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List of Notation

We use the bold face for vectors in Rn and we follow the convention that the appropriate
standard face letter stands for the radius of a vector, e.g., |p| � p. If a function f on
Rn acts like a function of the radius only we abuse the notation a little and write
fppq � fppq. In the most cases, we follow the notation of the fundamental series by
Reed and Simon [1, 2, 3, 4], and the notation of [5, 6] if special functions are concerned.
For clarity, we attach the following table.

Symbol Meaning

A � B s.a. operator defined as a form sum of A and B according to
the KLMN theorem (see [2, 7])

A: operator adjoint to A

f̂ (generalized) Fourier transform of a function f , we work with
the unitary Fourier transform

f̌ inverse (generalized) Fourier transform of a function f
}.}1� quadratic form norm
}.}1 Hilbert Schmidt (operator) norm
}.}p norm on LppΩ, dµq
~.~ norm on H1pΩq
BΩ boundary of a set Ω
Bδpxq Bδpxq :� ty P Rn : |x� y|   δu
C the complex numbers
C80 pΩ̄q linear space of smooth functions with f |BΩ � 0 and f |extΩ � 0

whose partial derivatives may be continuously extended to Ω̄
C8C pΩq linear space of smooth functions with a compact support in Ω
dist distance
Dom domain
e.s.a. abbreviation for ’essentially selfadjoint’
ext exterior
1F1pa, b, zq Kummer confluent hypergeometric function
γ Euler’s constant, γ � 0.5772
Γpzq gamma function
Hnpzq Struve function
H
piq
ν pzq Hankel function of the ith kind, i � 1, 2
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List of Notation

Symbol Meaning

HmpΩq Sobolev space Hm,2pΩq
Hm,kpΩq Sobolev space
Hm

0 pΩq closure of C8C pΩq with respect to the norm of HmpΩq
Iνpzq modified Bessel function of the first kind
Id identity mapping
=z imaginary part of a complex number z
int interior
Jνpzq Bessel function of the first kind
Kνpzq modified Bessel function of the second kind
Kµ

ν pθq spheroidal joining factor
kerA kernel of a linear mapping A

L
pmq
n associated Laguerre polynomial

LppΩ,dµq usual Lp space
pL8pΩqqε � L2pΩq linear space of functions such that f P pL8pΩqqε � L2pΩq ô

@ε : D decomposition f � f0,ε�f1,ε : f0,ε P L2pΩq^}f1,ε}8   ε
Mpν, µ, zq Whittaker function
N the positive integer numbers
N0 the non-negative integer numbers
Pµ

ν pzq associated Legendre function of the first kind
Psµ

ν pz, θq angular spheroidal function of the first kind
Ψpzq digamma function
QpAq form domain of an operator A
Qµ

ν pzq associated Legendre function of the second kind
Qsµ

ν pz, θq angular spheroidal function of the second kind
R the real numbers
R� the positive real numbers
R� the negative real numbers
Ran range
Rank rank=dimension of Ran
<z real part of a complex number z
ResA resolvent set of an operator A
S1 unit circle
S

µpjq
ν pz, θq radial spheroidal function of the jth kind

σpAq spectrum of an operator A
σac,ess,pppAq absolutely continuous, essential, and pure point part of the

spectrum of an operator A
s.a. abbreviation for ’selfadjoint’
span linear span
TrA trace of an operator A
W pν, µ, zq Whittaker function
W pf, gq Wronskian of functions f and g
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I. Introduction

This thesis is devoted to the spectral analysis of three non-relativistic quantum mechani-
cal systems. The three systems have several characteristics in common. Two of them are
two-dimensional and the last may be considered to be effectively two-dimensional too.
All the systems are then rotationally symmetric which substantially simplifies our treat-
ment since the partial wave decomposition may be involved. Furthermore, each of the
system studied is a nontrivial modification of a very well known and fundamental quan-
tum mechanical system, either the harmonic oscillator or the hydrogen atom. Namely,
the thesis deals with the isotropic harmonic oscillator with the point interaction in the
Lobachevsky plane, the two-dimensional hydrogen-like atom with the point interaction,
and the hydrogen-like atom in a thin plane-parallel slab.

Chapter II is devoted to the study of the isotropic harmonic oscillator with the point
interaction in the Lobachevsky plane. In the three-dimensional Euclidean space, the
Hamiltonian of the isotropic harmonic oscillator with the point interaction was used to
model the so-called quantum dot with a short-range impurity. The detailed analysis
can be found in [8]. Therein, harmonic oscillator potential was used to introduce the
confinement, and the point interaction (δ potential) was used to model the impurity.
For a physical essence of quantum dots we refer reader to [9]. Just in brief, we may
say that the quantum dots are nanostructures with a charge carriers confinement in all
space directions. They have an atom-like energy spectrum which can be modified by
adjusting geometric parameters of the dots as well as by the presence of an impurity.

An influence of the hyperbolic geometry on properties of quantum mechanical sys-
tems is a subject of continual theoretical interest for at least two decades. Numerous
models have been studied so far, let us mention just few of them [10, 11, 12, 13]. Nat-
urally, the quantum harmonic oscillator is one of the analyzed examples [14, 15]. It
should be stressed, however, that the choice of an appropriate potential on the hyper-
bolic plane is ambiguous in this case, and several possibilities have been proposed in the
literature. With our choice, that will be discussed bellow, we will introduce an appro-
priate Hamiltonian and derive an explicit formula for the corresponding Green function.
In this sense, our model is solvable, and thus its properties may be of interest also from
the mathematical point of view.

The spectral problem for the the model leads to a differential equation which is
well known from the theory of special functions, namely, to the differential equation
of spheroidal functions. It should be stressed, however, that the history of spheroidal
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Introduction

functions is much more recent than that of more traditional special functions, like Bessel
functions or Legendre polynomials. For example, one of the basic monographs devoted
to spheroidal functions appeared only in the fifties of the last century [16], and the
notation is still not fully uniform. One can compare, for example, [16] with [6]. Here
we follow the latter source. Furthermore, there are values of parameters on which the
spheroidal functions depend that have not been fully investigated. In this connection,
note that the very values of parameters which are of interest for our model are treated
in the textbooks in a rather marginal way. Effective numerical algorithms to evaluate
spheroidal functions seem to be rather tedious to create and not available for all cases
either. These circumstances make the numerical and qualitative analysis of the spectrum
more complicated than one might expect at first glance. The numerical results were
derived with the aid of the computer algebra system Mathematica 6.0 which was the
very last version at the time of the computation and the first version where the spheroidal
functions were implemented. Those results comprise plots of the eigenvalues as functions
of the curvature and plots of the respective eigenfunctions. Beside the numerical results,
an asymptotic expansion of the eigenvalues as the curvature radius tends to infinity (the
flat limit case) is given, although it was derived in a rather formal way.

The text of Chapter II is essentially a compilation of three successive papers on the
topic, namely

• V. Geyler, P. Šťov́ıček, and M. Tušek. A quantum dot with impurity in the
Lobachevsky plane. Operator Theory: Advances and Applications, 188:135-148.
Birkhäuser Basel, 2009.

• P. Šťov́ıček and M. Tušek. On the harmonic oscillator on the Lobachevsky plane.
Russian J. Math. Phys., 14:493–497, 2007.

• P. Šťov́ıček and M. Tušek. On the spectrum of the quantum dot in the Lobachevsky
plane. To appear in Operator Theory: Advances and Applications, 198:291-304.
Birkhäuser Basel.

The problem and the model for the quantum dot with an impurity in the Lobachevsky
plane was suggested by Vladimir Geyler, the coauthor of the first paper but primarily
our dear colleague who, to our great sorrow, passed away very unexpectedly in 2007. It
was a great pleasure and honor to collaborate with him.

In Chapter III, we examine the two-dimensional hydrogen atom. Let us point out
that the word ’two-dimensional’ only indicates that the motion of the electron around a
positive point charge is constrained in the plane. In this case the central force between
the electron and the nucleus is determined by the attractive Coulomb potential

V p%q � �C

%
, % �a

x2 � y2 (I.1)

which we will call the two-dimensional Coulomb potential. A detailed analytic analysis of
this system was given in [17]. The two-dimensional Coulomb Green function was derived
even earlier in [18]. It is a recently reviewed fact that the Schrödinger equation for the
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Introduction

two-dimensional hydrogen atom is separable and integrable in circular, parabolic, and
elliptical coordinates [19]. The two-dimensional hydrogen atom was recently investigated
in various non-trivial modifications: confined in a subset of the plane [20], in a strong
magnetic field [21] or with spin-orbit Rashba interaction [22]. The problem was also
reformulated in the momentum space in the source [23].

Our contribution to the problem involves setting the domain of definition of the
respective Hamiltonian. To do so, selfadjoint extensions methods will be applied. As a
result we shall obtain not only the Hamiltonian for the two-dimensional hydrogen atom
itself but Hamiltonians with a one-center point interaction too. An explicit formula for
the Green function of the two-dimensional hydrogen atom with the point interaction will
be derived and the energy spectrum will be analyzed.

Let us remark that if a hydrogen atom is considered to be two-dimensional in the
strict sense, i.e. that all fields including electromagnetic fields, the angular momentum,
and the spin are confined to a plane, which will not be our case, then (I.1) is no longer
referred as the two-dimensional Coulomb potential. Indeed, the Coulomb law may be
derived from the first Maxwell’s equation (Gauss’s law for electrostatics) that states

div E � σ

where, in our case, σ stands for the (planar) charge density, Ez � 0, and the electric
field is supposed to be rotationally symmetric. Integration of this equation over a disk
of radius r together with application of Green’s theorem gives the following result for
the potential

V prq � const. log r.

The Schrödinger equation for this potential was studied in [24]. The spectrum was shown
to be purely discrete and bounded bellow. Nevertheless, for a quantitative determination
of the eigenvalues, numerical methods had to be involved.

Chapter IV is devoted to the study of the last system, the hydrogen atom in a
thin plane-parallel slab of the width a. The problem and the respective model was
suggested by Pierre Duclos from Universite du Sud, Toulon. We constrain the atom in
the slab simply by an appropriate choice of the domain of definition, namely we set the
domain to be H1

0pΩaq XH2pΩaq � L2pΩaq. This choice, in principle, corresponds to the
Dirichlet boundary condition on the parallel planes. The resulting Hamiltonian seems
to be resistant to a direct analytic treatment. Nevertheless, our results implies that it is
possible to turn attention to a two-dimensional model described by the so-called effective
Hamiltonian.

The adjective ’effective’ should be understood in the following way: the eigenvalues
(at least these at a bottom of the spectrum) of the exact atomic Hamiltonian tend to
the eigenvalues of the effective one as aÑ 0. The effective Hamiltonian is a Schrödinger
operator acting on a Hilbert space that is isomorphic to L2pR2q but its potential part is
rather complicated and the respective model is still barely solvable. However, we have
proved that the norm resolvent limit of the effective Hamiltonian as a Ñ 0 is nothing
but the two-dimensional hydrogen atom Hamiltonian (or shortly Coulomb Hamiltonian)
plus the energy of the lowest transversal mode. The latter model is exactly solvable as
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is demonstrated in Chapter III. Consequently, we will use an exact knowledge of the
eigenvalues of the two-dimensional Coulomb Hamiltonian to approximate the eigenvalues
of the original exact Hamiltonian. Moreover, we will set the rate and the accuracy of
this approximation as aÑ 0, and compute several terms in a perturbation expansion for
the lowest eigenvalue of the effective Hamiltonian. Note that the effective Hamiltonian
is not holomorphic in a zero neighborhood of the complex a-plane, as there are powers
of log a in the expansion.

From the perspective of future research, the last system studied seems very promis-
ing. First of all, one may look for a Hamiltonian that approximates the effective Hamil-
tonian better than the Coulomb one but is still solvable. For sure, this Hamiltonian
is not the Coulomb one with a one-center point interaction since the addition of the
point interaction results in the appearance of an eigenvalue below the spectrum of the
pure Coulomb Hamiltonian (see Section III.2.5) whereas the spectrum of the effective
Hamiltonian (minus the energy of the lowest transversal mode) always lies above it.
Next, generalizations of the system are of interest. Natural question arises whether the
norm resolvent limit of the Hamiltonian of a multi-electron atom in a thin slab is just the
Hamiltonian of the two-dimensional analogue. It seems so, since the methods and proofs
for the single-electron case may be modified to be applicable in the multi-electron case
too. One may also ask what happens with the energy spectrum if a slab of a different
shape is considered.

For the reader’s convenience and a transparency of the document, we supply sev-
eral appendices. Appendix A comprises plots of the functions that are outputs of our
numerical computations. In Appendix B, we not only supply several auxiliary results
but we also review and extend some of the standard facts on the Dirichlet Schrödinger
operators. Appendix C is devoted exclusively to the spheroidal functions. It contains
basic definitions and results which are necessary for our approach.

4



II. Quantum Dot with Impurity
in the Lobachevsky Plane

II.1 Model

Denote by p%, φq, 0 ¤ %   8, 0 ¤ φ   2π, the geodesic polar coordinates in the
Lobachevsky plane. Then the metric tensor is diagonal and reads

pgijq � diag
�
1, a2 sinh2 %

a

	
where a, 0   a   8, denotes the so called curvature radius which is related to the
scalar curvature by the formula R � �2{a2. Furthermore, the volume form equals
dV � a sinhp%{aqd% ^ dφ. The Hamiltonian for a free particle of mass m � 1{2 takes
the form

H0 � �
�

∆LB � 1
4a2



� � 1?

g

B
Bxi

?
ggij BBxj

� 1
4a2

where ∆LB is the Laplace-Beltrami operator and g � det gij . We have set ~ � 1.
The choice of a potential modeling the confinement is ambiguous. We naturally

require that the potential takes the standard form of the quantum dot potential in the
flat limit (a Ñ 8). This is to say that, in the limiting case, it becomes the potential
of the isotropic harmonic oscillator V8p%q � 1

4ω2%2. However, this condition clearly
does not specify the potential uniquely. Having the freedom of choice let us discuss the
following two possibilities:

aq Vap%q � 1
4 a2ω2 tanh2 %

a , (II.1)
bq Uap%q � 1

4 a2ω2 sinh2 %
a . (II.2)

Potential Va is the same as that proposed in [25] for the classical harmonic oscillator
in the Lobachevsky plane. With this choice, it has been demonstrated in [25] that the
model is superintegrable, i.e., there exist three functionally independent constants of
motion. Let us remark that this potential is bounded, and so it represents a bounded
perturbation to the free Hamiltonian. On the other hand, the potential Ua is unbounded.
Moreover, as shown below, the stationary Schrödinger equation for this potential leads,
after the partial wave decomposition, to the differential equation of spheroidal functions.
In what follows, we concentrate exclusively on case b).
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Quantum Dot with Impurity in the Lobachevsky Plane

The impurity is modeled by a δ-potential which is introduced with the aid of s.a.
extensions and is determined by boundary conditions at the base point. We restrict
ourselves to the case when the impurity is located in the center of the dot (% � 0). Thus
we start from the following symmetric operator:

H � �
� B2

B%2
� 1

a
coth

�%

a

	 B
B% �

1
a2

sinh�2
�%

a

	 B2

Bϕ2
� 1

4a2



� 1

4
a2ω2 sinh2

�%

a

	
,

Dom H � C8C pp0,8q � S1q � L2
�p0,8q � S1, a sinh

�%

a

	
d%dϕ

	
.

(II.3)

II.2 Selfadjoint extensions

Substituting ξ � coshp%{aq we obtain

H � 1
a2

�
p1� ξ2q B2

Bξ2
� 2ξ

B
Bξ � p1� ξ2q�1 B2

Bϕ2
� a4ω2

4
pξ2 � 1q � 1

4

�
�:

1
a2

H̃,

Dom H � C8C pp1,8q � S1q � L2
�p1,8q � S1, a2dξ dϕ

�
.

(II.4)

Using the rotational symmetry which amounts to a Fourier transform in the variable ϕ,
H̃ may be decomposed into a direct sum as follows

H̃ � 8à
m��8

H̃m,

H̃m � � BBξ
�
pξ2 � 1q BBξ



� m2

ξ2 � 1
� a4ω2

4
pξ2 � 1q � 1

4
,

Dom H̃m � C8C p1,8q � L2pp1,8q, dξq.
Note that H̃m is a Sturm-Liouville operator.

Proposition II.1 H̃m is e.s.a. for m � 0, H̃0 has deficiency indices p1, 1q.
Proof. The operator H̃m is symmetric and semibounded, and so the deficiency indices

are equal. If we set

µ � |m|, 4θ � �a4ω2

4
, λ � �z � 1

4
,

then the eigenvalue equation�
� BBξ

�
pξ2 � 1q BBξ



� m2

ξ2 � 1
� a4ω2

4
pξ2 � 1q � 1

4



ψ � zψ (II.5)

takes the standard form of the differential equation of spheroidal functions (C.1). Ac-
cording to Chapter 3.12, Satz 5 in [16], for µ � m P N0 a fundamental system tyI, yIIu
of solutions to equation (II.5) exists such that

yIpξq � p1� ξqm{2 P1p1� ξq, P1p0q � 1,

yIIpξq � p1� ξq�m{2P2p1� ξq �Am yIpξq log p1� ξq,

6



Quantum Dot with Impurity in the Lobachevsky Plane

where, for |ξ�1|   2, P1 and P2 are analytic functions in ξ, λ, θ; and Am is a polynomial
in λ and θ of total order m with respect to λ and

?
θ; A0 � �1{2.

Suppose that z P CzR. For m � 0, every solution to (II.5) is square integrable
near ξ � 1; while for m � 0, yI is the only one solution, up to a factor, which is
square integrable in a neighborhood of 1. On the other hand, by a classical analysis
due to Weyl, there exists exactly one linearly independent solution to (II.5) which is
square integrable in a neighborhood of 8, see Theorem XIII.6.14 in [26]. In the case of
m � 0 this obviously implies that the deficiency indices are p1, 1q. If m � 0 then, by
Theorem XIII.2.30 in [26], the operator H̃m is e.s.a. l

Define the maximal operator associated to the formal differential expression

L � � BBξ
�
pξ2 � 1q BBξ



� a4ω2

4
pξ2 � 1q � 1

4

as follows

Dom H̃max �
"

f P L2pp1,8q, dξq : f, f 1 P ACpp1,8qq,
� B
Bξ

�
pξ2 � 1q BfBξ



� a4ω2

4
pξ2 � 1qf P L2pp1,8q, dξq

*
,

H̃maxf � Lf.

According to Theorem 8.22 in [27], H̃max � H̃:
0.

Proposition II.2 Let κ P p�8,8s. The operator H̃0pκq defined by the formulae

Dom H̃0pκq �
!
f P Dom H̃max : f1 � κf0

)
, H̃0pκqf � H̃maxf,

where

f0 :� �4πa2 lim
ξÑ1�

fpξq
logp2a2pξ � 1qq , f1 :� lim

ξÑ1� fpξq � 1
4πa2

f0 log
�
2a2pξ � 1

�q,
is a s.a. extension of H̃0. There are no other s.a. extensions of H̃0.

Proof. The methods to treat δ like potentials are now well established [28]. Here we
follow an approach described in [29], and we refer to this source also for the terminology
and notations. Near the point ξ � 1, each f P Dom H̃max has the asymptotic behavior

fpξq � f0 F pξ, 1q � f1 � op1q as ξ Ñ 1�
where f0, f1 P C and F pξ, ξ1q is the divergent part of the Green function for the Friedrichs
extension of H̃0. By formula (II.11) which is derived below,

F pξ, 1q � �1{p4πa2q log
�
2a2pξ � 1q� .

7



Quantum Dot with Impurity in the Lobachevsky Plane

Proposition 1.37 in [29] states that pC, Γ1, Γ2q, with Γ1f � f0 and Γ2f � f1, is a
boundary triple for H̃max.

According to Theorem 1.12 in [29], there is a one-to-one correspondence between all
s.a. linear relations κ in C and all s.a. extensions of H̃0 given by κ ÐÑ H̃0pκq where
H̃0pκq is the restriction of H̃max to the domain of vectors f P Dom H̃max satisfying

pΓ1f, Γ2fq P κ. (II.6)

Every s.a. relation in C is of the form κ � Cv � C2 for some v P R2, v � 0. If (with
some abuse of notation) v � p1, κq, κ P R, then relation (II.6) means that f1 � κf0. If
v � p0, 1q then (II.6) means that f0 � 0 which may be identified with the case κ � 8.
l

Remark II.3 Let q0 be the closure of the quadratic form associated to the semibounded
symmetric operator H̃0. Only the s.a. extension H̃0p8q has the property that all func-
tions from its domain have no singularity at the point ξ � 1 and belong to the form
domain of q0. It follows that H̃0p8q is the Friedrichs extension of H̃0 (see, for example,
Theorem X.23 in [2] or Theorems 5.34 and 5.38 in [27]).

II.3 Spectral Analysis

II.3.1 Green function for the unperturbed Hamiltonian

Let us consider the Friedrichs extension of the operator H̃ in L2
�p1,8q � S1,dξ dϕ

�
which was introduced in (II.4). The resulting s.a. operator is in fact the Hamiltonian
for the impurity free case, let us denote it H̃p8q. The corresponding Green function Gz

is the generalized kernel of the Hamiltonian, and it should obey the equation

pH̃p8q � zqGzpξ, ϕ; ξ1, ϕ1q � δpξ � ξ1qδpϕ� ϕ1q � 1
2π

8̧

m��8
δpξ � ξ1qeimpϕ�ϕ1q.

If we suppose Gz to be of the form

Gzpξ, ϕ; ξ1, ϕ1q � 1
2π

8̧

m��8
Gm

z pξ, ξ1qeimpϕ�ϕ1q, (II.7)

then, for all m P Z,
pH̃mp8q � zqGm

z pξ, ξ1q � δpξ � ξ1q, (II.8)

where H̃mp8q, m P Zz t0u , is nothing but the closure of H̃m. From now on, the closure
of an e.s.a. operator will be denoted by the same latter as the operator itself.

Let us consider an arbitrary fixed ξ1, and set

µ � m, 4θ � �a4ω2

4
, λ � �z � 1

4
.

8



Quantum Dot with Impurity in the Lobachevsky Plane

Then for all ξ � ξ1, the equation (II.8) takes the standard form of the differential equation
of spheroidal functions (C.1). As one can see from (C.8), the solution which is square
integrable near infinity equals S

|m|p3q
ν pξ,�a4ω2{16q. Furthermore, the solution which is

square integrable near ξ � 1 equals Ps
|m|
ν pξ,�a4ω2{16q as one may verify with the aid

of the asymptotic formula

Pm
ν pξq � Γpν �m� 1q

2m{2 m! Γpν �m� 1q pξ � 1qm{2 as ξ Ñ 1�, for m P N0.

We conclude that the mth partial Green function equals

Gm
z pξ, ξ1q � � 1

pξ2 � 1qW pPs
|m|
ν , S

|m|p3q
ν q Ps|m|ν

�
ξ ,�a4ω2

16



S|m|p3qν

�
ξ¡,�a4ω2

16



(II.9)

where the symbol W pPs
|m|
ν , S

|m|p3q
ν q denotes the Wronskian, and ξ , ξ¡ are respectively

the smaller and the greater of ξ and ξ1. By the general Sturm-Liouville theory, the
factor pξ2 � 1qW pPs

|m|
ν , S

|m|p3q
ν q is constant. However the value of this constant can not

be given as there is no explicit expression for the Wronskian. Nevertheless we will be
able to compute the Krein Q-function without this knowledge, just by application of
Theorem II.1.

Notice that since Gm
z � G�m

z , the decomposition (II.7) may be simplified to

Gzpξ, ϕ; ξ1, ϕ1q � 1
2π
G0

z pξ, ξ1q � 1
π

8̧

m�1

Gm
z pξ, ξ1q cos rmpϕ� ϕ1qs. (II.10)

II.3.2 Krein Q-function

The Krein Q-function plays a crucial role in the spectral analysis of impurities. It is
defined at a point of the configuration space as the regularized Green function evaluated
at this point. Here we deal with the impurity located in the center of the dot (ξ � 1, ϕ
arbitrary), and so, by definition,

Qpzq :� Greg
z p1, 0; 1, 0q.

Due to the rotational symmetry,

Gzpξq :� Gzpξ, ϕ; 1, 0q � Gzpξ, ϕ; 1, ϕq � Gzpξ, 0; 1, 0q � 1
2π
G0

z pξ, 1q,
and hence

pH̃0p8q � zqGzpξq � 0, for ξ P p1,8q.
Let us note that from the explicit formula (II.9), one can deduce that the coefficients
Gm

z pξ, 1q in the series in (II.10) vanish for m P N. The solution to this equation is

Gzpξq9S0p3q
ν

�
ξ,�a4ω2

16



.

The constant of proportionality can be determined with the aid the following theorem
which we reproduce from [29].

9
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Theorem II.1 Let distpx, yq denote the geodesic distance between points x, y of a two-
dimensional manifold X of bounded geometry. Let

U P PpXq :� !
U : U� :� max tU, 0u P Lp0

locpXq, U� :� max t�U, 0u P ņ

i�1

LpipXq)
for an arbitrary n P N and 2 ¤ pi ¤ 8. Then the Green function GU of the Schrödinger
operator HU � �∆LB �U has the same on-diagonal singularity as that for the Laplace-
Beltrami operator itself, i.e.,

GU pζ; x, yq � 1
2π

log
1

distpx, yq � Greg
U pζ; x, yq

where Greg
U is continuous on X �X.

Let us denote by GHp8q
z and QHp8qpzq the Green function and the Krein Q-function

for Hp8q, respectively. Since H̃p8q � a2Hp8q and pH̃p8q � zqGz � δ, we have

GHp8q
z pξ, ϕ; ξ1, ϕ1q � a2Ga2zpξ, ϕ; ξ1, ϕ1q, QHp8qpzq � a2Qpa2zq.

One may verify that

log distp%, 0;~0q � log % � logpa arg cosh ξq � 1
2

log
�
2a2pξ � 1q��Opξ � 1q

as % Ñ 0� or, equivalently, ξ Ñ 1�. Finally, for the divergent part

F pξ, ξ1q :� Gzpξ, ϕ; ξ1, ϕq � Greg
z pξ, ϕ; ξ1, ϕq � Gzpξ, 0; ξ1, 0q � Greg

z pξ, 0; ξ1, 0q
of the Green function Gz we obtain the expression

F pξ, 1q � � 1
4πa2

log
�
2a2pξ � 1q� . (II.11)

From the above discussion, it follows that the Krein Q-function depends on the coeffi-
cients α, β in the asymptotic expansion

S0p3q
ν

�
ξ,�a4ω2

16



� α logpξ � 1q � β � op1q as ξ Ñ 1�, (II.12)

and equals

Qpzq � � β

4πa2α
� logp2a2q

4πa2
. (II.13)

To determine α, β we need relation (C.10) for the radial spheroidal function of the
third kind. For ν and ν � 1{2 being non-integer, formula (C.12) implies that

S0p1q
ν pξ, θq � sinpνπq

π
e�iπpν�1qK0

ν pθqQs0�ν�1pξ, θq,
S

0p1q�ν�1pξ, θq � sinpνπq
π

eiπνK0�ν�1pθqQs0
νpξ, θq.

(II.14)

10
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Applying the symmetry relation (C.5) for expansion coefficients, we derive that

Qs0�ν�1pξ, θq �
8̧

r��8
p�1qra0�ν�1,rpθqQ0�ν�1�2rpξq

� 8̧

r��8
p�1qra0

ν,rpθqQ0�ν�1�2rpξq.
Using the following asymptotic formulae (see [6])

Q0
νpξq � �1

2
log

ξ � 1
2

�Ψp1q �Ψpν � 1q �Oppξ � 1q logpξ � 1qq
together with the series expansion in (C.11) and formulae (II.14), we deduce that, as
ξ Ñ 1�,

S0p1q
ν pξ, θq � � sinpνπq

π
e�iπpν�1qK0

ν pθq
�
�
s0
νpθq�1

�
1
2

log
ξ � 1

2
�Ψp1q � π cotpνπq



�Ψsνpθq

�
,

S
0p1q�ν�1pξ, θq � � sinpνπq

π
eiπνK0�ν�1pθq

�
�
s0
νpθq�1

�
1
2

log
ξ � 1

2
�Ψp1q



�Ψsνpθq

�
,

where the coefficients sµ
npθq are introduced in (C.7),

Ψsνpθq :� 8̧

r��8
p�1qra0

ν,rpθqΨpν � 1� 2rq,
and where we have made use of the following property of the digamma function: Ψp�zq �
Ψpz � 1q � π cotpπzq.

We conclude that

S0p3q
ν pξ, θq � α logpξ � 1q � β �O ppξ � 1q logpξ � 1qq as ξ Ñ 1�, (II.15)

where

α � i tanpνπq
2πs0

νpθq
�
eiπνK0�ν�1pθq � e�iπp2ν�3{2qK0

ν pθq
	

, (II.16)

β � α
�� log 2� 2Ψp1q � 2Ψsνpθqs0

νpθq�� e�2iπνs0
νpθq�1K0

ν pθq.
Substitution for α, β into (II.13) yields

Qpzq � � 1
4πa2

�
� log 2� 2Ψp1q � 2 Ψsν

�
�a4ω2

16



s0
ν

�
�a4ω2

16




� 1

2a2 tanpνπq
�

eiπp3ν�3{2q K0�ν�1p�a4ω2

16 q
K0

ν p�a4ω2

16 q � 1

��1

� logp2a2q
4πa2

(II.17)
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where ν is chosen so that

λ0
ν

�
�a4ω2

16



� �z � 1

4
. (II.18)

For ν � n being an integer, we can immediately use the known asymptotic formulae
for the spheroidal wave functions (see Section 16.12 in [6]) which give

S0p3q
n pξ, θq � is0

npθq
4
?

θK0
npθq logpξ � 1q � is0

npθq log 2
4
?

θK0
npθq

� is0
npθq2

2
?

θK0
npθq

¸
2r¥�n

p�1qra0
n,rpθqhn�2r � K0

npθq
s0
npθq �Opξ � 1q,

as ξ Ñ 1�. Here, h0 � 1, hk � 1{1 � 1{2 � . . . � 1{k. By (II.13), one can calculate the
Q-function in this case, too.

II.3.3 Green function for the perturbed Hamiltonian

The Green function of the Hamiltonian describing a quantum dot with an impurity is
given by the Krein resolvent formula

GHpχq
z pξ, φ; ξ1, φ1q � GHp8q

z pξ, φ; ξ1, φ1q � 1
QHp8qpzq � χ

GHp8q
z pξ, 0; 1, 0qGHp8q

z p1, 0; ξ1, 0q
(recall that, due to the rotational symmetry, GH

z pξ, φ; 1, 0q � GH
z pξ, 0; 1, 0q). The param-

eter χ :� a2κ P p�8,8s determines the corresponding s.a. extension Hpχq of H. In
the physical interpretation, this parameter is related to the strength of the δ interaction.
Recall that the value χ � 8 corresponds to the Friedrichs extension of H representing
the case with no impurity.

II.3.4 General discussion on the spectrum

The unperturbed Hamiltonian Hp8q describes a harmonic oscillator in the Lobachevsky
plane. As is well known (see, for example, [30]), for the confinement potential tends
to infinity as % Ñ 8, the resolvent of Hp8q is compact, and the spectrum of Hp8q is
discrete and semibounded. A similar observation about the basic spectral properties is
also true for the operators Hpχq for any χ P R since, by the Krein resolvent formula, the
resolvents for Hpχq and Hp8q differ by a rank one operator. Moreover, the multiplicities
of eigenvalues of Hpχq and Hp8q may differ at most by �1 (see [27, Section 8.3]).

Let us denote by Hm, m P Z, the restriction of Hp8q to the eigenspace of the angular
momentum with eigenvalue m. This means that H0 � a�2H̃0p8q . From now on, if not
otherwise stated, we will write only H̃0 instead of H̃0p8q to unify the notation. For
quite general reasons, the spectrum of Hm, for any m, is semibounded below, discrete
and simple [27]. We denote the eigenvalues of Hm in ascending order by En,mpa2q,
n P N0.

The spectrum of the total Hamiltonian Hpχq, χ � 8, consists of two parts (in a full
analogy with the Euclidean case [8]):

12
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i. The first part is formed by those eigenvalues of Hpχq which belong, at the same
time, to the spectrum of Hp8q. More precisely, this part is exactly the union of
eigenvalues of Hm for m running over Zzt0u. Their multiplicities are discussed
below in Section II.3.8.

ii. The second part is formed by solutions to the equation

QHp8qpzq � χ (II.19)

with respect to the variable z. Let us denote them in ascending order by εnpa2, χq,
n P N0. These eigenvalues are sometimes called the point levels and their multi-
plicities are at least one. In more detail, εnpa2, χq is a simple eigenvalue of Hpχq if
it does not lie in the spectrum of Hp8q, and this happens if and only if εnpa2, χq
does not coincide with any eigenvalue E`,mpa2q for ` P N0 and m P Z, m � 0.

Remark II.4 The lowest point level, ε0pa2, χq, lies below the lowest eigenvalue of Hp8q
which is E0,0pa2q, and the point levels with higher indices satisfy the inequalities

En�1,0pa2q   εnpa2, χq   En,0pa2q, n � 1, 2, 3, . . . .

II.3.5 Spectrum of the unperturbed Hamiltonian

Our goal is to find the eigenvalues of the mth partial Hamiltonian Hm, i.e., to find
solutions in Dom Hm to the equation

Hmψpξq � zψpξq,
or, equivalently,

H̃mψpξq � a2zψpξq. (II.20)

As already stated above, this equation coincides with the equation of the spheroidal
functions provided we set µ � |m|, θ � �a4ω2{16, and the characteristic exponent ν is
chosen so that

λm
ν

�
�a4ω2

16



� �a2z � 1

4
.

The only solution (up to a multiplicative constant) that is square integrable near infinity
is S

|m|p3q
ν pξ,�a4ω2{16q.
Proposition C.1 describes the asymptotic expansion of this function at ξ � 1 for

m P N. It follows that the condition on the square integrability is equivalent to the
equality

eip3ν�1{2qπKm�ν�1

�
�a4ω2

16



�Km

ν

�
�a4ω2

16



� 0. (II.21)

Furthermore, as deduced in (II.15), S
0p3q
ν pξ,�a4ω2{16q has logarithmic divergency at ξ �

1 that disappears just for those values of ν for which (II.21) holds (see (II.16)). Taking

13
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into account that the Friedrichs extension has continuous eigenfunctions we conclude
that equation (II.21) guarantees existence of the solution to (II.20) in Dom H̃m.

As far as we see it, the equation (II.21) can be solved only by means of numerical
methods. For this purpose we made use of the computer algebra system Mathematica
6.0. For the numerical computations we set ω � 1. As an illustration, Figures A.1
and A.2 depict several first eigenvalues of the Hamiltonian H0 and H1, respectively, as
functions of the curvature radius a. The dashed asymptotic lines correspond to the flat
limit (a Ñ8).

Remark II.5 In numerical computations, the following form of the condition (II.21)
proved to be rather effective:

lim
ξÑ1� pξ � 1q|m|{2�1

BS|m|p3q�1{2�it

�
ξ,�a4

16

	
Bξ � 0.

This equation was solved with respect to t P R.

Denote the nth normalized eigenfunction of the mth partial Hamiltonian H̃m by
ψ̃n,mpξq. Obviously, the eigenfunctions for the values of the angular momentum m and
�m are the same and are proportional to S

|m|p3q
ν pξ,�a4ω2{16q, with ν satisfying the

equation (II.21). Let us return to the original radial variable % and, moreover, regard
H̃m as an operator acting on L2pR�,d%q. This amounts to an obvious isometry

L2pR�, a�1 sinhp%{aqd%q Ñ L2pR�, d%q : fp%q ÞÑ a�1{2 sinh1{2p%{aqfp%q.
The corresponding normalized eigenfunction of H̃m, with an eigenvalue a2z, equals

ψn,mp%q �
�

1
a

sinh
�%

a

	
1{2
ψ̃n,m

�
cosh

�%

a

		
. (II.22)

At the same time, relation (II.22) gives the normalized eigenfunction of Hm (considered
on L2pR�, d%q) with the eigenvalue z. The same Hilbert space may be used also in the
limiting Euclidean case (a � 8). The eigenfunctions in the flat case, Φn,m, are well
known and satisfy

Φn,m9%|m|�1{2e�ω%2{4
1F1

�
�n, |m| � 1,

ω%2

2



. (II.23)

The fact that we stick to the same Hilbert space in all cases facilitates the comparison
of eigenfunctions for various values of the curvature radius a. We present plots of several
first eigenfunctions of H0 (Figures A.3, A.4, and A.5) and H1 (Figures A.6, A.7, and
A.8) for the values of the curvature radius a2 � 1 (the solid line), 10 (the dashed line),
and 8 (the dotted line). Note that, in general, the smaller is the curvature radius a the
more localized is the particle in the region near the origin.
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II.3.6 Point levels

As has been stated, the point levels are solutions to the equation (II.19) with respect to
the spectral parameter z. In general, Qpz̄q � Qpzq and so the function Qpzq takes real
values on the real axis. Since we know the explicit expression for the Krein Q-function
as a function of the characteristic exponent ν rather than of the spectral parameter z
itself it is of importance to know for which values of ν the spectral parameter z is real.
Propositions C.2 and C.3 give the answer. For ν P R and for ν of the form ν � �1{2� it
where t is real, the spheroidal eigenvalue λm

ν p�a4ω2{16q is real, and so the same is true for
z. Moreover, these values of ν reproduce the whole real z axis. With this knowledge, one
can plot the Krein Q-function as a function of z for an arbitrary value of the curvature
radius a. Note that for a � 8, the Krein Q-function is well known as a function of the
spectral parameter z (see [31] or [32]) and equals (setting ω � 1)

Qpzq � 1
4π

�
�Ψ

�
1� z

2



� logp2q � 2Ψp1q



.

Next, in Figure A.9, we present plots of the Krein Q-function for several distinct
values of the curvature radius a. Moreover, in Figure A.10, one can compare the behavior
of the Krein Q-function for a comparatively large value of the curvature radius (a2 � 24)
and for the Euclidean case (a � 8).

Again, the equation (II.19) can be solved only numerically. Fixing the parameter χ
one may be interested in the behavior of the point levels as functions of the curvature
radius a. See Figures A.11 and A.12 for the corresponding plots, with χ � 0 and 0.5,
respectively, where the dashed asymptotic lines again correspond to the flat case limit
(a � 8). Note that for the curvature radius a large enough, the lowest eigenvalue is
negative provided χ is chosen smaller than Qp0q � 0.1195.

II.3.7 Variational approach for large values of a

The mth partial Hamiltonian Hm, if considered on L2pR�, d%q, acts like

Hm � � B2

B%2
� m2 � 1

4

a2 sinh2p%
aq �

1
4

a2ω2 sinh2
�%

a

	 �: � B2

B%2
� Vmpa, %q.

For a fixed % � 0, one can easily derive that

Vmpa, %q � m2 � 1
4

%2
� 1

4
ω2%2 � 1

4 �m2

3a2
� ω2%4

12a2
�O

�
1
a4



as aÑ8.

Recall that the mth partial Hamiltonian of the isotropic harmonic oscillator on the
Euclidean plane, HE

m, also considered on L2pR�,d%q, has the form

HE
m :� � B2

B%2
� m2 � 1

4

%2
� 1

4
ω2%2.
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Table II.1: Comparison of numerical and asymptotic results for the eigenvalues, a2 � 24

E0,0 E1,0 E2,0 E0,1 E1,1 E2,1

numerical 1.0265 3.162 5.42 2.060 4.259 6.58
asymptotic 1.0268 3.169 5.46 2.058 4.258 6.59
error (%) -0.03 -0.22 -0.74 0.10 0.02 -0.15

This suggests that it may be useful to view the Hamiltonian Hm, for large values of the
curvature radius a, as a perturbation of HE

m,

Hm � HE
m � 1

12a2
p1� 4m2 � ω2%4q �: HE

m � 1
12a2

Ump%q.
The eigenvalues of the compared Hamiltonians have the same asymptotic expansions up
to the order 1{a2 as aÑ8.

Let us denote by EE
n,m, n P N0, the nth eigenvalue of the Hamiltonian HE

m. It is well
known that

EE
n,m � p2n� |m| � 1qω

and that the multiplicity of EE
n,m in the spectrum of HE equals 2n � |m| � 1. The

asymptotic behavior of En,mpa2q may be deduced from the standard perturbation theory
and is given by the formula

En,mpa2q � EE
n,m � 1

12a2

xΦn,m, UmΦn,myxΦn,m, Φn,my as a Ñ8, (II.24)

where Φn,m is given by (II.23). The scalar products occurring in formula (II.24) can be
readily evaluated in L2pR�, d%q with the help of Proposition B.1. The resulting formula
takes the form

En,mpa2q � p2n� |m| � 1qω �
�

2npn� |m| � 1q � |m| � 3
4



1
a2

(II.25)

as a Ñ 8. This asymptotic approximation of eigenvalues has been tested numerically
for large values of the curvature radius a. The asymptotic eigenvalues for a2 � 24 are
compared with the precise numerical results in Table II.1. It is of interest to note that
the asymptotic coefficient in front of the a�2 term does not depend on the frequency ω.

II.3.8 Discussion on the degeneracy

Since H�m � Hm the eigenvalues En,mpa2q of the total Hamiltonian Hp8q are at least
twice degenerated if m � 0. From the asymptotic expansion (II.25) it follows, after some
straightforward algebra, that no additional degeneracy occurs and thus these eigenvalues
are exactly twice degenerated at least for sufficiently large values of a. Similarly, the
eigenvalues En,0pa2q are non-degenerated in the spectrum of Hp8q.
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Applying the methods developed in [8] one may complete the analysis of the spectrum
of the total Hamiltonian Hpχq for χ � 8. Namely, the spectrum of Hpχq contains
eigenvalues En,mpa2q, m ¡ 0, with multiplicity 2 if QHp8qpEn,mpa2qq � χ, and with
multiplicity 3 if QHp8qpEn,mpa2qq � χ. Let us remark that the absence of the eigenvalues
En,0pa2q in the spectrum of Hpχq is a consequence of the fact that these eigenvalues are
simultaneously poles of the Krein Q-function. The rest of the spectrum of Hpχq is
formed by those solutions to the equation (II.19) which do not belong to the spectrum
of Hp8q. The multiplicity of all these eigenvalues in the spectrum of Hpχq equals 1.

17



III. Coulomb Plus One-Center
Point Interaction in Two
Dimensions

III.1 Selfadjoint extensions

Let C ¡ 0. Consider the following symmetric operator acting on L2pR2,dxdyq:
H � �1

2
∆x,y � Ca

x2 � y2

Dom H � C8C pR2z t0uq.
It is convenient to introduce the polar coordinates by px, yq � %pcosϕ, sinϕq and

decompose the operator H as follows:

H � 8à
m��8

Hm b IdspantYmu

Hm � �1
2
B2

B%2
� 1

2%

B
B% �

m2

2%2
� C

%

Dom Hm � C8C pR�q,
where Hm acts on L2pR�, % d%q and Ympϕq :� eimϕ is the angular momentum eigenfunc-
tion.

Using the isometry V : L2pR�, % d%q Ñ L2pR�, d%q, fp%q ÞÑ ?
%fp%q, one may

eliminate the first derivative in the action of Hm:

hm :� V HmV �1 � �1
2
B2

B%2
� 4m2 � 1

8%2
� C

%

Dom hm � C8C pR�q.
Note that hm is a Sturm-Liouville operator.

18



Coulomb Plus One-Center Point Interaction in Two Dimensions

Let us define the maximal operator hm,max associated to the formal differential ex-
pression Lm:

Lm � �1
2
B2

B%2
� 4m2 � 1

8%2
� C

%

Dom hm,max �  
f P L2pR�, d%q : f, f 1 P ACpR�q, Lmf P L2pR�, d%q(

According to Theorem 8.22 in [27], hm,max � h:m.
Suppose z P CzR and consider the equation

ph:m � zqy � 0 (III.1)

with m P N0. The equation (III.1) is nothing but the equation for the Whittaker
functions. Therefore, we get

yp%q � C1M

�
� iC?

2z
,m, 2i

?
2z%



� C2W

�
� iC?

2z
,m, 2i

?
2z%



,

where we consider =?z ¤ 0. Well known asymptotic expansions (see e.g. the source
[5]) implie that W p, , q is square integrable near infinity but is not square integrable near
zero (except the case m � 0) and Mp, , q is square integrable near zero but is not square
integrable near infinity.

From the discussion above, it follows that for m � 0, the deficiency spaces contain
only the zero vector, whereas dimKer ph:0 � zq � 1. Hence, for m being non-zero hm is
e.s.a. and h0 has deficiency indeces p1, 1q. Every s.a. extension of h0 can be described
by a boundary condition for the domain of definition. To do so, the methods and the
language summarized in the extensive source [33] may be involved in the same manner
as in Chapter II.

Proposition III.1 Let κ P p�8,8s. Then the operator h0pκq defined by the formulae

Dom h0pκq � tf P h0,max : f1 � κf0 if κ P R, and f0 � 0 if κ � 8u
h0pκqf � h0,maxf,

where

f0 :� �π lim
%Ñ0�

fp%q?
% log %

, f1 :� lim
%Ñ0�

�
fp%q?

%
� f0

π
log %



is a s.a. extension of h0. There are no other s.a. extensions of h0.

All s.a.extensions of H can be constructed involving the set th0pκq, κ P p�8, 8su.
We again distinguish them by the index κ. The Hamiltonian Hpκq of the two-dimensional
hydrogen atom with the point interaction in the origin is then given by the restriction
of H: (easily reconstructed from the known h:m) to the set of vectors such that

f1 � κf0 or f0 � 0 (for κ � 8q
is true for the coefficients in the asymptotic expansion

fp%, ϕq � � 1
π

f0 log %� f1 � op1q as % Ñ 0� .
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Remark III.2 There is another way how to describe the domain of Hpκq. For the
domain of the Hamiltonian with no point interaction it holds

Dom Hp8q �
#

f P L2pR2q, f P AC1pR2q,
� 8à

m��8
Lm

�
f P L2pR2q

+
.

For each f P Dom Hpκq, f0 P C and F P Dom Hp8q exist such that f may be decomposed
as f � f0Gz�F in the unique matter. Here, Gzpx, yq :� Gzpx, y; 0q, where Gz stands for
the Green function of Hp8q that is derived bellow. With this decomposition, it holds:

f0 � F p0q
κ�Qpzq , pHpκq � zqf � pHp8q � zqF,

where Q denotes the Krein Q-function that is also to be given.

III.1.1 Friedrichs extension

Let us consider the quadratic form q associated with H:

Dom q � Dom H, qpψq � xψ, Hψy.
The closure to this form q̄ associates the Hamiltonian Hp8q. Therefore, Hp8q is the
Friedrichs extension of H. To prove it, let us construct q̄.

Corollary B.6 states that %�1 is �∆ infinitesimally form bounded. Consequently, q
is bounded bellow. Moreover, for the norm induced by q we have:

1
2
}∇ψ}2 � pM � 1q}ψ}2 ¥ }ψ}21� � qpψq � pM � 1q}ψ}2

¥
�

1
2
� Γ

�
1
4

�4
C

8π2a

�
}∇ψ}2 �

�
M � 1� Γ

�
1
4

�4
Ca

8π2

�
}ψ}2,

where �M, M ¡ 0, is a lower bound of q and a ¡ 0. It is easy to find a pair of a and
M such that the both expressions in the brackets on the RHS are positive. Therefore,
the norm }.}1� and the norm on H1pR2q are equivalent. Consequently, q̄ is defined on
H1pR2q because Dom q is a dense subspace of H1pR2q.

The Friedrichs extension of H is the only s.a. extension of H such that its domain
is a subset of Dom q̄ (see Theorem X.23 in [2]). By Remarks III.2 and III.3, we see that
Dom Hpκq � Dom q̄ implies κ � 8.

III.2 Spectral analysis

III.2.1 Green function for the unperturbed Hamiltonian

We will find the resolvent kernels for the partial Hamiltonians h̄m � h:m, m � 0, and
h0p8q, next we will easily use them to construct the resolvent kernel of the Hamiltonian
Hp8q. Let us assume

ph̄m � zqy � 0, ph0p8q � zqy � 0.
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Again we face the equation for the Whittaker functions. The square integrability of
these functions has been discussed above. One may use asymptotic expansions for the
Whittaker functions to compute their Wronskian because, as a constant, it may be
evaluated in an arbitrary point, e.g., r Ñ 0�. After some manipulations, we obtain the
following result (verified also in Mathematica 7.0.0 ):

W

�
W

�
� iC?

2z
,m, 2i

?
2z%



,M

�
� iC?

2z
,m, 2i

?
2z%




� 2i

?
2zp2mq!

Γ
�

1
2 �m� iC?

2z

	 .

Finally, by the general Green function theory of the Sturm Liouville operators, for
the Green function Gz of the total Hamiltonian Hp8q, we get

Gzp%, ϕ; %1, ϕ1q � 1
2π

8̧

m��8
Γ
�

1
2 � |m| � iC?

2z

	
i
?

2zp2|m|q!?%%1 M

�
� iC?

2z
, |m|, 2i

?
2z% 



�W

�
� iC?

2z
, |m|, 2i

?
2z%¡



eimpϕ�ϕ1q,

(III.2)

where % , %¡ denotes smaller, respectively greater out of %, %1.
Remark III.3 Note that by the definition of the m-th Sobolev space, it may be directly
verified that Gzp. ; 0q P H1�εpR2q for every ε ¡ 0 but Gzp. ; 0q R H1pR2q.
Remark III.4 In [18], it is shown that n-dimensional Coulomb Green’s function can
be obtained by differentiation of the corresponding functions in the one-dimensional (n
odd) or two-dimensional (n even) case. An analytic expression for the two-dimensional
case is given but it slightly differs from our result. A factor 1{p2|m|q! in the sum (III.2)
is missing. This misprint is reproduced in the later paper [17] too.

III.2.2 Eigenvalues of the unperturbed Hamiltonian

The eigenvalues of Hp8q correspond to the singularities of the respective Green function,
i.e., those values of z P R� which 1{2� |m| � iC{?2z � �n, n P N0, for. This equation
implies

z � � C2

2p|m| � n� 1{2q2 �: λm,n. (III.3)

If we introduce a principal quantum number as N :� |m| � n � 1, N P N, then we
can denote the eigenvalues by a single index λm,n � λN . The multiplicity of λN in the
spectrum of Hp8q is 2N � 1.

The appropriate unnormalized eigenfunctions are

ψ̃m,np%q � %�1{2W
�
|m| � n� 1{2, |m|, 2C%

|m| � n� 1{2



� %�1{2e� C%|m|�n�1{2
�

2C%

|m| � n� 1{2

|m|�1{2 p�qnn!Lp2|m|qn

�
2C%

|m| � n� 1{2



,

(III.4)
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where L
p2|m|q
n stands for the associated Laguerre polynomial. With the aid of Proposition

B.1, the normalization factor may be deduced to be:

}ψ̃m,n}2 � 2πC�2pn� |m| � 1{2q2n!pn� 2|m|q!. (III.5)

The factor 2π comes from integration in the angular variable.

III.2.3 Krein Q-function

The Krein Q-function may be computed as the regularized Green function in the point
p0; 0q (see [33]), i.e., Qpzq � Greg

z p0; 0q. We will find the asymptotic expansion of
Gzp%, ϕ; 0, ϕq as % Ñ 0�.

Since
1?
%
M

�
� iC?

2z
, |m|, 2i

?
2z%



9%|m|

as % Ñ 0�, the only term of (III.2) that should be considered is that with the angular
momentum m � 0. This can be deduced from the rotational symmetry of the model
too.

Using the following asymptotic expansions (see [5])

Mpa, 0, xq � ?x�Opx3{2q as x Ñ 0

W pa, 0, xq � �2γ � log x�Ψp1{2� aq
Γp1{2� aq

?
x�Opx3{2q as x Ñ 0,

one obtains:

Gzp%, ϕ; 0, ϕq � � 1
π

�
log %� logp2i

?
2zq � 2γ �Ψ

�
1
2
� iC?

2z




�Op% log %q as % Ñ 0�.

Obviously, the divergent part is �π�1 log %. The general theory treated in [29] gives
the same result, although our potential is not in the class of potentials considered in the
source. Subtracting the divergent part, we conclude that

Qpzq � � 1
π

�
logp2i

?
2zq � 2γ �Ψ

�
1
2
� iC?

2z




.

III.2.4 Green function for the perturbed Hamiltonian

With the knowledge of the Green function for Hp8q and the respective Krein Q-function,
one may compute the Green function for an arbitrary s.a. extension of H. Denote the
Green function of Hpκq by the symbol Gκ

z . Then the Krein resolvent formula yields

Gκ
z p%, ϕ; %1, ϕ1q �Gzp%, ϕ; %1, ϕ1q � 1

Qpzq � κ
Gzp%, 0; 0, 0qGzp0, 0; %1, 0q

�Gzp%, ϕ; %1, ϕ1q � 1
Qpzq � κ

Γ
�

1
2 � |m| � iC?

2z

	2

8π2zp2|m|q! 2
?

%%1

�W

�
� iC?

2z
, |m|, 2i

?
2z%



W

�
� iC?

2z
, |m|, 2i

?
2z%1
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for all z P Res Hp8q X ResHpκq.
III.2.5 Eigenvalues of the perturbed Hamiltonian

Note that the set σ of all non-positive poles of the function Qpzq equals

σ �  �C2{p2N � 1q2, N P N
( � σpppHp8qq.

The following discussion on the eigenvalues and their multiplicities is similar to that of
Chapter II. The point part of the spectrum of Hpκq contains the eigenvalues λN with
N ¡ 1. The multiplicity of these eigenvalues in the spectrum of Hpκq is 2pN � 1q.
Additional eigenvalues are solutions to the equation

Qpzq � κ (III.6)

with respect to the spectral parameter z. The multiplicity of these eigenvalues (the so-
called point levels) in the spectrum of Hpκq is one. Let us denote them in the ascending
order by ε1pκq, ε2pκq, ε3pκq, . . . Figures A.13, A.14, A.15, and A.16 depict several first
point levels as functions of κ with C � 1. For C � 1, the following scaling property may
be used:

QCpzq � Q1
� z

C2

	� 1
π

log C.

Here the upper index is added to stress the C-dependence. The relation

κ � QC
�
εC
i pκq� � Q1

�
εC
i pκq
C2



� 1

π
log C � Q1

�
ε1i

�
κ� 1

π
log C




� 1

π
log C

implies

εC
i pκq � C2ε1i

�
κ� 1

π
log C



.
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IV. Hydrogen Atom in a Thin
Slab

IV.1 Exact Hamiltonian

Let us consider a plane parallel slab Ωa of the width a: Ωa � R2 � p�a{2, a{2q � R3.
It is well known that the hydrogen atom or a hydrogen-like ion (e.g., He�, Li2�, . . .)
is described by the Hamiltonian that in the center of mass coordinate system acts as
follows

H � �1
2
∆� C

r
,

where r :�a
x2 � y2 � z2, the reduced mass and the electron charge are set to one, and

C ¡ 0 stands for the nuclear charge. One of the possibilities how to (mathematically!)
constrain the atom in the slab is to choose a proper Hilbert space and the domain of H.
It seems natural to set

Ha � �1
2
∆� C

r
� �1

2
∆D �

�
�C

r



Dom Ha � Dom p�∆Dq � H1

0pΩaq XH2pΩaq � L2pΩaq, QpHaq � H1
0pΩaq,

where HmpΩaq stands for the mth Sobolev space, Hm
0 pΩaq denotes the closure of C8C pΩaq

with respect to the norm of HmpΩaq, and ∆D is the Dirichlet Laplacian. The selfad-
jointness of the operator Ha is discussed and proved in Appendix B.2.

Due to the form of Ωa and the Dirichlet boundary condition, the Hamiltonian
�1{2 ∆D may be decomposed with respect to the (z-axis) transversal modes as follows

�1
2
∆D �

8à
n�1

�
�1

2
∆x,y � Ea

n



b x . , χa

nyχa
n,

with

Ea
n :� n2π2

2a2

χa
npzq � χnpzq :�

c
2
a

#
cos nπz

a if n is odd
sin nπz

a if n is even.
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The projection on the lowest transversal mode is used to introduce the so-called effective
Hamiltonian.

Remark IV.1 Scaling the coordinates as x Ñ Cx and the energy as E Ñ C2E, one
can see that Ha

C is isomorphic to HCa
1 , where the lower index is added to Ha to stress

the charge dependence. More precisely, let us introduce an unitary isomorphisms WC :
L2pΩCaq Ñ L2pΩaq:

WCψpxq :� C
3{2ψpCxq.

Then WCBxiW
:
C � 1

C Bxi and WCV pxqW :
C � V pCxq for the multiplication by a scalar

function V . Hence it follows

Ha
C � C2WCHCa

1 W :
C .

Therefore, from now on we will consider C � 1.

IV.2 Effective Hamiltonian

Let us denote
P a

n � Pn :� Idb x . , χnyχn, P a � P :� P a
1 .

Then we define the effective Hamiltonian Ha
eff as a reduction of Ha on the lowest transver-

sal mode:
Ha

eff � Heff :� P aHaP a.

By this definition, Dom Ha
eff � Ran P a XDom Ha. Using decomposition of L2pΩaq,
L2pΩaq �

8à
n�1

L2pR2q b tχnuspan ,

it may be concluded that Ran P a �  
fpx, yqχ1pzq| f P L2pR2q(. If we want functions

from Ran P a to be in Dom Ha, i.e., in the subset of H2pΩaq, then it must hold f P
H2pR2q. For such f , the inclusion f χ1 P H1

0pΩaq is fulfilled since χ1 P C80
�x�a

2 , a
2y�.

All in all, we have deduce that

Dom Ha
eff �  

fpx, yqχ1pzq, where f P H2pR2q( .

For the action of Ha
eff , one easily derives:

Ha
eff �

�
�1

2
∆x,y � Ea

1 � V a
effpx, yq



b Id (IV.1)

with

V a
effpx, yq � 2

a

» a
2

�a
2

cos2
�

πz
a

�
dza

x2 � y2 � z2
.

Note that in fact V a
eff depends on the radial variable % :�a

x2 � y2 only, i.e., V a
effpx, yq �

V a
effp%q.
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The effective Hamiltonian (IV.1) may be viewed as an operator acting on L2pR2q.
Indeed, if we introduce an unitary isomorphisms Ua

z : L2pΩ1q Ñ L2pΩaq:
Ua

z ψpx, y, zq :� a�1{2ψ
�
x, y,

z

a

	
then it may be immediately proven that

P a
n � Ua

z P 1
nUa:

z

and consequently

Ha
eff � P aHaP a � Ua

z P 1Ua:
z HaUa

z P 1Ua:
z � Ua

z

�
�1

2
∆x,y � Ea

1 � V a
effpx, yq



bId P 1Ua:

z .

Therefore Ha
eff is unitarilly equivalent to the operator acting on L2pΩ1q with the exactly

same action. So one may view Ha
eff as an operator acting on Ran P 1 which no longer

depends on the parameter a and which we will identify with L2pR2q. The same arguments
may be applied in the case of V a

eff considered as a multiplication operator.

IV.2.1 Properties of the effective potential

Proposition IV.2 (scaling property) One immediately sees that

V a
effp%q � 1

a
V 1

eff

�%

a

	
. (IV.2)

Proposition IV.3 V a
eff P pL8pR2qqε � L2pR2q.

Proof. The expression for V a
eff may be easily split into two integrals:

V a
effp%q � 2

a

» a
2

�a
2

dza
%2 � z2

� 2
a

» a
2

�a
2

sin2
�

πz
a

�
dza

%2 � z2
.

The first integral may be directly evaluated:

2
a

» a
2

�a
2

dza
%2 � z2

� �4
a

log
2%

a�a
a2 � 4%2

�: Uap%q,
whereas the second integral is bounded in %:

sup
%¡0

2
a

» a
2

�a
2

sin2
�

πz
a

�
dza

%2 � z2
� sup

%¡0

2
a

» 1
2

� 1
2

sin2pπzqdzb
%2

a2 � z2
� 2

a

» 1
2

� 1
2

sin2pπzqdz

|z| �:
CpIV.3q

a
(IV.3)

where CpIV.3q � 1.6483. Using the following asymptotic expansions

Uap%q � �4
a

log
%

a
�Op%2q as % Ñ 0�,

Uap%q � 2
%
�Op%�3q as % Ñ8,
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one can conclude that V a
eff P L8pR2q � L2pR2q with

q0p%q � θp%� LqV a
eff P L8pR2q

q1p%q � θpL� %qV a
eff P L2pR2q,

where L ¡ 0. Moreover, lim%Ñ8 q0p%q � 0, and so }q0}8 is arbitrarily small for L large
enough. l

Proposition IV.4 (lower bound and essential spectrum) The effective Hamilto-
nian Ha

eff is lower bounded with a bound Ea
1 � 2 and σesspHa

effq � xEa
1 ,8q.

Proof. Let hC stands for the two-dimensional Coulomb Hamiltonian (also denoted Hp8q
in Chapter III). In the form sense, it holds

�2� Ea
1 ¤ hC � Ea

1 ¤ Ha
eff

because %�1 ¥ V a
eff . The first assertion is then a consequence of the min-max principle

(see [4]).
Due to Proposition IV.3, we may apply Theorem XIII.15 in [4] (a form of the Weyl’s

theorem) which gives the second assertion of the proposition. l

Proposition IV.5 (Fourier transform)

V̂ 1
effpuq � 4

�
u2 � 2π2p1� e�u{2q�

u2pu2 � 4π2q . (IV.4)

Consequently, by (IV.2), V̂ a
effpuq � aV̂ 1

effpauq. Furthermore, one can easily find asymp-
totic expansions

V̂ 1
effpuq � 1

u
�
�
�1

4
� 1

π2



�
�

1
24
� 1

4π2



u�Opu2q as uÑ 0� (IV.5)

V̂ 1
effpuq � 4

u2
�Opu�4q as uÑ8. (IV.6)

Proof. By a direct computation, one has

V̂ 1
effpuq � 1

2π

»
R��S1

e�iu% cos ϕV 1
effp%q%d%dϕ �

»
R�

J0pu%qV 1
effp%q%d%

� 4
» 1

2

0
cos2 pπzq

�»
R�

J0pu%qa
%2 � z2

%d%

�
dz � 4

» 1
2

0
cos2 pπzqe�u{2

u
dz

� 4
�
u2 � 2π2p1� e�u{2q�

u2pu2 � 4π2q ,

where J0 stands for the Bessel function of the first kind. l
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Corollary IV.6 The function: u ÞÑ u�1� V̂ 1
effpuq is positive and decreasing on R� with

lim
uÑ0�

�
u�1 � V̂ 1

effpuq
	 � 1

4
� 1

π2
, lim

uÑ8
�
u�1 � V̂ 1

effpuq
	 � 0,

which implies

}u�1 � V̂ a
eff}8 � a

�
1
4
� 1

π2



. (IV.7)

IV.2.2 Selfadjointness

It is well known that the two-dimensional free particle Hamiltonian �∆{2 is defined on
Dom p�∆{2q � H2pR2q with the form domain being Qp�∆{2q � H1pR2q. We will prove
that V a

eff    �∆{2.
Let us assume that f P H2pR2q, i.e., p1 � |k|2qf̂pkq P L2pR2q. Following a similar

line of reasoning as in the three-dimensional case (see [2]), we conclude that f̂ is an
integrable function and consequently that f is bounded and continuous. Concerning the
continuity of f precisely, we have obtained a stronger property, namely:

|fpxq � fpyq| ¤ Cγ |x� y|γ �α2γ�2} �∆f}2 � α2�2γ}f}2� ,

where α ¡ 0, γ P p0, 1q, and Cγ stands for a constant that depends on the choice of γ.
Now, let Q0 and Q1 be operators of multiplication by a function q0 and q1, respec-

tively, with the maximal domain of definition. Consider q0 P L8pR2q and q1 P L2pR2q,
and define Q � Q0 �Q1. For f P H2pR2q, we may estimate:

}Q0f} ¤ }q0}8}f}
}Q1f} ¤ }q1}}f}8 ¤ 1

2
?

π
}q1}

�
1
α
} �∆f} � α}f}



.

The last estimate is a by-product of proving that f̂ is integrable. All in all, we have

}Qf} ¤ 1?
πα
}q1}} � p∆{2qf} �

�
α

2
?

π
}q1} � }q0}8



}f}.

Since α may be arbitrarily small, we conclude that Q    �∆{2. The Kato Rellich
theorem now implies that �∆{2�Q is s.a. on H2pR2q and e.s.a. on every core of �∆{2,
e.g., C8C pR2q. Hence it follows that Ha

eff is s.a. on Dom Ha
eff � H2pR2q by Proposition

IV.3.

IV.2.3 Convergency to the Coulomb Hamiltonian

A proof that the Hamiltonian Ha
eff �Ea

1 � �∆{2�V a
eff converges to the two-dimensional

Coulomb Hamiltonian hC (denoted by Hp8q within Chapter III) in the norm resolvent
sense as a Ñ 0� will be given. It consists of several lemmas. Lemmas IV.7 and IV.8
deal only with properties of hC . Lemma IV.9 provides the rate of convergency of the
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effective potential to the Coulomb one. In Lemma IV.10, a wide class of potentials that
converge to the Coulomb potential is considered. Lemma IV.12 provides a lower bound
for the rate of this convergency. The main statement of this section is given in Theorem
IV.1.

Lemma IV.7 Let h0 :� �∆{2 be the two-dimensional free particle Hamiltonian. Then
phC � 3q�1{2ph0 � 3q1{2 is bounded with the upper bound CpIV.9q that is defined bellow.

Proof. Throughout the proof, let us denote L :� phC � 3q�1{2ph0 � 3q1{2. Then L: is
closed and everywhere defined, and consequently bounded by the closed graph theorem.
Since L � L̄ � L::, L is bounded too by the boundness of L::.

To find an upper bound, we start with the following decomposition:

LL: � phC � 3q�1{2
�

h0 � 1
%
� 1

%
� 3



phC � 3q�1{2

� 1� phC � 3q�1{2ph0 � 3q1{4ph0 � 3q�1{4 1
%
ph0 � 3q�1{4ph0 � 3q1{4phC � 3q�1{2.

By the Kato inequality (B.4) and the functional calculus, one obtains

xph0 � 3q�1{4%�1ph0 � 3q�1{4ψ, ψy � x%�1ph0 � 3q�1{4ψ, ph0 � 3q�1{4ψy
¤
?

2Γ
�

1
4

�4

4π2
}h1{4

0 ph0 � 3q�1{4ψ}2 ¤
?

2Γ
�

1
4

�4

4π2
}ψ}2. (IV.8)

Therefore, we may continue estimating LL: as follows

LL: ¤ 1�
?

2Γ
�

1
4

�4

4π2
LphC � 3q�1{2 ¤ 1�

?
2Γ

�
1
4

�4

4π2
L.

In the last inequality, we made use of the fact that hC ¥ �2 (see (III.3)).
The estimate above implies

}LL:} � }L}2 ¤ 1�
?

2Γ
�

1
4

�4

4π2
}L}.

Hence, we can proceed to the so-called quadratic estimate that yields

}L} ¤ 1
2

��?2Γ
�

1
4

�4

4π2
�
d

Γ
�

1
4

�8

8π4
� 4

��: CpIV.9q. (IV.9)

l

Lemma IV.8 Let ξ P ReshC X R. Then

}phC � ξq�1phC � 3q} ¤ max
"

3
dCpξq , 1

*
,

where dCpξq :� dist tξ, σphCqu.
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Proof. One can follow the same line of reasoning as in [34]. Let us recall that σphCq
consists of the continuous part formed by the positive half-axis and of the pure point
part formed by countable many values in the interval x�2, 0q. Hence, for ξ P R, three
cases may occur:

i. ξ P pξ�, ξ�q, ξ� P σppphCq. Then by the functional calculus,

}phC � ξq�1phC � 3q} � sup
xPσphCq

|x� 3|
|x� ξ| .

It may be directly verified that for x   ξ�, the function x Ñ |x�3||x�ξ| is increasing,
whereas for x ¡ ξ� is decreasing. So its supremum is taken in ξ� or ξ�, which
implies

}phC � ξq�1phC � 3q} ¤ 3
dCpξq .

ii. �3 ¤ ξ   �2. Then the estimate above may be used too.

iii. ξ   �3. Then the supremum is taken in x � 8 and its value equals 1.

l

Lemma IV.9 For all a ¡ 0, it holds

}ph0�3q�1{2 �%�1 � V a
eff

� ph0�3q�1{2}2 ¤ 4
�

1
4
� 1

π2


2

a2 log2 a�4a2 log a�2a2. (IV.10)

Proof. Throughout the proof, let Ta :� �
%�1 � V a

eff

�1{2 ph0 � 3q�1{2. Furthermore, let
us remind that the (generalized) Fourier transform of %�1 is p�1. Then the operator
T :aTa considered in ’the momentum representation’ acts like an integral operator with
the kernel

1
2π

1b
1
2p

2 � 3

�
1

|p� q| � V̂ a
effp|p� q|q



1b

1
2q

2 � 3

(the factor p2πq�1 arises from the convolution). By the unitarity of the Fourier transform,
the operator norm remains the same and may be bounded above by the Hilbert-Schmidt
norm which is denoted }.}1 within this text. The change of variables gives

}T :aTa}21 � 1
π2

»
R2�R2

1
pp� qq2 � 6

�
1
|p| � V̂ a

effp|p|q

2 1

q2 � 6
dpdq,

where the integration in q may be done:»
R2

1
pp� qq2 � 6

1
q2 � 6

dq �
»
R��S1

1
p2 � q2 � 2pq cos θ � 6

1
q2 � 6

qdqdθ

� π

»
R�

�pt� p2 � 6q2 � 4p2t
��1{2 1

t� 6
dt

� π

p
a

p2 � 24
log

�
1� p

72

�
12
a

p2 � 24� p
�
24� ppp�a

p2 � 24q		� �: πF ppq.
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For the asymptotic behavior of the function F , we get

F ppq � 1
6
� p2

216
�Opp4q as p Ñ 0� (IV.11)

F ppq � 4 log p

p2
� log 36

p2
�O

�
log p

p4



as pÑ8.

Moreover, it is not difficult to verify that F is positive decreasing on R� and that for
p ¥ 5:

0 ¤ F ppq ¤ 4 log p

p2
. (IV.12)

Splitting the integral for }T :aTa}21 into three parts:

IpR�q � }T :aTa}21 � Ipp0, 5qq � Ipp5, Rqq � IppR,8qq,
where

IpAq :� 2
»

A
F ppq

�
1
p
� V̂ a

effppq

2

pdp,

each part may be estimated separately. For the first integral, we make use of (IV.7) and
(IV.11) together with the monotonicity of F to estimate

Ipp0, 5qq ¤ 5
3

�
1
4
� 1

π2


2

a2.

The second integral may be estimated in the similar manner, but we can bound F as in
(IV.12):

Ipp5, Rqq ¤ 2
» R

5

4 log p

p2
a2

�
1
4
� 1

π2


2

pdp � 4
�

1
4
� 1

π2


2 plog2 R� log2 5qa2.

Since, by the results of Corollary IV.6,

0 ¤ 1
p
� V̂ a

effppq ¤ 1
p
,

we get

IppR,8qq ¤ 2
» 8

R

4 log p

p2

1
p2

pdp � 2� 4 log R

R2

for an upper bound of the third integral. To optimize the total bound, we set R � a�1

which leads to (IV.10). l

Lemma IV.10 Let W P L1pR� � S1,d%dϕq such that

sup
%PR�, ϕPS1

» 1

maxt�1,�%u
|W pv � %, ϕq| log2 |v|dv �: KW   8. (IV.13)
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Let us set V p%, ϕq :� %�1p1�W p%, ϕqq and V ap%, ϕq :� a�1V pa�1%, ϕq for % P R�, ϕ P
S1. Then for any a   1

2 , it holds

}ph0 � 3q�1{2 �%�1 � V a
� ph0 � 3q�1{2}2 ¤12

π2
a2 log2 a

�»
R��S1

|W p%, ϕq|d%dϕ


2

� 16
π

KW a2

»
R��S1

|W p%, ϕq| d%dϕ.

(IV.14)

Proof. Throughout the proof, let Ta :� ��%�1 � V a
��1{2 ph0 � 1

2q�1{2. Then

}ph0 � 1
2q�1{2 �%�1 � V a

� ph0 � 1
2q�1{2} � }T :a sgnWTa} ¤ }T :a}}Ta} � }TaT

:
a}

since sgnW is an isometry and }TaT
:
a} � }Ta}2 � }T :a}2. Therefore, we will consider W

to be non-negative and make use of }TaT
:
a}2 to majorize the LHS of (IV.14).

For the Green function Gz of h0, it may be deduced that

Gzpx1, x2q � i

2
H
p1q
0 pi?�2z|x1 � x2|q � 1

π
K0p?�2z|x1 � x2|q,

with z   0,=?z ¡ 0 (see e.g. for [32] the derivation) from which it follows that the
integral kernel of TaT

:
a is

Kpx1, x2q :� 1
π

c
%�1
1 W

�%1

a
, ϕ1

	
K0p|x1 � x2|q

c
%�1
2 W

�%2

a
, ϕ2

	
,

where xi � %ipcosϕi, sinϕiq. Let us find an upper estimate for the Hilbert-Schmidt
norm of TaT

:
a . Since the modified Bessel function K0 is positive and strictly decreasing

on R�, we get

}TaT
:
a}21 ¤ 1

π2
IpR� � S1 �R� � S1q

with
IpMq :�

»
M

W
�%1

a
, ϕ1

	
K0p|%1 � %2|q2W

�%2

a
, ϕ2

	
d%1dϕ1d%2dϕ2.

K0 has the following asymptotic expansion

K0p%q � � log %� log 2� γ �Op%2 log %q as % Ñ 0� .

Consequently, for any C ¡ 1, there is R such that K0paq ¤ �C log a for all a   R.
To arrive to an explicit estimate, set C � 2. Then we may consider R � 1{2. If
|%1 � %2| ¡ a   1{2 then

K0p|%1 � %2|q   K0paq   �2 log a

and

Ipt|%1 � %2| ¡ auq ¤ 4a2 log2 a

�»
R��S1

W p%, ϕqd%dϕ


2

.

32



Hydrogen Atom in a Thin Slab

If |%1 � %2|   a   1{2 then

K0pa|%1 � %2|q2   p�2 log pa|%1 � %2|qq2 ¤ 8 log2 a� 8 log2 |%1 � %2|
from which it follows

Ipt|%1 � %2|   auq ¤ 8a2 log2 a

�»
R��S1

W p%, ϕqd%dϕ


2

� 8a2

»
|%1�%2| 1

W p%1, ϕ1q log2 |%1 � %2|W p%2, ϕ2qd%1dϕ1d%2dϕ2

¤ 8a2 log2 a

�»
R��S1

W p%, ϕqd%dϕ


2 � 16πKW a2

»
R��S1

W p%, ϕqd%dϕ.

Altogether, we conclude that

}TaT
:
a}21 ¤ 12

π2
a2 log2 a

�»
R��S1

W p%, ϕqd%dϕ


2 � 16
π

KW a2

»
R��S1

W p%, ϕqd%dϕ.

By the functional calculus

}ph0 � 3q�1{2ph0 � 1
2q1{2} � sup

x¥0

d
x� 1

2

x� 3
� 1

which completes the proof. l

Remark IV.11 For example, the condition (IV.13) is fulfilled for a function W such
that

Dε ¡ 0, δ ¡ 0, L ¡ 0 : @x P R2,

»
Bδpxq

|W p%, ϕq|1�ε d%dϕ   L

which implies that if W P L1�εpR� � S1, d%dϕq or W is bounded then (IV.13) holds.
In particular, Weffp%q :� 1 � %V 1

effp%q is bounded, more precisely 0 ¤ Weffp%q ¤ 1.
A numerical calculation yields approximately 1.061 for the constant in front of the
a2 log2 a term in the estimate (IV.14). Actually, this constant may be pushed down to
its quarter (setting C Ñ 1� and R Ñ 0� in the proof of Lemma IV.10). In the case
of non-generic estimate (IV.10), the constant in front of the same term has a smaller
numerical value, namely approximately 0.088.

Lemma IV.12 Let W P L1pR�, d%q, W p%q ¥ 0; and V p%q, V ap%q, and Ta be defined in
the same manner as in Lemma IV.10. Then

}ph0 � 3q�1{2 �%�1 � V a
� ph0 � 3q�1{2} ¥ 2

�» R

0
W p%qd%



log

1
aR

a

whenever a   1 and 1   R   a�1.
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Proof. If f P L2pR2,dxq, f � 0, then }TaT
:
a} ¥ xf, TaT

:
afy{}f}2. We choose

fpxq � 1?
%

W
�%

a

	1{2
with % :� |x|.

Then
}f}2 � 2πa

» 8
0

W p%qd%

and

xf, TaT
:
afy � 1

π

»
R2

»
R2

K0p|x1 � x2|q 1
%1

W
�%1

a

	 1
%2

W
�%2

a

	
dx1dx2

� 1
π

»
R��S1

»
R��S1

K0

�p%2
1 � %2

2 � 2%1%2 cos pϕ1 � ϕ2qq1{2
	

�W
�%1

a

	
W

�%2

a

	
d%1dϕ1d%2dϕ2.

Let us notice that by the formula 11.4.44 in [5]

K0

�p%2
1 � %2

2 � 2%1%2 cosϕq1{2	 � » 8
0

J0

�p%2
1 � %2

2 � 2%1%2 cosϕq1{2t	 t

t2 � 1
dt.

Integrating Graf’s formula (see [5]) for the Bessel functions we obtain

1
2π

» 2π

0
J0

�p%2
1 � %2

2 � 2%1%2 cosϕq1{2t	dϕ � J0p%1tqJ0p%2tq.
Since » 8

0
J0p%1tqJ0p%2tq t

t2 � 1
dt � I0p% qK0p%¡q,

where % , %¡ denotes smaller, respectively greater out of %1, %2; we conclude that

1
2π

» 2π

0
K0

�p%2
1 � %2

2 � 2%1%2 cosϕq1{2	dϕ � I0p% qK0p%¡q.
Also recall that I0p%q ¥ 1 and K0p%q ¥ log p2{%q � γ ¥ log p1{%q.

Now choose a   1 and R, 1   R   a�1. We get

xf, TaT
:
afy � 4π

»
R�

»
R�

I0p% qK0p%¡qW
�%1

a

	
W

�%2

a

	
d%1d%2

¥ 8πa2

» R

0

�» R

%2

log
1

a%1
W p%1qd%1



W p%2qd%2

¥ 4πa2| log a|
�» R

0
W p%qd%


2

� 4πa2 log R

�» R

0
W p%qd%


2

and consequently

}TaT
:
a} ¥ 2

�» R

0
W p%qd%



a| log a| � 2 log R

�» R

0
W p%qd%



a.

l
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Corollary IV.13 There exist constants 0   C1   C2 such that for all sufficiently small
a, 1 ¡ a ¡ 0,

C1a| log a|   }TaT
:
a}   C2a| log a|.

Theorem IV.1 Let ξ P Res hC XR and let Upaq stands for the square root of the RHS
of (IV.10). If a   a0, where a0 is small enough that it holds

max
"

3
dCpξq , 1

*
C2pIV.9qUpa0q � 1

2
, (IV.15)

then ξ P Res pHa
eff � Ea

1 q and

}pHa
eff � Ea

1 � ξq�1 � phC � ξq�1} ¤ 2
dCpξq max

"
3

dCpξq , 1
*

C2pIV.9qUpaq.
Proof. With the convention that A1{2 :� sgnA|A|1{2, if A is a s.a. operator; denote

Kpξq :� |hC � ξ|�1{2
�

1
%
� V a

eff



phC � ξq�1{2. (IV.16)

Then

}Kpξq} �}|hC � ξ|�1{2phC � 3q1{2phC � 3q�1{2ph0 � 3q1{2ph0 � 3q�1{2
� �

%�1 � V a
eff

� ph0 � 3q�1{2ph0 � 3q1{2phC � 3q�1{2phC � 3q1{2phC � ξq�1{2}
¤}|hC � ξ|�1{2phC � 3q1{2}2 }phC � 3q�1{2ph0 � 3q1{2}2
� }ph0 � 3q�1{2 �%�1 � V a

eff

� ph0 � 3q�1{2}
By Lemmas IV.7, IV.8, and IV.9, we have

}Kpξq} ¤ max
"

3
dCpξq , 1

*
C2pIV.9qUpaq.

Since Upaq � const. a log a as a Ñ 0�, for any ξ P ReshC X R, limaÑ0� }Kpξq} � 0.
Consequently, for such ξ, we can find a0 such that }Kpξq} ¤ 1{2 for all a   a0. Given ξ
and a   a0, one can make the following estimate in the symmetrized resolvent formula
(see also the proof of Theorem IV.3)

}pHa
eff � Ea

1 � ξq�1 � phC � ξq�1} ¤ 1
dCpξq

}Kpξq}
1� }Kpξq} ¤

2
dCpξq}Kpξq}

¤ 2
dCpξq max

"
3

dCpξq , 1
*

C2pIV.9qUpaq.
l
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IV.3 Relation between the effective and the exact Hamil-
tonian

The approximation of the exact Hamiltonian Ha by the effective one is discussed in
several steps. The main theorem of this section, Theorem IV.4, is just a fusion of
Theorems IV.2 and IV.3. It states that Ha tends to Ha

eff in the norm resolvent sense
linearly in a, as a Ñ 0�.

Let �∆D{2, Ha, Ea
n, P , and Ha

eff be defined as in the Sections IV.1 and IV.2.
Furthermore, let us introduce the following notation:

Q :� Id� P

HaK � HK :� QHaQ, V :� �1
r

RaKpξq � RKpξq � RK :� pHaK � ξq�1

W apξq � W pξq :� PV QRKpξqQV P

RW
effpξq � RW

eff :� pHa
eff �W pξq � ξq�1

reffpξq � reff :� pHa
eff � ξq�1

TK :� Qp�∆D{2qQ, R0pξq � R0 :� pTK � ξq�1.

The operator W a will be viewed as acting on L2pR2q.
With the decomposition

Ha �
�

PHaP PHaQ
QHaP QHaQ



�
�

Ha
eff PHaQ

QHaP HaK



,

it holds that (Feshbach formula)

pHa � ξq�1 �
�

RW
eff �RW

effPV QRK�RKQV PRW
eff RK �RKQV PRW

effPV QRK



. (IV.17)

Notice that PHaQ � PV Q, QHaP � QV P .

Theorem IV.2 Let a   3π
16 , ξ ¤ Ea

1 , and in the same time ξ R σppHeff �W pξqq `HKq.
Then ξ P Res Ha and

}pHa � ξq�1 �RW
effpξq `RKpξq} ¤ 1

dW
effpξq

16a
3π

�
1� 16a

3π



,

where dW
effpξq :� distpξ, σpHeff �W pξqqq.

Proof. To prove the theorem, we will follow the steps of the proof of Theorem 3.1 in
[34]. Namely, we will estimate the terms that appear in the decomposition (IV.17).

Let us consider ξ   Ea
1 � π2

2a2 . Since TK � Q p�∆x,y{2qb Id Q�QIdbp�B2
z{2q Q ¥

Ea
2 � 2π2{a2, it follows

0 ¤ R0pξq ¤ pEa
2 � Ea

1 q�1 � 2a2

3π2
.
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The symmetrized resolvent formula states that

RKpξq � pTK �QV Q� ξq�1 � R0pξq1{2
�
1�R0pξq1{2QV QR0pξq1{2

	�1
R0pξq1{2. (IV.18)

The upper bound to the middle term in the formula above may be found using the
following sequence of estimates:

0 ¤ �
R

1{2
0 QV QR

1{2
0

	2 � R
1{2
0 QV QR0QV QR

1{2
0 ¤ 2a2

3π2
R

1{2
0 QV QV QR

1{2
0

¤ 2a2

3π2
R

1{2
0 QV 2QR

1{2
0 ¤ tHardy inequality (B.5)u ¤ 16a2

3π2
R

1{2
0 TKR

1{2
0

¤ 16a2

3π2
R

1{2
0 pTK � ξ � ξqR1{2

0 ¤ 16a2

3π2
pQ� ξR0q ¤ 16a2

3π2

4
3

(IV.19)

which implies

}R1{2
0 QV QR

1{2
0 } ¤ 8a

3π
�:

a

aH

because, as can be rather directely verified, if A,B, and C , C ¥ 0, are s.a. operators
then pABAq2 ¤ C implies }ABA} ¤ }C}1{2. Consequently, if we choose a   aH , it holds

}R1{2
0 QV QR

1{2
0 }   1.

Then by the formula (IV.18), the resolvent RK exists and RK ¥ 0. Moreover, we have

RK ¤ }RK} ¤ }R1{2
0 }2

��� �1�R
1{2
0 QV QR

1{2
0

	�1 ��� ¤ }R1{2
0 }2

1� }R1{2
0 QV QR

1{2
0 }

.

Since R0 is positive (even for ξ   Ea
2 ) and s.a., }R1{2

0 }2 � }R0} and

RK ¤ }R0}
1� }R1{2

0 QV QR
1{2
0 }

¤ 2a2

3π2

1� a
aH

¤ !
for a   aH

2

) ¤ 4a2

3π2
. (IV.20)

From (IV.19), it follows that

}V QR
1{2
0 }2 � }R1{2

0 QV 2QR
1{2
0 } ¤ 32

3

which implies

}V QR
1{2
0 } ¤ 4

c
2
3
.

The symmetrized resolvent formula:

0 ¤ V QRKQV � V QR
1{2
0

�
1�R

1{2
0 QV QR

1{2
0

	�1
R

1{2
0 QV

leads to the estimate:

}V QRKQV } ¤ }V QR
1{2
0 }2

1� }R1{2
0 QV QR

1{2
0 }
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which, for a   aH{2, implies

}R1{2K QV } � }V QR
1{2K } ¤ }V QR

1{2
0 }�

1� }R1{2
0 QV QR

1{2
0 }

	1{2 ¤
?

2}V QR
1{2
0 } ¤ 8?

3
.

By the Feshbach formula (IV.17) together with Proposition B.3 we have

}pHa � ξq�1 �RW
effpξq `RKpξq} ¤ }RW

effPV QRK} � }RKQV PRW
effPV QRK}

¤ }RW
eff}}V QR

1{2K }}R1{2K } � }RW
eff}}V QR

1{2K }2}R1{2K }2
� }RW

eff}}V QR
1{2K }}R1{2K }

�
1� }V QR

1{2K }}R1{2K }
	

¤ }RW
eff}16a

3π

�
1� 16a

3π



which completes the proof. l

Lemma IV.14 Let h0 stands for the two-dimensional free particle Hamiltonian h0 ��∆x,y{2 and let ξ   Ea
1 . Then

}ph0 � 3q�1{2W pξqph0 � 3q�1{2} ¤
�

2
3


3{2 Γ
�

1
4

�4

π3
a.

Proof. Within the proof, let A :� ph0 � 3q�1{2W pξqph0 � 3q�1{2. Using the estimate
(IV.20) we get

0 ¤ W pξq � PV QRKpξqQV P ¤ 4a2

3π2
PV 2P � 16a

3π2

» a
2

0

cos2 πz
a

%2 � z2
dz ¤ 16a

3π2

» a
2

0

dz

%2 � z2

� 16a
3π2%

arctan
a

2%
¤ 8a

3π%

from which it follows that

A ¤ 8a

3π
ph0 � 3q�1{2 1

%
ph0 � 3q�1{2.

Now one can easily find an upper bound to the latter operator with the aid of the
estimate (IV.8) which yields

ph0 � 3q�1{4ph0 � 3q�1{4 1
%
ph0 � 3q�1{4ph0 � 3q�1{4 ¤

c
2
3

Γ
�

1
4

�4

4π2
.

Hence, we conclude that

}A} ¤
�

2
3


3{2 Γ
�

1
4

�4

π3
a.

l
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Lemma IV.15 Let µ :� Ea
1 � 3. Then it holds

}reffpµq1{2ph0 � 3q1{2} ¤ CpIV.9q.

Proof. Throughout the proof, set

A :� reffpµq1{2ph0 � 3q1{2 � ph0 � V a
eff � 3q�1{2ph0 � 3q1{2.

Then A: is closed and everywhere defined, and consequently bounded by the closed
graph theorem. Since A � Ā � A::, A is bounded too by the boundness of A::. To
obtain an upper bound, let us proceed as follows:

AA: � ph0 � V a
eff � 3q�1{2ph0 � V a

eff � 3� V a
effqph0 � V a

eff � 3q�1{2
� 1� ph0 � V a

eff � 3q�1{2V a
effph0 � V a

eff � 3q�1{2.

By the obvious observation that 0 ¤ V a
effp%q ¤ %�1 and by the inequality (IV.8), we have

ph0 � 3q�1{4V a
effph0 � 3q�1{4 ¤

?
2Γ

�
1
4

�4

4π2

from which it follows

AA: ¤ 1�
?

2Γ
�

1
4

�4

4π2
Aph0 � V a

eff � 3q�1{2 ¤ 1�
?

2Γ
�

1
4

�4

4π2
A

because h0 � V a
eff ¥ h0 � %�1 ¥ �2.

Now we face the exactly same inequality as in the proof of Lemma IV.7, so by the
quadratic estimate }A} ¤ CpIV.9q. l

Theorem IV.3 Let us define

CpIV.21q :� C2pIV.9q
�

2
3


3{2 Γ
�

1
4

�4

π3
(IV.21)

and deffpξq :� distpξ, σpHa
effqq. Furthermore, let

a   min
"

1
2CpIV.21q ,

deffpξq
6CpIV.21q

*
,

and in the same time ξ P ResHa
eff X R. Then ξ R σpHa

eff �W pξqq and

}RW
effpξq � reffpξq} ¤ 2CpIV.21q

deffpξq max
"

3
deffpξq , 1

*
a.
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Proof. With the convention that A1{2 :� sgnA|A|1{2, if A is a s.a. operator, the sym-
metrized resolvent formula takes the following form

RW
eff � r

1{2
eff p1� |reff |1{2W r

1{2
eff q�1|reff |1{2 (IV.22)

that implies

}RW
effpξq � reffpξq} ¤ 1

deffpξq
}Keffpξq}

1� }Keffpξq} (IV.23)

with
Keffpξq :� |reffpξq|1{2W pξqreffpξq1{2,

whenever }Keffpξq}   1.
Following the same line of reasoning as in the proof of Lemma IV.8 with regard to

the results of Proposition IV.4, we obtain

}reffpξqpHa
eff � µq} ¤ max

"
Ea

1 � µ

deffpξq , 1
*

,

for µ   Ea
1 �2. This result together with Lemmas IV.14 and IV.15 leads to the following

estimate:

Keffpξq �|reffpξq|1{2pHa
eff � µq1{2r1{2

eff pµqph0 � 3q1{2ph0 � 3q�1{2W pξqph0 � 3q�1{2

� ph0 � 3q1{2r1{2
eff pµqpHa

eff � µq1{2reffpξq1{2 ¤ max
"

3
deffpξq , 1

*
CpIV.21qa

where we have set µ � Ea
1 � 3. The assumptions of the theorem then imply that

}Keffpξq} ¤ 1
2 . The assertion of the theorem is now a direct consequence of the formula

(IV.23). l

Remark IV.16 For a and ξ as in Theorem IV.3, the resolvent formula (IV.22) implies

}RW
effpξq} ¤ 2}reffpξq}

which means
1

dW
effpξq ¤

2
deffpξq . (IV.24)

Similarly, under the assumptions of Theorem IV.1,

1
deffpξ � Ea

1 q ¤
2

dCpξq . (IV.25)

Theorem IV.4 Under the assumptions of Theorem IV.3, i.e.,

a   min
"

1
2CpIV.21q ,

deffpξq
6CpIV.21q

*
, (IV.26)

and in the same time ξ P ResHa
eff X R; it holds ξ P Res Ha and

}pHa � ξq�1 � reffpξq ` 0} ¤
�

32
3π
�max

"
3

deffpξq , 1
*

CpIV.21q



2a

deffpξq �
4a2

3π2
.

40



Hydrogen Atom in a Thin Slab

Proof. If ξ P ResHa
effXR then, by Proposition IV.4, ξ   Ea

1 . Furthermore, from Theorem
IV.3, it follows ξ R σpHa

eff � W pξqq. Also remark that, by the fact that RKpξq ¥ 0 for
any ξ   Ea

1 , HK ¡ Ea
1 (see the proof of Theorem IV.2). Altogether, this implies that

ξ R σppHa
eff �W pξqq `HKq. Further, it may be directly verified that

1
2CpIV.21q  

3π

16
.

From above, we conclude that under the assumptions of Theorem IV.3, the assump-
tions of Theorem IV.2 are fulfilled too. Consequently, we have arrived to the following
estimates

}pHa � ξq�1 � reffpξq ` 0} ¤ }pHa � ξq�1 �RW
effpξq `RKpξq}

� }RW
effpξq � reffpξq} � }RKpξq} ¤

�
32
3π
�max

"
3

deffpξq , 1
*

CpIV.21q



2a

deffpξq �
4a2

3π2
,

where we have used (IV.20) and (IV.24). l

IV.4 Relation between the exact and the two-dimensional
Coulomb Hamiltonian

Theorem IV.5 Let ξ P Res phC � Ea
1 q such that �3� Ea

1   ξ   Ea
1 , and

a   min
"

a0,
dCpξ � Ea

1 q
12CpIV.21q

*
,

where a0 is defined by the condition:

3
dCpξ � Ea0

1 q C2pIV.9q Upa0q � 1
2
.

Then ξ P Res Ha and

}pHa� ξq�1�phC �Ea
1 � ξq�1` 0} ¤ 6C2pIV.9q

dCpξ � Ea
1 q2 Upaq�

30 CpIV.21q a
dCpξ � Ea

1 q2 �
4a2

3π2
. (IV.27)

Proof. Let us consider Theorem IV.1 with ξ � Ea
1 substituted for ξ. The assumptions

of this theorem are fulfilled since �3� Ea
1   ξ   Ea

1 implies that dCpξ � Ea
1 q   3, from

which it follows

max
"

3
dCpξ � Ea

1 q , 1
*
� 3

dCpξ � Ea
1 q .

Then we have ξ P Res Ha
eff and

}reffpξq � phC � Ea
1 � ξq�1} ¤ 6C2pIV.9q

dCpξ � Ea
1 q2 Upaq.
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According to (IV.25), dCpξ�Ea
1 q ¤ 2deffpξq, which together with the choice of ξ implies

that (IV.26) holds. Hence, the assumptions of Theorem IV.4 are fulfilled too, so ξ P Ha

and we may make the following estimate:

}pHa � ξq�1 � phC � Ea
1 � ξq�1 ` 0}

¤ }pHa � ξq�1 � reff ` 0} � }reffpξq � phC � Ea
1 � ξq�1}

¤ 4a

dCpξ � Ea
1 q

�
32
3π
� 6CpIV.21q

dCpξ � Ea
1 q


� 4a2

3π2
� 6C2pIV.9q

dCpξ � Ea
1 q2 Upaq.

The inequality (IV.27) is then a consequence of the fact that

32
3π
  1

4
6CpIV.21q

dCpξ � Ea
1 q .

l

Remark IV.17 Since limaÑ0� aUpaq�1 � 0, there exists a constant a1 such that the
estimate (IV.27) takes a more closed form:

}pHa � ξq�1 � phC �Ea
1 � ξq�1 ` 0} ¤ 7C2pIV.9q

dCpξ � Ea
1 q2 Upaq �:

CpIV.28q
dCpξ � Ea

1 q2 Upaq (IV.28)

for all

a   min
"

a0, a1,
dCpξ � Ea

1 q
12CpIV.21q

*
.

IV.5 Spectral analysis

IV.5.1 Localization of the point spectrum

Let us consider λN P σppphCq and ξ� :� Ea
1 � δ with δ P Res hC such that λN   δ  

pλN � λN�1q{2 and Baδ � 0. Moreover, let Γ be the anti-clockwise oriented circle with
the center λN � Ea

1 passing the point ξ�. Notice that the radius of this circle is dCpδq.
For any ξ P Γ, it holds

}phC � Ea
1 � ξ�qphC � Ea

1 � ξq�1} � sup
xPσphC�Ea

1 q

∣∣∣∣
x� ξ�
x� ξ

∣∣∣∣ ¤ 3.

We are almost prepared to show that the projections Pa and Pa
C onto the spectrum

of Ha and hC �Ea
1 , respectively, inside Γ are of the same dimension. To propagate the

estimate (IV.28) on all Γ, we use the formula (3.10) of Section IV in [35]:

}pHa � ξq�1 � phC � Ea
1 � ξq�1 ` 0} ¤ L}phC � Ea

1 � ξ�qphC � Ea
1 � ξq�1}

1� |ξ � ξ�|L
¤ 3L

1� 2dCpδqL
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with

L � }phC � Ea
1 � ξ�qphC � Ea

1 � ξq�1}}pHa � ξ�q�1 � phC � Ea
1 � ξ�q�1 ` 0}

¤ 3}pHa � ξ�q�1 � phC � Ea
1 � ξ�q�1 ` 0} ¤ 3CpIV.28q

dCpδq2 Upaq. (IV.29)

We have arrived at the following estimate

}pHa � ξq�1 � phC � Ea
1 � ξq�1 ` 0} ¤ 9CpIV.28qdCpδq�2 Upaq

1� 6CpIV.28qdCpδq�1 Upaq
which may be used to find an upper bound for the difference of the eigenprojections:

}Pa � Pa
C ` 0} � 1

2π

��� »
Γ
pHa � ξq�1 � phC � Ea

1 � ξq�1 ` 0 dξ
���

¤ 9CpIV.28qdCpδq�1 Upaq
1� 6CpIV.28qdCpδq�1 Upaq .

(IV.30)

Obviously, this bound is smaller then one for all

a   min
"

a0, a1, a2,
dCpδq

12CpIV.21q

*
where a2 is given by the relation:

Upa2q � dCpδq
15CpIV.28q .

Since by definition, a2   a0, we see that }Pa � Pa
C ` 0}   1, for all a   aB where

aB :� min
"

a1, a2,
dCpδq

12CpIV.21q

*
Finally, using Lemma B.4, we conclude that for a given δ and the corresponding aB

it holds that if a   aB then in the dCpδq neighborhood of λN � Ea
1 there is the exactly

same number of eigenvalues of Ha as the multiplicity of λN in the spectrum of hC is.

Remark IV.18 The estimate (IV.30) also provides an information about the closeness
of the respective eigenfunctions. If one is only interested in the closeness of the eigen-
values of Ha

eff to those of hC � Ea
1 then Lemma B.5 may be used in the straightforward

manner.

IV.5.2 Perturbation expansion

Under the assumptions above, the results of Section B.3 may be used (with H � hC�Ea
1 ,

Ha � Ha
eff , and W � 3C2pIV.9qU). Namely, let us consider the lowest eigenvalue λ0,0 � �2

of hC that is non-degenerate. Then the perturbation expansion (of the type (B.7)) for
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the lowest eigenvalue λeff
0,0paq of Ha

eff converges if a ¤ min taB, a3u where a3 is defined by
the equality

3C2pIV.9qUpa3q
dCpδq � 1

13
.

However, since it may be easily viewed that a3 ¡ a2, it suffices to consider a ¤ aB. The
expansion reads

λeff
0,0paq � Ea

1 � 2� xWaψ0,0, ψ0,0y � xψ0,0,WaSpλ0,0qWaψ0,0y �R3paq (IV.31)

with

|R3paq| ¤ 36 8
C6pIV.9qU3paq

dCpδq2 ¤ const. a3 log3 a, (IV.32)

where Wap%q :� %�1�V a
effp%q, Spλ0,0q stands for the reduced resolvent of hC in the point

λ0,0, and ψ0,0p%q � 2
b

2
π e�2% denotes the normalized (in the space L2pR� � S1, %d%dϕq,

see (III.4)) eigenfunction of hC associated with λ0,0.

Proposition IV.19 As aÑ 0�, it holds

xWaψ0,0, ψ0,0y �16
�

1
4
� 1

π2



a� 16

�
1
6
� 1

π2



a2 log a�

� 8
�
p2γ � 1� 2 log 2q

�
1
6
� 1

π2



� 16CpIV.33q

�
a2 �Opa3q

where

CpIV.33q :�
» 1

2

0
z2 log z cos2 pπzqdz � �0, 0115. (IV.33)

Proof. By a simple integration, we have

xWaψ0,0, ψ0,0y � 4� xV a
effψ0,0, ψ0,0y.

Next, we can integrate using the Fubini theorem:

xV a
effψ0,0, ψ0,0y � 64

» 1
2

0
cos2pπzq

» 8
0

e�4%%a
%2 � pazq2 d%dz

� �32πa

» 1
2

0
cos2 pπzqz�Y1p4azq �H�1p4azq�dz,

where Y1 stands for the Bessel function of the second kind and H�1 is the Struve function.
The following asymptotic expansion (see [5]) together with the term by term integration
yields the assertion of the proposition:

Y1p4azq�H�1p4azq � � 1
2πza

� 2
π
�4z

π
a log a� 2

π
rp2γ � 1� 2 log 2qz � 2z log zs a�Opa2q

as aÑ 0�. l
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Proposition IV.20 As aÑ 0�, it holds

xψ0,0,WaSpλ0,0qWaψ0,0y � �32γ
�

1
4
� 1

π2


2

a2 �Opa3 log aq.
Proof. Due to the rotational symmetry of Wa and ψ0,0, only the radial part of the kernel
of S contributes to the integral in the scalar product. Let us denote it by Sp0qz , where
z stands for the spectral parameter. By the definition of the reduced resolvent and the
formula (III.2) for the Coulomb Green function Gz, we have:

Sp0qλ0,0
p%1, %2q � lim

zÑ�2

�
1
2π

Γ
�

1
2 � i?

2z

	
i
?

2z
?

%1%2

M

�
� i?

2z
, 0, 2i

?
2z% 



�W

�
� i?

2z
, 0, 2i

?
2z%¡



� 1

z � 2
ψ0,0p%1qψ0,0p%2q

�
�� γ

8
ψ0,0p%1qψ0,0p%2q,

where we have used the expansion Γpxq � x�1 � γ �Opxq as xÑ 0.
Now the scalar product of our interest is given by the following expression:

p2πq2
» 8
0

» 8
0

ψ0,0p%1qWap%1qSp0qλ0,0
p%1, %2qWap%2qψ0,0p%2q%1d%1%2d%2

� �γ

8

�
2π

» 8
0

ψ0,0p%q2Wap%q%d%


2 � �γ

8
xψ0,0, Waψ0,0y2.

The assertion of the proposition follows immediately from Proposition IV.19. l

Corollary IV.21 With regard to the expansion (IV.31) and the estimate (IV.32), we
have

λeff
0,0paq �Ea

1 � 2� 16
�

1
4
� 1

π2



a� 16

�
1
6
� 1

π2



a2 log a

� 8

�
p2γ � 1� 2 log 2q

�
1
6
� 1

π2



� 4γ

�
1
4
� 1

π2


2 � 16CpIV.33q
�

a2

�Opa3 log3 aq.
Let us introduce the following notation:

em,npaq :� xWaψm,n, ψm,ny,
where ψm,n :� }ψ̃m,n}�1ψ̃m,n stands for the normalized eigenfunction of hC with the
eigenvalue λm,n and the angular momentum m (see III.4). As a Ñ 0�, em,n � cm,n a�
opaq. Indeed, we have:
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Proposition IV.22 For the coefficients cm,n :� limaÑ0� a�1em,npaq, it holds

cm,n � 2π

�
1
4
� 1

π2



ψ2

m,np0q.
Namely,

c0,n � 24

p2n� 1q3
�

1
4
� 1

π2



and cm,n � 0 whenever |m| ¥ 1.

Proof. To expand xWaψm,n, ψm,ny, it seems useful to work with Fourier images. For the
Fourier transform of the eigenfunction ψm,n, we have:

ψ̂m,npuq � 1
2π

» 8
0

» 2π

0
e�iu% cos ϕψm,np%q%d%dϕ �

» 8
0

J0pu%qψm,np%q%d%.

Since the functions ψm,n are essentially of the form e�α%Pp%q with α ¡ 0 and Pp%q
being a polynomial in %, the latter integral may be evaluated using the so-called Lipshitz’s
integral Ipα, βq (see [36]):

Ipα, βq :�
» 8
0

J0pβxqe�αx dx � 1a
α2 � β2

for α ¡ 0

which implies » 8
0

J0pβxqxne�αx dx � p�qn Bn

Bαn

1a
α2 � β2

. (IV.34)

For example, we obtain

ψ̂0,0puq �
c

2
π

4
pu2 � 4q3{2 .

Next we have

em,npaq � 1
2π

»
R2�R2

ψ̂m,npuq
�

1
|u� v| � V̂ a

effpu� vq



ψ̂m,npvqdudv

� a

2π

»
R2�R2

ψ̂m,npuq
�

1
a|u� v| � V̂ 1

effpapu� vqq



ψ̂m,npvqdudv.

By (IV.34), it follows that ψ̂m,n P L1pR2q, which together with Corollary IV.6 makes pos-
sible to use the Lebesgue theorem and interchange the limit aÑ 0� with the integration
above. Hence, we have arrived at the following result:

lim
aÑ0� a�1em,npaq � 1

2π

�
1
4
� 1

π2


�»
R2

ψ̂m,npuqdu

2

� 2π

�
1
4
� 1

π2


�
1
2π

»
R2

ei0uψ̂m,npuqdu

2 � 2π

�
1
4
� 1

π2



ψ2

m,np0q.
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It may be directly verified that ψm,np0q � 0 for |m| ¥ 1, whereas

ψ2
0,np0q �

�
L
p0q
n p0q�2

πpn� 1
2q3 �

23

πp2n� 1q3 .

l

Corollary IV.23 Since λm,n is a single eigenvalue of hC restricted to the eigenspace
of the angular momentum with value m, the results of Section B.3 may be applied too.
Thus, for the eigenvalues of Ha

eff , we get

λeff
m,npaq � Ea

1 � λm,n � cm,na� opaq as a Ñ 0� .
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A. Figures

Figure A.1: Eigenvalues of the partial Hamiltonian H0
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Figure A.2: Eigenvalues of the partial Hamiltonian H1
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Figures

Figure A.3: The 1st eigenfunction of the partial Hamiltonian H0

Figure A.4: The 2nd eigenfunction of the partial Hamiltonian H0
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Figures

Figure A.5: The 3rd eigenfunction of the partial Hamiltonian H0

Figure A.6: The 1st eigenfunction of the partial Hamiltonian H1
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Figure A.7: The 2nd eigenfunction of the partial Hamiltonian H1

Figure A.8: The 3rd eigenfunction of the partial Hamiltonian H1

51



Figures

Figure A.9: Krein Q-function QHp8q for a2 � 0.02, 0.2, 1, and 5
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Figure A.10: Comparison of the Krein Q-functions for a2 � 24 (the solid line) and
a2 � 8
(the dashed line)
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Figures

Figure A.11: Point levels of H(0)
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Figure A.12: Point levels of H(0.5)
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Figures

Figure A.13: The 4th point level of Hpκq
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Figure A.14: The 3rd point level of Hpκq
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Figures

Figure A.15: The 2nd point level of Hpκq
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Figure A.16: The 1st point level of Hpκq
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B. Auxiliary Results

The following auxiliary computation is needed for the evaluation of scalar products of
eigenfunctions.

Proposition B.1 Let 1F1pa, b, tq stands for the Kummer confluent hypergeometric func-
tion, and n,m, l P N0. Then» 8
0

tm�le�t
1F1p�n, 1�m, tq2 dt � pm!q2 ņ

k�maxt0,n�lu
p�1qn�k

�
n

k


 pk � lq!
pk �mq!

�
k �m� l

n�m



.

(B.1)

Proof. By definition,

1F1p�n, 1�m, tq :� ņ

k�0

p�nqk tk

p1�mqk k!
� m!

ņ

k�0

p�1qk
�

n

k



tk

pm� kq! .

Let us denote the LHS of (B.1) by I. Then the integral representation of the gamma
function implies

I � pm!q2 ņ

j,k�0

p�1qj�k

�
n

j


�
n

k


 pj � k �m� lq!
pm� jq!pm� kq! . (B.2)

Partial summation in (B.2) can be carried out,
ņ

j�0

p�1qj
�

n

j


pj � k �m� lq!
pm� jq! � dk�l

dxk�l

�
xk�m�lp1� xqn	 ���

x�1
. (B.3)

Expression (B.3) vanishes for k   n� l and equals

p�1qnpk � lq!
�

k �m� l

n�m



for k ¥ n� l. The proposition follows immediately. l

Corollary B.2 In the case l � 0, (B.1) takes a particularly simple form:» 8
0

tme�t
1F1p�n, 1�m, tq2 dt � n!

pm� nq! .
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Auxiliary Results

When dealing with a direct sum of Hilbert spaces, likewise in Section IV.3, the
following result may be of use.

Proposition B.3 Let A : H2 Ñ H1 and B � B: : H2 Ñ H2 be bounded operators.
Then ���� 0 A

A: B


��� ¤ }A} � }B}.
Proof. Let x PH1 and y PH2. Then, since we deal with a s.a. operator,���� 0 A

A: B


��� � sup
}x`y}�1

����B�
0 A
A: B



x` y, x` y

F���� � sup
}x`y}�1

|2<xAy, xy � xBy, yy|
¤ sup
}x`y}�1

2}A}}y}}x} � }B}}y}2 ¤ sup
}x`y}�1

p}A} � }B}qp}x}2 � }y}2q � }A} � }B},
where the appropriate scalar products and norms are involved. l

The following auxiliary result was needed for comparing dimensions of eigenprojec-
tions.

Lemma B.4 Let P1 and P2 be projections. Denote dimPi the dimension of RanPi and
let 0   dimP2   8. Then }P1 � P2}   1 implies dimP1 � dimP2.

Proof. Let dimP1 ¡ dimP2 and tψiu be an orthonormal basis of RanP1. Now, two cases
may occur:

i. There exists an index i such that P2ψi � 0. In this case set ψ � ψi.

ii. For all basis vectors, P2ψi � 0. Then there must exist a finite linear combination,
ψ, of basis vectors such that P2ψ � 0. Contrary would imply dimP2 P tdimP1, 8u.

In both cases ψ P RanP1XpRanP2qK. Consequently, pP1�P2qψ � ψ and so }P1�P2} ¥ 1
which proves the statement. l

When comparing eigenvalues of two s.a. operators, the following lemma may be of
interest.

Lemma B.5 Let H1 and H2 be s.a. positive operators on a Hilbert space H . If we
define

λpiqn :� sup
Ln�1

inf
ψ�0

ψPLK
n�1XQpHiq

}H1{2
i ψ}2
}ψ}2 ,

where n P N and Ln�1 is a n� 1 dimensional subspace of H , then it holds

|pλp1qn q�1 � pλp2qn q�1| ¤ }H�1
1 �H�1

2 }.
Let us recall that according to the min-max principle, λ

piq
n is either the n-th eigenvalue

(counting the multiplicity) of Hi bellow the bottom of the essential spectrum or λ
piq
n is

the bottom of the essential spectrum and in that case λ
piq
n � λ

piq
n�1 � λ

piq
n�2 � . . .
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Proof. One immediately obtains:

pλpiqn q�1 � inf
Ln�1

sup
ψ�0

ψPLK
n�1XQpHiq

}ψ}2
}H1{2

i ψ}2 � inf
Ln�1

sup
φ�0

φPLK
n�1

}H�1{2
i φ}2
}φ}2

� inf
Ln�1

sup
φ�0

φPLK
n�1

xφ, H�1
i φy

}φ}2 .

Consequently, we have

pλp1qn q�1 � inf
Ln�1

sup
φ�0

φPLK
n�1

�xφ, pH�1
1 �H�1

2 qφy
}φ}2 � xφ, H�1

2 φy
}φ}2



¤ }H�1

1 �H�1
2 }� pλp2qn q�1

and similarly pλp2qn q�1 ¤ }H�1
1 �H�1

2 } � pλp1qn q�1. l

B.1 Kato inequality

Furthermore, the so-called two-dimensional Kato inequality is the most needed in Chap-
ter IV. Here it is reproduced as stated and proven in [37]. It is worth of mentioning that
this inequality is a special case of a more general one treated in even older paper [38].

Theorem B.1 (Kato inequality) Let �∆x,y � ∆ stands for the two-dimensional La-
placian. Then the following inequality holds

1a
x2 � y2

¤ Γ
�

1
4

�4

4π2

?�∆. (B.4)

An approximate value of the constant involved in (B.4) is 4.379.

Corollary B.6 Set % :�a
x2 � y2. Then %�1 is �∆ infinitesimally form bounded.

Proof. Let ψ P H1pR2q � Qp�∆q, then by (B.4):»
R2

%�1|ψpx, yq|2dxdy ¤ Γ
�

1
4

�4

4π2
}p�∆q1{4ψ}2 � Γ

�
1
4

�4

4π2
}|λ|1{2ψ̂}2 � Γ

�
1
4

�4

4π2
x|λ|ψ̂, ψ̂y

¤ Γ
�

1
4

�4

4π2

�
1
2a
x|λ|ψ̂, |λ|ψ̂y � a

2
xψ̂, ψ̂y



� Γ

�
1
4

�4

8π2

�
1
a
}∇ψ}2 � a}ψ}2



,

where the parameter a ¡ 0 may be chosen arbitrarily large. Note that the first inequality
holds even for ψ P H1{2pR2q. l
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B.2 Dirichlet Schrödinger operators

Properties of the Dirichlet Laplacian ∆D on a bounded region are widely discussed in
[39]. When a bounded region Ω is considered, the Dirichlet Laplacian is defined as
a unique s.a. operator associated with the closed positive form qpf, gq � �x∇f, ∇gy
defined on H1

0pΩq. Note that by the definition of H1
0pΩq, the space C8C pΩq is a core of the

form q. Let us introduce a linear space C80 pΩ̄q of smooth functions on Ω with f |BΩ � 0
and f |extΩ � 0 whose partial derivatives can be continuously extended to Ω̄. Then by
Lemma 6.1.3 in [39], C80 pΩq is also a core of the form q.

In the case of an unbounded region Ω (e.g., the slab Ωa considered in Chapter IV),
the Dirichlet Laplacian may be introduced in the same manner but C80 pΩ̄q is no longer
a form core. However, C80 pΩ̄q XH1pΩq is already a core. To prove it, we will follow the
proof of the respective lemma in [39] only with some little modifications.

Proposition B.7 C80 pΩ̄q XH1pΩq is a form core of the Dirichlet Laplacian.

Proof. Essentially, one has to prove that the closures of C80 pΩ̄q X H1pΩq and C8C pΩq
with respect to the norm of H1pΩq:

~f~ � �}f}2 � }∇f}2�1{2

are the same.
Since obviously, C8C pΩq � C80 pΩ̄qXH1pΩq, it suffices to show that C8C pΩq is dense in

C80 pΩ̄qXH1pΩq with respect to ~.~ norm. Taking real and imaginary part separately, we
will consider functions bellow to be real-valued. At first let us define a smooth function
Fε : R Ñ R such that

a) Fεpxq � x if |x| ¥ 2ε

b) Fεpxq � 0 if |x| ¤ ε

c) |Fεpxq| ¤ |x| @x P R
d) 0 ¤ F 1εpxq ¤ 3 @x P R

and for any f P C80 pΩ̄qXH1pΩq set fεpxq :� Fεpfpxqq. Then fε is smooth and fεpxq � 0
on some neighborhood of BΩ. Moreover, since f is smooth and lies in L2pΩq, K ¡ 0
exists such that |x| ¡ K implies |fpxq|   ε. Consequently, fε P C8C pΩq.

As limεÑ0� fεpxq � fpxq and |fεpxq| ¤ |fpxq| for all x P Ω, we have limεÑ0� }f�fε} �
0 by the dominated convergence theorem. Furthermore,

lim
εÑ0�∇fεpxq �

#
∇fpxq if fpxq � 0
0 p� ∇fpxq in generalq if fpxq � 0.

Let us define a set B :� tx : fpxq � 0^∇fpxq � 0u. By the implicit function theo-
rem, B is a hypersurface of codimension 1 and so µpBq � 0. Hence, ∇fε converges
to ∇f a.e., and since by the assumption d), |∇fεpxq| ¤ 3|∇fpxq|, it follows that
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limεÑ0� }∇f � ∇ fε} � 0 by the dominated convergence theorem too. All in all,
limεÑ0� ~f � fε~ � 0 which proves the proposition. l

Next we may ask how to define a ’Dirichlet Schrödinger’ operator. It seems natural
to consider the following form sum �1

2∆D � V , where V stands for a potential part.
Bellow we will look for a class of potentials which this form sum is well defined for.
Notice that in the present moment, we are not looking for the most general class of
such operators, rather we want the Coulomb potential to be included. At first, let us
reproduce an useful inequality as stated in [40]:

Lemma B.8 (Hardy inequality) For any u P D1,2pR3q which is the completion of
C8C pR3q with respect to the norm

}u}2 �
»
R3

|∇upxq|2dx
it holds

1
4

»
R3

|upxq|2
r2

dx ¤
»
R3

|∇upxq|2dx, (B.5)

where r � |x| �a
x2 � y2 � y2 as usual.

Since any function u P H1
0pΩq � Qp�∆Dq may be uniquely extended to a function

in H1pR3q � D1,2pR3q which vanishes outside Ω, the inequality (B.5) holds for any
u P H1

0pΩq too.

Proposition B.9 Let 0   α   2. Then r�α    �∆D.

Proof. We will focus on the nontrivial case 0 P intΩ. Let A ¡ 0, then ε ¡ 0 exists such
that A

4r2 ¥ 1
rα for all r ¤ ε. For any ψ P H1

0pΩq, one can make the following estimates:»
Ω

|ψpxq|2
rα

dx �
»
Ω,r¤ε

|ψpxq|2
rα

dx�
»
Ω,r¡ε

|ψpxq|2
rα

dx ¤ A

»
Ω,r¤ε

|ψpxq|2
4r2

dx

�
»
Ω,r¡ε

|ψpxq|2
rα

dx ¤ t(B.5)u ¤ A

»
Ω
|∇ψ|2dx� 1

εα
}ψ}2

that prove the statement. l

Hence �1
2∆D �V is a s.a. operator with the form domain H1

0pΩq for potentials that
are bounded in infinity and on the boundary BΩ, and that have at worst singularities of
r�2�ε type. Now let us turn to the case of Chapter IV, i.e., V � �C

r .

Proposition B.10 Let Ω be an open set with a boundary that is Lipschitz continuous
on each component (so the integration by parts may be used) and let H � �1

2∆D�p�C
r q.

Then Dom H � H1
0pΩq XH2pΩq.
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Proof. By the form representation theorem, f P Dom H iff f P QpHq � H1
0 pΩq and

g P L2pΩq exists such that

qpf, ψq :� 1
2
x∇f,∇ψy � C

»
Ω

1
r
fpxqψpxqdx � xg, ψy, @ψ P QpHq.

Since, by the Hardy inequality, r�1f P L2pΩq; the equation above implies that

1
2
x∇f,∇ψy � A

g � C

r
f, ψ

E
for all ψ P QpHq and so for all ψ P C8C pΩq too. This means that the weak derivative �∆f
exists and �∆f � 2g�2Cr�1f P L2pΩq which gives Dom H � H1

0pΩqXH2pΩq. To prove
the opposite inclusion, consider f P H1

0pΩq XH2pΩq and ψ P QpHq. Let tψnu � C8C pΩq
be a sequence such that limnÑ8 ~ψ � ψn~ � 0. Then we may integrate by parts:

qpf, ψnq � �1
2
x∆f, ψny � 1

2

»
BΩ
∇fpxqψnpxqdS�

AC

r
f, ψn

E � A� 1
2
∆f � C

r
f, ψn

E
.

The integration over the boundary BΩ is well defined since ∇f P H1pΩq implies ∇f |BΩ P
H1{2,2pBΩq � L2pBΩq (see Paragraph 7.56 in [41]), and is zero since ψn|BΩ � 0. Passing
to the limit n Ñ8, we conclude that

qpf, ψq � A� 1
2
∆f � C

r
f, ψ

E
.

So setting g � �1
2∆f � C

r f P L2pΩq completes the proof. l

Remark B.11 Following the same line of reasoning as above, one can prove that

Dom p�∆Dq � H1
0pΩq XH2pΩq

too. Actually, such proof is even more effortless. The selfadjointness of the Coulomb
Hamiltonian may be then deduced using the Kato-Rellich theorem since, by the Hardy
inequality (B.5), it holds

}Cr�1ψ}2 ¤ 4C2}∇ψ}2 � 4C2xψ,�∆Dψy ¤ 4C2 1
ε
}ψ} ε} �∆Dψ}

¤ 2C2

�
ε2} �∆Dψ}2 � 1

ε2
}ψ}2



,

for all ψ P Dom p�∆Dq and ε ¡ 0.
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B.3 Error estimate for a perturbation expansion

In the famous book of Kato [35], one can find several error estimates for a perturbation
expansion. Here we provide one more. Let Ha :� H � Va, where Va stands for a scalar
potential, be ’a perturbation’ of the Hamiltonian H. For our purposes, it means that
a positive decreasing function W exists such that limaÑ0�Wpaq � 0 and, for every ξ P
ResH X R, }Kapξq} ¤ max

 
1, distpξ, σpHqq�1

(Wpaq where Kapξq :� |Rpξq|1{2VaRpξq1{2
with Rpξq being the resolvent of H. Generalizing the results of Section IV.5.1, this
implies that for δ ¡ 0 small enough, there is exactly one single eigenvalue λa P σpHaq in
the δ-neighborhood of an isolated single eigenvalue λ P σpHq if a is smaller then some
aδ. Practically, it is useful to consider δ ¤ distpλ, σpHqz tλuq{2, i.e., smaller then a half
of the so-called isolation distance.

Let Γ be an anti-clockwise oriented circle of the radius δ and with the center λ. Then,
by the recursive application of the resolvent formula:

pHa � ξq�1 �: Rapξq � Rpξq �RapξqVaRpξq, (B.6)

we have (see [35] for details)

λa � λ � 1
2πi

Ņ

p�1

p�1qp
p

Tr
»
Γ
pVaRpξqqp dξ �RN�1paq (B.7)

with

RN�1paq :� p�1qN
2πi

Tr
»
Γ
pξ � λqRapξqpVaRpξqqN�1 dξ. (B.8)

The integral in (B.8) is a finite rank operator and hence its trace may be estimated
by the norm. Indeed, using the following expansion:

Rpaqpξq � � Ppaq
ξ � λpaq � Spaqpξq �

8̧

n��1

pξ � λpaqqnS
pn�1qpaq ,

where Spξq and Sapξq are reduced resolvents of H and Ha, respectively, S
pnqpaq :� �Ppaq

for n � 0 and Spaqpλpaqqn otherwise; we have

1
2πi

»
Γ
pξ � λqRapξqpVaRpξqqN�1 dξ

� 1
2πi

»
Γ

�Pa

ξ � λa

¸
ij¥�1

i1�i2�...�iN�1��2

pξ � λqi1�i2�...�iN�1�1
N�1¹
j�1

VaS
pij�1q dξ

� 1
2πi

»
Γ

�Papξ � λaqpξ � λq
¸

ij¥�1
i1�i2�...�iN�1��2

N�1¹
j�1

VaS
pij�1q dξ

� 1
2πi

»
Γ

Sapξq 1
ξ � λ

¸
ij¥�1

i1�i2�...�iN�1��2

N�1¹
j�1

VaS
pij�1q dξ
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�� Pa

¸
ij¥�1

i1�i2�...�iN�1��2

pλa � λqi1�i2�...�iN�1�1
N�1¹
j�1

VaS
pij�1q

� Sapλq ¸
ij¥�1

i1�i2�...�iN�1��2

N�1¹
j�1

VaS
pij�1q.

The rank of the first term is one since Pa is a projection. Each term of the second sum is
also a rank one operator because it contains at least two projections P . As the number
of terms in this sum is one for N � 1 and

�
N�1

2

��
2N�3
N�2

�
otherwise, it follows that

Rankpintegral on RHS of (B.8)q ¤ 1�
�

N � 1
2


�
2N � 3
N � 2



.

Notice that the estimate is valid even if λa � λ.
Due to the cyclic property of the trace, it holds

Tr pξ � λqRapξqpVaRpξqqN�1

� Tr |Rpξq|1{2pξ � λqRpξq1{2pH � ξq1{2RapξqpH � ξq1{2 sgnRpξqKapξqN�1.

The latter expression is ready to be estimated by the norm. Consider δ   1 and ξ P Γ.
Furthermore, define ξ� :� λ� δ. Then using the functional calculus, we obtain:

}Kapξq} ¤ }|Rpξq|1{2|H � ξ�|1{2}}Kapξ�q}}pH � ξ�q1{2Rpξq1{2} ¤ 3δ�1Wpaq.
Since sgnRpξq is an isometry, it is of unit norm. Next we have

}|Rpξq|1{2pξ � λqRpξq1{2} ¤ }|Rpξq|1{2}2δ � 1.

Finally, for a small enough (namely, such that δ�1Wpaq ¤ 1{6), it holds

}pH � ξq1{2RapξqpH � ξq1{2} � }pRpξq1{2pH � Va � ξqRpξq1{2q�1}
� }pId�Rpξq1{2VaRpξq1{2q�1} ¤ 1

1� }Kapξq} ¤ 2.

Altogether, we have arrived at the following estimate

|RN�1paq| ¤ 2
�
1�

�
N � 1

2


�
2N � 3
N � 2


�
δ�N3N�1WpaqN�1. (B.9)

Using the Stirling formula, it may be deduced that�
N � 1

2


�
2N � 3
N � 2



� 4N N 3{2

16
?

π
p1� op1qq as N Ñ8

from which it follows that if we consider a ¤ min taδ, a0u, where a0 is defined by the
equation δ�1Wpa0q � 1{13, then limNÑ8RN paq � 0, i.e., the perturbation expansion
converges.
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C. Spheroidal Functions

The spheroidal functions are solutions to the equation

p1� ξ2qB2ψ

Bξ2
� 2ξ

Bψ
Bξ �

�
λ� 4θp1� ξ2q � µ2p1� ξ2q�1

�
ψ � 0, (C.1)

where all parameters are in general complex numbers. Let us briefly summarize basic
definitions and notions related to the spheroidal functions following the notation of the
source [6]. Then let us make several observations on these functions.

There are two solutions to (C.1) that behave like ξν times a single-valued function
and ξ�ν�1 times a single-valued function at 8. The exponent ν is a function of λ, θ, µ,
and is called the characteristic exponent. Usually, it is more convenient to regard λ as
a function of ν, µ and θ. We shall write λ � λµ

ν pθq. If ν or µ is an integer we denote it
by n or m, respectively. The functions λµ

ν pθq obey the symmetry relations

λµ
ν pθq � λ�µ

ν pθq � λµ�ν�1pθq � λ�µ�ν�1pθq. (C.2)

A first group of solutions (the radial spheroidal functions) is obtained as expansions
in series of the Bessel functions,

Sµpjq
ν pξ, θq � p1� ξ�2q�µ{2sµ

ν pθq
8̧

r��8
aµ

ν,rpθqψpjqν�2rp2θ
1{2ξq, (C.3)

j � 1, 2, 3, 4, where the factor sµ
ν pθq is determined below and where

ψp1qν pζq �
c

π

2ζ
Jν�1{2pζq, ψp2qν pζq �

c
π

2ζ
Yν�1{2pζq,

ψp3qν pζq �
c

π

2ζ
H
p1q
ν�1{2pζq, ψp4qν pζq �

c
π

2ζ
H
p2q
ν�1{2pζq.

The coefficients aµ
ν,rpθq (sometimes denoted only by ar for the sake of simplicity) satisfy

a three term recurrence relation

γµ
ν,rpθqaµ

ν,r�1pθq � βµ
ν,rpθqaµ

ν,rpθq � αµ
ν,rpθqaµ

ν,r�1pθq � �λµ
ν pθqaµ

ν,rpθq, (C.4)
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where

αµ
ν,rpθq � pν � 2r � µ� 2qpν � 2r � µ� 1q

pν � 2r � 3{2qpν � 2r � 5{2q θ,

βµ
ν,rpθq � �pν � 2rqpν � 2r � 1q � pν � 2rqpν � 2r � 1q � µ2 � 1

pν � 2r � 1{2qpν � 2r � 3{2q 2θ,

γµ
ν,rpθq � pν � 2r � µqpν � 2r � µ� 1q

pν � 2r � 3{2qpν � 2r � 1{2q θ.

Here and in what follows we assume that ν � 1{2 is not an integer (to our knowledge,
the omitted case is not yet fully investigated).

The coefficients aµ
ν,rpθq may be chosen such that

aµ
ν,0pθq � aµ�ν�1,0pθq � a�µ

ν,0 pθq,
and so (see (C.2))

aµ
ν,rpθq � aµ�ν�1,�rpθq � pν � µ� 1q2rpν � µ� 1q2r

a�µ
ν,r pθq (C.5)

where paqr :� apa� 1qpa� 2q . . . pa� r � 1q � Γpa� rq{Γpaq, paq0 :� 1. Equation (C.4)
leads to a convergent infinite continued fraction and this way one can prove that

lim
rÑ8

r2ar

ar�1
� lim

rÑ�8
r2ar

ar�1
� θ

4
. (C.6)

From (C.6) and the asymptotic formulae for Bessel functions, it follows that (C.3) con-
verges if |ξ| ¡ 1.

If we set in (C.3)

sµ
ν pθq �

� 8̧

r��8
p�1qraµ

ν,rpθq
��1

(C.7)

then S
µpjq
ν pξ, θq � ψ

pjq
ν p2θ1{2ξq, for | argpθ1{2ξq|   π, as ξ Ñ 8. So we have the asymp-

totic forms, valid as ξ Ñ8,

Sµp3q
ν pξ, θq � 1

2
θ
�1{2ξ�1eip2θ

1{2ξ�νπ{2�π{2qr1�Op|ξ|�1qs for � π   argpθ1{2ξq   2π,

(C.8)
and

Sµp4q
ν pξ, θq � 1

2
θ�1{2ξ�1e�ip2θ1{2ξ�νπ{2�π{2qr1�Op|ξ|�1qs for � 2π   argpθ1{2ξq   π.

(C.9)
The radial spheroidal functions satisfy the relation

Sµp3q
ν � 1

i cospνπq
�
S

µp1q�ν�1 � i e�iπνSµp1q
ν

	
. (C.10)
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They are especially useful for a large values of ξ; the larger is ξ the better is the con-
vergence of the expansion. To obtain solutions useful near �1, and even on the segment
p�1, 1q, it is convenient to turn to expansions in series of the Legendre functions,

Psµ
ν pξ, θq �

8̧

r��8
p�1qraµ

ν,rpθqPµ
ν�2rpξq,

Qsµ
ν pξ, θq �

8̧

r��8
p�1qraµ

ν,rpθqQµ
ν�2rpξq.

(C.11)

These solutions are called the angular spheroidal functions and are related to the radial
spheroidal functions by the following formulae:

Sµp1q
ν pξ, θq � π�1 sinrpν � µqπse�iπpν�µ�1qKµ

ν pθqQsµ�ν�1pξ, θq,
Smp1q

n pξ, θq � Km
n pθqPsm

n pξ, θq, (C.12)

where Kµ
ν pθq may be expressed in the coefficients aµ

ν,rpθq, and sometimes it is called the
joining factor. In more detail, for any k P Z it holds true that

Kµ
ν pθq � 1

2

�
θ

4


ν{2�k

Γp1� ν � µ� 2kq epν�kqπisµ
ν pθq

ķ

r��8
p�1qraµ

ν,rpθq
pk � rq! Γpν � k � r � 3{2q

8̧

r�k

p�1qraµ
ν,rpθq

pr � kq! Γp1{2� ν � k � rq
.

The following auxiliary result concerns the asymptotic expansion of the radial sphe-
roidal function of the third kind.

Proposition C.1 Let m P N, ν R Z. Then

Smp3q
ν pξ, θq �eipν�3{2qπ tanpνπq

2π

�
Km�ν�1pθq � Km

ν pθq
eip3ν�1{2qπ


�
1� ξ

1� ξ


m{2

� m�1̧

k�0

p�1qm�kpm� k � 1q!p�νqkpν � 1qk
k!

�
1� ξ

2


k

�O
�p1� ξqm{2 log p1� ξq	

as ξ Ñ 1�.

Proof. By the definition (C.10) and by (C.12) one has

Smp3q
ν pξ, θq � eipν�3{2qπ tanpνπq

π

�
Km�ν�1pθqQsm

ν pξ, θq � Km
ν pθqQsm�ν�1pξ, θq

eip3ν�1{2qπ



.
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Spheroidal Functions

The asymptotic expansion for the Legendre functions reads (the best reference here is
[42], the standard work of interest is [43]),

Qm
ν pξq �1

2

�
1� ξ

1� ξ


m{2 m�1̧

k�0

p�1qm�kpm� k � 1q!p�νqkpν � 1qk
k!

�
1� ξ

2


k

�O
�p1� ξqm{2 log p1� ξq	 as ξ Ñ 1�,

from which it follows

Qm�ν�1pξq � Qm
ν pξq �O

�p1� ξqm{2 log p1� ξq	 as ξ Ñ 1� .

This together with (C.11) and (C.5) implies that

Qsm�ν�1pξ, θq � Qsm
ν pξ, θq �O

�p1� ξqm{2 log p1� ξq	 as ξ Ñ 1�
which completes the proof. l

Two following propositions answer the question when a spheroidal eigenvalue is real.

Proposition C.2 Let ν � �1{2� it where t P R, and µ, θ P R. Then λµ
ν pθq P R.

Proof. One may view the set of equations (C.4), with r P Z, as an eigenvalue
equation for λµ

ν pθq that is an analytic function of θ. A particular solution is fixed by the
condition λµ

ν p0q � νpν � 1q. Consider the set of complex conjugated equations. Since
βµ

ν,r � βµ
ν,rpθq � βµ�ν�1,rpθq, and the similar is true for αµ

ν,rpθq and γµ
ν,rpθq,

βµ�ν�1,rpθqaµ
ν,r�1pθq � αµ�ν�1,ra

µ
ν,rpθq � γµ�ν�1,rpθqaµ

ν,r�1pθq � λµ
ν pθq aµ

ν,rpθq.
Furthermore, since for each ν of the form considered,

λµ�ν�1p0q � p�ν � 1qp�νq � νpν � 1q � νpν � 1q � λµ
ν p0q,

one has λµ�ν�1pθq � λµ
ν pθq. Moreover, by (C.2), λµ�ν�1pθq � λµ

ν pθq in general. We
conclude that λµ

ν pθq P R. l

Proposition C.3 Let µ, ν, θ P R and ν � 1{2 R Z. Then λµ
ν pθq P R.

Proof. Following the same line of reasoning as in the proof of Proposition C.2, we
conclude that λµ

ν pθq and λµ
ν pθq are the eigenvalues of the same matrix and simultaneously

λµ
ν p0q � νpν � 1q � λµ

ν p0q which means that λµ
ν pθq � λµ

ν pθq for all θ P R. l

67



Acknowledgments

First of all, I would like to thank my supervisor professor Pavel Šťov́ıček for numerous
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[6] H. Bateman and A. Erdélyi. Higher Transcendental Functions III. McGraw-Hill
Book Company, 1955.

[7] B. Simon. Quantum Mechanics for Hamiltonians Defined as Quadratic Forms.
Princeton University Press, 1971.
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