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Abstract

A function F with simple and nice algebraic properties is defined on a subset of
the space of complex sequences. Some special functions are expressible in terms
of F, first of all the Bessel functions of the first kind. A compact formula in terms
of the function F is given for the determinant of a Jacobi matrix. Further we
focus on the particular class of Jacobi matrices whose parallels to the diagonal
are constant and whose diagonal depends linearly on the index. A formula in
terms of the function F is derived for the characteristic function. A special basis
is constructed in which the Jacobi matrix becomes a sum of a diagonal matrix
and a rank-one matrix operator. A vector-valued function on the complex plain
is constructed having the property that its values on spectral points of the Jacobi
matrix are equal to corresponding eigenvectors. It is shown the spectrum of the
infinite Jacobi matrix with linear diagonal and constant parallels coincides with
zeros of the Bessel function of the first kind as function of its order.

Keywords : tridiagonal matrix, finite Jacobi matrix, eigenvalue problem, characteristic
function

1 Introduction
The results of the current paper are mostly related to the eigenvalue problem for finite-
dimensional symmetric tridiagonal (Jacobi) matrices. Notably, the eigenvalue problem
for finite Jacobi matrices is solvable explicitly in terms of generalized hypergeometric
series [7]. Here we focus on a very particular class of Jacobi matrices which makes
it possible to derive some expressions in a comparatively simple and compact form.
We do not aim at all, however, at a complete solution of the eigenvalue problem.
We restrict ourselves to derivation of several explicit formulas, first of all that for
the characteristic function, as explained in more detail below. We also develop some
auxiliary notions which may be, to our opinion, of independent interest.

First, we introduce a function, called F, defined on a subset of the space of complex
sequences. In the remainder of the paper it is intensively used in various formulas.
The function F has remarkably simple and nice algebraic properties. Among others,
with the aid of F one can relate an infinite continued fraction to any sequence from
the definition domain on which F takes a nonzero value. This may be compared to the
fact that there exists a correspondence between infinite Jacobi matrices and infinite
continued fractions, as explained in [2, Chp. 1]. Let us also note that some special
functions are expressible in terms of F. First of all this concerns the Bessel functions
of first kind. We examine the relationship between F and the Bessel functions and
provide some supplementary details on it.

Further we introduce an infinite antisymmetric matrix, with entries indexed by
integers, such that its every row or column obeys a second-order difference equation
which is very well known from the theory of Bessel functions. With the aid of function

3



F one derives a general formula for entries of this matrix. The matrix also plays an
essential role in the remainder of the paper.

As an application we present a comparatively simple formula for the determinant of
a Jacobi matrix under the assumption that the neighboring parallels to the diagonal are
constant. As far as the determinant is concerned this condition is not very restrictive
since a Jacobi matrix can be written as a product of another Jacobi matrix with all
units on the neighboring parallels which is sandwiched with two diagonal matrices.
Yet another formula for the determinant of a Jacobi matrix with the antisymmetric
diagonal (with respect to its center) is presented. In that case zero is always an
eigenvalue and we give an explicit formula for the corresponding eigenvector.

Next we focus on the rather particular class of Jacobi matrices whose parallels to
the diagonal are constant and whose diagonal depends linearly on the index. In this
case we derive a formula for the characteristic function. Moreover, we construct a basis
in which the Jacobi matrix becomes a sum of a diagonal matrix and a rank-one matrix
operator. This form is rather suitable for various computations. Particularly, one can
readily derive a formula for the resolvent. In addition, a vector-valued function on the
complex plain is constructed having the property that its values on spectral points of
the Jacobi matrix are equal to corresponding eigenvectors.

Finally we focus on the spectrum of the infinite Jacobi matrix whose parallels to
the diagonal are positive constant and whose diagonal depends linearly on the index.
By using the knowledge of correspondence between function F and the Bessel function
of the first kind, we prove the spectrum of such matrices coincides with zeros of the
Bessel function of the first kind as function of its order.

2 The function F

We introduce a function F defined on a subset of the linear space formed by all complex
sequences x = {xk}∞k=1.

Definition 1. Define F : D → C,

F(x) = 1 +
∞∑

m=1

(−1)m

∞∑

k1=1

∞∑

k2=k1+2

. . .

∞∑

km=km−1+2

xk1xk1+1xk2xk2+1 . . . xkmxkm+1

where

D =

{
{xk}∞k=1;

∞∑

k=1

|xkxk+1| <∞
}
.

For a finite number of complex variables we identify F(x1, x2, . . . , xn) with F(x) where
x = (x1, x2, . . . , xn, 0, 0, 0, . . . ). By convention, we also put F(∅) = 1 where ∅ is the
empty sequence.

Remark 2. Note that the domainD is not a linear space. One has, however, `2(N) ⊂ D.
Obviously, if all but finitely many elements of a sequence x are zeroes then F(x)

reduces to a finite sum. Thus one can introduce some simple examples.
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Example 3.

F(x1) = 1, F(x1, x2) = 1− x1x2, F(x1, x2, x3) = 1− x1x2 − x2x3,

F(x1, x2, x3, x4) = 1− x1x2 − x2x3 − x3x4 + x1x2x3x4, etc.

Let T denote the truncation operator from the left defined on the space of all
sequences:

T ({xk}∞k=1) = {xk+1}∞k=1.

T n, n = 0, 1, 2, . . . , stands for a power of T . Hence T n({xk}∞k=1) = {xk+n}∞k=1.

Proposition 4. For all x ∈ D one has

F(x) = F(Tx)− x1x2 F(T 2x). (1)

Particularly, if n ≥ 2 then

F(x1, x2, x3, . . . , xn) = F(x2, x3, . . . , xn)− x1x2 F(x3, . . . , xn). (2)

Proof. Considering that

F(T nx) = 1 +
∞∑

m=1

(−1)m

∞∑

k1=n+1

∞∑

k2=k1+2

· · ·
∞∑

km=km−1+2

xk1xk1+1xk2xk2+1 . . . xkmxkm+1

one has

F(x)− F(T 1x) = −x1x2 +
∞∑

m=2

(−1)m

∞∑

k2=3

· · ·
∞∑

km=km−1+2

x1x2xk2xk2+1 . . . xkmxkm+1

= −x1x2F(T 2x).

Remark 5. Clearly, given that F(∅) = F(x1) = 1, relation (2) determines recursively
and unambiguously F(x1, . . . , xn) for any finite number of variables n ∈ Z+ (including
n = 0).

Remark 6. One readily verifies that

F(x1, x2, . . . , xn) = F(xn, . . . , x2, x1). (3)

Hence equality (2) implies, again for n ≥ 2,

F(x1, . . . , xn−2, xn−1, xn) = F(x1, . . . , xn−2, xn−1)− xn−1xn F(x1, . . . , xn−2). (4)

Remark 7. For a given x ∈ D such that F(x) 6= 0 let us introduce sequences {Pk}∞k=0

and {Qk}∞k=0 by P0 = 0 and Pk = F(x2, . . . , xk) for k ≥ 1, Qk = F(x1, . . . , xk) for
k ≥ 0. According to (4), the both sequences obey the difference equation

Yk+1 = Yk − xkxk+1Yk−1, k = 1, 2, 3, . . . ,
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with the initial conditions P0 = 0, P1 = 1, Q0 = Q1 = 1, and define the infinite
continued fraction

F(Tx)

F(x)
= lim

k→∞
Pk

Qk

=
1

1− x1x2

1− x2x3

1− x3x4

1− . . .

.

Proposition 4 admits a generalization.

Proposition 8. For every x ∈ D and k ∈ N one has

F(x) = F(x1, . . . , xk) F(T kx)− F(x1, . . . , xk−1)xkxk+1 F(T k+1x). (5)

Proof. Let us proceed by induction in k. For k = 1, equality (5) coincides with (1).
Suppose (5) is true for k ∈ N. Applying Proposition 4 to the sequence T kx and using
(4) one finds that the RHS of (5) equals

F(x1, . . . , xk) F(T k+1x)− F(x1, . . . , xk)xk+1xk+2 F(T k+2x)

− F(x1, . . . , xk−1)xkxk+1 F(T k+1x)

= F(x1, . . . , xk, xk+1) F(T k+1x)− F(x1, . . . , xk)xk+1xk+2 F(T k+2x).

This concludes the verification.

Remark 9. With the aid of Proposition 4 one can rewrite equality (5) as follows

F(x) = F(x1, . . . , xk) F

(
F(x1, . . . , xk−1)

F(x1, . . . , xk)
xk, xk+1, xk+2, xk+3, . . .

)
. (6)

Proposition 10. The function F is a continuous functional on `2(N).

Proof. Let xn ≡ {xn
k}∞k=1, x ≡ {xk}∞k=1 ∈ `2(N) such that

‖x− xn‖2
2 ≡

∞∑

k=1

|xk − xn
k |2 → 0

with n→∞. Since xn → x in `2(N) and
∑∞

k=1 |xkxk+1| ≤ ‖x‖2
2 there exist constants

N, n0 ∈ N and 0 < L < 1 such that

∞∑

k=N

|xkxk+1| ≤ L

and ∞∑

k=N

|xn
kx

n
k+1| ≤ L
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for all n ≥ n0. Let us examine the difference
∣∣F(TNx)− F(TNxn)

∣∣ which is equal to
∣∣∣∣∣
∞∑

m=1

(−1)m

[ ∞∑

k1=N+1

∞∑

k2=k1+2

. . .

∞∑

km=km−1+2

xk1xk1+1xk2xk2+1 . . . xkmxkm+1

−
∞∑

k1=N+1

∞∑

k2=k1+2

. . .

∞∑

km=km−1+2

xn
k1
xn

k1+1x
n
k2
xn

k2+1 . . . x
n
km
xn

km+1

]∣∣∣∣∣

≤
∞∑

m=1

[ ∞∑

k1=N+1

|xk1xk1+1 − xn
k1
xn

k1+1|
∞∑

k2=k1+2

|xk2xk2+1| · · ·
∞∑

km=km−1+2

|xkmxkm+1|

+
∞∑

k1=N+1

|xn
k1
xn

k1+1|
∞∑

k2=k1+2

|xk2xk2+1 − xn
k2
xn

k2+1| · · ·
∞∑

km=km−1+2

|xkmxkm+1|

+ · · ·+
∞∑

k1=N+1

|xn
k1
xn

k1+1|
∞∑

k2=k1+2

|xn
k2
xn

k2+1| · · ·
∞∑

km=km−1+2

|xkmxkm+1 − xn
km
xn

km+1|
]
.

Consequently, one has, for n ≥ n0,

∣∣F(TNx)− F(TNxn)
∣∣ ≤

∞∑
m=1

mLm−1

∞∑

k=1

|xkxk+1 − xn
kx

n
k+1|.

Next, by considering the inequality

∞∑

k=1

|xkxk+1 − xn
kx

n
k+1| ≤ ‖x‖2‖x− xn‖2 + ‖xn‖2‖x− xn‖2

one finds out
lim

n→∞
F(TNxn) = F(TNx).

Finally, by (5), one gets

F(xn) = F(xn
1 , . . . , x

n
N) F(TNxn)− F(xn

1 , . . . , x
n
N−1)x

n
Nx

n
N+1 F(TN+1xn).

To conclude the proof it is sufficient to send n to infinity and use (5) again.

Later on, we shall also need the following identity.

Lemma 11. For any n ∈ N one has

u1F(u2, u3, . . . , un)F(v1, v2, v3, . . . , vn)− v1F(u1, u2, u3, . . . , un)F(v2, v3, . . . , vn)

=
n∑

j=1

(
j−1∏

k=1

ukvk

)
(uj − vj) F(uj+1, uj+2, . . . , un)F(vj+1, vj+2, . . . , vn). (7)

Proof. The equality can be readily proved by induction in n with the aid of (2).
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Example 12. Let t, w ∈ C, |t| < 1. By using the identity

∞∑

k1=n

∞∑

k2=k1+2

· · ·
∞∑

km=km−1+2

t2k1−1t2k2−1 . . . t2km−1 =
tm(2m−3)t2mn

(1− t2)(1− t4) . . . (1− t2m)

which can be verified by induction in m, one arrives at the equality

F
({
tk−1w

}∞
k=1

)
= 1 +

∞∑
m=1

(−1)m tm(2m−1)w2m

(1− t2)(1− t4) · · · (1− t2m)
. (8)

This function can be identified with a basic hypergeometric series (also called q-
hypergeometric series) defined by

rφs(a; b; q, z) =
∞∑

k=0

(a1; q)k . . . (ar; q)k

(b1; q)k . . . (bs; q)k

(
(−1)kq

1
2
k(k−1)

)1+s−r zk

(q; q)k

where r, s ∈ Z+ (nonnegative integers) and

(α; q)k =
k−1∏
j=0

(
1− αqj

)
, k = 0, 1, 2, . . . ,

see [5]. In fact, the RHS in (8) equals 0φ1(; 0; t2,−tw2) where

0φ1(; 0; q, z) =
∞∑

k=0

qk(k−1)

(q; q)k

zk =
∞∑

k=0

qk(k−1)

(1− q)(1− q2) . . . (1− qk)
zk,

with q, z ∈ C, |q| < 1, and the recursive rule (1) takes the form

0φ1(; 0; q, z) = 0φ1(; 0; q, qz) + z 0φ1(; 0; q, q2z). (9)

Put e(q; z) = 0φ1(; 0; q, (1 − q)z). Then limq↑1 e(q; z) = exp(z). Hence e(q; z) can be
regarded as a q-deformed exponential function though this is not the standard choice
(compare with [5] or [6] and references therein). Equality (9) can be interpreted as
the discrete derivative

e(q; z)− e(q; qz)

(1− q)z
= e(q; q2z).

Moreover, in view of Remark 7, one has

1

1 +
z

1 +
qz

1 +
q2z

1 + . . .

=
0φ1(; 0; q, qz)

0φ1(; 0; q, z)
.

This equality is related to the Rogers-Ramanujan identities, see the discussion in [3,
Chp. 7].
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Example 13. The Bessel functions of the first kind can be expressed in terms of
function F. More precisely, for ν /∈ −N, one has

Jν(2w) =
wν

Γ(ν + 1)
F

({
w

ν + k

}∞

k=1

)
. (10)

The recurrence relation (1) transforms to the well known identity

zJν(z)− 2(ν + 1)Jν+1(z) + zJν+2(z) = 0.

To prove (10) one has to show that

∞∑

k1=1

∞∑

k2=k1+2

. . .

∞∑

km=km−1+2

× 1

(ν + k1)(ν + k1 + 1)(ν + k2)(ν + k2 + 1) . . . (ν + km)(ν + km + 1)

=
1

m! (ν + 1)(ν + 2) . . . (ν +m)
=

Γ(ν + 1)

m! Γ(ν +m+ 1)
.

The first equality is verified in the proof of Proposition 14 (it suffices to send n to
infinity in (14)). And so

wν

Γ(ν + 1)
F

({
w

n+ k

}∞

k=1

)
=

∞∑
m=0

(−1)m w2m+ν

m! Γ(ν +m+ 1)
,

as claimed. Furthermore, Remark 7 provides us with the infinite fraction

ν + 1

w

Jν+1(2w)

Jν(2w)
=

1

1−
w2

(ν + 1)(ν + 2)

1−
w2

(ν + 2)(ν + 3)

1−
w2

(ν + 3)(ν + 4)

1− . . .

.

This can be rewritten as

Jν+1(z)

Jν(z)
=

z

2(ν + 1)− z2

2(ν + 2)− z2

2(ν + 3)− z2

2(ν + 4)− . . .

.

Comparing to Example 13, one can also find the value of F on the truncated
sequence {w/(ν + k)}n

k=1.
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Proposition 14. For n ∈ Z+ and ν ∈ C \ {−n,−n+ 1, . . . ,−1} one has

F

(
w

ν + 1
,

w

ν + 2
, . . . ,

w

ν + n

)
=

Γ(ν + 1)

Γ(ν + n+ 1)

[n/2]∑
s=0

(−1)s (n− s)!

s! (n− 2s)!
w2s

n−1−s∏
j=s

(ν+n−j).

(11)
In particular, for m,n ∈ Z+, m ≤ n, one has

F

(
w

m+ 1
,

w

m+ 2
, . . . ,

w

n

)
=
m!

n!

[(n−m)/2]∑
s=0

(−1)s (n− s)! (n−m− s)!

s! (m+ s)! (n−m− 2s)!
w2s. (12)

Proof. Firstly, the equality

n∑

k=1

(n+ 1− k)(n+ 2− k) . . . (n+ s− 1− k)

(ν + k)(ν + k + 1) . . . (ν + k + s)

=
n (n+ 1) . . . (n+ s− 1)

s (ν + n+ s) (ν + 1)(ν + 2) . . . (ν + s)
(13)

holds for all n ∈ Z+, ν ∈ C, ν /∈ −N, and s ∈ N. To show (13) one can proceed by
induction in s. The case s = 1 is easy to verify. For the induction step from s− 1 to
s, with s > 1, let us denote the LHS of (13) by Ys(ν, n). One observes that

Ys(ν, n) =
ν + n+ s− 1

s
Ys−1(ν, n)− ν + n+ 2s− 1

s
Ys−1(ν + 1, n).

Applying the induction hypothesis the equality readily follows.
Next one shows that

n−2s+2∑

k1=1

n−2s+4∑

k2=k1+2

. . .

n∑

ks=ks−1+2

× 1

(ν + k1)(ν + k1 + 1)(ν + k2)(ν + k2 + 1) . . . (ν + ks)(ν + ks + 1)
(14)

=
(n− 2s+ 2)(n− 2s+ 3) . . . (n− s+ 1)

s! (ν + 1)(ν + 2) . . . (ν + s) (ν + n− s+ 2)(ν + n− s+ 3) . . . (ν + n+ 1)

holds for all n ∈ Z+, s ∈ N, 2s ≤ n+2. To this end, we again proceed by induction in
s. The case s = 1 is easy to verify. In the induction step from s− 1 to s, with s > 1,
one applies the induction hypothesis to the LHS of (14) and arrives at the expression

n−2s+2∑

k=1

1

(ν + k)(ν + k + 1) (s− 1)!

× (n− k − 2s+ 3)(n− k − 2s+ 4) . . . (n− k − s+ 1)

(ν + k + 2)(ν + k + 3) . . . (ν + k + s) (ν + n− s+ 3)(ν + n− s+ 4) . . . (ν + n+ 1)
.

Using (13) one obtains the RHS of (14), as claimed.
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Finally, to conclude the proof, it suffices to notice that

F

(
w

ν + 1
,

w

ν + 2
, . . . ,

w

ν + n

)
= 1 +

[n/2]∑
s=1

(−1)s

n−2s+1∑

k1=1

n−2s+3∑

k2=k1+2

· · ·
n−1∑

ks=ks−1+2

× w2s

(ν + k1)(ν + k1 + 1)(ν + k2)(ν + k2 + 1) . . . (ν + ks)(ν + ks + 1)

and to use equality (14).

One can complete Proposition 14 with another relation to Bessel functions.

Proposition 15. For m,n ∈ Z+, m ≤ n, one has

πJm(2w)Yn+1(2w) = − n!

m!
wm−n−1 F

(
w

m+ 1
,

w

m+ 2
, . . . ,

w

n

)
(15)

−
m−1∑
s=0

(m− s− 1)! (n−m+ 2s+ 1)!

s! (n+ s+ 1)! (n−m+ s+ 1)!
wn−m+2s+1 +O

(
wm+n+1 log(w)

)
.

Proof. Recall the following two facts from the theory of Bessel functions (see, for
instance, [4, Chapter VII]). Firstly, for µ, ν /∈ −N, one has

Jµ(z)Jν(z) =
∞∑

s=0

(−1)s (s+ µ+ ν + 1)s

s! Γ(µ+ s+ 1)Γ(ν + s+ 1)

(z
2

)µ+ν+2s

where (a)s = a(a+1) . . . (a+ s−1) is the Pochhammer symbol. Secondly, for n ∈ Z+,

πYn(z) =
∂

∂ν
(Jν(z)− (−1)nJ−ν(z))

∣∣∣∣∣
ν=n

.

For m,n ∈ Z+, m ≤ n, a straightforward computation based on these facts yields

πJm(z)Yn(z) = −
[(n−m−1)/2]∑

s=0

(−1)s (n− s− 1)! (n−m− s− 1)!

s! (m+ s)! (n−m− 2s− 1)!

(z
2

)m−n+2s

−
m−1∑
s=0

(m− s− 1)! (n−m+ 2s)!

s! (n+ s)! (n−m+ s)!

(z
2

)n−m+2s

+ 2Jm(z)Jn(z) log
(z

2

)
(16)

+
∞∑

s=0

(−1)s (m+ n+ 2s)!

s! (m+ s)! (n+ s)! (m+ n+ s)!

(z
2

)m+n+2s (
2ψ(m+ n+ 2s+ 1)

−ψ(m+ s+ 1)− ψ(n+ s+ 1)− ψ(m+ n+ s+ 1)− ψ(s+ 1)
)

where ψ(z) = Γ′(z)/Γ(z) is the digamma function. The proposition follows from (16)
and (12).

Remark 16. Note that the first term on the RHS of (15) contains only negative powers
of w. One can extend (15) to the case n = m− 1. Then

πJm(2w)Ym(2w) = −
m−1∑
s=0

(m− s− 1)! (2s)!

(s!)2 (m+ s)!
w2s +O

(
w2m log(w)

)
.
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3 The matrix J

In this section we introduce an infinite matrix J that is basically determined by two
simple properties – it is antisymmetric and its every row satisfies a second-order dif-
ference equation known from the theory of Bessel functions. Of course, in that case
every column of the matrix satisfies the difference equation as well.

Lemma 17. Suppose w ∈ C \ {0}. The dimension of the vector space formed by
infinite-dimensional matrices A = {A(m,n)}m,n∈Z satisfying, for all m,n ∈ Z,

wA(m,n− 1)− nA(m,n) + wA(m,n+ 1) = 0 (17)

and
A(n,m) = −A(m,n), (18)

equals 1. Every such a matrix is unambiguously determined by the value A(0, 1), and
one has

∀n ∈ Z, A(n, n+ 1) = A(0, 1). (19)

Proof. Suppose A solves (17) and (18). Then A(m,m) = 0. Equating m = n in (17)
and using (18) one finds that A(n, n + 1) = −A(n, n − 1) = A(n − 1, n). Hence (19)
is fulfilled. Clearly, the matrix A is unambiguously determined by the second-order
difference equation (17) in n and by the initial conditions A(m,m) = 0, A(m,m+1) =
A(0, 1), when m runs through Z.

Conversely, choose λ ∈ C, λ 6= 0. Let A be the unique matrix determined by (17)
and the initial conditions A(m,m) = 0, A(m,m + 1) = λ. It suffices to show that A
satisfies (18) as well. Note that A(m,m− 1) = −λ. Furthermore,

wA(m− 1,m+ 1)−mA(m,m+ 1) + wA(m+ 1,m+ 1)

= wA(m− 1,m+ 1)−mA(m− 1,m) + wA(m− 1,m− 1)

= 0.

From (17) and the initial conditions it follows that A(m,m + 2) = (m + 1)λ/w, and
so mA(m,m+ 2) = (m+ 1)A(m− 1,m+ 1). Consequently,

wA(m− 1,m+ 2)−mA(m,m+ 2) + wA(m+ 1,m+ 2)

= wA(m− 1,m+ 2)− (m+ 1)A(m− 1,m+ 1) + wA(m− 1,m)

= 0.

One observes that, for a given m ∈ Z, the sequence

xn = −A(m− 1, n) +
m

w
A(m,n), n ∈ Z,

solves the difference equation

wxn−1 − nxn + wxn+1 = 0 (20)
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with the initial conditions xm+1 = A(m+ 1,m+ 1), xm+2 = A(m+ 1,m+ 2). By the
uniqueness, xn = A(m+ 1, n). This means that, for all m,n ∈ Z,

wA(m− 1, n)−mA(m,n) + wA(m+ 1, n) = 0.

Put B(m,n) = −A(n,m). Then B fulfills (17) and B(m,m) = 0, B(m,m + 1) = λ.
Whence B = A.

Lemma 18. Suppose w ∈ C \ {0}. If a matrix A = {A(m,n)}m,n∈Z satisfies (17) and
(18) then

∀m,n ∈ Z, A(m,−n) = (−1)nA(m,n), A(−m,n) = (−1)mA(m,n). (21)

Proof. For any sequence {xn}n∈Z satisfying the difference equation (20) one can verify,
by mathematical induction, that x−n = (−1)nxn, n = 0, 1, 2, . . .. The second equality
in (21) follows directly from the first one and property (18).

Definition 19. For a given parameter w ∈ C \ {0} let J = {J(m,n)}m,n∈Z denote the
unique matrix satisfying (17), (18) with J(0, 1) = 1.

Remark 20. Here are several particular entries of the matrix J,

J(m,m) = 0, J(m,m+1) = 1, J(m,m+2) =
m+ 1

w
, J(m,m+3) =

(m+ 1)(m+ 2)

w2
−1,

with m ∈ Z. Some other particular values follow from (18) and (21). Below, in
Proposition 24, we derive a general formula for J(m,n).

Lemma 21. For 0 ≤ m < n one has (with the convention F(∅)=1)

J(m,n) =
(n− 1)!

m!
wm−n+1 F

(
w

m+ 1
,

w

m+ 2
, . . . ,

w

n− 1

)
. (22)

Proof. The RHS of (22) equals 1 for n = m + 1, and (m + 1)/w for n = m + 2.
Moreover, in view of (4), the RHS satisfies the difference equation (20) in the index
n.

Remark 22. From (22) and (10) it follows that

∀m ∈ Z, lim
n→∞

wn−1

(n− 1)!
J(m,n) = Jm(2w).

This is in agreement with the well known fact that, for any w ∈ C, the sequence
{Jn(2w)}n∈Z fulfills the second-order difference equation (20).
Remark 23. Rephrasing Proposition 15 and Remark 16 one has, form,n ∈ Z+, m ≤ n,

πJm(2w)Yn(2w) = −w−1J(m,n)−
m−1∑
s=0

(m− s− 1)! (n−m+ 2s)!

s! (n+ s)! (n−m+ s)!
wn−m+2s

+O
(
wm+n log(w)

)
.
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Since, by definition, the matrix J is antisymmetric it suffices to determine the
values J(m,n) for m ≤ n, m,n ∈ Z.
Proposition 24. For m,n ∈ Z, m ≤ n, one has

J(m,n) =

[(n−m−1)/2]∑
s=0

(−1)s

(
n− s− 1

n−m− 2s− 1

)
(n−m− s− 1)!

s!
wm−n+2s+1. (23)

Proof. We distinguish several cases. First, consider the case 0 ≤ m < n. Then (23)
follows from (22) and (12). Observe also that for m = n, m,n ∈ Z, the RHS of (23)
is an empty sum and so the both sides in (23) are equal to 0.

Second, consider the case m ≤ 0 ≤ n. Put m = −k, k ∈ Z+. The RHS of (23)
becomes

[(n+k−1)/2]∑
s=0

(−1)s

(
n− s− 1

n+ k − 2s− 1

)
(n+ k − s− 1)!

s!
w−k−n+2s+1. (24)

Suppose k ≤ n. Then the summands in (24) vanish for s = 0, 1, . . . , k − 1, and so the
sum equals

[(n−k−1)/2]∑
s=0

(−1)s+k (n− k − s− 1)!

(n− k − 2s− 1)! s!

(n− s− 1)!

(s+ k)!
wk−n+2s+1.

By the first step, this expression is equal to (−1)kJ(k, n) = J(−k, n) (see Lemma 18).
Further, suppose k ≥ n. Then the summands in (24) vanish for s = 0, 1, . . . , n − 1,
and so the sum equals

[(k−n−1)/2]∑
s=0

(−1)n+s

( −s− 1

k − n− 2s− 1

)
(k − s− 1)!

(n+ s)!
wn−k+2s+1.

Using once more the first step, this expression is readily seen to be equal to
(−1)k+1J(n, k) = J(−k, n).

Finally, consider the case m ≤ n ≤ 0. Put m = −k, n = −`, k, ` ∈ Z+. Hence
0 ≤ ` ≤ k. The RHS of (23) becomes

[(k−`−1)/2]∑
s=0

(−1)s

( −`− s− 1

k − `− 2s− 1

)
(k − `− s− 1)!

s!
w`−k+2s+1.

Using again the first step, this expression is readily seen to be equal to (−1)k+`+1J(`, k)
= J(−k,−`).

4 The characteristic function for the antisymmetric
diagonal

First a simple relationship between the function F applied to a finite sequence and the
determinant of a Jacobi matrix is introduced.
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Proposition 25. For d ∈ N and {aj}d
j=1 ⊂ C, one has

F(a1, a2, . . . , ad) =

∣∣∣∣∣∣∣∣∣∣∣∣∣




1 a1

a2 1 a2

. . . . . . . . .
. . . . . . . . .

ad−2 1 ad−1

ad−1 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

. (25)

Proof. The case d = 1, 2 is easy to verify. Denote the RHS of (25) by D(a1, a2, . . . , ad).
By expanding D(a1, a2, . . . , ad) along the first row one finds out the recurrence rule

D(a1, a2, . . . , ad) = D(a2, a3, . . . , ad)− a1a2D(a3, a4, . . . , ad)

holds which, according to Remark 5, concludes the proof.

Corollary 26. For d ∈ N, w ∈ C and {λj}d
j=1 ⊂ C \ {0}, one has

(
d∏

j=1

λj

)
F

(
w

λ1

,
w

λ2

, . . . ,
w

λd

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣




λ1 w
w λ2 w

. . . . . . . . .
. . . . . . . . .

w λd−1 w
w λd




∣∣∣∣∣∣∣∣∣∣∣∣∣

. (26)

Proof. It suffices to put aj = w
λj

in (25) and adjust the determinant.

For a given d ∈ Z+ let E± denote the (2d+ 1)× (2d+ 1) matrix with units on the
upper (lower) parallel to the diagonal and with all other entries equal to zero. Hence

(E+)j,k = δj+1,k, (E−)j,k = δj,k+1, j, k = −d,−d+ 1,−d+ 2, . . . , d.

For y = (y−d, y−d+1, y−d+2, . . . , yd) ∈ C2d+1 let diag(y) denote the diagonal (2d+ 1)×
(2d + 1) matrix with the sequence y on the diagonal. Everywhere in what follows, I
stands for a unit matrix.

Next a more complicated formula, which is needed later, is presented for the de-
terminant of a Jacobi matrix with a general diagonal but with constant neighboring
parallels to the diagonal. As explained in the subsequent remark, however, this for-
mula can be extended to the general case with the aid of a simple decomposition of
the Jacobi matrix in question.

Proposition 27. For d ∈ N, w ∈ C and y = (y−d, y−d+1, y−d+2, . . . , yd) ∈ C2d+1,∏d
k=1 yky−k 6= 0, one has

det
(
diag(y) + wE+ + wE−

)
=

(
d∏

k=1

yky−k

)[
y0 F

(
w

y1

, . . . ,
w

yd

)
F

(
w

y−1

, . . . ,
w

y−d

)

− w2

y1

F

(
w

y2

, . . . ,
w

yd

)
F

(
w

y−1

, . . . ,
w

y−d

)
− w2

y−1

F

(
w

y1

, . . . ,
w

yd

)
F

(
w

y−2

, . . . ,
w

y−d

) ]
.

(27)
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Proof. Let us proceed by induction in d. The case d = 1 is easy to verify. Put
Nd(w; y) = det

(
diag(y)+wE++wE−

)
. Suppose (27) is true for some d ≥ 1. For given

w ∈ C and y ∈ C2d+3 consider the quantity Nd+1(w; y). Let us split the corresponding
(2d + 3) × (2d + 3) Jacobi matrix into four blocks by splitting the set of indices into
two disjoint sets {−d− 1, d+ 1} and {−d,−d+ 1,−d+ 2, . . . , d}. Applying the rule

det

(
A B
C D

)
= det(A) det(D − CA−1B)

(see Appendix) one derives the recurrence relation

Nd+1(w; y−d−1, y−d, y−d+1, . . . , yd, yd+1) = yd+1y−d−1Nd(w; y′−d, y−d+1, y−d+2, . . . , yd−1, y
′
d)

where
y′d =

(
1− w2

ydyd+1

)
yd, y

′
−d =

(
1− w2

y−dy−d−1

)
y−d.

Now it is sufficient to use the induction hypothesis jointly with the equality

(1− xn−1xn) F

(
x1, x2, . . . , xn−2,

xn−1

1− xn−1xn

)
= F(x1, x2, . . . , xn−1, xn)

which is valid for n ≥ 2 and which follows from relations (3) and (6), with k = 2.

Remark 28. Let us consider a general finite symmetric Jacobi matrix J of the form

J =




λ1 w1

w1 λ2 w2

. . . . . . . . .
. . . . . . . . .

wn−2 λn−1 wn−1

wn−1 λn




such that
∏n−1

k=1 wk 6= 0. The Jacobi matrix can be decomposed into the product

J = GJ̃G (28)

where G = diag(γ1, γ2, . . . , γn) is a diagonal matrix and J̃ is a Jacobi matrix with all
units on the neighboring parallels to the diagonal,

J̃ =




λ̃1 1

1 λ̃2 1
. . . . . . . . .

. . . . . . . . .
1 λ̃n−1 1

1 λ̃n




.
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Hence det(J) = (
∏n

k=1 γ
2
k ) det(J̃), and one can employ formula (27) (in the case of

odd dimension) or (26) to evaluate det(J̃). In more detail, one can put

γ2k−1 =
k−1∏
j=1

w2j

w2j−1

, γ2k = w1

k−1∏
j=1

w2j+1

w2j

, k = 1, 2, 3, . . . . (29)

Alternatively, the sequence {γk}n
k=1 is defined recursively by γ1 = 1, γk+1 = wk/γk.

Furthermore, λ̃k = λk/γ
2
k . With this choice, (28) is clearly true.

The characteristic function of a general finite symmetric Jacobi matrix can be also
expressed with the aid of F.

Proposition 29. Let J be the Jacobi matrix defined in Remark 28. Then it holds

det(J − zI) =

(
d∏

k=1

(λk − γ2
kz)

)
F

(
γ2

1

λ1 − γ2
1z
,

γ2
2

λ2 − γ2
2z
, . . . ,

γ2
d

λd − γ2
dz

)
(30)

where z ∈ C and the sequence {γk}d
k=1 is defined in (29). In the case when wk = w ∈ C,

for k = 1, 2, . . . , d, one has

det(J − zI) =

(
d∏

k=1

(λk − z)

)
F

(
w

λ1 − z
,

w

λ2 − z
, . . . ,

w

λd − z

)
. (31)

Proof. Equality (31) follows from (26). Next, in view of Remark 28, one finds out
det(J − zI) is equal to

=

(
d∏

k=1

γ2
k

)
det(J̃ − zI) =

(
d∏

k=1

γ2
k(λ̃k − z)

)
F

(
1

λ̃1 − z
,

1

λ̃2 − z
, . . . ,

1

λ̃d − z

)

=

(
d∏

k=1

(λk − γ2
kz)

)
F

(
γ2

1

λ1 − γ2
1z
,

γ2
2

λ2 − γ2
2z
, . . . ,

γ2
d

λd − γ2
dz

)
.

Next we aim to derive another formula for the characteristic function of a Jacobi
matrix with an antisymmetric diagonal. Suppose λ = (λ−d, λ−d+1, λ−d+2, . . . , λd) ∈
C2d+1 and λ−k = −λk for −d ≤ k ≤ d; in particular, λ0 = 0. We consider the Jacobi
matrix K = diag(λ) + wE+ + wE−. Let us denote, temporarily, by S the diagonal
matrix with alternating signs on the diagonal, S = diag(1,−1, 1, . . . , 1), and by Q the
permutation matrix with the entries Qj,k = δj+k,0 for −d ≤ j, k ≤ d. The commutation
relations

SQKQS = −K, S2 = Q2 = I,

imply
det(K − zI) = det

(
SQ(K − zI)QS

)
= − det(K + zI).

Hence the characteristic function of K is an odd polynomial in the variable z. This
can be also seen from the explicit formula (32) derived below.
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Proposition 30. Suppose d ∈ N, w ∈ C, λ ∈ C2d+1 and λ−k = −λk for k =
−d,−d+ 1,−d+ 2, . . . , d. Then

(−1)d+1

z
det

(
diag(λ) + wE+ + wE− − zI

)
(32)

=

(
d∏

k=1

(λ2
k − z2)

)
F

(
w

λ1 − z
, . . . ,

w

λd − z

)
F

(
w

λ1 + z
, . . . ,

w

λd + z

)

+ 2
d∑

j=1

w2j

(
d∏

k=j+1

(λ2
k − z2)

)
F

(
w

λj+1 − z
, . . . ,

w

λd − z

)
F

(
w

λj+1 + z
, . . . ,

w

λd + z

)
.

Proof. This is a particular case of (27) where one has to set yk = λk − z for k > 0,
y0 = −z, yk = −(λ−k + z) for k < 0. To complete the proof it suffices to verify that

w2

z (λ1 − z)
F

(
w

λ2 − z
, . . . ,

w

λd − z

)
F

(
w

λ1 + z
,

w

λ2 + z
, . . . ,

w

λd + z

)

− w2

z (λ1 + z)
F

(
w

λ1 − z
,

w

λ2 − z
, . . . ,

w

λd − z

)
F

(
w

λ2 + z
, . . . ,

w

λd + z

)

= 2
d∑

j=1

w2j

(
j∏

k=1

1

λ2
k − z2

)
F

(
w

λj+1 − z
, . . . ,

w

λd − z

)
F

(
w

λj+1 + z
, . . . ,

w

λd + z

)
.

To this end, one can apply (7), with n = d, uk = w/(λk − z), vk = w/(λk + z). Note
that uj − vj = 2zujvj/w.

Zero always belongs to spectrum of the Jacobi matrix K for the characteristic
function is odd. Moreover, as is well known and as it simply follows from the analysis
of the eigenvalue equation, if w 6= 0 then to every eigenvalue ofK there belongs exactly
one linearly independent eigenvector.

Proposition 31. Suppose w ∈ C, λ ∈ C2d+1, λ−k = −λk for −d ≤ k ≤ d, and∏d
k=1 λk 6= 0. Then the vector v ∈ C2d+1, vT = (θ−d, θ−d+1, θ−d+2, . . . , θd), with the

entries

θk = (−1)kwk

(
d∏

j=k+1

λj

)
F

(
w

λk+1

,
w

λk+2

, . . . ,
w

λd

)
for k = 0, 1, 2, . . . , d, (33)

θ−k = (−1)k θk for −d ≤ k ≤ d, belongs to the kernel of the Jacobi matrix
diag(λ) + wE+ + wE−. In particular, θ0 = λ1λ2 . . . λd F(w/λ1, w/λ2, . . . , w/λd),
θd = (−1)dwd, and so v 6= 0.

Remark. Clearly, formulas (33) can be extended to the case
∏d

k=1 λk = 0 as well
provided one makes the obvious cancellations.

Proof. One has to show that

wθk−1 + λkθk + wθk+1 = 0, k = −d+ 1,−d+ 2, . . . , d− 1,

18



and λ−dθ−d + wθ−d+1 = 0, wθd−1 + λdθd = 0. Owing to the symmetries λ−k = −λk,
θ−k = (−1)kθk, it suffices to verify the equalities only for indices 0 ≤ k ≤ d. This can
be readily carried out using the explicit formulas (33) and the rule (2).

5 Jacobi matrices with a linear diagonal
Finally we focus on finite-dimensional Jacobi matrices of odd dimension whose diag-
onal depends linearly on the index and whose parallels to the diagonal are constant.
Without loss of generality one can assume that the diagonal equals
(−d,−d+ 1,−d+ 2, . . . , d), d ∈ Z+. For w ∈ C put

K0 = diag(−d,−d+ 1,−d+ 2, . . . , d), K(w) = K0 + wE+ + wE−.

Concerning the characteristic function χ(z) = det(K(w)− z), we know that this is an
odd function. Put

χred(z) =
(−1)d+1

z
det(K(w)− z).

Hence χred(z) is an even polynomial of degree 2d. Further, denote by
{e−d, e−d+1, e−d+2, . . . , ed} the standard basis in C2d+1.

Suppose w 6= 0. Let us consider a family of column vectors xs,n ∈ C2d+1 depending
on the parameters s, n ∈ Z and defined by

x T
s,n =

(
J(s+ d, n), J(s+ d− 1, n), J(s+ d− 2, n), . . . , J(s− d, n)

)
.

From the fact that the matrix J obeys (17), (18) one derives that

∀s, n ∈ Z, K(w)xs,n = s xs,n − w J(s+ d+ 1, n)e−d − w J(s− d− 1, n)ed.

Put
vs = xs,s+d+1, s ∈ Z.

Recalling that J(m,m) = J(−m,m) = 0 one has

K(w)vs = s vs − w J(s− d− 1, s+ d+ 1)ed. (34)

Remark 32. Putting s = 0 one gets K(w)v0 = 0, and so v0 spans the kernel of K(w).

Lemma 33. For every ` = −d,−d+ 1,−d+ 2, . . . , d, one has

wd+`
∑̀

s=−d

(−1)`+s

(d+ s)! (`− s)!
vs ∈ e` + span{e`+1, e`+2, . . . , ed}.

In particular,

ed = w2d

d∑

s=−d

(−1)d+s

(d+ s)! (d− s)!
vs. (35)

Consequently, V = {v−d, v−d+1, v−d+2, . . . , vd} is a basis in C2d+1.
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Proof. One has to show that

wd+`
∑̀

s=−d

(−1)`+s

(d+ s)! (`− s)!
J(s− k, s+ d+ 1) = δ`,k for − d ≤ k ≤ `.

Note that for any a ∈ C and n ∈ Z+,

n∑

k=0

(−1)k

(
n

k

)(
a+ k

r

)
= 0, r = 0, 1, 2, . . . , n− 1,

n∑

k=0

(−1)k

(
n

k

)(
a+ k

n

)
= (−1)n

(see Appendix). Using these equalities and (23) one can readily show, more generally,
that

∑̀

s=−d

(−1)`+s

(d+ s)! (`− s)!
J(m+ s, n+ s) = 0 for m,n ∈ Z,m ≤ n ≤ m+ d+ `,

and
∑̀

s=−d

(−1)`+s

(d+ s)! (`− s)!
J(m+ s,m+ d+ `+ s+ 1) = w−d−`.

This proves the lemma.

Denote by K̃(w) the matrix of K(w) in the basis V introduced in Lemma 33.
Let a, b ∈ C2d+1 be the column vectors defined by aT = (α−d, α−d+1, α−d+2, . . . αd),
bT = (β−d, β−d+1, β−d+2, . . . βd),

αs = J(s−d−1, s+d+1), βs =
(−1)d+sw2d+1

(d+ s)! (d− s)!
, s = −d,−d+1,−d+2, . . . , d. (36)

Note that
α−s = −αs, β−s = βs. (37)

The former equality follows from (21) and (18). From (34) and (35) one deduces that

K̃(w) = K0 − baT . (38)

Note, however, that the components of the vectors a and b depend on w, too, though
not indicated in the notation.

According to (38), K̃(w) differs from the diagonal matrix K0 by a rank-one cor-
rection. This form is suitable for various computations. Particularly, one can express
the resolvent of K̃(w) explicitly,

(K̃(w)− z)−1 = (K0 − z)−1 +
1

1 + aT (K0 − z)−1b
(K0 − z)−1baT (K0 − z)−1. (39)

The equality holds for any z ∈ C such that z /∈ spec{K0} = {−d,−d+1,−d+2, . . . , d}
and 1 + aT (K0 − z)−1b 6= 0. Clearly, this set of excluded values of z is finite. By
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multiplying the LHS of (39) (K̃(w) − z) one readily verifies that the result is the
identity matrix.

Let us proceed to derivation of a formula for the characteristic function of K(w).
Proposition 30 is applicable to K(w) and so

χred(z) =

(
d∏

k=1

(k2 − z2)

)
F

(
w

1− z
, . . . ,

w

d− z

)
F

(
w

1 + z
, . . . ,

w

d+ z

)
(40)

+ 2
d∑

j=1

w2j

(
d∏

k=j+1

(k2 − z2)

)
F

(
w

j + 1− z
, . . . ,

w

d− z

)
F

(
w

j + 1 + z
, . . . ,

w

d+ z

)
.

Below we derive a more convenient formula for χred(z).

Lemma 34. One has

χred(0) =
d∑

s=0

(
(d− s)!

)2
(2d− s+ 1)!

s! (2d− 2s+ 1)!
w2s (41)

and

χred(n) =
1

n

n−1∑

k=0

(−1)k(2k + 1)!

(
n+ k

2k + 1

)(
d+ k + 1

2k + 1

)
w2d−2k (42)

for n = 1, 2, . . . , d.

Proof. Let us first verify the formula for χred(0). From (40) it follows that

χred(0) = (d!)2 F
(
w,
w

2
, . . . ,

w

d

)2

+ 2
d∑

j=1

w2j

(
d!

j!

)2

F

(
w

j + 1
,
w

j + 2
, . . . ,

w

d

)2

.

By Proposition 15,

χred(0) = π2w2d+2 Yd+1(2w)2

(
J0(2w)2 + 2

d∑
j=1

Jj(2w)2

)
+O

(
w2d+2 log(w)

)
.

Further we need some basic facts concerning Bessel functions; see, for instance, [1,
Chp. 9]. Recall that

J0(z)
2 + 2

∞∑
j=1

Jj(z)
2 = 1.

Hence

χred(0) = π2w2d+2 Yd+1(2w)2 +O
(
w2d+2 log(w)

)

=

(
d∑

k=0

(d− k)!

k!
w2k

)2

+O
(
w2d+2 log(w)

)
.
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Note that χred(0) is a polynomial in the variable w of degree 2d, and so

χred(0) =
d∑

s=0

s∑

k=0

(d− k)! (d− s+ k)!

k! (s− k)!
w2s.

Using the identity (proved in Appendix)
s∑

k=0

(d− k)! (d− s+ k)!

k! (s− k)!
=

(
(d− s)!

)2
s∑

k=0

(
d− k

d− s

)(
d− s+ k

d− s

)

=

(
(d− s)!

)2
(2d− s+ 1)!

s! (2d− 2s+ 1)!

one arrives at (41).
To show (42) one can make use of (38). One has

χred(z) =
(−1)d+1

z
det(K̃(w)− z) =

(−1)d+1

z
det(K0 − z) det

(
I − (K0 − z)−1baT

)
.

Note that det(I + baT ) = 1 + aT b (see Appendix). Hence, in view of (37),

χred(z) =
d∏

k=1

(k2 − z2)

(
1−

d∑

s=−d

βsαs

s− z

)
=

d∏

k=1

(k2 − z2)

(
1− 2

d∑
s=1

sβsαs

s2 − z2

)
.

Using (36) one gets

χred(n) = −2nβnαn

d∏

k=1
k 6=n

(k2 − z2) =
(−1)d

n
w2d+1 J(n− d− 1, n+ d+ 1).

Formula (42) then follows from (23).

Proposition 35. For every d ∈ Z+ one has

χred(z) =
d∑

s=0

(2d− s+ 1)!

s! (2d− 2s+ 1)!
w2s

d−s∏

k=1

(k2 − z2). (43)

Proof. Since χred(z) is an even polynomial in z of degree 2d it is enough to check
that the RHS of (43) coincides, for z = 0, 1, 2, . . . , d, with χred(0), χred(1), χred(2), . . . ,
χred(d). With the knowledge of values (41) and (42), this is a matter of straightforward
computation.

Remark 36. Using (43) it is not difficult to check that formula (42) is valid for any
n ∈ N, including n > d (the summation index k runs from 1 to min{n− 1, d}).
Remark 37. If w ∈ R, w 6= 0, then the spectrum of the Jacobi matrix K(w) is real and
simple, and formula (43) implies that the interval [−1, 1] contains no other eigenvalue
except of 0.
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Eigenvectors of K(w) can be expressed in terms of the function F, too. Suppose
w 6= 0. Let us introduce the vector-valued function x(z) ∈ C2d+1 depending on z ∈ C,
x(z)T = (ξ−d(z), ξ−d+1(z), ξ−d+2(z), . . . , ξd(z)),

ξk(z) = w−d−k Γ(z + d+ 1)

Γ(z − k + 1)
F

(
w

z − k + 1
,

w

z − k + 2
, . . . ,

w

z + d

)
, − d ≤ k ≤ d.

With the aid of (2) one derives the equality

(
K(w)− z

)
x(z) = −w−2d Γ(z + d+ 1)

Γ(z − d)
F

(
w

z − d
,

w

z − d+ 1
, . . . ,

w

z + d

)
ed. (44)

Remark 38. According to (11),

ξk(z) = w−d−k

[(d+k)/2]∑
s=0

(−1)s (d+ k − s)!

s! (d+ k − 2s)!
w2s

d+k−s−1∏
j=s

(z + d− j).

Hence ξk(z) is a polynomial in z of degree d + k. In particular, ξ−d(z) = 1, and so
x(z) 6= 0.

Proposition 39. If w ∈ C, w 6= 0, then for every eigenvalue λ ∈ spec(K(w)), x(λ)
is an eigenvector corresponding to λ.

Proof. According to (31), equation (44) can be rewrite as
(
K(w)− z

)
x(z) = w−2dχ(z)ed.

Consequently, if χ(λ) = 0 then x(λ) is an eigenvector of K(w).

Remark 40. Since

χ(z) = −z
(

d∏

k=1

(z2 − k2)

)
F

(
w

z − d
,

w

z − d+ 1
,

w

z − d+ 2
, . . . ,

w

z + d

)
(45)

one can rederive equality (42). For 1 ≤ n ≤ d, a straightforward computation gives

χ(n) = (−1)d+nw2d+1 J(d− n+ 1, d+ n+ 1).

Equality (42) then follows from (23).

The formula for the characteristic function and for eigenvalues can be also derived
for the Jacobi matrix with linear diagonal of even dimension. For w ∈ C and d ∈ Z+

put

L0 = diag

(
−d+

1

2
,−d+

3

2
,−d+

5

2
, . . . , d− 1

2

)
, L(w) = L0 + wE+ + wE−
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and denote ψ(z) = det(L(w)− z) the characteristic function of L(w). Suppose w 6= 0.
Let us introduce the vector-valued function y(z) ∈ C2d depending on z ∈ C, y(z)T =
(η−d+1(z), η−d+2(z), η−d+3(z), . . . , ηd(z)),

ηk(z) = w−d−k+1 Γ(z + d)

Γ(z − k + 1)
F

(
w

z − k + 1
,

w

z − k + 2
, . . . ,

w

z + d− 1

)

where −d+ 1 ≤ k ≤ d. With the aid of (2) one derives the equality

(
L(w)+

1

2
−z)y(z) = −w−2d+1 Γ(z + d)

Γ(z − d)
F

(
w

z − d
,

w

z − d+ 1
, . . . ,

w

z + d− 1

)
ed. (46)

Remark 41. According to (11),

ηk(z) = w−d−k

[(d+k+1)/2]∑
s=1

(−1)s+1 (d+ k − s)!

(s− 1)! (d+ k + 1− 2s)!
w2s−1

d+k−s∏
j=s

(z + d− j).

Hence ηk(z) is a polynomial in z of degree d+ k− 1. In particular, η−d+1(z) = 1, and
so y(z) 6= 0.

Proposition 42. One has

ψ(z) = (−1)d

d∑
s=0

(2d− s)!

(2d− 2s)!s!
w2s

d−s∏
j=1

[(
j − 1

2

)2

− z2

]
. (47)

If w ∈ C, w 6= 0, then for every eigenvalue λ ∈ spec(L(w)), y(λ+ 1
2
) is an eigenvector

corresponding to λ.

Proof. According to (31), the function

d−1∏

k=−d

(z + k)F

(
w

z − d
,

w

z − d+ 1
,

w

z − d+ 2
, . . . ,

w

z + d− 1

)

is the characteristic function of L(w)+ 1
2
and the second part of the statement follows

from (46). To conclude the proof, it suffices to use (11) together with the fact that
ψ(z) is equal to the characteristic function of L(w) + 1

2
in z + 1

2
, to derive (47).

Remark 43. If w ∈ R, w 6= 0, then the spectrum of the Jacobi matrix L(w) is real and
simple, and formula (47) implies that the characteristic function of L(w) is even and
the interval [−1

2
, 1

2
] contains no eigenvalue.
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6 The spectrum of the infinite Jacobi matrix with a
linear diagonal

Let w be a positive constant and J an infinite Jacobi matrix of the form

J =




1 w
w 2 w

w 3 w
. . . . . . . . .


 . (48)

In this section the spectrum of J is shortly discussed. Since J is a self-adjoint operator
on `2(N) the spectrum of J is real. J can be written as D+W +W ∗ where W = wT
(W ∗ its adjoint), T is the right-shift operator andD is the respective diagonal operator.
Since the essential spectrum of D is empty D has a compact resolvent. Then W +W ∗

is D-compact self-adjoint perturbation (i.e. (W + W ∗)(D − i)−1 is compact) and by
the Weyl theorem, J has a discrete spectrum.

The main goal of this section is to show that the spectrum of J coincides with
zeros of a Bessel function of the first kind as function of its order. More precisely, it
will be shown that

spec(J) = {z ∈ R : J−z(2w) = 0}.
Lemma 44. Let −∞ < a < b < +∞. Then there exist constants L > 0 and n0 ∈ N
such that, for all n ∈ N, n ≥ n0 and w > 0, the inequality

sup
z∈[a,b]

∣∣∣∣
1

Γ(1− z)
F

(
w

1− z
,

w

2− z
, . . . ,

w

n− z

)∣∣∣∣ ≤ L exp(2w2) (49)

holds.
Proof. According to (11), one has∣∣∣∣

1

Γ(1− z)
F

(
w

1− z
,

w

2− z
, . . . ,

w

n− z

)∣∣∣∣

≤ 1

|Γ(n+ 1− z)|
[n
2 ]∑

s=0

(
n− s

s

)
w2s

∣∣∣∣
Γ(n− s+ 1− z)

Γ(s+ 1− z)

∣∣∣∣ .

for any n ∈ N and z ∈ [a, b]. An inequality
1

|Γ(z)| ≤ 2N !

holds for all z ∈ R, z ≥ −N and N ∈ Z+, which can be proved by mathematical
induction in N . Thus, there exists a constant L > 0 such that

∣∣∣∣
1

Γ(1− z)
F

(
w

1− z
,

w

2− z
, . . . ,

w

n− z

)∣∣∣∣ ≤ L

[n
2 ]∑

s=0

(
n− s

s

)
w2s

∣∣∣∣
Γ(n− s+ 1− z)

Γ(n+ 1− z)

∣∣∣∣

= L

[n
2 ]∑

s=0

w2s

s!

s∏
j=1

∣∣∣∣
n− s− j + 1

n− z − j + 1

∣∣∣∣ . (50)
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Next, consider that, for any s = 0, 1, . . . ,
[

n
2

]
, one has

s∏
j=1

∣∣∣∣
n− s− j + 1

n− z − j + 1

∣∣∣∣ =
s∏

j=1

∣∣∣∣1 +
z − s

n− z − j + 1

∣∣∣∣ ≤
(

1 +
max{n

2
− z, |z|}

n
2
− z + 1

)s

< 2s,

for n sufficiently large. Hence, there exists n0 such that, for all n ∈ N, n ≥ n0 and all
z ∈ [a, b], it holds

s∏
j=1

∣∣∣∣
n− s− j + 1

n− z − j + 1

∣∣∣∣ ≤ 2s.

Consequently, the expression of the RHS in (50) is less or equal to L exp(2w2).

Proposition 45. The sequence of functions
{

1

Γ(1− z)
F

(
w

1− z
,

w

2− z
, . . . ,

w

n− z

)}∞

n=1

is locally uniformly convergent and its limit function is wzJ−z(2w). That is, for arbi-
trary a, b ∈ R, a < b, it holds

lim
n→+∞

sup
z∈[a,b]

∣∣∣∣
1

Γ(1− z)
F

(
w

1− z
,

w

2− z
, . . . ,

w

n− z

)
− wzJ−z(2w)

∣∣∣∣ = 0.

Proof. By (10), one finds out

lim
n→+∞

1

Γ(1− z)
F

(
w

1− z
,

w

2− z
, . . . ,

w

n− z

)
= wzJ−z(2w), (51)

pointwise in z ∈ R. Next, with the aid of Lemma 44 and recurrence rule (4), one
verifies the Cauchy’s criterion for the local uniform convergence is fulfilled. Let n, p ∈
N, n > max{n0, b} (see Lemma 44) then

∣∣∣∣
1

Γ(1− z)

[
F

(
w

1− z
,

w

2− z
, . . . ,

w

n+ p− z

)
− F

(
w

1− z
,

w

2− z
, . . . ,

w

n− z

)]∣∣∣∣

≤ 1

|Γ(1− z)|
p−1∑

k=0

∣∣∣∣F
(

w

1− z
, . . . ,

w

n+ k + 1− z

)
− F

(
w

1− z
, . . . ,

w

n+ k − z

)∣∣∣∣

=
1

|Γ(1− z)|
p−1∑

k=0

w2

|n+ k + 1− z||n+ k − z|

∣∣∣∣F
(

w

1− z
,

w

2− z
, . . . ,

w

n+ k − 1− z

)∣∣∣∣

≤ Lw2 exp(2w2)
∞∑

k=n

1

|k + 1− z||k − z| .

The last term tends to zero with n→∞ uniformly in z ∈ [a, b].
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Remark 46. According to (31), equation (51) gives

lim
n→+∞

1

Γ(n+ 1− z)

∣∣∣∣∣∣∣∣∣




1− z w
w 2− z w

. . . . . . . . .
w n− z




∣∣∣∣∣∣∣∣∣
= wzJ−z(2w), (52)

and the convergence is locally uniform in z.

Remark 47. In [8], it has been shown that, under certain assumptions, every eigenvalue
of a tridiagonal operator is a limit point of a sequence of eigenvalues of a truncated
finite-dimensional operator and vice versa. Infinite matrix J satisfies these assump-
tions (the diagonal sequence is divergent and the neighboring parallel sequence is
bounded (even constant here), see Corollary 2.3. in [8] for details). Thus, λ ∈ spec(J)
if and only if

(∃{kn}∞n=1 ⊂ N, kn+1 > kn)(∃{λn}∞n=1 ⊂ R, λn ∈ spec(Jkn), lim
n→∞

λn = λ) (53)

where JN is the truncation of J , this means

JN =




1 w
w 2 w

. . . . . . . . .
w N − 1 w

w N



.

Proposition 48. Let w > 0 and J is the infinite Jacobi matrix defined in (48) then
it holds

spec(J) = {z ∈ R : J−z(2w) = 0}.
Proof. Let us, temporarily, denote the function in the limit in (52) by Dn(z). Since
Γ(z)−1 is continuous in R (even holomorphic in the whole C) Dn(z) is continuous in
R for all n ∈ N. Also the limit function wzJ−z(2w) is continuous in all z ∈ R which is
a well known fact from the theory of Bessel functions.

First, let λ ∈ spec(J) then, according to Remark 47, there exists a sequence {λn}
such that λn ∈ spec(Jkn) for all n and limn→∞ λn = λ. Since Dn(z) converges to
wzJ−z(2w) locally uniformly one easily checks that

lim
n→∞

Dkn(λn) = wλJ−λ(2w).

However, Dkn(λn) = 0 for all n, hence, J−λ(2w) = 0.
Second, let λ ∈ R be such that J−λ(2w) = 0. Suppose that there exist a, b ∈ R,

a < λ < b, such that
sign(J−x(2w)) = − sign(J−y(2w))

for all x ∈ (a, λ) and y ∈ (λ, b). This is possible if λ is not a multiple zero of
J−z(2w). Then, due to the local uniform convergence of Dn(z) and the continuity
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of Dn(z), J−z(2w) in z, one can claim that there exists a sequence {ln}∞n=1 ⊂ N and
λn ∈ R such that, for all n ∈ N, |λn − λ| < 1

n
and Dln(λn) = 0. Thus, one has, for all

n ∈ N (n large enough), λn ∈ spec(Jln) and λn → λ with n→∞. Finally, Remark 47
implies that λ ∈ spec(J).

To conclude the proof, one has to verify that there are no multiple zeros of J−z(2w)
(in z). This means to show that there is no ν0 ∈ R such that

Jν0(2w) =
∂

∂ν

∣∣∣
ν=ν0

Jν(2w) = 0. (54)

This follows from the identity

Jν(2w)
∂Yν(2w)

∂ν
− Yν(2w)

∂Jν(2w)

∂ν
= − 4

π

∫ ∞

0

K0(4w sinh t)e−2νtdt (55)

where Yν is the Bessel function of the second kind and K0 is the modified Bessel
function of the second kind of order zero (see [9], p.444). For Kν , one has the equation

Kν(z) =
Γ(1

2
)

Γ(ν + 1
2
)

(z
2

)ν
∫ ∞

0

e−z cosh t sinh2ν tdt (56)

(see [9], p.172). Thus, since the RHS of (55) is obviously negative for all ν ∈ R and
w > 0 the equality (54) would lead to a contradiction.

7 Appendix
Some supplementary computations, mostly proving algebraic identities used in the
paper, are made in this section.

A 1. Let A ∈ Cn×n, B ∈ Cm×n, C ∈ Cn×m, A ∈ Cm×m and A is regular. Then

det

(
A C
B D

)
= det(A) det(D −BA−1C).

Proof. The statement follows directly from the equality
(
A C
B D

)
=

(
I 0

BA−1 I

)(
A C
0 D −BA−1C

)
.

A 2. For any n ∈ Z+, a ∈ C and r = 0, 1, 2, . . . , n− 1, the identities

n∑

k=0

(−1)k

(
n

k

)(
a+ k

r

)
= 0,

n∑

k=0

(−1)k

(
n

k

)(
a+ k

n

)
= (−1)n

hold.
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Proof. To verify the first identity it suffices to prove the equality
n∑

j=0

(−1)j

(
n

j

)
jr = 0

for all 0 ≤ r < n. The statement will be verified by mathematical induction in n. The
case n = 1 is immediate. Let n ∈ N is fixed and the equation

n∑
j=0

(−1)j

(
n

j

)
jr = 0 (57)

holds for all 0 ≤ r < n as the induction hypothesis. For r = 0, (57) follows easily from
the binomial theorem (with an arbitrary n ∈ N). Let 0 < r ≤ n then

n+1∑
j=0

(−1)j

(
n+ 1

j

)
jr = (n+ 1)

n+1∑
j=1

(−1)j

(
n

j − 1

)
jr−1

= −(n+ 1)
n∑

j=0

(−1)j

(
n

j

)
(j + 1)r−1 = −(n+ 1)

r−1∑

k=0

(
r − 1

k

) n∑
j=0

(−1)j

(
n

j

)
jk = 0

because, according to an induction hypothesis, the inner sums are all 0 and the induc-
tion step is concluded. Next, consider

n∑

k=0

(−1)k

(
n

k

)(
a+ k

n

)
=

n∑

k=0

(−1)k

(
n

k

)[(
k

n

)
+ pa(k)

]

where pa(k) is a polynomial in k of degree less then n. According to the first part of
the proof,

n∑

k=0

(−1)k

(
n

k

)
pa(k) = 0

and, obviously
n∑

k=0

(−1)k

(
n

k

)(
k

n

)
= (−1)n,

hence the second identity is proved.

A 3. Let n ∈ N and a, b ∈ Rn then

det(I + baT ) = 1 + aT b.

Proof. Since a determinant of a matrix is a linear function of its columns det(I+ baT )
is equal to

∣∣∣∣∣∣∣∣∣




a1b1 a1b2 . . . a1bn
a2b1 a2b2 + 1 . . . anbn
...

...
...

anb1 anb2 . . . anbn + 1




∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣




1 a1b2 . . . a1bn
0 a2b2 + 1 . . . anbn
...

...
...

0 anb2 . . . anbn + 1




∣∣∣∣∣∣∣∣∣
.
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The first determinant can be decomposed similarly, however, with exception of the
term 



a1b1 0 . . . 0
a2b1 1 . . . 0
...

...
...

anb1 0 . . . 1


 ,

all other matrices are singular, hence

det(I + baT ) = a1b1 +

∣∣∣∣∣∣∣∣∣




a2b2 + 1 a2b3 . . . a2bn
a3b2 a3b3 + 1 . . . anbn
...

...
...

anb1 anb2 . . . anbn + 1




∣∣∣∣∣∣∣∣∣
.

By repeating this procedure one verifies the statement.

A 4. It holds
m∑

k=0

(
s+ k

s

)(
p+m− k

p

)
=

(
s+ p+m+ 1

s+ p+ 1

)

for m, p, s ∈ Z+.

Proof. Let us define a function

fs(z) =
∞∑

k=0

(
s+ k

s

)
zk

for all z ∈ C, |z| < 1. Since
(
s+ k

k

)
= (−1)k

(−s− 1

k

)

we have

fs(z) =
∞∑

k=0

(
s+ k

k

)
zk =

∞∑

k=0

(−s− 1

k

)
(−z)k = (1− z)−s−1.

It follows the identity
fs(z)fp(z) = fs+p+1(z)

holds for all z, |z| < 1 and so
∞∑

m=0

(
s+ p+ 1 +m

s+ p+ 1

)
zm = fs+p+1(z) = fs(z)fp(z) =

∞∑

k=0

∞∑

l=0

(
s+ k

s

)(
p+ l

p

)
zk+l

=
∞∑

m=0

(
m∑

k=0

(
s+ k

s

)(
p+m− k

p

))
zm

which proves the statement.
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