convention that the appropriate

standard face letter stands for the radius of a vector, e.g., |p| = p. If a function f on

R™ acts like a function of the radius only we abuse the notation a little and write
In the most cases, we follow the notation of the fundamental series by

fp) = f(p).

Reed and Simon [1, 2, 3, 4], and the notation of [5, 6] if special functions are concerned.
For clarity, we attach the following table.

Symbol Meaning

A+B s.a. operator defined as a form sum of A and B according to
the KLMN theorem (see [2, 7])

Af operator adjoint to A

f (generalized) Fourier transform of a function f, we work with
the unitary Fourier transform

f inverse (generalized) Fourier transform of a function f

|-+ quadratic form norm

(B[ Hilbert Schmidt (operator) norm

I-1lp norm on LP(€2, dpu)

(-1l norm on H!(Q)

o) boundary of a set

Bs(x) Bs(x) :={yeR": |x—y| <}

C the complex numbers

Ce () linear space of smooth functions with f|sqn = 0 and flexto = 0
whose partial derivatives may be continuously extended to {2

CE(Q) linear space of smooth functions with a compact support in 2

dist distance

Dom domain

e.s.a abbreviation for ’essentially selfadjoint’

ext exterior

1Fi(a,b, z) Kummer confluent hypergeometric function

0% Euler’s constant, v ~ 0.5772

I'(z) gamma function

H,(z) Struve function

Hankel function of the ith kind, ¢ = 1, 2

iii



LIsT OF NOTATION

Symbol Meaning

H™(82) Sobolev space H™?2()

H™*(Q) Sobolev space

HG (S2) closure of C#(£2) with respect to the norm of H™(£2)

I,(2) modified Bessel function of the first kind

Id identity mapping

Sz imaginary part of a complex number z

int interior

Ju(2) Bessel function of the first kind

K, (z) modified Bessel function of the second kind

K} (0) spheroidal joining factor

ker A kernel of a linear mapping A

Lq(@m) associated Laguerre polynomial

LP(Q,du) usual LP space

(L*(Q)), + L*(Q) linear space of functions such that f € (L*()), + L*(Q) <
Ve : 3 decomposition f = foc+ fie: foe€ LX) Allfrelleo < €

M(v, p, z) Whittaker function

N the positive integer numbers

Ny the non-negative integer numbers

Pl (z) associated Legendre function of the first kind

Psi(z,0) angular spheroidal function of the first kind

U(z) digamma function

Q(A) form domain of an operator A

QL (2) associated Legendre function of the second kind

Qs (z,0) angular spheroidal function of the second kind

R the real numbers

R* the positive real numbers

R~ the negative real numbers

Ran range

Rank rank=dimension of Ran

Rz real part of a complex number z

Res A resolvent set of an operator A

S1 unit circle

Sﬁ(j)(z,g)
o(A)

Tac,ess,pp(A)

s.a.
span

TrA
W(v, p, z)
Y (f,9)

radial spheroidal function of the jth kind

spectrum of an operator A

absolutely continuous, essential, and pure point part of the
spectrum of an operator A

abbreviation for ’selfadjoint’

linear span

trace of an operator A

Whittaker function

Wronskian of functions f and g

v



I. Introduction

This thesis is devoted to the spectral analysis of three non-relativistic quantum mechani-
cal systems. The three systems have several characteristics in common. Two of them are
two-dimensional and the last may be considered to be effectively two-dimensional too.
All the systems are then rotationally symmetric which substantially simplifies our treat-
ment since the partial wave decomposition may be involved. Furthermore, each of the
system studied is a nontrivial modification of a very well known and fundamental quan-
tum mechanical system, either the harmonic oscillator or the hydrogen atom. Namely,
the thesis deals with the isotropic harmonic oscillator with the point interaction in the
Lobachevsky plane, the two-dimensional hydrogen-like atom with the point interaction,
and the hydrogen-like atom in a thin plane-parallel slab.

Chapter II is devoted to the study of the isotropic harmonic oscillator with the point
interaction in the Lobachevsky plane. In the three-dimensional Euclidean space, the
Hamiltonian of the isotropic harmonic oscillator with the point interaction was used to
model the so-called quantum dot with a short-range impurity. The detailed analysis
can be found in [8]. Therein, harmonic oscillator potential was used to introduce the
confinement, and the point interaction (§ potential) was used to model the impurity.
For a physical essence of quantum dots we refer reader to [9]. Just in brief, we may
say that the quantum dots are nanostructures with a charge carriers confinement in all
space directions. They have an atom-like energy spectrum which can be modified by
adjusting geometric parameters of the dots as well as by the presence of an impurity.

An influence of the hyperbolic geometry on properties of quantum mechanical sys-
tems is a subject of continual theoretical interest for at least two decades. Numerous
models have been studied so far, let us mention just few of them [10, 11, 12, 13]. Nat-
urally, the quantum harmonic oscillator is one of the analyzed examples [14, 15]. It
should be stressed, however, that the choice of an appropriate potential on the hyper-
bolic plane is ambiguous in this case, and several possibilities have been proposed in the
literature. With our choice, that will be discussed bellow, we will introduce an appro-
priate Hamiltonian and derive an explicit formula for the corresponding Green function.
In this sense, our model is solvable, and thus its properties may be of interest also from
the mathematical point of view.

The spectral problem for the the model leads to a differential equation which is
well known from the theory of special functions, namely, to the differential equation
of spheroidal functions. It should be stressed, however, that the history of spheroidal
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functions is much more recent than that of more traditional special functions, like Bessel
functions or Legendre polynomials. For example, one of the basic monographs devoted
to spheroidal functions appeared only in the fifties of the last century [16], and the
notation is still not fully uniform. One can compare, for example, [16] with [6]. Here
we follow the latter source. Furthermore, there are values of parameters on which the
spheroidal functions depend that have not been fully investigated. In this connection,
note that the very values of parameters which are of interest for our model are treated
in the textbooks in a rather marginal way. Effective numerical algorithms to evaluate
spheroidal functions seem to be rather tedious to create and not available for all cases
either. These circumstances make the numerical and qualitative analysis of the spectrum
more complicated than one might expect at first glance. The numerical results were
derived with the aid of the computer algebra system Mathematica 6.0 which was the
very last version at the time of the computation and the first version where the spheroidal
functions were implemented. Those results comprise plots of the eigenvalues as functions
of the curvature and plots of the respective eigenfunctions. Beside the numerical results,
an asymptotic expansion of the eigenvalues as the curvature radius tends to infinity (the
flat limit case) is given, although it was derived in a rather formal way.

The text of Chapter II is essentially a compilation of three successive papers on the
topic, namely

e V. Geyler, P. Stovicek, and M. Tusek. A quantum dot with impurity in the
Lobachevsky plane. Operator Theory: Advances and Applications, 188:135-148.
Birkhauser Basel, 2009.

e P. Stovicek and M. Tusek. On the harmonic oscillator on the Lobachevsky plane.
Russian J. Math. Phys., 14:493-497, 2007.

e P. Stovicek and M. Tusek. On the spectrum of the quantum dot in the Lobachevsky
plane. To appear in Operator Theory: Advances and Applications, 198:291-304.
Birkhauser Basel.

The problem and the model for the quantum dot with an impurity in the Lobachevsky
plane was suggested by Vladimir Geyler, the coauthor of the first paper but primarily
our dear colleague who, to our great sorrow, passed away very unexpectedly in 2007. It
was a great pleasure and honor to collaborate with him.

In Chapter III, we examine the two-dimensional hydrogen atom. Let us point out
that the word 'two-dimensional’ only indicates that the motion of the electron around a
positive point charge is constrained in the plane. In this case the central force between
the electron and the nucleus is determined by the attractive Coulomb potential

C
V(o) = — 0= +y? (1.1)
which we will call the two-dimensional Coulomb potential. A detailed analytic analysis of
this system was given in [17]. The two-dimensional Coulomb Green function was derived
even earlier in [18]. It is a recently reviewed fact that the Schrodinger equation for the
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two-dimensional hydrogen atom is separable and integrable in circular, parabolic, and
elliptical coordinates [19]. The two-dimensional hydrogen atom was recently investigated
in various non-trivial modifications: confined in a subset of the plane [20], in a strong
magnetic field [21] or with spin-orbit Rashba interaction [22]. The problem was also
reformulated in the momentum space in the source [23].

Our contribution to the problem involves setting the domain of definition of the
respective Hamiltonian. To do so, selfadjoint extensions methods will be applied. As a
result we shall obtain not only the Hamiltonian for the two-dimensional hydrogen atom
itself but Hamiltonians with a one-center point interaction too. An explicit formula for
the Green function of the two-dimensional hydrogen atom with the point interaction will
be derived and the energy spectrum will be analyzed.

Let us remark that if a hydrogen atom is considered to be two-dimensional in the
strict sense, i.e. that all fields including electromagnetic fields, the angular momentum,
and the spin are confined to a plane, which will not be our case, then (I.1) is no longer
referred as the two-dimensional Coulomb potential. Indeed, the Coulomb law may be
derived from the first Maxwell’s equation (Gauss’s law for electrostatics) that states

divE =o¢

where, in our case, o stands for the (planar) charge density, £, = 0, and the electric
field is supposed to be rotationally symmetric. Integration of this equation over a disk
of radius r together with application of Green’s theorem gives the following result for
the potential

V(r) = const. logr.

The Schrodinger equation for this potential was studied in [24]. The spectrum was shown
to be purely discrete and bounded bellow. Nevertheless, for a quantitative determination
of the eigenvalues, numerical methods had to be involved.

Chapter IV is devoted to the study of the last system, the hydrogen atom in a
thin plane-parallel slab of the width a. The problem and the respective model was
suggested by Pierre Duclos from Universite du Sud, Toulon. We constrain the atom in
the slab simply by an appropriate choice of the domain of definition, namely we set the
domain to be Hy () N H?(Qa) = L*(Q4). This choice, in principle, corresponds to the
Dirichlet boundary condition on the parallel planes. The resulting Hamiltonian seems
to be resistant to a direct analytic treatment. Nevertheless, our results implies that it is
possible to turn attention to a two-dimensional model described by the so-called effective
Hamiltonian.

The adjective ’effective’ should be understood in the following way: the eigenvalues
(at least these at a bottom of the spectrum) of the exact atomic Hamiltonian tend to
the eigenvalues of the effective one as a — 0. The effective Hamiltonian is a Schrédinger
operator acting on a Hilbert space that is isomorphic to L#(R?) but its potential part is
rather complicated and the respective model is still barely solvable. However, we have
proved that the norm resolvent limit of the effective Hamiltonian as ¢ — 0 is nothing
but the two-dimensional hydrogen atom Hamiltonian (or shortly Coulomb Hamiltonian)
plus the energy of the lowest transversal mode. The latter model is exactly solvable as
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is demonstrated in Chapter III. Consequently, we will use an exact knowledge of the
eigenvalues of the two-dimensional Coulomb Hamiltonian to approximate the eigenvalues
of the original exact Hamiltonian. Moreover, we will set the rate and the accuracy of
this approximation as a — 0, and compute several terms in a perturbation expansion for
the lowest eigenvalue of the effective Hamiltonian. Note that the effective Hamiltonian
is not holomorphic in a zero neighborhood of the complex a-plane, as there are powers
of log a in the expansion.

From the perspective of future research, the last system studied seems very promis-
ing. First of all, one may look for a Hamiltonian that approximates the effective Hamil-
tonian better than the Coulomb one but is still solvable. For sure, this Hamiltonian
is not the Coulomb one with a one-center point interaction since the addition of the
point interaction results in the appearance of an eigenvalue below the spectrum of the
pure Coulomb Hamiltonian (see Section II1.2.5) whereas the spectrum of the effective
Hamiltonian (minus the energy of the lowest transversal mode) always lies above it.
Next, generalizations of the system are of interest. Natural question arises whether the
norm resolvent limit of the Hamiltonian of a multi-electron atom in a thin slab is just the
Hamiltonian of the two-dimensional analogue. It seems so, since the methods and proofs
for the single-electron case may be modified to be applicable in the multi-electron case
too. One may also ask what happens with the energy spectrum if a slab of a different
shape is considered.

For the reader’s convenience and a transparency of the document, we supply sev-
eral appendices. Appendix A comprises plots of the functions that are outputs of our
numerical computations. In Appendix B, we not only supply several auxiliary results
but we also review and extend some of the standard facts on the Dirichlet Schrédinger
operators. Appendix C is devoted exclusively to the spheroidal functions. It contains
basic definitions and results which are necessary for our approach.



II. Quantum Dot with Impurity
in the Lobachevsky Plane

II.1  Model

Denote by (0,¢), 0 < o < ©, 0 < ¢ < 2m, the geodesic polar coordinates in the
Lobachevsky plane. Then the metric tensor is diagonal and reads

. 2 .. .20

(9i5) = dlag(l,a sinh 7)

a

where a, 0 < a < oo, denotes the so called curvature radius which is related to the

scalar curvature by the formula R = —2/a%. Furthermore, the volume form equals

dV = asinh(g/a)dp A d¢. The Hamiltonian for a free particle of mass m = 1/2 takes

the form
1 1 ¢ 0 1

H = — (Appt— ) =—— % jggi L _ L
< LB+ 4a2) /g 07 V99 ord  4a?

where Ay p is the Laplace-Beltrami operator and g = det g;;. We have set h = 1.

The choice of a potential modeling the confinement is ambiguous. We naturally
require that the potential takes the standard form of the quantum dot potential in the
flat limit (a — o0). This is to say that, in the limiting case, it becomes the potential
of the isotropic harmonic oscillator V(o) = %w2g2. However, this condition clearly
does not specify the potential uniquely. Having the freedom of choice let us discuss the

following two possibilities:

a) Va(o) = §a’w? tanh? 2, (IT.1)
b) Ua(o) = 3 a®w?sinh? €. (I1.2)

Potential V, is the same as that proposed in [25] for the classical harmonic oscillator
in the Lobachevsky plane. With this choice, it has been demonstrated in [25] that the
model is superintegrable, i.e., there exist three functionally independent constants of
motion. Let us remark that this potential is bounded, and so it represents a bounded
perturbation to the free Hamiltonian. On the other hand, the potential U, is unbounded.
Moreover, as shown below, the stationary Schrodinger equation for this potential leads,
after the partial wave decomposition, to the differential equation of spheroidal functions.
In what follows, we concentrate exclusively on case b).
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The impurity is modeled by a d-potential which is introduced with the aid of s.a.
extensions and is determined by boundary conditions at the base point. We restrict
ourselves to the case when the impurity is located in the center of the dot (¢ = 0). Thus
we start from the following symmetric operator:

2 1 oy 0 1 o\ & 1 1 0
(8@2+a00t a é’g+ sin ﬁga +4a2 +4aw sin »

Dom H = CZ((0,0) x S') c L? ((0 0) X Sl a smh( )dgdgp)

(IL.3)
I1.2 Selfadjoint extensions
Substituting £ = cosh(g/a) we obtain
1 2 21 2 al® W_ 15
=y <‘5%9 262 +(1-)7 4 4@—4w4]ﬁ&m i

Dom H = CE((1,00) x S*) = L? ((1,0) x S*,a’d¢ dy).

Using the rotational symmetry which amounts to a Fourier transform in the variable ¢,
H may be decomposed into a direct sum as follows

o
I|I @8
3

~ 0 m? atw? 1
o= (@-D )+ g+ S @-n-1.

Dom H,, = C&(1,0) c L*((1,0),dE).
Note that H,, is a Sturm-Liouville operator.
Proposition I1.1 H,, is e.s.a. for m # 0, Hy has deficiency indices (1,1).

Proof. The operator H,, is symmetric and semibounded, and so the deficiency indices

are equal. If we set

a*w? 1

A=—z— -
) Z 47

w=|m|, 40 = —

then the eigenvalue equation

( o€ ((5 - aag) gm21 + aifz (€ -1~ Dw = z¢) (IL5)

takes the standard form of the differential equation of spheroidal functions (C.1). Ac-
cording to Chapter 3.12, Satz 5 in [16], for © = m € Ny a fundamental system {y1, v}
of solutions to equation (II.5) exists such that

yi(€) = 1 O™ Pi(1—€), P1(0) =1
yin(€) = (1= &) 2Pa(1 — &) + A yi(€) log (1 — §),
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where, for | —1| < 2, P; and Ps are analytic functions in &, A, 6; and A,, is a polynomial
in A and 0 of total order m with respect to A and VO; Ay = —1/2.

Suppose that z € C\R. For m = 0, every solution to (IL.5) is square integrable
near £ = 1; while for m # 0, y; is the only one solution, up to a factor, which is
square integrable in a neighborhood of 1. On the other hand, by a classical analysis
due to Weyl, there exists exactly one linearly independent solution to (II.5) which is
square integrable in a neighborhood of oo, see Theorem XII1.6.14 in [26]. In the case of
m = 0 this obviously implies that the deficiency indices are (1,1). If m # 0 then, by
Theorem XII1.2.30 in [26], the operator H,, is e.s.a. ]

Define the maximal operator associated to the formal differential expression

0 9 0 atw? 5 1
L——ag<(5 —1)55)+ & -7

as follows

Dom Hpap = {f e L*((1,00),d¢) : f, f e AC((1,)),

0 of a*w?
g (@-ng) @ -nre .l

Hypoaf = Lf.
According to Theorem 8.22 in [27], Hypar = I:[g.
Proposition I1.2 Let x € (—o0,0]. The operator Hy(k) defined by the formulae
Dom FIO(/-@) = {f € Dom Hypgy : fi= /{fo}, Ho(li)f = ﬁmamf,

where

: f€ - 1
Josm —ime M iy P IO i ols(a 1)

1 a s.a. extension of Hy. There are no other s.a. extensions of Hy.

Proof. The methods to treat ¢ like potentials are now well established [28]. Here we
follow an approach described in [29], and we refer to this source also for the terminology
and notations. Near the point £ = 1, each f € Dom H,,,, has the asymptotic behavior

f&=fFEL+fi+to(l) asé&— 1+

where fo, fi € C and F(, &') is the divergent part of the Green function for the Friedrichs
extension of Hy. By formula (I1.11) which is derived below,

F(€,1) = ~1/(4ma®) log (24%(€ — 1))

7



QUANTUM DOT WITH IMPURITY IN THE LOBACHEVSKY PLANE

Proposition 1.37 in [29] states that (C,T'1,T'2), with I'1f = fp and T'sf = fi, is a
boundary triple for ]:Imax.

According to Theorem 1.12 in [29], there is a one-to-one correspondence between all
s.a. linear relations # in C and all s.a. extensions of Hy given by x «— Hy(k) where
Ho( ) is the restriction of Hmax to the domain of vectors f € Dom Hmaw satisfying

(T f,Tof) € k. (11.6)

Every s.a. relation in C is of the form x = Cv = C? for some v € R?, v # 0. If (with
some abuse of notation) v = (1,k), k € R, then relation (II.6) means that f; = xfy. If
v = (0,1) then (II.6) means that fo = 0 which may be identified with the case k = c0.
U

Remark I1.3 Let qg be the closure of the quadratic form associated to the semibounded
symmetric operator Hy. Only the s.a. extension I:I()(OO) has the property that all func-
tions from its domain have no singularity at the point & = 1 and belong to the form
domain of qo. It follows that ﬁo(oo) is the Friedrichs extension of Hy (see, for example,
Theorem X.23 in [2] or Theorems 5.34 and 5.38 in [27]).

I1.3 Spectral Analysis

I1.3.1 Green function for the unperturbed Hamiltonian

Let us consider the Friedrichs extension of the operator H in L2 ((1, ) x S, d¢ dgp)
which was introduced in (II.4). The resulting s.a. operator is in fact the Hamiltonian
for the impurity free case, let us denote it H (o). The corresponding Green function G,
is the generalized kernel of the Hamiltonian, and it should obey the equation

(H(0) = 2)G:(&, €', ) = 0(6 = €)o(p — ¢) = % D, S(E—¢hemle e,

If we suppose G, to be of the form
G-(& 016 ¢") 2 G (g, & )e e, (IL.7)
then, for all m € Z, )
(Hm(0) —2)G7"(§,€') = 0(§ = &), (IL.8)

where H,,(c0), m € Z\ {0}, is nothing but the closure of H,,. From now on, the closure
of an e.s.a. operator will be denoted by the same latter as the operator itself.
Let us consider an arbitrary fixed £, and set

w=m, 40 = —
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Then for all £ # &', the equation (I1.8) takes the standard form of the differential equation
of spheroidal functions (C.1). As one can see from (C.8), the solution which is square
integrable near infinity equals Spml®) (¢, —a*w?/16). Furthermore, the solution which is

square integrable near £ = 1 equals PS‘Vm‘(i , —a*w?/16) as one may verify with the aid

of the asymptotic formula

N (v +m+1)
272 mIT (v —m + 1)

We conclude that the mth partial Green function equals

1 a*w? a*w?
m AN psm! _ |m|(3) _
gz (57‘5 ) (52 1)%( S‘Vm‘ 7 Sl|/m|(3)) 31/ (€<7 16 ) SV (§>7 16 ) (IIQ)

P (€) (€ —1)™? as €& — 1+, for m e Ny.

where the symbol W(Ps'um |, S‘Vm‘(?’)) denotes the Wronskian, and £, £~ are respectively
the smaller and the greater of £ and &’. By the general Sturm-Liouville theory, the

factor (£2 — 1)"//(Ps‘,,m‘,5|ym|(3)) is constant. However the value of this constant can not
be given as there is no explicit expression for the Wronskian. Nevertheless we will be
able to compute the Krein Q-function without this knowledge, just by application of
Theorem II.1.

Notice that since GI* = G ™, the decomposition (I.7) may be simplified to

G.(,0:8,¢") = % G &) + % D7 GI(E € cos [mlp — )] (11.10)
m=1

I11.3.2 Krein Q-function

The Krein Q-function plays a crucial role in the spectral analysis of impurities. It is
defined at a point of the configuration space as the regularized Green function evaluated
at this point. Here we deal with the impurity located in the center of the dot ({ =1, ¢
arbitrary), and so, by definition,

Q(Z) = g;eg(]_’ 0;1, 0)

Due to the rotational symmetry,

G.(€) = G:(6,:1,0) = Gu(E, 95 1,9) = Gul(£,0:1,0) = 5 G2, 1),
and hence )
(HO(OO) - Z)gZ(g) =0, for = (1700)

Let us note that from the explicit formula (I1.9), one can deduce that the coefficients
G'(&,1) in the series in (I1.10) vanish for m € N. The solution to this equation is

o) (¢ AW
6.0 (6.~

The constant of proportionality can be determined with the aid the following theorem
which we reproduce from [29].
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Theorem II.1 Let dist(x,y) denote the geodesic distance between points x,y of a two-
dimensional manifold X of bounded geometry. Let

loc

UeP(X):= {U: U, = max {U,0} € LI (X), U_ := max{-U,0} € Zn:Lpi(X)}
1=1

for an arbitrary n € N and 2 < p; < 0. Then the Green function Gy of the Schrodinger
operator Hy = —Arp + U has the same on-diagonal singularity as that for the Laplace-
Beltrami operator itself, i.e.,

Gu(Ca,y) = +G77(¢G )

1 | 1
Zlog ——
o 8 dist(z, y)

where g}"fg 1s continuous on X x X.

Let us denote by g and QH(®)(2) the Green function and the Krein @Q-function
for H(o0), respectively. Since H (o) = a?H () and (H(o0) — 2)G, = , we have

GO 1€ ¢) = a®Goa (€. 1€ ), QTP(2) = a®Q(a’2).
One may verify that
log dist(p, 0;0) = log 0 = log(a arg cosh &) = %10g(2a2(§ - 1)) +0(¢&-1)
as o — 0+ or, equivalently, £ — 1+. Finally, for the divergent part

F(&,&) :=G.(§ ;€ 9) —GL9E 0 & ) = G2(€,0,€,0) — GI9(€,0,€,0)

of the Green function G, we obtain the expression

F(§>1):_

ym— log(2a*(¢ — 1)) . (IL.11)

From the above discussion, it follows that the Krein @-function depends on the coeffi-
cients «, § in the asymptotic expansion

50(3) (5, _aicé)?) —alog(— 1)+ f+o0(1) as€— 1+, (IL.12)
and equals ,
Q)= — D 4 o2 (IL.13)

dmala 4a?
To determine «, 3 we need relation (C.10) for the radial spheroidal function of the
third kind. For v and v + 1/2 being non-integer, formula (C.12) implies that

S0, 0) = ST ooint D K0 )R, - (6,6),
o (1L.14)

S (€,0) = ™K, (0)Qs0(€, ).

10
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Applying the symmetry relation (C.5) for expansion coefficients, we derive that

Qs(lu—l (57 6) =

Using the following asymptotic formulae (see [6])

Qe = — log

+U(1) —V(r+1)+0((§—1)log(& — 1))

together with the series expansion in (C.11) and formulae (II.14), we deduce that, as
§— 1+,

sin(vm)

SIV(E,0) ~ — e~ "D K (6)

x [33(9) (2 % - (1 )+7Tcot(1/7r)) + \Ifsy(e)] ,

_ sin(v)

S'W(€,0) ~ ™K, 1 (0)

1 -1
X [33(9)_1 (2logg 5~ \I/(l)> + \IISV(H)] ,
where the coefficients sh,(6) are introduced in (C.7),

Us, (6) := Ta,e’T(H)‘II(Z/ + 14 2r),

|
—

|
[a—
S~—

and where we have made use of the following property of the digamma function: ¥(—z) =
U(z + 1) + mcot(nz).
We conclude that

SPP(E,0) ~ alog(€ =1) + B+ 0 (€~ Dlog(€ —1)) as & — 1+, (I1.15)
where
) ;:EQ((V;)) (eWKBV_l(e) - e—i”<2”+3/2>K,9(0)) , (IL.16)

B =a(—log2—20(1) + 2Us,(0)s"(0)) + e 2™ s (0) " KO(0).

l/

Substitution for «, § into (I1.13) yields

1 atw? atw?
=—— |- —2U(1) + 2 s, | — O —
Q) 47ra2( log2 = 2¥(1) + 25 ( 16 )S”( 16 ))
ade? -1 (H.l?)
b [y KL (CE) ) log(2a?)
2a? tan(v) KO(— a4ag2) dra2

11
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where v is chosen so that

4,2
of aw 1
— =—z——. II.1
)\”( 16) S (IL.18)

For v = n being an integer, we can immediately use the known asymptotic formulae
for the spheroidal wave functions (see Section 16.12 in [6]) which give

. 0 . 0
0(3) o isy(0) ol — 1) — is,(0)log?2
isp () v K3 (0)
* oVaRaE) o, O+ gy 4 OE )

as £ — 1+. Here, hg = 1,hy = 1/1 +1/2+ ...+ 1/k. By (I1.13), one can calculate the
@-function in this case, too.

I1.3.3 Green function for the perturbed Hamiltonian
The Green function of the Hamiltonian describing a quantum dot with an impurity is
given by the Krein resolvent formula

GHO(¢, 018 o) = GHONE, 1€, ) — s —— L9 7(E,0:1,0)67)(1,0:¢7,0)

QH(©)(z)

(recall that, due to the rotational symmetry, G (¢, ¢;1,0) = G (€,0;1,0)). The param-
eter x := a’k € (—o0, 0] determines the corresponding s.a. extension H(x) of H. In
the physical interpretation, this parameter is related to the strength of the § interaction.
Recall that the value xy = oo corresponds to the Friedrichs extension of H representing
the case with no impurity.

I1.3.4 General discussion on the spectrum

The unperturbed Hamiltonian H(o0) describes a harmonic oscillator in the Lobachevsky
plane. As is well known (see, for example, [30]), for the confinement potential tends
to infinity as o — oo, the resolvent of H(o0) is compact, and the spectrum of H(w0) is
discrete and semibounded. A similar observation about the basic spectral properties is
also true for the operators H(x) for any x € R since, by the Krein resolvent formula, the
resolvents for H(x) and H(o0) differ by a rank one operator. Moreover, the multiplicities
of eigenvalues of H(x) and H (o) may differ at most by +1 (see [27, Section 8.3]).

Let us denote by H,,, m € Z, the restriction of H(c0) to the eigenspace of the angular
momentum with eigenvalue m. This means that Hy = a~2Hy(o0) . From now on, if not
otherwise stated, we will write only Hy instead of Hy(co) to unify the notation. For
quite general reasons, the spectrum of H,,, for any m, is semibounded below, discrete
and simple [27]. We denote the eigenvalues of H,, in ascending order by E, ., (a?),
ne No.

The spectrum of the total Hamiltonian H (x), x # o0, consists of two parts (in a full
analogy with the Euclidean case [8]):

12
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i. The first part is formed by those eigenvalues of H(x) which belong, at the same
time, to the spectrum of H(oo). More precisely, this part is exactly the union of
eigenvalues of H,, for m running over Z\{0}. Their multiplicities are discussed
below in Section II.3.8.

#1. The second part is formed by solutions to the equation
Q) (2) = x (IL19)

with respect to the variable z. Let us denote them in ascending order by e, (a?, ),
n € Ng. These eigenvalues are sometimes called the point levels and their multi-
plicities are at least one. In more detail, €,(a?, x) is a simple eigenvalue of H () if
it does not lie in the spectrum of H(o0), and this happens if and only if €,(a?, x)
does not coincide with any eigenvalue Eg}m(a2) for £ € Ng and m € Z, m # 0.

Remark I1.4 The lowest point level, eg(a?,x), lies below the lowest eigenvalue of H (o)
which is E070(a2), and the point levels with higher indices satisfy the inequalities

Enfl,()(GQ) < en(az,x) < En70(a2), n = 1,2,3, e

I1.3.5 Spectrum of the unperturbed Hamiltonian

Our goal is to find the eigenvalues of the mth partial Hamiltonian H,,, i.e., to find
solutions in Dom H,, to the equation

Hpntp(€) = z9(8),

or, equivalently,

Hy(€) = a2 (€). (11.20)
As already stated above, this equation coincides with the equation of the spheroidal
functions provided we set p = |m|, @ = —a*w?/16, and the characteristic exponent v is

chosen so that

a4w2 1
m( _ - a2y =
)\”( 16) “ETU

The only solution (up to a multiplicative constant) that is square integrable near infinity
is Slmi®) (&, —a*w?/16).

Proposition C.1 describes the asymptotic expansion of this function at & = 1 for
m € N. It follows that the condition on the square integrability is equivalent to the

equality
4 2 4, .2
i(3l/+1/2)7er . aw Km _a’ w — 11.21
€ —v—1 ( 16 + 14 16 0' ( * )

Furthermore, as deduced in (I1.15), S9) (¢, —a*w?/16) has logarithmic divergency at & =
1 that disappears just for those values of v for which (II.21) holds (see (II.16)). Taking

13
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into account that the Friedrichs extension has continuous eigenfunctions we conclude
that equation (I1.21) guarantees existence of the solution to (I1.20) in Dom H,,.

As far as we see it, the equation (I1.21) can be solved only by means of numerical
methods. For this purpose we made use of the computer algebra system Mathematica
6.0. For the numerical computations we set w = 1. As an illustration, Figures A.1
and A.2 depict several first eigenvalues of the Hamiltonian Hy and H1, respectively, as
functions of the curvature radius a. The dashed asymptotic lines correspond to the flat
limit (e — o).

Remark I1.5 In numerical computations, the following form of the condition (I11.21)
proved to be rather effective:

55‘7?‘(3)- (5 _aj)
. _ |m|/2+1 — /2+Zt ) 16 _
51_1)r{1+ (-1 0¢ 0

This equation was solved with respect to t € R.

Denote the nth normalized eigenfunction of the mth partial Hamiltonian H,, by
@Enm(ﬁ) Obviously, the eigenfunctions for the values of the angular momentum m and
—m are the same and are proportional to Sl|,m|(3) (¢, —a*w?/16), with v satisfying the
equation (I1.21). Let us return to the original radial variable ¢ and, moreover, regard

H,, as an operator acting on L?(R*,dp). This amounts to an obvious isometry
L*(RT,a™" sinh(g/a)dg) — L*(R¥,dg) : f(o) > a~"/*sinh'/*(o/a)f (o).

The corresponding normalized eigenfunction of H,,, with an eigenvalue a?z, equals

Ynm(0) = (Cll sinh (S) )1/2 G (cosh (g)) . (IL.22)

At the same time, relation (I1.22) gives the normalized eigenfunction of H,, (considered
on L?(R*,dp)) with the eigenvalue z. The same Hilbert space may be used also in the
limiting Euclidean case (a = o). The eigenfunctions in the flat case, ®;,,, are well
known and satisfy

2
By moco™ 126w/ | <—n, Im| + 1, “)2") . (I1.23)

The fact that we stick to the same Hilbert space in all cases facilitates the comparison
of eigenfunctions for various values of the curvature radius a. We present plots of several
first eigenfunctions of Hy (Figures A.3, A.4, and A.5) and H; (Figures A.6, A.7, and
A.8) for the values of the curvature radius a? = 1 (the solid line), 10 (the dashed line),
and oo (the dotted line). Note that, in general, the smaller is the curvature radius a the
more localized is the particle in the region near the origin.

14
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I1.3.6 Point levels

As has been stated, the point levels are solutions to the equation (I1.19) with respect to
the spectral parameter z. In general, Q(Z) = Q(z) and so the function Q(z) takes real
values on the real axis. Since we know the explicit expression for the Krein Q-function
as a function of the characteristic exponent v rather than of the spectral parameter z
itself it is of importance to know for which values of v the spectral parameter z is real.
Propositions C.2 and C.3 give the answer. For v € R and for v of the form v = —1/2 +it
where t is real, the spheroidal eigenvalue A7 (—a*w?/16) is real, and so the same is true for
z. Moreover, these values of v reproduce the whole real z axis. With this knowledge, one
can plot the Krein Q-function as a function of z for an arbitrary value of the curvature
radius a. Note that for a = o0, the Krein @)-function is well known as a function of the
spectral parameter z (see [31] or [32]) and equals (setting w = 1)

Q) = % (_\P<1;z) +log(2) + 2@(1)) .

Next, in Figure A.9, we present plots of the Krein Q-function for several distinct
values of the curvature radius a. Moreover, in Figure A.10, one can compare the behavior
of the Krein Q-function for a comparatively large value of the curvature radius (a? = 24)
and for the Euclidean case (a = o0).

Again, the equation (II.19) can be solved only numerically. Fixing the parameter x
one may be interested in the behavior of the point levels as functions of the curvature
radius a. See Figures A.11 and A.12 for the corresponding plots, with xy = 0 and 0.5,
respectively, where the dashed asymptotic lines again correspond to the flat case limit
(a = o0). Note that for the curvature radius a large enough, the lowest eigenvalue is
negative provided x is chosen smaller than Q(0) ~ 0.1195.

I1.3.7 Variational approach for large values of a

The mth partial Hamiltonian H,,, if considered on L?(R™,dp), acts like

0* m*—1 1 0 0?
Hp=—5+——5—+ fa2w2sinh2<f) = ——= + Vin(a, 0).
" 00®>  a?sinh?*(2) 4 a 00? m{a 0)
For a fixed ¢ # 0, one can easily derive that
2 1 1 2 2 4
_ m- — 1 1 2 92 il m w”o 1
Vin(a, 0) = 7 L v ey i 0 o as a — .

Recall that the mth partial Hamiltonian of the isotropic harmonic oscillator on the
Euclidean plane, H also considered on L*(R*,dp), has the form

0 -1 1,
+1wg

IN

HE - =+~ 4 2
" 00? 0?

15
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Table I1.1: Comparison of numerical and asymptotic results for the eigenvalues, a® = 24

Eoo Eio Eo Eo1  Ein Eop
numerical 1.0265 3.162 5.42 2.060 4.259 6.58
asymptotic 1.0268 3.169 5.46 2.058 4.258 6.5
error (%) -0.03 -0.22 -0.74 0.10 0.02 -0.15

This suggests that it may be useful to view the Hamiltonian H,,, for large values of the
curvature radius a, as a perturbation of Hn%,

1

1
12a2(1 —4m? + w?o") = HE +

H,, ~ HE + nt o3

Un(0).
The eigenvalues of the compared Hamiltonians have the same asymptotic expansions up
to the order 1/a? as a — .
Let us denote by Ef’m, n € Ny, the nth eigenvalue of the Hamiltonian HZ. Tt is well
known that
Efm =2n+|m|+ 1w

and that the multiplicity of EF,  in the spectrum of H¥ equals 2n + |m| + 1. The
asymptotic behavior of E,, ,,(a?) may be deduced from the standard perturbation theory
and is given by the formula

1 (@ U,®
En,m(a2)~EE + < n,m, Ym n,m>

11.24
n,m 120,2 <¢)n,ma (I)n,m> as a — OO, ( )

where ®,, ,,, is given by (I1.23). The scalar products occurring in formula (I1.24) can be
readily evaluated in L?(R*,dp) with the help of Proposition B.1. The resulting formula
takes the form

3\ 1
Enm(a®) ~ (2n + |m| +1)w + <2n(n + |m| 4+ 1) + |m| + 4> ol (11.25)

as a — o0. This asymptotic approximation of eigenvalues has been tested numerically
for large values of the curvature radius a. The asymptotic eigenvalues for a? = 24 are
compared with the precise numerical results in Table II.1. It is of interest to note that
the asymptotic coefficient in front of the a2 term does not depend on the frequency w.

I1.3.8 Discussion on the degeneracy

Since H ,,, = Hp, the eigenvalues E,, ;,(a?) of the total Hamiltonian H(00) are at least
twice degenerated if m # 0. From the asymptotic expansion (11.25) it follows, after some
straightforward algebra, that no additional degeneracy occurs and thus these eigenvalues
are exactly twice degenerated at least for sufficiently large values of a. Similarly, the
eigenvalues E, o(a?) are non-degenerated in the spectrum of H(0).
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Applying the methods developed in [8] one may complete the analysis of the spectrum
of the total Hamiltonian H(x) for x # oo. Namely, the spectrum of H(x) contains
eigenvalues E,, ,(a?), m > 0, with multiplicity 2 if QH(OO)(En,m(aQ)) # x, and with
multiplicity 3 if Q7(®)(E,, ,,(a?)) = x. Let us remark that the absence of the eigenvalues
En0(a?) in the spectrum of H(Y) is a consequence of the fact that these eigenvalues are
simultaneously poles of the Krein @-function. The rest of the spectrum of H(x) is
formed by those solutions to the equation (II.19) which do not belong to the spectrum
of H(oo). The multiplicity of all these eigenvalues in the spectrum of H(x) equals 1.

17



III. Coulomb Plus One-Center

Point Interaction in Two
Dimensions

II1.1 Selfadjoint extensions

Let C > 0. Consider the following symmetric operator acting on L?(R?, dzdy)

1 C
He—tA,, ——o
2700 x4 ?

Dom H = C&(R*\ {0}).

It is convenient to introduce the polar coordinates by (z,y) = p(cos,siny) and
decompose the operator H as follows:

o)
H = @ Hm@ldspan{Ym}

m=—0a0

1 02 1 ¢ m?2 C
Hpn=—go5 -5+ 55— —

200° 2000 20 0
Dom H,, = CZ(R"),

where H,, acts on L?(R¥, odp) and Y,, () := €™ is the angular momentum eigenfunc-
tion.

Using the isometry V : L?(R*,pdo) — L*(R*,do), f(0) — +/of(0), one may
eliminate the first derivative in the action of H,,:

_774_ _
2 00* 802 0

b VH-V-l - 102 4m?>-1 C

Dom h,, = CZ(R").

Note that h,, is a Sturm-Liouville operator.

18
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Let us define the maximal operator h,, mq, associated to the formal differential ex-
pression L,,

102 4m?2-1 c

T
Dom Ay mae = {f € L*(RT,do) : f,f € AC(RT), L, f € L*(R",do)}

According to Theorem 8.22 in [27], Ay maz = hi,.
Suppose z € C\R and consider the equation

(b, —2)y =0 (IIL.1)

with m € Np. The equation (III.1) is nothing but the equation for the Whittaker
functions. Therefore, we get

y(o) = C1M( \/% m 22@@) +CQW< 21@@)

iC
\ﬁ
where we consider Jy/z < 0. Well known asymptotic expansions (see e.g. the source
[5]) implie that W(,,) is square integrable near infinity but is not square integrable near
zero (except the case m = 0) and M(,, ) is square integrable near zero but is not square
integrable near infinity.

From the discussion above, it follows that for m # 0, the deficiency spaces contain
only the zero vector, whereas dim Ker (h(T) + z) = 1. Hence, for m being non-zero h,, is
e.s.a. and hg has deficiency indeces (1,1). Every s.a. extension of hy can be described
by a boundary condition for the domain of definition. To do so, the methods and the
language summarized in the extensive source [33] may be involved in the same manner
as in Chapter II.

Proposition III.1 Let k € (—o0,00]. Then the operator ho(k) defined by the formulae
Dom ho(k) = {f € homaz : f1 = kfo if kER, and fo =0 if K = 0}
hO(H)f = h(],maxf;

o /(o) — m (T fo,
Jo:= 7T91—1>%1+\@10gg’ fi -—Ql_)0+(\/§+ gQ)

is a s.a. extension of hg. There are no other s.a. extensions of hg.

where

All s.a.extensions of H can be constructed involving the set {ho(r), k€ (—o0, 0]}.
We again distinguish them by the index x. The Hamiltonian H (k) of the two-dimensional
hydrogen atom with the point interaction in the origin is then given by the restriction
of H' (easily reconstructed from the known h:[n) to the set of vectors such that

f1=Kf00Tf0=0(fOTK=OO)

is true for the coefficients in the asymptotic expansion

1
flo, @) = —;fologQJrfl +o(l) aspo—0+.
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Remark IIL.2 There is another way how to describe the domain of H(k). For the
domain of the Hamiltonian with no point interaction it holds

a0
Dom H (o) = {f e L*(R?), f e AC'(R?), ( P Lm> fe L2(R2)} :
m=—o0
For each f € Dom H(k), fo € C and F € Dom H(w0) ezist such that f may be decomposed
as f = foG, + F in the unique matter. Here, G,(z,y) := G,(x,y; 0), where G, stands for
the Green function of H(oo) that is derived bellow. With this decomposition, it holds:
£(0)

Jo= ma (H(k) = 2)f = (H(0) — 2)F,

where () denotes the Krein Q-function that is also to be given.

IT1.1.1 Friedrichs extension

Let us consider the quadratic form ¢ associated with H:

Dom ¢ = Dom H, Q('QD) = <1r[)7 H¢>

The closure to this form ¢ associates the Hamiltonian H(o0). Therefore, H(o0) is the
Friedrichs extension of H. To prove it, let us construct q.

Corollary B.6 states that o~! is —A infinitesimally form bounded. Consequently, ¢
is bounded bellow. Moreover, for the norm induced by ¢ we have:

1
SIVEI” + (M + Dy = [9]T = () + (M + D]y

14 1y4
> (1 - W) IVl + (M . W) W12,

2 8m2q 82

where —M, M > 0, is a lower bound of ¢ and a > 0. It is easy to find a pair of a and
M such that the both expressions in the brackets on the RHS are positive. Therefore,
the norm ||.|14 and the norm on H!(R?) are equivalent. Consequently, g is defined on
H'(R?) because Dom ¢ is a dense subspace of H!(R?).

The Friedrichs extension of H is the only s.a. extension of H such that its domain
is a subset of Dom ¢ (see Theorem X.23 in [2]). By Remarks II1.2 and IIL.3, we see that
Dom H (k) < Dom ¢ implies xk = c0.

II1.2 Spectral analysis

I11.2.1 Green function for the unperturbed Hamiltonian

We will find the resolvent kernels for the partial Hamiltonians A, = hjn, m # 0, and
ho(o0), next we will easily use them to construct the resolvent kernel of the Hamiltonian
H(c0). Let us assume

(hm —2)y =0, (ho(0) — 2)y = 0.
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Again we face the equation for the Whittaker functions. The square integrability of
these functions has been discussed above. One may use asymptotic expansions for the
Whittaker functions to compute their Wronskian because, as a constant, it may be
evaluated in an arbitrary point, e.g., r — 0+. After some manipulations, we obtain the
following result (verified also in Mathematica 7.0.0):

. . . e |
1/ (W <—Zc’,m,2i\/2,zg) , M (—Zc’,m, 2i\/2zg>) = 20 22(2m)'. .
V2z V22 F(%+m+’%)

Finally, by the general Green function theory of the Sturm Liouville operators, for
the Green function G, of the total Hamiltonian H (o0), we get

1 iC
o2 Th+m+) e
G:(0, 950 ¢") =5 > = |ﬁ, (— ,|m|,22\/2z9<)
Tm=o * 22(2|m|) 00 \/% (1112)

x W (—&% jm, 2z‘x/£g>) M=),

where o, o~ denotes smaller, respectively greater out of o, ¢'.

Remark II1.3 Note that by the definition of the m-th Sobolev space, it may be directly
verified that G.(.; 0) € H1=¢(R?) for every e > 0 but G.(.; 0) ¢ H'(R?).

Remark II1.4 In [18], it is shown that n-dimensional Coulomb Green’s function can
be obtained by differentiation of the corresponding functions in the one-dimensional (n
odd) or two-dimensional (n even) case. An analytic expression for the two-dimensional
case is given but it slightly differs from our result. A factor 1/(2|m|)! in the sum (I1I11.2)
is missing. This misprint is reproduced in the later paper [17] too.

I11.2.2 Eigenvalues of the unperturbed Hamiltonian

The eigenvalues of H(o0) correspond to the singularities of the respective Green function,
i.e., those values of z € R™ which 1/2 + |m| +iC/v/2z = —n, n € Ny, for. This equation
implies

02
=— = Amon- I11.3
T om0 (IL.3)
If we introduce a principal quantum number as N := |m| +n + 1, N € N, then we

can denote the eigenvalues by a single index A, , = Any. The multiplicity of Ay in the
spectrum of H(o0) is 2N — 1.
The appropriate unnormalized eigenfunctions are

- 2C
_ 12 e
Ymn(0) =0 w <|m| +n+1/2,|m|, il +n+1/2)

o |m|+1/2
— Qfl/2e*|m|+ch/z L (_)nn!L@\m\) L 7
Im| +n+1/2 " |m|+n+1/2

(111.4)
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where L,(f'm') stands for the associated Laguerre polynomial. With the aid of Proposition
B.1, the normalization factor may be deduced to be:
|hm.n))? = 20C~2(n + |m| + 1/2)*n!(n + 2|m|)!. (IT1.5)

The factor 27 comes from integration in the angular variable.

I11.2.3 Krein Q-function

The Krein Q-function may be computed as the regularized Green function in the point
(0; 0) (see [33]), ie., Q(z) = G:(0; 0). We will find the asymptotic expansion of
G-(0,%; 0,¢) as 0 — 0+.

Since
1

M (V; i, wg@) o
as 0 — 0+, the only term of (II1.2) that should be considered is that with the angular
momentum m = 0. This can be deduced from the rotational symmetry of the model
too.
Using the following asymptotic expansions (see [5])

M(a,0,z) = vz + O(z%?) asz — 0
—2y —logx — ¥(1/2 — a)

W(a,0,z) = T(1/2 —a)

VI + 0(*?) as x — 0,

one obtains:
1 ) 1 iC
G.(0,0; 0,0) = —— [ log o + log(2iv2z) + 2y + U | = + — | | +O(plog o) as o — 0+.
T 2 2z
Obviously, the divergent part is —7~!log 0. The general theory treated in [29] gives
the same result, although our potential is not in the class of potentials considered in the
source. Subtracting the divergent part, we conclude that

Q(z) = —% <1og(2z'\/%) +27+ 0 (; + \;%)) .

I11.2.4 Green function for the perturbed Hamiltonian

With the knowledge of the Green function for H(oo0) and the respective Krein Q-function,
one may compute the Green function for an arbitrary s.a. extension of H. Denote the
Green function of H(k) by the symbol G. Then the Krein resolvent formula yields

1
g? y @5 ,7 ! :gz y 5 ,7 ,_7gz 707070gz 0707 /70
(0,5 0, ¢') =G=(0, ;0 ") QG = (o )G2(0,0; ¢, 0)
N2
L T3+ iml+ )

. VA
=G.(0,; 0',¢") + Qz) — x 87‘(’22(2|m|)!2 00

x W (—\Z/%, |m|,2ix/ﬂg> W (—\Z/%, |m|,2i\/Zgl>
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for all z € Res H(o0) n Res H (k).

I11.2.5 Eigenvalues of the perturbed Hamiltonian

Note that the set o of all non-positive poles of the function Q(z) equals
o ={-C?/(2N —1)*, N € N} = 0,,(H(0)).

The following discussion on the eigenvalues and their multiplicities is similar to that of
Chapter II. The point part of the spectrum of H (k) contains the eigenvalues Ay with
N > 1. The multiplicity of these eigenvalues in the spectrum of H (k) is 2(N — 1).
Additional eigenvalues are solutions to the equation

Q(z) =k (IIL.6)

with respect to the spectral parameter z. The multiplicity of these eigenvalues (the so-
called point levels) in the spectrum of H (k) is one. Let us denote them in the ascending
order by €1(k), €2(k), €3(k),... Figures A.13, A.14, A.15, and A.16 depict several first
point levels as functions of k with C = 1. For C' # 1, the following scaling property may

be used:
z

() =Q' (&) ~ 1osC:

Here the upper index is added to stress the C-dependence. The relation

C
k=QY (Gzc(ﬁ)) = Q' (ei (ﬁ)) — llogC =Q! (611 (/{—F llogC)) — llogC
v v v

02
implies

¥ (k) = C%e} (/@ + 1 log C) .
m
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IV. Hydrogen Atom in a Thin
Slab

IV.1 Exact Hamiltonian

Let us consider a plane parallel slab €, of the width a: Q, = R? x (—a/2, a/2) c R3.
It is well known that the hydrogen atom or a hydrogen-like ion (e.g., He™, Li%T, .. )
is described by the Hamiltonian that in the center of mass coordinate system acts as
follows

¢

g _ta_
2 r

where r := /22 + y2 + 22, the reduced mass and the electron charge are set to one, and
C > 0 stands for the nuclear charge. One of the possibilities how to (mathematically!)
constrain the atom in the slab is to choose a proper Hilbert space and the domain of H.
It seems natural to set

. 1.oCc 1. rC
" __2A_r__2AD+( )
Dom H® = Dom (—Ap) = Hp(%) nHA () < L2 (), QH®) = HE(QW),

where H™(£),) stands for the mth Sobolev space, Hj"(£),) denotes the closure of CZ (£2,)
with respect to the norm of H™(),), and Ap is the Dirichlet Laplacian. The selfad-
jointness of the operator H® is discussed and proved in Appendix B.2.

Due to the form of 2, and the Dirichlet boundary condition, the Hamiltonian
—1/2 Ap may be decomposed with respect to the (z-axis) transversal modes as follows

1 e 1
~380 =@ <_2A$,y + E,%) ® (-5 X)X
n=1
with
E?L _ n2772
2a2

sin ’%Z if n is even.

2 {cos % if n is odd
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The projection on the lowest transversal mode is used to introduce the so-called effective
Hamiltonian.

Remark IV.1 Scaling the coordinates as x — Cx and the energy as E — C%E, one
can see that HZ is isomorphic to ch“, where the lower index is added to H® to stress
the charge dependence. More precisely, let us introduce an unitary isomorphisms We
L*(Qcq) — L2():

Weh(x) := CP2(Cx).

Then Wc(?xin = 20s, and WoV(x)W/) = V(Cx) for the multiplication by a scalar
function V. Hence it follows

HE = C*WoHC W,

Therefore, from now on we will consider C' = 1.

IV.2 Effective Hamiltonian

Let us denote
Pl =P, :=1d®{.,Xn)Xn, P*=P:=P}.

Then we define the effective Hamiltonian H; as a reduction of H* on the lowest transver-
sal mode:
Hl = Heg := P*H*P“.

€

By this definition, Dom H% = Ran P* n Dom H®. Using decomposition of L?({),

LZ(QG) é LQ(RQ) ® {Xn}span )
n=1

it may be concluded that Ran P* = {f(z,y) x1(2)| f € L*(R?)}. If we want functions
from Ran P? to be in Dom H?, i.e., in the subset of H?(£),), then it must hold f e
H?(R?). For such f, the inclusion fx1 € Hj(Qq) is fulfilled since x1 € CF° ((—%,%))-
All in all, we have deduce that

Dom HY; = {f(x,y) x1(z), where f € H2(R2)}.

For the action of HZ;, one easily derives:

a 1 a a
eff = <_2AI7?J +E1 - ef'f(m7y)> ®Id (IVl)

with . ) ( )
2 (2 cos® (X2)dz
Vi) =2 |, Tar ot
—L T T+ Y +z
Note that in fact V% depends on the radial variable ¢ := 4/2? + 32 only, i.e., Vi(z,y) =
a
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The effective Hamiltonian (IV.1) may be viewed as an operator acting on L?(R?).
Indeed, if we introduce an unitary isomorphisms U2 : L%(Qy) — L?(£,):

Ugw(wv Y, Z) = a’_l/Qw ((E? Y, E)
a
then it may be immediately proven that
Py =UP, U

and consequently
1
4 = PYHPY = WPWWWﬁWfﬂUC¥WWW—&@wkMFWV

Therefore H% is unitarilly equivalent to the operator acting on L?() with the exactly
same action. So one may view HY% as an operator acting on Ran P! which no longer
depends on the parameter a and which we will identify with L?(R?). The same arguments
may be applied in the case of V§; considered as a multiplication operator.

IV.2.1 Properties of the effective potential
Proposition IV.2 (scaling property) One immediately sees that
V(o) = vk (2). (1v.2)

Proposition IV.3 V4 € (L®(R?)). + L?(R?).
Proof. The expression for V& may be easily split into two integrals:

_2[2 dz 2 2 sin? (%)dz

el als P2
The first integral may be directly evaluated:

4 20

2J2 dz
- ——=——log————F———— =:U%0),
aJ_a £/ + 22 a a4+ +/a%+40?

whereas the second integral is bounded in g:

2 (2 sin? ”Z sm dz C
sup — ( = sup (r2)dz _ J =, V3 (IV.3)
0>0 a \ 0? +z2 000 J_1 /9 452 1 a

where C(ry3) ~ 1.6483. Using the following asymptotic expansions

4
U%o) = —alogg + 0(92) as 0 — 0+,
2

U%w=5+0@ﬂ as 0 — o,
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one can conclude that V4% € L®(R?) + L*(R?) with

(0~ L)V € L*(R?)

q(0) =
1 (L — o)V € L*(R?),

0
q1(o) =0

where L > 0. Moreover, lim,_,« go(0) = 0, and so ||go||« is arbitrarily small for L large
enough. L]

Proposition IV.4 (lower bound and essential spectrum) The effective Hamilto-
nian HS is lower bounded with a bound Ef —2 and oess(HS;) = (ET, ).

Proof. Let he stands for the two-dimensional Coulomb Hamiltonian (also denoted H (o)
in Chapter III). In the form sense, it holds

-2+ E{ <hc + Ef < He

because o~ > V. The first assertion is then a consequence of the min-max principle
(see [4]).

Due to Proposition IV.3, we may apply Theorem XIII.15 in [4] (a form of the Weyl’s
theorem) which gives the second assertion of the proposition. O

Proposition IV.5 (Fourier transform)

4 (u2 +27m2(1 — e_“/Q))
u?(u? + 4n?)

Vie(u) = (1V.4)

Consequently, by (IV.2), Ve‘ﬁ(u) = af/e%(au). Furthermore, one can easily find asymp-
totic expansions

~ 1 1 1 1 1
Loyt 4 R 2
‘/eﬁ(u)—u—i-( 4+7r2>+(24 47T2>u+0(u) as u — 0+ (IV.5)
~ 4
Vik(u) = 2t Ow™) asu— . (IV.6)

Proof. By a direct computation, one has

Y 1 —iup cos
Vil = 5= | e e Vhoudede = | huo)Vir(o)ode

1 1 —uja
=4 JQ cos? (mz) ( Jo(uo) gdg) dz =14 J2 cos? (7TZ)e dz
0 u

0 R+ A/ 0% + 22
4 (u® +2m2(1 — e*"/Q))
B u?(u? + 4m?) ’

where Jy stands for the Bessel function of the first kind. [l
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A~

Corollary IV.6 The function: u > u=t —Vk(u) is positive and decreasing on R with

lim <u71 - V&(u)) _1 i, lim (ufl — V}cf(u)) =0,

w0+ 4 72 uso ¢

which tmplies
_ NN 1 1
HU 1_ V;ff‘|@ =a (4 — 2> . (IV?)

™

IV.2.2 Selfadjointness

It is well known that the two-dimensional free particle Hamiltonian —A/2 is defined on
Dom (—A/2) = H?(R?) with the form domain being Q(—A/2) = H!(R?). We will prove
that Vi << —A/2.

Let us assume that f € H2(R?), ie., (1 + |k[?)f(k) € L*(R?). Following a similar
line of reasoning as in the three-dimensional case (see [2]), we conclude that f is an
integrable function and consequently that f is bounded and continuous. Concerning the
continuity of f precisely, we have obtained a stronger property, namely:

1f(x) = fO)] < Cylx =37 (@772 = AFP + o7 f7),

where a > 0, v € (0,1), and C,, stands for a constant that depends on the choice of ~.

Now, let Q¢ and ()1 be operators of multiplication by a function gy and ¢, respec-
tively, with the maximal domain of definition. Consider gy € L®(R?) and ¢; € L?(R?),
and define Q = Qo + Q1. For f € H?(R?), we may estimate:

1Q01 < aolol 1
1 1
111 < lanlifle < 5=l (51 A1+l

The last estimate is a by-product of proving that f is integrable. All in all, we have

s < ol = (/211 + (5=l + ol ) 11

Since o may be arbitrarily small, we conclude that @ << —A/2. The Kato Rellich
theorem now implies that —A/2 + @ is s.a. on H%(R?) and e.s.a. on every core of —A/2,
e.g., CZ(R?). Hence it follows that H% is s.a. on Dom H% = H?*(R?) by Proposition
IV.3.

IV.2.3 Convergency to the Coulomb Hamiltonian

A proof that the Hamiltonian Hf; — Ef = —A/2 -V converges to the two-dimensional
Coulomb Hamiltonian h¢ (denoted by H(o0) within Chapter III) in the norm resolvent
sense as a — 0+ will be given. It consists of several lemmas. Lemmas IV.7 and IV.8
deal only with properties of ho. Lemma IV.9 provides the rate of convergency of the
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effective potential to the Coulomb one. In Lemma IV.10, a wide class of potentials that
converge to the Coulomb potential is considered. Lemma IV.12 provides a lower bound
for the rate of this convergency. The main statement of this section is given in Theorem
IvV.1.

Lemma IV.7 Let hg := —A/2 be the two-dimensional free particle Hamiltonian. Then
(he + 3)"2(ho + 3)* is bounded with the upper bound C(1v.) that is defined bellow.

Proof. Throughout the proof, let us denote L := (hc + 3)™7*(hg + 3)¥2. Then L' is
closed and everywhere defined, and consequently bounded by the closed graph theorem.
Since L ¢ L = LT, L is bounded too by the boundness of L.

To find an upper bound, we start with the following decomposition:

LL" = (he +3) (ho - i) + i) + 3) (ho +3) 7
+ (he +3) " (ho +@ﬂaz+3)% m/+$]ﬂm-+$ﬂm +3)7

By the Kato inequality (B.4) and the functional calculus, one obtains

<<ho+3> o7 (ho + 3) 4, ) = (o7 (ho +3) M, (ho +3) )

\/ir(z)4 (IV.8)
472

l
(4) Ihd* (ho +3) " 1y? < 2.

Therefore, we may continue estimating LLT as follows

1\4
V2I(3)

472 T

In the last inequality, we made use of the fact that hc = —2 (see (IIL.3)).
The estimate above implies

ver(y)*
oL

LI <1+ 5

Lhc+3)Y? <1+

var(y)!
472
Hence, we can proceed to the so-called quadratic estimate that yields

vy ey

L| <<
IZ] 2 472 8t

|LLY) = |Z)* < 1+ |-

Lemma IV.8 Let £ € Resho nR. Then

l(he — &) (he +3)] < mx{d;’@ 1},

where do(§) = dist {¢, o(hc)}.
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Proof. One can follow the same line of reasoning as in [34]. Let us recall that o(h¢)
consists of the continuous part formed by the positive half-axis and of the pure point
part formed by countable many values in the interval (—2, 0). Hence, for £ € R, three
cases may occur:

i. £€ (€7, &), £ € opp(he). Then by the functional calculus,
|z + 3|

zeo(hc) |‘f1j - €| .

[(he — &) (he +3)] =

It may be directly verified that for z < £, the function x — Ezigi is increasing,

whereas for x > £* is decreasing. So its supremum is taken in £t or €, which
implies

3
do (&)

1. —3 < & < —2. Then the estimate above may be used too.

[(he — &)~ (he +3)] <

114. £ < —3. Then the supremum is taken in x = oo and its value equals 1.

Lemma IV.9 For all a > 0, it holds

1 1)’
I(ho+3)~"* (o' = V) (ho +3)7 2 <4 ( — ) a®log? a—4a*loga+2a?. (IV.10)

4 72

Proof. Throughout the proof, let T, := (071 - ecléf) ” (ho + 3)~ 2. Furthermore, let
us remind that the (generalized) Fourier transform of o~! is p~!. Then the operator
TjTa considered in 'the momentum representation’ acts like an integral operator with

the kernel . ) . )
3 (g ~ Verlp - a)) ———
§p2 +3\P—4 5(12 +3
(the factor (2)~! arises from the convolution). By the unitarity of the Fourier transform,

the operator norm remains the same and may be bounded above by the Hilbert-Schmidt
norm which is denoted ||.||; within this text. The change of variables gives

1 1 1 S|
TTT2=J - [ _yu ——_dpdaq,
H a aHl 2 R? R (p+q)2+6 <|p| eff(|p|) q2+6 paq

where the integration in q may be done:

f 1 1 _J 1 L e
g2 (P+q)?+6q2+6 4= R+Xslp2+q2+2pqcos9+6q2+6q 1
1

_ 4 6)2 —ap?) P
WJRJr(( b ) P ) t+6

- pp;T+24 tog |1+ 2 (12/p2 + 20+ p (244 p(p + V7 +20)) ) | = 7P ().
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For the asymptotic behavior of the function F', we get

1 p? 4
F(p) = g—m‘FO(l) ) as p — 0+ (IVll)

41 1 1
_ o;gp_ 0g236+0(0g4p> as p — o0,
p p

F(p)

Moreover, it is not difficult to verify that F' is positive decreasing on R and that for
p = o
4logp

0< Fp) < .
(p) e

(IV.12)

Splitting the integral for |7} T,|? into three parts:
[(RY) = |TITa|[} = 1((0,5)) + I((5, R)) + I((R,0)),
where
1 . 2
F(p) (p - e‘iéf(p)) pdp,

each part may be estimated separately. For the first integral, we make use of (IV.7) and
(IV.11) together with the monotonicity of F' to estimate

1(0,5)) < g (i A )2a2.

2

I(A) = 2f

A

The second integral may be estimated in the similar manner, but we can bound F' as in
(IV.12):

R 2 2
4logp o (1 1 1 1 9 9 r 2

Since, by the results of Corollary IV.6,

1 - 1
0 g - i p g 77
D eff( ) p
we get
“4logp 1 2+4logR
I((R,0)) < 2J —pdp = ———
(Roop<2| =30 =
for an upper bound of the third integral. To optimize the total bound, we set R = a~!
which leads to (IV.10). ]

Lemma IV.10 Let W € L}(R* x St dody) such that

1
sup f W (v + o, ¢)|log? |v|dv =: Ky < . (IV.13)
0eR+, peS! Jmax{—1,—p}
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Let us set V(o,) := 0~ (1 = W(o,¢)) and V*(o,¢) :=a"'V(a""0,¢) for 0 RT, pe
St. Then for any a < %, it holds

VA " _ 12 2
|(ho +3)"72 (0 — V) (ho + 3) 2|2 <ﬁa2 log? a (JR W (0, v)| d@dso>

16
+ KWCL2J W (0, ¢)| dodep.
™ R+ xSt

(IV.14)

+x 51

Proof. Throughout the proof, let T, := |Q_1 - Va|1/2 (ho + %)_1/2. Then
I(ho + 57 (7 = V) (ho + 1)) = T} sgn W] < ITIIT] = 727

since sgn W is an isometry and [T,y | = | Tu|? = |T4|2. Therefore, we will consider W
to be non-negative and make use of |T, T4 |2 to majorize the LHS of (IV.14).
For the Green function G, of hg, it may be deduced that

o X
G.(x1, X2) = %Hg”(u/—qul ~ Xal) = —Ko(v=2z[x1 - xa|),

with z < 0,34/z > 0 (see e.g. for [32] the derivation) from which it follows that the
integral kernel of TaTJ is

Ly 4 _ 0
K1, x2) i= W\/gl W (% 01 ) Ko(lxa — mw@ W (2, p).

where x; = p;(cosyj, sing;). Let us find an upper estimate for the Hilbert-Schmidt
norm of T,T, ¥, Since the modified Bessel function K is positive and strictly decreasing
on R*, we get

1
IT.TI 3 < ﬁI(RJr x ST x R* x S1)

with
— o onew (@2
I(M) := JMW ( - 7901) Ko(lo1 — o2|)*W ( ; ,<p2) do1dprdeades.

K has the following asymptotic expansion
Ko(o) = —logpo +1og2 — v+ O(p’logo) aso—0+.

Consequently, for any C' > 1, there is R such that Ky(a) < —C'loga for all a < R.
To arrive to an explicit estimate, set C' = 2. Then we may consider R = 1/2. If
|o1 — 02| > a < 1/2 then

Ko(lor — 02|) < Kop(a) < —2loga

and

2
I({|o1 — 02| > a}) < 4a*log®a UR W (o, ¢) d@dw) :

+xS1

32



HYDROGEN ATOM IN A THIN SLAB

If |o1 — 02] < a < 1/2 then

Ko(alor — 02))% < (—2log (a]o1 — 02]))? < 8log? a + 8log? |01 — oo

from which it follows

2
I({lor — 02| < a}) < 8a*log*a (JR W (o, ) dgdw)

+ xS

+ 8a? J W (o1, ¢1)log? |01 — 02|W (02, ¢2) dordprdoadis
lo1—02]<1

2
< 8a%log?a (J W (o, v) de@) + 167 Ky a? J W (o, ) dode.
R+ x §1 R

+x 51

Altogether, we conclude that

2
16
W (o, ¢) d@d<p) + ?Kwa2 JR W (o, p) dode.

+xG1

12
TTTQ<7 21 2 J
H a aHl ﬂ_ga og a R

+x St

By the functional calculus

1
I(ho +3)™2(ho + 5] = supy [ *2 = 1
2 z=0 \ T+ 3

which completes the proof. O

Remark IV.11 For example, the condition (IV.13) is fulfilled for a function W such
that
Je>0,0>0, L>0: ¥YxeR? J W (0, 0)|* "¢ dody < L
Bs(x)

which implies that if W € L'*¢(R* x S, dody) or W is bounded then (IV.13) holds.

In particular, Weg(0) 1= 1 — gVe}:f(g) is bounded, more precisely 0 < Weg(o) < 1.
A numerical calculation yields approximately 1.061 for the constant in front of the
a®log? a term in the estimate (I1V.14). Actually, this constant may be pushed down to
its quarter (setting C — 1+ and R — 0+ in the proof of Lemma IV.10). In the case
of non-generic estimate (IV.10), the constant in front of the same term has a smaller
numerical value, namely approximately 0.088.

Lemma IV.12 Let W € LY(R*,dp), W (o) = 0; and V(0), V*(0), and T, be defined in

the same manner as in Lemma IV.10. Then

R
- _ 1
(o +3)7 (071 = V) (ho +3) 7" > 2 U W(e)d@) 8 R
0

whenever a <1 and 1 < R < a™ L.
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Proof. If f € L2(R2,dx), f # 0, then |T,T4| = (f, TTi /| f|%. We choose
1 oNl/2
f(x)=— W(E) with o := |x].

Then w
/]2 = 2ma L W (0)de

and

1 1 1
GLID =2 [ | Kol =)o W (2) 2w (2) dxidx,
T JR2 JR2 01 a’/ 02 a
1
== J J Ko ((Q% + 05 — 20102 cos (1 — 2))" 2)
T JR+xS1 JR+ xS!
< W (2)w (2) dordeidesdes.
Let us notice that by the formula 11.4.44 in [5]

dt.

e}
t
Ko ((9% + 05 — 20102 cos ‘9)1/2) - J Jo ((9% + 05 — 20102 cos <P)1/2t) 2 +1
0

Integrating Graf’s formula (see [5]) for the Bessel functions we obtain

1 27
2J Jo ((Q% + 03 — 20102 cos 90)1/2t> dy = Jo(o1t)Jo(02t).
™ Jo

Since

Q0
t
f To(@rt) Jo(o2t) 7t = To(02) Kolo-),
0 +1

where g, o~ denotes smaller, respectively greater out of g1, g2; we conclude that

1 21

o |, Ko ((9? + 03 — 20102 COS w)1/2> dp = Ip(0<)Ko(0=).

Also recall that Io(p) = 1 and Ko(o0) = log(2/0) — v = log (1/0).
Now choose a <1 and R, 1 < R < a~!. We get

G =in [ [ BeaKaew (2) W (2) dodes

R
> 87Ta2f (
0

R 2 R
> 4ma?|log al (J W(Q)dQ) — 4ma®log R (J W(Q)dQ)
0 0

R 1
f logW(Ql)dm) W (02)do2
02 ap1
2

and consequently

R R
imrl) =2 ([ wioe) altozal 2108 & [ Wiehde) o
0 0
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Corollary IV.13 There exist constants 0 < C1 < Cy such that for all sufficiently small
a, 1>a>0,
Cialloga| < |T,TJ| < Caallogal.

Theorem IV.1 Let £ € Reshe nR and let U(a) stands for the square root of the RHS
of (IV.10). If a < ag, where ag is small enough that it holds

3 1
max {dc(ﬁ)’ 1} C(QIV_Q)U(CLQ) =5 (IV.15)

then £ € Res (HYy — EY) and

I(H — Ef =7 = (ho — &7 <

2 3
o (©) max {dc(f)’ 1} C(le.g)U(a).

Proof. With the convention that AY? := sgn A|A|1/2, if A is a s.a. operator; denote

1

K(E) i= he — € (Q e%f) (he — ). (1V.16)

Then
IK ()] =llhc = &7 (he + 3)?(he + 3) 77 (ho + 3)(ho +3) ™
x (071 = Vi) (ho +3) 2 (ho +3) P (he +3) (e +3)P(he =€)
<[lhc =& P (he +3)? |[(he + 3) " (ho + 3)|?
< (ho +3)7 (07! = V) (ho +3)7%|

By Lemmas IV.7, IV.8, and IV.9, we have

|K(€)] < max {d;’@ 1} i (a).

Since U(a) ~ const.aloga as a — 0+, for any £ € Reshc n R, lim,_,0+ | K(§)]| = 0.
Consequently, for such £, we can find ag such that |K(§)| < 1/2 for all a < ag. Given §
and a < ag, one can make the following estimate in the symmetrized resolvent formula
(see also the proof of Theorem IV.3)

LK@ 2
@1~ [K©] S de®)

2 3
< 7(10(5) max {dc(@’ 1} C(QIVQ)U(CL).

|(Hgs = EY =)' = (he =€) 7' <

[ E(©
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IV.3 Relation between the effective and the exact Hamil-
tonian

The approximation of the exact Hamiltonian H® by the effective one is discussed in
several steps. The main theorem of this section, Theorem IV.4, is just a fusion of
Theorems IV.2 and IV.3. It states that H® tends to HJ; in the norm resolvent sense
linearly in a, as a — 0+.

Let —Ap/2, H®, Eg, P, and HY be defined as in the Sections IV.1 and IV.2.
Furthermore, let us introduce the following notation:

Q:=Id—P

1
HY = H, := QH"Q, V := —=
"

R{ () =Ri(§) =R :=(H; -
§) =W (&) = PVQR () QVP
€) = Rlg:= (Hgg = 7€) -9~
re(§) = res = (Hig — €)'

T, := Q(—Ap/2)Q, Ro(§) = Ro:= (T — &) "

The operator #® will be viewed as acting on L*(R?).
With the decomposition

o (PH“P PH“Q) _ ( HY PHaQ)

QHP QH°Q QH'P  HY
it holds that (Feshbach formula)
R —R”.PVQR
a__ 1 _ eff eff an
(H* =) (—R LQVPRY)y R, + R QVPRGPVQR L) ' (AV.17)

Notice that PH®Q = PVQ, QHP = QV P.

Theorem IV.2 Let a < 3%, £ < EY, and in the same time ¢ o((He — W (£)) D H ).
Then & € Res H* and

, 1 16 16
I -7 = RO O RO < oo g (1452 ).

where d’(€) 1= dist(&, o(Heg — #(£))).

Proof. To prove the theorem, we will follow the steps of the proof of Theorem 3.1 in
[34]. Namely, we will estimate the terms that appear in the decomposition (IV.17).

Let us consider £ < Ef = % Since T'| = Q (—A4,/2)®1d Q+QId®(—0d%/2) Q =
E$ = 2m%/a?, it follows

2a?

0< Ro(€) < (B —BY)' = 33
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The symmetrized resolvent formula states that

-1
Ri(€) = (TL +QVQ =& = Ro(&)" (1+ Ro(&) "QVQRo(&)*)  Ro(&)". (1V.18)

The upper bound to the middle term in the formula above may be found using the
following sequence of estimates:

0< <R5/2QVQR(1)/2> = R{PQVQRoQVQRY* < —R(I]/QQVQVQRVQ
< 3 1/QQVQQRV2 < {Hardy inequality (B.5)} < 16a” R(l)/QTLRl/2 (Iv.19)
16a Vs 12 o 16a 16a2 4
< — _

which implies

RIPQVQRL*| < —= = L
IR QUORL < o =

because, as can be rather directely verified, if A, B, and C ,C > 0, are s.a. operators
then (ABA)? < C implies |[ABA| < |C|7?. Consequently, if we choose a < ay, it holds

1 1
IR QVQR{| <1
Then by the formula (IV.18), the resolvent R, exists and R; > 0. Moreover, we have

RS2
1 - |R{*QVQRY|

-1
LR < IR | (1 BPQUQRS) T <

Since Ry is positive (even for £ < ES) and s.a., HRO2H2 |Ro| and

R 3, 4a”
R, < 1|\2 of _ i o {for o< %H} < 3&2 (IV.20)
1—|RQVQRS| 1~y "

From (IV.19), it follows that

3
IVQRJ*|? = |Ry'QV2QR*| < =2

2
|VQ%H<4¢;

The symmetrized resolvent formula:

which implies

0< VQRLQV = VQRY® (1 + RéQQVQRg"’) RIQV

leads to the estimate: X
IVQRS|?

— |RQVQRY

IVQR.QV| <
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which, for a < ap /2, implies
[VQRL|
2
(1- 1B Qvery)

IRQV) = [VQRL| < <V2[VQRY| <

<ﬂ

By the Feshbach formula (IV.17) together with Proposition B.3 we have
|(H — &)~' — RI(€) ® RL(€)| < | RGPV QRL| + |[RLQVPRGPVQR,|
< | REIVQRLIRL| + | REIIVQRT PR
1 1 1 1
— |RGNVQRLNRL) (1 + VQRLIIEL)
16a 16a
<1 (150

which completes the proof. O

Lemma IV.14 Let hg stands for the two-dimensional free particle Hamiltonian hg =
—Ayy/2 and let £ < Ef. Then

8

3 114
o437 o +3) ) < (3) a8

Proof. Within the proof, let A := (kg + 3) *#(€)(ho + 3) Y. Using the estimate
(IV.20) we get

4q2 16a (2 cos? 2 16a (2 dz
0< #(€) = PVQR VP< —PVP=_—— | —%de<— | 5
(5) Q l(g)Q 3 37_[.2 0 QQ + 2,2 z 37'('2 JO Qz + 22
= 16a arctani < 87a
- 372p 20  3mp

from which it follows that
A< —(ho+3)" el (h +3) 2,
T

Now one can easily find an upper bound to the latter operator with the aid of the
estimate (IV.8) which yields

1 2T (4)*
(h0+3)71/4(h0+3)*1/4E(h0+3) 1/4(h +3) 1/4 \/; (4) ‘

472
32 n(1l
|A|<(2) re)-
3 3

Hence, we conclude that

R
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Lemma IV.15 Let p:= Ef — 3. Then it holds
et (1) 2 (ho +3) 2| < Clrvg)-
Proof. Throughout the proof, set
A= ren(n) P (ho +3)"* = (ho — Vi +3) "(ho +3)"".

Then AT is closed and everywhere defined, and consequently bounded by the closed
graph theorem. Since A ¢ A = A, A is bounded too by the boundness of Aff. To
obtain an upper bound, let us proceed as follows:
AAT = (ho — Vil +3) 7 (ho — Vi + 3 + Vi) (ho — Vil +3)77
= 1+ (ho — Vi +3) ™ Vilr(ho — Vi +3)™".

By the obvious observation that 0 < V(o) < o~! and by the inequality (IV.8), we have

€

- _ \/§F(l)4
h Yayra (g, Yo g YT )
(ho +3) 7"V (ho + 3) 12
from which it follows
Var(h? Var (!
AAY <1+ 22 A(hy — VO RIS R VA |
+ s Alho = Vi +3) + 5

because hg — Vg = ho — ot > 2.
Now we face the exactly same inequality as in the proof of Lemma IV.7, so by the
quadratic estimate || A| < C(rv.g). (]

Theorem IV.3 Let us define

2 3/2 F l 4
Cirvany = Crvgy (3) 5r43) (IV.21)

and deg(§) = dist(§, o(HS%)). Furthermore, let

1 deff(f) }
2C(vary’ 6Cvany )’

a<min{

and in the same time £ € Res Hig nR. Then { ¢ o(Hl — W (£)) and

2C v max{
deff(g)

) 3
IRZ(€) - ren(©)] < L 1} .
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Proof. With the convention that A7? := sgn A|A|"?, if A is a s.a. operator, the sym-
metrized resolvent formula takes the following form

Rl = i (L + [reg| W0 20) Hres | (IV.22)

that implies
L | Ke(©)l

LA - =
[Fer (&) = ren (&) < 0= TR (o]

(IV.23)

with
Kot (&) := |rea ()2 (&)req (€)',

whenever |Kg(§)| < 1.
Following the same line of reasoning as in the proof of Lemma IV.8 with regard to
the results of Proposition IV.4, we obtain

a max Ef—ﬂ
Jra) 12y — ] < max { L2 1

for p < E{ —2. This result together with Lemmas IV.14 and IV.15 leads to the following
estimate:

Ke(€) =[re (€)' (Hx — 1) () (ho + 3) (ho + 3)™2#/(€) (ho + 3) ™

3
x (ho + 3)1/2r;§(u)(Hgg - ,U/)l/zreff(g)l/Q < max {dff(g)’ 1} C(IV.Ql)a

where we have set © = Ef — 3. The assumptions of the theorem then imply that
|Ker(€)] < 3. The assertion of the theorem is now a direct consequence of the formula

(IV.23). 0

Remark IV.16 Fora and & as in Theorem IV.3, the resolvent formula (IV.22) implies
| R%& ()] < 2|rea(©)]

which means

1 2
- < . V.24
AGRE (21
Similarly, under the assumptions of Theorem IV.1,
1 2
(IV.25)

< .
de (€ + EY) ~ de(§)
Theorem IV.4 Under the assumptions of Theorem IV.3, i.e.,

. 1 deff (5) }
a < min , , 1V.26
{ 2Cva1y 6Cva) ( )

and in the same time { € Res Hiz n R; it holds § € Res H® and
32 3 2a 4a?
H*—¢&) 1 - ol < | =— —\ 1:C — + —.
I £) ret(§) @ 0| (?m +max{deﬁ(£) } (Iv.21)> i +t53
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Proof. If £ € Res HY; nR then, by Proposition IV .4, { < Ef. Furthermore, from Theorem
IV.3, it follows & ¢ o(HS: — #'(§)). Also remark that, by the fact that R, (§) > 0 for
any £ < EY, H) > EY (see the proof of Theorem IV.2). Altogether, this implies that
§¢o((HSe — 7 () @ H\). Further, it may be directly verified that

_1 38
2C(vay 16

From above, we conclude that under the assumptions of Theorem IV.3, the assump-
tions of Theorem IV.2 are fulfilled too. Consequently, we have arrived to the following
estimates

[(H* = &)™ = rea(§) @0] < [(H* = &)~" = RG(§) @ RL(€))
a 4q?

32 3 2
[ B() = rea(©)] + 1RLE)| < (BW + max {dﬁ@ 1} cmn) e

where we have used (IV.20) and (IV.24). ]

IV.4 Relation between the exact and the two-dimensional
Coulomb Hamiltonian

Theorem IV.5 Let £ € Res (hc + EY) such that =3 + Ef <& < EY, and

do(§ — EY) }

< mi ,
a mm{ao 120([\/.21)

where ag 1s defined by the condition:

3

1
_°  c? S
de (€ — Eilo) C(IV.9) Ulao) 9

Then & € Res H* and

C? 30C, 2
V9 4(q) (ven @ Ay oy

6
a -1 a -1
H(H _5) - (hC+E1 _5) @OH < dC dC(E _ Etlz)2 32’

(€ — E7)?

Proof. Let us consider Theorem IV.1 with £ — EY substituted for £&. The assumptions
of this theorem are fulfilled since —3 + E{ < £ < E{ implies that dc(§ — Ef) < 3, from
which it follows

max{g 1} - #
dc(§ — EY)’ do(§ — EY)
Then we have € Res H; and

Ire(€) = (he + Ef —€)7Y <
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According to (IV.25), do(§ — EY) < 2deg(€), which together with the choice of £ implies
that (IV.26) holds. Hence, the assumptions of Theorem IV.4 are fulfilled too, so £ € H®
and we may make the following estimate:

|(H* =&~ = (he + B =€) @ 0]
<NH* =)™ = rea @ 0| + ren(€) = (ho + Bf =)'
4 32  6C 402 6CF
< a i ( N (1&/.211 > % N (Im()z _U(a).
do(§ — EY) \3m  do(§ — EY) 3 do(§ — EY)
The inequality (IV.27) is then a consequence of the fact that

32 _1 6 C(rvan)
37 " ddo(é — B9

O

Remark IV.17 Since lim, o ald(a)™! = 0, there exists a constant a; such that the
estimate (IV.27) takes a more closed form:

7C? C
H — &) —(ho+ E =) @0 < —— Y9 qq0a) = ——IV2) 3000y (1V.28
for all
. dc(f—Ef)}
a < min< ag, a1, ————> 4.
{ o 12Cv.ary

IV.5 Spectral analysis

IV.5.1 Localization of the point spectrum

Let us consider Ay € opp(hc) and &4 = Ef + 6 with § € Reshe such that Ay < 6§ <
(AN + An+1)/2 and 0,0 = 0. Moreover, let I' be the anti-clockwise oriented circle with
the center Ay + Ef passing the point £,.. Notice that the radius of this circle is d¢(6).
For any & € T, it holds

I(he + B¢ —€)(he + B¢ — €)™Y = sup
zeo(hc+EY)

T
r—£

We are almost prepared to show that the projections P and P¢ onto the spectrum
of H* and h¢ + EY, respectively, inside I' are of the same dimension. To propagate the
estimate (IV.28) on all I', we use the formula (3.10) of Section IV in [35]:

L|(hc + Ef — &) (he + Ef — &)Y

a -1 a -1
[(H* = &)~" = (he + Ef =)' @ 0] < 1_|E— &L

3L
< -
1—2dc(0)L
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with
L=|(hc + Ef =& )(ho + Ef =) 7H|(H* = &)~ = (he + Ef — &) @ 0]
1V.29
<3|(H* — &) = (he + Ef — &) @0]| < MU(@). ( :
dc(6)

We have arrived at the following estimate

9C(1v.28)dc(8) "2 U(a)
1 —6C(rvag)ydc(d)~ U a)

[(H* =&)~" = (he + Ef =)' @ 0] <
which may be used to find an upper bound for the difference of the eigenprojections:

P~ P @0 = 5| [ (B0 =€)t = (e + B - ) T @04

9Cv.2s)dc(8) tU(a)
T 1-6Cvasyde(0) 1U(a)’

(IV.30)

Obviously, this bound is smaller then one for all

a < min{ao, ai, a2, 1262?(’(5))}
v21
where a9 is given by the relation:
dc(9)
U(ag) = —————.
(a2) 15 C1v.2s)

Since by definition, az < ag, we see that |[P* — P& @ 0| < 1, for all a < ap where

dc(9) }

ap = min< a1, ag,
{ 12Cvany

Finally, using Lemma B.4, we conclude that for a given ¢ and the corresponding ap
it holds that if @ < ap then in the dc () neighborhood of Ay + Ef there is the exactly
same number of eigenvalues of H* as the multiplicity of Ay in the spectrum of h¢ is.

Remark IV.18 The estimate (IV.30) also provides an information about the closeness
of the respective eigenfunctions. If one is only interested in the closeness of the eigen-
values of Hi; to those of ho + E{ then Lemma B.5 may be used in the straightforward
manner.

IV.5.2 Perturbation expansion

Under the assumptions above, the results of Section B.3 may be used (with H = hc+EY,
H, = HS,and W = SC(QIV.Q)Z/{ ). Namely, let us consider the lowest eigenvalue \g g = —2
of h¢e that is non-degenerate. Then the perturbation expansion (of the type (B.7)) for
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the lowest eigenvalue /\’5% (a) of HZ; converges if a < min {ap, a3} where a3 is defined by
the equality

30(2[‘/.9)2/{(@3) 1
dc(0) 13
However, since it may be easily viewed that as > as, it suffices to consider a < ap. The
expansion reads

)\8%(&) = B} — 2+ Watbo0, Y0,0) — 0,0, WaS(Ao,0)Watbo,0) + #3(a) (IV.31)
with 6 5
C(Iv.g)u (a)
dc(6)?
where Wy (0) := 07" = V.%(0), S(Xo,0) stands for the reduced resolvent of h¢ in the point
20,0, and ¥g o(0) = 2\/%6_29 denotes the normalized (in the space L?(RT x S!, odody),
see (II1.4)) eigenfunction of h¢o associated with Ag .

|%3(a)| < 3°8 < const.a®log® a, (IV.32)

Proposition IV.19 As a — 0+, it holds
1 1 1 1
Warbo0, Yooy =16 <4 - 772) a+16 (6 - 7r2) a’log a+

1 1
+ 8 |:(2’)/ -1 + 210g 2) (6 — 71_2) + 160(IV.33):| CL2 + O(ag)

where

C(rvas) i= J: 2?log z cos® (1z) dz ~ —0, 0115. (IV.33)

Proof. By a simple integration, we have

Wato,0, Yo,0) = 4 — (Vefrtbo,0, P0,0)-
Next, we can integrate using the Fubini theorem:

< ad) 1/) >—— J; 2( ) %e “
Ve 05 , 64 cos“(mz
f£%0,0 0,0 o o 5 ( )2

= —32ma J2 cos? (72)z(Y1(4az) + H_1(4az)) dz,
0

dodz

where Y7 stands for the Bessel function of the second kind and H_; is the Struve function.

The following asymptotic expansion (see [5]) together with the term by term integration
yields the assertion of the proposition:

1 2 4z

— _l’_ -

2mza W™ 0T

2
Yi(daz)+H_1(4az) = — aloga+=[(2y — 1+ 2log?2)z + 2zlog 2] a+0O(a?)
7r

as a — 0+. O]
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Proposition IV.20 As a — 0+, it holds

1 1)\?
<1/10’0, WaS()\070)Wa1/10’0> = —32’}/ ( — 7T2> CL2 + O(a3 log a).

4
Proof. Due to the rotational symmetry of W, and 1) o, only the radial part of the kernel
of S contributes to the integral in the scalar product. Let us denote it by SS)), where
z stands for the spectral parameter. By the definition of the reduced resolvent and the
formula (III.2) for the Coulomb Green function G, we have:

T 1 + ( .
1 2" 2z N~
S)(\[())?o(glv QZ) = Zl_i)H_12 [ ( - )M <_Z O> 2i 2ZQ<>

x W (—\/;iz,o, 2i\/ﬂ9>) + - Jlr 2%,0(91)%,0(@2)]

- _ % Yo,0(01)%0,0(02),

where we have used the expansion I'(z) = 27! — v + O(z) as 2 — 0.
Now the scalar product of our interest is given by the following expression:

e} 0
(QW)QL Jo ¢0,0(91)Wa(91)5,(\?0(917QQ)Wa(92)¢0,0(92)91d9192d92

. 2
- _% (%J %,O(Q)QWa(Q)QdQ) N _%@0,0, Watho0)*.
0

The assertion of the proposition follows immediately from Proposition IV.19. O

Corollary IV.21 With regard to the expansion (IV.31) and the estimate (IV.32), we
have

11 1
A (a) =Ef —2 + 16 <4 — 772> a+16 (6 — 7T2> a?loga

+8 [(27 — 1+ 2log2) (é — 732) + 4y (i — 732)2 + 160(W_33)] a?
+ O(a®log® a).
Let us introduce the following notation:
emn(a) := Wabmn, Ymn),

where ¥y, , = |\1;mn| _11;m7n stands for the normalized eigenfunction of ho with the
eigenvalue A, ,, and the angular momentum m (see I11.4). As a — 0+, eppn = o a +
o(a). Indeed, we have:
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Proposition IV.22 For the coefficients cp, p := limg_0+ a_lem,n(a), 1t holds

Cmn = 27 (i - 1) ¢%@,n(0)

T2

24 1 1
Ci = — _—
0" = 2n+1)P\4 2

and ¢pmn = 0 whenever |m| > 1.

Namely,

Proof. To expand (Wutm n, ¥mn), it seems useful to work with Fourier images. For the
Fourier transform of the eigenfunction 1, ,,, we have:

. 1 0 0] 27 . Q0
Ymn(u) = f f e‘l“gc"s“”d)m,n(e)@dgdso:J Jo(u0)mn(0)edo.
2 Jo Jo 0

Since the functions ), , are essentially of the form e™*¢%(p) with o« > 0 and Z(p)
being a polynomial in o, the latter integral may be evaluated using the so-called Lipshitz’s
integral I(a, 3) (see [36]):

o6}
1
Ia, B) := f Jo(Bx)e “dx = ——— for a >0
0 ot + 3
which implies

JOOJ(ﬁ Jre " dx = (—)" " ! (IV.34)
r)x'e r=(-\"—— .

0 0 oo™ N + 62

For example, we obtain

N 2 4
Yoo(u) = \/;(102+4)3/2

Next we have

1 N 1 R A
emm(a) - % R2 xR2 ¢m,n(u) <|u—v| - ‘/e(fl'f(u - V)) ¢m,n(v)dUdV
A 1 R A
= o [l ) (G~ Vil =) ) (o).

By (IV.34), it follows that @Z;mn € L'(R?), which together with Corollary IV.6 makes pos-
sible to use the Lebesgue theorem and interchange the limit ¢ — 0+ with the integration
above. Hence, we have arrived at the following result:

1 /1 1 2
. —1 _ - n
al—l>%1+a emn(a) = 27 (4 7T2> (JRz wm,n(u)du>
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It may be directly verified that v, ,(0) = 0 for |m| > 1, whereas

O

Corollary IV.23 Since A\ 15 a single eigenvalue of ho restricted to the eigenspace
of the angular momentum with value m, the results of Section B.3 may be applied too.
Thus, for the eigenvalues of Hi;, we get

)‘irif,n(a) = Eil + )\m,n + Cmna + O(CL) asa—0+.
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A. Figures

Figure A.1: Eigenvalues of the partial Hamiltonian Hy
Eio(@),i=0,12,3

25}
20}
15f

10

Figure A.2: Eigenvalues of the partial Hamiltonian H;

E1(a%),i=0,123
30F
25F

200
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FI1GURES

Figure A.3: The 1st eigenfunction of the partial Hamiltonian Hy

Yo o(p) for a*=1,10,00

Figure A.4: The 2nd eigenfunction of the partial Hamiltonian Hy

¥10(p) for a*=1,10,00
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Figure A.5: The 3rd eigenfunction of the partial Hamiltonian Hy

Y0(p) for a*=1,10,00

Figure A.6: The 1st eigenfunction of the partial Hamiltonian Hy

Yo.1(p) for a*=1,10,00
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Figure A.7: The 2nd eigenfunction of the partial Hamiltonian Hy

¥1.1(p) for a*=1,10,00
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Figure A.8: The 3rd eigenfunction of the partial Hamiltonian H;

¥n.1(p) for a*=1,10,00
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FI1GURES

Figure A.9: Krein Q-function Q#(®) for a® = 0.02, 0.2, 1, and 5
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Figure A.10: Comparison of the Krein Q-functions for a®> = 24 (the solid line) and

a? = o

(the dashed line)
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FI1GURES

Figure A.11: Point levels of H(0)

(@2, 0),i=0,1,2,3
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Figure A.12: Point levels of H(0.5)
(@, 0.5),i=0,1,2,3
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Figure A.13: The 4th point level of H (k)

~0.05 |
~0.06 |

~0.07 |

-0.08F

Figure A.14: The 3rd point level of H(k)
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Figure A.15: The 2nd point level of H (k)
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B. Auxiliary Results

The following auxiliary computation is needed for the evaluation of scalar products of
eigenfunctions.

Proposition B.1 Let 1Fi(a,b,t) stands for the Kummer confluent hypergeometric func-
tion, and n,m,l € Ng. Then

JOOO tmHe =t By (—n, 14m, t)2dt = (ml)? i (—1)+k (Z) ((k”)' (k e l).

|
e S E+m)'\ n+m
(B.1)

Proof. By definition,

$ tF t
1Fi(—n,1+m,t) := ZM_ 'Z <)m+/€)'

k=0

Let us denote the LHS of (B.1) by I. Then the integral representation of the gamma

function implies
S i+ k+m+1)!
= (m))? J*’f( )(") U B.2
jZO k) (m+ )l (m+ k)" (B-2)

Partial summation in (B.2) can be carried out,

S (G+k+m+)  dkt (k+ " )
ML — )" B.3
; ( ) (m + j)! = dgk " (1-2) z=1 (B-3)
Expression (B.3) vanishes for k£ < n — [ and equals
k+m+1
—1)"(k +1)!
()
for k = n — [. The proposition follows immediately. O

Corollary B.2 In the case | =0, (B.1) takes a particularly simple form:

* m tF 1 2d ’I’l'
te” —n,l+m,t)y"dt = ——.
JO il ) (m +n)!

o6



AUXILIARY RESULTS

When dealing with a direct sum of Hilbert spaces, likewise in Section IV.3, the
following result may be of use.

Proposition B.3 Let A : % — 4 and B = B : 566 — % be bounded operators.

Then
|3 5)<1a1+151

Proof. Let x € 74 and y € 4. Then, since we deal with a s.a. operator,

(& B)]= o

0 A
<(AT B>$®y,$®y>‘= sup 2R Ay, =) + (By, y)|

@y =1 lzdyl=1
< sup 20 Alyll<] + IBllyl* < sup (JA]+ IBD ) + [yI*) = 1Al + B,
[y =1 |zDy=1
where the appropriate scalar products and norms are involved. O

The following auxiliary result was needed for comparing dimensions of eigenprojec-
tions.

Lemma B.4 Let Py and Py be projections. Denote dimP; the dimension of RanP; and
let 0 < dimPy < 0. Then |P; — P3| < 1 implies dimP; = dimPs.

Proof. Let dimP; > dimP> and {1;} be an orthonormal basis of RanP;. Now, two cases
may occur:

1. There exists an index ¢ such that P>1; = 0. In this case set ¥ = 1/;.

1. For all basis vectors, P>1; # 0. Then there must exist a finite linear combination,
1, of basis vectors such that Py1) = 0. Contrary would imply dimP» € {dim P;, o0}.

In both cases 1 € RanP; n(RanP,)+. Consequently, (P —P)1 =1 and so [P, —Py| > 1
which proves the statement. L]

When comparing eigenvalues of two s.a. operators, the following lemma may be of
interest.

Lemma B.5 Let Hy and Hy be s.a. positive operators on a Hilbert space . If we
define

‘ H, |2
)\S) := sup inf |H; ,
wefﬁ_lmQ(Hi)
where n € N and £,,_1 is a n — 1 dimensional subspace of F, then it holds
(A = ) < H - Hy )
)
(counting the multiplicity) of H; bellow the bottom of the essential spectrum or )\g) is
(%) A@

ntl = M2 T o0

Let us recall that according to the min-max principle, /\7({' is either the n-th eigenvalue

the bottom of the essential spectrum and in that case )\g) = A
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Proof. One immediately obtains:

) 2 H-_1/2 2
()\7(12))71: inf sup 7HKH = inf sup 7H L ;ZSH
Dot yro |HPY)E e gz0 |4
veLi 1 nQH;) PeLy
H!
= inf sup M
L1 $#0 el
peLt |

Consequently, we have

-1 1 1
()\%1))71 = inf sup <<¢7 (H1|¢|_2H2 )¢> + <¢> H2 ¢>> < HH;I_HEIH_F()\Q))*I

ks Bk
¢e”g7£:1
and similarly (\?)~! < |H; ' — Hy Y + A1 [

B.1 Kato inequality

Furthermore, the so-called two-dimensional Kato inequality is the most needed in Chap-
ter IV. Here it is reproduced as stated and proven in [37]. It is worth of mentioning that
this inequality is a special case of a more general one treated in even older paper [38].

Theorem B.1 (Kato inequality) Let —A,, = A stands for the two-dimensional La-
placian. Then the following inequality holds

1 - F(ifm (B.4)
V= |

An approzimate value of the constant involved in (B.4) is 4.379.
Corollary B.6 Set o:= +/22 4+ y2. Then o' is —A infinitesimally form bounded.

Proof. Let ¢ € HY(R?) = Q(—A), then by (B.4):

3 (I, )

rhH?
G)j_aype - 4(3 [N =

(3

472 4
ri)*

= SUL (Livwre +atere)),

where the parameter a > 0 may be chosen arbitrarily large. Note that the first inequality
holds even for 1 € H'?(R?). O

J o (z,y)Pdady <
R2

r) e a
< T (G0 D + 50 )
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B.2 Dirichlet Schrodinger operators

Properties of the Dirichlet Laplacian Ap on a bounded region are widely discussed in
[39]. When a bounded region Q is considered, the Dirichlet Laplacian is defined as
a unique s.a. operator associated with the closed positive form ¢(f,g9) = —(Vf, Vg)
defined on H{(€2). Note that by the definition of H}(£2), the space CZ (1) is a core of the
form ¢. Let us introduce a linear space C°(2) of smooth functions on Q with f|s0 = 0
and flext = 0 whose partial derivatives can be continuously extended to Q. Then by
Lemma 6.1.3 in [39], C§°(f2) is also a core of the form q.

In the case of an unbounded region €2 (e.g., the slab €, considered in Chapter IV),
the Dirichlet Laplacian may be introduced in the same manner but C(€2) is no longer
a form core. However, CP(Q) n H'(€) is already a core. To prove it, we will follow the
proof of the respective lemma in [39] only with some little modifications.

Proposition B.7 C(Q) n HY(Q) is a form core of the Dirichlet Laplacian.

Proof. Essentially, one has to prove that the closures of C(Q) n H}(2) and CZ(1)
with respect to the norm of H(€2):

I = (LA + 19 £12) 7

are the same.

Since obviously, CZ(Q) = CF(Q) nH(Q), it suffices to show that CE () is dense in
C&(Q) nH(Q) with respect to ||.|| norm. Taking real and imaginary part separately, we
will consider functions bellow to be real-valued. At first let us define a smooth function
F,. : R — R such that

and for any f € C(Q) nHY(Q) set fo(x) := F.(f(x)). Then f. is smooth and f.(x) = 0
on some neighborhood of 8. Moreover, since f is smooth and lies in L*(Q), K > 0
exists such that |x| > K implies |f(x)| < e. Consequently, f. e CF ().

Aslime_ 04 fe(x) = f(x) and |fe(x)| < | f(x)] for all x € Q, we have lim._,o1 | f—fe| =
0 by the dominated convergence theorem. Furthermore,

lim Vf(x) =

e—0+

{Vf(X) if f(x) # 0
0 (# Vf(x) in general) if f(x) =0.

Let us define a set B := {x: f(x) =0 A Vf(x) # 0}. By the implicit function theo-

rem, B is a hypersurface of codimension 1 and so u(B) = 0. Hence, V f. converges
to Vf a.e., and since by the assumption d), |Vf«(x)] < 3|V f(x)|, it follows that
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lime 04 [Vf — V f| = 0 by the dominated convergence theorem too. All in all,
lime,o4 || f — fe| = 0 which proves the proposition. 0

Next we may ask how to define a ’Dirichlet Schrodinger’ operator. It seems natural
to consider the following form sum —%A p + V, where V stands for a potential part.
Bellow we will look for a class of potentials which this form sum is well defined for.
Notice that in the present moment, we are not looking for the most general class of
such operators, rather we want the Coulomb potential to be included. At first, let us
reproduce an useful inequality as stated in [40]:

Lemma B.8 (Hardy inequality) For any u € DY?(R3) which is the completion of
C&(R3) with respect to the norm

Jul? = || IVu(o) P
R3

it holds )
1
J de < J |Vu(x)*dx, (B.5)
4 R3 7’2 R3

where r = |x| = \/22 + y% + y? as usual.

Since any function u € H}(Q) = Q(—Ap) may be uniquely extended to a function
in H'(R?) < DI2(R3) which vanishes outside €2, the inequality (B.5) holds for any
u € H§(2) too.

Proposition B.9 Let 0 < a < 2. Then r~® << —Ap.

Proof. We will focus on the nontrivial case 0 € int Q. Let A > 0, then € > 0 exists such
that % > r% for all » < e. For any 1 € Hé(Q), one can make the following estimates:

LI T U Ny G 1
Q r Qr<e Qr>e Qr<e

ro ro 4r?

2 1
+ L> Wgz)'dx <{B5)} < AL [VipPdx + o)

that prove the statement. [

Hence —%AD +V is a s.a. operator with the form domain H}(£2) for potentials that
are bounded in infinity and on the boundary 02, and that have at worst singularities of
r=2%€ type. Now let us turn to the case of Chapter IV, ie., V = —<.

T

Proposition B.10 Let ) be an open set with a boundary that is Lipschitz continuous
on each component (so the integration by parts may be used) and let H = —%AD + (—%)
Then Dom H = H(2) n H3(Q).
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Proof. By the form representation theorem, f € Dom H iff f € Q(H) = H(Q) and
g € L?(Q) exists such that

1 1 —
al.0) = VL.V = C | ~FO0TRIx = g0, Yo € QU
Since, by the Hardy inequality, r—!f € L?(Q); the equation above implies that

1 C

SCVEV) =g+ = f0)
for all v € Q(H) and so for all y» € CF () too. This means that the weak derivative —A f
exists and —Af = 2g+2Cr~1 f € L?(Q) which gives Dom H < H{(Q) nH?(2). To prove

the opposite inclusion, consider f € H}(2) n H2() and ¢ € Q(H). Let {¢,} = CZ(Q)
be a sequence such that lim,,_,« [|) — ¥y || = 0. Then we may integrate by parts:

1 1 _— C 1 C
a(f.n) = —(AF ) + 5 L VIS = () = ( — A = fvn ).
The integration over the boundary 9S2 is well defined since Vf € H!(Q) implies V f|sq €

H>2(0Q) ¢ L*(09Q) (see Paragraph 7.56 in [41]), and is zero since 9,|sq = 0. Passing

to the limit n — oo, we conclude that
1 C
a(fv) = (= 38f = Zf.v).

So setting g = —%Af - %f € L?(2) completes the proof. O

Remark B.11 Following the same line of reasoning as above, one can prove that
Dom (—Ap) = H{(Q) n HA(Q)
too. Actually, such proof is even more effortless. The selfadjointness of the Coulomb
Hamiltonian may be then deduced using the Kato-Rellich theorem since, by the Hardy
inequality (B.5), it holds
_ 1
|Cr 12 < AC?| V| = 4C* (%, —Apy) < 4022H¢H e| = Ap|
1
<20 (@] - apulP + S WIF).

for all ¢ € Dom (—=Ap) and € > 0.
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B.3 Error estimate for a perturbation expansion

In the famous book of Kato [35], one can find several error estimates for a perturbation
expansion. Here we provide one more. Let H, := H + V,, where V, stands for a scalar
potential, be ’a perturbation’ of the Hamiltonian H. For our purposes, it means that
a positive decreasing function W exists such that lim,_,0+ W(a) = 0 and, for every £ €
Res H N R, | Kq(&)|| < max {1,dist(&, o(H)) '} W(a) where K, () := |R(€)| PV, R(€)?
with R(§) being the resolvent of H. Generahzmg the results of Section IV.5.1, this
implies that for 6 > 0 small enough, there is exactly one single eigenvalue A\, € 0(H,) in
the d-neighborhood of an isolated single eigenvalue \ € o(H) if a is smaller then some
as. Practically, it is useful to consider § < dist(\, o(H)\ {A})/2, i.e., smaller then a half
of the so-called isolation distance.

Let I be an anti-clockwise oriented circle of the radius § and with the center A\. Then,
by the recursive application of the resolvent formula:

(Hq — 6)_1 =: Rq(§) = R(§) — Ra(§)VaR(E), (B'G)
we have (see [35] for details)

1 & Didn
21921 Lot [ (VuR(©) d + A a) (B.7)
with N
Aaala)i= T [ (€= NRAOLRE) e (B

The integral in (B.8) is a finite rank operator and hence its trace may be estimated
by the norm. Indeed, using the following expansion:

0

P "
Ra)(€) = ‘5(;( +S(w)(€) = 21(5—A<a>)”5((a>+1)’

where S(€) and S, (§) are reduced resolvents of H and H,, respectively, S(( )) = =Py
for n =0 and S(4)(A(e))" otherwise; we have

1 N+1
3 (5 MR (§)(VaR(€))MHd¢
1 _P i1+i2+. . Finp1+1 pe (i5+1)
~3i ) o -21 Py 1_[1 V,50i+D) qe
tj=— J=

11+ZQ+..‘+’L‘N+1¢72
N+1

1 —P, i
+ - V, sttt d
2mi Jr (€ = Aa)(§ = A) i.;1 ]1_[1

i1+i2+..FiNy1=—2
N+1

1 1 .
(4 +1)
omi ) S O7 ; ]Hl Vo SUith dg

i1+io+...FinNp1=—2
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N+1
SR Y Qe T 000
ij=—1 j=1
i1+i2+. i1 F#—2
N+1
+8.(0) > ] Vas@Th.
ij=z—1 j=1

i1+i2+‘..+iN+1:72

The rank of the first term is one since P, is a projection. Each term of the second sum is
also a rank one operator because it contains at least two projections P. As the number

of terms in this sum is one for V =1 and (N ; 1) (2]<,V:23) otherwise, it follows that

N+ 1\ /2N —
Rank(integral on RHS of (B.8)) <1+ ( ;_ ) (N 23)‘

Notice that the estimate is valid even if A\, = A.
Due to the cyclic property of the trace, it holds

Tr (€ — N Ra(&)(VaR(E)N
= Tr|R(€)[*(€ = NR()*(H — &) Ra()(H — €) " sgn R(€) K4 (€)1

The latter expression is ready to be estimated by the norm. Consider § < 1 and £ € I.
Furthermore, define £, := A + d. Then using the functional calculus, we obtain:

| K& < 1RO IH — &P Ka(€DIIH = &) R(E)V?| < 367 W(a).
Since sgn R(&) is an isometry, it is of unit norm. Next we have
IR (6 = VRE| < [IREOI]?5 = 1.
Finally, for @ small enough (namely, such that §~1W(a) < 1/6), it holds

I(H = &) Ra(&)(H — )| = |(R(&)*(H + Vo — OR(E) )|

1
= [(Id + R(©)PVaR(©)) Y € —77 <2
| N A G]
Altogether, we have arrived at the following estimate
N+1\ /2N -3 _
\ %N 1(a)| < 2 [1 + ( ) )(N—2)] STN3NFYY ()N HL, (B.9)

Using the Stirling formula, it may be deduced that

N+1\ (2N =3\ y N7
( 5 )(N—2>_4 16ﬁ(1+0(1)) as N - o

from which it follows that if we consider a < min {as,ap}, where ag is defined by the
equation 01 W(ag) = 1/13, then limy_,o, Zn(a) = 0, i.e., the perturbation expansion
converges.
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C. Spheroidal Functions

The spheroidal functions are solutions to the equation

2
0"y 25‘9—1” +A+40(1 - &) — (1 =€)y =0, (C.1)

(1_§ )052 05

where all parameters are in general complex numbers. Let us briefly summarize basic
definitions and notions related to the spheroidal functions following the notation of the
source [6]. Then let us make several observations on these functions.

There are two solutions to (C.1) that behave like £€” times a single-valued function
and £7V~! times a single-valued function at co. The exponent v is a function of X, 6, p,
and is called the characteristic exponent. Usually, it is more convenient to regard A as
a function of v, yu and . We shall write A = AJ(6). If v or p is an integer we denote it
by n or m, respectively. The functions A\, (6) obey the symmetry relations
X(0) = A H(0) = AL,y (0) = A, (0). (C.2)

A first group of solutions (the radial spheroidal functions) is obtained as expansions
in series of the Bessel functions,

SHO(E,0) = (1— €2 "2st(0) 3 al, (0)0T), (26726), (C3)

r=—00

j =1,2,3,4, where the factor si, () is determined below and where

BO() = \ﬁ Trap(©: Q) = 4[5 Yep(©).

\/7H£11/2 1(14)(5) = C Hﬁi)l/z(C)

The coefficients al,»(0) (sometimes denoted only by a, for the sake of simplicity) satisfy
a three term recurrence relation

Vor(O)ay,, 1 (0) + By, (0)al,(0) + o) . (O)ay, .1 (0) = =A(0)al,(6),  (CA)
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where

v+2r+p+2)(v+2r+p+1)
(v+2r+3/2)(v+2r+5/2)

(v+2r)v+2r+1)+pu> -1

(v+2r—1/2)(v+2r+3/2)

wv+2r—pv+2r—p—1)

(v +2r —3/2)(v + 2r — 1/2)

O‘zlj,r (9) =

br(0) = =(v+2r) (v +2r + 1) + 20,

/YI;/L,T(Q) =

Here and in what follows we assume that v + 1/2 is not an integer (to our knowledge,
the omitted case is not yet fully investigated).
The coefficients al;,(#) may be chosen such that

and so (see (C.2))

ay,(6) = a” (0) =

—v—1,—r

a, 1 (0) (C.5)

where (a), :=a(a+1)(a+2)...(a+r—1)=I(a+1r)/T'(a), (a)g := 1. Equation (C.4)
leads to a convergent infinite continued fraction and this way one can prove that

2 2 0
lim 7 = lim =7 (C.6)

r—0 Qp_q r——00 Qpy1 4

From (C.6) and the asymptotic formulae for Bessel functions, it follows that (C.3) con-
verges if || > 1.
If we set in (C.3)

© 1
sy, (0) = [ > (—1)Taﬁ,r(9)] (C.7)

then Sff(j)(g,H) ~ w,(,j)(291/2£), for |arg(01/2¢)| < m, as € — 0. So we have the asymp-
totic forms, valid as £ — o0,

1 A
S, 0) = 3 0_1/257161(291/257””/2*”/2)[1 +O(lg|™] for — 7 < arg(67%¢) < 2,
(C.8)

and

SED (€, 0) = %9*1/25*1e*%’<291/2€*”/2*”/2> [14+0(¢™")] for —2r < arg(67%¢) < .

(C.9)
The radial spheroidal functions satisfy the relation
1 1 i

S = (5D jemimgp) C.10

v i cos(vm) ( v tre g ) ( )
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They are especially useful for a large values of &; the larger is & the better is the con-
vergence of the expansion. To obtain solutions useful near +1, and even on the segment
(—1,1), it is convenient to turn to expansions in series of the Legendre functions,

Ps}(&,0) = (—=1)"aly . (6) P42, (),

T

@5y (€,0) =

(C.11)

0

(—1)"al; - (0)@ 42, (§)-

NERANGE

T 0

These solutions are called the angular spheroidal functions and are related to the radial
spheroidal functions by the following formulae:
SE0(E0) = n sinl(v - eIV RLOQE L €0
Si(E,0) = KM 0)Ps(E. ), '

where K (6) may be expressed in the coefficients af, (), and sometimes it is called the
joining factor. In more detail, for any k € Z it holds true that

i —1)"at,, ()
vf2+k , £ 'F (v+k+r+3/2)
KH(6) = Lo T(1+ v — p+ 2k) VTRl (g) ™= :
’ 2\4 0 < —1)"ay,r(0)
g 'F1/2—1/—k—7")

The following auxiliary result concerns the asymptotic expansion of the radial sphe-
roidal function of the third kind.
Proposition C.1 Let me N, v ¢ 7Z. Then

VI tan (v K" (0 1+&6\"?
(&, 0) = o wm) ( %1(0) ez’(3y+(1/z)>7r> (1 —g)

-1 _ k
(=)™ k(m —kE—DN(—v)p(v + 1) (1 — f)

XZ k! 2

k=0
+ 0 ( £)"?1og 1—5))

as & — 1+.
Proof. By the definition (C.10) and by (C.12) one has

i(v+3/2)m m m
s70(e.0) = ) (e o) + SEOEEAED)
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The asymptotic expansion for the Legendre functions reads (the best reference here is
[42], the standard work of interest is [43]),

w1 (1HENE () F i — k= D (=) + Dy (1—€\"
Q&) =5 (1_5) ];U i ( 5 )

40 ((1 )" log (1 — 5)) as € — 1+,

from which it follows
", 1) = QU + 0 (1-9"l0g(1-€)) as¢—1+.

This together with (C.11) and (C.5) implies that

Q7 1(6:0) = Q€0 + O (1= log (1 -8)) s & — 1+
which completes the proof. O

Two following propositions answer the question when a spheroidal eigenvalue is real.
Proposition C.2 Let v = —1/2 + it where t € R, and p, 0 € R. Then \,(0) € R.

Proof. One may view the set of equations (C.4), with r € Z, as an eigenvalue
equation for A\ (0) that is an analytic function of . A particular solution is fixed by the
condition A\, (0) = v(v + 1). Consider the set of complex conjugated equations. Since
Bor =B ,(0) =B, ,.(0), and the similar is true for ay,,-(0) and 1, (0),

ﬂﬁu—l,r(e)a/;,r—l(g) + O/iy—l,ra}ljﬂ“(e) + /}/ﬁu—l,r(a)agm-‘rl(g) = )‘5(0) a’l'jﬂ”(e)‘

Furthermore, since for each v of the form considered,

)\H

—v—1

0)=(—v—-1)(-v) =v(v+1)=v(v+1) = \)(0),

one has N\ _(0) = AJ(6). Moreover, by (C.2), N, () = AJ(0) in general. We
conclude that A\ (0) € R. O
Proposition C.3 Let u, v, 0 e R and v +1/2 ¢ Z. Then N\, () € R.

Proof. Following the same line of reasoning as in the proof of Proposition C.2, we
conclude that A () and A (6) are the eigenvalues of the same matrix and simultaneously
A(0) = v(v + 1) = A\(0) which means that A () = AJ(6) for all 6 € R. |
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