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Introduction

The Jacobi matrix is a complex tridiagonal matrix (Definition 7). The finding of
the spectrum of the Jacobi matrix is the problem of much physical interest. The
spectrum of (finite) Jacobi matrices appears in many applications: from orthogonal
polynomials and nearest-neighbours interaction models to solvable models of quan-
tum mechanics. This paper summarize the basic knowledge about the spectrum of
an operator with the Jacobi matrix.

In the first chapter we will introduce some definitions and theorems of functional
analysis as such: an essential spectrum, a relative compactness, the Weyl theorem
and the min-max principle, which we will use later in the main chapter 3.

In the second chapter we will present the perturbation theory for linear operators
and we will compute the coefficients of the Rayleigh-Schrodinger series of perturbed
eigenvalue, which we will use later again in the specific problem of the Jacobi matrix
in chapter 3.

In the third chapter we will introduce the operators with the Jacobi matrix. With
the help of the theory written in chapter 1 and 2 we summarize some features of
the spectrum of the operator with the Jacobi matrix. Next we will show that in
some cases (operators with shrinking spectral gaps) the perturbation theory does
not allow the global description of the spectrum.

In the final chapter we will find the kernel of the operator with the Jacobi matrix
of a special type (a linear and symmetric case). Next we will state some helpful
statements considering the finite-dimensional Jacobi matrices as a concept for the
future afford to describe the spectrum of the Jacobi matrix globally.



Chapter 1

Operators in Hilbert space

In this chapter we introduce some basic definitions and fundamental theorems which
we will use in the main chapter 3. We deal with usually unbounded operators in a
Hilbert space. For more detail functional analysis, we refer reader to ,e.g., [3].

1.1 The essential spectrum
and the min-max principle

Definition 1. A set 0c.(A) := {\ € C|Haz,}52, C D(A), ||z,|| = 1 which has no
convergent subsequence and lim,, (A — Nz, = 0} is called essential spectrum of
an operator A.

In this text we are interested in operators which are usually self-adjoint. So lets
introduce some properties of o.ss(A) where A is self-adjoint.

Theorem 1. Let A be self-adjoint and A € R (recall that o(A) C R) then following
statements are equivalent:

(1) A € Oess(A);

(i) Hzn}22, € D(A), ||zn] =1, z,, — 0 weakly and lim, . ||(A — A)z,|| = 0;

(iii) A is an accumulation point of the set o(A) or A is an eigenvalue with infinite
multiplicity.

The proof of this theorem can be found in [3] chap. 10.

Remark 1. (a) A set 04(A) 1= 0(A)\0ess(A) is called discrete spectrum and the
statement (iii) from the previous theorem follows that the discrete spectrum is
composed of isolated points of o(A) with finite multiplicity. If o..(A4) = O, ie.
0(A) = 04(A) one says that the self-adjoint operator A has purely discrete spec-
trum.

(b) It holds: 0es5(A) = O < (Vi € p(A))(R,(A) = (A — p)~! is compact)

(proved again in [3] chap.10) Therefore operators with clearly discrete spectrum are



often called operators with compact resolvent.
(¢) 0ess(A) is a closed set.

Next we will deal with a stability of o.ss(A) for A self-adjoint.

Definition 2. Let A be a self-adjoint operator. Operator T (possibly unbounded) is
A-compact (or relative compact with respect to A) if D(T) D D(A) and an operator
T(A — )7t is compact.

Theorem 2. (Weyl) Let A be a self-adjoint operator and S be symmetric and
A-compact operator. Then

Uess(A) - Uess(A + S)

A reader can find the proof of this theorem in [3] §10.4.

Next very useful theorem gives us information about o4(A) and o.s5(A) (for A
self-adjoint) from knowledge of the expectation values (¢, AY).

Theorem 3. (min-max principle) Let A be a self-adjoint operator that is bounded
from below, i.e., A > ¢l for some c. Define

pn(A) == sup  Ua(pr,. .., @n1)

where

UA(9017 <. a(pm) = lnf{(wvAw)hZJ € D(A)v ||77D|| = 1777Z) € [Sola o '>S0m]J_}

Then, for each fixed n, either:

(a) there are n eigenvalues Aj,...,\, (counting degenerate eigenvalues a number
of times equal to their multiplicity) such that Ay < inf{A\|\ € 0.} V& € 1 and
fn = Ap (counting multiplicity);

or

(b) pn, = inf{A|X € 055} and in that case j, = fint1 = finso = ... and there are at
most n — 1 eigenvalues (counting multiplicity) below f,,.

The proof can be found in [4] vol. IV chap. XIII.



Chapter 2

Introduction to the perturbation
theory

In this chapter we shall examine the following situation: An operator Hy has an
eigenvalue Ej (we usually assume that Ej is in the discrete spectrum). Suppose
that Hy is perturbed a little; that is, consider Hy + SV where V is some other
operator and || is small (sometimes we will consider generalized case where H([3)
will be an operator-valued function and H(8y) = Hy for some ). Then we will
study what eigenvalues of Hy+ BV lie near Ej, how they are related to V' and what
their properties are as functions of J3.

2.1 Regular perturbation theory

Theorem 4. Suppose that A is closed operator and let A be an isolated point of
o(A). Explicitly, suppose that there is € > 0 such that {u||p—A| < e}Na(A) = {A}.
Then,

(a) For any r with 0 < r < €,

1

Py=———
2 ==

(A—p)~tdu (2.1)
exists and is independent of r.

(b) P = Py. Thus P, is a projection.

(c) if p is an isolated point of o(A) and p # A, then P, P, = 0. Thus

PP\ = 5,0 P

(d) If Gy = Ran Py and F\ = ker Py, then G, and F) are complementary closed
subspaces; that is, Gy + F\ = H and G,()Fy = {0}. Moreover, Gy C D(A),
AGy C Gy.

(e) If B= A | F), then )\ ¢ o(B).

Proof. (a) We know that resolvent (A — p)~! is an analytic function on C\o(A) =
p(A). Thus the integral exists as a Banach-space-valued Riemann integral. That it
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is independent of r is a consequence of the Cauchy integral theorem.
(b) Let r < R < e.

T S ol A

Using the first resolvent equation:

lu—Al=r J| —,\\:R(V B M)_l[(A o V)_l —(A— M)_l]dl/dlu
1 . o
- @iy %V—AI=R WAy %M—A=r Al =)
1 B o
B (2im)? %M_A|:T dp(A — ) 7I{V—A:R dv(v — p)

- T [o — (2im) 7{” CS m—ldu} - P,

(c) Similar computation (as in (b)) shows that:

1 » o
W %V—AIT’ dV(A - V) %C—Ml=r dC(V C)
1

- Gy fc o fy_kzwdv@—o- ~0

because r and 1’ are chosen such that {¢ € C||[¢(—p| < r}n{r € C|lv=A| <} =0
(d) That G = ker(1 — Py) and F), = ker Py are closed complementary subspaces is
clear.

PPy =

Let v € H. Py = 227r f\u—/\\:r(A — p)"Ypdp. Define ¥(u ) (A — p)~ % and

:= {p € C||p— Al =r}. We shall show that — 5 ¢, ¥ (u)dp ( ). Since Py is
given by a Riemann integral, Pyy = limn_>C><J Xn where y,, = ﬂ " () A and
w; and A; are chosen so that y,, — j;K p)dp for n — oo. Consnder that

Vn eN, x, € D(A) and

kn

1
2Z7T ZAQ/J ,uz i = (1/} + NZ(A NZ) 1¢)

Since Zf;l A; =0 (Kisacircle), Ax, = —ﬁ f;l wi(A—pi) 1Ay — —ﬁ $re it (p)dp

for n — oo. Finally, since A is closed, — 5 §, ¥(u)dp € D(A). Thus G, C D(A).
Let ¢ = P\¢ € Gy. Then Ap = AP\¢ = P\(A¢), thus Ap € G,.
(e) Let
1 _ _
Ry = —o— A= )™M (A = p) " dp

20T |p—A|=r



Then
1

Ry\(A=)) = —-— A=) A=) A= ptp—Ndp
2T )=
S (A= p) "y + (A—p)~dp
20 A= 207 S A=
—1-P,

And by restriction on F), one finds that Ry(B — ) =1 [ F\. Thus A ¢ o(B). O

Definition 3. A point A € o(A) is called discrete if A is isolated and Py (given by
(2.1)) is finite dimensional; if P, is one dimensional, we say A is a nondegenerate
eigenvalue.

Remark 2. (a) Suppose that Ay = vip. Then

Pap= - (v — ) pdp = {

um lu—A|=r

voifr=A
0 ifv#A

It follows that the only eigenvalue of A [ Ran P, is A.

(b) The only eigenvalue of (A— )P,y is zero. Thus the spectral diameter of (A —\) Py
is zero. Such operators are called quasi-nilpotents.

(c) If X is a nondegenerate eigenvalue, then (Vi) € Ran Py)(Ay = \).

It should be obvious if we consider theorem 4 and the previous remark:

¥ € Ran Py = (A — \)¢» € Ran Py. Since dim P\, = 1, there is a constant ¢ such
that cp = (A= N = (A= NP = c=0= Ay = \.

To complete our discussion of discrete spectrum, we prove a converse to previous
Theorem.

Theorem 5. Let A be an operator with {u|[u—A| = r} C p(A), (p(A) = C\o(A)).
Then P = (=2im)~ ¢\ _ (A—p)~'dpis a projection. If P has dimension n < oo,
then A has at most n points of its spectrum in {zt|n—A| < r} and each is discrete. If
n = 1, there is exactly one spectral point in {4||z— A| < r} and it is nondegenerate.

Proof. The proof of the Theorem 1(b) carries through without change to prove that
P is a projection and according to (¢) we know that G = Ran P and F' = ker P are
closed complementary invariant subspaces. Let Ay = A [ G and Ay = A | F. As
in the proof of Theorem 1(d), v ¢ o(Ay) if [v — A < r. If dimG = n < oo, A4,
has eigenvalues vy ..., (k < n), so a set o(A) N {v||v — A| < r} has at most n
elements. To see that each spectral point in the circle is discrete, we note that if P,
is the spectral projection of Theorem 1 and if v is in the circle {v||v — A| < r}, then
P,P = PP, = P, because:

1
P[/P — T N5 A _ —1 A o _1d d
(2Z7T)2 \%u—)\:r \%C—V':r/( /J) ( C) C Iu

7



(r" is chosen such that {¢[|¢ —v| <7} C{p|lp— Al <71})

1 o
~ (2in)? ﬁ_m fg _V|:T,(C — ) [(A=Q) 7 — (A= p)" ]dCdp
1

= T ST

S ARCETOR ]
_ (2;) ]{C s Q)¢ = P,

P,P=PP,= P, thus Ran P, C Ran P, then dim P, < dim P < oc.

The last statement is clear because if n = 1, we already know that A has at most 1
point of its spectrum in {u‘ |t — Al < r}. If there were no spectral point, then P =0
and that is a contradiction with n = 1. 0

Definition 4. A (possibly unbounded) operator-valued function 7°((3) on complex
domain R is called an analytic family or an analytic family in the sense of Kato if
and only if:

(i) (V8 € R) (T(P) is closed and p(T(5)) # O)

(i) (V8o € R)(Fho € p(T(50)))(3e > 0)(VB € R, [ — Bo| < €)(Ao € p(T'(8))) and
((T(B) — Ag)~! is an analytic operator-valued function of (3)

The number )\g in the above definition does not play a special role:

Theorem 6. Let T'(3) be an analytic family on a domain R. Then
I'={(8,2) e CxC|Be R e p(T(B))}

is open and the function (T'(8) — X\)~! defined on I is an analytic function of two
variables.

The proof of this theorem can be found in [4] and we will not give it here.

Lemma 1. Let P and ) are projections (not necessarily orthogonal) and
dim P # dim @, then || P—Q ||> 1. In particular, if P(x) is a continuous projection-
valued function of x on a connected set R C C, then dim P(x) is a constant.

Proof. Without loss of generality suppose dim P < dim Q). Let F' = ker P and
let £ = Ran@. Then dim(F') = dimP < dimE. As a result, F N E # {0}
(see e.g. [3] lemma 5.4.7). Let ¢ # 0, ¢ € FNE. Then Py = 0, Q¢ = 1, so
| (P — Q)¢ ||=]| ¥ ||. This implies that | (P — @) ||> 1. The final statement we



will prove by contradiction. Let dim P(x) # const on R. P(x) is continuous on R,
that is

(Vzo € R)(Ve > 0)(36 > 0)(Va € R, |z — zo| < 8)(||P(x) — P(xo)|| < ¢)

Put € = 1. Since dim P(z) # const on connected set R 31,75 € R such that
|x1 — 25| < ¢ and dim P(z,) # dim P(x3). Then, by the previous statement
|P(x1) — P(x2)|| > 1 and this is a contradiction with continuity of P(z). O

Now we can finally proof the most important theorem of this chapter:

Theorem 7. (Kato-Rellich) Let T'(3) be an analytic family in the sence of Kato.
Let Ey be a nondegenerate discrete eigenvalue of T'(fy). Then for  near [3;, there
is exactly one point E(3) € o(T(5)) near Ey and this point is isolated and nonde-
generate. F((3) is an analytic function of § for 3 near (5. Furthermore, there is an
analytic eigenvector Q(f3) (respective to FE(f3)) for 5 near By. If T'(() is self-adjoint
for (3 real, then €2(3) can be chosen to be normalized for 3 real.

Proof. Pick € > 0 so that o(T'(3)) N{E||E — Eo| < e} = {Ey}. The circle
{E||E — Ey| = €} is compact and the set I of the Theorem 6 is open =

(36 > 0)(V5,[6 = fo| < 0)(VE, |E — Eo| = €)(E ¢ o(T(0)))

Then .
P(3) = —s— T(6) — E)~'dE
O =5z p, . TD =B

exists and is analytic for 8 € N := {3||6—| < 6}. Ey is a nondegencrate eigenvalue
of T(By) = dim P(fy) = 1. Then the last lemma implies that V3 € N dim P(3) = 1.
Thus, by Theorem 5, there is exactly one eigenvalue E () of T'(3) with |E(3)— Ey| <
¢ when # € N and this eigenvalue is nondegenerate. Put Q(3) := P(3)Q, where
g is the unperturbated eigenvector. Then §2(3) is an analytic eigenvector to E(f3)
of T(8) (see Remark 2(c)). Thus, T(3)P(8)Q = E(B)P(8)Q. The analyticity of
E(B) for 8 near [y follows from the formula:

(Q0,(T(B) — Eo — €)' P(5))
(Q0, P(3)$0)

Since P(3) is analytic for 3 € N and (g, P(50)%) = ||0]|* # 0, for 3 near 3y the
denominator (€, P(3)€2) is nonzero.
We obtain an analytic eigenvector by choosing Q(f3) := P(3) or

(E(B)—Ey—e€)~' =

1

Q(B) == (20, P(5)20) 2 P(5)<%

in the real case.

IUB)I* = (22B), 2(B)) = (o, P(B)20) ™ (P(8), P(53)$20)
= (Q, P(8)Q0) (R, P(8)*Q) = (Q, P(8)2) " (R, P(B)2) = 1

If we consider that T =T* = P = P*. O



This would not be very useful if we did not have convenient criteria for 7°(3) to
be analytic. Fortunately there are some simple ones and we shall discuss one of
them in detail.

Definition 5. Let R be a connected domain in C and let T'(3) be a closed operator
with nonempty resolvent set for each § € R. We say that T'(3) is an analytic family
of type (A) if and only if

(i) The operator domain of T'(3) is some set D independent of (.

(ii) V¢ € D, T(B)1) is a vector-valued analytic function of .

Now we leave the general case of the problem and consider only the linear case
T(6) = Hy+ BV. We first prove a lemma, which gives a convenient criterion for a
family to be type (A).

Lemma 2. Let Hj be a closed operator with nonempty resolvent set. Define Hy+5V
on D(Hy) N D(V). Then Hy + BV is analytic family of type (A) near § = 0 if and
only if:

(a) D(Ho) € D(V)

(b) For some a,b > 0 and V¢ € D(H,),

Vo[l < alHotp[| + bl||

(we say that V' is Hy-bounded)

Proof. Suppose first that Hy + SV is an analytic family of type (A).

Then D(Hy) = D(Hy+ V) = D(Hy) N D(V) so (a) holds. D := (D(Hy),|||-||]),
where |||[¢|]] == |[Ho®|| + ||#|| is a norm and since Hy is closed, D is a Banach space.
Fix 8 > 0 small so that § and —( are both in the domain of analyticity. The
operator Hy + BV : D — 'H is everywhere defined and it is easy to verify that this
operator is closed (it has a closed graph in D x H since the graph is closed in H x H
with a weaker topology). Thus by the closed graph theorem,

[(Ho + 8V)¢ || < axll[¥]]]

and

[(Ho = BV) ¢l < as|[[¥]]]

where a; and ay are some positive constants.
Thus,

CL1—|—CL2

26

1
Vel = g5lll(Ho + BVIPll + [(Ho = BV)YII] < 1]

so that condition (b) holds.
Conversely, let (a) and (b) hold. Then, for ¢» € D(H,),

[Hov|l < [[(Ho + BV )l + BV

10



< [[(Ho + V)¢ + [Blal| How || + 5]l ]

Thus, if || < a™!, we have

[ Hopll < (1= [Bla) ™ [|(Ho + BV)Y[| + (1 — |8la) =816l

Let 1, € D(Hy), ¥, — ¢ in H and (Hy + V)1, is Cauchy, then Hyy, is Cauchy
by the above inequality. Hy is closed on D(Hy) = ¢ € D(Hy) and Hy,, — Hot) in
‘H. If we consider:

[(Ho + BV)(Un — )| < [[Ho(bn — V)| + BV (¥ — )|
< (1+ |Bla)|[Ho(vbn — ¥)|| + [BI0l[¢n — ¥

we can see that (Hy+ 6V )y, — (Ho+ GV )y in ‘H and therefore, Hy + 3V is closed
on D(Hy). That (Hy + V)1 is analytic for ¢ € D(H,) is obvious. O

Theorem 8. Let Hy + SV be an analytic family of type (A) in a region R and let
0 € R. Then Hy + BV is an analytic family in the sense of Kato. In particular,
if Ey is an isolated nondegenerate eigenvalue of Hj, then there is a unique point
E(B) € 0(Hy + BV) near Ey when || is small which is an isolated nondegenerate
eigenvalue. Moreover, F(3) is analytic near 3 = 0.

Proof. Since the analyticity is a local property, we first prove analyticity in the
sense Kato near 3 = 0. Choose A ¢ o(Hy). Then (Hy — A\)~! and Ho(Hy — \)~! =
14+ A(Hy — A\)7! are bounded. Thus for any ¢ € H,
IV (Hy — N ol < al| Ho(Hy — A)~ ol + 0l (Ho — X) ']
< (al|Ho(Ho — N7 + 0l (Ho — M) D llll
Thus V(Hy — A)~! is bounded; so for 3 small, operator [1+ 8V (Hy — )] ™! exists
and is analytic in § (being given by a geometric series). Direct computation gives:
(H(] - )\>_1[1 + 6V(H0 - >\)_1]_1 - [HO - )\ + 6V(H0 - )\>_1(H0 - >\)]_1
= (Ho+ BV —=N)""

So for 3 small, A ¢ o(Hy+ V) and (Hy + 3V — A)~! is analytic in 3. This proves
that Hy + GV is an analytic family in the sense of Kato near § = 0. By writing

Ho+ 08V = (Ho+ BoV) + (8 — o)V, we can similarly prove analyticity at § = .
Next statements follow directly from Kato-Rellich theorem. O

Finally, we show that one can obtain explicit lower bounds on the radius of
convergence of the Taylor series:

Theorem 9. Suppose that ||V || < al|Hopl|| + bll¢ll, Ve € D(Hy) C D(V). Let Hy
be self-adjoint with an unperturbed isolated, nondegenerate eigenvalue Ej, and let
e = 1 dist(Eo, 0(Ho) \ {Eo}). Define

r(a,b, Ey,€) = la+ e [b+ a(| Eo| + )]
Then the eigenvalue E () of Hy + BV near Ej is analytic in the circle of radius
r(a,b, Ey,€).

11



Proof. Here i refer reader to the great Kato’s book [1] (p.88-89, 379-381), where is
shown that the eigenvalues E([3) are analytic for such 3 that:

18] < ro = min(al HoR(C, Ho)ll + b R(C, Ho)[l)™

where, in our case, we can take I' = {( € (CHEO — (| =€} and
R(¢, Hy) = (Hy — €)' If we consider that ||R(C, Hp)|| = (dist(¢,0(Hy))) ™ = €71,

we have:
ro = Igleig(aHHoR(C, Ho)|l + bl R(¢, Ho)ll) ™
> min(a(1 + [C][|R(C, Ho)ll) + bl R(¢, Ho) )~

¢er
=la(l+e (Bl +e)+e o] =la+e b+ a(|E|+ )]t =7(a,b, Ey,e¢)

O

2.2 Perturbation series

Consider the special case H(3) = Hy + V. Suppose that Hj is self-adjoint and Ej
is a nondegenerate eigenvalue of Hy. From Kato-Rellich theorem we know that, for
0 small, Hy + SV has a unique eigenvalue F(f3) near Ey and that F(f3) is analytic
near 3 = 0. The coefficients of its Taylor series are called Rayleigh-Schrodinger
coefficients and the Taylor series are called the Rayleigh-Schrodinger series. For
sufficiently small € (and ) E(() is the only eigenvalue of Hy + SV in the circle
{E € C||E — Eo| < €}. As we already know,

_ b _ -t
P(B) = — 5. |E_EO|ZE(H°+W E)\dE

is the projection onto the eigenvector with eigenvalue F(f3). Since (Hy+ 3V — E)™!
is analytic in § near 3 = 0, P(/3) is analytic in 3 near 5 = 0. In particular, if )y is
the unperturbated eigenvector, P(/3)Qy # 0 for § small since P(3)Qy — Qo # 0 as
B — 0. Since P(3) is an unnormalized eigenvector for H(/3),

(Qo, H(B)P(B)0) (0, VP(B)8)
(o, P(8) ) (o, P(8) )

To find the Taylor series for E(f3), we need only find the Taylor series for P(3). To
do this, we need only find a Taylor series for (Hy+ 3V — E)~! and integrate it. But
the Taylor series for (Hy+ 3V — E)~! is just a geometric series:

E(B) =

=Eo+ 0

o0

(Ho+ BV —E)™' = (—1)"3"(Hy — E) ' [V(Hy — E)']"

n=0

12



Thus, the Rayleigh-Schrédinger series for E(3) is given by

_ D neo "
where
_ (_1)n+1 —11n+1
Ap — % %E_E()':E(QO’ [V(HQ — E) ] + Qo)dE
(_1)n+1

=i %E_EMZE(QO’ (Ho— E)"'[V(Ho — E)"']"Q)dE
(2.2)

Let us compute F(3) up to order 3*. Assume that there is an orthonormal basis of
eigenvectors, g, Q1, ..., with HyQ; = E;€; (it holds if for example Hy has compact
resolvent). Denote V;; := (€;, V). Then

1 1

by = —— Qo, (Hy — E)'Qo)dE = —— Ey—FE)'dE =1
’ 2im |E—Eo\=s( 0: (Ho = E)7 %) 2im |E—Eo|=e( 0~ £)
1
by = — (Qo, (Hy — E)'V(Hy — E)'Q)dE
2 | E—Eo|=e
1 _
- (Hy — E)™'Qy, V(Hy — E)'Q)dE
2T J|p—Eo|=
1
= Voo(Ey — E)2dE =
1
by = —5— (Qo, (Hy — E) ' [V(Hy — E)'*Q)dE
2T |E—Eo|=¢
1
= T3 (E(] — E)_z(Qo, V(HO — E>_1VQo)dE
20T J|p—Bo|=
1 o0
=—-= (Eo— E)> (V*Q0, 2)(, (Hy — E)"'VQ)dE
20T J|p—Bo|=c im0
1 o0
= (Eo— E)>) (E;j — E)™(Q0, V,)(Q, VQ)dE

20T J\ B Bo|=c

<
Il
o

Since )
— (Eo — E)?dE =0

27/7T ‘E—E()|=€
and (for j # 0)
1
5 (Eo— B)(E; — E)™'dE = (E; — E)™

20T J| g By|=c

13



we finally get
by =—> (E; — Eo)*Vo;Vio

J#0
Similarly,
by =Y > (Ei — 2By + Ej)(E; — Eo)*(E; — Eo)*VaiViVio
i#0 j#0
-2 Z(Ez — Eo) Vi VioVao
i#0
ao = Voo
a ==Y (E;— Eo) " "VaiVig
i#0
=3 (B — Eo) (B — Eo) WVaiVigVie — 2> (Ei — Eo)*VoiVio Voo
1#0 j#0 i#£0
ZZ Z (E; — Eo) ' (Ej — Eo) " (Ey, — Eo) "Voi Vi Vit Vio
1#0 j#0 k#0
+2) > (Ei — 2By + Ej)(E; — Eo)*(E; — Eo) VooV Vi Vio
i#0 j#0
+2 Z Z (E; — Eo) *(Ej — Eo) 'VoiVioVo; Vio — 3 Z(Ez — Eo) " *VoiVio Vo
i#0 j#0 1#£0

Thus, if we write E(8) = Ey + Y-, @, 3", we have computed:
o = balao = Voo
ay = by (ar = bian) = = > _(E; — Eo) Vo Vig
i#0
Q3 — b_l(ag — blOég — b2061>
= Z Z (E; — Eo)~ E — Ey)” lv()ivijvjo — Z(Ez — Eo) " *VoiVio Voo
i#0 j#0 1#0
gy = b_l(ag — blOég — bQOéQ — b30(1)

= _ Z Z Z (E; — Eo) " NE; — Eo) ' (Ex — Eo) ™ "VaoiVi; Vik Vo

i#0 j#0 k#0
+ Z Z(Ez — 2 + E;)(E; — Eo)*(E; — Eo) ™ *VooVai Vi Vio
i#0 j#0
+ Z Z (E; — Eo)~ E Ey)~ l%z‘VioVOjVjo — Z(Ez — Eo)_?’%ivio%zo
1#0 j#0 1#£0

Remark 3. The nth Rayleigh-Schrodinger coefficient «, is

n—1
(_1)n+1 Z H(EZ] - EO)_IVEJZ& Vi1i2 s ‘/inflo

i17£07i27£0 7777 Z’n717£0 Jj=1

14



2.3 A little more on perturbations

Definition 6. Let H(3) be a closed operator in a Hilbert space H and H(f) is
holomorphic for §# in a domain D of the complex plane symmetric with respect to

the real axis, H(f3) is densely defined for each § and that H(3)* = H((3). Then we
call H(B) a self-adjoint holomorphic family.

Remark 4. It is clear that H () is self-adjoint for each real 5 € D.

Theorem 10. Let H(f3) be a self-adjoint holomorphic family of type (A) defined
for § in a neighborhood of an interval I, of the real axis. Furthermore, let H([3)
have compact resolvent. Then there is a sequence of scalar-valued functions pu,,(5)
and a sequence of vector-valued functions ¢, (/3), all holomorphic on I, such that
for g € Iy, the p,(3) represent all the repeated eigenvalues of H(3) and the ¢, (5)
form a complete orthonormal family of the associated eigenvectors of H(f3).

The proof can be found in [1] chap. VII §3.

15



Chapter 3

Infinite-dimensional Jacobi matrix

3.1 Introduction and general results

Definition 7. A matrix A € C%? is called Jacobi matriz when A has the following
tridiagonal form:

ar B 0 L. 0 0 0

Yoo B 0 0 0
A= :

0 0 0 ... a2 a1 B

0O 0 0 ... 0 1 «g

Consider first a semi-infinite Jacobi matrix K € ¢?(N) in the form:

)\1 w1 0 0
U71 )\2 Wo 0

K = 0 ’(172 )\3 Ws

0 0 ws M\

and assume that 0 < A\; £ Ay < ... and limy_ A\ = 0o and w;, = wy, for Vk.
Assume also that the sequence {wy}72, is bounded. K can be decomposed as

K=Ky+W+Wr~

16



where

A0 0 0 0 w 0 O

0 X 0 O 0 0 wy O
K() - 5 W -

0 0 X3 O 0 0 0 ws

Then the matrix K is Hermitian. W is bounded, i.e. W € B(¢*(N)) and |[W| =
[WW*[|'/2 = sup{|w||k € N}. Since o.(Ko) = O, Ko has a compact resolvent and
(W+W*)R;(Ky) is compact too. Finally we can claim that (/W +W*) is Ky-compact
self-adjoint perturbation and use Weyl theorem. Thus K has discrete spectrum.

Denote by {S\k}zozl the sequence of eigenvalues of K ordered increasingly (5\k <
Ak+1). By the min-max principle,

Mo = sup inf{(y, K¢)|v € D(K)NV*, |[gf| =1}

dimV <k

( V is a subspace of £?).
Using the Schwarz inequality, considering |[¢/|| = 1, we have

(¢, K9) = (¢, Ko)| = [(, (W + WH)p)| < [[W + W]

(¢, Kov) — [W + W7 < (¢, K¢p) < (4, Kop) + [W + W7

and using the min-max principle we get
A = el < W+ W < 2w

From now let us assume that the sequence {A;}72, is strictly increasing and that
w, = w € R is a constant sequence (then |[W{| = |w|). In this case let us write
Ak (w) instead of Ag. It is easy to see that A\x(0) = A\ and by the regular perturbation
theory it follows that {Ag(w)}%2 is strictly incresing. Since

)\1 —w 0 0
—w A —w O
0 —w )\3 —w ... =

0 0 —w /\4

17



0 -1 0 O w A w 0 0O -1 0 O
= 0O 0 1 0 0 w A3 w 0O 0 1 0
0o 0 0 -1 0 0 w M\ 0o 0 0 -1

it is easy to see that A\i(w) is an even function.
From the min-max principle it follows that

[Ak(w) = Ak(2)] < 2Jw — 2|
so that all A\x(w) are continuous functions. In particular, for Vk
Ak(w) = Al < 2[w

But one can claim much more. Since W is bounded, W is defined everywhere, thus,
the domain D(K) = D(K,) is independent of w and, obviously, for any ) € D(Kj),
the vector-valued function K is holomorphic in w (even linear).Thus, the family
K = K(w) is holomorphic of type (A). Moreover, the family K (w) is self-adjoint,
i.e., K(w)* = K(w), and by the above discussion, the resolvent of K (w) is compact.
According to the theory introduced above, the functions A\, (w) are real-holomorphic
everywhere on the real line.

3.2 Perturbation series of an eigenvalue

Now we will use the theory introduced in the previous chapter and compute first four
terms of the Rayleigh-Schrddinger serie of an eigenvalue A, (w). Denote e; = {0;;}2,,

the family {ej,es,...€;,...} is an orthonormal basis of ¢* and Kype; = \je; for
Vj e N.
where

0O 1 0 0

o 0 1 0 ...

o 0 0 1

First let us simplify the expression for V;;,
Vij = (€, Vjej) = (eis€j11 + €j-1) = 8 j1 + 0i 51

18




An(w) = An + w4+ adPw? + al"w? + oMt + o(w?) (3.1)

O‘YL) :Vnn:(snn-‘rl_‘_(snn 1:O

) = — Z ) " VaiVin == Y (N = M) Ot + Onie1) (Gimsr + ina)
i=1,i#n i=1,i#n
- 1 1
= - )\z_>\n ! 5nz 5ni— = - -
. Z ( ) ( o + ’ 1> )\n—l - )\n >\n+1 - >\n
i=1,i#n
alV = Z Z N = X)) H G = A) ViV Vin — ) (N = X)) Vi Vi Vin
i=1 z;ﬁn] 1 ];én i=1,i#n

= Z Z (Ai = An) )\ — ) (G + On,i—1)(0ij+1 + 0ij—1) (0541 + Ojn—1)

=1 z;énj 1 ];én
= Z Z (N = A) MO = M) T (On i + G 1,0) Gz + 2010 + Gia) = 0
i=1,i#n j=1,j#n
Similarly, we shall get

(n) 1 1
o = — —
! ()‘n—l - )‘n)2()‘n—2 - )‘n) ()\n-i-l - )\n)z()\n—i-Z - )‘n)

i ((An_ll— W <An+11— W) ((An_ll— W <An+11— m)

Now we would like to find a domain where the expression (3.1) holds. To do this,
we can simply use theorem 9 Since ||(T + T%)¢| < 2|l¢|l, a = 0 and b = 2 and
e = 1 dist(A\,, 0(Ko) \ M) = 2 min{|Auy1 — A, [An — Auzi1|}. Then we have

1
r=nr,= Z min{p‘n-ﬁ-l - )\n|> |)\n — )\n—l|}

and the expression (3.1) for A, (w) holds at least in the circle of radius r.
Interesting case of the problem is when spectral gaps of K are shrinking when
approaching infinity. As an example we can take A\, ~ n® where 0 < o < 1. Since

1 a .4 o 1
r="Tn= Z()‘n-l—l = An) ~ Zn T Anpl-a

the radius of convergence r, goes to zero when n — co. Thus the regular pertur-
bation theory works only locally. A description of global perturbations, i.e. pertur-
bations of K as a whole, need not be available, however, because of the shrinking

gaps.
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Chapter 4

Finite-dimensional Jacobi matrix

Now we will investigate some properties of a finite-dimensional Jacobi matrix. We
are interested in a Jacobi matrix K € C4Dx(24+1) ip the form:

-\, w
W =AW
woo—=A w
K = w 0 w (4.1)
w AN w
w A, w

+
woA

(all unspecified elements are zero)
Denote x(z) the characteristic polynomial of the matrix K, that is

X(2) :=det(z] — K).

If we know an element of an eigenvector of K we can compute others recursively. It
follows that the spectrum of K is simple.

4.1 Function §(z)

Definition 8. Define §: D — C,

[e.e]

S(x) =1+ Z(—l)m Z Z e Z Ty Thy 41 Thy Thig 11 - - - Thy Thp 41
m=1

k1=1 ko=k1+42 km=km—1+2

where

00
Z ‘Z’kl’]ﬁ_l‘ < OO}

k=1

D= {$ = {1}

20



Remark 5. (a) Note that the summation indices satisfy k; > 2j — 1.

(b) Obviously, if all but finitely many elements of = are zeroes then §(z) reduces to
a finite sum. For a finite number of variables we often will write §(x1, zs, ..., xx)
instead of §(z) where z = (z1,x2,...,2x,0,0,0,...).

Definition 9. The operator 77 defined on the space of all sequences indexed by N
such that

Ti({zetile) = {1 b
in called the operator of truncation from the left. Next, set T, = (11)", n =

0,1,2,..., hence
To({ze}izy) = {Than i,
In particular, Ty is the identity.

Proposition 1. It holds
S(Thr) — §(Thi1x) + Tpy1Tn08(Theoxr) =0, n=0,1,2,. (4.2)

Proof. To verify this identity, note that after the substitution 2’ = T,z one can
restrict oneself to the particular case n = 0. Consider that

e}

S(Thzr) =1+ Z(—l)m Z Z e Z Ty Thy 11T ky Thog 1 - - - They, Theyp 41
m=1

ki=n+1 ko=k1+2 km=km—1+2

And so

S(ZL’) — S(Tll’) = —I1T2 + Z( Z Z T1T2T ko Lhg+1 -+ » Lhy Thop+1
m=2

:3 k?m—k?m 1+2
= —xle{S’(Tgx)

Proposition 2. It holds

8( ({ : } ) - n!Z_an(22>7 S C? n = 0’ 17 2’ T (43)
k=1

k+n
where J,,(2) is the Bessel function of the first kind.

Proof. This can be verified with the aid of the identity:

S 1
;k/@—l—l (k+m) mnn+1)...(n+m—1)

whose derivation is immediate if we consider that the summands can be written as

1 ! 1 1
k(k+1)... (k+m) _E<k(k+1)...(k+m—1) a (k+1)...(k+m))
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By a (finite) mathematical induction in j =0,1...,m —

1, it is easy to show, with
the aid of the above identity, that

P PR ki(ki + Dka(ke +1) .. kp(km + 1)

DD INEDS 1
] Ky 1 ky—hr 42 Ko =142 kfl(kfl + 1) P km—j(km—j + 1) R (kfm_j +] + 1)

In particular, for j =m — 1 we get

e ra PR ki(ki + Dka(ke + 1) .. k(B + 1)

1 - 1 1
- (m—1)!k1;1k1(k1+1)...(k1+m) T mlln+1)...(n+m)

n!
m!(n +m)!

From the definition of J,, it follows that

>

Jj=0

2
AT = 27" J,(22)

Finally, we have

()

SEDICED DD VDS o

ki=n+1ko=ki+2  km=km_1+2 Fi(ke + k1 (ks 1) o o (kn +1)

=1+ mzl(_l)mZ2mﬂ”L!(+—i-Tn)! =nlz_,J,(22)
U
Corollary 1. It holds
2Jn(2) = 2(n 4+ 1) Jpi1(2) + 2Jns2(2) =0 (4.4)
Proof. Take x = {%}Zozp then T,,(z) k+n}k , and use (4.2) and (4.3). O
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4.2 Kernel of K in the symmetric case

The case, when elements \; in K are equal to A\ (denote A\, := A\, = \)), will
be called the symmetric case (although the word antisymmetric would be better to
use). Now, suppose the symmetric case.

In the symmetric case the characteristic polynomial is an odd function:

Let us define matrices S, T € REd+1)x(2d+1)

1 0 0 0 1
—1 0 0 1 0
1
5= ~1 T:=
0 1 0 0
1 1 0 0 0

Then STKTS = —K, STITS = I and so

X(z) =det(z] — K) = det(ST (2 — K)T'S) = det(z] + K)
= det(—((=2)I = K)) = —det((—2)] — K) = =x(-2)

Since the characteristic polynomial is an odd function in the symmetric case, 0
is always an eigenvalue. Lets see the eigenvector with eigenvalue 0. We denote
a=(a_g,...,a_1,00,0Q1,...,04) the unknown eigenvector and we choose ag = 1.

Proposition 3. It holds

a_p=(-D*ay, k=0,1....d (4.5)
Proof. Since
Ka=0
we have
Wa_p_1 — A +wa_p 1 =0 k=0,...,d (a_q41:=0) (4.6)
W1 + )\kOék + W1 = 0 k= 0, ce ,d (Oéd_H = 0) (47)

The statement will be proved by a (finite) mathematical inductionin k = 0, ..., d.The
statement is trivial for k = 0. For k = 1, (4.6) gives a_; = —a;.
The induction step k — k + 1: let the equation

a_j=(-1)a;
holds for all j =0, ...,k. Using the induction presumption in (4.6) we get
wa gy = M(—1fap +w(=1) ap =0 (1)

w(—l)k“a_(kﬂ) + My +wo_; =0 (4.8)
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and by subtracting (4.8) from (4.7) we get

O (k+1) = (—1)k+104k+1

O

Proposition 4. vector a = (a_g,...,q_1,q, a1, ...,q4), where a_, = (=1)Fay

and

wk

k
Hj:l )‘j

1 1 1
VDI

is an eigenvector with eigenvalue 0 in the symmetric case.

o = (—1)F S(wilik) k=0,1,...,d (4.9)
with
,0,0,0,...)

w=(

Proof. We have to verify that

wOék_1+>\kOék+wOék+1:O kzl,,d

Putting ay, = (—1)’“1_[,;”]; /\j%'(wTkm) in the equation we have to show that
5

(_1)k—1wk (_1)kwk (_1)kwk+2
S (Wl 1k) + N (wThr) + o —
[J Y DY |J HEpY

S(wTyi1k) = 0.

Multiplying the equation by (—1)¥+lw=* Hf;ll A\; we get

S(wTy_1k) — F(wTik) + ELS(wTkH/@) =0
Ak Akl

and from (4.2) it follows that the last equation holds. O

4.3 The infinite linear and symmetric case

Now let us consider the infinite case again. Considering the limit d — oo in (4.1)
we arrive at a Jacobi matrix K € ¢?(Z) infinite in both directions. Furthermore
let us suppose the linear and symmetric case, i.e., the diagonal entries of K depend
linearly on the index, \; = A} = kA (A is a constant). The entries just above and
below the diagonal are all equal to a w > 0. Let 7 be the shift operator in (?*(Z),

(TY)k = rsr € C(Z)
it is clear that 7 is unitary. Then

K=A+W+4+W*
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where

It can be easily verified that

ANT =TAN-AT, KT=TK-AT

and similarly
KT '=T'K+AT™' (since T'=17"%)

Consequently, if ¢ is an eigenvector of K, K1 = £, then
KT = TKv — AT = (6 — A

thus, 71 is also an eigenvector with a shifted eigenvalue.
Let us now investigate a kernel of K. For d < oo we already have shown the

eigenvector with eigenvalue 0 in Proposition 4. Sending d to infinity in (4.9) we
obtain a vector iy € Ker(K) C (*(Z),

(o) = ar, = (=1)* (2%) , ke (4.10)

Verification: verification of the fact that )y € Ker(K) can be done by the same way
as in the proof of Proposition 4.9. (4.3) implies

ol = (_1)k#5 (wTk {JLA}:;) B (_1)kAU;Z!k! (%)k % (25)
RS

Since J_x(2) = Jip(=2) = (=1)*Jx(2), the identity (¢g)_1 = (—=1)%(tho)s holds.
Next set 1, := T 1)y, [ € Z. Then

(¢l)k = Qg

and
Ky = KT 'y = (T7'K 4+ IAT Yy = 1A,

Therefore 1), is an eigenvector of K with the eigenvalue [A and since the identity
Z Ji(2) Jp—i(2) = b
k=—00

holds, the eigenvalue 1, is already normalized.

From the regular perturbation theory it follows that the eigenvalues of K are sim-

ple for sufficiently small w. By the above computation, the eigenvalues do not

depend on w. Hence the eigenvalues of K are all simple for any w (considering
K=Ky+wW+W*) = (Ky+ wg(W +W?*)) + (w — we) (W + W*)) and

o(K)=0,(K)=AZ
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4.4 The characteristic function in the symmetric

case
Definition 10. Let fi(2),..., fs(2) be a sequence of complex functions of one com-
plex variable z. Define D(f1(2), ..., fa(2)) as the determinant of a Jacobi matrix in
the form:
—fd(—z) w

w —fa1(—2) w

w —fl(;z) w
w fi(z) w
w o fio1(z)  w

w fd(z)

Remark 6. Note that for fi(z) = M\ — 2z, D(f1(2), ..., fa(z)) = det(K — zI) is the
characteristic polynomial in the symmetric case.

Definition 11. Define recursively a sequence of functions Ni(y1,...,ux), k =
0,1,2.... The k¥ function depends on k variables, Ny is a constant.
M=1
Ni(y1) = m

N1 (U1, Y2, -+ Y1) = YN (o, - - o, Ukpr) — W N1 (Y3, - -, Yps1) for k>1

Lemma 3. For all n € N, it holds

2
Nn(f1> .- 7fn) = ann—l <f1> .- -afn—Zafn—l - 1}}_)

Proof. For n = 1 the statement is clear. Suppose that the equation holds for all
integers smaller or equal to n. Then

Nn-i—l(fb ooy for1) = len(f2a ooy fog1) — w? n—1(f35 s fng1)

by using the induction presumption we get

2

2
= flfn-l—an—l (f2a .- ~7fn - ) _w2fn+an—2 (.f?n- . ->.fn - )

fn-l-l fn+1

w2
= fn—i—an (flu o -7fn—17fn - fn+1)
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Lemma 4. Let A € C", B € C™" C € C™™, A € D™ and let A™! exists.
Then

A C _
det <B D) = det(A)det(D — BA™'C)

(5 5) = (sa 5) (0 1)
(a2 1) (51 )= p-sac)

A C I C
det <B D) = det <BA_1 D) det(A)

= det(D — BA™'C) det(A)

Proof. Since

and

we have

Proposition 5. It holds

D(fi(2), .., fa(2)) = (=) [2Na(fi(2), ..., fa())Na(fi(=2), ..., fa(=2))
—wNa(f1(2), - . fa(2))Na-a(f ( Z) s fa(=2))
+w N1 (fa(2 ) fa()Na(fi(=2), -, fa(=2))]

Proof. The statement will be proved by a mathematical inductionind = 1,2, ... .Let
d =1, then

—fi(=2) w 0

D(fi(z)) = det ( w -z w ) = 2f1(2) fi(=2) — W f1(z) + w’ f1(—2)
0 w  fi(z)

= 2zMi(f1(2))Ni(fi(=2)) — w2N1(f1(Z))N0 + szoNl(fl(—Z))

Now let d > 2.

D(fi(2),..., fa(z)) = det | w. —,‘z w

w fa(z)
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Shifting the last column of the matrix to the place of the first column:

= det

0 —fd(—z) w 0
0 w —fao1(=2) w... 0
w 0 | w fa—1
fa(2) 0 w

(2)

and similarly by shifting the last row to the place of the first one, we get

fa(2)

0

0

0 0 w
0 —fa(—2) w 0 0 0
| 0
0 0 0 w fao(z) w
w 0 0 w fd—l(z>
Now, Lemma 4, where
—fa-1(=2) w
_(fuz) 0 "
A_( 0 —fd(—z))’ b= .
w fa1(z)
0 0 0 w
¢= (w 0 0 0) =B,
follows
D(f1(2),..., fa(z)) = det(A)det(D — BA™'C)
—faa(=2) + 755 w
w —fa-2(—2)
= — ful2) fal~2) det .
fd—2(2) w

2

w fd—l(Z) - %(z)

We arrive at the expression:

w2

D(fi(2),... m

fa(2)) = —fa(2) fa(=2)D(f1(2), . . ., fa—2(2), fa-1(2) — )
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using the induction presumption:

D(fi(2)s .-, fa(2)) = = fa(2) fa(=2)(-1)*

(2N (f1(2), o, faaa(z) — m)Mm(ﬁ(-Z) ooy fam(=2) — Fal—2 )
— wNg_1(f1(2), .-, faer(2) — f:)Z>)Nd o(f2(=2),- -+, far(—2) — fdw—z))

2 2

N1 (fi(=2), ..., far(=2) —

fa(2)

Using Lemma 3 we finally arrive at the expression:

D(fi(2).- - fa(2) = (=) [2Na(fi(2), ., fa(2))Na(fi(=2), .., fa(=2))
- szd(fl(Z) ( f2(—2)a oo Ja(=2))
+w' N1 (folz )

+wNao(fal2), -, faa(2) =

Proposition 6. It holds

Nd(fl,---,fd)=f1---fd3<%,---,%)

Proof. We must verify whether the function f; ... f4§ (%, cee %) satisfies the re-
cursive relation in the definition of N. It is easy to see that

N’ozg(o) =1

and

Ni(fi) = (T (fl) = fi

Next for d > 2 we should show that
Nawi(fiy - os farr) = FiNa(far oo, far1) — W Naz1 (fae o, fasn)

by putting the function f; ... f4§ (%, cee %) in we get

s(5gm) -3 () - G )

The last equation holds due to (4.2). O
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Corollary 2.

Da(fi(2). .-, fa(2)) = (=1)* (H J%(Z)J%(-Z))

2 w w w
fl(—Z)S (f1 z) fd(z)) s (f2(—Z) Y fd(—z))
w? w w w w
vt (e 70) Gy )|
Let us denote
_)\d w 0
W —A—] W

w =N w
Kq = w 0 w
w oA W

W Ag_p W
w >\d

and set
Xs(z) = det(Kg — z1)

Proposition 7. It holds

a1l 2 w w w
(=1) Xs(2) = ( )\ & >S N -2 )\d—z);§<)\1+z"“’)\d+z)

w w
oS ( | )g( )
Z (k o ) Njp1— 2 AN — 2 Ajp1+ 2 Ag+ 2

Proof. xs(z) = D(f1(2),..., fa(z)) for fr(z) = A\ — 2. If we use Corollary 2, we can
see that to show this proposition it is enough to show that:

d J
, 1 w w w w
2 w <7,..., ) ( e )
jz:% (g )\z_22>§ Aj+1— 2 Ad— 2 8 Ajp1+ 2 Ad+ 2
'lU2 w w w w
= § e 5 s
(A =2)" N\ =2 Ad— 2 AL+ 2 Aa+ 2

w? w w w w
— 411
z()\1+z)§<)\1—z’ ’)\d—z>§<)\2—l—z’ ’)\d+z) (4.11)
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Let us denote

Al = v oY AT = v ...,
J S()\jjtz’ ’)\d+z)’ J g()\j—z’ "o — 2

w w

A AT — A A - RN
Aji=A7AT = AT AL, a) ._>\j+Z’ a; ‘_)\j_Z’ aj = aja;
Note that
o AE =1 w
A frnd — =
d d+1 4 )\? — .2
and from identity (4.2) it follows
Af =AY —ataf AL, forj=1,...,d-1

Then
ATAT = Ay —aja; A Ay = Ay —ajay Az +ajasag A A = - =
= Ay —ajay Ay +ayagai Ay + -+ (=) taTay. . ar ,Ag
+(=)%ayay...aq0a] (AT AT

Note that Aff_lAj =1= A, 1, then we can write:

d+1
Zalag ak 1 Ak (4.12)
where the exponent in algill) has only symbolic meaning (a,ﬁ‘_?k = a;_, for even k
and algill)k = a,_, for odd k). Similarly we can get
d+1 L
ay Ay AT = Z ayay .. .al Y Ay (4.13)
k=2
Next
(_1)k B (_1)k71 _ w _ w _ 2 _1 k—1 w
%e-1 T % SV ey sl vy ey e e GBS W
—2(—1)" 2y 4.14
(1 ey (114)

Finally, we can verify the above identity (4.11) with the aid of (4.12),(4.13) and
(4.14).

,w2 2

_ — A+ _ Y A=At _ A AT
RHS = -5 A AT ()\1+Z)A CAS (a1A2A1 af AT AY)

w (& d+1
_ (k-1 -1k
= E amas...a, | Ap— E a1as . ak 1 Ak

k=2
d+1
= 22&1&2 .. .ak_lAk = 220,1&2 .. .akAkH =LHS
k=2 k=1
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Conclusion

In this paper we dealt with the description of the spectrum of an operator with the
Jacobi matrix. With the aid of some results from functional analysis we presented
some basic properties of the spectrum of the Jacobi matrix in the whole. Next we
introduced the perturbation theory and then we applied it to these operators. We
pointed out some problems, which appear while trying to describe the spectrum
with the aid of the perturbation theory, first of all this is the possibility of only
local description of the spectrum. In the end we also presented some features of
finite-dimensional Jacobi matrices.

The aim of this paper was to describe the basic properties of the operator with the
Jacobi matrix and its spectrum, saying it informally: ”to state about the spectrum
what can be stated”. Partly it is also a concept of my future work, in which I'm
going to try to derive a global description of the spectrum of the operator with the
Jacobi matrix, i.e., the description of the spectrum of the operator as a whole. In
this afford I will use also the knowledge of the spectrum of finite-dimensional Jacobi
matrices.
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