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May 1, 2010



Prohlášeńı
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Introduction

The results of the current thesis are related to the eigenvalue problem for finite-
dimensional symmetric tridiagonal (Jacobi) matrices. Notably, the eigenvalue prob-
lem for finite Jacobi matrices is solvable explicitly in terms of generalized hyperge-
ometric series [4]. Here we focus on a very particular class of Jacobi matrices which
makes it possible to derive some expressions in a comparatively simple and compact
form. We do not aim at all, however, at a complete solution of the eigenvalue prob-
lem. We restrict ourselves to derivation of several explicit formulas, first of all that
for the characteristic function, as explained in more detail below.

First, we introduce a function, called F, defined on a subset of the space of
complex sequences. In the remainder of the paper it is intensively used in various
formulas. The function F has remarkably simple and nice algebraic properties.
Among others, function F satisfies a tree term recurrent relation which plays an
essential role in the remainder of the paper. Let us also note that some special
functions are expressible in terms of F. First of all this concerns the Bessel functions
of first kind. We examine the relationship between F and the Bessel functions and
provide some supplementary details on it. Bessel functions (of first and second kind)
also arise while studying an asymptotic behaviour of F.

Next, we introduce a Jacobi matrix of a special type, more precisely, a Jacobi
matrix with a sequence (antisymmetric with respect to its center) on the diagonal
with constant neighboring parallels. As an application of the usage of F we present
a comparatively simple formula for the characteristic function of the Jacobi matrix
and also an explicit formula for the eigenvector corresponding to zero eigenvalue.
These results have been derived in former work [3].

From the third chapter, we focus on the rather particular class of Jacobi matrices
of odd dimension whose parallels to the diagonal are constant and whose diagonal
depends linearly on the index. With the aid of the function F we define a symbol,
denoted J, depending on two integers and we study its algebraic properties. In
addition, we find a general formula for the symbol J.

One of the main goal is obtained in the fourth chapter. It is a formula for
characteristic function of the Jacobi matrix under investigation. With the aid of the
symbol J we construct a special basis in which the Jacobi matrix becomes a sum of
a diagonal matrix and a rank-one matrix operator. This form is rather suitable for
various computations. Particularly, one can compute a determinant which leads us
to find the formula for the characteristic function. Moreover, we are able to express
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the resolvent operator of the studied matrix, again due to the convenient form of
the matrix written in the constructed basis. Finally, we provide several information
dealing with a distribution of the spectrum following directly from the formula for
characteristic function.

The fifth chapter brings us to a slight generalization of the symbol J, we add a
new continuous dependent variable and define a function also called J. We present
one more identity for characteristic function by using the new function J. Further,
a vector-valued function on the complex plain is constructed having the property
that its values on spectral points of the Jacobi matrix are equal to corresponding
eigenvectors. At the end of the chapter we modify the presented results to obtain
the characteristic function and the vector-valued function (with the same property
mentioned above) for the Jacobi matrix of even dimension.

In the last chapter we collect information dealing with a relationship between the
spectrum of the infinitedimensional Jacobi matrix and the spectrum of its trunca-
tions which is described mostly in [7] and [8]. More precisely, we show that under
certain assumptions, every eigenvalue of tridiagonal operator is a limit point of a
sequence of eigenvalues of a truncated finitedimensional operator and vice versa.
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Chapter 1

Function F

Almost all important results obtained in this paper are based on an establishing of
a special function, simply called function F. This function satisfies a very important
recurrent relation which shows to be essential.

1.1 Function F and its Basic Properties

Definition 1. Define F : D → C,

F(x) := 1 +
∞∑

m=1

(−1)m

∞∑

k1=1

∞∑

k2=k1+2

· · ·
∞∑

km=km−1+2

xk1xk1+1xk2xk2+1 . . . xkmxkm+1

where

D =

{
x = {xk}∞k=1

∣∣∣∣
∞∑

k=1

|xkxk+1| < ∞
}

.

Remark 2.
1) Note that the summation indices satisfy kj ≥ 2j − 1.
2) Note that the definition domain D is not a linear space. One has, however,
`2(N) ⊂ D (use Schwarz inequality).
3) Obviously, if all but finitely many elements of x are zeroes then F(x) reduces to
a finite sum. For a finite number of variables we often will write F(x1, x2, . . . , xk)
instead of F(x) where x = (x1, x2, . . . , xk, 0, 0, 0, . . . ).
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Example 3. Let us introduce some simple examples,

F(∅) = 1,

F(x1) = 1,

F(x1, x2) = 1− x1x2,

F(x1, x2, x3) = 1− x1x2 − x2x3,

F(x1, x2, x3, x4) = 1− x1x2 − x2x3 − x3x4 + x1x2x3x4,

F(x1, x2, x3, x4, x5) = 1− x1x2 − x2x3 − x3x4 + x1x2x3x4 − x4x5 + x1x2x4x5

+ x2x3x4x5,

F(x1, x2, x3, x4, x5, x6) = 1− x1x2 − x2x3 − x3x4 + x1x2x3x4 − x4x5 + x1x2x4x5

+ x2x3x4x5 − x5x6 + x1x2x5x6 + x2x3x5x6 + x3x4x5x6 − x1x2x3x4x5x6.

Definition 4. The operator T1 defined on the space of all sequences indexed by N
such that

T1({xk}∞k=1) := {xk+1}∞k=1

is called the operator of truncation from the left. Next, set Tn := (T1)
n, n =

0, 1, 2, . . . , hence
Tn({xk}∞k=1) = {xk+n}∞k=1

In particular, T0 is the identity.

Proposition 5. It holds

F(Tnx)− F(Tn+1x) + xn+1xn+2F(Tn+2x) = 0, (1.1)

for all n ∈ N0 and x ∈ D.

Proof. To verify this identity, note that after the substitution x′ = Tnx one can
restrict oneself to the particular case n = 0. Consider that

F(Tnx) = 1 +
∞∑

m=1

(−1)m

∞∑

k1=n+1

∞∑

k2=k1+2

· · ·
∞∑

km=km−1+2

xk1xk1+1xk2xk2+1 . . . xkmxkm+1

and so

F(x)− F(T1x) = −x1x2 +
∞∑

m=2

(−1)m

∞∑

k2=3

· · ·
∞∑

km=km−1+2

x1x2xk2xk2+1 . . . xkmxkm+1

= −x1x2F(T2x).

Remark 6. Especially, it holds

F(x1, . . . , xn) = F(x2, . . . , xn)− x1x2F(x3, . . . , xn) (1.2)

for n ∈ N \ {1}.
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Remark 7. Since F(∅) = F(x1) = 1, relation (1.2) determines recursively and
unambiguously F(x1, . . . , xn) for any finite number of variables n ∈ N0.

Proposition 8. It holds

F(x1, x2, . . . , xn) = F(xn, xn−1, . . . , x1) (1.3)

for all n ∈ N0.

Proof. Let us denote yj := xn−j+1 for j = 1, . . . , n, then

F(xn, xn−1, . . . , x1) = F(y1, y2, . . . , yn)

= 1 +

[n+1
2 ]∑

m=1

(−1)m

n−2(m−1)∑

k1=1

n−2(m−2)∑

k2=k1+2

· · ·
n∑

km=km−1+2

yk1yk1+1yk2yk2+1 . . . ykmykm+1

= 1 +

[n+1
2 ]∑

m=1

(−1)m

n∑

l1=2m−1

l1−2∑

l2=2m−3

· · ·
lm−1−2∑

lm=1

xl1xl1+1xl2xl2+1 . . . xlmxlm+1

where we have substituted lj = n− kj + 1, j = 1, . . . , n. To proceed further we just
denote the summand index lj as lm−j+1 for all j = 1, . . . , n and change the order of
the sums such that the sum with the summand index l1 will be at the first place,
the sum with the summand index l2 will be at the second place, etc.

= 1 +

[n+1
2 ]∑

m=1

(−1)m

n∑

lm=2m−1

lm−2∑

lm−1=2m−3

· · ·
l2−2∑

l1=1

xl1xl1+1xl2xl2+1 . . . xlmxlm+1

= 1 +

[n+1
2 ]∑

m=1

(−1)m

n−2∑

lm−1=2m−3

lm−1−2∑

lm−2=2m−5

· · ·
l2−2∑

l1=1

n∑

lm=lm−1+2

xl1xl1+1 . . . xlmxlm+1

= 1 +

[n+1
2 ]∑

m=1

(−1)m

n−4∑

lm−2=2m−5

· · ·
l2−2∑

l1=1

n−2∑

lm−1=lm−2+2

n∑

lm=lm−1+2

xl1xl1+1 . . . xlmxlm+1

= · · · =

= 1 +

[n+1
2 ]∑

m=1

(−1)m

n−2(m−1)∑

l1=1

n−2(m−2)∑

l2=l1+2

· · ·
n−2∑

lm−1=lm−2+2

n∑

lm=lm−1+2

xl1xl1+1 . . . xlmxlm+1

= F(x1, x2, . . . , xn).

Remark 9. By using the stated symmetry property of the function F and recurrent
relation (1.2) one can easily derive the following identity

F(x1, . . . , xn) = F(x1, . . . , xn−1)− xnxn−1F(x1, . . . , xn−2) (1.4)

which holds for n ∈ N \ {1}.
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A generalization of Proposition 5 can be found.

Proposition 10. For every x ∈ D and k ∈ N one has

F(x) = F(x1, . . . , xk) F(Tkx)− F(x1, . . . , xk−1)xkxk+1 F(Tk+1x). (1.5)

Proof. Let us proceed by induction in k. For k = 1, equality (1.5) coincides with
(1.1). Suppose (1.5) is true for k ∈ N. Applying Proposition 5 to the sequence Tkx
and using (1.4) one finds that the RHS of (1.5) equals

F(x1, . . . , xk) F(Tk+1x)− F(x1, . . . , xk)xk+1xk+2 F(Tk+2x)

− F(x1, . . . , xk−1)xkxk+1 F(Tk+1x)

= F(x1, . . . , xk, xk+1) F(Tk+1x)− F(x1, . . . , xk)xk+1xk+2F(Tk+2x). (1.6)

This concludes the verification.

1.2 Examples

Example 11. The Bessel functions of the first kind can be expressed in terms of
function F. More precisely, for ν /∈ −N, one has

Jν(2w) =
wν

Γ(ν + 1)
F

({
w

ν + k

}∞

k=1

)
. (1.7)

To prove (1.7) one can proceed by (finite) induction in j = 0, 1, . . . , m− 1, to show
that

∞∑

k1=1

∞∑

k2=k1+2

· · ·
∞∑

km=km−1+2

× 1

(ν + k1)(ν + k1 + 1)(ν + k2)(ν + k2 + 1) . . . (ν + km)(ν + km + 1)

=
1

j!

∞∑

k1=1

∞∑

k2=k1+2

· · ·
∞∑

km−j=km−j−1+2

× 1

(ν + k1)(ν + k1 + 1)(ν + k2)(ν + k2 + 1) . . . (ν + km−j)(ν + km−j + 1)

× 1

(ν + km−j + 2)(ν + km−j + 3) . . . (ν + km−j + j + 1)
. (1.8)

Case j = 0 is immediate. To proceed the induction step j → j +1 one have to count
the inner sum in the RHS of (1.8) which is easy due to the decomposition

1

(ν + km−j)(ν + km−j + 1)(ν + km−j + 2) . . . (ν + km−j + j + 1)

=
1

j + 1

(
1

(ν + km−j)(ν + km−j + 1)(ν + km−j + 2) . . . (ν + km−j + j)

− 1

(ν + km−j + 1)(ν + km−j + 2)(ν + km−j + 3) . . . (ν + km−j + j + 1)

)
.
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In particular, for j = m− 1, the RHS of (1.8) equals

1

(m− 1)!

∞∑

k1=1

1

(ν + k1)(ν + k1 + 1)(ν + k1 + 2) . . . (ν + k1 + m)

=
1

m!

∞∑

k1=1

1

(ν + k1) . . . (ν + k1 + m− 1)
− 1

(ν + k1 + 1) . . . (ν + k1 + m)

=
1

m!(ν + 1)(ν + 2) . . . (ν + m)
=

Γ(ν + 1)

m!Γ(ν + m + 1)
(1.9)

and so

wν

Γ(ν + 1)
F

({
w

ν + k

}∞

k=1

)
=

∞∑
m=0

(−1)m w2m+ν

m!Γ(ν + m + 1)
= Jν(2w),

as claimed. The last equality is an expansion of the Bessel function of the first kind,
see for example [1], chap. 9. Furthermore, the recurrence relation (1.1) transforms
to the well known identity

zJν(z)− 2(ν + 1)Jν+1(z) + zJν+2(z) = 0

which can be found also in [1], chap. 9. A formula for F applied on the truncated
sequence {w/(m + k)}n

k=0 can be found. Its derivation will be described later (see
(1.17) or (5.30)).

Example 12. One can also find the value of F on the geometric sequence {tk−1w}n
k=1

for t, w ∈ C, |t| < 1. First, one can prove the identity

∞∑

k1=n

∞∑

k2=k1+2

· · ·
∞∑

km=km−1+2

t2k1−1t2k2−1 . . . t2km−1 =
tm(2m−3)t2mn

(1− t2)(1− t4) . . . (1− t2m)

(1.10)
by mathematical induction in m. Case m = 1 is easy to verify. Let us proceed the
induction step m → m + 1,

∞∑

k1=n

∞∑

k2=k1+2

· · ·
∞∑

km+1=km+2

t2k1−1t2k2−1 . . . t2km+1−1

IH
=

∞∑

k1=n

t2k1−1 tm(2m−3)t2m(k1+2)

(1− t2)(1− t4) . . . (1− t2m)
=

t(m+1)(2m−1)t2(m+1)n

(1− t2)(1− t4) . . . (1− t2m+2)
.

Next, by using identity (1.10) and the definition of F one has the equality

F
({

tk−1w
}∞

k=1

)
= 1 +

∞∑
m=1

(−1)m tm(2m−1)w2m

(1− t2)(1− t4) . . . (1− t2m)
(1.11)
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This function can be identified with a basic hypergeometric series (also called q-
hypergeometric series) defined by

rφs(a; b; q, z) =
∞∑

k=0

(a1; q)k . . . (ar; q)k

(b1; q)k . . . (bs; q)k

(
(−1)kq

1
2
k(k−1)

)1+s−r zk

(q; q)k

where r, s ∈ N0 and

(α; q)k =
k−1∏
j=0

(
1− αqj

)
, k = 0, 1, 2, . . . ,

see [5]. In fact, the RHS in (1.11) equals 0φ1(; 0; t2,−tw2) where

0φ1(; 0; q, z) =
∞∑

k=0

qk(k−1)

(q; q)k

zk =
∞∑

k=0

qk(k−1)

(1− q)(1− q2) . . . (1− qk)
zk,

with q, z ∈ C, |q| < 1, and the recursive rule (1.1) takes the form

0φ1(; 0; q, z) = 0φ1(; 0; q, qz) + z 0φ1(; 0; q, q2z). (1.12)

Similarly as in the previous example one can try to find a formula for F applied on
the truncated sequence {wtk}n

k=m for w, t ∈ C and m ≤ n. The formula has the
form

F(wtm, wtm+1, . . . , wtn) = 1 +

[n−m+1
2 ]∑

s=1

∏2s−2
k=s−1(t

2m+2k − t2n)∏s
j=1(t

2j − 1)

w2s

ts(s−2)
. (1.13)

Since the cases when m = n + 1 and m = n give 1 it is sufficient to show the RHS
in (1.13) satisfies the recurrence relation

F(wtm, wtm+1 . . . , wtn) = F(wtm+1, . . . , wtn)− w2t2m+1F(wtm+2, . . . , wtn) (1.14)

(see Remark 7). Thus

1 +

[n−m
2 ]∑

s=1

∏2s−2
k=s−1(t

2m+2k+2 − t2n)∏s
j=1(t

2j − 1)

w2s

ts(s−2)

− t2m+1


w2 +

[n−m−1
2 ]∑

s=1

∏2s−2
k=s−1(t

2m+2k+4 − t2n)∏s
j=1(t

2j − 1)

w2s+2

ts(s−2)




= 1 +

[n−m
2 ]∑

s=1

∏2s−1
k=s (t2m+2k − t2n)∏s

j=1(t
2j − 1)

w2s

ts(s−2)
−

[n−m+1
2 ]∑

s=1

∏2s−2
k=s (t2m+2k − t2n)∏s−1

j=1(t
2j − 1)

w2s

t(s−1)(s−3)
.
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To proceed further, one have to notice that if n − m + 1 is an odd number then[
n−m+1

2

]
=

[
n−m

2

]
and if n −m + 1 is an even number then

[
n−m+1

2

]
=

[
n−m

2

]
+ 1

but if the index of summation s of the first sum goes up to
[

n−m
2

]
+ 1 the last term

of the sum would be zero. Thus we can change the upper bound of the first sum to[
n−m+1

2

]
and we arrive at the expression

1 +

[n−m+1
2 ]∑

s=1

w2s
∏2s−2

k=s (t2m+2k − t2n)

ts(s−2)
∏s

j=1(t
2j − 1)

[
(t2m+4s−2 − t2n)− t2m+2s−2(t2s − 1)

]

= 1 +

[n−m+1
2 ]∑

s=1

∏2s−2
k=s−1(t

2m+2k − t2n)∏s
j=1(t

2j − 1)

w2s

ts(s−2)

which concludes the proof.

1.3 A Formula for F(w
m, w

m+1, . . . ,
w
n )

In later chapters it will be useful to know an explicit formula for F( w
m

, w
m+1

, . . . , w
n
)

where w is a real parameter and m,n ∈ N, m ≤ n. The formula will be derived
throughout this section.

Lemma 13. It holds

n∑

k=m

(n + 1− k)(n + 2− k) . . . (n + s− 1− k)

k(k + 1) . . . (k + s)

=
(n−m + 1)(n−m + 2) . . . (n−m + s)

s(n + s)m(m + 1) . . . (m + s− 1)
(1.15)

for all m,n, s ∈ N,m ≤ n.

Proof. Denote the LHS by Ys(m,n). One can verify the statement by induction in
s. The case s = 1 gives the identity

n∑

k=m

1

k(k + 1)
=

n−m + 1

(n + 1)m

which is easy to verify (by using decomposition 1
k(k+1)

= 1
k
− 1

k+1
).

In the induction step s− 1 → s, with s > 1, observe that

Ys(m,n) = −n + 2s− 1

s
Ys−1(m + 1, n + 1) +

n + s− 1

s
Ys−1(m,n).

9



Now, by applying the induction hypothesis we have

Ys(m,n) = −n + 2s− 1

s

(n−m + 1)(n−m + 2) . . . (n−m + s− 1)

(s− 1)(n + s)(m + 1)(m + 2) . . . (m + s− 1)

+
n + s− 1

s

(n−m + 1)(n−m + 2) . . . (n−m + s− 1)

(s− 1)(n + s− 1)m(m + 1) . . . (m + s− 2)

=
(n−m + 1)(n−m + 2) . . . (n−m + s)

s(n + s)m(m + 1)(m + 2) . . . (m + s− 1)
= RHS.

Proposition 14. It holds

n−2s+2∑

k1=m

n−2s+4∑

k2=k1+2

· · ·
n∑

ks=ks−1+2

1

k1(k1 + 1)k2(k2 + 1) . . . ks(ks + 1)

=
(n−m− 2s + 3)(n−m− 2s + 4) . . . (n−m− s + 2)

s!m(m + 1) . . . (m + s− 1)(n− s + 2)(n− s + 3) . . . (n + 1)
(1.16)

for all m,n, s ∈ N,m ≤ n− 2s + 2.

Proof. This can be again proved by the induction in s. For s = 1 we get the well
known identity

n∑

k=m

1

k(k + 1)
=

n−m + 1

(n + 1)m
.

Denote the LHS of (1.16) by Xs. To carry out the induction step from s − 1 to
s, with s > 1, we apply the induction hypothesis to the summation in the indices
k2 . . . ks and find that (when writing k instead of k1 and kj−1 instead of kj)

Xs =
n−2s+2∑

k=m

1

k(k + 1)

n−2s+4∑

k1=k+2

· · ·
n∑

ks−1=ks−2+2

1

k1(k1 + 1)k2(k2 + 1) . . . ks−1(ks−1 + 1)

IH
=

n−2s+2∑

k=m

(n− k − 2s + 3)(n− k − 2s + 4) . . . (n− k − s + 1)

(s− 1)!(n− s + 3) . . . (n + 1)k(k + 1)(k + 2) . . . (k + s)
.

To conclude the proof it suffices to apply identity (1.15), with n being replaced by
n− 2s + 2, to the RHS in (1.15). Then we get

Xs =
(n− 2s−m + 3)(n− 2s−m + 4) . . . (n− s−m + 2)

(s− 1)!(n− s + 3) . . . (n + 1)s(n− s + 2)m(m + 1) . . . (m + s− 1)

=
(n− 2s−m + 3)(n− 2s−m + 4) . . . (n− s−m + 2)

s!m(m + 1) . . . (m + s− 1)(n− s + 2) . . . (n + 1)
= RHS.
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Corollary 15. It holds

F

(
w

m
,

w

m + 1
, . . . ,

w

n

)
=

(m− 1)!

n!

[n−m+1
2

]∑
s=0

(−1)s (n− s)!(n−m− s + 1)!

s!(m + s− 1)!(n−m− 2s + 1)!
w2s

(1.17)
for all m,n ∈ N,m ≤ n.

Proof. Using the definition of the function F we have

F

(
w

m
,

w

m + 1
, . . . ,

w

n

)
=

= 1 +
∞∑

s=1

(−1)s

n−2s+1∑

k1=m

n−2s+3∑

k2=k1+2

· · ·
n−1∑

ks=ks−1+2

w2s

k1(k1 + 1)k2(k2 + 1) . . . ks(ks + 1)
.

Now observe that s is restricted by the inequality 2s ≤ n−m + 1 and use identity
(1.16) with n replaced by n− 1.Then

F

(
w

m
,

w

m + 1
, . . . ,

w

n

)
=

(m− 1)!

n!

[n−m+1
2

]∑
s=0

(−1)s (n− s)!(n−m− s + 1)!

s!(m + s− 1)!(n−m− 2s + 1)!
w2s.

1.4 Asymptotic Properties of F(w
m, w

m+1, . . . ,
w
n )

In this section we will investigate an asymptotic behaviour of the function
F

(
w
m

, w
m+1

, . . . , w
n

)
for w small. There appears a relation between the function F and

Bessel function of the first and second kind.

Remark 16. The Bessel function of the first kind Jm(z) and the second kind Yn(z)
arises a lot in this section. Their series expansions are (found in [1] 9.1.10, 9.1.11):

Jm(z) =
(z

2

)m
∞∑

k=0

1

k!(m + k)!

(
−1

4
z2

)k

, (1.18)

Yn(z) = − 1

π

(z

2

)−n
n−1∑

k=0

(n− k − 1)!

k!

(
1

4
z2

)k

+
2

π
ln

(z

2

)
Jn(z) + O(zn) (1.19)

where m,n ∈ N0. Also generalized hypergeometric functions will be used. The Fpq

function has the series expansion

Fpq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑

k=0

(a1)k, . . . , (ap)k

(b1)k, . . . , (bq)k

zk

k!
(1.20)

where (c)k = c(c+1) . . . (c+ k− 1) is the Pochhammer symbol (found in [1] 15.1.1).
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1.4.1 Case m = 1

Proposition 17. It holds

F
(
w,

w

2
, . . . ,

w

n

)
= − π

n!
wn+1J0(2w)Yn+1(2w) + O(w2n+2 ln w), (1.21)

where n ∈ N.

Proof. It holds

F23

(
a, a +

1

2
; d, 2a, 2a− d + 1; z

)
= F01

(
d;

z

4

)
F01

(
2a− d + 1;

z

4

)
. (1.22)

This identity can be found in http://functions.wolfram.com/07.26.03.6005.01 (or it
can be obtained by combining identity (2.2.2.12) from [2] with the identity stated
below). Next, by using the identity ([1] 9.1.69)

F01

(
ν + 1;−1

4
z2

)
= Jν(z)Γ(ν + 1)

(z

2

)−ν

we get

F23

(
−µ

2
,−µ

2
+

1

2
; 1,−µ,−µ;−4w2

)
= J0(2w)F01(−µ;−w2)

where a = −µ
2
, d = 1, z = −4w2. By using the series expansion (1.20) and (1.18)

one can write the last identity as

∞∑

k=0

(1
2
− µ

2
)k(−µ

2
)k

(1)k(−µ)k(−µ)k

(−1)k (2w)2k

k!
=

∞∑
s=0

s∑

l=0

(−1)s

(−µ)ll![(s− l)!]2
w2s (µ /∈ N).

Next, take into consideration only terms with w2j, j = 0, 1, . . . , n

n∑

k=0

(1
2
− µ

2
)k(−µ

2
)k

(1)k(−µ)k(−µ)k

(−1)k (2w)2k

k!
=

n∑
s=0

s∑

l=0

(−1)s

(−µ)ll![(s− l)!]2
w2s

and make a limit µ → n

n∑

k=0

(1
2
− n

2
)k(−n

2
)k

(1)k(−n)k(−n)k

(−1)k (2w)2k

k!
=

n∑
s=0

s∑

l=0

(−1)s

(−n)ll![(s− l)!]2
w2s.

The LHS of this expression can be further adjusted, so

LHS ≡
n∑

k=0

(1
2
− n

2
)k(−n

2
)k

(1)k(−n)k(−n)k

(−1)k (2w)2k

k!
=

1

n!

[n
2
]∑

s=0

(−1)s

(
(n− s)!

s!

)2
w2s

(n− 2s)!

= F
(
w,

w

2
, . . . ,

w

n

)
.
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The last equality holds due to Corollary 15 with m = 1. Thus, we have

F
(
w,

w

2
, . . . ,

w

n

)
=

n∑
s=0

s∑

l=0

(−1)s

(−n)ll![(s− l)!]2
w2s

=
1

n!

n∑
s=0

(
s∑

l=0

(−1)l(n− l)!

l![(s− l)!]2

)
(−1)sw2s.

Next, consider the RHS in the statement of the proposition. Taking into account
the series expansion of Bessel functions (1.18) and (1.19) one arrives at the following
expression

− π

n!
wn+1J0(2w)Yn+1(2w) =

1

n!

n∑
s=0

s∑

l=0

(n− l)!

l!

(−1)s−l

[(s− l)!]2
w2s + O(w2n+2 ln w)

and the statement is verified.

1.4.2 General Case m ∈ N
In this section we will generalize the procedure used in the previous special case
with m = 1.

Proposition 18. It holds

F

(
w

m
,

w

m + 1
, . . . ,

w

n

)
= −π

(m− 1)!

n!
wn−m+2Jm−1(2w)Yn+1(2w) + O(w2n−2m+4)

(1.23)
for all m,n ∈ N, 2 ≤ m ≤ n.

Proof. Investigate the following generalized hypergeometric function (observe that
the index k is restricted (k ≤ [

n−m+1
2

]
) due to the nominator of the expression)

F23

(
m− 1− n

2
,
m− n

2
; m,m− 1− n,−n;−4w2

)

=
∞∑

k=0

(
m−1−n

2

)
k

(
m−n

2

)
k

(m)k(m− 1− n)k(−n)k

(−4w2)k

k!

=

[n−m+1
2 ]∑

k=0

(−1)k(n−m + 1)(n−m) . . . (n−m + 2− 2k)

m. . . (m + k − 1)(n−m + 1) . . . (n−m + 2− k)n . . . (n + 1− k)

w2k

k!

=
(m− 1)!

n!

[n−m+1
2 ]∑

k=0

(−1)k (n−m + 1− k)!(n− k)!

(n−m + 1− 2k)!(m + k − 1)!

w2k

k!

= F

(
w

m
,

w

m + 1
, . . . ,

w

n

)
.
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The last equality holds due to Corollary 15. By using identity (1.22) with d = m,
a = m−1−µ

2
and z = −4w2 we get

F23

(
m− 1− µ

2
,
m− µ

2
; m,m− 1− µ,−µ;−4w2

)
= F01(m;−w2)F01(−µ;−w2).

The parameter µ is near n but µ is not an integer. Then, by using expansions of
F23 and F01 (see 1.20), restricting both sides of the last equation such that there
remains only terms with w2j, j = 0, . . . , n−m + 1 and making a limit µ → n (very
similar procedure was made in the proof of Proposition 17) one easily arrives at the
expression

F

(
w

m
,

w

m + 1
, . . . ,

w

n

)
=

n−m+1∑
s=0

s∑

l=0

1

(m)s−l(−n)l

(−1)s

l!(s− l)!
w2s

=
(m− 1)!

n!

n−m+1∑
s=0

s∑

l=0

(−1)s−l (n− l)!

l!(s− l)!(m + s− l − 1)!
w2s.

(1.24)

By using (1.18) and (1.19) again, we find the asymptotic expansion of the Bessel
functions on the RHS in the statement

−πwn−m+2Jm−1(2w)Yn+1(2w)

=
∞∑

k=0

(−1)k

k!(m− 1 + k)!
w2k

(
n∑

l=0

(n− l)!

l!
w2k + O(w2n+2 ln w)

)

=
n∑

l=0

∞∑

k=0

(−1)k

k!(m− 1 + k)!

(n− l)!

l!
w2(k+l) + O(w2n+2 ln w)

=
n∑

l=0

∞∑

s=l

(−1)s−l

(s− l)!(m− 1 + s− l)!

(n− l)!

l!
w2s + O(w2n+2 ln w)

=
∞∑

s=0

s∑

l=0

(−1)s−l(n− l)!

l!(s− l)!(m− 1 + s− l)!
w2s + O(w2n+2 ln w)

=
n−m+1∑

s=0

s∑

l=0

(−1)s−l (n− l)!

l!(s− l)!(m− 1 + s− l)!
w2s + O(w2n−2m+4). (1.25)

Finally, expression (1.24) together with the last expansion (1.25) prove the state-
ment.

Remark 19. One can see from the proof of Proposition 18 that if we were more
precise in expression (1.25) we would obtain a more precise asymptotic expansion
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for the function F
(

w
m

, w
m+1

, . . . , w
n

)
. If we do this we get

n!

(m− 1)!
F

(
w

m
,

w

m + 1
, . . . ,

w

n

)
= −πwn−m+2Jm−1(2w)Yn+1(2w)

−
n∑

s=n−m+2

s∑

l=0

(−1)s−l (n− l)!

l!(s− l)!(m− 1 + s− l)!
w2s + O(w2n+2 ln w)

(1.26)

where 1 ≤ m ≤ n, m,n ∈ N.

Lemma 20. It holds ∞∑

k=n

(
k

n

)
xk−n =

1

(1− x)n+1
(1.27)

for all x ∈ R, |x| < 1 and all n ∈ N0.

Proof. To prove the statement we will proceed by a straightforward computation

∞∑

k=n

(
k

n

)
xk−n =

∞∑

k=0

(
n + k

n

)
xk =

1

n!

∞∑

k=0

(n + k)(n + k − 1) . . . (k + 1)xk

=
1

n!

dn

dxn

( ∞∑

k=0

xk

)
=

1

n!

dn

dxn

(
1

1− x

)
=

1

(1− x)n+1
.

Since |x| < 1 the sum
∑∞

k=0

(
n+k

n

)
xk converges and the change of order of the

derivation dn

dxn and the sum
∑∞

k=0 xk is correct.

Lemma 21. It holds
s∑

l=0

(−1)l

(
s + m

l + m

)(
n + l

n

)
=

(
m + s− n− 1

s

)
(1.28)

for all m,n, s ∈ N0, m > n.

Proof. We will investigate the power serie

∞∑
s=0

s∑

l=0

(−1)l

(
s + m

l + m

)(
n + l

n

)
xs

where x ∈ R, |x| < 1
2
. Since

∞∑
s=0

s∑

l=0

(−1)l

(
s + m

l + m

)(
n + l

n

)
xs =

∞∑

l=0

(−1)l

(
n + l

n

)
xl

∞∑

s=l

(
s + m

l + m

)
xs−l,

we can apply Lemma 20 to the inner sum and we get

∞∑
s=0

s∑

l=0

(−1)l

(
s + m

l + m

)(
n + l

n

)
xs =

∞∑

l=0

(−1)l

(
n + l

n

)
xl

(1− x)m+l+1
.
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Then we can use Lemma 20 again and we arrive at the expression
∞∑

s=0

s∑

l=0

(−1)l

(
s + m

l + m

)(
n + l

n

)
xs =

1

(1− x)m+1

1

(1 + x
1−x

)n+1
=

1

(1− x)m−n
.

Note that if |x| < 1
2

then | x
1−x

| < 1. Thus

s∑

l=0

(−1)l

(
s + m

l + m

)(
n + l

n

)
=

1

s!

ds

dxs
(1− x)n−m |x=0

=
(−1)s

s!
(n−m)(n−m− 1) . . . (n−m− s + 1) =

(
m + s− n− 1

s

)
.

Now we can obtain a more precise asymptotic expansion for the function
F

(
w
m

, w
m+1

, . . . , w
n

)
.

Proposition 22. It holds

n!

(m− 1)!
F

(
w

m
,

w

m + 1
, . . . ,

w

n

)
= −πwn−m+2Jm−1(2w)Yn+1(2w)

−
m−2∑
s=0

s!(m + n− 2s− 2)!

(n + m− s− 1)!(m− s− 2)!(n− s)!
w2n−2s + O(w2n+2 ln w)

(1.29)

for all m,n ∈ N, 1 ≤ m ≤ n.

Proof. By applying Lemma 21 to the inner sum in the second term on the RHS in
equation (1.26) we get

s∑

l=0

(−1)s−l (n− l)!

l!(s− l)!(m− 1 + s− l)!
=

s∑

l=0

(−1)l (n− s + l)!

l!(s− l)!(m− 1 + l)!

=
(n− s)!

(s + m− 1)!

s∑

l=0

(−1)l

(
s + m− 1

l + m− 1

)(
n− s + l

n− s

)
=

(n− s)!

(s + m− 1)!

(
m + 2s− n− 2

s

)
.

Thus we have

n!

(m− 1)!
F

(
w

m
,

w

m + 1
, . . . ,

w

n

)
= −πwn−m+2Jm−1(2w)Yn+1(2w)

−
n∑

s=n−m+2

(n− s)!

(s + m− 1)!

(
m + 2s− n− 2

s

)
w2s + O(w2n+2 ln w)

= −πwn−m+2Jm−1(2w)Yn+1(2w)

−
m−2∑
s=0

s!(m + n− 2s− 2)!

(n + m− s− 1)!(m− s− 2)!(n− s)!
w2n−2s + O(w2n+2 ln w).
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Chapter 2

The Jacobi Matrix and Particular
Values of χred

In this chapter we will introduce a Jacobi matrix which spectral properties we are
interesting in.

2.1 A Jacobi Matrix of a Special Type

In general a Jacobi matrix is a tridiagonal complex matrix but we will restrict ourself
to Jacobi matrices of a form

S :=




−λd w 0
w −λd−1 w

. . . . . . . . .

w −λ1 w
w 0 w

w λ1 w
. . . . . . . . .

w λd−1 w
w λd




(2.1)

where λk > 0 for all k = 1, . . . d, w ∈ R \ {0} and d ∈ N. Next let us denote a
characteristic function of the matrix S as

χS(z) := det(S − zI). (2.2)

Since S is a Hermitian matrix the spectrum of S is real. Let us summarize other
spectral properties of the matrix S (worked out in detail in [3] chap.4):

1. The spectrum of the matrix S is simple (since if we know an element of an
eigenvector of S we can compute others recursively).
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2. The characteristic function χS(z) is an odd polynomial of degree 2d + 1. It
follows that 0 is always an eigenvalue of S. Vector a = (α−d, α−d+1, . . . , αd)
where α−k = (−1)kαk and

αk = (−1)k wk

∏k
j=1 λj

F(wTkκ) k = 0, 1, . . . , d (2.3)

with

κ = (
1

λ1

,
1

λ2

, . . . ,
1

λd

, 0, 0, 0, . . . )

is an eigenvector with eigenvalue 0 of the matrix S.

3. A relation between the function F and the characteristic function χS

(−1)d+1 1
z
χS(z) =

(
d∏

k=1

(λ2
k − z2)

)
F

(
w

λ1 − z
, . . . ,

w

λd − z

)
F

(
w

λ1 + z
, . . . ,

w

λd + z

)

+ 2
d∑

j=1

w2j




d∏

k=j+1

(λ2
k − z2)


F

(
w

λj+1 − z
, . . . ,

w

λd − z

)
F

(
w

λj+1 + z
, . . . ,

w

λd + z

)

(2.4)

holds.

Let us consider a special case of the matrix S with λk = k and let us denote it
as K, i.e.,

K :=




−d w
w −d + 1 w

. . . . . . . . .

w −1 w
w 0 w

w 1 w
. . . . . . . . .

w d− 1 w
w d




(2.5)

and
χK(z) := det(K − zI). (2.6)

Let us set

χred(z) :=
(−1)d+1

z
χK(z). (2.7)

The function χred(z) will be called the characteristic reduced function.

Remark 23. Note that the characteristic reduced function is an even polynomial
in the variable z, i.e.,

χred(−z) = χred(z) for all z ∈ C. (2.8)
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2.2 Particular Values of the Characteristic Re-

duced Function

One of main goals of this work is to find an explicit formula for characteristic function
of K. The formula is derived in chapter 4 but it would not be found without
knowledge of particular values χred(n) where n ∈ {0, 1, . . . , d}.
By substituteing λj by j into (2.4) we get an expression

χred(z) =

(
d∏

k=1

(k2 − z2)

)
F

(
w

1− z
, . . . ,

w

d− z

)
F

(
w

1 + z
, . . . ,

w

d + z

)

+ 2
d∑

j=1

w2j

(
d∏

k=j+1

(k2 − z2)

)
F

(
w

j + 1− z
, . . . ,

w

d− z

)
F

(
w

j + 1 + z
, . . . ,

w

d + z

)
.

(2.9)

2.2.1 Case n = 0

First, the case with n = 0 is to be treated with the aid of expression (2.9) and
asymptotic expansions of the function F derived in section 1.4. Formula (2.9) with
z = 0 gives

χred(0) = (d!)2F
(
w,

w

2
, . . . ,

w

d

)2

+ 2
d∑

j=1

w2j

(
d!

j!

)2

F

(
w

j + 1
,

w

j + 2
, . . . ,

w

d

)2

.

(2.10)
Next, we use the asymptotic expression for the function F (1.21) and (1.23) and we
arrive at the expression

χred(0) = π2w2d+2Y 2
d+1(2w)

(
J2

0 (2w) + 2
d∑

j=1

J2
j (2w)

)
+ O(w2d+2 ln w).

To proceed further we use the identity

J2
0 (z) + 2

∞∑
j=1

J2
j (z) = 1

which can be found in [1] (9.1.76). Then it holds

J2
0 (2w) + 2

d∑
j=1

J2w
j (z) = 1 + O(w2d+2)

and we have
χred(0) = π2w2d+2Y 2

d+1(2w) + O(w2d+2 ln w).
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To continue we take into consideration the asymptotic expansion of the Bessel func-
tion Y (1.19). It leads us to an expression

χred(0) =

(
d∑

k=0

(d− k)!

k!
w2k

)2

+ O(w2d+2 ln w).

Since there is a polynomial in w of order 2d on the LHS the Landau symbol on the
RHS will be omitted (only terms with w2j, 0 ≤ j ≤ d remain) and we can write

χred(0) =
d∑

s=0

s∑

k=0

(d− k)!(d− s + k)!

k!(s− k)!
w2s. (2.11)

Lemma 24. It holds

m∑

k=0

(
s + k

s

)(
p + m− k

p

)
=

(
s + p + m + 1

s + p + 1

)

for m, p, s ∈ N0.

Proof. Let us define a function

fs(z) =
∞∑

k=0

(
s + k

s

)
zk

for all z ∈ C, |z| < 1. Since

(
s + k

k

)
=

1

k!
(s + k) . . . (s + 1) =

(−1)k

k!
(−s− 1) . . . (−s− k) = (−1)k

(−s− 1

k

)

we have

fs(z) =
∞∑

k=0

(
s + k

k

)
zk =

∞∑

k=0

(−s− 1

k

)
(−z)k = (1− z)−s−1.

It follows that the identity

fs(z)fp(z) = fs+p+1(z)

holds for all z, |z| < 1. Then by using the previous identity we get

∞∑
m=0

(
s + p + 1 + m

s + p + 1

)
zm ≡ fs+p+1(z) = fs(z)fp(z) =

∞∑

k=0

∞∑

l=0

(
s + k

s

)(
p + l

p

)
zk+l

=
∞∑

m=0

(
m∑

k=0

(
s + k

s

)(
p + m− k

p

))
zm

which proves the statement.
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Now we can write the final expression for χred(0).

Corollary 25. It holds

χred(0) =
d∑

s=0

[(d− s)!]2(2d− s + 1)!

s!(2d− 2s + 1)!
w2s. (2.12)

Proof. To verify the statement it suffices to compute the inner sum in expression
(2.11). Thus

s∑

k=0

(d− k)!(d− s + k)!

k!(s− k)!
= [(d− s)!]2

s∑

k=0

(d− k)!

(d− s)!(s− k)!

(d− s + k)!

(d− s)!k!

= [(d− s)!]2
s∑

k=0

(
d− k

d− s

)(
d− s + k

d− s

)
.

The last sum can be simplify with the aid of Lemma 24. Writing s instead of m,
(d− s) instead of s and (d− s) instead of p, Lemma 24 follows that the identity

s∑

k=0

(
d− k

d− s

)(
d− s + k

d− s

)
=

(
2d− s + 1

2d− 2s + 1

)
=

(2d− s + 1)!

s!(2d− 2s + 1)!

holds and the statement is proved.

2.2.2 Case n ∈ {1, 2, . . . , d}
Proposition 26. If n ∈ {1, 2, . . . , d} then an identity for particular value of char-
acteristic reduced function

χred(n) =
1

n

n−1∑

l=0

(−1)l

(
n + l

2l + 1

)
(d + l + 1)!

(d− l)!
w2d−2l (2.13)

holds.

The verification of the identity for a general n ∈ {1, 2, . . . , d} is not as straight-
forward as in the special case when n = 0. The identity will be proved by using
another method in chapter 4 (the method will be purely algebraic and we will not
need to use the asymptotic properties of F).
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Chapter 3

New Symbols Derived from the
Function F

With the aid of the function F we will define symbols G and J depending on two
integers. To satisfy a tree term recurrent rule, symbol J will be extended to the
whole plain Z × Z. Further, several algebraic properties of J will be discussed and
some formulas will be found. The usefulness of the symbol J will follow in the next
chapter while deriving a formula for characteristic reduced function.

3.1 Symbol G

Let us denote

G(m,n) := F

(
w

m
,

w

m + 1
, . . .

w

n

)

for m,n ∈ N,m ≤ n + 1. Notice that G(n + 1, n) = F(0) = 1. Then the recurrent
relations (1.2) and (1.4) have the form

G(m,n) = G(m + 1, n)− w2

m(m + 1)
G(m + 2, n) (3.1)

where m,n ∈ N,m < n and

G(m,n) = G(m,n− 1)− w2

n(n− 1)
G(m,n− 2) (3.2)

where m,n ∈ N,m < n, n > 2.
Next, with the aid of the first recurrent relation, we define function G(m,n) also for
m,n ∈ N,m > n + 1. To satisfy identity (3.1) one must set

G(n + 2, n) := 0

and

G(m,n) := −(m− 1)!(m− 2)!

n!(n + 1)!
w−2(m−n)+4G(n + 2,m− 2)

for m > n + 2.
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Remark 27. Consequently, it is easy to see that the relation

G(m,n) = −(m− 1)!(m− 2)!

n!(n + 1)!
w−2(m−n)+4G(n + 2,m− 2) (3.3)

holds for all m, n ∈ N, m > 2.

Remark 28. In this and the following sections we will usually use algebraic iden-
tities like (3.1) and (3.2) while adjusting a term. In that case we will note, what

relation we will use, above the equal sign. For example, an equal sign
4.27
= means

that we use a relation (4.27) to adjust the LHS of an equation.

Let us verify the validity of the recurrent relation (3.1) for m > n + 2:

RHS ≡ G(m + 1, n)− w2

m(m + 1)
G(m + 2, n)

3.3
= −m!(m− 1)!

n!(n + 1)!
w−2(m−n)+2 [G(n + 2,m− 1)−G(n + 2,m)]

3.2
= −(m− 1)!(m− 2)!

n!(n + 1)!
w−2(m−n)+4G(n + 2,m− 2)

3.3
= G(m,n) ≡ LHS.

Thus the recurrent relation

G(m,n) = G(m + 1, n)− w2

m(m + 1)
G(m + 2, n) (3.4)

holds for all m, n ∈ N. Similar situation occurs to the second relation.

Proposition 29. The recurrent relation

G(m,n) = G(m,n− 1)− w2

n(n− 1)
G(m,n− 2) (3.5)

holds for all m, n ∈ N, n > 2.

Proof. The case m < n is treated in (3.2). Let m ≥ n then

RHS
3.3
= −(m− 1)!(m− 2)!

(n− 1)!n!
w−2(m−n)+2 [G(n + 1,m− 2)−G(n,m− 2)]

3.4
= −(m− 1)!(m− 2)!

n!(n + 1)!
w−2(m−n)+4G(n + 2,m− 2)

3.3
= LHS.
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3.2 Symbol J

Definition 30. Let us denote

J(m,n) :=
(n− 1)!

m!
wm−n+2G(m + 1, n− 1) (3.6)

for all m,n ∈ N0, n ≥ 2.

Remark 31. Then the recurrent relations (3.4) and (3.5) have the form

J(m− 1, n) =
m

w
J(m, n)− J(m + 1, n) (3.7)

where m ≥ 1, n ≥ 2 and

J(m,n + 1) =
n

w
J(m,n)− J(m,n− 1) (3.8)

where m ≥ 0, n ≥ 3.

Remark 32. Identity (3.3) can be now rewrite as

J(m,n) = −J(n,m) (3.9)

where m ≥ 2, n ≥ 2.

Recurrent relation (3.7) allows us to define the symbol J(m,n) even for m ∈ Z.
Let us define

J(−k, n) := (−1)kJ(k, n)

for k ∈ N and n ≥ 2.

Remark 33. It is easy to see that the identity

J(−k, n) = (−1)kJ(k, n) (3.10)

holds for all k ∈ Z and n ≥ 2.

Proposition 34. The recurrent relation

J(m− 1, n) =
m

w
J(m, n)− J(m + 1, n) (3.11)

holds for all m ∈ Z and n ≥ 2.

Proof. Bearing in mind validity of relation (3.7) it suffices to verify the statement
for m ≤ 0. Case m = 0 is nothing but definition relation (3.10) with k = 1. Let
m ∈ N then

RHS ≡ −m

w
J(−m,n)− J(−m + 1, n)

3.10
= (−1)m+1(

m

w
J(m, n)− J(m− 1, n))

3.7
= (−1)m+1J(m + 1, n)

3.10
= J(−m− 1, n) ≡ LHS.
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Proposition 35. The recurrent relation

J(m,n + 1) =
n

w
J(m,n)− J(m,n− 1) (3.12)

holds for all m ∈ Z and n > 2.

Proof. Considering validity of relation (3.8) it suffices to prove the statement for
m < 0. Let m > 0 then

RHS ≡ n

w
J(−m,n)− J(−m,n− 1)

3.10
= (−1)m

( n

w
J(m,n)− J(m,n− 1)

)

3.8
= (−1)mJ(m,n + 1)

3.10
= J(−m,n + 1) ≡ LHS.

Finally, with the aid of the previous recurrent identity (3.12) we can extend the
symbol J(m,n) even for n < 2. We can do that by putting

J(m,−k) := (−1)kJ(m, k) (3.13)

for m ∈ Z and k ≥ 2. Unfortunately relation (3.13) do not define the symbol J(m, k)
for k = −1, 0, 1. To keep the validity of the recurrent relation (which we prefer) we
have to set

J(m, 1) = −J(m,−1) :=
2

w
J(m, 2)− J(m, 3), (3.14)

J(m, 0) :=
1

w
J(m, 1)− J(m, 2). (3.15)

Thus the symbol J(m,n) is now define for all (m,n) ∈ Z× Z.

Remark 36. The identity

J(m,−k) := (−1)kJ(m, k) (3.16)

holds for all m, k ∈ Z.

Proposition 37. The recurrent relations

J(m− 1, n) =
m

w
J(m, n)− J(m + 1, n) (3.17)

and
J(m,n + 1) =

n

w
J(m,n)− J(m,n− 1) (3.18)

holds for all m, n ∈ Z.
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Proof. 1) It suffices to show the validity of the first relation for m ∈ Z and n < 2.
The other cases have already been discussed before (see (3.11)). Let n ≥ 2 then

RHS ≡ m

w
J(m,−n)− J(m + 1,−n)

3.16
= (−1)n

(m

w
J(m, n)− J(m + 1, n)

)

3.11
= (−1)nJ(m− 1, n)

3.16
= J(m− 1,−n) ≡ LHS.

2) Similarly, to prove the validity of the second recurrent relation we can restrict
ourself to cases when m ∈ Z and n < 0 (due to (3.12) and definition relations (3.14)
and (3.15)). If n = −1 then

RHS ≡ − 1

w
J(m,−1)− J(m,−2)

3.16
=

1

w
J(m, 1)− J(m, 2)

3.15
= J(m, 0) ≡ LHS.

If n = −2 then

RHS ≡ − 2

w
J(m,−2)− J(m,−3)

3.16
= − 2

w
J(m, 2) + J(m, 3)

3.14
= J(m,−1) ≡ LHS.

Finally, if n ≥ 3 then relation (3.12) can be used and we can write

RHS ≡ −n

w
J(m,−n)− J(m,−n− 1)

3.16
= (−1)n+1

( n

w
J(m,n) + J(m,n + 1)

)

3.12
= (−1)n+1J(m, n− 1)

3.16
= J(m,−n + 1) ≡ LHS.

Proposition 38. The identity

J(−m,n) = (−1)mJ(m,n) (3.19)

holds for all m, n ∈ Z.

Proof. Considering Remark 33 it suffices to prove the identity for m ∈ Z and n < 2.
Let m ∈ Z and n > −2. We can write

J(−m,−1)
3.14
= −J(−m, 1)

3.18
= − 2

w
J(−m, 2) + J(−m, 3)

3.10
=

3.10
= (−1)m+1

(
2

w
J(m, 2)− J(m, 3)

)
3.18
= (−1)m+1J(m, 1)

3.14
= (−1)mJ(m,−1)

which proves the cases when n = ±1. The case when n = 0 is to be treated similarly

J(−m, 0)
3.15
=

1

w
J(−m, 1) + J(−m, 2) = (−1)m

(
1

w
J(m, 1)− J(m, 2)

)

3.15
= (−1)mJ(m, 0).

Finally, let n ≥ 2 then

J(−m,−n)
3.16
= (−1)nJ(−m,n)

3.10
= (−1)m+nJ(m,n)

3.16
= (−1)mJ(m,−n).
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Proposition 39. The identity

J(m,n) = −J(n,m) (3.20)

holds for all m, n ∈ Z.

Proof. The case m, n ≥ 2 have already been discussed in Remark 32. Let m,n ∈ Z
and m,n > −2. First we must check those cases when −1 ≤ −m,−n ≤ 1. Since
identities (3.16) and (3.19) holds we can restrict ourself to cases when (m,n) ∈
{(0, 0), (1, 0), (0, 1), (1, 1)}. By using the definition of the symbol J we get

J(0, 1) = w, J(1, 0) = −w

and
J(0, 0) = J(1, 1) = 0.

Thus the proven identity holds for −1 ≤ m, n ≤ 1. Let be m,n ≥ 2 then

J(−m,−n)
3.16,3.19

= (−1)m+nJ(m,n)
3.9
= (−1)m+n+1J(n,m)

3.16,3.19
= −J(−n,−m).

3.3 A Formula for the Symbol J

Proposition 40. It holds

J(n− k, n) =

[ k+1
2 ]∑

s=1

(−1)s+1

(
n− s

k − 2s + 1

)
(k − s)!

(s− 1)!
w2s−k (3.21)

for all n ∈ Z, k ∈ N0 and

J(n + k, n) =

[ k+1
2 ]∑

s=1

(−1)s

(
k + n− s

k − 2s + 1

)
(k − s)!

(s− 1)!
w2s−k (3.22)

for all n ∈ Z, k ∈ N0.

Proof. 1)At the beginning let us proof the first identity. The proof is split into 3
parts.
i)Let n ≥ 2 and 0 ≤ k ≤ n. By using the formula for the function F

(
w
m

, w
m+1

, . . . , w
n

) ≡
G(m,n) from Corollary 15 (note that the formula in the Corollary 15 holds also for
m = n+1 and m = n+2) and the definition of the function J (5.6) we easily arrive
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at an expression

J(n− k, n) =
(n− 1)!

(n− k)!
w−k+2G(n− k + 1, n− 1)

=

[ k−1
2 ]∑

s=0

(−1)s (n− 1− s)!(k − s− 1)!

s!(n− k + s)!(k − 2s− 1)!
w2s−k+2

=

[ k+1
2 ]∑

s=1

(−1)s+1 (n− s)!(k − s)!

(s− 1)!(n− k + s− 1)!(k − 2s + 1)!
w2s−k

=

[ k+1
2 ]∑

s=1

(−1)s+1

(
n− s

k − 2s + 1

)
(k − s)!

(s− 1)!
w2s−k.

Thus we have verified the validity of formula (3.21) for n ≥ 2 and 0 ≤ k ≤ n.
ii)In the second step we will verify formula (3.21) for all n ≥ 2, k ≥ 0. We will
proceed this by mathematical induction in k. Bearing in mind step (i), only the
induction step n ≤ k → k + 1 is to be treated (n ∈ N is fixed)

J(n− (k + 1), n)
3.16
=

n− k

w
J(n− k, n)− J(n− k + 1, n)

IH
= (n− k)

[ k+1
2 ]∑

s=1

(−1)s+1 (n− s)!(k − s)!

(s− 1)!(n− k + s− 1)!(k − 2s + 1)!
w2s−k−1

−
[ k
2 ]∑

s=1

(−1)s+1 (n− s)!(k − 1− s)!

(s− 1)!(n− k + s)!(k − 2s)!
w2s−k+1

= (n− k)

[ k+1
2 ]∑

s=1

(−1)s+1 (n− s)!(k − s)!

(s− 1)!(n− k + s− 1)!(k − 2s + 1)!
w2s−k−1

+

[ k
2 ]+1∑
s=2

(−1)s+1 (n− s + 1)!(k − s)!

(s− 2)!(n− k + s− 1)!(k − 2s + 2)!
w2s−k−1.

To proceed further, one must realize that the upper bound of the first sum can be
changed to

[
k
2

]
+ 1 because if k is odd then

[
k+1
2

]
=

[
k
2

]
+ 1 and if k is even then[

k+1
2

]
= k

2
but the added term (s = k

2
+ 1) is 0 due to the term 1

(−1)!
which must be

set to 0. For a similar reason the lower bound of the second sum can be changed to
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1. Then we have an expression

J(n− (k + 1), n) = (n− k)

[ k
2 ]+1∑
s=1

(−1)s+1 (n− s)!(k − s)!

(s− 1)!(n− k + s− 1)!(k − 2s + 1)!
w2s−k−1

+

[ k
2 ]+1∑
s=1

(−1)s+1 (n− s + 1)!(k − s)!

(s− 2)!(n− k + s− 1)!(k − 2s + 2)!
w2s−k−1

=

[ k+2
2 ]∑

s=1

(−1)s (n− s)!(k − s + 1)!

(s− 1)!(n− k + s− 2)!(k − 2s + 2)!
w2s−k−1

which was to be shown.
iii)Finally we will verify the validity of formula (3.21) for all k ≥ 0, n ∈ Z. Again we
will proceed by mathematical induction in n.Considering step (ii), only the induction
step 2 ≥ n → n− 1 is to be treated

J(n− 1− k, n− 1)
3.17
=

n

w
J(n− (k + 1), n)− J(n + 1− (k + 2), n + 1)

IH
=

n

w

[ k+2
2 ]∑

s=1

(−1)s+1 (n− s)!(k − s + 1)!

(s− 1)!(n− k + s− 2)!(k − 2s + 2)!
w2s−k−1

−
[ k+3

2 ]∑
s=1

(−1)s+1 (n + 1− s)!(k − s + 2)!

(s− 1)!(n− k + s− 2)!(k − 2s + 3)!
w2s−k−2. (3.23)

We can change the upper bound of the first sum to
[

k+3
2

]
because of similar reasons

as discussed in step (ii). Next note that the first term of the first sum (s = 1)
together with the first term of the second sum (s = 1) gives 0. Thus we have

J(n− 1− k, n− 1) = n

[ k+3
2 ]∑

s=2

(−1)s+1 (n− s)!(k − s + 1)!

(s− 1)!(n− k + s− 2)!(k − 2s + 2)!
w2s−k−2

−
[ k+3

2 ]∑
s=2

(−1)s+1 (n + 1− s)!(k − s + 2)!

(s− 1)!(n− k + s− 2)!(k − 2s + 3)!
w2s−k−2

= −n

[ k+1
2 ]∑

s=1

(−1)s+1 (n− s− 1)!(k − s)!

s!(n− k + s− 1)!(k − 2s)!
w2s−k

+

[ k+1
2 ]∑

s=1

(−1)s+1 (n− s)!(k − s + 1)!

s!(n− k + s− 1)!(k − 2s + 1)!
w2s−k

=

[ k+1
2 ]∑

s=1

(−1)s+1 (n− s− 1)!(k − s)!

(s− 1)!(n− k + s− 2)!(k − 2s + 1)!
w2s−k.
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Step (iii) concludes the proof of identity (3.21).
2)Since a binomial coefficient satisfies a relation

(−n

k

)
= (−1)k

(
n + k − 1

k

)

we can easily obtain the second identity from the first one

J(n + k, n)
3.16,3.19

= (−1)kJ(−n− k,−n) =

[ k+1
2 ]∑

s=1

(−1)k+s+1

( −n− s

k − 2s + 1

)
(k − s)!

(s− 1)!
w2s−k

=

[ k+1
2 ]∑

s=1

(−1)s

(
k + n− s

k − 2s + 1

)
(k − s)!

(s− 1)!
w2s−k.

Example 41. By using the previous results of the symbol J we can introduce some
special examples:

J(n, n) = J(−n, n) = 0,

J(n + 1, n) = −w,

J(n + 2, n) = −n− 1,

J(n + 3, n) = −(n + 1)(n + 2)

w
+ w,

J(n + 4, n) = −(n + 1)(n + 2)(n + 3)

w2
+ 2(n + 2),

J(n− 1, n) = w,

J(n− 2, n) = n− 1,

J(n− 3, n) =
(n− 1)(n− 2)

w
− w,

J(n− 4, n) =
(n− 1)(n− 2)(n− 3)

w2
− 2(n− 2),

where n ∈ Z.
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Chapter 4

The Characteristic Function and
the Resolvent of the Jacobi Matrix

In this chapter we will introduce a method, how to use the symbol J and its main
properties, to find the exact formula for χred(n) with n = 1, 2 . . . , d. The formula
have already been presented in Proposition 26, however, without a proof. Next, by
using the expression for particular values of χred we will be able to reconstruct the
whole reduced characteristic function χred(z), z ∈ C. Furthermore, we will derive
an equation for the resolvent operator of a Jacobi matrix under investigation. At
the end, some observations dealing with a localization of the spectrum will be sum-
marized.

Recall that K ∈ C2d+1×2d+1 is a complex Jacobi matrix of the form

K =




−d w
w −d + 1 w

. . . . . . . . .

w −1 w
w 0 w

w 1 w
. . . . . . . . .

w d− 1 w
w d




. (4.1)

For n, s ∈ Z, let us define a column vector xs,n ∈ C2d+1 as

xT
s,n := (J(d + s, n), J(d + s− 1, n), . . . , J(s, n), . . . , J(−d + s, n)) (4.2)

By putting −j + s instead of m into the recurrent relation (3.17) we get an identity

wJ(−j + s− 1, n) + (j − s)J(−j + s, n) + wJ(−j + s + 1, n) = 0

which holds for all j, n, s ∈ Z. Thus, we can write

wxj−1
s,n + (j − s)xj

s,n + wxj+1
s,n = 0 (4.3)
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for all n, s ∈ Z, j = −d, . . . , d, but we have to set x−d−1
s,n := J(d + s + 1, n) and

xd+1
s,n := J(−d + s− 1, n). Then it is easy to see the equation

(K − s)xs,n = −wJ(d + s + 1, n)e−d − wJ(−d + s− 1, n)ed (4.4)

holds for n, s ∈ Z and where (e−d, . . . , ed) is a standard canonical basis in C2d+1

(that is ek
j = δjk). Next, we set n = d + s + 1. Since J(d + s + 1, d + s + 1) = 0 (see

Example 41) we can eliminate the first term on the RHS in identity (4.4) and we
arrive at an expression

Kvs = svs − wJ(−d + s− 1, d + s + 1)ed (4.5)

where we denote vs := xs,d+s+1 for all s ∈ Z.

Remark 42. Since
J(−d− 1, d + 1) = 0

the vector v0 is the eigenvector of K for eigenvalue 0 which is easy to see from
relation (4.5) if we set s = 0.

Remark 43. One should mention that a similar procedure could be done by starting
from the second recurrent relation (3.18). An identity

wJ(m,−j + s− 1) + (j − s)J(m,−j + s) + wJ(m,−j + s + 1) = 0

holds for all j,m, s ∈ Z and similarly as in (4.3) we could write

wx̃j−1
s,m + (j − s)x̃j

s,m + wx̃j+1
s,m = 0

where
x̃T

s,m := (J(m, d + s), J(m, d + s− 1), . . . , J(m,−d + s)).

However, property (3.20) gives a relation

xs,n = −x̃s,n

and we would arrive at equation (4.4) again.

Lemma 44. Let n ∈ N and p is a polynomial of degree s ≤ n− 1. Then

n∑
j=0

(−1)j

(
n

j

)
p(j) = 0.

Proof. Since every polynomial of a degree s has a form p(z) =
∑s

j=0 αjz
j where

αj ∈ C, αs 6= 0 it is clear that it suffices to prove the identity

n∑
j=0

(−1)j

(
n

j

)
js = 0
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for all 0 ≤ s < n. The statement will be verified by mathematical induction in n.
Verification of the statement in the case with n = 1 is immediate. Let n ∈ N is fixed
and the equation

n∑
j=0

(−1)j

(
n

j

)
jr = 0

holds for all 0 ≤ r < n as the induction hypothesis. For s = 0 the statement follows
easily from the binomial theorem (with an arbitrary n ∈ N). Let 0 < s ≤ n then

n+1∑
j=0

(−1)j

(
n + 1

j

)
js = (n + 1)

n+1∑
j=1

(−1)j

(
n

j − 1

)
js−1

= −(n + 1)
n∑

j=0

(−1)j

(
n

j

)
(j + 1)s−1 = −(n + 1)

s−1∑

k=0

(
s− 1

k

) n∑
j=0

(−1)j

(
n

j

)
jk = 0

because, according to an induction hypothesis, the inner sums are all 0 and the
induction step is concluded.

Proposition 45. Let V ∈ C2d+1×2d+1 where

Vks := vk
s ≡ J(−k + s, d + s + 1), k, s ∈ (−d,−d + 1, . . . , d).

Then

det V =

∏2d
k=1 k!

w(d−1)(2d+1)
. (4.6)

Proof. Let us define a matrix W ∈ C2d+1×2d+1 such that

Wjk := (−1)j+d

(
k + d

j + d

)
.

Since Wjk = 0 for k < j we can easily compute the determinant of W

det W =
d∏

k=−d

Wkk =
d∏

k=−d

(−1)k+d.

Investigating matrix V W we get

(V W )kl =
d∑

s=−d

VksWsl =
d∑

s=−d

(−1)d+s

(
d + l

d + s

)
J(−k + s, d + s + 1)

=
2d∑

j=0

(−1)j

(
d + l

j

)
J(j + 1− (d + k + 1), j + 1).
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Since
(

d+l
j

)
= 0 for j > d + l we can change the upper bound of the sum to d + l.

Next, we apply formula (3.21) and get

(V W )kl =

=
d+l∑
j=0

(−1)j

(
d + l

j

) [ d+k+1
2 ]∑

t=1

(−1)t+1

(
j + 1− t

d + k − 2t + 2

)
(d + k + 1− t)!

(t− 1)!
w2t−d−k−1

=

[ d+k+1
2 ]∑

t=1

(−1)t+1 (d + k + 1− t)!

(t− 1)!
w2t−d−k−1

d+l∑
j=0

(−1)j

(
d + l

j

)(
j + 1− t

d + k − 2t + 2

)
.

Since
(

j+1−t
d+k−2t+2

)
is a polynomial in j of degree d + k − 2t + 2 Lemma 44 gives

d+l∑
j=0

(−1)j

(
d + l

j

)(
j + 1− t

d + k − 2t + 2

)
= 0

if k − l < 2(t− 1).
Let k < l then, with the aid of Lemma 44, we arrive at an equation

(V W )kl = 0.

For k = l the only nonzero term is the term with t = 1 and thus

(V W )kk = (d + k)!w−d−k+1

d+k∑
j=0

(−1)j

(
d + k

j

)(
j

d + k

)
= (−1)d+k(d + k)!w−d−k+1.

The last equation holds because
(

j
d+k

) 6= 0 only for j = d + k.
Finally, we can derive the determinant of the matrix V

det V =
det(V W )

det W
=

∏d
k=−d(V W )kk∏d
k=−d(W )kk

=

∏d
k=−d(−1)d+k(d + k)!w−d−k+1

∏d
k=−d(−1)d+k

=

∏2d
k=1 k!

w(d−1)(2d+1)
.

Corollary 46. A set of vectors ϑ := (v−d, v−d+1, . . . , vd) is a basis in C2d+1.

Proof. ϑ is basis in C2d+1 ⇔ matrix V is regular ⇔ det V ≡
Q2d

k=1 k!

w(d−1)(2d+1) 6= 0.

Next we would like to write matrix K in basis ϑ. To do that we must first express
vector ed in basis ϑ which is stated in the following lemma.
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Lemma 47. It holds

ed =
d∑

s=−d

(−1)d+s

(d + s)!(d− s)!
w2d−1vs (4.7)

where ed ∈ C2d+1, ek
d = δdk.

Proof. By adjusting the RHS of the statement we obtain the expression

d∑

s=−d

(−1)d+s

(d + s)!(d− s)!
w2d−1J(−k + s, d + s + 1)

3.21
=

d∑

s=−d

[ d+k
2 ]+1∑

l=1

(−1)l+d+s+1

(
d + s + 1− l

d + k + 2− 2l

)
(d + k + 1− l)!

(d + s)!(d− s)!(l − 1)!
w2l+d−k−2

=

[ d+k
2 ]∑

l=0

(−1)l (d + k − l)!

l!
w2l+d−k 1

(2d)!

2d∑
s=0

(−1)s

(
2d

s

)(
s− l

d + k − 2l

)
.

According to Lemma 44, the inner sum

2d∑
s=0

(−1)s

(
2d

s

)(
s− l

d + k − 2l

)
= 0

if k < d + 2l and this inequality holds for all k ∈ {−d, . . . , d− 1}. If k = d then the
inner sum is not zero only if l = 0, thus

d∑

s=−d

(−1)d+s

(d + s)!(d− s)!
w2d−1J(−d + s, d + s + 1) =

2d∑
s=0

(−1)s

(
2d

s

)(
s

2d

)
= 1.

Since
(

s
2d

)
= 0 for all s < 2d the last equality holds.

So for k ∈ {−d, . . . , d} we have verified validity of the equality

d∑

s=−d

(−1)d+s

(d + s)!(d− s)!
w2d−1J(−k + s, d + s + 1) = δkd

which proves the statement.

Finally, we can express operator K in basis ϑ (denoted Kϑ ∈ C2d+1×2d+1). Start-
ing with (4.5) and considering the statement of the previous lemma we obtain an
expression

(Kϑ)ts = sδts − wJ(−d + s− 1, d + s + 1)ed(t) (4.8)

where

ed(t) =
(−1)d+t

(d + t)!(d− t)!
w2d−1
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and t, s ∈ {−d, . . . , d}. Next, let us denote diagonal matrix K0 ∈ C2d+1×2d+1 where

(K0)ts := sδts

and a, eϑ
d ∈ C2d+1,

(eϑ
d)T := (ed(−d), ed(−d + 1), . . . , ed(d)), aT := (α−d, α−d+1, . . . , αd)

with entries αs := −wJ(−d + s− 1, d + s + 1)
3.19
= (−1)d+swJ(d− s + 1, d + s + 1).

Then we can rewrite relation (4.8) to a simple expression

Kϑ = K0 + eϑ
da

T . (4.9)

Remark 48.
1) Note that eϑ

da
T ∈ C2d+1×2d+1 (it is not a scalar product).

2) The inverse operator (K0 − z)−1 exists for all z ∈ C \ {−d. . . . , d} and

((K0 − z)−1)ts =
1

s− z
δts.

3) It holds α−s = −αs for all s ∈ {−d . . . , d}. Especially, it follows that α0 = 0.
The equation can be verified by a straightforward computation

α−s = −wJ(−d− s− 1, d− s + 1)
3.19
= (−1)d+swJ(d + s + 1, d− s + 1)

3.20
= (−1)d+s+1wJ(d− s + 1, d + s + 1) = −αs.

4.1 The Resolvent (Kϑ − z)−1

The simple form of the matrix K expressed in the basis ϑ allows us to find a formula
for the resolvent operator (Kϑ − z)−1.

Proposition 49. Let z ∈ C \ {−d, . . . , d} such that an inequality

1 + aT (K0 − z)−1eϑ
d 6= 0

holds. Then

(Kϑ − z)−1 = (K0 − z)−1 − 1

1 + aT (K0 − z)−1eϑ
d

(K0 − z)−1eϑ
da

T (K0 − z)−1. (4.10)

Proof. From formula (4.9) it follows that

Kϑ − z = (K0 − z)(1 + (K0 − z)−1eϑ
da

T ), (4.11)
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note that 1 stands for an identity operator. Then

[
(K0 − z)−1 − 1

1 + aT (K0 − z)−1eϑ
d

(K0 − z)−1eϑ
da

T (K0 − z)−1

]
(Kϑ − z)

=

[
1− 1

1 + aT (K0 − z)−1eϑ
d

(K0 − z)−1eϑ
da

T

]
(1 + (K0 − z)−1eϑ

da
T )

= 1 + (K0 − z)−1eϑ
da

T − 1

1 + aT (K0 − z)−1eϑ
d

(K0 − z)−1eϑ
da

T

− aT (K0 − z)−1eϑ
d

1 + aT (K0 − z)−1eϑ
d

(K0 − z)−1eϑ
da

T = 1

which was to be verified.

Remark 50. By multiplying the equality

1 + aT (K0 − z)−1eϑ
d = 0

by a term
∏d

k=−d(k − z) we obtain a polynomial equation in z.Thus the inequality

1 + aT (K0 − z)−1eϑ
d 6= 0

holds for all z ∈ C with exception of a finite number of z (in the following chapter
will be seen that z which solves the equation is a point of the spectrum of K).

4.2 A Formula for χred(z)

Lemma 51. Let a, b ∈ Cn then

det(1 + baT ) = 1 + aT b.

Proof. Since a determinant of a matrix is a linear function of its columns det(1+baT )
is equal to

∣∣∣∣∣∣∣∣∣




a1b1 a1b2 . . . a1bn

a2b1 a2b2 + 1 . . . anbn
...

...
...

anb1 anb2 . . . anbn + 1




∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣




1 a1b2 . . . a1bn

0 a2b2 + 1 . . . anbn
...

...
...

0 anb2 . . . anbn + 1




∣∣∣∣∣∣∣∣∣
.

The first determinant can be decomposed similarly, however, with exception of the
term 



a1b1 0 . . . 0
a2b1 1 . . . 0

...
...

...
anb1 0 . . . 1


 ,
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all other matrices are singular, hence

det(1 + baT ) = a1b1 +

∣∣∣∣∣∣∣∣∣




a2b2 + 1 a2b3 . . . a2bn

a3b2 a3b3 + 1 . . . anbn
...

...
...

anb1 anb2 . . . anbn + 1




∣∣∣∣∣∣∣∣∣
.

By repeating this procedure one verifies the statement.

Now we can use relation (4.11) and the previous lemma to find a formula for
χred(z), thus,

χred(z) =
(−1)d+1

z
det(K − z) =

(−1)d+1

z
det(Kϑ − z)

=
(−1)d+1

z
det(K0 − z) det(1 + (K0 − z)−1eϑ

da
T )

=
(−1)d+1

z

d∏

k=−d

(k − z)(1 + aT (K0 − z)−1eϑ
d) =

d∏

k=1

(k2 − z2)(1 + aT (K0 − z)−1eϑ
d)

=
d∏

k=1

(k2 − z2)

(
1 + w2d−1

d∑

s=−d

(−1)d+s

(d + s)!(d− s)!

αs

s− z

)
.

Since α−s = −αs (see Remark 48) we can further adjust the sum in the previous
expression

d∑

s=−d

(−1)d+s

(d + s)!(d− s)!

αs

s− z
=

d∑
s=1

(−1)d+s

(d + s)!(d− s)!
αs

(
1

s− z
− 1

−s− z

)

=
d∑

s=1

2s

s2 − z2

wJ(d− s + 1, d + s + 1)

(d + s)!(d− s)!
.

Finally, we arrive at the equation

χred(z) =
d∏

k=1

(k2 − z2)

(
1 + w2d

d∑
s=1

2s

s2 − z2

J(d− s + 1, d + s + 1)

(d + s)!(d− s)!

)
. (4.12)

Next, for z = n ∈ {1, 2, . . . , d} we can easily find a value for χred(n)

χred(n) =
d∏

k=1,k 6=n

(k2 − n2)
2n

(d− n)!(d + n)!
J(d + n + 1− 2n), d + n + 1)w2d

3.21
=

(−1)n+1

n
w2d−2n

n∑

k=1

(−1)k+1

(
d + n + 1− k

2n− 2k + 1

)
(2n− k)!

(k − 1)!
w2k

=
1

n

n−1∑

l=0

(−1)l

(
n + l

2l + 1

)
(d + l + 1)!

(d− l)!
w2d−2l (4.13)
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where the substitution l = n − k have been used. This procedure gives a proof for
Proposition 26 stated before.
At the end we will introduce a more convenient expression for the reduced charac-
teristic function then formula (4.12).

Proposition 52. It holds

χred(z) =
d∑

s=0

(2d− s + 1)!

s!(2d− 2s + 1)!
w2s

d−s∏

k=1

(k2 − z2) (4.14)

for all z ∈ C.

Proof. Since χred(z) is an even polynomial in z of the degree 2d (see (2.8)) it
is enough to check that the values of the RHS for z = 0, 1, . . . , d coincide with
χred(0), χred(1), . . . , χred(d). The expression

χred(0) =
d∑

s=0

(2d− s + 1)!

s!(2d− 2s + 1)!
w2s[(d− s)!]2

is exactly the formula (2.12). Let n ∈ {1, . . . , d} then

d−s∏

k=1

(k2 − n2) =

{
0 s ≤ d− n
(−1)d−s

n
(n+d−s)!

(n−d+s−1)!
d− n < s ≤ d

hence

RHS =
1

n

d∑

s=d−n+1

(2d− s + 1)!

s!(2d− 2s + 1)!

(−1)d−s(n + d− s)!

(n− d + s− 1)!
w2s

=
1

n

n−1∑

l=0

(−1)l (d + l + 1)!

(d− l)!(2l + 1)!

(n + l)!

(n− l − 1)!
w2d−2l

which coincides with the formula for χred(n) (4.13).

Remark 53. From formula (4.14) it is obvious that χred(z) has no roots for |z| < 1
and χred(±1) = 0 if and only if w = 0.

4.3 Notes on Localization of the Spectrum of K

We will introduce some features of distribution of eigenvalues of the matrix K which
follows from the formula for the characteristic reduced function (4.14).

Lemma 54. Let 0 < |w| ≤ 1, d, n ∈ N and n ≤ d + 1. Then χred(n) > 0 if n is an
odd number and χred(n) < 0 if n is an even number.
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Proof. 1)Let n is an even integer, n ≤ d + 1. Formula (4.13) can be rewritten as

nχred(n) =

n
2
−1∑

l=0

[(
n + 2l

4l + 1

)
(d + 2l + 1)!

(d− 2l)!
w2d−4l −

(
n + 2l + 1

4l + 3

)
(d + 2l + 2)!

(d− 2l − 1)!
w2d−4l−2

]

=

n
2
−1∑

l=0

(d + 2l + 1)!

(d− 2l)!

(n + 2l)!

(n− 2l − 1)!(4l + 3)!
αw(l)w2d−4l−2 (4.15)

where we have denoted

αw(l) := (4l + 3)(4l + 2)w2 − (n2 − (2l + 1)2)(d + 2l + 2)(d− 2l).

Let l ∈ {1, 2, . . . , n
2
− 1} (note that the range of l is nonempty only if n ≥ 4). Then

αw(l)− αw(l − 1) = (32l + 4)w2 + 8l(d2 + 2d + n2 − 1− 8l2)

> d2 + 2d + n2 − 1− 8(
n

2
− 1)2 = d2 + 2d− 9 + 8n− n2 (4.16)

and since we consider n even and 1 ≤ n ≤ d + 1 we get the estimate

αw(l)− αw(l − 1) > d2 + 2d− 9 + 16− (d + 1)2 = 6 > 0.

As a consequence it holds

αw(l) ≤ αw(
n

2
− 1)

for all l ∈ {0, 1, . . . , n
2
− 1}. Next, still considering 1 ≤ n ≤ d + 1 and 0 < |w| ≤ 1,

we can estimate

αw(
n

2
− 1) = (2n− 1)(2n− 3)w2 − (2n− 1)(d + n)(d− n + 2)

≤ (2n− 1)[(2n− 3)− (d2 + 2d + 2n− n2)] ≤ −2(2n− 1) < 0.

It follows that αw(l) < 0 for all l ∈ {0, 1, . . . , n
2
− 1} which, together with expression

(4.15) proves that χred(n) < 0 for n an even integer less or equal to d + 1.
2)Let n is an odd integer, n ≤ d + 1. This case will be treated similarly as the case
with even n. Formula (4.13) can be rewritten as

nχred(n) =

n−1
2∑

l=1

[(
n + 2l

4l + 1

)
(d + 2l + 1)!

(d− 2l)!
w2d−4l −

(
n + 2l − 1

4l − 1

)
(d + 2l)!

(d− 2l + 1)!
w2d−4l+2

]

+ n(d + 1)w2d

=

n−1
2∑

l=1

(d + 2l)!

(d− 2l + 1)!

(n + 2l − 1)!

(n− 2l)!(4l + 1)!
βw(l)w2d−4l + n(d + 1)w2d (4.17)

where
βw(l) := (n2 − (2l)2)(d + 2l + 1)(d− 2l − 1)− 4l(4l + 1)w2.
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Let l ∈ {2, 3, . . . , n−1
2
} (note that the range of l is nonempty only if n ≥ 5). Then

βw(l)− βw(l − 1) = (−32l + 12)w2 − 4(2l − 1)(d2 + 2d + n2 − 3 + 8l − 8l2)

< −(d2 + 2d− 3 + n2 − 2(n− 1)(n− 3)) = −(d2 + 2d− 9 + 8n− n2) ≤ −14 < 0

and

βw(
n− 1

2
) = (2n− 1)(d + n)(d− n + 2)− (2n− 2)(2n− 1)w2

> (2n− 1)[(d2 + 2d + 2n− n2)− (2n− 2)] ≥ d2 + 2d + 2− n2 ≥ 1 > 0.

As a consequence we can claim that βw(l) > 0 for all l ∈ {1, 2, . . . , n−1
2
} and therefore

every term in (4.17) is positive which concludes the proof.

Proposition 55. Let 0 < |w| ≤ 1, d ∈ N. Then

σ(K) = {0,±λ1,±λ2, . . . ,±λd} (4.18)

where λk ∈ (k, k + 1) for all k ∈ {1, 2, . . . , d}. Next, an inequality

λk+1 − λk > 1 (4.19)

holds for all k ∈ {1, 2, . . . , d}.
Proof. Since the characteristic function is an odd function zero is always an eigen-
value of K and the spectrum of K is symmetric around zero (see section 2.1). Let
k ∈ {1, 2, . . . , d}. Lemma 54 implies that

sgn(χred(k)) = − sgn(χred(k + 1))

and therefore there is at least one eigenvalue in interval (k, k + 1). Since the last
statement holds for all k ∈ {1, 2, . . . , d} there is exactly one eigenvalue in each
interval (k, k + 1) (matrix K has exactly d positive eigenvalues).
The second part of the statement is a little bit more difficult to verify. Let λk ∈
σ(K)∩ (k, k + 1), k ∈ {1, 2, . . . , d}. We will verify that χred(z) is always positive or
always negative for every z ∈ (λk, λk+1). If it is true then the reduced characteristic
polynomial has no root in (λk, λk + 1) and inequality (4.19) will hold. The already
checked properties of the spectrum of K follows that it suffices to show an equality

sgn(χred(k + 1)) = sgn(χred(λk + 1)).

Since an identity

d−s∏

l=1

(l2 − (λk + 1)2) =
−λk(d− s + 1 + λk)

(1 + λk)(d− s− λk)

d−s∏

l=1

(l2 − λ2
k)
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holds for s ∈ {0, 1, . . . , d} we can write

χred(λk + 1) =
d∑

s=0

(2d− s + 1)!

s!(2d− 2s + 1)!
w2s

d−s∏

k=1

(k2 − (λk + 1)2)

= − λk

1 + λk

d∑
s=0

(2d− s + 1)!

s!(2d− 2s + 1)!
w2s d− s + 1 + λk

d− s− λk

d−s∏

l=1

(l2 − λ2
k). (4.20)

Note that

sgn(
d−s∏

l=1

(l2 − λ2
k)) = (−1)k

for s ∈ {0, 1, . . . , d− k− 1}. To proceed further we must treat two cases separately.
1) Let k is an odd integer. Since we investigate a distance between λk and λk+1 we
take d ≥ k + 1 (otherwise there is no λk+1 in the spectrum). First we estimate an
expression

d− s + 1 + λk

d− s− λk

= 1 +
2λk + 1

d− s− λk

≤ 1 +
2λk + 1

k + 1− λk

which holds for s ∈ {0, 1, . . . , d− k − 1}. Next by splitting sum
∑d

s=0 in expression

(4.20) into to two sums
∑d−k−1

s=0 +
∑d

s=d−k and by considering the last inequality we
obtain an estimation

χred(λk + 1) ≥ − λk

1 + λk

d∑

s=d−k

(2d− s + 1)!

s!(2d− 2s + 1)!
w2s d− s + 1 + λk

d− s− λk

d−s∏

l=1

(l2 − λ2
k)

− λk

1 + λk

(
1 +

2λk + 1

k + 1− λk

) d−k−1∑
s=0

(2d− s + 1)!

s!(2d− 2s + 1)!
w2s

d−s∏

l=1

(l2 − λ2
k)

which can be further adjusted

χred(λk + 1) ≥ − λk

1 + λk

d∑

s=d−k

(2d− s + 1)!

s!(2d− 2s + 1)!
w2s d− s + 1 + λk

d− s− λk

d−s∏

l=1

(l2 − λ2
k)

− λk

1 + λk

(
1 +

2λk + 1

d− λk

) [
−

d∑

s=d−k

(2d− s + 1)!

s!(2d− 2s + 1)!
w2s

d−s∏

l=1

(l2 − λ2
k) + χred(λk)

]
.

λk is a nonzero eigenvalue of K hence χred(λk) = 0. We can continue

χred(λk + 1)

≤ λk

1 + λk

d∑

s=d−k

(2d− s + 1)!

s!(2d− 2s + 1)!
w2s

[
2λk + 1

k + 1− λk

− 2λk + 1

d− s− λk

] d−s∏

l=1

(l2 − λ2
k)

λk(2λk + 1)

(1 + λk)(k + 1− λk)

d∑

s=d−k

(2d− s + 1)!

s!(2d− 2s + 1)!
w2s d− s− k − 1

d− s− λk

d−s∏

l=1

(l2 − λ2
k) (4.21)
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Since we are interested only in the sign of the previous expression we omit the
positive constant which stands in front of the sum. Next, by doing substitution
j = d− s we arrive at an expression

k∑
j=0

(
d + j + 1

2j + 1

)
w2d−2j j − k − 1

j − λk

j∏

l=1

(l2 − λ2
k) (4.22)

which can be rewritten as

k−1
2∑

j=0

[(
d + 2j + 1

4j + 1

)
w2d−4j 2j − k − 1

2j − λk

2j∏

l=1

(l2 − λ2
k)

+

(
d + 2j + 2

4j + 3

)
w2d−4j−2 2j − k

2j + 1− λk

2j+1∏

l=1

(l2 − λ2
k)

]

=

k−1
2∑

j=0

(d + 2j + 1)!

(4j + 3)!(d− 2j)!
w2d−4j−2Ωw(j)

2j∏

l=1

(l2 − λ2
k) (4.23)

where we have denoted

Ωw(j) := (4j+3)(4j+2)
2j − k − 1

2j − λk

w2+(d+2j+2)(d−2j)
2j − k

2j + 1− λk

((2j+1)2−λ2
k).

Finally it suffices to show that Ωw(j) < 0 for all j ∈ {0, 1, . . . , k−1
2
} because in that

case every term in (4.23) will be negative and also χred(λk +1) will be negative. Let
us check the negativity of Ωw(j), by doing several estimations we can write

Ωw(j) = (4j + 3)(4j + 2)
k + 1− 2j

λk − 2j
w2 − (d + 2j + 2)(d− 2j)(k − 2j)(2j + 1 + λk)

< (4j + 3)(4j + 2)(k + 1− 2j)− (d + 2j + 2)(d− 2j)(k − 2j)(2j + 1 + k)

≤ (4j + 3)(4j + 2) + (k − 2j)[(4j + 3)(4j + 2)− (d + 2j + 2)(d− 2j)(k + 1)].
(4.24)

Since

(4j + 3)(4j + 2)− (d + 2j + 2)(d− 2j)(k + 1) < (k + 1)(4k − (d + 2)d)

≤ (k + 1)(−d2 + 2d− 4) < −(k + 1)(d− 1)2 ≤ 0,

the term in square brackets in (4.24) is negative and we can continue in estimations

Ωw(j) ≤ (k + 1)(8k − d(d + 2)) ≤ (k + 1)(−d2 + 6d− 8) = −(k + 1)(d + 2)(d + 4)

< 0

where we used that 0 ≤ j ≤ k−1
2

, k + 1 ≤ d and min{(d + 2j + 2)(d − 2j)|j =
0, 1, . . . } = (d + 2)d.
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2) Let k is an even integer. This case is to be treated very similarly as case 1). By
following the same procedure as in case 1) we obtain an estimation (it differs only
in opposite inequalities)

χred(λk + 1) ≥

≥ λk(2λk + 1)

(1 + λk)(k + 1− λk)

d∑

s=d−k

(2d− s + 1)!

s!(2d− 2s + 1)!
w2s d− s− k − 1

d− s− λk

d−s∏

l=1

(l2 − λ2
k).

Since we are interested only in the sign of the previous expression we omit the
positive constant which stands in front of the sum. Next, by doing substitution
j = d− s we arrive at an expression

k∑
j=1

(
d + j + 1

2j + 1

)
w2d−2j j − k − 1

j − λk

j∏

l=1

(l2 − λ2
k) +

d(d + 1)

λk

w2d. (4.25)

The second term is obviously positive and the sum can be rewritten as

k
2∑

j=1

[(
d + 2j

4j − 1

)
w2d−4j+2 2j − k − 2

2j − 1− λk

2j−1∏

l=1

(l2 − λ2
k)

+

(
d + 2j + 1

4j + 1

)
w2d−4j 2j − k − 1

2j − λk

2j∏

l=1

(l2 − λ2
k)

]

=

k
2∑

j=1

(d + 2j)!

(4j + 1)!(d− 2j + 1)!
w2d−4jΨw(j)

2j−1∏

l=1

(l2 − λ2
k) (4.26)

where we have denoted

Ψw(j) := 4j(4j + 1)
2j − k − 2

2j − 1− λk

w2 + (d + 2j + 1)(d− 2j + 1)
2j − k − 1

2j − λk

((2j)2− λ2
k).

Now it suffices to show that Ψw(j) < 0 for all j ∈ {1, 2, . . . , k
2
} because in that case

every term in (4.26) will be positive and therefore χred(λk + 1) will be positive. Let
us check the negativity of Ψw(j), by doing several estimations we get

Ψw(j) = 4j(4j + 1)
k + 2− 2j

λk − 2j + 1
w2 − (d + 2j + 1)(d− 2j + 1)(k + 1− 2j)(2j + λk)

< 4j(4j + 1)(k + 2− 2j)− (d + 2j + 1)(d− 2j + 1)(k + 1− 2j)(2j + k)

≤ 4j(4j + 1) + (k + 1− 2j)[4j(4j + 1)− (d + 2j + 1)(d− 2j + 1)(k + 2)]. (4.27)

Since

4j(4j + 1)− (d + 2j + 1)(d− 2j + 1)(k + 2) < (k + 2)(4k − (d + 1)2)

≤ (k + 2)(−d2 + 2d− 5) ≤ −(k + 2)(d− 1)2 ≤ 0,
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the term in square brackets in (4.27) is negative and we can continue in estimations

Ψw(j) ≤ 4k(2k + 1)− (d + 1)2(k + 2) ≤ (k + 2)(8k − (d + 1)2)

≤ (k + 2)(−d + 6d− 9) ≤ −(k + 2)(d + 2)(d + 4) < 0 (4.28)

where we used that 1 ≤ j ≤ k
2
, k + 1 ≤ d.

Remark 56. Property (4.19) implies that λk − k is increasing with k.
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Chapter 5

Function J and Eigenvectors of
Matrix K

5.1 Functions G and J

In chapter 3 symbols G and J was defined. These symbols depends on two integers.
Now, we are going to add a third continuous dependent variable. By this way
functions G and J will be defined. Lettering will remain the same but the functions
will have three dependent variables while the symbols will have only two, for example
G(m,n, z) is the new defined function while G(m, n) is the old defined symbol.

Definition 57. Let us denote

G(m,n, z) := F

(
w

m + z
,

w

m + 1 + z
, . . . ,

w

n + z

)
(5.1)

where m,n ∈ Z, m ≤ n and z ∈ C \ Z. To satisfy the recurrent rule (1.2) we put

G(n + 1, n, z) := 1

and
G(n + 2, n, z) := 0

for n ∈ Z, z ∈ C. Finally, let us define

G(m,n, z) := − Γ(m + z)Γ(m− 1 + z)

Γ(n + 2 + z)Γ(n + 1 + z)
w−2(m−n)+4G(n + 2,m− 2, z) (5.2)

for m,n ∈ Z, m > n + 2 and z ∈ C \ Z.

Consequently, we have defined function G(m,n, z) for all m, n ∈ Z and z ∈ C\Z.

Remark 58. It is easy to verify that the relation (5.2) holds for all m,n ∈ Z.
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Remark 59. Note that
G(m, n, 0) = G(m, n)

for m,n ∈ N.

Remark 60. Recurrent relations (1.2) and (1.4) implies that a similar property
holds for function G,

G(m,n, z) = G(m + 1, n, z)− w2

(m + z)(m + 1 + z)
G(m + 2, n, z), (5.3)

G(m,n, z) = G(m,n− 1, z)− w2

(n + z)(n− 1 + z)
G(m,n− 2, z) (5.4)

where m,n ∈ Z, m ≤ n and z ∈ C \ Z.

Proposition 61. Recurrent relations (5.3) and (5.4) holds for all m,n ∈ Z and
z ∈ C \ Z.

Proof. Considering the last remark it suffices to prove the relations for m > n. Let
m = n + 1 then

LHS = G(n + 1, n, z) = 1

and

RHS = G(n + 2, n, z)− w2

(n + 1 + z)(n + 2 + z)
G(n + 3, n, z)

=
w2

(n + 1 + z)(n + 2 + z)

Γ(n + 3 + z)Γ(n + 2 + z)

Γ(n + 1 + z)Γ(n + 2 + z)
w−2G(n + 2, n + 1, z) = 1.

Let m ≥ n + 2 then

RHS = G(m + 1, n, z)− w2

(m + z)(m + 1 + z)
G(m + 2, n, z)

= − Γ(m + 1 + z)Γ(m + z)

Γ(n + 1 + z)Γ(n + 2 + z)
w−2(m−n)+2(G(n + 2,m− 1, z)−G(n + 2,m, z)).

Since m ≥ n + 2 recurrent relation (5.4) can be applied to the last expression

G(n + 2,m− 1, z)−G(n + 2,m, z) =
w2

(m + z)(m− 1 + z)
G(n + 2, m− 2, z)

and then

RHS = − Γ(m + z)Γ(m− 1 + z)

Γ(n + 1 + z)Γ(n + 2 + z)
w−2(m−n)+4G(n + 2,m− 2, z)

= G(m,n, z) = LHS.
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Thus, recurrent relation (5.3) holds for all m,n ∈ Z.
The second recurrent relation is to be treated. Let m > n then

RHS = G(m,n− 1, z)− w2

(n + z)(n− 1 + z)
G(m,n− 2, z)

= −Γ(m + z)Γ(m− 1 + z)

Γ(n + z)Γ(n + 1 + z)
w−2(m−n)+2(G(n + 1,m− 2, z)−G(n,m− 2, z)).

According to the first recurrent relation (which was already proved) the identity

G(n + 1,m− 2, z)−G(n,m− 2, z) =
w2

(n + z)(n + 1 + z)
G(n + 2,m− 2, z)

holds and finally

RHS = − Γ(m + z)Γ(m− 1 + z)

Γ(n + 1 + z)Γ(n + 2 + z)
w−2(m−n)+4G(n + 2,m− 2, z) = G(m,n, z)

= LHS.

Lemma 62. It holds

(m + z)G(m− j, n, z)

∣∣∣∣∣
z=−m

= − w2j+2

(j + 1)!j!
G(j + 2, n−m) (5.5)

for j ∈ N0 and m,n ∈ Z, m < n.

Proof. We will proved the statement by mathematical induction in j. Case j = 0 is
to be treated with the aid of recurrent relation (5.3)

(m + z)G(m,n, z)

∣∣∣∣∣
z=−m

= (m + z)G(m + 1, n, z)− w2

m + 1 + z
G(m + 2, n, z)

∣∣∣∣∣
z=−m

= −w2G(2, n−m).

The case j = 1 will be proved similarly

(m + z)G(m− 1, n, z)

∣∣∣∣∣
z=−m

= (m + z)G(m,n, z)− w2

m− 1 + z
G(m + 1, n, z)

∣∣∣∣∣
z=−m

= −w2G(2, n−m) + w2G(1, n−m) = −w4

2
G(3, n−m).
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Let 0 ≤ j. To proceed the induction step j → j+1 the well known recurrent relation
(5.3) is to be used again

(m + z)G(m− (j + 1), n, z)

∣∣∣∣∣
z=−m

= (m + z)

(
G(m− j, n, z)− w2

(m− j − 1 + z)(m− j + z)
G(m− j + 1, n, z)

) ∣∣∣∣∣
z=−m

IH
= − w2j+2

(j + 1)!j!
G(j + 2, n−m) +

w2j+2

(j + 1)!j!
G(j + 1, n−m)

= − w2j+4

(j + 2)!(j + 1)!
G(j + 3, n−m).

Definition 63. Let us define

J(m,n, z) :=
Γ(n + z)

Γ(m + 1 + z)
wm−n+2G(m + 1, n− 1, z) (5.6)

where m,n ∈ Z and z ∈ C \ Z.

Remark 64. For m = n− 1 and m = n function J can be defined for all z ∈ C as

J(n− 1, n, z) := w

and
J(n, n, z) := 0.

Remark 65. The relation (5.2) rephrased with the aid of the function J has the
form

J(m,n, z) = −J(n,m, z) (5.7)

where m,n ∈ Z and z ∈ C \ Z.

Proposition 66. Let z0 ∈ Z then

lim
z→z0

J(m, n, z) = J(m + z0, n + z0) (5.8)

for all m,n ∈ Z.

Proof. (i) Let n ≥ m + 2. Since for z /∈ Z

J(m, n, z) =
Γ(n + z)

Γ(m + 1 + z)
wm−n+2G(m + 1, n− 1, z)

=
n−1∏

k=m+1

(k + z)wm−n+2F

(
w

m + 1 + z
,

w

m + 2 + z
, . . . ,

w

n− 1 + z

)
(5.9)
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there is no problem to do a limit z → z0 and check the validity of the proposition if
z0 /∈ {−n + 1,−n + 2, . . . ,−m − 1}. Let z0 ∈ {−n + 1,−n + 2, . . . ,−m − 1} then
with the aid of lemma 62 we can do a limit z → z0 in expression (5.9) (where the
function F is replaced by relevant function G) and we obtain a result

lim
z→z0

J(m,n, z) =

= −
n−1∏

k=m+1,k 6=−z0

(k + z0)
w−m−n−2z0+2

(−m− 1− z0)!(−m− z0)!
G(−m− z0 + 1, n− 1 + z0)

= (−1)m+z0
(n− 1 + z0)!

(−m− z0)!
w(−m−z0)−(n+z0)+2G(−m− z0 + 1, n− 1 + z0)

= (−1)m+z0J(−m− z0, n + z0) = J(m + z0, n + z0).

The last equation holds due to identity (3.19).
(ii) Let m = n−1 then J(n−1, n, z) = w for all z ∈ C and J(n−1+z0, n+z0) = w.
Similarly, if m = n then J(n, n, z) = 0 for all z ∈ C and J(n + z0, n + z0) = 0.
(iii) Finally, if m > n + 2 then it suffices to use the identity (5.7) and the already
proved cases

lim
z→z0

J(m,n, z) = − lim
z→z0

J(n,m, z) = −J(n + z0, m + z0) = J(m + z0, n + z0).

Remark 67. The function J(m,n, z) can be defined also for z ∈ Z as

J(m,n, z) := J(m + z, n + z).

Then the function J(m,n, z) is defined for all z ∈ C and it is continuous in z.

Proposition 68. Recurrent relations

J(m− 1, n, z) =
m + z

w
J(m, n, z)− J(m + 1, n, z), (5.10)

J(m,n + 1, z) =
n + z

w
J(m,n, z)− J(m,n− 1, z) (5.11)

holds for all m, n ∈ Z and all z ∈ C.

Proof. For z ∈ C \ Z it suffices to take into account recurrent relations (5.3) and
(5.4) and use the definition of function J. Next, for z ∈ Z it suffices to use the
continuity of function J.

5.2 Characteristic Function and Eigenvectors of

the Jacobi Matrix

In section 4.2 we have derived a formula for the characteristic function of K. Now,
we will find another useful identity for the characteristic function with the aid of
function J. Next, we will describe formulas for eigenvectors of K.
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Proposition 69. Function

w2dJ(−d− 1, d + 1, z) (5.12)

is the characteristic function of matrix K. Next if λ ∈ σ(K) then vector

vT
λ := (J(d, d + 1, λ), J(d− 1, d + 1, λ), . . . , J(−d, d + 1, λ)) (5.13)

is an eigenvector of K respective to eigenvalue λ.

Proof. By using recurrent relation (5.10) we easily arrive at the identity

(K − z)vz = −wJ(d + 1, d + 1, z)e−d − wJ(−d− 1, d + 1, z)ed

where e±d are vectors of standard canonical basis in C2d+1. Since J(d+1, d+1, z) ≡ 0
the first term vanishes and we obtain a formula

(K − z)vz = −wJ(−d− 1, d + 1, z)ed (5.14)

which both statements follow from. First it is important to notice that vz 6= 0 for
all z ∈ C because

v1
z = J(d, d + 1, z) = w 6= 0.

Next, it is necessary to find out that function

w2dJ(−d− 1, d + 1, z) =
d∏

k=−d

(k + z)F

(
w

−d + z
,

w

−d + 1 + z
, . . . ,

w

d + z

)

is a polynomial in z of degree 2d + 1 and the coefficient respective to the term
z2d+1 is 1. That can be seen either from Definition 1 of function F or from a fact
that function J(−d − 1, d + 1, z) can be reconstruct by using recurrent relation
(5.10) starting from J(d, d + 1, z) = w and J(d + 1, d + 1, z) = 0. Next, all roots
of function J(−d − 1, d + 1, z) are eigenvalues of the matrix K which arises from
identity (5.14). Finally, it suffices to show that J(−d − 1, d + 1, z) has no multiple
roots. In fact, suppose J(−d− 1, d + 1, λ) = J′(−d− 1, d + 1, λ) = 0 for some λ ∈ R
(here J′(−d− 1, d + 1, λ) is the derivative of J(−d− 1, d + 1, z) in λ). From (5.14)
one deduces that (K−λ)vλ = 0, (K−λ)v′λ = vλ (v′z stands for the derivative of vz).
Hence

vλ ∈ Ker (K − λ) ∩ Ran (K − λ).

Since K − λ is a hermitian matrix spaces Ker (K − λ) and Ran (K − λ) are orthog-
onal and so vλ = 0. This contradicts the fact, however, that v1

λ = w 6= 0. One
concludes that the set of roots of J(−d − 1, d + 1, z) coincides with σ(K). Neces-
sarily, w2dJ(−d − 1, d + 1, z) is equal to the characteristic function of K(w). The
second statement of the proposition also follows directly from identity (5.14).
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Remark 70. Notice that polynomial w2dJ(−d− 1, d + 1, z) differs from χK(z) in a
sign. Thus identity

w2dJ(−d− 1, d + 1, z) = −χK(z) = (−1)dz

d∑
s=0

(2d− s + 1)!

s!(2d− 2s + 1)!
w2s

d−s∏

k=1

(k2 − z2)

(5.15)
holds for all z ∈ C which follows directly from the previous proposition and formula
for characteristic reduced function (4.14).

Remark 71. The formula for particular values of characteristic reduced function
(4.13) can be derived easily now. By using Lemma 62 we get

χK(n) =
d∏

k=−d,k 6=−n

(k + n)(z − n)G(−d, d, z)

∣∣∣∣∣
z=n

= (−1)d+n+1 (d + n)!

(d + 1− n)!
w2d−2n+2G(d− n + 2, d + n)

= (−1)d+n+1w2dJ(d− n + 1, d + n + 1). (5.16)

Next, by substituting for n := d + n + 1 and k := 2n in identity (3.21) we obtain an
expression

χK(n) = (−1)d+n+1w2d

n∑
s=1

(−1)s+1

(
d + n + 1− s

2n− 2s + 1

)
(2n− s)!

(s− 1)!
w2s−2n

= (−1)d

n−1∑

k=0

(−1)k

(
d + k + 1

2k + 1

)
(n + k)!

(n− k − 1)!
w2d−2k

= (−1)d

n−1∑

k=0

(−1)k

(
n + k

2k + 1

)
(d + k + 1)!

(d− k)!
w2d−2k (5.17)

which holds for an arbitrary n ∈ N.

In the rest of this chapter we will deal with finding formulas for particular com-
ponents of vector

vT
z ≡ (J(d, d + 1, z), J(d− 1, d + 1, z), . . . , J(−d, d + 1, z)) (5.18)

where z ∈ C. Let us denote

ξk(z) := wk−1J(d− k, d + 1, z) (5.19)

where k ∈ {0, 1, . . . , 2d} and z ∈ C. Next, we will introduce some properties of
function ξk(z).
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Remark 72. Note that ξk(z) is a polynomial in z of degree k and the coefficient
respective to the term zk is 1. It can be seen from the fact that J(d − k, d + 1, z)
can be reconstruct by using recurrent relation (5.10) starting from J(d, d+1, z) = w
and J(d + 1, d + 1, z) = 0.

Example 73. Let us introduce examples of ξk(z) for k = 0, 1, 2, 3:

ξ0(z) = 1,

ξ1(z) = d + z,

ξ2(z) = (d + z)(d− 1 + z)− w2,

ξ3(z) = (d + z)(d− 1 + z)(d− 2 + z)− 2w2(d− 1 + z).

Remark 74. Let n ∈ Z. By using identity (3.21) we can express ξk(n) as

ξk(n) = wk−1J(d− k, d + 1, n) = wk−1J(d + n− k, d + n + 1)

=

[ k
2 ]∑

s=0

(−1)s

(
d + n− s

k − 2s

)
(k − s)!

s!
w2s. (5.20)

Lemma 75. The identity

ξk

(
−d +

[
k − 1

2

]
+ l

)
= (−1)kξk

(
−d +

[
k

2

]
− l

)
(5.21)

holds for k ∈ {0, 1, . . . , 2d} and l ∈ Z.

Proof. To prove the statement we can proceed straightforward

LHS ≡ ξk

(
−d +

[
k − 1

2

]
+ l

)
= wk−1J

([
k − 1

2

]
− k + l,

[
k + 1

2

]
+ l

)

= wk−1J

(
−

[
k

2

]
− 1 + l, k −

[
k

2

]
+ l

)

= (−1)kwk−1J

(
−k +

[
k

2

]
− l,

[
k

2

]
+ 1− l

)
= (−1)kξk

(
−d +

[
k

2

]
− l

)
≡ RHS

where identities (3.16), (3.19) and (3.20) have been used.

Remark 76. By putting l = 0 and considering k an odd integer in the previous
lemma we find out that −d + k−1

2
is a root of polynomial ξk.

Next we will reconstruct function ξk(.) with the aid of knowledge of particular
values ξk(αj) where αj ∈ R, αi 6= αj for i 6= j and i, j = 0, 1, . . . , k (recall that
ξk(.) is a polynomial of degree k). Polynomial ξk(.) is uniquely determined through
identity

ξk(z) =
k∑

j=0

ξk(αj)

∏k
i=0,i 6=j(z − αi)∏k

i=0,i6=j(αj − αi)
. (5.22)

Until we will do that, we will need a technical identity which is stated in the following
lemma.
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Lemma 77. Let r ∈ N then it holds

r+1∑
j=r+1−s

(−1)j+1 2j(r + j − s)!

(s + j − r − 1)!(r + j + 1)!(r − j + 1)!

r+1∏

i=r+1−s,i6=j

(z2 − i2) = (−1)r

(5.23)
for all s ∈ {0, 1, . . . , r} and z ∈ C.

Proof. To prove the statement we will proceed indirectly. First since

ξ2d+1(z) = w2dJ(−d− 1, d + 1, z)

from Proposition 69 it follows that ξ2d+1(.) is the characteristic function of matrix
K. Although we have already know the exact formula for ξ2d+1(z) we will try to
reconstruct polynomial ξ2d+1(z) by using expression (5.22) where we will put αj := j
and j ∈ {−d− 1,−d, . . . ,−1, 1, . . . , d, d + 1}. Thus

ξ2d+1(z) =
d+1∑

j=−d−1,j 6=0

ξ2d+1(j)

∏2d+1
i=−1,i6=d+j,i6=d(z + d− i)

∏2d+1
i=−1,i6=d+j,i6=d(d + j − i)

,

since ξ2d+1(−j) = −ξ2d+1(j) the sum can be modified further as

ξ2d+1(z) =
d+1∑
j=1

ξ2d+1(j)
j(−1)d+j+1

(d + 1 + j)!(d + 1− j)!

[
1

z + j
+

1

z − j

] d+1∏
i=1

(z2 − i2)

= z(−1)d

d+1∑
j=1

ξ2d+1(j)
2j(−1)j+1

(d + 1 + j)!(d + 1− j)!

d+1∏

i=1,i6=j

(z2 − i2).

Next, by applying identity (5.20) to ξ2d+1(j) and by switching sums we arrive at the
expression

ξ2d+1(z) = z(−1)d

d∑
s=0

(−1)s (2d− s + 1)!

(2d− 2s + 1)!s!
ωs(z)w2s

d−s∏
i=1

(z2 − i2) (5.24)

where we have denoted

ωs(z) :=
d+1∑

j=d+1−s

(d + j − s)!

(s + j − d− 1)!

2j(−1)j+1

(d + 1 + j)!(d + 1− j)!

d+1∏

i=d+1−s,i6=j

(z2 − i2).

Finally, it suffices to compare equation (5.24) with formula (5.15) to find out that

ωs(z) = (−1)d

and this holds for an arbitrary d ∈ N.
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Proposition 78. It holds

ξk(z) =

[ k
2 ]∑

s=0

(−1)s (k − s)!

(k − 2s)!s!
w2s

k−1−s∏
j=s

(d + z − j) (5.25)

where k ∈ {0, 1, . . . , 2d}, d ∈ N and z ∈ C.

Proof. The proof is split into two parts.
1) Let k be an even integer. We will try to find a formula for ξk+1(z) by using
expression (5.22) with

αj := −d +
k

2
+ j

and

j ∈
{
−k

2
− 1,−k

2
, . . . ,−1, 1, . . . ,

k

2
,
k

2
+ 1

}
.

Thus

ξk+1(z) =

k
2
+1∑

j=− k
2
−1,j 6=0

ξk+1

(
−d +

k

2
+ j

) ∏k+1

i=−1,i6= k
2
+j,i6= k

2
(z + d− i)

∏k+1

i=−1,i6= k
2
+j,i6= k

2
(k

2
+ j − i)

=

k
2
+1∑

j=− k
2
−1,j 6=0

ξk+1

(
−d +

k

2
+ j

)
j(−1)

k
2
+j+1

(k
2

+ 1 + j)!(k
2

+ 1− j)!

k+1∏

i=−1,i6= k
2
+j,i6= k

2

(z + d− i).

(5.26)

Next, identity (5.21) specified to our case follows that

ξk+1

(
−d +

k

2
+ j

)
= −ξk+1

(
−d +

k

2
− j

)

which allows us to modify the sum in (5.26) further as

ξk+1(z) =

k
2
+1∑

j=1

ξk+1

(
−d +

k

2
+ j

)
j(−1)

k
2
+j+1

(k
2

+ 1 + j)!(k
2

+ 1− j)!

×
[

1

z + d− k
2

+ j
+

1

z + d− k
2
− j

]
k+1∏

i=−1,i6= k
2

(z + d− i)

=

k
2
+1∑

j=1

ξk+1

(
−d +

k

2
+ j

)
j(−1)

k
2
+j+1

(k
2

+ 1 + j)!(k
2

+ 1− j)!

× (2d + 2z − k)

k
2
+1∏

i=1,i 6=j

((
z + d− k

2

)2

− i2

)
.
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Next, by applying identity (5.20) to ξk+1

(−d + k
2

+ j
)

and by switching sums we
arrive at expression

(−1)
k
2

(
d + z − k

2

) k
2∑

s=0

(−1)s(k − s + 1)!

(k − 2s + 1)!s!
ρs(z)w2s

k
2
−s∏

i=1

((
z + d− k

2

)2

− i2

)

where we have denoted

ρs(z) :=
k
2
+1∑

j= k
2
+1−s

(k
2

+ j − s)!

(s + j − k
2
− 1)!

2j(−1)j+1

(k
2

+ 1 + j)!(k
2

+ 1− j)!

k
2
+1∏

i= k
2
+1−s,i6=j

((
z + d− k

2

)2

− i2

)

Finally, by applying Lemma 77 we find out that

ρs(z) = (−1)
k
2

and thus

ξk+1(z) = (−1)
k
2

(
d + z − k

2

) k
2∑

s=0

(k − s + 1)!

(k − 2s + 1)!s!
w2s

k
2
−s∏

i=1

(
i2 −

(
z + d− k

2

)2
)

.

(5.27)
At the end, since

k
2
−s∏

i=1

(
i2 −

(
z + d− k

2

)2
)

= (−1)
k
2
+s

k
2
−s∏

i=− k
2
+s,i6=0

(
z + d + i− k

2

)

= (−1)
k
2
+s

k−s∏

j=s,j 6= k
2

(z + d− j)

formula (5.27) can be rewritten as

ξk+1(z) =

k
2∑

s=0

(−1)s (k − s + 1)!

(k − 2s + 1)!s!
w2s

k−s∏
j=s

(d + z − j). (5.28)

2)Suppose that k is still an even integer. By applying recurrent relation (5.10) to
function ξk(z) we get a similar relation

ξk+1(z)− (d− k + z)ξk(z) + w2ξk−1(z) = 0,

56



from which we will compute ξk(z) with using formula (5.28). Thus

(d− k + z)ξk(z) = ξk+1(z) + w2ξk−1(z)

=

k
2∑

s=0

(−1)s (k − s + 1)!

(k − 2s + 1)!s!
w2s

k−s∏
j=s

(d + z − j)

+

k
2
−1∑

s=0

(−1)s (k − s− 1)!

(k − 2s− 1)!s!
w2s+2

k−2−s∏
j=s

(d + z − j).

Next, we can change the lower bound of the second sum to −1 because the added
term is zero due to term 1

(−1)!
which has to be set to zero. Then we shift index s by

1 and we get expression

(d− k + z)ξk(z) =

k
2∑

s=0

(−1)s (k − s + 1)!

(k − 2s + 1)!s!
w2s

k−s∏
j=s

(d + z − j)

−
k
2∑

s=0

(−1)s (k − s)!

(k − 2s + 1)!(s− 1)!
w2s

k−1−s∏
j=s−1

(d + z − j)

=

k
2∑

s=0

(−1)s (k − s)!

(k − 2s + 1)!s!
w2sτs(z)

k−1−s∏
j=s

(d + z − j)

where we denote

τs(z) := (k − s + 1)(d + z − k + s)− s(d + z − s + 1).

Since
τs(z) = (d + z − k)(k − 2s + 1)

we arrive at formula

ξk(z) =

k
2∑

s=0

(−1)s (k − s)!

(k − 2s)!s!
w2s

k−1−s∏
j=s

(d + z − j). (5.29)

Finally, formulas (5.28) and (5.29) can be written down for an arbitrary k ∈
{0, 1, . . . , 2d} at once as

ξk(z) =

[ k
2 ]∑

s=0

(−1)s (k − s)!

(k − 2s)!s!
w2s

k−1−s∏
j=s

(d + z − j).

Remark 79. Although we restricted ourself only for k ∈ {0, 1, . . . , 2d}, it is clear
that the formula (5.25) holds for any k ∈ N0.
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Remark 80. Formula (5.25) admits a generalization of equation (1.17). By putting
k := d, ν := z in (5.25) and using the definition of the function J one easily arrive
at the identity

F

(
w

ν + 1
,

w

ν + 2
, . . . ,

w

ν + d

)
=

Γ(ν + 1)

Γ(ν + d + 1)

[d/2]∑
s=0

(−1)s (d− s)!

s!(d− 2s)!
w2s

d−1−s∏
j=s

(ν+d−j)

(5.30)
which holds for d ∈ N0 and ν ∈ C \ {−n,−n + 1, . . . ,−1}.
Corollary 81. If z ∈ σ(K) then vz ∈ C2d+1 is the respective eigenvector with
components given by formula

vk−d
z =

[ k
2 ]∑

s=0

(−1)s (k − s)!

(k − 2s)!s!
w2s−k+1

k−1−s∏
j=s

(d + z − j) (5.31)

where k ∈ {0, 1, . . . , 2d}.
Proof. The statement follows directly from Proposition 69 and Proposition 78.

5.3 Modified Results for the Jacobi Matrix of Even

Dimension

In previous chapters the characteristic function (4.14) and the vector valued function
(5.31) which values in points of spectrum correspond to respective eigenvectors was
found. Both results were derived for the special Jacobi matrix (4.1) which dimen-
sion is odd (2d + 1). Now, a slight modification of the already known formulas will
allow us to introduce similar results for a special Jacobi matrix of an even dimension.

Let us denote L a Jacobi matrix of dimension 2d (for some d ∈ N) such that

L =




−d + 1
2

w
w −d + 3

2
w

. . . . . . . . .

w −1
2

w
w 1

2
w

. . . . . . . . .

w d− 3
2

w
w d− 1

2




. (5.32)

Next, define matrix L̃ := L + 1
2
I which spectrum is shifted (by a half) with respect

to the spectrum of L. Taking into account the recurrence rule (5.10) and equation
J(d, d, z) = 0 one can easily find out that

(L̃− zI)uz = −wJ(−d− 1, d, z)ed (5.33)
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where
uT

z = (J(d− 1, d, z), J(d− 2, d, z), . . . J(−d, d, z))

and
ej

d = δjd, j = −d + 1,−d + 2, . . . , d.

For similar reasons as discussed in the proof of Proposition 69, the function
w2d−1J(−d−1, d, z) is the characteristic polynomial of L̃ and uλ is an eigenvector of

L̃ respective to eigenvalue λ. Let χeL be the characteristic function of L̃. Rephrasing
formula (5.25) (writing d instead of d + 1 and k − 1 instead of k) we have, for
k ∈ {1, 2, . . . , 2d}, equation

uk−d
z = J(d−k, d, z) =

[ k+1
2 ]∑

s=1

(−1)s+1 (k − s)!

(k + 1− 2s)!(s− 1)!
w2s−k

k−s∏
j=s

(d+z−j). (5.34)

Let us summarize the results in the following proposition.

Proposition 82. The formula for characteristic function of L

χL(z) = (−1)d

d∑
s=0

(2d− s)!

(2d− 2s)!s!
w2s

d−s∏
j=1

[(
j − 1

2

)2

− z2

]
(5.35)

holds. Furthermore, if z ∈ σ(L) then uz+ 1
2
∈ C2d is the respective eigenvector with

components given by formula

uk−d
z+ 1

2

=

[ k+1
2 ]∑

s=1

(−1)s+1 (k − s)!

(k + 1− 2s)!(s− 1)!
w2s−k

k−s∏
j=s

(
d + z +

1

2
− j

)
(5.36)

where k ∈ {1, 2, . . . , 2d}.
Proof. The characteristic function of L is the characteristic function of L̃ with shifted
argument, more precisely

χL(z) = χeL

(
z +

1

2

)
.

Bearing in mind the above discussion and by using identity (5.34) we get

χL(z) = w2d−1J

(
−d− 1, d, z +

1

2

)

=
d∑

s=0

(−1)s (2d− s)!

(2d− 2s)!s!
w2s

2d−1−s∏
j=s

(
d− 1

2
+ z − j

)

= (−1)d

d∑
s=0

(2d− s)!

(2d− 2s)!s!
w2s

d−s∏
j=1

[(
j − 1

2

)2

− z2

]
,

thus the first part of the proposition is proved. Consequently, by (5.33), if z ∈ σ(L)
then uz+ 1

2
is an eigenvector of L.
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Remark 83. From formula (5.35) it is obvious that χL(z) is an even function and
it has no roots for |z| < 1

2
. χL(±1

2
) = 0 if and only if w = 0.
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Chapter 6

A Set of Limit Points of a
Tridiagonal Operator

In an effort to collect information about a relation between spectrum of infinite Ja-
cobi matrices and respective truncations we add this chapter. It will be shown that,
under certain assumptions, every eigenvalue of tridiagonal operator is a limit point of
a sequence of eigenvalues of a truncated finite-dimensional operator and vice versa.
The most of the following results are taken over from [6], [7] and [8] where some
other related information can be found (we will focus only on the equality of the
spectrum and the set of limit points for (possibly) unbounded tridiagonal operators).

Let H be a separable Hilbert space with orthonormal basis {en}n∈N. We consider a
tridiagonal operator T which corresponds to a positive sequence {an}n∈N and a real
sequence {bn}n∈N as

Ten := anen+1 + an−1en−1 + bnen, n ∈ N, (a0 := 0). (6.1)

This operator can be expressed as

T = V A + AV ∗ + B

where A,B are diagonal operators, Aen := anen, Ben := bnen, V is the unitary shift
operator, V en := en+1 and V ∗ its adjoint (V ∗en = en−1, V ∗e1 = 0). If the sequence
{an} is bounded then T is self-adjoint with the definition domain of the operator B,
i.e.

Dom(T ) = Dom(B) = {x ∈ H | Bx ∈ H}.
With the aid of sequences {an} and {bn} we define polynomials Pn, n ∈ N0 by
recurrence relation

anPn+1(x) + an−1Pn−1(x) + bnPn(x) = xPn(x), n ∈ N
P0(x) = 0, P1(x) = 1. (6.2)

Note that Pn is a polynomial of degree n−1 (since an 6= 0). More information about
such polynomials can be found for example in [9] and [10].
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6.1 Inclusion σ ⊆ Λ

Let N ∈ N and let us define truncated finite-dimensional operators

TN := PNTPN

where PN is the orthogonal projection operator on the subspace HN spanned by
{e1, . . . , eN}. Suppose that T is self-adjoint. First, we will show the operator T can
be strongly approximated by a sequence of operators {TN}, i.e.

lim
N→∞

‖Tf − TNf‖ = 0 (6.3)

for every f ∈ Dom(T ). We prove this as follows. Let f ∈ Dom(T ) then we have

‖Tf − TNf‖2 =
∞∑

n=1

|(Tf − PNTPNf, en)|2 =
∞∑

n=1

|(f, (T − PNTPN)en)|2

=
∞∑

n=N+1

|(f, Ten)|2 +
N∑

n=1

|(f, (I − PN)Ten)|2 =
∞∑

n=N+1

|(Tf, en)|2 + a2
N |(f, eN+1)|2

=
∞∑

n=N+1

|(Tf, en)|2 + |(AV ∗f, eN)|2 (6.4)

where the definition relation (6.1) and self-adjoint of T was used. The first member
on the RHS of (6.4) tends to zero as N →∞ because ‖Tf‖2 =

∑∞
n=1 |(Tf, en)|2 < ∞

and the second because AV ∗f ∈ H (since Dom(AV ∗) ⊇ Dom(T )) and the sequence
{eN} converges weakly to zero.
Second, we will show that the eigenvalues of TN are zeros of the polynomial PN+1(x)
defined by (6.2). Let us denote

ξT
N(x) := (P1(x), P2(x), . . . , PN(x)).

Since P1(x) = 1 the vector-valued function ξN(x) 6= 0 for all x ∈ R. From the
relation




b1 a1

a1 b2 a2

. . . . . . . . .
. . . . . . . . .

aN−2 bN−1 aN−1

aN−1 bN




ξN(x) = xξN(x)− aNPN+1(x)eN

it follows that all roots of the polynomial PN+1 are eigenvalues of TN . On the other
hand, if µ ∈ σ(TN) then ∃x 6= 0 such that TNx = µx and x1 6= 0 (otherwise x = 0).
Without loss of generality we can assume x1 = 1 then xk = Pk(µ) for k = 1, 2, . . . , N
and since

aN−1PN−1(µ) + bNPN(µ) = µPN(µ)
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we get
aNPN+1(µ) = 0.

The last equality together with the positivity of the sequence {an} implies that µ is
root of PN+1.
Denote by Λ(T ) the set of all points which are limit points of eigenvalues of TN

when N tends to infinity.

Theorem 84. If T is self-adjoint then every point in the spectrum of T is a limit
point of the set of all zeros of all polynomials PN , i.e. σ(T ) ⊆ Λ(T ).

Proof. Let λ ∈ σ(T ) and let λ is not a limit point of the zeros of the polynomials
Pn+1, n ∈ N or equivalently λ /∈ Λ(T ). Then there exists d > 0 and subsequence of
{Tn} which we denote by {TN} such that |λ−ρ| ≥ d for every eigenvalue ρ belonging
to any of the operators TN , N = 1, 2, . . . .
Let TNxk = λkxk, k = 1, 2, . . . , N and (xi, xj) = δij. Then for every f ∈ Dom(T )
we have

(λPN − TN)f = (λPN − PNTPN)f =
N∑

k=1

(λ− λk)(f, xk)xk

and

‖(λPN − PNTPN)f‖2 =
N∑

k=1

|λ− λk|2|(f, xk)|2 ≥ d2‖PNf‖2

which implies that
‖PN(λ− T )PNf‖ ≥ d‖PNf‖

for all f ∈ Dom(T ). Since PNTPN converges strongly to T and PN converges
strongly to I the last inequality for N →∞ leads to an inequality

‖(λ− T )f‖ ≥ d‖f‖

which holds for every f ∈ Dom(T ). This means that λ /∈ σ(T ) (because T is
self-adjoint), contrary to the assumption.

6.2 Inclusion σ ⊇ Λ

In the last section we have shown that if T is self-adjoint then σ(T ) ⊆ Λ(T ) but the
equality σ(T ) = Λ(T ) does not hold in general. For the invalidity of the equality
see [6]. Next we will show some sufficient conditions for the validity of the equality
σ(T ) = Λ(T ).

Theorem 85. Assume that the sequence {an} is positive and limn→∞ an = 0. Then
(for any sequence {bn}) we have σ(T ) = Λ(T ).
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Proof. Since {an} is bounded T is self-adjoint (Dom(T ) = Dom(B)) and from The-
orem 84 it follows the validity of the inclusion σ(T ) ⊆ Λ(T ). Thus it suffices to
show the validity of the reverse inclusion σ(T ) ⊇ Λ(T ).
Let λ ∈ Λ(T ) then there exists a subsequence of the sequence {TN} (which we denote
also with {TN}) such that

TNxN = λNxN , ‖xN‖ = 1, xN ∈ HN (6.5)

and
lim

N→∞
λN = λ. (6.6)

From (6.5) we have

(TNxN , xN) = (PNTPNxN , xN) = λN

and since PNxN = xN we obtain

(TxN , xN) = λN . (6.7)

Next

λ2
N = (T 2

NxN , xN) = (PNTxN , TxN) = ((I −QN)TxN , TxN) =

= (T 2xN , xN)− (QNTxN , TxN) (6.8)

where QN is the orthogonal projection on the subspace spanned by {eN+1, eN+2, . . . }.
Since Tek = akek+1 + ak−1ek−1 + bkek and (xN , ek) = 0 for k ≥ N + 1 we can adjust
the second term in (6.8)

QNTxN =
∞∑

N+1

(TxN , ek)ek =
∞∑

N+1

(xN , T ek)ek = aN(xN , eN)eN+1,

thus we find

(QNTxN , TxN) = aN(xN , eN)(TeN+1, xN) = a2
N |(xN , eN)|2. (6.9)

By taking (6.8) together with (6.9) we get

(T 2xN , xN) = λ2
N + a2

N |(xN , eN)|2. (6.10)

Due to Schwarz inequality it is |(xN , eN)| ≤ 1 and the relation (6.10) gives

(T 2xN , xN) ≤ λ2
N + a2

N .

Finally, due to (6.6) and the assumption limn→∞ an = 0 we arrive at an inequality

lim sup
N→∞

(T 2xN , xN) ≤ λ2. (6.11)
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Now we have

‖(T − λ)xN‖2 = ((T − λ)xN , (T − λ)xN) = ((T − λ)2xN , xN)

= ((T 2 + λ2 − 2λT )xN , xN) = (T 2xN , xN) + λ2 − 2λ(TxN , xN)

= (T 2xN , xN) + λ2 − 2λλN .

The above relation due to (6.6) and (6.11) gives

lim sup
N→∞

‖(T − λ)xN‖2 ≤ 0.

So
lim

N→∞
‖(T − λ)xN‖ = 0

which means that λ ∈ σ(T ). This proves that Λ(T ) ⊆ σ(T ).

Theorem 86. Suppose that T = V A + AV ∗ + B is self-adjoint and the sequences
{an} and {bn} satisfy

lim
n→∞

anan−1

bn

= 0, lim
n→∞

bn = ∞. (6.12)

Then Λ(T ) = σ(T ).

Proof. Due to self-adjoint of T it suffices to show the validity of the inclusion Λ(T ) ⊆
σ(T ). From (6.5) we obtain

λN(xN , eN) = (TNxN , eN) = (xN , TNeN) = (xN , aN−1eN−1 + bNeN)

because xN ∈ HN , thus (xN , eN+1) = 0. The last equation can be rewritten as

(λN − bN)(xN , eN) = aN−1(xN , eN−1).

Since λN → λ < ∞ and bN →∞, n →∞ for sufficiently large N we have λN 6= bN .
The relation (6.10) takes the form

(T 2xN , xN) = λ2
N +

a2
Na2

N−1

(λN − bN)2
|(xN , eN−1)|2 ≤ λ2

N +
a2

Na2
N−1

(λN − bN)2
. (6.13)

Finally, from (6.13), due to (6.6) and (6.12) it follows that

lim sup
N→∞

(T 2xN , xN) ≤ λ2.

Now the proof follows in a similar way to Theorem 85.

Corollary 87. Let the sequence {an} is bounded and the sequence {bn} is divergent.
Then Λ(T ) = σ(T ).
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Proof. Since {an} is bounded the operator T = V A + AV ∗ + B is self-adjoint and
the condition (6.12) is satisfied.

Remark 88. A lot of similar (but more complicated) conditions to (6.12) can be
derived. For example the condition (6.12) can be replaced by

lim
n→∞

anan−1(an−1 + an−2)

bnbn−1

= 0, lim
n→∞

bn = ∞

or

lim
n→∞

anan−1

bnbn−1

[
a2

n−1

bn

+
an−2(an−2 + an−3)

bn−2

]
= 0, lim

n→∞
bn = ∞

and the equation Λ(T ) = σ(T ) holds too (see [7] for details).
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Conclusion

In this work we studied the function F, its algebraic and asymptotic properties and
its relationship to the eigenvalue problem for finitedimensional symmetric tridiagonal
(Jacobi) matrices. With the aid of the symbol J defined with using the function
F we construct a special basis in which the studied matrix becomes a sum of a
diagonal matrix and a rank-one matrix operator. This form is suitable for various
computation which allows us to derive the formula for characteristic function and
the comparatively simple expression for resolvent operator of the Jacobi matrix
whose parallels to the diagonal are constant and whose diagonal depends linearly on
the index. Further, some information about a distribution of the spectrum of such
matrix are summarized.

By slight generalization of the symbol J we define a function also called J. This
function arises in components of eigenvectors of the Jacobi matrix and also it forms
one more formula for the characteristic function. Next, we present vector-valued
function on the complex plain having the property that its values on spectral points
of the Jacobi matrix are equal to corresponding eigenvectors. At the end it is shown
that, under certain assumptions, every eigenvalue of tridiagonal operator is a limit
point of a sequence of eigenvalues of a truncated finitedimensional operator and vice
versa.

To continue in this work one could try to examine some of the following sugges-
tions. The function F deserves further investigation, for example, one could try to
find values of the function F applied on some other sequences then those which are
discussed in section 1.2. The main results related to the eigenvalue problem (e.g.,
the formula for the characteristic function, for eigenvectors, etc.) could be possibly
derived for a larger family of Jacobi matrices. Last but not least, one could use
the results obtained for finitedimensional Jacobi matrices to explore the spectrum
of infinitedimensional Jacobi matrices of a similar form.
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