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Spektrálńı analýza Jacobiho matic speciálńıho typu
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Obor: Matematické inženýrstv́ı
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Introduction

The Jacobi matrix is a complex tridiagonal matrix (Definition 7). The finding of
the spectrum of the Jacobi matrix is the problem of much physical interest. The
spectrum of (finite) Jacobi matrices appears in many applications: from orthogonal
polynomials and nearest-neighbours interaction models to solvable models of quan-
tum mechanics. This paper summarize the basic knowledge about the spectrum of
an operator with the Jacobi matrix.

In the first chapter we will introduce some definitions and theorems of functional
analysis as such: an essential spectrum, a relative compactness, the Weyl theorem
and the min-max principle, which we will use later in the main chapter 3.

In the second chapter we will present the perturbation theory for linear operators
and we will compute the coefficients of the Rayleigh-Schrödinger series of perturbed
eigenvalue, which we will use later again in the specific problem of the Jacobi matrix
in chapter 3.

In the third chapter we will introduce the operators with the Jacobi matrix. With
the help of the theory written in chapter 1 and 2 we summarize some features of
the spectrum of the operator with the Jacobi matrix. Next we will show that in
some cases (operators with shrinking spectral gaps) the perturbation theory does
not allow the global description of the spectrum.

In the final chapter we will find the kernel of the operator with the Jacobi matrix
of a special type (a linear and symmetric case). Next we will state some helpful
statements considering the finite-dimensional Jacobi matrices as a concept for the
future afford to describe the spectrum of the Jacobi matrix globally.
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Chapter 1

Operators in Hilbert space

In this chapter we introduce some basic definitions and fundamental theorems which
we will use in the main chapter 3. We deal with usually unbounded operators in a
Hilbert space. For more detail functional analysis, we refer reader to ,e.g., [3].

1.1 The essential spectrum

and the min-max principle

Definition 1. A set σess(A) := {λ ∈ C
∣

∣∃{xn}∞n=1 ⊂ D(A), ‖xn‖ = 1 which has no
convergent subsequence and limn→∞(A − λ)xn = 0} is called essential spectrum of
an operator A.

In this text we are interested in operators which are usually self-adjoint. So lets
introduce some properties of σess(A) where A is self-adjoint.

Theorem 1. Let A be self-adjoint and λ ∈ R (recall that σ(A) ⊂ R) then following
statements are equivalent:
(i) λ ∈ σess(A);
(ii) ∃{xn}∞n=1 ⊂ D(A), ‖xn‖ = 1, xn → 0 weakly and limn→∞ ‖(A− λ)xn‖ = 0;
(iii) λ is an accumulation point of the set σ(A) or λ is an eigenvalue with infinite
multiplicity.

The proof of this theorem can be found in [3] chap. 10.

Remark 1. (a) A set σd(A) := σ(A)\σess(A) is called discrete spectrum and the
statement (iii) from the previous theorem follows that the discrete spectrum is
composed of isolated points of σ(A) with finite multiplicity. If σess(A) = Ø, i.e.
σ(A) = σd(A) one says that the self-adjoint operator A has purely discrete spec-
trum.
(b) It holds: σess(A) = Ø ⇔ (∀µ ∈ ρ(A))(Rµ(A) ≡ (A− µ)−1 is compact)
(proved again in [3] chap.10) Therefore operators with clearly discrete spectrum are
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often called operators with compact resolvent.
(c) σess(A) is a closed set.

Next we will deal with a stability of σess(A) for A self-adjoint.

Definition 2. Let A be a self-adjoint operator. Operator T (possibly unbounded) is
A-compact (or relative compact with respect to A) if D(T ) ⊃ D(A) and an operator
T (A− i)−1 is compact.

Theorem 2. (Weyl) Let A be a self-adjoint operator and S be symmetric and
A-compact operator. Then

σess(A) = σess(A+ S)

.

A reader can find the proof of this theorem in [3] §10.4.

Next very useful theorem gives us information about σd(A) and σess(A) (for A
self-adjoint) from knowledge of the expectation values (ψ,Aψ).

Theorem 3. (min-max principle) Let A be a self-adjoint operator that is bounded
from below, i.e., A ≥ cI for some c. Define

µn(A) := sup
ϕ1,...,ϕn−1

UA(ϕ1, . . . , ϕn−1)

where

UA(ϕ1, . . . , ϕm) = inf{(ψ,Aψ)|ψ ∈ D(A); ‖ψ‖ = 1;ψ ∈ [ϕ1, . . . , ϕm]⊥}

Then, for each fixed n, either :
(a) there are n eigenvalues λ1, . . . , λn (counting degenerate eigenvalues a number
of times equal to their multiplicity) such that λk < inf{λ|λ ∈ σess} ∀k ∈ n̂ and
µn = λn (counting multiplicity);
or
(b) µn = inf{λ|λ ∈ σess} and in that case µn = µn+1 = µn+2 = . . . and there are at
most n− 1 eigenvalues (counting multiplicity) below µn.

The proof can be found in [4] vol. IV chap. XIII.
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Chapter 2

Introduction to the perturbation

theory

In this chapter we shall examine the following situation: An operator H0 has an
eigenvalue E0 (we usually assume that E0 is in the discrete spectrum). Suppose
that H0 is perturbed a little; that is, consider H0 + βV where V is some other
operator and |β| is small (sometimes we will consider generalized case where H(β)
will be an operator-valued function and H(β0) = H0 for some β0). Then we will
study what eigenvalues of H0 +βV lie near E0, how they are related to V and what
their properties are as functions of β.

2.1 Regular perturbation theory

Theorem 4. Suppose that A is closed operator and let λ be an isolated point of
σ(A). Explicitly, suppose that there is ε > 0 such that {µ

∣

∣|µ−λ| < ε}∩σ(A) = {λ}.
Then,
(a) For any r with 0 < r < ε,

Pλ = −
1

2iπ

∮

|µ−λ|=r

(A− µ)−1dµ (2.1)

exists and is independent of r.
(b) P 2

λ = Pλ. Thus Pλ is a projection.
(c) if µ is an isolated point of σ(A) and µ 6= λ, then PµPλ = 0. Thus
PµPλ = δµλPλ.
(d) If Gλ = RanPλ and Fλ = kerPλ, then Gλ and Fλ are complementary closed
subspaces; that is, Gλ + Fλ = H and Gλ

⋂

Fλ = {0}. Moreover, Gλ ⊂ D(A),
AGλ ⊂ Gλ.
(e) If B ≡ A � Fλ, then λ /∈ σ(B).

Proof. (a) We know that resolvent (A− µ)−1 is an analytic function on C\σ(A) ≡
ρ(A). Thus the integral exists as a Banach-space-valued Riemann integral. That it
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is independent of r is a consequence of the Cauchy integral theorem.
(b) Let r < R < ε.

P 2
λ =

1

(2iπ)2

∮

|µ−λ|=r

∮

|ν−λ|=R

(A− µ)−1(A− ν)−1dνdµ

Using the first resolvent equation:

P 2
λ =

1

(2iπ)2

∮

|µ−λ|=r

∮

|ν−λ|=R

(ν − µ)−1[(A− ν)−1 − (A− µ)−1]dνdµ

=
1

(2iπ)2

∮

|ν−λ|=R

dν(A− ν)−1

∮

|µ−λ|=r

dµ(ν − µ)−1

−
1

(2iπ)2

∮

|µ−λ|=r

dµ(A− µ)−1

∮

|ν−λ|=R

dν(ν − µ)−1

=
1

(2iπ)2

[

0 − (2iπ)

∮

|µ−λ|=r

(A− µ)−1dµ

]

= Pλ

(c) Similar computation (as in (b)) shows that:

PµPλ =
1

(2iπ)2

∮

|ν−λ|=r′
dν(A− ν)−1

∮

|ζ−µ|=r

dζ(ν − ζ)−1

−
1

(2iπ)2

∮

|ζ−µ|=r

dζ(A− ζ)−1

∮

|ν−λ|=r′
dν(ν − ζ)−1 = 0

because r and r′ are chosen such that {ζ ∈ C
∣

∣|ζ−µ| ≤ r}∩{ν ∈ C
∣

∣|ν−λ| ≤ r′} = Ø.
(d) That Gλ = ker(1 − Pλ) and Fλ = kerPλ are closed complementary subspaces is
clear.
Let ψ ∈ H. Pλψ = − 1

2iπ

∮

|µ−λ|=r
(A − µ)−1ψdµ. Define ψ(µ) := (A − µ)−1ψ and

K := {µ ∈ C
∣

∣|µ−λ| = r}. We shall show that − 1
2iπ

∮

K
ψ(µ)dµ ∈ D(A). Since Pλ is

given by a Riemann integral, Pλψ = limn→∞ χn where χn = − 1
2iπ

∑kn

i=1 ψ(µi)∆i and
µi and ∆i are chosen so that χn → − 1

2iπ

∮

K
ψ(µ)dµ for n→ ∞. Consider that

∀n ∈ N, χn ∈ D(A) and

Aχn = −
1

2iπ

kn
∑

i=1

Aψ(µi)∆i = −
1

2iπ

kn
∑

i=1

(ψ + µi(A− µi)
−1ψ)∆i

Since
∑kn

i=1 ∆i = 0 (K is a circle), Aχn = − 1
2iπ

∑kn

i=1 µi(A−µi)
−1ψ∆i → − 1

2iπ

∮

K
µψ(µ)dµ

for n→ ∞. Finally, since A is closed, − 1
2iπ

∮

K
ψ(µ)dµ ∈ D(A). Thus Gλ ⊂ D(A).

Let φ = Pλφ ∈ Gλ. Then Aφ = APλφ = Pλ(Aφ), thus Aφ ∈ Gλ.
(e) Let

Rλ := −
1

2iπ

∮

|µ−λ|=r

(λ− µ)−1(A− µ)−1dµ
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Then

Rλ(A− λ) = −
1

2iπ

∮

|µ−λ|=r

(λ− µ)−1(A− µ)−1(A− µ+ µ− λ)dµ

= −
1

2iπ

∮

|µ−λ|=r

(λ− µ)−1dµ+
1

2iπ

∮

|µ−λ|=r

(A− µ)−1dµ

= 1 − Pλ

And by restriction on Fλ, one finds that Rλ(B − λ) = I � Fλ. Thus λ /∈ σ(B).

Definition 3. A point λ ∈ σ(A) is called discrete if λ is isolated and Pλ (given by
(2.1)) is finite dimensional; if Pλ is one dimensional, we say λ is a nondegenerate
eigenvalue.

Remark 2. (a) Suppose that Aψ = νψ. Then

Pλψ = −
1

2iπ

∮

|µ−λ|=r

(ν − µ)−1ψdµ =

{

ψ if ν = λ

0 if ν 6= λ

It follows that the only eigenvalue of A � RanPλ is λ.
(b) The only eigenvalue of (A−λ)Pλ is zero. Thus the spectral diameter of (A−λ)Pλ

is zero. Such operators are called quasi-nilpotents.
(c) If λ is a nondegenerate eigenvalue, then (∀ψ ∈ RanPλ)(Aψ = λψ).
It should be obvious if we consider theorem 4 and the previous remark:
ψ ∈ RanPλ ⇒ (A − λ)ψ ∈ RanPλ. Since dimPλ = 1, there is a constant c such
that cψ = (A− λ)ψ = (A− λ)Pλψ ⇒ c = 0 ⇒ Aψ = λψ.

To complete our discussion of discrete spectrum, we prove a converse to previous
Theorem.

Theorem 5. Let A be an operator with {µ
∣

∣|µ−λ| = r} ⊂ ρ(A), (ρ(A) = C\σ(A)).
Then P = (−2iπ)−1

∮

|µ−λ|=r
(A−µ)−1dµ is a projection. If P has dimension n <∞,

then A has at most n points of its spectrum in {µ
∣

∣|µ−λ| < r} and each is discrete. If
n = 1, there is exactly one spectral point in {µ

∣

∣|µ−λ| < r} and it is nondegenerate.

Proof. The proof of the Theorem 1(b) carries through without change to prove that
P is a projection and according to (c) we know that G = RanP and F = kerP are
closed complementary invariant subspaces. Let A1 = A � G and A2 = A � F . As
in the proof of Theorem 1(d), ν /∈ σ(A2) if |ν − λ| < r. If dimG = n < ∞, A1

has eigenvalues ν1 . . . , νk (k ≤ n), so a set σ(A) ∩ {ν
∣

∣|ν − λ| < r} has at most n
elements. To see that each spectral point in the circle is discrete, we note that if Pν

is the spectral projection of Theorem 1 and if ν is in the circle {ν
∣

∣|ν−λ| < r}, then
PνP = PPν = Pν because:

PνP =
1

(2iπ)2

∮

|µ−λ|=r

∮

|ζ−ν|=r′
(A− µ)−1(A− ζ)−1dζdµ
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(r′ is chosen such that {ζ
∣

∣|ζ − ν| ≤ r′} ⊆ {µ
∣

∣|µ− λ| < r})

=
1

(2iπ)2

∮

|µ−λ|=r

∮

|ζ−ν|=r′
(ζ − µ)−1[(A− ζ)−1 − (A− µ)−1]dζdµ

=
1

(2iπ)2

[
∮

|ζ−ν|=r′
dζ(A− ζ)−1

∮

|µ−λ|=r

dµ(ζ − µ)−1

−

∮

|µ−λ|=r

dµ(A− µ)−1

∮

|ζ−ν|=r′
dζ(ζ − µ)−1

]

= −
1

(2iπ)

∮

|ζ−ν|=r′
(A− ζ)−1dζ = Pν

PνP = PPν = Pν, thus RanPν ⊂ RanP , then dimPν ≤ dimP <∞.
The last statement is clear because if n = 1, we already know that A has at most 1
point of its spectrum in {µ

∣

∣|µ−λ| < r}. If there were no spectral point, then P = 0
and that is a contradiction with n = 1.

Definition 4. A (possibly unbounded) operator-valued function T (β) on complex
domain R is called an analytic family or an analytic family in the sense of Kato if
and only if:
(i) (∀β ∈ R) (T (β) is closed and ρ(T (β)) 6= Ø)
(ii) (∀β0 ∈ R)(∃λ0 ∈ ρ(T (β0)))(∃ε > 0)(∀β ∈ R, |β − β0| < ε)(λ0 ∈ ρ(T (β))) and
((T (β) − λ0)

−1 is an analytic operator-valued function of β)

The number λ0 in the above definition does not play a special role:

Theorem 6. Let T (β) be an analytic family on a domain R. Then

Γ = {(β, λ) ∈ C × C
∣

∣β ∈ R, λ ∈ ρ(T (β))}

is open and the function (T (β) − λ)−1 defined on Γ is an analytic function of two
variables.

The proof of this theorem can be found in [4] and we will not give it here.

Lemma 1. Let P and Q are projections (not necessarily orthogonal) and
dimP 6= dimQ, then ‖ P−Q ‖≥ 1. In particular, if P (x) is a continuous projection-
valued function of x on a connected set R ⊂ C, then dimP (x) is a constant.

Proof. Without loss of generality suppose dimP < dimQ. Let F = kerP and
let E = RanQ. Then dim(F⊥) = dimP < dimE. As a result, F ∩ E 6= {0}
(see e.g. [3] lemma 5.4.7). Let ψ 6= 0, ψ ∈ F ∩ E. Then Pψ = 0, Qψ = ψ, so
‖ (P − Q)ψ ‖=‖ ψ ‖. This implies that ‖ (P − Q) ‖≥ 1. The final statement we
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will prove by contradiction. Let dimP (x) 6= const on R. P (x) is continuous on R,
that is

(∀x0 ∈ R)(∀ε > 0)(∃δ > 0)(∀x ∈ R, |x− x0| < δ)(‖P (x) − P (x0)‖ < ε)

Put ε = 1. Since dimP (x) 6= const on connected set R ,∃x1, x2 ∈ R such that
|x1 − x2| < δ and dimP (x1) 6= dimP (x2). Then, by the previous statement
‖P (x1) − P (x2)‖ ≥ 1 and this is a contradiction with continuity of P (x).

Now we can finally proof the most important theorem of this chapter:

Theorem 7. (Kato-Rellich) Let T (β) be an analytic family in the sence of Kato.
Let E0 be a nondegenerate discrete eigenvalue of T (β0). Then for β near β0, there
is exactly one point E(β) ∈ σ(T (β)) near E0 and this point is isolated and nonde-
generate. E(β) is an analytic function of β for β near β0. Furthermore, there is an
analytic eigenvector Ω(β) (respective to E(β)) for β near β0. If T (β) is self-adjoint
for β real, then Ω(β) can be chosen to be normalized for β real.

Proof. Pick ε > 0 so that σ(T (β0)) ∩ {E
∣

∣|E − E0| ≤ ε} = {E0}. The circle
{E
∣

∣|E − E0| = ε} is compact and the set Γ of the Theorem 6 is open ⇒

(∃δ > 0)(∀β, |β − β0| ≤ δ)(∀E, |E − E0| = ε)(E /∈ σ(T (β)))

Then

P (β) := −
1

2iπ

∮

|E−E0|=ε

(T (β) − E)−1dE

exists and is analytic for β ∈ N := {β
∣

∣|β−β0| ≤ δ}. E0 is a nondegenerate eigenvalue
of T (β0) ⇒ dimP (β0) = 1. Then the last lemma implies that ∀β ∈ N dimP (β) = 1.
Thus, by Theorem 5, there is exactly one eigenvalue E(β) of T (β) with |E(β)−E0| <
ε when β ∈ N and this eigenvalue is nondegenerate. Put Ω(β) := P (β)Ω0, where
Ω0 is the unperturbated eigenvector. Then Ω(β) is an analytic eigenvector to E(β)
of T (β) (see Remark 2(c)). Thus, T (β)P (β)Ω0 = E(β)P (β)Ω0. The analyticity of
E(β) for β near β0 follows from the formula:

(E(β) − E0 − ε)−1 =
(Ω0, (T (β) − E0 − ε)−1P (β)Ω0)

(Ω0, P (β)Ω0)

Since P (β) is analytic for β ∈ N and (Ω0, P (β0)Ω0) = ‖Ω0‖2 6= 0, for β near β0 the
denominator (Ω0, P (β)Ω0) is nonzero.
We obtain an analytic eigenvector by choosing Ω(β) := P (β)Ω0 or

Ω(β) := (Ω0, P (β)Ω0)
− 1

2P (β)Ω0

in the real case.

‖Ω(β)‖2 = (Ω(β),Ω(β)) = (Ω0, P (β)Ω0)
−1(P (β)Ω0, P (β)Ω0)

= (Ω0, P (β)Ω0)
−1(Ω0, P (β)2Ω0) = (Ω0, P (β)Ω0)

−1(Ω0, P (β)Ω0) = 1

If we consider that T = T ∗ ⇒ P = P ∗.
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This would not be very useful if we did not have convenient criteria for T (β) to
be analytic. Fortunately there are some simple ones and we shall discuss one of
them in detail.

Definition 5. Let R be a connected domain in C and let T (β) be a closed operator
with nonempty resolvent set for each β ∈ R. We say that T (β) is an analytic family
of type (A) if and only if
(i) The operator domain of T (β) is some set D independent of β.
(ii) ∀ψ ∈ D, T (β)ψ is a vector-valued analytic function of β.

Now we leave the general case of the problem and consider only the linear case
T (β) = H0 + βV . We first prove a lemma, which gives a convenient criterion for a
family to be type (A).

Lemma 2. LetH0 be a closed operator with nonempty resolvent set. DefineH0+βV
on D(H0) ∩D(V ). Then H0 + βV is analytic family of type (A) near β = 0 if and
only if:
(a) D(H0) ⊂ D(V )
(b) For some a, b ≥ 0 and ∀ψ ∈ D(H0),

‖V ψ‖ ≤ a‖H0ψ‖ + b‖ψ‖

(we say that V is H0-bounded)

Proof. Suppose first that H0 + βV is an analytic family of type (A).
Then D(H0) = D(H0 + βV ) = D(H0) ∩ D(V ) so (a) holds. D := (D(H0), |||.|||),
where |||ψ||| := ‖H0ψ‖+ ‖ψ‖ is a norm and since H0 is closed, D is a Banach space.
Fix β > 0 small so that β and −β are both in the domain of analyticity. The
operator H0 + βV : D → H is everywhere defined and it is easy to verify that this
operator is closed (it has a closed graph in D×H since the graph is closed in H×H
with a weaker topology). Thus by the closed graph theorem,

‖(H0 + βV )ψ‖ ≤ a1|||ψ|||

and
‖(H0 − βV )ψ‖ ≤ a2|||ψ|||

where a1 and a2 are some positive constants.
Thus,

‖V ψ‖ ≤
1

2β
[‖(H0 + βV )ψ‖ + ‖(H0 − βV )ψ‖] ≤

a1 + a2

2β
|||ψ|||

so that condition (b) holds.
Conversely, let (a) and (b) hold. Then, for ψ ∈ D(H0),

‖H0ψ‖ ≤ ‖(H0 + βV )ψ‖ + |β|‖V ψ‖
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≤ ‖(H0 + βV )ψ‖ + |β|a‖H0ψ‖ + |β|b‖ψ‖

Thus, if |β| < a−1, we have

‖H0ψ‖ ≤ (1 − |β|a)−1‖(H0 + βV )ψ‖ + (1 − |β|a)−1|β|b‖ψ‖

Let ψn ∈ D(H0), ψn → ψ in H and (H0 + βV )ψn is Cauchy, then H0ψn is Cauchy
by the above inequality. H0 is closed on D(H0) ⇒ ψ ∈ D(H0) and H0ψn → H0ψ in
H. If we consider:

‖(H0 + βV )(ψn − ψ)‖ ≤ ‖H0(ψn − ψ)‖ + |β|‖V (ψn − ψ)‖

≤ (1 + |β|a)‖H0(ψn − ψ)‖ + |β|b‖ψn − ψ‖

we can see that (H0 + βV )ψn → (H0 + βV )ψ in H and therefore, H0 + βV is closed
on D(H0). That (H0 + βV )ψ is analytic for ψ ∈ D(H0) is obvious.

Theorem 8. Let H0 + βV be an analytic family of type (A) in a region R and let
0 ∈ R. Then H0 + βV is an analytic family in the sense of Kato. In particular,
if E0 is an isolated nondegenerate eigenvalue of H0, then there is a unique point
E(β) ∈ σ(H0 + βV ) near E0 when |β| is small which is an isolated nondegenerate
eigenvalue. Moreover, E(β) is analytic near β = 0.

Proof. Since the analyticity is a local property, we first prove analyticity in the
sense Kato near β = 0. Choose λ /∈ σ(H0). Then (H0 − λ)−1 and H0(H0 − λ)−1 =
1 + λ(H0 − λ)−1 are bounded. Thus for any ϕ ∈ H,

‖V (H0 − λ)−1ϕ‖ ≤ a‖H0(H0 − λ)−1ϕ‖ + b‖(H0 − λ)−1ϕ‖

≤ (a‖H0(H0 − λ)−1‖ + b‖(H0 − λ)−1‖)‖ϕ‖

Thus V (H0 − λ)−1 is bounded; so for β small, operator [1 + βV (H0 − λ)−1]−1 exists
and is analytic in β (being given by a geometric series). Direct computation gives:

(H0 − λ)−1[1 + βV (H0 − λ)−1]−1 = [H0 − λ+ βV (H0 − λ)−1(H0 − λ)]−1

= (H0 + βV − λ)−1

So for β small, λ /∈ σ(H0 + βV ) and (H0 + βV − λ)−1 is analytic in β. This proves
that H0 + βV is an analytic family in the sense of Kato near β = 0. By writing
H0 + βV = (H0 + β0V ) + (β − β0)V , we can similarly prove analyticity at β = β0.
Next statements follow directly from Kato-Rellich theorem.

Finally, we show that one can obtain explicit lower bounds on the radius of
convergence of the Taylor series:

Theorem 9. Suppose that ‖V ϕ‖ ≤ a‖H0ϕ‖+ b‖ϕ‖, ∀ϕ ∈ D(H0) ⊂ D(V ). Let H0

be self-adjoint with an unperturbed isolated, nondegenerate eigenvalue E0, and let
ε = 1

2
dist(E0, σ(H0) \ {E0}). Define

r(a, b, E0, ε) = [a+ ε−1[b+ a(|E0| + ε)]]−1

Then the eigenvalue E(β) of H0 + βV near E0 is analytic in the circle of radius
r(a, b, E0, ε).
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Proof. Here i refer reader to the great Kato’s book [1] (p.88-89, 379-381), where is
shown that the eigenvalues E(β) are analytic for such β that:

|β| < r0 ≡ min
ζ∈Γ

(a‖H0R(ζ,H0)‖ + b‖R(ζ,H0)‖)
−1

where, in our case, we can take Γ = {ζ ∈ C
∣

∣|E0 − ζ| = ε} and
R(ζ,H0) = (H0 − ζ)−1. If we consider that ‖R(ζ,H0)‖ = (dist(ζ, σ(H0)))

−1 = ε−1,
we have:

r0 = min
ζ∈Γ

(a‖H0R(ζ,H0)‖ + b‖R(ζ,H0)‖)
−1

≥ min
ζ∈Γ

(a(1 + |ζ|‖R(ζ,H0)‖) + b‖R(ζ,H0)‖)
−1

= [a(1 + ε−1(|E0| + ε)) + ε−1b]−1 = [a+ ε−1[b + a(|E0| + ε)]]−1 = r(a, b, E0, ε)

2.2 Perturbation series

Consider the special case H(β) = H0 + βV . Suppose that H0 is self-adjoint and E0

is a nondegenerate eigenvalue of H0. From Kato-Rellich theorem we know that, for
β small, H0 + βV has a unique eigenvalue E(β) near E0 and that E(β) is analytic
near β = 0. The coefficients of its Taylor series are called Rayleigh-Schrödinger
coefficients and the Taylor series are called the Rayleigh-Schrödinger series. For
sufficiently small ε (and β) E(β) is the only eigenvalue of H0 + βV in the circle
{E ∈ C

∣

∣|E − E0| < ε}. As we already know,

P (β) = −
1

2iπ

∮

|E−E0|=ε

(H0 + βV − E)−1dE

is the projection onto the eigenvector with eigenvalue E(β). Since (H0 +βV −E)−1

is analytic in β near β = 0, P (β) is analytic in β near β = 0. In particular, if Ω0 is
the unperturbated eigenvector, P (β)Ω0 6= 0 for β small since P (β)Ω0 → Ω0 6= 0 as
β → 0. Since P (β)Ω0 is an unnormalized eigenvector for H(β),

E(β) =
(Ω0, H(β)P (β)Ω0)

(Ω0, P (β)Ω0)
= E0 + β

(Ω0, V P (β)Ω0)

(Ω0, P (β)Ω0)

To find the Taylor series for E(β), we need only find the Taylor series for P (β). To
do this, we need only find a Taylor series for (H0 +βV −E)−1 and integrate it. But
the Taylor series for (H0 + βV − E)−1 is just a geometric series:

(H0 + βV − E)−1 =

∞
∑

n=0

(−1)nβn(H0 − E)−1[V (H0 − E)−1]n
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Thus, the Rayleigh-Schrödinger series for E(β) is given by

E(β) = E0 + β

∑∞
n=0 anβ

n

∑∞
n=0 bnβ

n

where

an =
(−1)n+1

2iπ

∮

|E−E0|=ε

(Ω0, [V (H0 − E)−1]n+1Ω0)dE

bn =
(−1)n+1

2iπ

∮

|E−E0|=ε

(Ω0, (H0 − E)−1[V (H0 − E)−1]nΩ0)dE

(2.2)

Let us compute E(β) up to order β4. Assume that there is an orthonormal basis of
eigenvectors, Ω0,Ω1, . . . , with H0Ωi = EiΩi (it holds if for example H0 has compact
resolvent). Denote Vij := (Ωi, V Ωj). Then

b0 = −
1

2iπ

∮

|E−E0|=ε

(Ω0, (H0 − E)−1Ω0)dE = −
1

2iπ

∮

|E−E0|=ε

(E0 − E)−1dE = 1

b1 =
1

2iπ

∮

|E−E0|=ε

(Ω0, (H0 − E)−1V (H0 − E)−1Ω0)dE

=
1

2iπ

∮

|E−E0|=ε

((H0 − Ē)−1Ω0, V (H0 − E)−1Ω0)dE

=
1

2iπ

∮

|E−E0|=ε

V00(E0 − E)−2dE = 0

b2 = −
1

2iπ

∮

|E−E0|=ε

(Ω0, (H0 − E)−1[V (H0 − E)−1]2Ω0)dE

= −
1

2iπ

∮

|E−E0|=ε

(E0 − E)−2(Ω0, V (H0 − E)−1V Ω0)dE

= −
1

2iπ

∮

|E−E0|=ε

(E0 − E)−2
∞
∑

j=0

(V ∗Ω0,Ωj)(Ωj, (H0 − E)−1V Ω0)dE

= −
1

2iπ

∮

|E−E0|=ε

(E0 − E)−2

∞
∑

j=0

(Ej − E)−1(Ω0, V Ωj)(Ωj, V Ω0)dE

Since
1

2iπ

∮

|E−E0|=ε

(E0 − E)−3dE = 0

and (for j 6= 0)

1

2iπ

∮

|E−E0|=ε

(E0 − E)−2(Ej − E)−1dE = (Ej − E0)
−2
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we finally get

b2 = −
∑

j 6=0

(Ej − E0)
−2V0jVj0

Similarly,

b3 =
∑

i6=0

∑

j 6=0

(Ei − 2E0 + Ej)(Ei − E0)
−2(Ej − E0)

−2V0iVijVj0

− 2
∑

i6=0

(Ei − E0)
−3V0iVi0V00

a0 = V00

a1 = −
∑

i6=0

(Ei − E0)
−1V0iVi0

a2 =
∑

i6=0

∑

j 6=0

(Ei − E0)
−1(Ej − E0)

−1V0iVijVj0 − 2
∑

i6=0

(Ei − E0)
−2V0iVi0V00

a3 = −
∑

i6=0

∑

j 6=0

∑

k 6=0

(Ei − E0)
−1(Ej − E0)

−1(Ek − E0)
−1V0iVijVjkVk0

+ 2
∑

i6=0

∑

j 6=0

(Ei − 2E0 + Ej)(Ei − E0)
−2(Ej − E0)

−2V00V0iVijVj0

+ 2
∑

i6=0

∑

j 6=0

(Ei − E0)
−2(Ej − E0)

−1V0iVi0V0jVj0 − 3
∑

i6=0

(Ei − E0)
−3V0iVi0V

2
00

Thus, if we write E(β) = E0 +
∑∞

n=1 αnβ
n, we have computed:

α1 = b−1
0 a0 = V00

α2 = b−1
0 (a1 − b1α1) = −

∑

i6=0

(Ei − E0)
−1V0iVi0

α3 = b−1
0 (a2 − b1α2 − b2α1)

=
∑

i6=0

∑

j 6=0

(Ei − E0)
−1(Ej − E0)

−1V0iVijVj0 −
∑

i6=0

(Ei − E0)
−2V0iVi0V00

α4 = b−1
0 (a3 − b1α3 − b2α2 − b3α1)

= −
∑

i6=0

∑

j 6=0

∑

k 6=0

(Ei − E0)
−1(Ej − E0)

−1(Ek − E0)
−1V0iVijVjkVk0

+
∑

i6=0

∑

j 6=0

(Ei − 2E0 + Ej)(Ei − E0)
−2(Ej − E0)

−2V00V0iVijVj0

+
∑

i6=0

∑

j 6=0

(Ei − E0)
−2(Ej − E0)

−1V0iVi0V0jVj0 −
∑

i6=0

(Ei − E0)
−3V0iVi0V

2
00

Remark 3. The nth Rayleigh-Schrödinger coefficient αn is

(−1)n+1
∑

i1 6=0,i2 6=0,...,in−1 6=0

n−1
∏

j=1

(Eij − E0)
−1V0i1Vi1i2 . . . Vin−10
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2.3 A little more on perturbations

Definition 6. Let H(β) be a closed operator in a Hilbert space H and H(β) is
holomorphic for β in a domain D of the complex plane symmetric with respect to
the real axis, H(β) is densely defined for each β and that H(β)∗ = H(β̄). Then we
call H(β) a self-adjoint holomorphic family.

Remark 4. It is clear that H(β) is self-adjoint for each real β ∈ D.

Theorem 10. Let H(β) be a self-adjoint holomorphic family of type (A) defined
for β in a neighborhood of an interval I0 of the real axis. Furthermore, let H(β)
have compact resolvent. Then there is a sequence of scalar-valued functions µn(β)
and a sequence of vector-valued functions ϕn(β), all holomorphic on I0, such that
for β ∈ I0, the µn(β) represent all the repeated eigenvalues of H(β) and the ϕn(β)
form a complete orthonormal family of the associated eigenvectors of H(β).

The proof can be found in [1] chap. VII §3.
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Chapter 3

Infinite-dimensional Jacobi matrix

3.1 Introduction and general results

Definition 7. A matrix A ∈ Cd×d is called Jacobi matrix when A has the following
tridiagonal form:

A =















α1 β1 0 . . . 0 0 0
γ1 α2 β2 . . . 0 0 0
...
0 0 0 . . . γd−2 αd−1 βd−1

0 0 0 . . . 0 γd−1 αd















Consider first a semi-infinite Jacobi matrix K ∈ `2(N) in the form:

K =





























λ1 w1 0 0 . . .

w̃1 λ2 w2 0 . . .

0 w̃2 λ3 w3 . . .

0 0 w̃3 λ4 . . .

. . . . . . . . . . . . . . .





























and assume that 0 < λ1 5 λ2 5 . . . and limk→∞ λk = ∞ and w̃k = wk for ∀k.
Assume also that the sequence {wk}∞k=1 is bounded. K can be decomposed as

K = K0 +W +W ∗

16



where

K0 =





















λ1 0 0 0 . . .

0 λ2 0 0 . . .

0 0 λ3 0 . . .

. . . . . . . . . . . . . . .





















, W =





















0 w1 0 0 . . .

0 0 w2 0 . . .

0 0 0 w3 . . .

. . . . . . . . . . . . . . .





















Then the matrix K is Hermitian. W is bounded, i.e. W ∈ B(`2(N)) and ‖W‖ =
‖WW ∗‖1/2 = sup{|wk|

∣

∣k ∈ N}. Since σess(K0) = Ø, K0 has a compact resolvent and
(W+W ∗)Ri(K0) is compact too. Finally we can claim that (W+W ∗) is K0-compact
self-adjoint perturbation and use Weyl theorem. Thus K has discrete spectrum.

Denote by {λ̃k}∞k=1 the sequence of eigenvalues of K ordered increasingly (λ̃k ≤
λ̃k+1). By the min-max principle,

λ̃k = sup
dimV <k

inf{(ψ,Kψ)
∣

∣ψ ∈ D(K) ∩ V ⊥, ‖ψ‖ = 1}

( V is a subspace of `2).
Using the Schwarz inequality, considering ‖ψ‖ = 1, we have

|(ψ,Kψ) − (ψ,K0ψ)| = |(ψ, (W +W ∗)ψ)| ≤ ‖W +W ∗‖

(ψ,K0ψ) − ‖W +W ∗‖ ≤ (ψ,Kψ) ≤ (ψ,K0ψ) + ‖W +W ∗‖

and using the min-max principle we get

|λ̃k − λk| ≤ ‖W +W ∗‖ ≤ 2‖W‖

From now let us assume that the sequence {λk}∞k=1 is strictly increasing and that
wk = w ∈ R is a constant sequence (then ‖W‖ = |w|). In this case let us write
λk(w) instead of λ̃k. It is easy to see that λk(0) = λk and by the regular perturbation
theory it follows that {λk(w)}∞k=1 is strictly incresing. Since





























λ1 −w 0 0 . . .

−w λ2 −w 0 . . .

0 −w λ3 −w . . .

0 0 −w λ4 . . .

. . . . . . . . . . . . . . .





























=
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=





























1 0 0 0 . . .

0 −1 0 0 . . .

0 0 1 0 . . .

0 0 0 −1 . . .

. . . . . . . . . . . . . . .

























































λ1 w 0 0 . . .

w λ2 w 0 . . .

0 w λ3 w . . .

0 0 w λ4 . . .

. . . . . . . . . . . . . . .

























































1 0 0 0 . . .

0 −1 0 0 . . .

0 0 1 0 . . .

0 0 0 −1 . . .

. . . . . . . . . . . . . . .





























it is easy to see that λk(w) is an even function.
From the min-max principle it follows that

|λk(w) − λk(z)| ≤ 2|w − z|

so that all λk(w) are continuous functions. In particular, for ∀k

|λk(w) − λk| ≤ 2|w|

But one can claim much more. Since W is bounded, W is defined everywhere, thus,
the domain D(K) = D(K0) is independent of w and, obviously, for any ψ ∈ D(K0),
the vector-valued function Kψ is holomorphic in w (even linear).Thus, the family
K = K(w) is holomorphic of type (A). Moreover, the family K(w) is self-adjoint,
i.e., K(w)∗ = K(w̄), and by the above discussion, the resolvent of K(w) is compact.
According to the theory introduced above, the functions λk(w) are real-holomorphic
everywhere on the real line.

3.2 Perturbation series of an eigenvalue

Now we will use the theory introduced in the previous chapter and compute first four
terms of the Rayleigh-Schrödinger serie of an eigenvalue λn(w). Denote ej = {δij}∞i=1,
the family {e1, e2, . . . ej, . . . } is an orthonormal basis of `2 and K0ej = λjej for
∀j ∈ N.

K = K0 +W +W ∗ = K0 + w(T + T ∗) = K0 + wV

where

T =





















0 1 0 0 . . .

0 0 1 0 . . .

0 0 0 1 . . .

. . . . . . . . . . . . . . .





















, V = T + T ∗

First let us simplify the expression for Vij,

Vij = (ei, Vjej) = (ei, ej+1 + ej−1) = δi,j+1 + δi,j−1
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Then
λn(w) = λn + α

(n)
1 w + α

(n)
2 w2 + α

(n)
3 w3 + α

(n)
4 w4 + o(w4) (3.1)

where

α
(n)
1 = Vnn = δn,n+1 + δn,n−1 = 0

α
(n)
2 = −

∞
∑

i=1,i6=n

(λi − λn)−1VniVin = −
∞
∑

i=1,i6=n

(λi − λn)−1(δn,i+1 + δn,i−1)(δi,n+1 + δi,n−1)

= −
∞
∑

i=1,i6=n

(λi − λn)−1(δn,i+1 + δn,i−1) = −
1

λn−1 − λn
−

1

λn+1 − λn

α
(n)
3 =

∞
∑

i=1,i6=n

∞
∑

j=1,j 6=n

(λi − λn)−1(λj − λn)−1VniVijVjn −
∞
∑

i=1,i6=n

(λi − λn)−2VniVinVnn

=

∞
∑

i=1,i6=n

∞
∑

j=1,j 6=n

(λi − λn)−1(λj − λn)−1(δn,i+1 + δn,i−1)(δi,j+1 + δi,j−1)(δj,n+1 + δj,n−1)

=
∞
∑

i=1,i6=n

∞
∑

j=1,j 6=n

(λi − λn)−1(λj − λn)−1(δn−1,i + δn+1,i)(δi,n+2 + 2δi,n + δi,n−2) = 0

Similarly, we shall get

α
(n)
4 = −

1

(λn−1 − λn)2(λn−2 − λn)
−

1

(λn+1 − λn)2(λn+2 − λn)

+

(

1

(λn−1 − λn)2
+

1

(λn+1 − λn)2

)(

1

(λn−1 − λn)
+

1

(λn+1 − λn)

)

Now we would like to find a domain where the expression (3.1) holds. To do this,
we can simply use theorem 9. Since ‖(T + T ∗)ϕ‖ ≤ 2‖ϕ‖, a = 0 and b = 2 and
ε = 1

2
dist(λn, σ(K0) \ λn) = 1

2
min{|λn+1 − λn|, |λn − λn−1|}. Then we have

r = rn =
1

4
min{|λn+1 − λn|, |λn − λn−1|}

and the expression (3.1) for λn(w) holds at least in the circle of radius r.

Interesting case of the problem is when spectral gaps of K are shrinking when
approaching infinity. As an example we can take λn ∼ nα where 0 < α < 1. Since

r = rn =
1

4
(λn+1 − λn) ∼

α

4
nα−1 =

α

4

1

n1−α

the radius of convergence rn goes to zero when n → ∞. Thus the regular pertur-
bation theory works only locally. A description of global perturbations, i.e. pertur-
bations of K0 as a whole, need not be available, however, because of the shrinking
gaps.
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Chapter 4

Finite-dimensional Jacobi matrix

Now we will investigate some properties of a finite-dimensional Jacobi matrix. We
are interested in a Jacobi matrix K ∈ C(2d+1)×(2d+1) in the form:

K :=































−λ−d w
w −λ−d−1 w

. . .
. . .

. . .

w −λ−1 w
w 0 w

w λ+
1 w

. . .
. . .

. . .

w λ+
d−1 w
w λ+

d































(4.1)

(all unspecified elements are zero)
Denote χ(z) the characteristic polynomial of the matrix K, that is

χ(z) := det(zI −K).

If we know an element of an eigenvector of K we can compute others recursively. It
follows that the spectrum of K is simple.

4.1 Function F(x)

Definition 8. Define F : D → C,

F(x) := 1 +

∞
∑

m=1

(−1)m

∞
∑

k1=1

∞
∑

k2=k1+2

· · ·
∞
∑

km=km−1+2

xk1
xk1+1xk2

xk2+1 . . . xkm
xkm+1

where

D =

{

x = {xk}
∞
k=1

∣

∣

∣

∣

∞
∑

k=1

|xkxk+1| <∞

}
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Remark 5. (a) Note that the summation indices satisfy kj ≥ 2j − 1.
(b) Obviously, if all but finitely many elements of x are zeroes then F(x) reduces to
a finite sum. For a finite number of variables we often will write F(x1, x2, . . . , xk)
instead of F(x) where x = (x1, x2, . . . , xk, 0, 0, 0, . . . ).

Definition 9. The operator T1 defined on the space of all sequences indexed by N

such that
T1({xk}

∞
k=1) := {xk+1}

∞
k=1

in called the operator of truncation from the left. Next, set Tn := (T1)
n, n =

0, 1, 2, . . . , hence
Tn({xk}

∞
k=1) = {xk+n}

∞
k=1

In particular, T0 is the identity.

Proposition 1. It holds

F(Tnx) − F(Tn+1x) + xn+1xn+2F(Tn+2x) = 0, n = 0, 1, 2, . . . (4.2)

Proof. To verify this identity, note that after the substitution x′ = Tnx one can
restrict oneself to the particular case n = 0. Consider that

F(Tnx) = 1 +
∞
∑

m=1

(−1)m
∞
∑

k1=n+1

∞
∑

k2=k1+2

· · ·
∞
∑

km=km−1+2

xk1
xk1+1xk2

xk2+1 . . . xkm
xkm+1

And so

F(x) − F(T1x) = −x1x2 +

∞
∑

m=2

(−1)m

∞
∑

k2=3

· · ·
∞
∑

km=km−1+2

x1x2xk2
xk2+1 . . . xkm

xkm+1

= −x1x2F(T2x)

Proposition 2. It holds

F

({

z

k + n

}∞

k=1

)

= n!z−nJn(2z), z ∈ C, n = 0, 1, 2, . . . (4.3)

where Jn(z) is the Bessel function of the first kind.

Proof. This can be verified with the aid of the identity:

∞
∑

k=n

1

k(k + 1) . . . (k +m)
=

1

mn(n + 1) . . . (n+m− 1)

whose derivation is immediate if we consider that the summands can be written as

1

k(k + 1) . . . (k +m)
=

1

m

(

1

k(k + 1) . . . (k +m− 1)
−

1

(k + 1) . . . (k +m)

)
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By a (finite) mathematical induction in j = 0, 1 . . . , m− 1, it is easy to show, with
the aid of the above identity, that

∞
∑

k1=n+1

∞
∑

k2=k1+2

· · ·
∞
∑

km=km−1+2

1

k1(k1 + 1)k2(k2 + 1) . . . km(km + 1)

=
1

j!

∞
∑

k1=n+1

∞
∑

k2=k1+2

· · ·
∞
∑

km−j=km−j−1+2

1

k1(k1 + 1) . . . km−j(km−j + 1) . . . (km−j + j + 1)

In particular, for j = m− 1 we get

∞
∑

k1=n+1

∞
∑

k2=k1+2

· · ·
∞
∑

km=km−1+2

1

k1(k1 + 1)k2(k2 + 1) . . . km(km + 1)

=
1

(m− 1)!

∞
∑

k1=n+1

1

k1(k1 + 1) . . . (k1 +m)
=

1

m!(n + 1) . . . (n+m)

=
n!

m!(n+m)!

From the definition of Jn it follows that

∞
∑

j=0

(−1)j z2j

j!(n+ j)!
= z−nJn(2z)

Finally, we have

F

({

z

k + n

}∞

k=1

)

=

= 1 +

∞
∑

m=1

(−1)m
∞
∑

k1=n+1

∞
∑

k2=k1+2

· · ·
∞
∑

km=km−1+2

z2m

k1(k2 + 1)k1(k2 + 1) . . . km(km + 1)

= 1 +

∞
∑

m=1

(−1)mz2m n!

m!(n +m)!
= n!z−nJn(2z)

Corollary 1. It holds

zJn(z) − 2(n+ 1)Jn+1(z) + zJn+2(z) = 0 (4.4)

Proof. Take x =
{

z
k

}∞

k=1
, then Tn(x) =

{

z
k+n

}∞

k=1
and use (4.2) and (4.3).
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4.2 Kernel of K in the symmetric case

The case, when elements λ−
k in K are equal to λ+

k (denote λk := λ−k = λ+
k ), will

be called the symmetric case (although the word antisymmetric would be better to
use). Now, suppose the symmetric case.
In the symmetric case the characteristic polynomial is an odd function:
Let us define matrices S, T ∈ R(2d+1)×(2d+1)

S :=



















1
−1

1
−1

. . .

1



















T :=

















0 0 · · · 0 1
0 0 · · · 1 0
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
0 1 · · · 0 0
1 0 · · · 0 0

















Then STKTS = −K, STITS = I and so

χ(z) = det(zI −K) = det(ST (zI −K)TS) = det(zI +K)

= det(−((−z)I −K)) = − det((−z)I −K) = −χ(−z)

Since the characteristic polynomial is an odd function in the symmetric case, 0
is always an eigenvalue. Lets see the eigenvector with eigenvalue 0. We denote
a = (α−d, . . . , α−1, α0, α1, . . . , αd) the unknown eigenvector and we choose α0 = 1.

Proposition 3. It holds

α−k = (−1)kαk, k = 0, 1 . . . , d (4.5)

Proof. Since
Ka = 0

we have

wα−k−1 − λkα−k + wα−k+1 = 0 k = 0, . . . , d (α−d−1 := 0) (4.6)

wαk−1 + λkαk + wαk+1 = 0 k = 0, . . . , d (αd+1 := 0) (4.7)

The statement will be proved by a (finite) mathematical induction in k = 0, . . . , d.The
statement is trivial for k = 0. For k = 1, (4.6) gives α−1 = −α1.
The induction step k → k + 1: let the equation

α−j = (−1)jαj

holds for all j = 0, . . . , k. Using the induction presumption in (4.6) we get

wα−(k+1) − λk(−1)kαk + w(−1)k−1αk−1 = 0 |(−1)k+1

w(−1)k+1α−(k+1) + λkαk + wαk−1 = 0 (4.8)
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and by subtracting (4.8) from (4.7) we get

α−(k+1) = (−1)k+1αk+1

Proposition 4. vector a = (α−d, . . . , α−1, α0, α1, . . . , αd), where α−k = (−1)kαk

and

αk = (−1)k wk

∏k
j=1 λj

F(wTkκ) k = 0, 1, . . . , d (4.9)

with

κ = (
1

λ1
,

1

λ2
, . . . ,

1

λd
, 0, 0, 0, . . . )

is an eigenvector with eigenvalue 0 in the symmetric case.

Proof. We have to verify that

wαk−1 + λkαk + wαk+1 = 0 k = 1, . . . , d.

Putting αk = (−1)k wk

Qk
j=1

λj
F(wTkκ) in the equation we have to show that

(−1)k−1wk

∏k−1
j=1 λj

F(wTk−1κ) + λk
(−1)kwk

∏k
j=1 λj

F(wTkκ) +
(−1)kwk+2

∏k+1
j=1 λj

F(wTk+1κ) = 0.

Multiplying the equation by (−1)k+1w−k
∏k−1

j=1 λj we get

F(wTk−1κ) − F(wTkκ) +
w

λk

w

λk+1
F(wTk+1κ) = 0

and from (4.2) it follows that the last equation holds.

4.3 The infinite linear and symmetric case

Now let us consider the infinite case again. Considering the limit d → ∞ in (4.1)
we arrive at a Jacobi matrix K ∈ `2(Z) infinite in both directions. Furthermore
let us suppose the linear and symmetric case, i.e., the diagonal entries of K depend
linearly on the index, λ−

k = λ+
k = k∆ (∆ is a constant). The entries just above and

below the diagonal are all equal to a w > 0. Let T be the shift operator in `2(Z),

(T ψ)k = ψk+1 ψ ∈ `2(Z)

it is clear that T is unitary. Then

K = Λ +W +W ∗
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where
(Λψ)k = k∆ψk, W = wT

It can be easily verified that

ΛT = T Λ − ∆T , KT = T K − ∆T

and similarly
KT −1 = T −1K + ∆T −1 (since T −1 = T ∗)

Consequently, if ψ is an eigenvector of K, Kψ = ξψ, then

KT ψ = T Kψ − ∆T ψ = (ξ − ∆)ψ

thus, T ψ is also an eigenvector with a shifted eigenvalue.
Let us now investigate a kernel of K. For d < ∞ we already have shown the
eigenvector with eigenvalue 0 in Proposition 4. Sending d to infinity in (4.9) we
obtain a vector ψ0 ∈ Ker(K) ⊂ `2(Z),

(ψ0)k = αk = (−1)kJk

(

2
w

∆

)

, k ∈ Z (4.10)

Verification: verification of the fact that ψ0 ∈ Ker(K) can be done by the same way
as in the proof of Proposition 4.9. (4.3) implies

(ψ0)k = (−1)k wk

∏k
j=1 j∆

F

(

wTk

{

1

j∆

}∞

j=1

)

= (−1)k wk

∆kk!
k!

(

∆

w

)k

Jk

(

2
w

∆

)

= (−1)kJk

(

2
w

∆

)

Since J−k(z) = Jk(−z) = (−1)kJk(z), the identity (ψ0)−k = (−1)k(ψ0)k holds.
Next set ψl := T −lψ0, l ∈ Z. Then

(ψl)k = αk−l

and
Kψl = KT −lψ0 = (T −lK + l∆T −l)ψ0 = l∆ψl

Therefore ψl is an eigenvector of K with the eigenvalue l∆ and since the identity

∞
∑

k=−∞

Jk(z)Jk−l(z) = δ0l

holds, the eigenvalue ψl is already normalized.

From the regular perturbation theory it follows that the eigenvalues of K are sim-
ple for sufficiently small w. By the above computation, the eigenvalues do not
depend on w. Hence the eigenvalues of K are all simple for any w (considering
K = K0 + w(W +W ∗) = (K0 + w0(W +W ∗)) + (w − w0)(W +W ∗)) and

σ(K) = σp(K) = ∆Z
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4.4 The characteristic function in the symmetric

case

Definition 10. Let f1(z), . . . , fd(z) be a sequence of complex functions of one com-
plex variable z. Define D(f1(z), . . . , fd(z)) as the determinant of a Jacobi matrix in
the form:































−fd(−z) w
w −fd−1(−z) w

. . .
. . .

. . .

w −f1(−z) w
w −z w

w f1(z) w
. . .

. . .
. . .

w fd−1(z) w
w fd(z)































Remark 6. Note that for fk(z) = λk − z, D(f1(z), . . . , fd(z)) = det(K − zI) is the
characteristic polynomial in the symmetric case.

Definition 11. Define recursively a sequence of functions Nk(y1, . . . , yk), k =
0, 1, 2 . . . . The kth function depends on k variables, N0 is a constant.

N0 = 1

N1(y1) = y1

Nk+1(y1, y2, . . . , yk+1) = y1Nk(y2, . . . , yk+1) − w2Nk−1(y3, . . . , yk+1) for k ≥ 1

Lemma 3. For all n ∈ N, it holds

Nn(f1, . . . , fn) = fnNn−1

(

f1, . . . , fn−2, fn−1 −
w2

fn

)

Proof. For n = 1 the statement is clear. Suppose that the equation holds for all
integers smaller or equal to n. Then

Nn+1(f1, . . . , fn+1) = f1Nn(f2, . . . , fn+1) − w2Nn−1(f3, . . . , fn+1)

by using the induction presumption we get

= f1fn+1Nn−1

(

f2, . . . , fn −
w2

fn+1

)

− w2fn+1Nn−2

(

f3, . . . , fn −
w2

fn+1

)

= fn+1Nn

(

f1, . . . , fn−1, fn −
w2

fn+1

)
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Lemma 4. Let A ∈ Cn×n, B ∈ Cm×n, C ∈ Cn×m, A ∈ Dm×m and let A−1 exists.
Then

det

(

A C
B D

)

= det(A) det(D − BA−1C)

Proof. Since
(

A C
B D

)

=

(

I C
BA−1 D

)(

A 0
0 I

)

and
(

I 0
BA−1 I

)(

I C
BA−1 D

)

=

(

I C
0 D −BA−1C

)

we have

det

(

A C
B D

)

= det

(

I C
BA−1 D

)

det(A)

= det(D − BA−1C) det(A)

Proposition 5. It holds

D(f1(z), . . . , fd(z)) = (−1)d+1
[

zNd(f1(z), . . . , fd(z))Nd(f1(−z), . . . , fd(−z))

− w2Nd(f1(z), . . . , fd(z))Nd−1(f2(−z), . . . , fd(−z))

+ w2Nd−1(f2(z), . . . , fd(z))Nd(f1(−z), . . . , fd(−z))
]

Proof. The statement will be proved by a mathematical induction in d = 1, 2, . . . .Let
d = 1, then

D(f1(z)) = det





−f1(−z) w 0
w −z w
0 w f1(z)



 = zf1(z)f1(−z) − w2f1(z) + w2f1(−z)

= zN1(f1(z))N1(f1(−z)) − w2N1(f1(z))N0 + w2N0N1(f1(−z))

Now let d ≥ 2.

D(f1(z), . . . , fd(z)) = det























−fd(−z) w
w −fd−1(−z) w

. . .
. . .

. . .

w −z w
. . .

. . .
. . .

w fd−1(z) w
w fd(z)
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Shifting the last column of the matrix to the place of the first column:

= det















0 −fd(−z) w . . . 0
0 w −fd−1(−z) w . . . 0
...

...
. . .

. . .
. . .

w 0 . . . w fd−1(z)
fd(z) 0 . . . w















and similarly by shifting the last row to the place of the first one, we get

= det



















fd(z) 0 0 0 . . . 0 w
0 −fd(−z) w 0 . . . 0 0
0 w −fd−1(−z) w . . . 0 0
...

...
. . .

. . .
...

...
0 0 0 . . . w fd−2(z) w
w 0 0 . . . w fd−1(z)



















Now, Lemma 4, where

A =

(

fd(z) 0
0 −fd(−z)

)

, D =

















−fd−1(−z) w

w
. . .
. . .

. . .
. . .
. . . w
w fd−1(z)

















C =

(

0 0 . . . 0 w
w 0 . . . 0 0

)

= BT ,

follows
D(f1(z), . . . , fd(z)) = det(A) det(D −BA−1C)

= −fd(z)fd(−z) det















−fd−1(−z) + w2

fd(−z)
w

w −fd−2(−z)
. . .

. . .
. . .

fd−2(z) w

w fd−1(z) −
w2

fd(z)















We arrive at the expression:

D(f1(z), . . . , fd(z)) = −fd(z)fd(−z)D(f1(z), . . . , fd−2(z), fd−1(z) −
w2

fd(z)
)

28



using the induction presumption:

D(f1(z), . . . , fd(z)) = −fd(z)fd(−z)(−1)d

[

zNd−1(f1(z), . . . , fd−1(z) −
w2

fd(z)
)Nd−1(f1(−z), . . . , fd−1(−z) −

w2

fd(−z)
)

− w2Nd−1(f1(z), . . . , fd−1(z) −
w2

fd(z)
)Nd−2(f2(−z), . . . , fd−1(−z) −

w2

fd(−z)
)

+ w2Nd−2(f2(z), . . . , fd−1(z) −
w2

fd(z)
)Nd−1(f1(−z), . . . , fd−1(−z) −

w2

fd(−z)
)
]

Using Lemma 3 we finally arrive at the expression:

D(f1(z), . . . , fd(z)) = (−1)d+1
[

zNd(f1(z), . . . , fd(z))Nd(f1(−z), . . . , fd(−z))

− w2Nd(f1(z), . . . , fd(z))Nd−1(f2(−z), . . . , fd(−z))

+ w2Nd−1(f2(z), . . . , fd(z))Nd(f1(−z), . . . , fd(−z))
]

Proposition 6. It holds

Nd(f1, . . . , fd) = f1 . . . fdF

(

w

f1
, . . . ,

w

fd

)

Proof. We must verify whether the function f1 . . . fdF

(

w
f1

, . . . , w
fd

)

satisfies the re-

cursive relation in the definition of N . It is easy to see that

N0 = F(0) = 1

and

N1(f1) = f1F

(

w

f1

)

= f1

Next for d ≥ 2 we should show that

Nd+1(f1, . . . , fd+1) = f1Nd(f2, . . . , fd+1) − w2Nd−1(f3, . . . , fd+1)

by putting the function f1 . . . fdF

(

w
f1

, . . . , w
fd

)

in we get

F

(

w

f1
, . . . ,

w

fd+1

)

= F

(

w

f2
, . . . ,

w

fd+1

)

−
w

f1

w

f2
F

(

w

f3
, . . . ,

w

fd+1

)

The last equation holds due to (4.2).
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Corollary 2.

Dd(f1(z), . . . , fd(z)) = (−1)d+1

(

d
∏

k=1

fk(z)fk(−z)

)

[

zF

(

w

f1(z)
, . . . ,

w

fd(z)

)

F

(

w

f1(−z)
, . . . ,

w

fd(−z)

)

−
w2

f1(−z)
F

(

w

f1(z)
, . . . ,

w

fd(z)

)

F

(

w

f2(−z)
, . . . ,

w

fd(−z)

)

+
w2

f1(z)
F

(

w

f2(z)
, . . . ,

w

fd(z)

)

F

(

w

f1(−z)
, . . . ,

w

fd(−z)

)]

Let us denote

KS :=































−λd w 0
w −λd−1 w

. . .
. . .

. . .

w −λ1 w
w 0 w

w λ1 w
. . .

. . .
. . .

w λd−1 w
w λd































and set
χS(z) := det(KS − zI)

Proposition 7. It holds

(−1)d+1 1

z
χS(z) =

(

d
∏

k=1

(λ2
k − z2)

)

F

(

w

λ1 − z
, . . . ,

w

λd − z

)

F

(

w

λ1 + z
, . . . ,

w

λd + z

)

+ 2

d
∑

j=1

w2j

(

d
∏

k=j+1

(λ2
k − z2)

)

F

(

w

λj+1 − z
, . . . ,

w

λd − z

)

F

(

w

λj+1 + z
, . . . ,

w

λd + z

)

Proof. χS(z) = D(f1(z), . . . , fd(z)) for fk(z) = λk − z. If we use Corollary 2, we can
see that to show this proposition it is enough to show that:

2

d
∑

j=0

w2j

(

j
∏

k=1

1

λ2
k − z2

)

F

(

w

λj+1 − z
, . . . ,

w

λd − z

)

F

(

w

λj+1 + z
, . . . ,

w

λd + z

)

=
w2

z(λ1 − z)
F

(

w

λ2 − z
, . . . ,

w

λd − z

)

F

(

w

λ1 + z
, . . . ,

w

λd + z

)

−
w2

z(λ1 + z)
F

(

w

λ1 − z
, . . . ,

w

λd − z

)

F

(

w

λ2 + z
, . . . ,

w

λd + z

)

(4.11)
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Let us denote

A+
j := F

(

w

λj + z
, . . . ,

w

λd + z

)

, A−
j := F

(

w

λj − z
, . . . ,

w

λd − z

)

Aj := A−
j A

+
j = A+

j A
−
j , a+

j :=
w

λj + z
, a−j :=

w

λj − z
, aj := a+

j a
−
j

Note that

A±
d = A±

d+1 = 1, aj =
w2

λ2
j − z2

and from identity (4.2) it follows

A±
j = A±

j+1 − a±j a
±
j+1A

±
j+2 for j = 1, . . . , d− 1

Then

A−
1 A

+
2 = A2 − a−1 a

−
2 A

−
3 A

+
2 = A2 − a−1 a

−
2 A3 + a−1 a2a

+
3 A

−
3 A

+
4 = · · · =

= A2 − a−1 a
−
2 A3 + a−1 a2a

+
3 A4 + · · ·+ (−1)d−1a−1 a2 . . . a

±
d−2Ad−1

+ (−1)da−1 a2 . . . ad−2a
∓
d−1A

±
d−1A

∓
d

Note that A±
d−1A

∓
d = 1 = Ad−1, then we can write:

a+
1 A

−
1 A

+
2 =

d+1
∑

k=2

a1a2 . . . a
(−1)k

k−1 Ak (4.12)

where the exponent in a
(−1)k

k−1 has only symbolic meaning (a
(−1)k

k−1 = a+
k−1 for even k

and a
(−1)k

k−1 = a−k−1 for odd k). Similarly we can get

a−1 A
−
2 A

+
1 =

d+1
∑

k=2

a1a2 . . . a
(−1)k−1

k−1 Ak (4.13)

Next

a
(−1)k

k−1 − a
(−1)k−1

k−1 =
w

λk−1 + (−1)kz
−

w

λk−1 + (−1)k−1z
= 2(−1)k−1z

w

λk−1 − z2

= 2(−1)k−1 z

w
ak−1 (4.14)

Finally, we can verify the above identity (4.11) with the aid of (4.12),(4.13) and
(4.14).

RHS =
w2

z(λ1 − z)
A−

2 A
+
1 −

w2

z(λ1 + z)
A−

1 A
+
2 =

w

z
(a−1 A

−
2 A

+
1 − a+

1 A
−
1 A

+
2 )

=
w

z

(

d+1
∑

k=2

a1a2 . . . a
(−1)k−1

k−1 Ak −
d+1
∑

k=2

a1a2 . . . a
(−1)k

k−1 Ak

)

= 2

d+1
∑

k=2

a1a2 . . . ak−1Ak = 2

d
∑

k=1

a1a2 . . . akAk+1 = LHS
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Conclusion

In this paper we dealt with the description of the spectrum of an operator with the
Jacobi matrix. With the aid of some results from functional analysis we presented
some basic properties of the spectrum of the Jacobi matrix in the whole. Next we
introduced the perturbation theory and then we applied it to these operators. We
pointed out some problems, which appear while trying to describe the spectrum
with the aid of the perturbation theory, first of all this is the possibility of only
local description of the spectrum. In the end we also presented some features of
finite-dimensional Jacobi matrices.

The aim of this paper was to describe the basic properties of the operator with the
Jacobi matrix and its spectrum, saying it informally: ”to state about the spectrum
what can be stated”. Partly it is also a concept of my future work, in which I’m
going to try to derive a global description of the spectrum of the operator with the
Jacobi matrix, i.e., the description of the spectrum of the operator as a whole. In
this afford I will use also the knowledge of the spectrum of finite-dimensional Jacobi
matrices.
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