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Abstrakt: Definujeme specidlni funkci § a uvedeme nékteré jeji vlastnosti, zejména pak
dokédzeme platnost rekurenti formule, s jejiz pomoci rozsitime definiéni obor této specidlni
funkce. Shrneme vlastnosti takto rozsitené funkce a pouzijeme ji ke konstrukei specialni
béze prostoru C2¢+1. V této bazi ma Jacobiho matice specidlniho typu velice jednoduchy
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nalezneme vzorec pro rezolventu uvazované Jacobiho matice.
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Abstract: We define a special function § and we present some of its properties, especially
we prove a recurrent relation which allows to extend this special function. We summarize
properties of this expanded function and with the aid of this function we construct a spe-
cial basis of the space C2?*1. A Jacobi matrix of a special type written in that basis has
a very simple form which allows us to derive a formula for a characteristic polynomial of
this matrix. Furthermore we find a formula for a resolvent operator of the Jacobi matrix
under consideration.
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Introduction

This research work is a continuation to my Bachelor thesis [2] where I have started
to investigate a spectrum of, so called, Jacobi matrices of a special type. The Jacobi
matrix is a complex tridiagonal matrix. Fundamental definitions and a main result of
my Bachelor thesis will be reminded in the first chapter, especially a special function
§ will be defined there (Definition 1). Next, some of properties of the function §
and its relation to a characteristic reduced function of a Jacobi matrix of a special
type will be stated.

In the second chapter I will introduce a formula for the function § and I will
also examine asymptotic properties of the function § for a small argument. The
asymptotic relations will allow me to evaluate the characteristic reduced function in
some spacial cases which will be illustrated in the next chapter 3. At the end of the
third chapter I will introduce an interesting expression for particular values of the
characteristic reduced function which will be generalized in the next chapter.

In the fourth chapter I will extend the function § with the aid of a recurrent
relation from the first chapter. The expanded function is denoted J and some
algebraic identities concern with the function J are summarized. They often are
generalizations of the properties of the function §. At the end of the chapter I will
derive an explicit formula for the function J and I will shortly discuss a proposition
dealing with particular values of the characteristic reduced function.

Main results will be obtained in the final chapter. With the aid of the function
J 1 will construct a special basis of a space C?***! in which the Jacobi matrix of a
special type will have simple and appropriate form to find an explicit formula for
the characteristic reduced function. Furthermore a formula for a resolvent will be
presented.



Chapter 1

Some results from the Bachelor’s
thesis

In this chapter we will recall some definitions and general results which can be mostly
found in my bachelor’s thesis [2] and which we will need in following chapters.

1.1 Function § and its properties

Definition 1. Define § : D — C,

[e.e] e} [e.e]

S(x) =1+ Z(—l)m Z Z e Z Ty Thy 41 Thy Thig 11 - - - Thy Thy 41
m=1

k1=1 ko=k1+42 km=km—1+2

where

o0
Z |Tprps| < oo}

k=1

D = {93 = {1 }hsy

Remark 1. Obviously, if all but finitely many elements of x are zeroes then §(x) re-
duces to a finite sum. For a finite number of variables we often will write §(z1, 2, . .., Tx)
instead of §(z) where z = (21, x2,...,2%,0,0,0,...).

Definition 2. The operator 77 defined on the space of all sequences indexed by N
such that

Ti({zr}ils) = {ze o
in called the operator of truncation from the left. Next, set T, = (11)", n =
0,1,2,..., hence

To({zktez1) = {Thantiz

In particular, Ty is the identity.

Proposition 1. It holds

§(Thx) — F(Thi1r) + Tpi1TnoF (Thiox) =0, n=0,1,2,... (1.1)



Proof. The proof can be found in [2]. O

Remark 2. Especially, it holds
S(Thy - Than) = S (Tra1s - Than) — TpZTrer18(Tha2s - -+ ) Than) (1.2)
for all k,n € N.
Proposition 2. It holds
ST, 29, ... xn) = F(@n, Tpo1, ..., T1) (1.3)
for all n € N.
Proof. Let us denote y; := x,,_j11 for j =1,...,n, then

%(Inaxn—la cee >$1) = S(ylay% s 7yn) -

[n+1] n—2(m—1) n—2(m—2) n

=1+ T D D Ykt ket - Ykl =

kl 1 k2 k1+2 km:k'rn71+2

S

3
ol
i

112 m12

1+ E E E Ty Ty 41805 Tl - - - Ly Tl 1

1 l1=2m—1l3=2m—3 Im=1

S

where we have substituted [; =n —k; +1, j =1,...,n. To proceed further we just
denote the summand index [; as l,,,_; 41 for all j = 1,...,n and change the order of
the sums such that the sum with the summand index [; will be at the first place,
the sum with the summand index [, will be at the second place, etc.

Iy —2 lo—2

[7L+1]

2

=1+ E (-1 E E E Ty Ty 410, Tty 41+ - - Tl Ty 41 =
m=1

Im=2m—1lypm—1=2m—3 =1
+1
[n2 ]

n—2 lm 1— -2 l2 2
m
=1+ > (-1 > DR E LU T4 - - Tl Tl 1 =
m=1 ly—1=2m—3 l;yy_2=2m—>5 Lh=1lpm=lpm—-1+2

+1
[L lo—2 n—2

n—4
m
=1 + E § E E E Ty Lpy+1 - - L1, Tl +1 =
m=1 lm—2=2m—

ll 1lm 1= lm 2+2lm—lm 1+2

[”31] n—2(m—1) n—2(m—2) n—2 n
— ]_ _I_ E E E . E E x11$l1+1 e xlmxlm"l‘l =
m= =1 lo=l1+2 lm—1=lm—242lm=lm—1+2
S('Tla T2, 7xn)



Remark 3. By using the last symmetry property of the function § and the recurrent
relation (1.2) one can easily derive the following identity

STy -y Thgn) = F(@hs - -+ Thgne1) — ThtnThgn—18(Ths - - - Thgn—2) (1.4)

for k,n e N

1.2 Function § and the characteristic function of
a Jacobi matrix

Let us denote

and set
Xs(z) :=det(zI — Kg).

The main result of my Bachelor’s thesis follows.

Proposition 3. It holds

1 d w w w w
—1)4= = A\ — 22 e, ———
(1" xs(2) (H( Z>>3(A1_Z’ )i ()

d d
23w N 22 ( v ) ( wooo )
+ ;w (H(k Z)>S Ajg1— 2 A — 2 § Ajt1+ 2 A+ 2z

k=j+1
(1.5)

Proof. One can find the proof in [2]. O



Chapter 2

More on function §

2.1 A formula for §(=, e, ... %)

Proposition 4. It holds

“(n+l1-k)n+2-k)...n+s—1—k)

Z k(k+1)...(k+s)

_ m—m+1)(n—m+2)...(n—m+s)
s(n+sym(m+1)...(m+s—1)

k=m

(2.1)

for all m,n,s € Nym <n.

Proof. Denote the LHS by Y;(m,n). One can verify the statement by induction in
s. The case s = 1 gives the identity

zn: 1 ~n—m+1
— k(k+1)  (n+1)m

which is easy to verify (since m =1 - k%rl)

In the induction step s — 1 — s, with s > 1, observe that

n+2s—1 n+s—1

Y;(m,n) = K_l(m—i—l,n—i—l)—i—f}/;_l(m,n).

S

Now apply the induction hypothesis.

n+2s—1m-m+n-m+2)...(n—m+s—1)

s (s—=1(n+s)(m+1)(m+2)...(m+s—1)
n+ts—1ln—m+1)(n—m+2)...(n—m+s—1)
s (s—=D(n+s—1)mm+1)...(m+s—2)

_ m—m+1)(n—m+2)...(n—m+s)

s(n+sym(m+1)(m+2)...(m+s—1)

Y;(m, n) =

=RHS




Proposition 5. It holds

n—2s+2 n—2s+4 1
klz;n k;ﬁ:” . kz: 2k;l(k1+1)k;2(k:2+1)...k;s(k:s+1)
(m—m—2s4+3)(n—m—2s+4)...(n—m—s+2)

:s!m(m—l—l)...(m+s—1)(n_5+2)(n_8+3)”‘(n+1) (2.2)

for all m,n,s € Nym <n — 2s+ 2.

Proof. This can be again proved by the induction in s. For s = 1 we get the well

known identity
Z n —m + 1
E( k +1) (n+1)m

Denote the LHS by X,. To carry out the induction step from s —1 to s, with s > 1,
we apply the induction hypothesis(IH) to the summation in the indices ks . .. ks and
find that (when writing k instead of k; and k;_; instead of k;)

n—2s+2 n—2s+4 n

1 1H
Z kk+1 Z 2 ker(ky + Dko(ka + 1) ky1(ks_1 +1)

k+2 k3712k372+2

= _z: (n —k:—23+3)(n—k‘—23+4)...(n—k—s+1)
A= -Dn—s+3) (- DE(E+ DR +2) . (k+s)
To conclude the proof it suffices to apply the preceding identity (2.1), with n being
replaced by n — 2s + 2, to the RHS in (2.1). Then

m—2s—m+3)(n—2s—m+4)...(n—s—m+2)

X, = =
(s—Dln—s+3)...(n+1)s(n—s+2)m(m+1)...(m+s—1)
n—2s—m+3)(n—2s—m+4)...(n—s—m+2)

= = RHS.
slmim+1)...(m+s—1)(n—s+2)...(n+1)
U
Corollary 1. It holds
ey it )

wow w (n—s)!(n—m-—s+1)! s

g(m’m+1"“’n) Z slm+s—1ln—m —28+1)!w

=0

for all m,n € Nym <n.

Proof. Using the definition of the function § we have

w w w
S(E’m—f—l’,E) -

n—2s+1 n—2s+4+3 n—1 25

=1+;<—1)8 > X X ki(k1 4+ Dka(ko + 1) .. kg(ks + 1)

ki=m ko=k1+2 ks=ks_1+2




Now observe that s is restricted by the inequality 2s < n — m + 1 and use identity
(2.2) with n replaced by n — 1.Then

[7L777L+1]
wow w _ (m-DI" &G s (m=8)ln-m—s+1)! 0
S(E’mle"”’g)_ n! ; (=1) s!(m—i—s—l)!(n—m—Qs—i—l)!w '
O
2.2 A relation to Bessel function

In this section we will investigate an asymptotic behaviour of the function § (
for w small. There appears a relation between the function § and Bessel function
of the first and second kind.

Remark 4. The Bessel function of the first kind .J,,(z) and the second kind Y,,(2)
appears in this and the following chapter. We will often use the expansions of .J,,(2)
and Y,(z) (found in [1] 9.1.10, 9.1.11):

Tn(2) = @m;m (-%2) (2.3)

S b (L) 2 G o

=<
—~
N
S~—
|
|
S|
/N
NN
N——
|
3

for m,n € Ny. Also generalized hypergeometric functions will be used a lot. The
F,, function has the series expansion

[e.9]

(ar)ky -, (ap)g 2"
Ey(ay, ... ap;b1,...,b,;2) = — 2.5
pQ( 1 py V1 q ) kzzg (bl)ka B ~>(bq)k k! ( )
where (¢), =c(c+1)...(c+k—1)and (¢)p = 1.
2.2.1 Casem=1
Proposition 6. It holds
w w T
5 (w, DL E) = —Ew"HJO@w)YnH(Qw) + O(w* ™ Inw), (2.6)
where n € N.
Proof. 1t holds
1 z z
Fys <a, a -+ 3 d,2a,2a —d+1; z) = Fyn (d; Z) Fo (2a —d+1; Z) . (2.7)

8
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This identity can be found in http://functions.wolfram.com/07.26.03.6005.01. And
by using another identity ([1] 9.1.69)

A (v 1-3#) =m0 (5)

we get
1
Fas (—g —g + o3 =g = —4w2) = Jo(2w) Foy (—p; —w?)
where a = —&, d = 1, z = —4w?. By using the series expansion (2.5) and (2.3) one

can write the last identity as

D) I T, e C L)

0 (=)x s=0 1=0

Next, take into consideration only terms with w?,j =0,1,...,n

O T PN RN ) S
Dy e P i R DO Y [ ey

and make a limit p — n

zn: (% — %)k(_g)k (_1)k(2w)2k < (_1)8 w2
(1) ! '

The last equality holds due to the Corollary 1 with m = 1. Thus, we have

S(w, ) ZZ (—n) l' s—l )2 w?

=0 [=0

(n—1 9%
-1 Ls (Z ﬁ) (D).

s=0 =0

Next, consider the RHS in the statement of the proposition. Taking into account
the series expansion of Bessel functions (2.3) and (2.4) one arrives at the following
expression

Tt (n—1)! _1>8_l 2s Mm+2
——w Jo(2w)Y,11(2w) o ;; I w4+ O(w Inw)
and the statement is verified. O



2.2.2 General case m € N

In this section we will generalize the procedure used in the previous special case
with m = 1.

Proposition 7. It holds

wow w m —1)!
5 (ot ) = o )Y 2u) + O
(2.8)

forallm,neN, 2 <m <n.

Proof. Investigate the following generalized hypergeometric function (observe that
the index k is restricted (k < [2=2+t1]) due to the nominator of the expression)

1= _
Fos <m nom n;m,m—l—n, —n; —4w2)

(—=D*n—m+1)(n—m+1)...(n —m+2—2k) w?k
m...im+k—=1)n—-—m+1)...n—m+2—-Fkn...(n+1—k) k!

=)

(—1)" n—m+1—-K)!n-k)! w*
m—m+1=2k)!(m+k—1)! k!

I
E)

S|

Mw

The last equality holds due to Corollary 1. By using identity (2.7) with d = m,
a=""% and z = —4w? we get

Fas (m 21 N7 = 5 ,u; m,m —1— p, —pu; —4w2) = Foi (m; —w?) Foy (—p; —w?).
The parameter p is near n but g is not an integer. Then, by using definitions of
the functions Fpy and Fp; (2.5), restricting both sides of the last equation such that
there remains only terms with w?, j = 0,...,n —m + 1 and making a limit u — n
(very similar procedure was made in the proof of Proposition 6) one easily arrives
at the expression

n—m+1 s

(e ) ;; > m;m z&?i%%

m m+1

n—

m+1 s (n—l)' ”
Z (s—l)!(m+s—l—1)!w '

(2.9)

s=0 l:O

10



By using (2.3) and (2.4) again we find the asymptotic expansion of the Bessel func-
tions on the RHS in the statement.

—rw" 2 ] 1 (2w) Y, (2w) =

(D" o [N~ (=D, 2n+2
k!(m—1+k)!Wk<Z N w? + O(w™™* lnw)> =

[
WE

k=0

COF =D )
T TS R TR
() (-
(s—=D(m—-1+s—=0! 1
(—1)*(n — 1)!
(s —D)l(m—1+s—1)

2n+2

(W™ Inw) =

[
M:
WE

Il
=)
B
Il
o

|
Z)'w2s 4 O(w2n+2 11111)) —

NE

Il
M2 2D:

l

s

@

w* + O(w" P Inw) =
0 1=0
m+1 s (n . l)'

- S
— = Ns—=D(m—14+s—1)!

S »

w? 4+ O w2+ (2.10)

Finally, expression (2.9) together with the last expansion (2.10) prove the statement.
U

Remark 5. One can see from the proof of Proposition 7 that if we were more precise
in expression (2.10) we would obtain a more precise asymptotic expansion for the

function § (%, ren R %) If we do this we get
n! woow w g2
—F——— .., — | == 1(2w) Y1 (2
(m—l)!g <m’m+17 ’n) ™ 120)Yni1 (20)

_ Z Z(_l)s—z“ (n—1)! w® + O(w* 2 Inw)

s=n—m+2 [=0 (8 - l)'(m —1 + s — l)'
(2.11)

where 1 <m <n, m,n € N.

Lemma 1. It holds

i (f;) b = (1_71@%1 (2.12)

k=n

for all x € R, |z| < 1 and all n € Nj.

Proof.
i(i)xk_":i<n+k>xk:% oo(n+k)(n+k:—1) (k4 1)z* =
k=n k=0 k=0




Since |z| < 1 the sum > -, (":k)zk converges and the change of order of the

derivation -£- and the sum Y ;- z* is correct. O

Lemma 2. It holds
- l —n—1
Z(_l)l<s+m)<n+):<m+s n ) (2.13)
l+m n S
1=0
for all m,n,s € Ng, m > n.
Proof. We will investigate this power serie
o0 S l
3y <7 + m) <n + )xs
s=0 1=0 tm K
where z € R, |z| < 3.
- s+m\ [n+1 - n+ > [s+m
S (T (e = e (M) ()
s=0 [=0 l+m n =0 s=l l_'_m
Next, by applying Lemma 8 to the inner sum we get
< s+m\ [(n+1 - n+1 7!
S () (e = e (U
poar i l+m n — n ) (1—z)mt
Then we can use Lemma 8 again and we arrive at the expression
= (s+m\ (n+1\ | 1 1 1
ZZ(_1> = 1 T \n+l :
e I+m n (1 —z)m+t (1 + $%=)nt (1 —z)m—n
Note that if [z| < 3 then || < 1. Thus

= s tm\(n+l\ _1d& L, B
S -H o

=0

— (_j)s(n—m)(n—m—1),”(n—m—s+l): (m+s—n—1)‘

O
Now we can obtain a more precise asymptotic expansion for the function
§ (Gt w):
Proposition 8. It holds
n! woow w
— 3=, ——, ... =) = w21 (2w) Y, (2w) —
m—2 ‘ 959
Z st(m ‘1" n—as ; ' ‘w2n—2s + O(w?* 2 In w)
—~ (n+tm—s—1l(m—s-2)l(n—s)
(2.14)

forall m,n e N;1 <m < n.

12



Proof. The case m = 1 have already been proved in Proposition 6. Let 1 <m < n,
start with expression (2.11):

n! woow w g2
— %, —— ., — | = =" " 1 (2w) Y, 1 (2
(m—l)!%'(m’mjtl’ ’n) e 1 (20)Yni (20)

s— (n—1)! 2s n+2
— Z Z(_l) ll w* + O(w™ ™ lnw).

s=n—m+2 =0 (s = D!(m —14s—=1)!

Next, apply Lemma 2 to the inner sum in the second term on the RHS.

S

s—1 (n—1)! < I (n—s+1)!
2 e TPl

o . (m—1+s—1)] (s —)l(m—1+10)
(n—s) ) s+m—1\/n—-s+1\

B s+m—1' [+m—1 n—s )

~ (n—9)! m+2s—n—2

C(s+m—1)! s

Then we have

n! woow w a2
W (W W g (2w)Y e (2w) —
(m—l)!g(m’mle’ ’n) e 1(2w)Yo 41 (2w)

n

B Z ((n—s)! <m+28_n_2>w23+0(w2”+21nw):

L, (sHm— 1)! s

= —mw" "2 ] 1 (2w) Yy (2w) —
m—2 | _95_9

B Z s m+n S w2 O(w2n+2 Inw) =
—~ (nt+m-—s-1) n—s

= —mw" "2 ] 1 (2w) Y (2w) —

m—2

I( 252
Z slim +n S )! w2n—2s+0(w2n+2lnw).
— (n+tm—s—1l(m—s—=2)l(n—s)

13



Chapter 3

The reduced characteristic
function

Let us denote

—d w
w —d+1 w

=

I

g
g o8
= 8

w d—1 w

w d

and set

Xred(2) = (_zl)d det(z] — K).

Xrea(2) is a polynomial in w of order 2d. Further x,.q(z) will be called the charac-
teristic reduced function. By substituteing A; by j in (1.5) one gets

Xrea(z) = (f[(k:?_z%)3(17“_”Z,...,d7“_”2)g(lfz,...,diﬂ)+

k=1

d d
Z ; w w w w
]:

k=j+1
(3.1)

Remark 6. Note that the characteristic reduced function is an even polynomial in

the variable z, i.e.,
Xred(—2) = Xrea(2) for all z € C. (3.2)

14



3.1 Particular values of x,.q(2)

In this section we would like to obtain an expression for x,.q(n) for n =0,1,...,d
by simplifying formula (3.1). But we will not arrive at the general expression in this
way as it will be seen further. We start from examining cases n = 0 and n = 1.

3.1.1 Casen=0
The value y,eq(0) is to be treated separately. Formula (3.1) with z = 0 gives

d 2 2
_ (12 wo w2 2 (! w w W
Xred(o) (d>g(w7277d) _'_2]2:;“} <]' 8( ]+17]+277d .

(3.3)
Next, we use the asymptotic expression for the function § (2.6) and (2.8) obtained
in the previous chapter and we arrive at the expression

d
Xrea(0) = TwW? Y2 (2w) (Jg(zw) +2) Jf(zw)> + O(w* Inw).

Jj=1

To proceed further we use the identity
() +2) JHz) =1
j=1

which can be found in [1] (9.1.76). Then it holds

J3(z) +2 Z J2(2) = 1+ O(w*¥*?)

J
J=1

and we have
Xrea(0) = Tw* Y7 (2w) + O(w? 2 Inw).

To continue we take into consideration the asymptotic expansion of the Bessel func-
tion Y (2.4) and we get

d Y 2
Xred(o) = (Z (d k‘k)w2k> + O(w2d+2 lnw)
k=0 ’

Since there is a polynomial in w of order 2d on the LHS the Landau symbol on the
RHS will be omitted (only terms with w¥, 0<j5<d remain) and we can write

Xrea(0) = Y = Z?éid—_k§!+ Lo (3.4)
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Lemma 3. It holds
i (s+k:) (p—l—m—k) B <s+p+m+1)
— S p s+p+1

for m,p, s € Ny.

Proof. Let us define function

Fa=Y (1)

k

Il
=)

for all z € C, |z] < 1. Since

(sgk‘) _ %(s+k)...(s+ 1) = (—kll)k(_s —1)...(~s—k) = (_Uk(—sk— 1)

we have

It follows that the identity

[s(2) fo(2) = forpa(2)

holds for all z, |z| < 1. Then by using the previous identity we get

> <S+p+ 1 +m)zm = Frpi(3) = O = 3 (s“‘f) (p“)zw _

— s+p+1 —
- 0 i(stk)(p—km—k) m
k=0 5 p

m=0
which proves the statement. O
Now we can write the final expression for x,..q(0).

Corollary 2. It holds

Ed: (= 9)Pd s+ 1!,

s!(2d — 25 + 1)) (3.5)

Xred(0> =

s=0

16



Proof. To verify the statement it is enough to compute the inner sum in expression
(3.4).

~ (d—k)Nd—s+Fk)! o (d—k)! (d—s+k)!
; Hes— g =9l ;(d—s)!(s—k)! (d—s)kl

—[(d- 3)!]2§ (fz:];) <d;:- k:)

The last sum is a special case of the sum of the previous lemma. Thus, writing s
instead of m, (d— s) instead of s and (d — s) instead of p the previous lemma follows
that the identity

i d—k\(d—s+k\ (2d—s+1\ (2d—s+1)!
d—s d—s ) \2d—2s+1) s!(2d—2s+1)!

k=0

holds and the statement is proved. O

3.1.2 Casen=1
Lemma 4. The identity

Xred(l) _ w28 %' w w SI w W N
d—DId+1)!  (s=Ds!®\s+1""""d=-1 s+17 7 d+1
,w28 w w w w
+(S—1)!5!3(?m’d—1)3<8+2""’d+1)+

w w w w w
v2 3. gt () S ()

j=s+1

holds for all s =1,2,...,d.

Proof. The statement will be proved by induction in s. For s=1 we start with
formula (3.1) for x,.q(z). Notice that the recurrent relation (1.2) implies

w w w? w w
(1_Z>3(1—z””’d—z) :_Q—z%'(?)—z””’ﬁ)

_ (@ v
= w%'<2,...,d_1)

and thus the formula for y,.q(z) (3.1) leads to the expression

z=1

z=1

2777 d -1 27 d+1

S e (Fera) s G a)

Xrea(1) = (d — D)I(d+ ){(—w*)F <9 y L) 3 (E v ) i




which satisfy the statement of the lemma for s = 1. To carry out the induction step
s — s+ 1, with 1 < s < d, we start from the expression

_ w?s 3 w w 5 w w n
(s—l)!s! s+177 " 77d—-1 s+177 " 7d+1
w?s w w w w
+r1)!5!%(;7---761_1)%(5+2w--7d+1)+

w2+ w w
+2 3 .
slis+2)!7 \s+1 s+ 3 -1
§ (-

cey dil) in the first sum-

mand and, at the same time, to the term § (S d&) in the second summand we
arrive at the expression

Applying the recurrent relation (1.2) to the term

B w2 5 w w 3 w w N
(s+Dls! \s+2"" "d—-1 s+277 7 d+1

n w22 1+2 3 w w 3 w w
(s = Di(s +2)! s s+17 7d-1 s+377d+1)"
The induction step follows.
Xred(l) Ii{_ w2s % w w S w w n
d—DId+1)! (s=Ds!°\s+1""""d-1 s+177 7 d+1
w2s w w w w
e )
w2+ w w w w
2
s!(s+2)!g<s+1’ 7al—1)8:<5+3’ ’d_1)+
d 2
w w w w w
2 e — e ) =
22 J—1><J+1)'S<J’ ’d—1>§<j+2’ ’d+1>

Jj=s+2

w2s+2 w w
_S!(s—l—l)!§<s—|—2"“’d—1)$<
2542
e ()8

sls+1)!" \s+1""""d-1

d w? w w w w
2 3 gt (e aen) s (e a)

Jj=s+2

With the aid of the previous lemma we can obtain the following formula for
Xred(l)-

Proposition 9.
Xrea(1) = (d + 1)w* (3.6)

18



Proof. To prove this it is enough to use the previous lemma for s = d. Pay attention,

one has to set
w w
S:(al—i-l’”"al—l) =0

w w w w
$(aty) =8 (e aty)

(for satisfying the recurrent relation). O

while

3.1.3 General case n € N

We will generalize the relation from Lemma 4.

Proposition 10. Let n € {1,...,d} then the identity
X?“ed(n) o (_1)nw2s% w w 5 w w n
(d—n)l(d+n)! n(s—Dls!° \s+1""""d—n s+1"7" " "d+n
25 1 n+j
w (=1)"t7 w w w w
2 _ .,
tesy ;(s—j)!(erj)!g(s—l—l—j’ ’d—n)g<s+1+g" ’d+n)+
w? w w w w
+n(s—n)!(s+n—1)!8'(s+1—n’””d—n)g<s+1+n"“’d+n)+

d 2j
w w w w w
2 e ——
+ Z(j—n)!(j—i—n)!g(j—i—l—n’ ’d—n)g<j+1+n’ ’d+n)

j=s+1
(3.7)

holds for s € {n,n+1,...,d—n+1}.

We will not verify the statement here because we will prove a more general state-
ment with the same identity but with larger set of index s in section 4.4.

Remark 7. Although this proposition is a generalization of Lemma 4 we can’t
derive a formula for y,.q(n) as easy as in the previous special case with n = 1. The
formula for y,eq(n) will be derive by another way later (in chapter 5).
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Chapter 4

An extension of the function §

In this chapter we will extend the function § with the aid of the recursive identity
(1.2). The expanded function is denoted J. Then we will find a formula for the
function J and at the end of this chapter we will prove a generalization of Proposition
10.

4.1 Function &

Let us denote

&(m. n) ;:g(w v E)

m m+17
for m,n € N;m < n + 1. Notice that &(n + 1,n) = §(0) = 1. Then the recurrent
relations (1.2) and (1.4) have the form

2

&(m,n) =&(m+1,n) — m@(m +2,n), (4.1)
6@mﬂ:®@%n—n—gé%jfmmn—% (4.2)

where m,n € N,m < n.
Next, with the aid of the first recurrent relation, we define function &(m,n) also for
m,n € N;m > n+ 1. To satisfy identity (4.1) one must set

G(n+2,n):=0
and

(m — 1)(m — 2)!

e 2 m =2)
ni\n :

&(m,n) = —

for m > n + 2.
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Remark 8. Consequently, it is easy to see that the relation

m — 1)l(m — 2)!
B(mm) =~ n!()zil)! )

w=Am=HG (42 m — 2) (4.3)

holds for all m,n € N, m > 2.
Remark 9. In this and the following sections we will usually use algebraic identities
like (4.1) and (4.2) while adjusting a term. In that case we will note, what relation
we will use, above the equal sign. For example, an equal sign 27 means that we use
a relation (4.27) to adjust the LHS of an equation.

Let us verify the validity of the recurrent relation (4.1) for m > n + 2:

2

RHS = Qﬁ(m—i—l,n)—i(m 1>Q5(m—i—2,n) =
m!(m —1 ' )42 mim — 1! o te
T 1) S(n+2,m—1)+ ) w &(n+2,m)

(m=m)+2 (G (n 4+ 2,m — 1) — B(n +2,m)] =

1.2 m ' ‘w_2(m_")+4®(n+2,m— 2) =LHS.

Thus the recurrent relation
2

&(m,n) =&(m+1,n) — ﬁ@(m +2,n) (4.4)
holds for all m,n € N.
Proposition 11. The recurrent relation
w?
&(m,n) =&(m,n—1) — m@(m,n —2) (4.5)

holds for all m,n € N,n > 2.

Proof. The case m < n is treated in (4.2). Let m > n then

—1\! — NI
RHS g, B (m 1)(m 2)~w—2(m—n)+2®(n + 17m _ 2)+
(n—1)n!
(m — 1)(m — 2)! —2(m—n)+2
m—n —92) =

* (n—1)In! v Bln,m —2)

- (m — 1)(m —2)! —2(m—n)+2 14

T (n—1)In! w [B(n+1,m—2)—&(n,m-2)] =
—1\! — NI

14 _(m Hli(m 2)~w—2(m—n)+4®(n +2,m—2) = LHS.
n!(n+1)!
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4.2 Function J

Let us denote

J(m,n) = (mni_ll)!wm_"®(m, n) (4.6)

for all m,n € N.
Then the recurrent relation (4.4) has the form

J(m,n) = gﬁ(m +1,n)—3J(m+2,n) (4.7)

where m,n € N. With the aid of this recurrent relation we can define the function
J(m,n) even for m € Z in this way:

J(=k,n) = (=) F(k +2,n)
for k € Ny and n € N.
Remark 10. It is easy to verify that the identity

I(=k,n) = (=1)"'3(k+2,n) (4.8)
holds for all £ € Z and n € N.

Let us verify the validity of the recurrent relation (4.7) for m < 0:
let m € N then

RHS = —gg(—m +1,n)—J(—m+2,n)
B (=) (g (m 4 1m) = 3m,m) (=13 (m +2,m) ¥

RHS = —3(2,n) £ 3(0,n) = LHS.

Thus the recurrent relation

J(m,n) =

g3

Jm+1,n) —J(m+2,n) (4.9)

holds for all m € Z and n € N.
Identity (4.3) written in the language of the function J is

J(m,n) =—-J(n+2,m—2) (4.10)

where m,n € N,m > 2.
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Proposition 12. The recurrent relation

I(m,n) = gs(m, n—1)—3(m,n—2) (4.11)

holds for all m € Z and n € N,n > 2.

Proof. The case m,n € N,n > 2 have already been treated in Proposition 11 where
we use the new function J according to the definition relation (4.6).
Let m > 0 and n > 2 then

W~
[’

RHS = %3(—m,n - 1) —=3J(=m,n—2)

oo

B () (230 4+ 2,m = 1) = 3m+ 2,0 = 2)) 2 (<) (m +2,m)

Y 5(=m,n) = LHS.
O

Finally with the aid of the previous recurrent identity (4.11) we can extend the
function J(m,n) even for n < 0. Thus the recurrent relation

Jm,n) = —3F(m,n—1) —J(m,n —2) (4.12)

g3

holds for all m,n € Z.

Proposition 13. The recurrent relation

3(m,n) = gs(m +1,n) — J(m +2,n) (4.13)

holds for all m,n € Z.

Proof. Tt remains to prove the statement for n < 0 because all other cases have
already been treated before (see (4.9)). It will be proved by induction in n. For
n = 0 we have

RHS = "3(m +1,0) — 3(m +2,0) 22
w

m [ 2 2
e (;3<m+ L,1) =3(m+ 1,2>) — oM 21) +3(m +2,2).

By applying the recurrent relation (4.9) to the third and the fourth term we arrive
at the expression

4.12 o

RHS = —3(m,1) —3(m,2) = J(m,0) = LHS.

SHR

23



The induction step Ng > n — n + 1:

RHS = Z3(m—+1,-n—1) = J(m+2,—n—1) 2
w

s12m [(—m+1
w

Jm+1,-n) —J(m + 1,—n+1)) —

Jm+2,—n) +J(m+2,—n+1)

To proceed further it is needed to apply the induction hypothesis to the third and
the fourth term and we get

RHS = _”w+ 13(m, —n) —3I(m,—n+1) “F J(m,—n — 1) = LHS.
U
Proposition 14. The identity
J(=k,n) = (=D F(k +2,n) (4.14)

holds for all k,n € Z.

Proof. Tt remains to verify the identity for a non-positive second argument (other
cases have been treated in Remark 10). It can be proved by mathematical induction
in n.

41
Nosn—on+l: J(—k—n—1)* ”w+ 3=k, —n) — 3k, —n+1) 2

— 1
ERESias (LJ Ik +2,—n) = 3(k+2,—n+ 1)) e

)Mk 42, - — 1)
The sign 2 shows the place where we use the induction hypothesis. O
Proposition 15. The identity

J(m,n) = —=J(n+2,m—2) (4.15)

holds for all m,n € Z.
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Proof. The identity holds for m,n € N, m > 2, see (4.10).
1)In the first step we will show that the identity

J(m,n) =—-3J(n+2,m—2) (4.16)
holds for n € Z and m > 2 by mathematical induction in n.

2
n=0: J(m,0)"< E\”j(m, 1) — 3(m,2) L

2
10 —53(3, m—2)+3(4,m—2)" 2 —3(2,m—2)

— 1
Noon—n+1: J(m,—n—1)"2L n I(m,—n) — F(m,-n+1) <&

w

—n+1
T 2 m—2)+3(—n+3,m—2) "L

w

B S 1m2)

2)Now we will show the validity of the identity for all m,n € Z by using mathemat-
ical induction in m.

P
m=2: RHS=-3(n+20) "2 ——3(n+2,1) +3(n +2,2) 416
2
0 Z53,n) — 3(4,n) L 3(2,n) = LHS
w

2>m—m—1: RHSE—3(n+2,m—3)4é2

—1

w
1 mT_ls(m, n) = 3(m+1,0) 2 3m — 1,n) = LHS
O
Corollary 3. It holds
J(m, —k) = (=1)*1J(m, k —2) (4.17)
for all k,m € Z.
Proof.
Iom, —k) L =J(=k+2,m —2) L (=D, m —2) (=) F(m, k — 2)
O
Corollary 4. It holds
J(=m, —n) = (=1)""" I (n, m) (4.18)
for all m,n € Z.
Proof.
I(=m, —n) = (=11 (=m, n=2) = (=)™ I (m+2,n-2) = (=1)" (1, m)

O
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4.3 A formula for the function J

Proposition 16. It holds

[*5]

I(n—k,n) = (—1)s<k f‘;si 1) ww%—k (4.19)

ol
olf
=

»
Il
o

forall n,k € Z, k > —2.

Proof. The proof is split into 3 parts.

1)Let n € Nand —2 < k < n. By using the formula for the function § (%, e %) =
&(m,n) from Corollary 1 (note that the formula in the Corollary 1 holds also for
m = n+ 1 and m = n+2) and the definition of the function J (4.6) we easily arrive

at the expression

n!
(n—k—-1)!

- s (n—s)i(k —s+1)! -
W B(n —k,n) = (=1) slln—k+s—1)I(k— 2.9—1—1)!U)2 ‘=

3(n_kan) =

2]
R n—s (k—s+1)! o
- ;)(_1) <k—2s+1)Tu} .

Thus we have verified the validity of formula (4.19) forn € N, -2 < k < n.

2)In the second step we will verify formula (4.19) for all £ > —2,n € N. We will
proceed this by mathematical induction in k. Bearing in mind step 1), only the
induction step n — 1 < k — k 4 1 is to be treated (n € N is fixed):

s13n—k—1 IH

Jn—kn)—Jn—-—k+1,n) =

3(n— (k+1),m) .

[E£2]
(n—s)i(k —s+1)! 25—k—1
{11 _ _1 s _
(n Z slln—k+s—1)I(k— 2s+1)!w

s (n—9)l(k—s)! 2s—k+1
_Z(_l) s!(n—k—i—s)!(k—?s)!w =

s=0
ﬁ
: (n—s)!(k —s+1)! 25— k—1
(n = 5:0 sln—k+s—1DI(k—2s+1)! +
g (n—s+ Dl(k—s+1)!
n—-s —_ !
—1)8 257k71.
2 )(s—l)(n—k+s—1)(k—2s+2)!w

To proceed further, one must realize that the upper bound of the first sum can be

changed to [ } + 1 because if k is odd then [%] = [ } +1 and if k is even then

[2£2] = £ but the added term (s = £ +1) is 0 due to the term =i ), which must be

set 0. For a similar reason the lower bound of the second sum can be changed to 0.
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Then we have an expression

Jn—(k+1),n)=
_[%]+1 s (m=s+1l(k—s+1) T2 —
= 2 (_ ) S!(n—k+5—1)!(k_25+2)![(n_ + )( — 25+ )+S(7’L—S—‘r )}w

4]

B s (n—s+1)(k—-s+2)! 2s—k—1
- (=1) s!(n—k+8—2)!(k_25+2)!w

»
(=)

which was to be shown.
3)Finally we will verify the validity of the formula (4.19) for all £ > —2,n € Z.
Again we will proceed by mathematical induction in n:

2

(%]
1-s (k—s+2)! o 1o 2—3s (k—s+3) o5 p o
-9 —1)8 \v oot e) s _ ~1)8 ANV ot s
:0( ) <k—2s—|—2> s! v g( ) k—2s+3 s! v

where we have used the result of step 2). We can change the upper bound of the
first sum to [%} because of similar reasons as discussed in step 2). Next note that

the first term of the first sum (s = 0) together with the first term of the second sum
(s =0) give 0. Thus we have

=

I(—k,0
[£2]

w
+

(k—S)'(k—S+2)' wQS,k,Q_[k 3](_1)s+k+1 (k—s)'(k—8+3)' wQS,k,Q

sl(k —2s +2)I(s — 2)! sl(k —2s + 3)!(s — 3)!

m|

=2

(_1)s+k

(]

Il
-
Il
-

S
k

+
-

(k—s—1)(k—s+1)

B ; S (s+ DIk —2s+1)!(s—1)! [2(k =25+ 1) 4 (s — 1)(k — s + 2)]w?*k
[%5*] [%5*]
’ Foslik—sF D! ase s —s k—s+1) 5.
— 2 (-1) +k+18!((k_2)8(+ 1)!(5_)1)!w2 k _ ; (=1) (k_25+1> (57!)11}2 .

Ngon—-n+1:

J—n—-1-k,—n—-1) 4.12 —n+13(—n—(k+1),—n)—3(—n+1_(1€+2)7_n+1)Ig
4]
i —nt) > (- (k nes )wwzs—k—z_

pord —25+2 s!

(2]
B i(—l)s —n+1-s\(k—s+3)! 5 4 o
2 k—2s+3 S

To proceed further we will make similar steps as we have done in the case n = 0.We

will change the upper bound of the first sum to [%} because of similar reasons as
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discussed in step 2) and also the first terms of both sums are subtracting to 0. Then
we arrive at an expression
#
+hk—s+1)Nk—s+2) 5, ,_
N(—n—1—k. — _1 _1 k+sn 2s—k—2
(= o (n ; sl(k — 2s+2)(n+s—1)!w +

e
+
w

ks +k—s+ DIk —s+ 3)!w257k72 _

(=1) sl(k—2s+3)!(n+s—2)!

+
S w

m‘«}» I M N‘
-

pypre_{nt b= o=+ 1)
(s + DIk —=2s+1){(n+s)!

1y (—n —1- 5) (k=s+ 1! 0y

[(n—1)(k =25+ 1) — (k — s+ 2)(n + s)]w?**

I
—~

-
-o‘+ i
= O

]

k—2s+1 s!

@
Il
o

which concludes the proof. O

Proposition 17. It holds

k+1

2
N E4+n—s+1\(k—s)! 5
2 L w* 4.2
Jntk+2n) ( k—2s+1 )(5—1)!w (420)

—_

S=

forall n,k € Z, k > 0.
Proof.

I+ k+2,n) ()Y (—n = kyn) L (—1)F3(—n—k, —n —2) 2L

[k—l

2
4.19 C\kts[TR T2 (k—5—1! o hi2 _
B g( 2 (k—28—1> s! v N

5]

E+4n—s\(k—s—=1)! 5 E+n—s+1\(k—s)! ,,_
_ _1)\s+1 2s—k+2 _ _1)\s 25—k
N (=1) (k—28—1) s! v ;( 2 ( k—2s+1 )(5—1)!w

O

Example 1. By using the previous results of the function J we can introduce some
special examples:
Jn+2,n)=J(n,—n) =0,

J(n,n) =n, Jn+1,n) =w,
J(n+3,n) = —w, Jn+4,n)=—n—2,
—1 —1 -2
SR T B LM O ) |t Rt P
w w
where n € Z.
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4.4 Function J and particular values of x,.4(z)

In this section we will return to the expressions for a particular value of the charac-
teristic reduced function. As we promised in section 3.1.3 we will prove a statement
which will generalize relation (3.7), that means relation (3.7) will be a special case
of the statement.

We start with expression (3.1)

Xred(2) = (H(k2 — z2)> S(1—z,d—2)81+z,d+2)+

+2Zw2j < H (k2—z2)> S+1—2d—2)8{+1+2d+2) (4.21)

where we denote

w w
BJ+1+zdtz):= o .
GtltzdEs) S(jJrl:I:z’ ’d:l:z)
Although we have defined the function & only for integer arguments there isn’t any
problem.

Lemma 5. It holds

2j+2
- ®(j+2,d—n)

n—2)&n—j—z,d—z) G+

for j=0,...,n—1.
Proof. We will proved the statement by finite mathematical induction in j. Case

7=0:

(n—2)6(n—z,d—2) =n—2)6n+1-2d-=2)

zZ=n zZ=n

2

—w7®(n+2—z,d—z) = —w?®(2,d —n)
n+1l-z

zZ=n

where the recurrent relation (1.2) was used. The case j = 1 will be treated similarly:

(n—2)Bn—1-—2,d—=z) =(n—2)6Mn-—zd—z)

zZ=n zZ=n

2

—w7®(n+2—z,d—z)

. = —w®&(2,d—n)+wS(l,d—n)

zZ=n

4

- —%6(3,d —n).
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Let 0 < 5 <n—1. To proceed the induction step j — j+1 the well known recurrent
relation (1.2) is to be used again:

(n—2)Bn—(j+1)—2d—=z) =n—2)6n—j—zd—=z)| -—

— (n—2) w Sn—j+1—2d—2) &
R e e [ e R N
2j+2 2j+2

H W : w .

Y @G+ 2d—n)+ — B(+1.d—n) =

T R TR VTRl A

w2t

=— 6(j +3,d—n).

G+2!G+1)
O

With the aid of the previous lemma we can evaluate the characteristic reduced
function (4.21) in n € {1,...,d}. Thus

&(1+n,d+n)+

zZ=n

d
Xred(n) = 2n ( H k* — n2) (n—2)8(1—z,d—2)

k=1,k#n

d

n—1
+2Zw2j2n< H k2—n2) n—2)&(F+1—2d—2)
j=1

k=j+1,k#n

(G +1+n,d+n)+

zZ=n

d d
—I—QZij ( H kQ—nQ) SG+1-nd—n)B(G+1+n,d+n)=
j=n

k=j+1
o (d=n)(d+n)!
(12

=« n—Jd_n'd+n' n ) .

=(-1) wG(n+1,d —n)&(1 +n,d +n)+

d

So we have derived an expression

X?“ed(n) (_1>n 2n
= 1,d— 1
d—mdrm ez et Ld=m)@4n dtn)+
(=)
+ 2w : —&n—j+1,d—n)&n+j+1,d+n)+
;(n_])!(nﬂ)! (n—j )&(n +J )
d ’Uj2j
+ 2 ‘ : J+1—n,d—n)&(G+1+n,d+n). 4.22
;(]_n)!(]+n)! (J )8 (j ) (4.22)
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Remark 11. 1)Note that expression (4.22) coincides with the recurrent relation
(3.7) with s = n.

2)By using the definition relation (4.6) of the fuction J we can write expression
(4.22) as

Xred(n)
w2d—2

=(-1)"Jn+1,d—n)J(1+n,d+n)+

+2Z D" 3n—j+1,d—n)I(n+j+1,d+n)+

d
+23 3G+ 1-n,d—n)3I(G+1+n.d+n). (4.23)

j=n
Lemma 6. Let us denote
[k, 1] == 3J(k,d—n)J(,d+n)

and

n—1
Q(n "Z {s+D[s+2—j,s+2+j]—sls+1—js+1+j]}+
+ (—=1)" (5+1)[5+2,5+2] —(=1)"s[s+ 1,5+ 1]
for some n € N and k,l, s € Z. Then the identity
Qn)=(s+n)ls+1—-n,s+14+n|—(s—n+1)[s+2—n,s+2+n|] (4.24)
holds for all n € N and s € Z.

Proof. The identity will be proved by mathematical induction in n. Considering the
case n = 1 we have

Q1) =—(s+1)[s+2,s+2|+s[s+1,s+1]

where is needed to apply the basic recurrent relation, namely relation (4.13) is
applied to the first argument of the first bracket and to the second argument of the
second bracket. Then we arrive at an expression

Q1) =
(s+1)s

[8+1,s+2]+(3+1)[8,8+2]+S(qul)

[s+1,s+2]—s[s+1,s+3]=
=(s+1)[s,s+2] —s[s+ 1,5+ 3]

which coincides with the RHS of identity (4.24). Now the induction step 1 < n —
n + 1 is to be treated. Since

Qn+1)=-QMn) —2(s+[s+2—n,s+2+n]+2s[s+1—n,s+1+n]
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we can apply the induction hypothesis and we get
Qn+1)=(Gs—-n)s+1—-n,s+1+n—(n+s+1)[s+2—n,s+2+n].

By using the recurrent relation (4.13) on the second argument of the first bracket
and on the first argument of the second bracket we obtain an expression

(s—n)(s+1+mn)

Qn+1) = [s+1—n,s+2+n]—(s—n)[s+1—-—n,s+3+n]—
w
(s —
_{nts+1is n)[8+1—n,5—|—2+n]+(n—i—s—i—1)[s—n,5+2+n]:
w
=—(s—n)[s+1—-n,s+3+n+(n+s+1)s—n,s+2+n]
which was to be verified. O

Proposition 18. Let n € {1,...,d} and denote [k,[] := J(k,d —n)J(l,d +n) as in
the previous lemma. Then the relation

n—1
aned(n) n n ) - .
“gir = (D sls+ s+ 21" Y (<1 [s+1—js + 1+ ]+
j=1
d
+(s+n)s+1—ns+1+n+2n > [j+1—nj+1+n] (4.25)
j=s+1

holds for all s € Z.

Proof. The statement will be verified by mathematical induction in s. Expression
(4.23) follows that the statement holds for s = n. It is clear that the induction step
n <s— s+ 1 will be completed if the equation

—_

(—1)"s[s +1,s + 1] +2(=1)"s > (=1)[s+1—34,s+ 1+ ]+
1
+(s+n)s+1—n,s+1+nl+2n[s+2—n,s+2+n]=
=(=D)"s+Ds+2,s+2+2(-1)"(s+1) ) _(-1V[s +2—j,s +2+ ]+
1

<.
Il

—

<.
Il

+(s+14+n)[s+2—n,s+2+n]

holds. But it is true because this equation is identity (4.24) (only rearranged) from
the previous lemma. The induction step n > s — s — 1 can be treated in a similar
way with the aid of Lemma 6 (writing s — 1 instead of s). O

Remark 12. 1)By plugging the definition relation of the function J (4.6) into re-
lation (3.7) one can easily arrive at expression (4.25) with only restricted index s.
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Thus Proposition 10 is a special case of Proposition 18.
2)Especially for s = d it holds

WoeM) (g 4 1d 41 "dz Vld+1—j.d+1+ ]+

w22
+(d+n)d+1—n,d+1+n]

and for s = 0 it holds

d
=[1-n1+n]+2) [j+1-nj+1+n] (4.26)
j=1

Xred(n)
w2d—2

Note that this relation for x,.q(n) holds also for n = 0 because the expression

<1d ijJrld)

coincides with identity (3.3).
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Chapter 5

The characteristic function and
the resolvent of a Jacobi matrix

We have prepared enough so we can derive the exact formula for y,.q(n) with
n =1,...,d. Then by using the formula for y,.q(n) we will reconstruct the whole
reduced characteristic function x,.q(z) for z € C. Furthermore we will derive a
formula for the resolvent operator of a Jacobi matrix of a special type.

Recall that K € C2¥+1x2d+1 5 5 complex Jacobi matrix of the form

—d w
w —d+1 w

=

I

g
g o8
— g

w d—1 w
w d

Definition 3. Let n,s € Z. Then define a column vector z,, € C**! as
al,=@d+s+1,n),3(d+s,n),....3(s+1,n),....3(-d+s+1,n)) (5.1)
By putting —j-+s instead of m into the recurrent relation (4.13) we get an identity

wI(—j+s+2,n)+(—s)I(—j+s+Ln)+wy(+j+sn)=0

for all j,n,s € Z. Thus we can write

w4+ (= s)ad  +wal =0 (5.2)

for all n,s € Z, 3 = —d,...,d, but we have to set :v;fsl‘l = J(d+ s+ 2,n) and
zdt! = J(—d + s,n). Then it holds

(K —8)xns =—wI(d+s+2,n)e_g —wI(—d + s,n)eq (5.3)
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where n,s € Z and (e_g, . .., eq) is a standard basis in C***! (that is e = §;;) which
is easy to verify if we consider identity (5.2).
Next, we set n = d+ s. Since J(d+ s+2,d+ s) = 0 which can be seen, for example,
from (4.15) we can eliminate the first term on the RHS in identity (5.3) and we
arrive at an expression

Kvs = svg —wJ(—d + s,d + s)eq (5.4)
where we denote v := x5 445 for all s € Z.
Remark 13. Since

J(=d,d) =" (=1)*'F(d+2,d) =0
the vector vy is the eigenvector of K for eigenvalue 0 which is easy to see from
relation (5.4) if we set s = 0.

Lemma 7. Let n € N and p is a polynomial of degree s <n — 1. Then

J=0

Proof. The statement will be verified by finite mathematical induction in the degree
s of a polynomial. The case s = 0 is nothing but the binomial theorem. Let ¢ is a
polynomial of degree s +1 < n — 1, that is

s+1

q(j) = Zaljlu a; € C,as41 # 0.

Since -
i(—l)j (?)q(y‘) = G441 2(—1))’ (3‘) 4 §<_1>j (;ﬂ) gal ;i

it is clear that it suffices to show that

But .
T ) S S O IO

and since (j+1)% is a polynomlal in j of degree s < n—2 we can apply the induction
hypothesis and we get
n—1
n—1Y\ . s
( ‘ ) (j+1)°=0
:0

which concludes the proof. O

<.
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Proposition 19. Let V € C?¥+1x2+1 where
Vis =" =3(-k+s+1,d+ s), k,s€(—=d,—d+1,...,d).
Then

2d k!

detV = k=1

wd—D2d+1) " (5:5)

Proof. Let us define a matrix W € C2¢+1*2d+1 gyych that
afk+d
Wi, i= (—1)7+4 .
r= Y (j + d)
Since W = 0 for & < j we can easily compute the determinant of W

d

d
det W = H Wkk = H (—1)k+d.

k=—d k=—d
Let us investigate a matrix V.

d

d+1\ .

(VW) = g VisWy = g (—1)d+5<d+s)d(—k‘+s+ 1,d+s)=
s=—d s=—d

_z P("Ta0 - @ k=)
d+l)

Since ( i) =0 for 5 > d + | we can change the upper bound of the sum to d + [.
Next we apply formula (4.19) and get

[k

i (d; 1) 22:](_1)t (d j - %) szt_d_m _

t=0

d+l

((d+k—1) 2tdk+1z d+1 J—t
f i J\atk—o

I
—~
I
—_
~

Since ( it ) is a polynomial in j of degree d + k — 2t the previous Lemma 7 gives

d+k—2t
d+l .
por i J\d+k—2t
if k—1<2t.

Let k£ <[ then, with the aid of Lemma 7, we arrive at an equation

(VIV ) = 0.
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For k = [ the only nonzero term is the term with ¢ = 0 and thus

(VW) = (d + k)lw =475+ § (d j k) (d i k) = (=) (d 4 k)lw =4k

The last equation holds since ( dik) # 0 only for j = d + k.
Finally we can derive the determinant of the matrix V'

det(VW) Tl a(VW)e _ TTho_a(=1)"(d + k)l 5+

det V — == =
det W HZ:—d(W>k Hk—— ( )d+k
2d
o K!
T ld-D(2d+1) "
O
Corollary 5. A set of vectors ¥ := (v_g, V_g41,...,v4) is a basis in C2+1,
Proof. ¥ is basis in C%**! & matrix V is regular < det V = (Eﬁ)gﬁl) # 0.
O
Lemma 8. It holds
SN
_ Ly, 5.6
cd Sz_:d drs)d—s" " (56)
where e; € C*HL ek = §4.
Proof.
Zd: (DT e (—k+s+1,d+s) 2
= (d+s)i(d—s)!

d+k

d d+s d _
4.19 201 +s—=1\(d+k—1) 2—d—k+1 _
> z D
(4]

=f< 1>“”§i o S () (1)

According to Lemma 7 the inner sum

S () ) -

s=0

if k < d+ 2l and this inequality holds for all k € {—d,...,d —1}. If k = d then the
inner sum is not zero only if [ = 0, thus

gd: T Do Tk s L) = i(—1)5<2$d) (;d):L

_ s=0
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Since (28[1) = 0 for all s < 2d the last equality holds.
So for k € {—d,...,d} we have an equality

_ 1\d+s

d
(—1)
S;l d+5)(d—>9)

w3 (k4 s+ 1,d+5) = b

which proves the statement. O

Finally we can express the operator K in the basis ¥ (denoted K? € C2d+1x2d+1)
Starting with (5.4) and considering the statement of the previous Lemma 8 we obtain
an expression

(K")4s = 8615 — wI(—d + s,d + 5)eq(t) (5.7)

where
(—1)4 2d—1
d+t)id—n"

and t,s € {—d,...,d}. Next let us denote K, € C2+1x2d+1

ed(t) =

(KO)ts = 55t5
and a, e} € C¥+1
(eZ)T = (eq(—d),eq(—d +1),...,eq(d)), al = (_g, g1y Qq)

where a, := —wJ(—d+s,d+s) = (=1)**wJ(d—s+2,d+s). Then we can rewrite
relation (5.7) to a simple expression

K" = Ky+¢Ja”. (5.8)

Remark 14. 1)Note that efa’ € C?¢T1*24+1 [t is not a scalar product.
2)The inverse operator (K, — z)~! exists for all z € C\ {—d....,d} and

1

s —Z

(Ko —2)"es =

Ots-

3)It holds a_y = —a, for all s € {—d. .., d}. Especially it follows that ay = 0.
Verification:

5.1 The resolvent (K" — z)~!

In the following proposition we will find a formula for the resolvent operator
(K7 —2)~L.
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Proposition 20. Let z € C\ {—d, ..., d} such that an inequality
1+a” (Koy—2)"te) #0

holds. Then

(K =) = (o= 2)7 = — aT(Ki g o = )l (o = )7 (59)

Proof. From formula (5.8) it follows that
K" — 2= (Ky—2)(1+ (Ko — 2)'ela”), (5.10)

note that 1 stands for an identity operator. Then

1
1 -1.9,T -1 ) _
[(KO o 1+a” (Ko — Z)_leg (Ko —2)" eqa” (Ko — 2) (K" —2z) =
1 19T 1.9 T
= [1_1+aT(K0—z)—1eg(KO_Z> ega | (1+ (Ko —2) tega’) =
1
=1+ (Ko —2)"teja” - Ko —z)tela’ —

1+a"(Ky— z)‘leg(

al (Ko — z)te?
. Ko — -1 9, T =1
1+ a”(Ky — z)—leg( 0= 2) et

which was to be verified. O

Remark 15. By multiplying the equality
1+a (Ky—2)"te) =0

by a term Hz:_ 4(k — z) we obtain a polynomial equation in z.Thus the inequality
1+a"(Kg—2)"te) #0

holds for all z € C with exception of a finite number of z.

5.2 A formula for y,.q(z)
Lemma 9. Let a,b € C" then
det(1 +ba”) =1+ a”b.

Proof. The definition of the determinant gives

det(1 4 ba’) = Z sgnm H(ékﬂ(k) + (i) bi) (5.11)

TESh k=1
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where S, is a set of permutations of the set {1,...,n}. Since a determinant of a
matrix with all entries equal to 1 is zero the identity

holds for all n > 2.Then a lot of the terms in sum (5.11) are zeros which can be seen
from following relations

Z sgn H Ar (k)b = H arby, Z sgnm = 0,

TESy TESy
ngmréﬂ(“ H Ar (k)b = H aby, Z sgnm =
€Sy, k=1,k#i k=1,k#i TESy m(i)=i
n
H aby, Z sgno = 0,
k=1,k#i 0ESy 1
ngnﬂéﬂ(i)iéﬂj)j H aw(k)bk: H akbk Z sgm':O,
TSy, ki k#j ki, k#j TE€Sn_2

etc., until we arrive at the following cases

Z Sgnﬂaw(i)bi H 57r(k)k = (Iibi Z SgNT = (Zibi

WESn k?él m=id

Z Sgnﬂ'Héﬂ(k k= =1.

WESn
These relations together with the formula for the determinant (5.11) give

and

det(1+ba™) =1+ Z a;b;
i=1
which concludes the proof.
U

Now we can use relation (5.10) and the previous lemma to find a formula for

Xred(z):

_1)d+1 (_1)d+1

Xrea(2) = ————det(K — z) = . det(K? — 2) =
(_1)d+1
= det(Ky — z) det(1 + (Ko — 2) " 'eja’) =
(—1)2+1 d d
= I (k=20 +a" (K - H Y1+ aT (Ky—2)7ted) =
k=—d k=1
: 2d—1 d+s o
_ 1 = .
kl:[l & T Z (d —I— s (d—s)ls—z
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Since av_s = —a; (see Remark 14) we can further adjust the sum in the previous
expression

d d+s d d+s 1 1
Z d+s —s's—z d+s )as<s—z_—s—z):

s=—d s=1

i 25 wy(d—s+2,d+s)
— 222 (d+s)(d—9)!

Finally we arrive at a formula

d
—s+2,d+s)
re —2) (14w ° . 5.12
Xd ];[ Z <+w 282_Z2 d+s)(d )|) ( )
Next for z =n € {1,2,...,d} we obtain a formula for x,.q(n)
d 2n
Xrea(1) = (k* —n?) J(d+n—(2n—2),d+n)w* L
k:g;én (d—n)l(d+n)!
4.19 (_1>n+1 2d—2n-+2 — k d+n—k (2n —k— 1)' 2%
= n —1 - @ g
no Z( "on— 2 -1 I
n—1
1 n+l\(d+1+1)! 5,
_ 2t _1) 2d—21 513
o2 )<2z+1) a—o " (5.13)

=0

where we have done a substitution [ =n — k — 1.
At the end we will introduce a more convenient expression for the reduced charac-
teristic function then formula (5.12).

Proposition 21. It holds

(2d — s+ 1)! 28“

5.14
< Sl(2d— 25+ 11" k:l (5.14)

Xred

MM&

for all z € C.

Proof. Since X,eq(z) is an even polynomial in z of the degree 2d (see (3.2)) it
is enough to check that the values of the RHS for z = 0,1,...,d coincide with
Xred(o)a Xred(]-)7 R Xred(d)‘ The expression

d
2d—s+1)! 5
re *l(d — !
Xrea(0 gs'm s =)l

is exactly the formula (3.5). Let n € {1,...,d} then

dzs {O s<d-—n
3¢

N APy
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hence

d
1 (2d—s+1)! (=14 (n+d—s) ,

RHS = — ¥ =
Z sl2d—2s+1)! (n—d+s—1)! v

s=d—n+1

S (d+1+D8 (D!

_1 1l
_Ehﬁ_>@ﬁwwm+1nm—z—nx

which coincides with the formula for y,.q(n) (5.13). O

Remark 16. From formula (5.14) it is obvious that y,.q(z) has no roots for |z| < 1
and Y,eq(£1) = 0 if and only if w = 0.

5.3 More on particular values of y,.q(z)

In this section we will come back to examine the particular values of y,.q(z) ones
more.

Proposition 22. It holds

Xred(n>
iz = v? (I — S)v,

where S € C24t1 guch that

and n € {0,1,...,d}.

Proof. Since

the RHS of the statement

Jd+n+1,d+n)
J(=d+n+1,d+n)

d
:223(j—n+1,d—n)3(j+n—|—1,d—|—n)+3(—n+1,d—n)3(n+1,d—l—n)
j=1

is exactly the RHS of identity (4.26). O
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By using the symmetry of the matrix K (K = K7) and expression (5.4) we get

d

svlvg + a? = vl Kvy = (Kv) v = tv] vs + a0

where oy = —wJ(—d + s,d+ s) and t,s € {—d,...,d}. It follows that it holds

1
UTUS = — asvd — atvd . 5.15
t t t S

Further, by similar way (S = ST), we can write
vl SKv, = vl S(svs + ageq) = 50,505 + av?

and
UtTKSvs = SKUtTUS = tvSvs + vt

Finally by subtracting last two equations and by using the expression (5.15) we
arrive at the relation

vl [K, Slvs = (t — s)vl (S — I, (5.16)
where [K, S| = KS — SK.

Corollary 6. The identity

2d—2
w2 vl K, Su,
n

Xred(n> =
holds for n € {0,1,...,d}.

Proof. The statement follows from Proposition 22 and relation (5.16) immediately.

O
Proposition 23. It holds
w21
Xred(n) = o J=n+2,d=—n)Jn+1,d+n)—J(—n+1,d—n)J(n+2,d+n)

+3J(—n+1,d—n)J(n,d+n) —J(—n,d —n)J(n + 1,d+n)>
(5.17)
forn € {0,1,...,d}.

Proof. Tt suffices to compute the commutator [K, S| and use the previous Corollary.
Since

d —w
—w d—1 —w
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and

SK =

—w 1 —w
0 0 0
w 1 w

w d—1 w

thus the commutator has only four nonzero entries

0 0
0
0
[K> S] =
Then
2d—2
Xreal(n) = =5——0", [, Sl =

which concludes the proof.

w d
0 w
—w 0 w
—w 0 0
0
0 0
w21
5 (Tavn — vl ol vy — vl o)
n
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Conclusion

The aim of this paper was to describe properties of a spectrum of a finite-dimensional
operator with Jacobi matrix of a special type. With the aid of an expanded special
function § I was able to derive a formula for the characteristic polynomial of the
Jacobi matrix of a special type and I have also found a formula for a resolvent of
this matrix.

In my Bachelor thesis [2] I have shown what a problem arises if one tries to obtain
a global description of the spectrum of an infinite-dimensional operator with the Ja-
cobi matrix by using a regular perturbation theory. Results acquired in this paper
could be used in my future work in which I'm going to try to derive a global de-
scription of the spectrum of an infinite-dimensional operator with the Jacobi matrix
by dividing the infinite matrix to finite blocks. In this afford the gained knowledge
of the spectrum of finite dimensional Jacobi matrices should be useful.
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