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List of notations

Symbol Description

A° the interior of a set A

A the closure of a set A

N the set of natural numbers, {1,2,3,...}

Np the set NU {0}

Z the set of integer numbers, {—2,-1,0,1,2,...}

/e the set of negative integers

Zy the set Z~ U {0}

R the set of real numbers

R* the set of positive real numbers, {z|z > 0}

RS the set Ry U {0}

R~ the set of negative real numbers, {x|z < 0}

Ry the set R_ U {0}

C the set of complex numbers

i the imaginary unit i = v/—1

(a,b) open interval {z;a < z < b}

[a, b) semi-closed interval {z;a < x < b}

[a, b] closed interval {z;a < x < b}

X' the space of all bounded functionals on the vector space X, the dual
space to X,

L(X,Y) the space of all linear mappings from X to Y, where X,Y are vector
spaces

B(X,Y) the space of all continous linear mappings from X to Y, where X, Y are
vector spaces

L(X) the space of all linear operators on X where X is a vector space

B(X) the space of all continous linear operators on X where X is a vector

space

scalar product(with antilinearity in the first and linearity in the second
argument)

the Hilbert-Schmidt norm

the linear hull of the set M

the adjoint operator of the operator A

the space of all self-adjoint operators on the Hilbert space H

stand for almost everywhere with respect to the measure p



Description

the Banacha space of p-measurable functions on M with the LP-norm
1 llr = (s (@) Pdp(a)) /7

the LP space with the standard Lebesque measure

the space of functions on M that are locally LP-integrable

the space of absolutely continous functions on the set M

the space of absolutely continous functions on the set M with compact
support in M

the space of smooth functions on the set M with compact support in M
the null vector in a vector space V(with the exception of Chapter 4)
the null operator on a vector space V'

the null vector space V'

the resolvent of the operator T at the point z € C, Ry(z) = (T — 2I)~!
domain of the linear operator H

range of the linear operator H

the spectrum of the linear operator H

the resolvent set of the linear operator H

number of positive eigenvalues of the linear operator H

number of negative eigenvalues of the linear operator H

partial derivative with respect to the i-th variable

Bochner Laplacian

Laplace-Beltrami operator

Hamiltonian operator in the Lobachevski plane

Hamiltonian operator in the Lobachevski plane without the potential
the upper half-plane, {z € C;3z > 0

the Lobachevsky plane

the direct integral of vector spaces

the real part of a complex number z

the imaginary part of a complex number z



Chapter 1

Introduction

Quantum mechanics has evolved from, at that time, an obscure, paradoxical and counter-
intuitive hypothesisin to a widely accepted, constantly verified(and verifying) theory, and
nowadays, a standard field of physics. As the knowledge about the physical world has grown,
so has grown the complexity of physical theories to incorporate all the known phenomena
into a logical cohesion. Most of the current modern physical theories, that have the aim
to broader our knowledge about the universe, use state-of-the-art mathematical tools, that
may have the potential to unlock some missing pieces of Nature’s puzzle.

One of the currently researched problem in quantum mechanics is the study of the effect
of the geometry on a given system. This new feature introduces a whole new set of physical
phenomena and a whole new category of mathematical problems than may dramatically in-
crease the complexity of the problem, even thought, as we know from the history of physics,
that even their ’euclidean counterparts’ have presented, in many cases, a fearsome task.

This thesis will be concerned with studying a quantum system placed on a Rieman-
nian manifold called the Lobachevsky plane, that represents a very important class of non-
euclidean geometries, the so-called hyperbolic geometries. The aim of this thesis is to give
a basic mathematical analysis of a self-adjoint operator, that is placed on the Lobachevsky
plane, and which represents a simple quantum system of a spinless particle without charge.
The particle will be under the influence of constant perpendicular magnetic field. Even
thought, the geometry plays a crucial role in the problem, we will look at it from the point
of functional analysis and we will here present only the absolute minimum of the geometrical
aspect.

This thesis is organized as follows. In Chapter 2 we give a brief overview of the basic
and advanced functional analysis, the minimal knowledge of hyperbolic geometry and the
its groups of isometry, that will be used in the later chapters. Among the advanced topics is
the basics of the theory of rigged spaces and the theory of direct integrals. Chapter 3 focuses
a very special, yet important field of functional analysis- the theory of ordinary differential
operators and its most important(for us) related topic-the spectral theory. Here we study
intensively the spectral problem of a one-dimensional Schrédinger operator on the real line
with a potential that, at one end, is diverging and at the other, decaying towards zero. Here
we have to modify a theorem regarding the spectral analysis to our case. The final Chapter
4 concerns with the spectral problem of the Hamiltonian of the system. We present the
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work of few authors that studied this problem and even give a partial result of ours using
a decomposition method by direct integrals which from a certain point of view mimics the
more famous Bloch decomposition, even thought it is not directly it.



Chapter 2

Theoretical preliminaries

2.1 Basic functional analysis

2.1.1 The spectral representation theorem

Definition 2.1.1.1. A spectral family (or spectral resolution) on a Hilbert space H is
a function E : R — B(H) having the following properties:

1. E(t) is an orthonormal projector Vt € R

2. E(s) < E(t) for s <t (monotonicity)

3. s—limt_>t0+ E(t) = E(to) (continuity from the right)
4. slimy o E(t) = ©

5. s-limy_ oo E(t) =1

In the following we give two formulations of the Spectral representation theorem. The
first can be found in Berezin-Shubin [4]. We will mainly use this formulation later in the
text. The second one is the standard formulation, that could be found in most functional
analysis textbooks. Here we follow the definitions and theorems in the classic monogram
Dunford-Schwartz [15].

Theorem 2.1.1.2 (Spectral representation theorem). Let H be a separable Hilbert space. Let
A be a self-adjoint operator on H. Then A can be represented as an operator of multiplication
by a real-valued measurable almost-everywhere finite function a(m) in the space L*(M,do) =
{f: M —C;[,,|f|*do < 400}, where M is a measure space with positive measure do. More
precisely, there exists a measure space M with a positive measure o, a real-valued measurable
Junction a(m) defined on M and finite almost everywhere on M, and an isometry

U:H— L*(M,do)
of H onto L?>(M,do) such that
f € Dom(A) <= f € HAa(m)Uf € L*(M,do) A (Ym € M)((UAf)(m) = a(m)(Uf)(m))

In other words,
Af =UtaUf

where a is the multiplication operator by the function a = a(m), that is, A is equivalent to
the multiplication operator by the function a = a(m) in the space L*(M,do).

11
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Definition 2.1.1.3. Let T be a self-adjoint operator on a Hilbert space H, A a non-empty
set and let {pia}aca be a family of finite positive measures defined on the Borel sets of the
complex plane and vanishing on the complement of the spectrum of T. Let U be an isometrical
isomorphism of H onto @ c 4 L*(R, pa). Let V.=UTU ™! be the corresponding self-adjoint
operator on @ ¢ 4 L*(R, po). The transformation U is a spectral representation of H
onto @, 4 L*(R, o) relative to T if the following conditions are satisfied:

1. for every Borel function F defined on the spectrum of T we have

Dom(F(V)) ={¢ € D L*R, pa); € = Z'wa/ (M) Ppa(dN) < 400}

acA acA acA

2. (F(V),a)N) = F(MNéa(N), € € Dom(f(V)) for pa-almost all .

Theorem 2.1.1.4 (Spectral representation theorem). Fvery Hilbert space admits a spectral
representation relative to an arbitrary self-adjoint operator defined in it.

Definition 2.1.1.5. Let u be a positive measure defined on the family B of Borel sets of the
complex plane and let { By, } 1 be a decreasing sequence of Borel sets whose first element By
is the entire plane. Let un(B) uw(BNBy,) for B € B andn € N. A spectral representation
of a Hilbert space H onto ZJFOO L2(R, uy,) relative to a self-adjoint operator T in 'H is said to
be an ordered representation of T' relative to T. The measure u is called the measure
of the ordered representation. The sets B, will be called the multiplicity sets of the
ordered representation. If u(By) > 0 and p(By41) = 0 then the ordered representation is
said to have spectral multiplicity (or shortly, multiplicity) k. If u(By) > 0 for all k, the
representation is said to have infinite spectral multiplicity. Two ordered representations
U and U of H relative to T and T respectively, with measures p and ji, and multiplicity sets
{Bn}1 and {B, }r2S will be called equivalent if pu ~ [i(equivalence of measures) and

(BnAB ) = (BHAB ) =0 forn € N.

Remark 2.1.1.6. If the spectral multiplicity of a self-adjoint operator in a Hilbert space is
equal to 1, it is sometimes said, that the operator has simple spectrum.

Theorem 2.1.1.7. A separable Hilbert space H has an ordered representation U relative to
a gwen self-adjoint operator T in H and every ordered representation of H relative to T 1is
equivalent to U. Moreover, two self-adjoint operators in H are unitarily equivalent if and
only if the corresponding ordered representations of H relative to the operators are equivalent.

2.1.2 Types of spectra

In this subsection we will briefly revise the basic definitions and theorems concerning the
spectra of linear operators. We follow Weidmann [39] and Blank-Exner-Havlicek |7]. Our
first classification is the most general classification of spectra of closed linear operators on
Banach spaces.

Definition 2.1.2.1. Let ‘H be a Banach space, let T be a closed operator on H.
The point spectrum is the set op(T) = {\ € C;ker (T' — A\I) # {0}}.
The continuous spectrum is the set 0.(T) = {\ € C; Ran(T — \I) = H}.
The residual spectrum is the set o,.(T') = {\ € C; Ran(T — \I) # H}.
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Theorem 2.1.2.2. Let ‘H be a Banach space, let T be a closed operator on H. Then
o(T) =op(T)Uo(T)Uo.(T) (2.1)

Proof. Obvious. Since the first classification divides the spectrum into 2 disjoint sets of
points in which the operator T'— AI is not a injection and a surjection. And if T'— AI is not
a surjection, then it is further divided into disjoint sets whether the range of T'— AI is or is
not dense in H. O

The proof of the following useful theorem can be found in Blank-Exner-Havlicek [7].

Theorem 2.1.2.3. Let H be a Hilbert space, let T be a self-adjoint operator on H. Then
o (T) = 0.

The geometrical structure of Hilbert spaces(induced by the scalar product) introduces
another division of the spectrum.

Definition 2.1.2.4. Let H be a Hilbert space, let T be a self-adjoint operator on H.

The essential spectrum is the set o.ss(T) of those points of o(T) that are either
accumulation points of o(T') or isolated eigenvalues of infinite multiplicity.

The discrete spectrum is the set o4(T) defined as 0q(T) = o(T) \ 0ess(T) or in other
words, the discrete spectrum of T is the set of those eigenvalues of finite multiplicity that
are isolated points of o(T).

We say that T has pure discrete spectrum if o.s5(T) = 0.

Theorem 2.1.2.5. Let ‘H be a Hilbert space, let T be a closed operator on H. Then
o(T) = op(T) U0 (T) U oess(T) (2.2)

0c(T) = 0ess(T) \ (0p(T) U0, (T)) (2.3)

The proof of the previous theorem can be found in Blank-Exner-Havli¢ek [7].

Now for the rest of the subsection, H will be a Hilbert space with the scalar product (., .)
and T be a self-adjoint operator on H and E7p its spectral family. The final classification,
that we will use is based on the relationship between the Lebesque measure p on R and the
measure v, (.) = (z, Er()z), © € H.

Definition 2.1.2.6. Let B be the Borel o-algebra of R. Denote by By the family of all sets
N satisfying p(IN) = 0. We define the following subsets of H.:

o H,(T) is the closed linear hull of all eigenvectors of T', it will be called the discontin-
uous subspace of H with respect to T

o H.(T) is the orthogonal complement of H,(T'), it will be called the continuous sub-
space of H with respect to 7.

o H(T) is the set of those x € Ho(T') for which there exists a set N € By such that
Ep(N)x = z, it will be called the singular continuous subspace of H with respect
to T'.

o Hu(T) is the orthogonal complement of Hse(T) relative to He(T) (He(T) = Hae(T) ®
Hse(T)), it will be called the absolute continuous subspace of H with respect
to T
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o Hy(T) is defined as Ho(T) = Hp(T) ©Hee(T'), it will be called the singular subspace
of H with respect to T.
Lemma 2.1.2.7. The space H(T') in Definition 2.1.2.6 is closed.

So from this lemma we have H.(T) = Hac(T) ® Hse(T). The proofs of the following
theorems can be found in Weidmann [39].

Theorem 2.1.2.8. The following statements are true:

1. Hp(T) equals the set of those x € H for which there exists an at most countable set
A C R such that vz(R\ A) =0, i.e., for which the measure v, is concentrated on(at
most) countably many points.

2. He(T) equals the set of those x € H for which vy({t}) = 0 for every t € R, i.e., for
which the function t — (x, Ep((—o0,t])z) is continuous.(For x € H.(T) we obviously
have vz(A) = 0 for every at most countable set A C R.)

3. Hs(T) equals the set of those x € H for which there exists a set N € By such that
ve(R\ N) =0, i.e., for which v, is singular with respect to the Lebesque measure ji.

4. Hae(T) equals the set of those x € H for which v,(N) = 0 for every N € By, i.e., for
which vy 1s absolutely continuous with respect to the Lebesque measure L.

Definition 2.1.2.9. Define the restrictions :
o T, | Hy(T) is the discontinuous part of T'.
o T. | He(T) is the continuous part of T
o Ty | Hse(T) is the singular continuous part of T
o Tuc | Hael(T) is the absolutely continuous part of T
o T, | Hs(T) is the singular part of T.
Now we define the reduction of a operator by a closed subspace, which we will use later.

Definition 2.1.2.10. Let A be a linear operator on H. Let M be a closed subspace of 'H,
and let P be the orthogonal projection onto M. We say that M reduces the operator A if
PA C AP. The formulae Dom(Ap) = M N Dom(A) and Ayz = Az for © € Dom(Anr)
define an operator on M. We say M is a reducing subspace of T if M reduces A.

Theorem 2.1.2.11. Let M be a reducing subspace of T'. Then Th; and Ty;1 are self-adjoint
on M and M=, respectively. Also o(T) = o(Tar) No(Tysr). The subspace M reduces T if
and only if PEp(t) = Ep(t)P for every t € R, where P denotes the orthogonal projection
onto M.

Theorem 2.1.2.12. We conclude:
1. The subspaces Hy(T'), He(T), Hse(T), Hae(T'), Hs(T') reduce the operator T'.

2. The operators T, T, Tsc, Toe, Ts are self-adjoint.

3. o(Tp) = op(T).
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Thus we may re-define previously defined components of the spectrum o(7") in the lan-
guage of operator reduction. The only exception is the point spectrum.
Definition 2.1.2.13. Define the spectra :
e 0.(T) =0(T,) is the continuous spectrum 7.
o 0.(T) = 0(Ts) is the singular continuous spectrum 7.
e 0,.(T) = 0(T,.) is the absolutely continuous spectrum 7.
o 04(T) = 0(Ts) is the singular spectrum 7.
We say that :
e if H = H,(T) then T has a pure point spectrum and o(T) = a,(T).
o if H="H.(T) then T has a pure continuous spectrum and o(1T") = o.(T).

o if H = Hs(T) then T has a pure singular continuous spectrum and o(T) =
ose(T).

o if H = Hu(T) then T has a pure absolutely continuous spectrum and o(T) =
0ac(T).

o if H="Hs(T) then T has a pure singular spectrum and o(T) = o4(T).
Finally, we arrive at the third classification of the spectrum of T'.

Theorem 2.1.2.14. From previous theorems we have the following equations:

o(T) = 0p(T) Uose(T)Uoae(T). (2.4)
o(T) = 0,(T) U 0ue(T). (25)
o(T) = op,(T)Uo.(T). (2.6)

2.1.3 The Riesz projection

In this subsection we introduce a particularly important operator, that we will use often in
later sections. This operator is generally crucial in operator calculus, especially in the case
of meromorphic operators. We use the terminology and theorems from Gohberg-Goldberg-
Kaashoek [18] and from Berezin-Shubin [4]. First, we define some more terminology.

Definition 2.1.3.1. A Cauchy domain is o disjoint union of a finite number of non-
empty open connected sets Ay, ..., A\, C C, such that ;N A; =0 for i # j and for each j
the boundary of A; consists of a finite number of non-intersecting closed rectifiable Jordan
curves which are oriented in such a way that A; belongs to the inner domains of the curves.

A contour T is call « Cauchy contour if ' is the oriented boundary of a bounded Cauchy
domain in C.
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Definition 2.1.3.2. Let B be a Banach space, let A be a closed operator on B. Assume,
that the spectrum of A is the disjoint union of two non-empty closed subsets o and 7. Let T’
be a Cauchy contour laying in the resolvent set of A such that o belongs to the inner domain
of I' and T to the outer domain of I'. Then the operator

1

P, Ra(\)dA (2.7)

is called the Riesz projection.

Remark 2.1.3.3. Here the integral in (2.7) is understood in the Bochner sense. For a basic
preview of the Bochner integral, one can seek Blank-Exner-Havlicek [7].

Now we sum up the most important properties for closed operators. The proof of the
next theorem is in Gohberg-Goldberg-Kaashoek [18].

Theorem 2.1.3.4. Let ‘H be a Banach space and let A be a closed operator on H with the
spectrum o(A) = o U T, where o is contained in a bounded Cauchy domain A such that
ANT=0. Let T be the (oriented) boundary of A. Then

o P, = L RA(N)dA is a projector,
2 T

the subspaces M = Ran(P,) and N = Ker(P,) are A-invariant,

the subspace M is contained in Dom(A) and A|M is bounded,
e 0(AIM) =0 and o(A|N) =T.

Now we will examine the consequences of the previous theorem in a very special case,
which will be used later.

Corollary 2.1.3.5. Let H be a Hilbert space and let A be a self-adjoint operator on 'H, let
o = {A, ..., \n} C 0p(A) with each \j having finite multiplicity, let o be contained in a
bounded Cauchy domain A such that AN (a(A)\ o) =0 and let T be the (oriented) boundary
of A. Then

7: n
p, =L N =3P,
3 [ Ry 3.5

where Pj is the projector on the subspace generated by the eigenfunctions corresponding to
the eigenvalue A;.

Proof. Denote by m()\;) the multiplicity of the eigenvalue A; and M = Ran(P,). Let
Aj = spcm{e}7 ...,e;rl(/\j)} be the eigenspace of \j and let A = @, ; A;. It is sufficient to
prove that Ran(P,) = A. Define the operator B = A|;y.

The inclusion A C Ran(P,) is trivial. We will prove Ran(P,) C A. Let M = M' @& A
for some M’ # {0}. Ten for all y € M we have y = u + t, where u € M’ and t € A. Since

the spectral decomposition theorem implies

B = Zn: ;i P;
j=1
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we have .
Bu=Y X\Pu=0
j=1

since Ran(P,) is closed, therefore a Hilbert space and therefore M’ is the orthogonal com-
plement of the space A and thus Pju = 0 for all j = 1...n . Thus u € Ker(B). We consider
the two cases

e 0 € 0 = Ker(B) = Ag = contradiction with y ¢ A.
e 0¢ 0 = Ker(B) = {0} = contradiction with M’ # {6}.
Hence y € A. O

The following theorem tells us, when we can use the Riesz projection for unbounded
regions of the spectrum. The proof can be found in Berezin-Shubin [4].

Lemma 2.1.3.6. Let a € R, let there be a contour I's in the complex plane, consisting of
the following three pieces:

o I'y : 2(t) =t +iv(t), t varies from +oo to 0, where y(t) is a continuous piecewise
smooth function of t € [0,400) such that 0 < y(t) < ¢ for all t;

o 'y : is any continuous piecewise smooth curve starting from ivy(0) and ending at —iy(0)
and, apart from the end points, belonging to the half-plane Rz < 0;

o I'_ : 2(t) =t —1iv(t), t varies from 0 to 4+o00;

Denote by I'y 5 the piece of contour I's lying in the half-plane Rz < N. Let ~(t) be chosen,
so that a lies inside T'y.

Let A be an arbitrary self-adjoint operator in a Hilbert space H with o(A) C (a,+00).
Then

s-lim Z/ R,gdz=g (2.8)
Iy

N—+oo 27

for any g € H and R, = (A — zI)~1. Furthermore, the estimate

1
o [ Regds)| < g
T JTNs

15 valid.
Finally, there exists in H a dense subspace H 4 depending on the operator A such that
for g € Ha the limit in (2.8) is uniform for all admissible contours I's with 6 < 1.

Remark 2.1.3.7. Since the object

1
-lim — d
]\?HIJIEOIO 2w FNLSRA(Z) i

is not a Riesz projection according to the definition, but it is the identity and hence a
projector constructed as the strong limit of a sequence of operators, but which do not need
to be projectors.
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Corollary 2.1.3.8. Let A be a self-adjoint operator with o(A) C (a,+00) for some a € R
and let the spectrum o(A) satisfy the inclusion:

o(a) C (a,b) U (c,d)

for —oo < a<b<c<d< 4oo0. Let 'y be a Cauchy contour such that (a,b) C I'S and
define the mapping: '
i
P = 2 )i RA(z)dz ,(a,b) C Ay

Denote by I's the contour having the same properties as I's in Theorem 2.1.5.6 except that
Iy encircles the set (c,d) and denote by I's n a piece of I'y lying the the half-plane Rz < N.
Define the mapping:

P, := s-lim Z/ Ra(z)dz

Then Py + Py, = 1.

Proof. Denote by I's,I'y s the contours in Theorem 2.1.3.6. Take the strip {z € C; Rz €
(b,c)} and add two vertical lines in it, that intersect the countour I'yy 5. Hence they divide
I'n,s into three parts. Denote these parts by A, Ag, As.

Denote:

e by K the upper point of intersection of the left-most vertical line and I'y 5.

e by L the upper point of intersection of the right-most vertical line and I'y;.

by M the lower point of intersection of the left-most vertical line and I'y 5.

e by N the lower point of intersection of the right-most vertical line and I'y 5.

Denote by 71 the contour formed by the part of 'y s between the points K, M and the
part of the left-most vertical line which is between the points K, M. Obviously it is a closed
contour encircling (a,b). And it is the Cauchy contour of Aj.

Denote by 72 the contour formed by the piece of Iy s between the points K, L, between
the points M, N, the part of the left-most vertical line between the points K, M and the
part of the right-most vertical line between the points L, N. Again, it is a closed contour.
And it is the Cauchy contour of As.

Denote by 73 the contour formed by the part of the right-most vertical line between the
points L, N and the rest of I'y 5 to the right from the right-most vertical line.

Thus we can write:

i

[ Ru(2)ds = / Ra(2)dz + - / Ra(2)dz + - / Ra(z)d=
o 2T v 2 -

2 FN,6
The term — [ Ra(z)dz is zero, sice Ag lies in p(A), thus from the theory of operator cal-
Y2 .
culus, it is holomorphic. Hence we have two disjoint domains Ay, Ao. Since — Ra(z)dz

gs!
is a Riesz projection, we can 1dent1fy it with P. And since C\ R is the domain of holomor-

phicity of R4, we identify 2— Ra(z)dz with — R4(z)dz. Hence

T Jys T JTo N

2 R — P = / Ra(2)d=
27 o

I'ns
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for every N € N, thus the limit of the right side exists and

{ ?
I-P = sli — R dz— P1| = slim — R dz =P, .
so finally P, + P, = 1. O

2.2 Advanced topics in functional anylysis

2.2.1 Rigged Hilbert spaces

Here we will briefly introduce the topic of rigged Hilbert spaces and its connection to the
spectral analysis of self-adjoint operators. We use the definitions and theorems from Berezin-
Shubin [4].

Definition 2.2.1.1. Let Hy be a locally convex Hausdorff topological vector space over C.
Let H_ be the space of all continuous anti-linear functionals on Hy. We endow the space
H_ with the topology of the dual space H',. The value of a functional h € H_ on the vector
x € Hy is denoted by (h,x). The identities

(h,ax +vy) =a(h,z) + (h,y)

(ahy + ha,x) = a(h1,z) + (ha, x)

hold Yh,hi,he € H_;Vx,y € Hy;Va € C. Let H be a Hilbert space with the inner product
(.,.) such that Hy = H and a topology of H. is stronger than that of H, the ordered triplet
(H4+,H,H_) is called a rigged Hilbert space or a Gel’fand triplet or a rigging of H.
We define the canonical inclusion j: Hy — H_ by setting Vo € Hy

(j(x),y) = (x,y),Vy € Hy.

Let Hy be a Banach space with the norm ||.|+. Then we have the norm ||.||— for h € H_ :
|k]|- = sup [(h,z)],
TEH

since we use the topology of the dual space H!, .

Definition 2.2.1.2. Let H be Hilbert space with the scalar product (., .), let K : H — H be
a bounded linear operator such that ker K = ker K* = {0}. Define Hy = KH and define
the norm ||.||+ on Hy as

Iy = /K Th K-Th), heHy .

Then the rigging (H4,H, H_) is called a rigging associated with K.

Definition 2.2.1.3. Let ‘H be Hilbert space, let K : H — H be a Hilbert-Schmidt operator.
Then the rigging (H4,H, H_) associated with K is called a Hilbert-Schmidt rigging.

Definition 2.2.1.4. Let (M, A, o) be a measure space. Let H be a Hilbert space. Let A be
a self-adjoint operator on H. Let (Hi,H,H_) a rigging of H. Let ® be a vector function
defined for almost all m € M with values in H_ and let ® satisfy the following:
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1. for every h € Hy the function m — (®(m),h) on M belongs to L*(M,do).
2. the map h — (®(.),h) can be extended to a unitary operator U : H — L*(M,do).

3. there exists a function a : M — R that is measurable and almost everywhere finite on
M and such that A = U~'aU, where a is the multiplication operator by the function
a in L*(M,do).

Then ® is called o complete system of generalized eigenvectors of the operator A and
a vector ®(m), m € M is called a generalized eigenvector.

Let f € Hy, define the function f : M — C, f(m) = (®(m), f). The transformation
f i f is called the generalized Fourier transform. The equality

172 = /A | Fm)Pdo

is called the generalized Parseval identity.

Remark 2.2.1.5. Thus from Defnition 2.2.1.4 it apparent that the inversion formula

f= /Mf(m)q)(m)da ,fEH

holds in the weak sense, i.e.
(f,h) = Mﬂmxwmxmwn

Now we arrive to a very profound theorem on the importance of Hilbert-Schmidt rigging
of Hilbert spaces. The proof can be found in Berezin-Shubin [4].

Theorem 2.2.1.6. Let H be a Hilbert space, let A be a self-adjoint operator on H. Let
(H4,H,H_) be a Hilbert-Schmidt rigging of H. Then there exists a complete orthonormal
system of generalized eigenvectors of A.

Remark 2.2.1.7. The opposite implication holds also. The reader can find more informa-
tion on it in Berezanski [3], where it is also proven, that a generalized Parseval identity holds
if and only if one considers a Hilbert-Schmidt rigging. Thus the importance of this type of
rigging can be seen.

2.2.2 Direct integrals of Hilbert spaces

We begin with some preliminaries from the theory of direct integrals, that is from from
Dixmier [13], a classic and extensive textbook on the topic, and Wils [41]. Here if we write
"Hilbert space’, we will always mean a complex Hilbert space.

For this part of the subsection, (Z, %, u) will denote a general measure space if not specified.

Definition 2.2.2.1. We call a collection H(z)).cz a field of Hilbert spaces over Z.
Elements of [],c, H(z) are called vector fields. If ¢ is a complez-valued, bounded and
measurable on Z and if f is a vector field, then ¢f : Z 5 z — ¢(2)f(z). If f and g are
vector fields, then we define

<$,y> 1z >z — <x(z),y(z))z ’

where (.,.), 1s the scalar product in H(z), and

12232 = 1)l



CHAPTER 2. THEORETICAL PRELIMINARIES 21

Definition 2.2.2.2. Let (H(z)).cz be a field of Hilbert spaces over Z and let I' be a subspace
of [1.ez H(2). Then ((H(2)).cz,T') is said to be an measurable field of Hilbert spaces
over Z if it fulfills the following conditions:

1. For every x € T, the function z — ||x(2)||. is p-measurable.

2. If g € [l,e, H(2) is such that for every x € T', the complez-valued function z —
(x(2),y(2)) is pu-measurable.

3. There exists a set {(xn)nen C I'} such that, for every z € Z, the set {zn(2))nen}
forms a total set in H(z).

A wector field belonging to T' is called a p-measurable vector field. A set {(xn)nen
satisfying condition 3 is called o fundamental set of p-measurable vector fields.

Remark 2.2.2.3. The condition 3 obviously implies, that for every z € Z, the space H(z)
is separable. If one omits this condition, then the generally non-separable case can cause a
variety of complications. Wils [41] and Vesterstrom-Wils [42] make a generalization to the
non-separable case to study problems in von Neumann algebras.

Definition 2.2.2.4. Let Hy be a separable Hilbert space. A constant field of Hy over Z
is a field (H(2)).ez of Hilbert spaces over Z with the properties:

1. H(z) = Ho for every z € Z.
2. The p-measurable vector fields are p-measurable mappings of Z into Ho.

Definition 2.2.2.5. Let ((H(2)):ez,I') be a measurable field of Hilbert spaces over Z. A
vector field v € ((H(2)).ez,I') is said to be square-integrable if it is measurable and if

[ le@)dn(z) < +oc
The proof of the following theorem is not difficult, but we will omit it. The reader can
find it in Dixmier [13].

Theorem 2.2.2.6. Let ((H(z)).ez, ') be a measurable field of Hilbert spaces over Z. Denote
by K the set of all square-integrable vector fields in ((H(2)).ez,I'). Define the mapping

() (H(2))se2.T) % (H(2))sez.T) — C:
/ (2(2), y(=))du(2)
Z

for every x,y € (H(2)).ez,T'). Then K with the mapping (,) is a Hilbert space.

Definition 2.2.2.7. The Hilbert space H = (K, (,)) in Theorem 2.2.2.6, is called the direct
integral of ((H(2)).cz, ') and it is denoted by

@
/ H(z)du(z) .
A

Remark 2.2.2.8. Lets return to the constant fields. Let Hy be a separable Hilbert space,
and let (H(z)).cz be the constant field of the Hilbert space Hy over Z. Then one may

check, that the square-integrable vector fields are the square-integrable mappings of Z into
Ho and thus

/ZEB H(2)du(z) = L*(Z,dp, Ho) -
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Definition 2.2.2.9. Let (H(z2)).cz, (H'(2)):cz be two fields of Hilbert spaces.

o A mappingT : Z > z — L(H(z),H'(2)) is called a field of linear mappings over
Z.

o A mapping T : Z > z — B(H(z),H'(2)) is called a field of continuous linear
mappings over Z.

o A mapping T : Z > z — L(H(2)) is called o field of operators over Z.
o AmappingT :Z >z — B(H(z)) is called a field of continuous operators over Z.

A field of continuous linear mappings T : Z > z — L(H(z),H'(2)) is called u-
measurable if for every p-measurable vector field x € (H(z)).cz, the vector field
(z = T'(2)x(2)) € (H'(2))zez is p-measurable. By |.||zx(z)) we will denote the oper-
ator norm in the Hilbert space H(z).

Definition 2.2.2.10. Let ((H(2)):ez,I') be a p-measurable field of Hilbert spaces over Z.
52

Let H = / H(z)du(z). A field of continuous operators T : Z > z — B(H(2)) is said to be

z
essentially bounded if ess-sup,cy |7 £(3(z)) < +00.

Theorem 2.2.2.11. Let ((H(2)).ez, ') be a pu-measurable field of Hilbert spaces over Z.
@

Let H = / H(z)du(z) and let T : Z > z — B(H(z)) be a field of continuous operators.
z

o Let ess-sup,ez | T onz)) = A < +o0o. Then ||T]| = A.

o [If two essentially bounded measurable fields of continuous operators define the same
element of L(H), they are equal almost everywhere.

o Let 'H be separable. Then if two essentially bounded measurable fields of continuous
operators are equal almost everywhere, they define the same element of L(H).

Proof. The proof of the first two assertions can be found in Dixmier [13]. Here we proof
the third by contradictions. Let (z,,)nen be the orthonormal base of H. Denote the two
measurable fields of continuous operators by T1,7T5. Let ¢ € H be such that T1y # 1.
From the assumptions we have that the mappings Z 3 z — (x,(2),71(2)), and Z > z —
(xn(2),T1(2)), are p — equivalent. Thus

[ (@) a0 () = [ {on(2). Tal) ()i 2)
z z
or
(zn, T19) = (n, T20)
for every n € N. Thus » n(Tn, T10)Tn = Y, cn(Tn, T2¥)x, = 1 and hence a contradic-
tion. O

The previous results lead us to define the following:
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Definition 2.2.2.12. Let ((H(2)):ez,I') be a p-measurable field of Hilbert spaces over Z.
® -

Let H = / H(z)du(z). An operator T € L(H) is said to be decomposable if it is defined
Z

by an essentially bounded measurable field T : Z > z — L(H(z)). We then write

. o
T:/ T(z)du(z).

Z

Here we add new terms using Reed-Simon [31].
Definition 2.2.2.13. Let (H(z)).cz be a field of Hilbert spaces over Z.

o A mappingT :Z > z— Lsa(H(z)) is called o field of self-adjoint operators over
Z.

o A field T of self-adjoint operators over Z is called p-measurable if the field Z 5 z —
(T(2) +1)~! of continuous operators over Z is u-measurable.

o LetT :Z > z— Lsa(H(z)) be pu-measurable. Let ((H(2)).cz,T') be a measurable field
of Hilbert spaces over Z and let

=
H:/Z H(z)du(z) .

We define an operator T on H with domain

Dom(T') = {1 € H;¥(2) € Dom(T'(2)) p — a.e. A /Z 1T (2)9(2)|.dp(z) < +oo}
by

It is denoted by
~ ®
- / T(=)dp(2).

Before venturing further, we will revise few topological terms. We use definitions from
Arveson [2],

Definition 2.2.2.14.

e A Polish space is a topological space which is homeomorphic to a separable complete
melric space.

e Let P be a Polish space. A Borel set in P is a member of the o-algebra generated by
the closed subsets of P.

o Let (X,7) be a topological space. Denote by B the o-algebra generated by the closed
subsets of (X, 7). Then the pair (X,B) is called a Borel space.

o A standard Borel space is a Borel space that is isomorphic to a Borel subset of a
Polish space.
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Theorem 2.2.2.15. Every uncountable standard Borel space is homeomorphic to the unit
interval [0, 1] with the usual Borel structure(the usual topology and the usual o-algebra gen-
erated by it).

Definition 2.2.2.16. Let (Z,%) be a Borel space. Let (Z,%, ) be a measure space. The
measure 1 15 said to be standard if there exists a p-negligible set N C Z such that the Borel
space (Z \ N,Y') is standard.

Remark 2.2.2.17. Thus if one takes any interval, or the whole R and endows it with the
standard topology, one gets o standard Borel space. Moreover, if one takes the Lebesque
measure, then from Theorem 2.2.2.15 and the definition of standard measure its obuvious
that the Lebesque measure is standard.

The following important theorem with its proof is in Dixmier [13].
Theorem 2.2.2.18. If u is standard, then H is separable.

Remark 2.2.2.19. We need the terminology, that we have just defined, since the following
theorems are heavily based on them.

Now, we will slightly modify a theorem in Reed-Simon [31], that will be important to us
later. But we will need the the following lemma, proved in Lennon [27].

Lemma 2.2.2.20. Let (Z,%) be a standard Borel space and let (Z,%, 1) be a measure space
with p being standard. Let ((H(z)).ez,T') be a p-measurable field of Hilbert spaces over Z
&

@ ~
and let H = / H(z)du(z). Let T = / T(z)du(z) be a self-adjoint operator in H. Then
Z Z

o T'(z) is self-adjoint for p —a.e. z € Z.

e Denote by E the spectral family of T and by E. the spectral family of T(z). Then for
any Borel set B
(E(B))(z) = E.(B), forae z€Z.

And now the proof of the main theorem of this subsection.

Theorem 2.2.2.21. Let (Z,%) be a standard Borel space and let (Z,%, ) be a measure
space with pu being standard. Let (H(z)).ez,T') be a p-measurable field of Hilbert spaces
®

over Z and let H = / H(z)du(z). Let T be a p-measurable field of self-adjoint operators
Z

over Z and let

~ ®
- / T(=)dp(z) .
Z
Then
1. The operator T is self-adjoint.

2. X € o(T) if and only if for all € > 0
u{z€ Z;o(T(z))N(A—€e,A+¢€) #0}) > 0.

8. X is an eigenvalue of T if and only if

p({z € Z; A € 0p(T(2))}) > 0.
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Proof. 1). From functional analysis T is symmetric if and only if (y, Tz) = (T'y, ) for every

x,y € Dom(T). Hence using a straightforward calculation for any x,y € Dom(T) we have:

@hfw>::/gexzx<TxXz»du@>::/Qemzxﬂxzwxz»duu»

—/(T(Z)y(Z),x(z»du(Z)—/<(Ty)(z),$(2)>du(2) = (Ty,z) ,
Z

Z

hence T C T*. From general functional analysis, we only need to prove that Ran(T +il) =
H. Let Ci(z) = (T(z) £iI)~. From our assumptions, Cx(z) is bounded. Here we
use some special relations from the spectral theory of self-adjoint operators and unitary
propagators. Define the propagator U,(s) = e~ T()s for every z € Z. Then the following
relation holds(can be found in Blank-Exner-Havlicek [7]) for every z(z) € H(z):

Re(©)a(2) = isgn(36) [ U (s)a(z)as
3

where Je = (—o00,) if 3¢ < 0 and Je = (0, +00) if I¢ > 0 and the integral is understood in
the Bochner sense. And from the theory of Bochner integral, we can make the estimate at
the point i:

+00 +oo
nmmawfwA fW@mmmsA e~ ([0 (s)x(2) | ods

+oo
=m@mA e~*ds = (2.

Analogously with —i we have
[Rr(=i)z(2)]- < =(2)]-
thus
1CL(emey) <1,

where ||.|| z(3(z)) is the operator norm in H(z). Hence by Theorem ... we can define

5 o
Ci:/z Ci(z)du(z).

Let 7 € H and let ¢p = Cn. Then for p — a.e. z € Z, ¢(z) € Ran(C(z)) = Dom(T(z))
and

1T (2)(2) |l = [T (2)Cx(z)n(2)]l= < lIn(2)]l- ,
so ¢ € Dom(T(2)). But (A +il)y =n, thus Ran(A +4I) = H and so T is self-adjoint.

2)+3): Let E denote the spectral family of T and let E, denote the spectral family of

T(z). Hence from Lemma 2.2.2.20 we have for every Borel set B, the equality (E(B))(z) =
E,(B) and hence from Theorem 2.2.2.11 the equality

E= /Z ? E.du(z) .

Again, from the spectral theory of self-adjoint operators, for a number A € R we have the
statements:
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o A€ o(T)if and only if E(A —€,\+¢€)) # O for all € > 0.
e \co(T) if and only if o(T) N (A — e, X +¢€) # 0.
e )€ op(T) if and only if E({)\}) # ©.

Since from Theorem 2.2.2.11 we have that
®
B(B)= | E.(Byiu() = (2.9)
Z

if and only if E,(B) =0 for p—a.e. z € Z.

Thus we have proved, that if A € o(T)(resp. A € 6,(T)), the corresponding inequality must
hold. The sufficiency of the conditions holds obviously since if there is a set W C Z, such
that for every z € W, A € o(T(2))(resp. A € 0p(T(2))) and such that W is of non-zero
measure, we have again from (2.9) that E((A — e, A\ +¢€)) # O(resp. E({\}) # O) and thus
A € o(T)(resp. A € 0,(T)) and the statements 2) and 3) are proved. O

Remark 2.2.2.22. We will be working exclusively with the Lebesque measure on a finite
interval, hence we are liberated from many obstacles, that the general theory may cause.

2.3 Hyperbolic geometry and Fuchsian groups

We use definitions and theorems, that the reader can find in Katok [23], Borthwick [8] and
Pasles [29]. Of course, the problematic of hyperbolic geometry, Fuchsian groups, modu-
lar theory, and other closely related topics is generally vast and we here present only the
minimum that we will need later.

2.3.1 The Lobachevsky plane

From now on we will denote the upper half-plane of C as H. In this subsection, we use the
terminology and theorems that the reader can find in Katok [23].

Definition 2.3.1.1. A hyperbolic surface is a smooth surface equipped with a complete
Riemannian metric of constant Gaussian curvature -1.

In differential geometry it is well known, that there is, up to isometry, a unique simply
connected hyperbolic surface, called the hyperbolic plane, for which there are several
models. The two mostly recognized are the Lobachevsky plane(or the upper half-plane)
and the Poincaré disc.

Definition 2.3.1.2. The Lobachevsky plane model, denoted by My = (H, gg), is the
Riemannian manifold with the carrier set H and the metric

L0
m=|Y z2=x+1i
H 0 aé ) Y-
Y

The Lobachevsky plane model with the curvature parameter a # 0, denoted by Mpy(a) =
(H, gr(a)), is the Riemannian manifold with the carrier set H and the metric

a0
gH(a)—<y2 a2>, z=x+iy .

y2

es}
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Definition 2.3.1.3. The Poincaré disc model, denoted by My = (B, gg), is the Rieman-
nian manifold with the carrier set B = {z € C;|z| < 1} and the metric

A7 0
gB:<(1_m0_y) 4 > , z=x+1y .
(17I27y2)2
Definition 2.3.1.4. Let I =[0,1], and v : I — H be a piece-wise differentiable path:
v ={=(t) +wy(t);t € I}.

Then the hyperbolic length is defined as

dz\?2 d 2
(@) <CTZZ)
h(y) :/ dt .
0 y(t)
The hyperbolic metric p(z,w) is defined as
p(z,w) = inf{h(y); z,w € 7} .
for z,w € H.

Theorem 2.3.1.5. The topology on H induced by the hyperbolic metric is the same as the
topology induced by the Fuclidean metric.

Definition 2.3.1.6. The group of all isometries of H is denoted by Isom(H).
Now we will express the metric p(z,w) in a more appropriate form.

Theorem 2.3.1.7. For z,w € H we have:

|z —w| + |z — w|

:l .
plz;w) =1n |z —w| — |z — w

Theorem 2.3.1.8. Let zg € H. Define the mapping f: H — C:

oz — 2
f(z)_zz—kzo'

Then f is bijection between H a B. Moreover, if we denote the metric on (M, gu) by pm
and the metric on (Mg, gg) by ps, then we have the following:

pe(7,y) = pu(fH(x), 1 (y)), =y€B.

Definition 2.3.1.9. Let R be a number ring, denote by SL(2, R) the group

SL(2,R) = {<Z 2) ;ac—bdzl/\a,b,c,dER} .

Then
e For R=1R,C, the group SL(2, R) is called the special linear group.

e For R =17, the group SL(2,Z) is called the modular group.
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Also, the group PSL(2, R) is defined as
PSL(2,R) = SL(2,R) /{12, — 12},
where Iz is the 2 X 2 identity matrix.

Definition 2.3.1.10. The mapping f: C — C defined as

az+b
f(Z)—m7 ac—bd =1, a,bec,deC,

is called the Mobius transformation. The set of all Mébius transformations is denoted
by A(C), where C is the extended complex plane, C = C U oc.

Theorem 2.3.1.11. A(C) is isomorphic to SL(2,C).

Proof. Simple verification by composition of Mébius transformations and checking the group
axioms. O

Theorem 2.3.1.12. The group Isom(H) is generated by PSL(2,R) together with the trans-
formation z — —Z for all z € H.

Denote by B(H) the Borel o-algebra on H.
Definition 2.3.1.13. For every A € B(H) the measure p on B(H) defined as

dxdy
A:/ ,
1(A) N

1s called the hyperbolic area of A.

Theorem 2.3.1.14. The hyperbolic area is invariant under all transformations in PSL(2,R),
i.e. for A€ B(H) and T € PSL(2,R) the equality u(T(A)) = u(A) holds.

2.3.2 Fuchsian groups

In this subsection, we will take a closer look at some special subgroups of PSL(2,R). Our
tour will take us through the very basics of the theory of Fuchsian groups and then we will
focus on a special type of subgroups of PSL(2,R). Again, we follow Katok [23].

The following is a profound classification of elements in PSL(2,R).

Definition 2.3.2.1. Let T € PSL(2,R), denote by Tr(T) the trace of the transformation
T. Then

o [fTr(T) <2, T is called elliptic.
o IfTr(T)=2,T is called parabolic.
o [fTr(T)>2, T is called hyperbolic.
Let G be a subgroup of PSL(2,R)
o [f GG contains only elliptic transformations, G is called an elliptic subgroup.

o If G contains only parabolic transformations, G is called an parabolic subgroup.
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o [f G contains only hyperbolic transformations, G is called an hyperbolic subgroup.
We finally arrive at the definition of a Fuchsian group.

Definition 2.3.2.2. A discrete subgroup G of Isom(H) is called a Fuchsian group if it
is a subgroup of PSL(2,R).

Theorem 2.3.2.3. The following statements are true:
1. All hyperbolic and parabolic cyclic subgroups of PSL(2,R) are Fuchsian group.
2. An elliptic cyclic subgroup of PSL(2,R) is Fuchsian if and only if it is finite.

Definition 2.3.2.4. Let (X, p) be a metric space and let G be a group of homeomorphisms
of (X,p). Let o denote the action of G on X. Let x € X. The stabilizer subgroup of z,
denoted by G, is the set G, = {9 € G;gox = x}. A family {M, C X;a € A} is called
locally finite if for any compact subset K C X, M, NK = 0 for only finitely many o € A.
For x € X, a family Gx = {gox;9 € G} is called the G-orbit of the point z. We say
that G acts properly discontinuously on X if the G-orbit of any point x € X is locally
finite.

Theorem 2.3.2.5. Let I" be a subgroup of PSL(2,R). Then I' is a Fuchsian group if and
only if ' act properly discontinuously on H.

Theorem 2.3.2.6. Every abelian Fuchsian group is cyclic.

Definition 2.3.2.7. Let (X, p) be a metric space and let G be a group of homeomorphisms
acting properly discontinuously on (X, p). Let F be closed and F° # (). Then F is called a
fundamental region of G if

1. |1 =Xx.

TeG
2. F°NT(F°) =0 for all T € G\ {idg}.
Moreover, the family {T(F);T € G} is called the tessellation of X.
Theorem 2.3.2.8. Define the group P(Z) = (P(Z)*,.) where set P(Z)* is the set

P(Z)':{(é T);:UEZ} :

and where . denotes the standart matriz multiplication. The following statements are true.
1. P(Z) is a Fuchsian group.
2. The action of P(Z) is properly discontinuous.
3. P(Z) is isomorphic with the group (Z,+).

0 1
Theorem 2.3.2.3 implies that P(Z) is a Fuchian group. 2). Since P(Z) is a Fuchian group,
Theorem 2.3.2.5 implies that the action of P(Z) is properly discontinuous. 3). Define the

mapping f : (Z,+) — P(Z):
1 n

Hence verifying that f is a isomorphism the proof is finished. O

Proof. 1). Since P(Z) is a parabolic subgroup of PSL(2,R) and it is generated by <1 1),
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Theorem 2.3.2.9. The set
F(P(Z)) ={z+iy;x € [0,1] Ay > 0}
is a fundamental region of the group P(Z).

Proof. Simple verification of the axioms of a fundamental region. One must also keep in
mind that our metric space is the Lobachevsky plane, and the set {z +iy;x € [0,1] Ay > 0}
is closed in the topology of the Lobachevsky plane. O

2.3.3 Multiplier systems

Here we briefly introduce the concept of a multiplier systems for the subgroups of SL(2,R).
We use the terminology from Roelcke [32], Elstrod [16] and Berndt-Knopp [6]. There have
been made some generalizations in Pasles [29].

Definition 2.3.3.1. Let k € R and G is a discrete subgroup of SL(2,R). Let there be a
mapping w : G x G — {—1,0,1} satisfying:

w(Mi, Ma) + w(My M, M3) = w(My, MaMs) + w(Ma, Ms),
where M; € G,j =1,2,3. Define the function o(T,S) : G x G — R:
o (T, S) = >iku(TS)

which is known as the factor system of G. Let the function v : G — C satisfy the following:

o |[v(M)| =1 for every M € G .

o v(—1I)=eTk

e y(MN) = o, (M,N)v(M)v(N) for every M,N € G.
Then v is called o multiplier system of weight k.

Remark 2.3.3.2. Of course, the term factor system is not tied only to the subgroups of
SL(2,R), but play an important role in general algebra algebra.

Remark 2.3.3.3. It is obvious from the definition that if one considers k € Z, then
op(T,S) = 1 for any T,S € G and any multiplier system is reduced to a group homo-
morphism from G to C.

Now we will construct some multiplier systems on a special subgroup of SL(2,R), that
will be important to us later.

Definition 2.3.3.4. Define the group P(Z) = (P(Z)*,.), where . the standard matriz mul-

tiplication and
per = {2 2)weshUl(F 5)erez)

Theorem 2.3.3.5. Let 0 € [0,2n), let k € Z. Define the function v : P(Z) — C:
1 n _ _ibn
(0 5) =

Proof. Simple verification of the axioms of a multiplier system and the use of Remark 2.3.3.3.
O

Then v is a multiplier system.



Chapter 3

The ordinary Schrodinger operator

3.1 Ordinary differential operators

In this section the basic notions of the spectral analysis of differential expressions will be
presented. We will follow Weidmann [40] and Dunford-Schwartz [15], where all the definition
and theorems are stated in a more general form than they are stated here. For the sake of
simplicity we will work with L2-spaces with Lebesque measure. In [40] the spaces are of the
form L2(I, p(x)dx), where p(x) is an appropriate function.

Remark 3.1.0.6. Throughout the whole section the interval I C R is considered arbitrary
if not specified.

3.1.1 The minimal and the maximal operator

Definition 3.1.1.1. Let I C R be an interval. Let a;(x) € C*(I),0 < i <n,n € N and be
function ap(z) # 0 for all x in I. Then the following expression

7= zn:aj(x) (;;)j (3.1)

is called o formal differential expression of order n. The functions a;(x) are called the
coefficients and a,(x) is called the leading coefficient.

Remark 3.1.1.2. The infinite differentiability condition of the functions a;(z),0 < i <
n,n € N could be weakened to a finite differentiability depending on the specific use of the
formal differential expression. In our task the smoothness of the functions will suffice.

Definition 3.1.1.3. Let 7 be a formal differential expression of order n defined on the
interval I. The formal differential expression

. gbj(x) <Czc>j (3.2)

where

31
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is called the formal adjoint of the formal differential expression 7. If T = 7%, the T is said
to be formally self-adjoint or formally symmetric. If all the coefficient a;(x) are real,
then T s said to be real.

Theorem 3.1.1.4. Any formally self-adjoint formal differential expression of order n can
be written in the unique form:

(5] (%3]

S (@) (@) B @) [ (2] (2

J=0 J=0

Conversely every formal differential expression in such form is formally self-adjoint.

Theorem 3.1.1.5. Let 7 be a real formal differntial expression of the form (3.1). Then T
s of the form
(5]

e (Y e (L) 33)

J=0

w3

Corollary 3.1.1.6. A real formally self-adjoint formal differential expression defined on an
interval I is of even order.

Definition 3.1.1.7. Let 7 be a real formally self-adjoint formal differential expression of
order 2 defined on an interval I. Then 7 is o Sturm-Liouville differential expression

and is of the form
T=— (;;) pl) <jx> +q(=). (34)

Definition 3.1.1.8. Let 7 be a formal differential expression of order n on an interval I.
Let T : Dom(T) C L*(I,dx) — Ran(T) C L*(I,dx) be a linear operator defined as

Tf=7f, f€ Dom(T). (3.5)
Then the operator T is said to be generated by 7, written T(T).

Remark 3.1.1.9. One can always choose a dense domain for an operator 7' on L?(I,dz)
generated by a differential expression 7 on an interval I. This is possible , for expample, for
Dom(T) = C§°(I), obviously because C3°(I) = L*(I,dx).

Definition 3.1.1.10. Let T{ be a linear operator generated by the formal differential expres-
sion of order m on an interval 1. 7. Let

Dom(T}) = {f € L*(I,dx); fD € ACo(I),0 <i<n—1;7f € L*(I,dx)}
Then the operator Tj is called the minimal operator generated by T, written T} (7).

Definition 3.1.1.11. Let T be a linear operator generated by the formal differential expres-
sion of order n on an interval 1. 7. Let

Dom(T) = {f € L*(I,du(z)); fD € ACI),0 <i<n—1;7f € L*(I,du(z))}.

Then the operator T is called the maximal operator generated by T, written T(7).
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Theorem 3.1.1.12. Let 7 be a formal differntial expression of order n defined on an interval
I. Then
T(r) =To(r7)"

Corollary 3.1.1.13. If 7 is a formally self-adjoint formal differntial expression of order n
defined on an interval I, then the operator Ty(T) is symmetric.

Thus it makes sense to define the following:

Definition 3.1.1.14. If 7 is a formally self-adjoint formal differntial expression of order n
defined on an interval I, then we define the operator To(T) = T (7).

The last two theorems can be found in Weidmann [40].

Theorem 3.1.1.15. Let 7 be a formally self-adjoint formal differntial expression of order
n defined on an interval I. Then for f € Dom(T{* (7)) and g € Dom(T*(7)) we have

(To(7)f,9) = (£, T(r)g)
and henceforth T (1) C T} (7).

Theorem 3.1.1.16. If 7 is a formally self-adjoint formal differntial expression of order n
defined on an interval I. Then Dom(T}(7)) = L*(I,du(x)) and T (1) C T(7). From the
previous theorem it follows that T(1) = T}* (1) = T (7).

Now we arrive at a very important classification of differential expressions.

Definition 3.1.1.17. Let 7 be a formal differential expression of the form (3.1) defined on
the interval I = (a,b). If a > —oo and a; € L ([a,b)), then T is said to be regular at a.

loc

Ifb < +o00 and a; € L2 ((a,b]), then T is said to be regular at b. If 7 is reqular at both
endpoints, we say that T is regular. If 7 is reqular at most at one boundary point, then T

is said to be singular.

3.1.2 The limit point and the limit circle case

In this subsection we assume that 7 is a formally self-adjoint formal differential expression
of order n defined on the interval I if not specified.

Definition 3.1.2.1. Let f be a measurable function on an interval I with endpoints a,b. If
forallc € (a,b) f € L*((a,c),dx), f is said to lie left. If for all c € (a,b) f € L*((c,b),dz),
f is said to lie right.

Theorem 3.1.2.2. Lei 7 be defined on the interval I with endpoints a,b.If for some Ao € C
all solutions of (t — M)u = 0 and of (1 — MX)u = 0 lie right in L?(I,dx), then this holds
VA € C. An analogous statement holds for left case.

Definition 3.1.2.3. Let 7 be defined on the interval I with endpoints a,b. We say that T is
quasi-regular at b if for some A € C all solutions of (1 — X )u = 0 lie right in L*(I,dx).
We say that T is quasi-regular at a if for some A € C all solutions of (1 — X)u = 0 lie
left in L?(I,dx). We say that T is quasi-regular if it is quasi reqular at a and b.

Here we arrive at a very profound theorem in the spectral theory of ordinary differential
operators, which proof the reader can find in Weidmann [40].
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Theorem 3.1.2.4 (Weyl’s alternative). Let 7 be real and of order 2 defined on the interval
1. Then exactly one of the following statements hold:

1. For every \ € C all solutions of (1 — X)u = 0 lie right in L*(I, du(z)).

2. For every A € C\ R there exists a unique(up to a multiplicative constant) solution u
of (1 — M)u = 0 which lies right in L*(I,dx).

An analogous statement for the left side holds.

Definition 3.1.2.5. Let 7 be real and of order 2 defined on the interval I with endpoints
a,b. We say that:

1. 7 isin the limit circle case(l.c.c) at a, if for every A € C all solutions of (T—AI)u =0
lie left in L?(I,dx).

2. 7 is in the limit point case(l.p.c) at a, if for every A\ € C there is at least one
solution of (1 — A )u = 0, which does not lie left in L*(I,dz).

3. T is in the limit circle case(l.c.c) at b, if for every A € C all solutions of (T—AI)u =0
lie right in L*(I,dx).

4. 7T is in the limit point case(l.p.c) at b, if for every A\ € C there is at least one
solution of (T — M)u = 0, which does not lie right in L*(I,dx).

The following theorem, which’s proof can be found in Weidmann [40], will be of a great
importance for us later.

Theorem 3.1.2.6. Let 7 be real and of order 2 defined on the interval I with endpoints a,b.
Let T be in the limit point case at both endpoints. Then

1. The deficiency indices of the operator T'() are (0,0).
2. Dom(T(1)) = Dom(Tp(7)).

3. T(1) =To(T) is the only self-adjoint extension of To(T).

3.1.3 The limit point-limit circle criteria

We present here one criterion for the limit point case that will be sufficient for our needs.
The reader can find more criteria for special cases in Dunford-Schwartz [15] and few in
Weidmann [40].

Theorem 3.1.3.1. Let 7 be a Sturm-Lioville differential expression of the form (3.4) defined
on the interval I = (a,b). For some c € (a,b) assume that p > 0 a.e. in (¢,b) and define
1
g(x) = ——dzx
W=, o

forx >c. If g & L*((c,b),dz) and

liminf ¢(x) > —o0

r—b

then T is in the limit point case at b. The analogous result holds for the boundary point a.
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3.1.4 The resolvent

Here we briefly give two useful theorems concerning the resolvent of a self-adjoint operator
generated by a differential expression. The proofs of the theorems and a far more broader
theory can be found in [15].

Theorem 3.1.4.1. Let T be a self-adjoint operator derived from a Sturm-Liouville differ-
ential expression T on the interval I with endpoinst a,b by the imposition of a separated
symmetric set of boundary conditions. Let SA # 0. Then the boundary conditions are
real, and there is exactly one solution ¢(t,\) of (1 — N)o = 0 square-integrable at a and
satisfying the boundary conditions at a, and ezxactly one solution Y(t,\) of (T — N)o =0
square-integrable at b and satisfying the boundary conditions at b. Also the resolvent Rp(\)
is an integral operator whose kernel K (t,s; \) is in the form

P(t, A (s, A)
POWe(B(A),1b(N))’
ot M) (s, A)
P(OWi(d(A),(N))’

The next theorem tells us, when the resolvent is compact.

K(t,s;\) = s<t

K(t,s;\) = s>1

Theorem 3.1.4.2. Let 7 be a formally symmetric formal differential expression defined
on an interval I. Let T be a self-adjoint extension of the symmetric operator To(T). The
resolvent Rp(\) is compact for every non-real X if either the interval I is compact or the
deficiency indices of To(T) are equal to the order of the differential expression T.

Since we will later work mostly on R with operators having both deficiency indices zero,
we will find use only for the first theorem.

3.1.5 Spectral measure, representation and the Kodaira-Weyl-Titchmarsch
theory

Now we present a very profound theory in spectral analysis of ordinary differential operators.
We use the definitions and theorems that one can find in Dunford-Schwartz [15].

Definition 3.1.5.1. Let W be a measurable function defined on the product S x T of two
measure spaces (S,S,0) and (T,7T,7), and let h be a o-measurable function on S. We say,
that the integral

/ h(s)W (s, £)do(s)
S

exists in the mean square sense in L*(T,7,7) if there is an increasing sequence {Sy}
of sets of finite o-measure which covers S and such that for each n € N, h(.)W(.,t) is
o-measurable for T-almost all t € T and the function F, defined by the equation

Fo(t) = / h(s)W (s, £)do (s)

n

is in L*(T,T,7) and converges in L*(T,T,7) as n — +oo. If F,, — F in L*(T,T,7), we
write

F(t) = /Sh(s)W(s,t)da(s) .
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The first theorem is a rather general for operators on L?(R,dx).

Theorem 3.1.5.2. Let (R, B, i) be a positive measure space with B being the Borel o-algebra
on R, let T be a self-adjoint operator in L*(R,du) Let {S,},> be an increasing sequence
of sets of finite measure y covering R. Let U be a spectral representation of L*(R,du) onto
Deaca L*(R,duy). Let E be the spectral family for T and suppose that for each bounded
Borel set B of real numbers the range of the projector E(B) contains only functions which
are p-essentially bounded on each of the sets S,. Then for each element o € A there is a
function W, defined on R? and having the properties

1. Wy, is measurable with respect to the product measure p ® o

2. for each bounded Borel set B on the real line we have

ess—sup/ [Wa (5, M)|?ta(d)) < +o0o
sESH B

3. = [ f( Wa (s, Nu(ds) , f € L*(R, ), the integral exists in the mean square
sense L (R ua)

Moreover

+oo
=% [ WDl Ml

a€A

for f € L*(R,du), the the integrals ewist in the mean square sense and the sum converges in
L? norm.

In addition suppose that L>(R,dp) is separable. Let v be the measure of the ordered
representation of L*(R,du) relative to T and By, 1 < n < k, its multiplicity sets. Let W,
1 <n <k be the corresponding kernels defined above. Then for every n € N which does not
exceed the spectral multiplicity of the ordered representation, the set {Wi(e, ), ..., Wy, (e, \)}
in the space of p-measurable functions is linearly independent v-almost everywhere on B,,.

But now we focus on its special variant for ordinary differential operators:

Theorem 3.1.5.3. Let 7 be a formally self-adjoint formal differential expression of order n
on an interval I, and let T be a self-adjoint extension of To(1). Let v denotes the Lebesque
measure on R. Let U be an ordered representation of L*(I, dv) relative to T, with measure j,
multiplicity sets B;, and spectral multiplicity m. Then m < n. There exist kernels W;(t, \),
i = 1,...,m, measurable with respect to v ® wu, which vanish for A in the complement of B;,
belong to CT(I) for each fizred \, and satisfy the differential equation (1 — \)W;(e,\) =0
for each fized . Moreover the kernels W; have the property that

v— ess—sup/ (Wi(t, \)[2p(d)) < +o00
teJ B

for each compact subinterval J of I and bounded Borel set B, and are such that

f[ Wi(t,\)dt , for f € L2(R,dv) and the integral existing in the mean
Square sence in L (BZ, dy)
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2. for each Borel function F,

m m +oo
U(Dom(F(T))) = {(fi)inl € @LQ(Bk,du);Z/_ [FOPIA)Pu(dr) < +OO}

k=1 k=1
and (UF(T)g);(\) = F(A\)(Ug)i(\) , g € Dom(F(T)) , —oo < A < +00.
Moreover, for each f € L*(I,dv) we have
N m

F0) = Jim [ SO DWilE ),
=1

the limit existing in the mean square sense in L*(I,dv).

Definition 3.1.5.4. Let {mj};szl,n e N, be a family of complex valued set functions defined
on the bounded Borel subsets of the real line. The famaily {uij}%zl will be called an n by n
positive matrix measure if

1. the matriz {j;;(B)}
set B.

ij=1 ts Hermitian and positive semi-definite for each bounded Borel

2. we have
+oo “+o0o
i (U Bn> = > 1ij(Bm)
m=1 m=1
for each sequence of disjoint Borel sets with bounded union.

Theorem 3.1.5.5 (Weyl-Kodaira). Let 7 be a formally self-adjoint formal differential ex-
pression of order m defined on an interval I with end-points a,b. Let T be o self-adjoint
extension of To(T). Let A be an open interval of the real azis, and suppose that there is given
a set 01, ...,0p of functions, defined and continuous on I X A, such that for each fired A € A,
o1(e,N),...,on(8, X) forms a basis for the space of solutions of To = Ao. Then there exists a
positive n x n matriz measure {p;;} defined on A, such that

1. the limit
d

(VH)i(A) = lim [ f(t)oi(t, A)dt
d—bvc
eists in the topology of L*(A, {pi;}) for each f € L?(I,dx) and defines an isometric
isomorphism V : E(A)L?(I,dz) — L?(A, {pi;})

2. for each Borel function G defined on the real line and vanishing outside A,
(VG(T)f)i(A) = GV F)i(A)
fori=1,...,n, A€ A, f € Dom(G(T)).

Moreover, the positive matriz measure {p;;} on A is unique.
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Theorem 3.1.5.6 (Titchmarsh-Kodaira). Let T be a formally self-adjoint formal differential
expression of order n defined on an interval I with end-points a,b. Let T be a self-adjoint
realization of 7. Let A be an open interval of the real axis and U be an open set in the
complex plane containing A. Let o1, ...,0, be a set of functions which form a basis for the
solutions of the equations (T — X))o = 0, X € U, and which are continuous on I x U and
analytically dependent on X for X\ € U. Suppose that the kernel K(t,s;\) for the resolvent
Ry () has the representation

K(t,s;\) 29”0175)\0] )t < s
i,7=1

K(t, s\ Zeﬂ;zt)\ S, A),t > s
i,j=1
for all X € p(T) N U, and that {p;;} is a positive matriz measure on A associated with T as
in Theorem 3.1.5.5. Then the functions 9;‘; are analytic in UNp(T), and given any bounded
open interval (A1, A2) C A, we have for 1 <i,j <n,

R O A P
pij (A1, A2)) = %EI%)EEI(I]I+ 5 />\1+5 [Gij()\ —i€) — 0 (A —|—ze)} dA

TR B Rl S PP
= %1_1%613& 5 />\1+5 [Hij()\ —i€) — Qij()\—}—ze)} dA

If \o € ANo(T) is an isolated point, it is an isolated singularity of 9+ (or, equivalently 91_])
Moreover, pi;({\o}) is the residue at Ao of 0; (of 0.;)- If {Mo} = (a b) No(T) and Cs,
denotes the rectangle with corners a + ¢+ 10, a + €—10, b—e—1id, b— e+ 1, then

pij({Xo}) = lim lim j{ 9+

6—0e—04 271

and similarly

%meMmlﬁamw

§—0e—04 271

Theorem 3.1.5.7. With the assumptions of Theorem 3.1.5.6, suppose that T is a formal
differential expression with real coefficients, that each of the functions o is real for t, A € R,
and that the operator T is defined by a set of real boundary conditions. Then we may write

1 Ao—0 1 Ao—0 n
.. — i ] _ SV — _ AT _ 4
%wMM@%%hAMJWA>M1%%ilﬂdwxmﬁ

Definition 3.1.5.8. The matriz p;; i Theorem 3.1.5.6 and Theorem 3.1.5.7 is called the
spectral matrix and the matriz 6+ (or 0 ) 1s called the characteristic matrix.
3.1.6 The spectral multiplicity

In this subsection we present few useful theorems regarding spectral multiplicity of ordinary
differential operators. All the presented theorems with proofs can be found in Weidmann
[40].

From Theorem 3.1.5.3 we have the following:



CHAPTER 3. THE ORDINARY SCHRODINGER OPERATOR 39

Corollary 3.1.6.1. Let 7 be a formal differential expression, let T be its self-adjoint real-
wzation. Then every point of the spectrum of T has finite spectral multiplicity.

We can be little more specific:

Theorem 3.1.6.2. Let 7 be a formal differential expression on the interval (a,b), let T be
its self-adjoint realization, (A1, A2) a real interval, Q an open set in C containing (A1, A2).
Assume that {wi(x,2),...,wp(z, 2)} is a fundamental system of (1 — zI)w = 0 which is
continuous in Q and such that for some I,k € {0,...,p}:

o if Y 30_ cjwj(, 2) lies left in L?((a,b),dz) and satisfies the boundary conditions at a,
then Ck+1 = ... = C| = O,

o if Z§:1 cjwj(x, z) lies right in L*((a,b),dx) and satisfies the boundary conditions at
b, then cj41 = ... = ¢, = 0.

Then the spectral multiplicity of T in (A1, A2) is at most k.

Now if we consider a Sturm-Liouville differential expression on the interval (a,b) being
the limit point case at both endpoints, its obvious, that the spectral multiplicity of every
eigenvalue is 1. We can make a similar, a more general statement:

Theorem 3.1.6.3. Let 7 be a Sturm-Liouville differential expression on the interval (a,b)
and let T be the limit point case at both endpoints and let T be its self-adjoint realization.
Choose some ¢ € (a,b). If the self-adjoint realizations of T on (a,c) have discrete spectrum
in some interval (A1, \2), then T has simple spectrum in (A1, \2).

3.1.7 The singular spectrum of ordinary differential operators

The next theorem will give us some information about the singular continuous spectrum.
The proof can be found in Weidmann [40].

Theorem 3.1.7.1. Let 7 be a formal differential expression, let T be its self-adjoint real-
ization with separated boundary conditions. Let (A1, A2) be a real interval, Q@ an open subset
of C such that (A1, 2) C Q. Assume that for z € Q there exist solutions ug(z,z),k = 1..p
of (T — zI)u = 0 analytically dependent on z such that for z € Q+ = {z € Q; 3z > 0}

o u,...,ug are linearly independent and lie left in Dom(T).

® Uki1,...,up are linearly independent and lie right in Dom(T).

Then op(T') has no accumulation points in (A1, A2) and os.(T) N (A1, A2) = 0.

3.2 Spectral theory of ordinary Schrodinger operators

3.2.1 The Schriédinger operator

Definition 3.2.1.1. Let 75 be a expression of the type (3.4) defined on an interval I with
p(z) =1 and q(z) = V(z):

T =— (;‘;)2 +V(2). (3.6)

Then 7g is called a Schrodinger differential expression, where V (z) is a function called
the potential of the Schridinger differential expression.
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Definition 3.2.1.2. Let 79 be a Schridinger differential expression defined on I with a
potential V(z). If there exist a constant C > 0 such that Vx € I ,V(z) > C, then V(z) is
said to be bounded from below.

Remark 3.2.1.3. For the rest of this subsection, we will assume that I C R is a arbitrary
interval unless specified otherwise.

Definition 3.2.1.4. Let 75 be a Schridinger differential expression defined on I. Let Tg
be the operator generated by Ts on some domain Dom(Ts) dense in L*(I,dx). Then Ts is
called a Schrédinger operator. The operator Tg, defined according to 3.1.1.10 is called
the minimal Schrédinger operator. The operator T defined according to 8.1.1.11 is caolled
the maximal Schridinger operator.

The next theorem comes in handy, since it gives sufficient conditions for the essential
self-adjointness by giving conditions on the potential V(x). The proof is in Berezin-Shubin

[4].

Theorem 3.2.1.5. Let Ts be a Schrédinger operator on I = R with a potential V(x) and
with Dom(Ts) = C§°(R). Let Q(x) be an positive even function on R that is non-decreasing
for x >0, satisfies

+o0 dx .
and Vx € R
V(z) > —Q(x). (3.8)

Then Ts is essentially self-adjoint.

Now we will spend the remaining of this subsection for studying the asymptotic behavior
of the solutions of a chrédinger operator with a potential V(x). It will come very handy
in proving few important theorems concerning the spectrum of an operator generated by a
special ordinary differential expression. The proofs of the following theorems can by found
in Berezin-Shubin [4].

Theorem 3.2.1.6. Let Ts be a Schridinger operator with a potential V(x) on and interval
I that is unbounded from the right. Let a € R and V(x) > € > 0 for x > a. Then for any

solution y of the equation
d 2
[‘ <dm) tVi)

one of the following limits holds

y(x) =0 (3.9)

1. y(x) — +o0 as x — +o0;
2. y(x) — 0 as © — +o0.
A solution satisfying 2. exists and is unique (up to a constant factor).

Theorem 3.2.1.7. Let Ts be a Schridinger operator with a potential V(x) on and interval
I that is unbounded from the right. Let V(x) — 400 as x — +o00. Then for any solution y
of equation (3.9) one and only one of the following two assertions is true:

1. for any k > 0 there exists A € R such that |y(z)| > e** if 2 > A;
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2. for any k > 0 there exists A € R such that |y(z)| < e if x > A.

Theorem 3.2.1.8 (Asymptotic behaviour of the solutions). Let T's be a Schrodinger oper-
ator with a measurable, locally bounded potential V(x) on an interval I that is unbounded
from the right. Consider the three asymptotic behaviours of V(x) towards +00:

1. V(z) — +00 as x — +00
2. V(z) -0 asz — 400
3. V(x) - —o00 as x — 400

Simultaneously, let V (z) satisfy

+o0 V/ 2 +o00 V//
/ Mdm < +o0, / | (x)’|3 x < 400 (3.10)
x T 2

o V(@) o [V(z)

in the cases 1. and 3. and

“+o00 —+o00
/ V! (2)|2dz < 400, / V" (@) |de < +oc (3.11)
T o

0

in the case 2. . The number xo can be chosen arbitrarily large. Then, for the solutions of the
equation
Tsy=k*y, keC (3.12)

the following assertions about the asymptotic behaviour for x — +oo of the solutions of

(3.12) hold:
a) if V(x) satisfies 1. then

yi(SU)NV(x)_IMeXp( /\/7k2dt> (1+0(1 (3.13)

b) if V() satisfies 2. and k # 0 then

y+(z) ~ exp (iz’kz /x \/1— V}}?dt) (1+0(1)) (3.14)

c) if V(x) satisfies 3. then
ya(z) ~ (=V(2)) Y exp <i /x VEk? — V(t)dt> (14 0(1)) (3.15)

Again, the number xo can be chosen arbitrarily large.

Remark 3.2.1.9. From this theorem, we will use the asymptotic behavior of the solutions
of (3.9) with V(x) — 0.
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3.2.2 The spectrum of the Schrédinger operator

Lemma 3.2.2.1. Let Ts be a self-adjoint Schrodinger operator in L*(R) with a potential
V € C?%(R) on R such that at least one of the following conditions is fulfilled:

1. V(z) - 0 as x — —o0.
2. V(z) — 0 as ¢ — +o0.
Moreover, let V' satisfy the conditions 3.11. Then o,(Ts) C (—00,0).

Proof. We will prove the case at —oo. The case at +o0 is treated analogously. From Theorem
3.2.1.8 we know the asymptotic behavior of the solutions of

Tsy=ky, kK =1eR

and by this behavior they are uniquely determined. Let k3 = Iy € 0,(Ts), so according
to (3.14) it must decay exponentially, for, in absolute value, sufficiently large z¢ < 0, but
this happens only in the case iky > 0. Thus kg = —ic for some ¢ > 0 and so [y < 0 hence
op(Ts) C (—00,0). O

Theorem 3.2.2.2. A self-adjoint operator A is bounded form below if and only if its spec-
trum is bounded from below. The greatest lower bound of A is equal to mino(T).

In the following theorems we can find sufficient conditions on the Schrédinger opera-
tor(mostly the potential V') that give us some important information about the location
and the structure of the spectrum. We use theorems from Schechter [33], where many other
cases are studied.

Theorem 3.2.2.3. Let Ts be a self-adjoint Schrodinger operator on I with a potential V (z),
and let V(z) > c € R. Then

(=00, ¢) C p(Ts)

Theorem 3.2.2.4. Let T be a self-adjoint Schrodinger operator on I = R with a potential
V(z) and let oess(H) C [0,+00). If there is a number a such that

inf —1/+°° Viz)e @@= gy < —, |2 (3.16)
a>0a - xI)e X B .

[e.9]

then Ts has at least one negative eigenvalue.

Theorem 3.2.2.5. Let T be a self-adjoint Schridinger operator on I = R with a potential
V(x). Assume that sup, fJH V_(z)dr < 400 and (3.16) holds. If there is an N such that
for R> N
+o0 1
R/ V_o(f£x)dx < - (3.17)
R 4
then Ts has at most a finite number of negative eigenvalues. In particular, this is true if for
|z| > N

V() > ——. (3.18)
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Theorem 3.2.2.6. Let Ts be a self-adjoint Schridinger operator on and interval I = R
with a potential V(x), which is locally bounded, bounded from below and has a continuous

negative part. Then
+oo

N_(Ts) <1 —i—/ |z||V_(z)|dz (3.19)
—o0

Theorem 3.2.2.7. Let Tg be a self-adjoint Schridinger operator on I with a potential
V(x).Define for t > 0 the following:

Y+t
vy = inf t_l/ V(x)dz,
v g

Y+t
ne =supt ! V_(x)dx,
R v

where V_(x) = max{-V (z),0}. If t?n, < %2 then

482 (vy + 2my)?
Ts) C - . 3.20
o(Ts) [Vt 221 a2y, T (3.20)
Define
vy = lim sup vy
t—0+
1o = lim sup tn;.
t—0+
If vy < 400 then
1673
o(Ts) C |vo— —%+00 |. (3.21)
T

Theorem 3.2.2.8. Let T be a self-adjoint Schridinger operator on I = R with a potential
V(x). Suppose that sup, fJH V_(z)dr < 400 and there is an N such that Vu € Dom(Ts)

/ (Tsu) ()a(@)dz > Ay / () 2da (3.22)
|z|>N

|z|>N
for some \g € R. Then oe55(Ts) C [N, +00).

Theorem 3.2.2.9. Let Ts be a self-adjoint Schridinger operator on I = R with a potential
V(x). Define fort >0

v+t
At = liminf tl/ V(z)dx
g

o0

v+t
w; = limsupt~* / V_(x)dz
gl

Iy|—=+o0

where V_(x) = maz{-V (z),0}. If t*w; < %2 then

A2 (N + 2wy)?
Uess(TS) C |:)\t _ M’ ) .

3.23
w2+ 412\ (3.23)

Define

Ag = lim sup A¢
t—0+
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wp = lim sup twy.
t—0+

If Ao < +o00 then
16w?
Oess(Ts) C [)\0 ] —{—oo) : (3.24)

w2’

Theorem 3.2.2.10. Let Tg be a self-adjoint Schridinger operator on an unbounded interval
I with a potential V(). Assume that sup., fJH V_(x)dx < 400 and there is a sequence
{I,} of intervals such that |I,| — +oo and for some p € R

JAs / V(z) - pldz — 0, (3.25)

where |I| is the length of I. Then oes5(Ts) D [, +00).

Now we will introduce some basic terminology used in the theory of differential equations.
We will follow Kodaira’s celebrated paper [25] and introduce the terminology used in there.
For the rest of the subsection 7g will be a Schrédinger differential expression on an I with
endpoints a,b and with a potential V(x), Tg will be its self-adjoint realization. Moreover,
7g will be the limit point case at both endpoints a, b.

Definition 3.2.2.11. By o system of fundamental solutions we shall mean the system of
two solutions s1(x,1), sa(x,1) of the equation (s — I )u = 0, having the following properties:

1. W{(sg,s1) =1, W is the Wronskian of the system,
2. sp(x,l) = sp(x,0), k=12

3. as functions of |, sg(x,l) and Oysk(x,l) for k = 1,2 are holomorphic in the whole
complex plane.

Remark 3.2.2.12. One can always find a system of fundamental solutions by, for example,
solving the equation (7¢ — {I)u = 0 under the boundary conditions

for some c € I.

Definition 3.2.2.13. Let {s1, s2} be a fundamental system of solutions. Define the functions

. 52(:1:70 . 52(x7l)
o(l) =—1 , l)=-1
ma(l) faar? s1(z,1) my(l) o s1(z,1)

for every l € C. The functions mq, my are called the Weyl-Titchmarsh functions.
Now we present a particularly useful theorem, which’s proof can be found in [35].

Theorem 3.2.2.14. The function my is for Sl # 0 uniquely determined by the condition

b
/ |so(x, 1) 4+ my(1)sy(z,1)2dz < 400 ,

for some ¢ € (a,b). If sy lies right then we may set myp(l) = 0 for all l € C. If s lies right
then we may set my(l) = oo for alll € C.
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The function m, is uniquely determined by the condition
C
/ 5o (2, 1) + ma(l)sy(z,1)]2dz < +oo ,
a

for some c € (a,b). If sa lies left then we may set mq(l) =0 for alll € C. If s1 lies left then
we may set mg(l) = oo for all l € C. The symbol oo represents the complex infinity.

Definition 3.2.2.15. Let {s1, s2} be a fundamental system of solutions and let my(l) = oo
for alll € C. Then the system is called normal.

Theorem 3.2.2.16 (Weyl). The functions mg, my, are analytic functions of | which are
meromorphic in S # 0.

Theorem 3.2.2.17. The functions mq, my are holomorphic in the resolvent set of Tg.

The proof of the previous very useful theorem can be found in Weidmann [40]. The
following theorem establishes the connection between the Weyl-Titchmarsh functions and
the characteristic matrix defined in 3.1.5.8

Theorem 3.2.2.18 (Titchmarsh’s spectral theorem). Let {s1,s2} be a fundamental system
of solutions, let mq, my be corresponding the Weyl-Titchmarsh functions. Define the matric

M = M() forleC:
ma (D)my(1) 1

) —mey M2 =
Mia(l) = Moy (1) = ;M

Then for every real number X there exists the limit

Mii(l) =

L1 A . o
pu0)) = Jim tim ~ [ rigac i =12

where (pij)ij=12 is the spectral matriz introduced in 3.1.5.8. Let

Remark 3.2.2.19. Thus we can identify the matrix M defined in Theorem 3.2.2.18 with
the characteristic matrix defined in 3.1.5.8.

Theorem 3.2.2.20 (Special form of Titchmarsh’s spectral theorem). Let {s1, s2}, mq, myp
be as in 3.2.2.18. Assume that my(l) = oo for all | € C. Then mg(l) is holomorphic for
Sl # 0. For every real number \ there exists the limit

A+6
o) = — lim lim — / 7 S (¢ +ie)dC = lim Tim / ma(C)dC
é C)x,(s,e

0—0+ e—0+ T 6—0e—04 271,
where C) s, s the rectangle with corners A+e+1i6, A+e€—15, A—e—1i0, A\—e+1id. Moreover,
every isolated singularity of mg is a pole of order one.

Let E be the spectral family of the operator Ts. Denote E(A) = E(X) — E(u) for every
finite interval A = (u, N]. Then for arbitrary v € L?(I,dx) we have
b

(B @) = [ty [ sa(e Vsl Vo) (3.26)

where

b
/ dy[/Asl(x,)\)SQ(y,)\)dp()\)\Q < +oo

and the integral in (3.26) converges absolutely.
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The following lemma will help us find all the eigenvalues of Ty.
Lemma 3.2.2.21. Let the interval I be R. Let V satisfy the following:

1. V(z) -0 asz — —o0,

2. V(z) — 400 as v — 400,

3. V satisfies the conditions (3.11) for the point —oc.
Let the spectrum of Ts satisfy the following:

1. 0,(Ts) is finite.

2. 0.(Ts) C [0,400).

Letl = k? € C, let {s1(z,1), s2(z,1)} be a normal system of fundamental solutions for which
s1 lies right, let u(x, k) be a solution uniquely(up to multiplication constant) determined
by the asymptotic behavior towards —oo by the Theorem 3.2.1.7 and Theorem 3.2.1.8 and
such that u(z, k) is the corresponding eigenfunction to | for every | € 0,(Ts). Then op(Ts)
coincides with the set of all zeros of W (u(k), s1(k?)), where W (u(k), s1(k?)) is the Wronksian
of the functions u(z, k), s1(x, k?).

Proof. We will always assume Sk > 0 and for now [ # 0. From Lemma 3.2.2.1 it follows
that every eigenvalue is negative. Set

u(z, k) = A(k)sa(x,1) — B(k)si(z,1)

where A(k), B(k) are uniquely determined since {si(x,l),s2(x,l)} is a system of funda-
mental solutions and since u(z,[) is uniquely(up to multiplication constant) determined by
Theorems 3.2.1.7 and 3.2.1.8. We can express them as

A(k) = W (u(k),s1(K*) ,  B(k) = W (u(k), s2(k?)).
From Theorem 3.2.2.14 we have uniquely the function m_s () in the form

B(k)
—oo(k?) = —
Moo (K7) Ah)
Also, u # 0 for a fixed [, so A(k) and B(k) don’t have a common zero point. Since
{s1(x,1), s2(z, 1)} is a normal system of fundamental solutions, we have the characteristic

matrix in the form ) )
M(k?) = (m"‘f(k ) 2)

-1 0

which implies p(A) = p11(A). Using Theorem 3.1.5.6 and taking a curve C), with only one
point Ag in its interior we can write
1 1

(k)
_oo(l)dl = —— ——kdk
21 CAO m ( ) T O%o A(k?)

p({ro}) =

Since all u, s1, s9 are regular analytic, the coefficients A(k), B(k) are regular analytic as well.
Thus ﬁ has a singularity at iv/—Ag and according to Theorem 3.2.2.20 this singularity

is a pole of order one. Thus W (u(iv/—Xo), s1(Ag)) = 0. We can do this similarly for every



CHAPTER 3. THE ORDINARY SCHRODINGER OPERATOR 47

eigenvalue. Now we will show they are the only zeros of W (u(k),s;(k?)). For a point
A € p(Ts) we use Theorem 3.2.2.17 which implies A(\?) # 0. So it remains to investigate
0c(Ts). But this is clear if we consider that for £ > 0

u(x, k) = u(x,—k) (3.27)

which we know from the asymptotic behavior of the solution u(x, k). So for nonzero k the
solutions wu(z, k), u(z, —k) are linearly independent because of Theorem 3.2.1.7. Then from
(3.27) and the properties of s1, so we have

A(=k) = Ak) ,  B(~k) = B(k)

So let there exit Iy > 0 such that A(v/Ig) = A(—+/Ip) = 0 thus

u(z, /o) = B(v/lo)s1(x,10) = B(=V/lo)s1(x, o)

hence u(x,v/lp) and u(z, —+/Ig) are linearly dependent, but this contradicts the asymptotic
behavior of u(z, k) so A(v/1p) # 0.

Now we examine case | = 0.

If 0 € p(Ts) then there is also a neighborhood of 0 in p(7’s) but then m_., is holomorphic
in 0 since Theorem 3.2.2.17.

If 0 € 0.(Ts) then for the contradiction lets assume that m_ has a singularity at 0
and so p(0) > 0. Let E be the spectral family of Ts Let A = (—¢, 0] be an interval for some
€ > 0 not containing any eigenvalue of Ts so E(A) = ©. Hence for every u € L*(R, dx) we
can write the equality from Theorem 3.2.2.20 as

“+o0o “+oo
0= [ utidy [ sie Nsal o) = 1@.0)p(0) [ )00y, (329

—00 —0o0

which holds for every € R. Since s; is a non-zero solution, we pick xg such that s;(z,0) # 0.
Also sg is non-zero, so we pick a bounded interval (a,b) C R, on which sa(z,0) > 6 for some
d > 0. Finally, lets take the function u(z) = x(q)(z) s0

+o00 b
p(0) / u(y)s2(y,0)dy = p(0) / 52(9,0)dy > p(0)5 > 0

hence s1(x,0)p(0) fj;o u(y)s2(y,0) # 0, but this contradicst equation (3.28). So from this
we have p(0) = 0, so m_o is regular analytic at 0.

So finally we have proven, that the set of all zeros of W (u(k), s1(k?)) is the point spectrum
op(Ts). o
3.2.3 The generalized Parseval identity

In this subsection let Tg be a self-adjoint Schrédinger operator on I = R with a potential
V : R — R, satisfy the following:

1. VeC*R),
2. V(z) - 0asz — —o0 ,

3. V(z) = 400 as z — 400 ,
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4. V satisfies the conditions

X0 Zo
/ V' (2)[2da < 4o | / V" (@)|dz < +00 |

—0 —o0
for some xy € R. Let the spectrum satisfy the conditions:
1. 0,(Ts) is a finite set,
2. 0.(Ts) = [0, +00).
Lemma 3.2.3.1. The following assertions hold:
1. Tg is the limit point case at both endpoints +oo.
2. 0p(Ts) C (—00,0)

Proof. Assertions 1 follows from the above assumptions Theorem 3.1.3.1 by setting p(x) =
1, q(z) = V(x) and the interval (a,b) = (—00,4+00). Let ¢ € R, then we have the function
g(z) = x — ¢, which clearly is not in L?(R, dz) and

lim ¢(z)=liminf ¢(z) = 400 > —00

r——400 Tr——+00
and

lim ¢(z) =liminfg(x) =0 > —o0

Tr——00 r——00

Hence 7g is the limit point case at both endpoints.
Assertions 2 follows from Theorem 3.2.2.1. O

Define the set
N ={k, =i/ —En; E, € 0p(Ts)}

Denote by [ the spectral parameter. Let {s1(t,1), s2(t,1)} be a normal system of fundamental
solutions corresponding to the equation

(Tg — ) =0 (3.29)

Let the function ¢(¢,k) be the solution of (3.29) having the asymptotic behavior to-
wards —oo according to Theorems 3.2.1.7 3.2.1.8 such that ¢(¢, k2) is the n-th eigenfunction
corresponding to the eigenvalue k2. Then ¢(t, k) can be written in the form

¢(t7 k) = A(k)SQ(tv k2) - B(k)sl(t7 kQ) L= kZa

where A(k) = W(é(t, k), s1(t, k%)), B(k) = W(é(t, k), s2(t, k?)). We will use the following
notation for the Wronskians:

W (k) = W(o(t, k), o(t, —k))

W (k) = W(p(t, k), s1(t, k?))
We set:

1/2 .
@(az k) _ ‘2k§nB(k’n)R68 (ﬁ, kn) Sl(x, k’%) kn _ Z\/E
) - 1 kW (k) 1/2 )
7 [A(K)[? 31($7k ) k>0
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Let M = Rf UN. We will define the space L*(M) and the measure space (M,A,p).
Denote by F(M) the set of all functions f : M — C such that their restrictions f|R] are
Lebesque-measurable. Define the mapping (.,.)as : M x M — C :

N_(Ts) +o00

= 35 TWatk)+ [ Fia(kde . f.g € FOM)
j=1

Clearly its a scalar product and we now define the space
LX(M) = {f € F(M) ; {f, f)ur < +oc} .

And now we define the space (M, A, p). The o-algebra A is the standard Borel o-algebra
induced by the topology on L?(M) and the measure p is defined as

plA) = wW(ANRS) +|ANN|, AcA,

where (AN N) is the Lebesque measure of the subset ANRY and |AN N| is the cardinality
of the subset AN N. Thus we may define the integral on (M, A, p) :

N_(Ts

) i
i = X s+ | rwa.
Now we define the mappings U : L2(R, dz) — L2(M, dp):
@) = [ OB f € Dom().
Vi L3(M,dp) — L*(R, dx):
(Va)(k) == /Ra(k:)CI)(t, k)dt ,a € Dom(V).

Let f € L?(R,dx) and a € L?(M,dp) be in a correspondence by the mapping U, resp. V.
We will refer to the equality

2 5~ & 2 e 2
(. f) = /M|g<ks>| )= 3 Lotk + /0 lg(k)[2dk (3.30)

as the generalized Parseval equality.
Lemma 3.2.3.2. The set C°(RT) is dense in L*(R],dz).

Proof. Obvious. The C§°(R") is obviously dense in the set of all simple function in L2(R{, dx)
except those having a support in the form [0,c|, ¢ € RT. Now if we take the characteristic
function X[0,c); We can approximate it with sequence of functions, whose support is expand-
ing towards 0 from the right and which converges is the L-topology to X[0,¢)- A good exaple

is the function .

n(x —e,)(x —c)

fa(®) =0, 2 € RT\ (e, 0),

where €, — 0+. One can choose, for example ¢, = % Thus all simple functions can be

approximated with the functions from C§°(R™). The proof is complete. O

fn(x) =exp |— , T € (€n, ),
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Theorem 3.2.3.3. The following statements hold:
1. The mappings U,V are unitary and mutually inverse.

2. The operator Ts is unitarily equivalent to the multiplication operator k* on L*(M, dp),
where k € M.

Proof. Denote 0 = 0,(Ts) and 7 = 0.(Tg). Let N,6 > 0. Let I's,I'y s denote the contours
introduced in Lemma 2.1.3.6, define the contour I'; 5 having all properties of I's except that
it encircles the continuous spectrum and denote by I'; y s the part of I'; s laying in the
half-plane 2z < N. From there we know that

slim —— Rry(z)dz =1 .

We will use the substitution
z= k% (3.31)

With it, we need to represent the part of the spectrum and we need define new contours,
that will encircle each part of the spectrum. Since the inverse of (3.31) ramifies, me choose
a domain of its injectivity. We choose the domain {z € C; 3z > 0}. Here, the eigenvalue E,,
will be represented as i+/|Ey,|. Define the set 0 = {i\/|En|;n =1,...,N_(Ts)}. We continue
with representing the contour I'y by an appropriate one through the transform (3.31). We
do the trace of thought: Let a = a1 + ia2 a complex number and assume, that one wants to
represent it through the inverse of (3.31) on the upper half-plane, one sets:

ay + iay = (£by +iby)? by > 0,

hence
1

a
bl T b2 = —
V2+y/]a| — a1 V2

Thus a suitable choice is to transform I's,I'y s into new contours Ils,IIx s encircling the
real axis and the few points on the upper imaginary axis and laying in the upper half-plane.
Define 7 = {k € R;k? > 0} = R. Thus we have 0,,(Ts) and o.(Ts) represented in C through
the substitution z = k2. Let A, be the Cauchy domain and let A, be a domain such that

la| —ay . (3.32)

e 0 CAj.
o TC AL
° E N E = 0.
And now we define the corresponding contours through the transformation (3.31).
e II,, be the Cauchy contour of A,.
o II. s C A;, the transformation of I'; 5.

o 1. s C Ar, the transformation of I'; y 5.
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Define the Riesz projection .
p=" / kR, (k2)dk

™

o

and the operator

N—+4o0 T

Prs= slim — / kR, (k2)dk
HT,N,(S
From Corollary 2.1.3.8 we know that P; s is a projector and we have
PO‘ + PT,(S =1
s-lim — kR (k*)dk = — kR (k*)dk + s-lim — kRry(k*)dk
N—=too T /Ty s T J1, N=too T T, N s

To prove the generalized Parseval identity we will closely examine both P, and P;.
The projector P,:

Let ¢; = o¢(t, k:JQ) be the eigenfunction corresponding to the eigenvalue k:j2 for j = 1...N_(Ts).
Here we have from Corollary 2.1.3.5

N_(Ts) ,
Prg= > iﬁ;f‘fg@ (3.33)
J

j=1

for every g € L*(R, dx).
Now we will prove a very useful identity. From Theorem 3.1.4.1 we know that the
resolvent of Tg is the operator

mm#mwzéwaﬂmm

with the kernel
1

K(t,s,kQ):W

(0(t — s)s1(t, E2)é(s, k) + 0(s — t)s1(s, k) é(t, k)).

Let \j = k:]2 be j-th eigenvalue of Ts. Let C; be a Jordan curve encircling k; € o, but no
other point of o. Thus from Corollary 2.1.3.5 we have for every g € L?(R, dz)

I
195112

Ppyg == | kRio()gdk b - (3.34)
j T Jo,

hence
7 7 oo

[ k@@= [k ([ K g(ds ) dr

™ ij 7T ij —o0

i Tk 5

= — / 17\ (9(15 - 5)81(t7 k>¢(87 k) + 9(5 - t)sl(sv k )(Z)(tv k)) g(t)dk

™ Ck]. —00 (k)

Now we will rearrange the double integral using a parametrization v : [0,27] — C of Ck;
and Fubini’s theorem:

il@k(+mKwa#m@w>%=iﬁ%%w(4“K@aww%mmﬁvax

™ —00 Q0 —00
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:;/i?(A%VQNQL&VWVW%wM§Q@Ms:/tf(;[%kK@ﬁﬂﬁﬂjgwﬂﬁ

so now we will calculate the term %ka kK (t,s, k?)dk but this is easy thanks to Theorem
3.2.2.21 which gives us the following:

2| kK(t, s, k*)dk = ~2miRes(kK (t, 5, k), k;) = —2k; Res(K (t, 5, k), k;) .
™

T ij

For further simplifications we use the fact that the singularity is contained in ﬁ and the
fact that ¢(t,k;) = —B(kj)s1(t, k;) thus leading us to

Res(K(t,s,k?), k;) =
~ Res <W1(k> k]) [0(t — )16, k) (— B(ky))s1 (5, k2) + 0(s — t)sa (s, k2) (— B(ky))sa (1, K2)]
= —B(k;)Res (V[/l(k)’ k‘j> s1(t,k3)s1(s, k)
SO we write

1
- kK (t, s, k*)dk = 2k;B(k:)Res | ——— k. t, k2 k2
WA% (5,02 = 20 s (s by ) (025,12

and put the formula into the rearranged double integral and use the fact that for all s €
R, 51(5,]@]2) eR:

“+o00
2k; B(kj)Res (I/I/l(lc)k]) sl(t,ka)/ s1(s,k3)g(s)ds =

—00

_ 2k, B(k;) Res <W1(k)k]) (51(k2). g)s1 (¢, K2).

This is the Riesz projection Py so we have the equality

) vt (£ k) = 2k Bk Res [ k) (s1(K2). gV (¢, K2
Hsl(ka>H2< 1(k5), 9)s1(t, k5) = 2k; B(kj)R (W(k),kj>< 1(k2), g)s1(t, k2)

so finally we have the identity for the norm of the eigenvector s1(t, k;)
1

ijB(ij)RGS (ﬁ, k‘]>

ls1(k5)11* =

and the identity for the norm of ¢(t, k;) using the relation A(k) = W (k)

lo(k)II* =

The projector P-.
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The orientation of the contour I y ;5 is from +o00 to —oo, which can be seen from (3.32).
Let II; x5 be a straight line parallel with the real axis, passing the point 6. Then, minding
the orientation, we have the operator

) . N
L / kR, (k2)dk = — / (m + i6) Ry (m + i6)2)dm
HT N,$

7T T™JN

i [N
:/ (m +i8) Rry ((m + i6)*)dm
T™J-N

which we will examine closer. Let g € C§°(R). Define the operator

(Qn,s9)(t =—/ /k+u5 (t,s, (k +i6))g(s)dsdk

with the kernel(here we can change the order of the integration by the theorem of Fubini)

. N
an st s) = —- / (h+i0)K (L, 5, (k + i0)2)dk.
mJ-N

Using the fact that W (k) has all zeros on (—o0,0) and Lemma 2.1.3.6, which implies Qn =
%lign Qn,, we can set

qN(tv S) = (%I_I)I(l) qN,cS(t’ S)

i Nk ) ,
- /N W [0(t — s)s1(t, k*)p(s, k) + 0(s — t)s1(s, k*)p(t, k)] dk
= Ji(t,s) + Jalt, s)
uniformly for all ¢, s € R. Here

= —i/N Le(t — 5)s1(t, k?)p(s, k)dk
] n W(k) o ’

and
JZ(t> 8) = Jl(s? t)

Now we rewrite Jy:

s1(t, k*)o(s, k)dk

Ji(t,s) = ——0 t—s) [ 1(t k2)¢)(s,k)dk—l—/N
0

k
= —Lo0 / T W (0 ) = W(k)o(s, —k)] 1 (¢, 2
and if we adjust the expressions :

W(=k)o(s, k) = W(k)p(s, =F)

= [0(s, —k)si(s,k?) = s1(s, k)¢ (s, = k)] &(s, k)= [d(s, k)51 (5, k%) = s1(s,k*)¢' (s, k)] 6 (s, —k)
= [0(s, —k)¢' (s, k) — &(s, k)¢ (5, —k)] s1(s, k%) = W (=k)s1(s, k?)
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and
W(*k) = ¢(t7 *k)sll(tv k2) - Sl(ta k2)¢/(tv *k) = d’(tv k)sll(tv k2) - Sl(tv k2)¢/(tv k)
= ¢(tv k)sll(tv k2) - sl(ta k2)¢/(t> k) = W(k)

and finally

W:I:(k) - d’(ta k)¢/(t7 _k) - ¢(t7 _k)¢l(t7 k) = ¢(t7 k)d)/(t? k) - (b(t’ k)¢/(t7 k)

= ¢(ta k)¢/(t7 k) - qb(tv k)¢/(t7 k) = 22%((;5(15’ k)¢/(t’ k)) :
Then J; becomes
N 1. .
Ji(t,s) = %G(t — s)/O Wsl(t, k?)s1 (s, k*)dk
which means

N , B
J(t,8) = Ju(t, s) + Ja(t, 5) :/0 iWé’l(t, K2)s1 (s, K2)dk .

Now if we define the function ®(t, k) as
1L VIEWL(R)|
v [A(R)]

and since SW4 (k) doesn’t change sign in [0, +00) we can always set the fundamental system
such that iWy (k) > 0, so it is obvious that ®(¢, k) = ®(¢, k) we can write gy(¢,s) in the
form :

d(t, k) = s1(t, k?)

N
an(ts) = /0 (1, k)D (s, k)dk

and hence

@ua)(t) = [ ax(t.s)ayds = | ( / ) <1><ak><1><s,k>dk) g(s)ds

_ /ON (/R <I>(s,k)g(s)ds> o(t, k)dk |

where in the last step we used the Fubini’s theorem. To finish the proof we define the
functions a : M — C:

a(k;) = (ijB(k:j)Res (Wl(k)k;j» (s1(k3),9) , kj €N (3.35)
a(k:): ! V‘k / (t, kg (3.36)

now set the scalar product and again use the Fubini’s theorem :

(9,Qng) = /R (E(QNg)(t)) dt =
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L (s} roon)
:/ON </R<I>(S,k)g(s)ds> (/R@(t,k)g(t)dt> dk:/ONa(k),Qdk

From Corollary 2.1.3.8 we know that P, = ﬁ—lim Qn = I — P, therefore

— 400

+o0o
li = 2
Jim_(0.Qug) = [ Ja) P

and finaly we have the long-sought generalized Parseval identity for g € C§°(R):

N_(Ts)

+00
@)= > lalhk)+ / la(k)2dk = {a,a) . (3.37)

J=1

Evidently a € L?(M,dp). Next we will extend this equality for the whole L?(R, dz).
We will prove the unitarity of U and V.
Define the linear mapping U : C§°(R) — L2(M, dp) :

Ug)(k) = a(k) , g€ CF(R)

where a(k) is defined in (3.35) and (3.36). Since for every g € C5°(R) we have ||g|| = ||al,
we can extend the mapping U on the whole L?(RR, dx). Obviously U is an bijection between
the spaces L?(R, dz) and U(L?(R, dz)). The inverse operator V : U(L?*(R,dx)) — L*(R, dx)
is defined as

£(t) = (Va)(t) = /Ma<k><1><t, B)p(k) a € ULA(R, da))

which can be simply proved by checking the compositions UV, VU.

To prove the surjectivity, one must prove, that for a suitable dense set in L2(M, dp)
such that all functions in it have an L?-integrable image via ®. Then from the generalized
Parseval identity V could be extended to the entire L2(M, dp). Its obvious that it is sufficient
to find a dense set in L?(RJ, dk) such that for each element a in it, the function

/ (1, k)alk)dk
Ry

is square-integrable. Let a € C§°(R™). Obviously ®(¢, k) is C*°(R x R{). From Theorem
3.2.1.7 we know the asymptotic behavior of ®(t, k) for t — 400 is:

|<I)(t, k?)’ < Kle_lt >0

for some constant K7 > 0, [ > 0 and t; depends on [. We fix [, thus we have t; > 0. We
make the following estimate for ¢ > ¢;:

|®(t, k)a(k)| < Kle”/ la(k)|dk < K1Cre™™,

+
RD

ft) = /R0+ ®(t, k)a(k)dk g/

+
RO

where C} = fsupp o la(k)|dk. Now we study the behavior towards —oo. We choose 9 < 0

such that for all ¢t < tg, k? — V() > 0. We can do that, since supp a C [c,+00) for some
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¢ > 0, thus we take k > ¢ and since limy_,_ o, V(t) = 0, we can always find such ¢y3. From
Theorem 3.2.1.8 we can write ®(¢, k) in the form :

(L k) = ay (k)e™ (8, k) + a- (ke ™ (t, k),

where ay : Rf — C are in C*°([c, +00))(one can verify this by computing the corresponding
Wronskians) and for a fixed & > 0, lim;,_oons(t, k) = 1. We can make the estimate by
applying integration by parts:

d C
/ <eﬂ’ftdk (ot (), k)a(k:))> dk' < TP
supp a

where Cy = / dik: (ot (k)ns(t, k)a(k:))‘ dk < 400 since n(t, k) and a(k) are C*>°. So
supp a
far we have proven the following:

1

i

/R | (k) e (t, k)a(k)dk

/ (L, k)a(k)dk = O(e ), t — +o0
RS

/+ o(t,k)a(k)dk = 0@t , t— —c0
RO
Now since ®(t, k), a(k) are C*°, we can define

C= sup |D(t, k)a(k)|.

te€(to,t1],kEsupp a

Obviously C' < +oco. Define the function h:
h(t) = / O (t, k)a(k)dk.
Ry
Now we make the estimate:
to t1 +oo
n = [ ncopac= [ wetae [ neras [ neoPa
R
¢

—00 to i1

+

0 o0
< O(t™2)dt + Cu(supp a)(t; — to) + O(e2)dt

—00 t1
= O(t(;l) + Cu(supp a)(t; —to) + (’)(6_2“1),

where 1(.) is the Lebesque measure. and since tg,t; are finite, we get that h € L?(R,dx).
Hence
CN-Ts) ¢ Ce°(RY) ¢ U(L*(R, dx))

and since U(L?(R, dx)) is closed and using Lemma 3.2.3.2 we find that CV-(Ts)  Cg°(R") is
dense in L?(M,dp), V can be extended to the whole L?(M, dp) and therefore U is surjective.
Define the set

S ={f e L*R,dx); f, fV € ACy(R); 7 f € L*(R,dz)}.
For any f € S the equality
(UTsf)(k) = K*(Uf)(k) .k € M
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holds. One can check it, by using the definition of U and the integration by parts. Thus we
define the operator T on L?(M,dp) as

(Tf)(k) = k*f (k)

on the domain Dom(T') = U(S). Since Ts|S is essentially self-adjoint according to Theorem
3.1.2.6, T is essentially self-adjoint. Hence for every f € Dom(Ts)

(UTsf)(k) = k*(Uf) (k) k€ M,
thus T is unitarily equivalent with the operator T' on L?(M,dp) defined as:
(Tf)(k) =k*f(k), f € Dom(T)=U(Dom(Ts)).
O

Thus we have proven, that Ts on L?(R, dz) is unitarily equivalent with the multiplication
operator k% on L?(M, dp) and that the functions ®(¢, k) form the complete system of general-
ized eigenvectors of Ts. But in order to be precise, we must find the space @, ; L*(R, dpy),
resp. L?(R,d{pi;}). But this comes easily from the definition of the function a(k): The space
L%(R,d{pi;}) is the space L?(R,dp) where the spectral measure p is expressed as

1 1/2
p(A) = ‘2\/ —AB(ivV—\)Res <A(l€)’iv —)\> . Aeop(Ts)
2 VASAVR BV
p(N) = \[r AT . X au(T)

and {s1(7,1) }ieo(1g) forms the complete system of generalized eigenvectors of Ts and the
operator Ty is unitarily equivalent with the multiplication operator A on L?(RR,dp).



Chapter 4

Magnetic Hamiltonians in the
Lobachevsky plane

4.1 Physical description

The particle, which is spinless and with no charge in this case, is confined to the Lobachevsky
plane, on which an external perpendicular magnetic field is inpossed. Thus the magnetic
field will have a profound influence on the spectrum, as well as the dynamics of the particle.
In our case the periodic scalar electric potential will be zero. There are only a few explicitly
solved cases with non-zero periodic fields.

4.2 The mathematical description

4.2.1 Schroédinger operators on Riemannian manifolds

We will construct the Schréodinger operator on a two-dimensional manifold according to
Shubin [34] and Mine [28]. The following setup will incorporate the magnetic field in a
geometrical sense.

Let (M, g) be a two-dimensional, oriented, connected complete C°°-Riemannian manifold
with the Riemannian metric g on M. Let (U, ¢), ¢ = (x!,22) be a local chart, denote an
element of the metric tensor g as gmn = g(Om,0n) and an element of its inverse as ¢g"™".
Denote dp the canonical measure induced by the metric g, i.e. du = \/gdx1dxs. Denote by
A’()k)(M) the set of all k-smooth complex-valued p-forms on M.

Let A € A} (M). We will write AP(M) instead of AI(’OO)(M). We will begin with the usual
differential
d:C>®(M) — AY(M)

which will be modified into the form
da : C®(M) — Afy) (M)

daf =df +ifA, feC(M) (4.1)

and expressed in a local coordinate system

daf = (O1f +iALf)dx' + (Oof +iAsf)dax? .

o8
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Let u,v € C§°(M), we define the inner product

(u,v)1 :/ wodp .
M

For a, 3 € AY(M) in local coordinates expressed in the form
a = ajdz! + agda? | B = frdx! + Poda?

we define the scalar product

<a75>2: Z """ B

m,n=1,2

29

so when «, § have compact support(their coefficients have compact support) we may write

(0, B)1 = /M<a, B)adp

1

since (a, B)2 is a scalar function on M. Let w € A(l)(M), we define the linear mapping d*w

d* : AN (M) — C°°(M)

1
Fom S o (VEl ) o = e+ ns?

\/m m,n=1,2

which is the formall adjoint of the usual differential d satisfying
(du,w)y = (u,d*w); , uweCF(M), weA (M).
Now we define the formal adjoint to d4 as the mapping
dy s Al (M) — C(M)
dyw=dw—ild'w, A*w = (A w)

and in local coordinate system we have

1
dyw=d'w—1 Z g Apw, = dfw — — Z V9™ (1Ap) wy
m,n=1,2 \/> m,n=1,2
1
Bywo=——2 3 On (V3 "wn) = —z D (idn) (Vag""wn)
\f m,n=1,2 \/'a m,n=1,2
1 N mn
=—— > (Om+idm) (Vg9 " wn)

again, satisfying
(dau,w)1 = (u,djw)1, weCF(M), we A%l)(M) .
Now, we express localy the composition (d%da) :

1

(d3da)f = ——= Y (Om+i4n) Vag™" O +iAn)f) . f€CF(M)

\/g m,n=1,2
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Definition 4.2.1.1. Let (M, g) be a two-dimensional, oriented, connected complete C*-
Riemannian manifold with the Riemannian metric g on M. Then we define the magnetic
Laplacian A4 as

—Ap=didy: C*(M) — C(M)

Definition 4.2.1.2. Let (M, g) be a two-dimensional, oriented, connected complete C'*°-
Riemannian manifold with the Riemannian metric g on M. Let V € LZQOC(M), V' is real-

values and will be referred as the scalar potential. Let A € A%l)(M) and it will be referred
as the magnetic potential. Then we define the formal partial differential expression.

L=—-A4+V (4.2)
and the magnetic Schrédinger operator T),;, as
Toinu = Lu u € Dom(Tin) = C5° (M)

Remark 4.2.1.3. We restrict ourselves to C'°° 1-forms A. Of course, there are many
interesting problems that consider a less restrictive or even a broader class of forms. For
a good example, we the reader refer to Mine [28], where a system with d-function type
potentials is analyzed.

Remark 4.2.1.4. The reason, why we have chosen this rather lengthy derivation of the
differential expression £ is that we will later express the magnetic potential in our quantum
system by a differential form and that this way also expresses one of the currently, mostly in
mathematical physics, used mathematical interpretations of the magnetic field. This inter-
pretation is encapsulated in the equation (4.1), which is also the choice of specific connection
on our manifold(or in a physicist’s words, our universe) expressed by the differential form
da. For precise information about the significance of a connection, we refer the reader to
Stovitek-Kocabova [36].

Now we will present a very important theorem from Shubin [34] concerning the essential
self-adjointness of the magnetic Laplacian Ay. The theorem is a special case of a more
general theorem, that Shubin in [34] proves. It is also reformulated for our cause.

Theorem 4.2.1.5. Let (M,g) be a two-dimensional, oriented, connected complete C>-
Riemannian manifold. Let A € Lipjoo(M). Then —Ay = d¥da is essentially self-adjoint in
L?(M,dp), where du is the canonical measure induced by the metric g.

Remark 4.2.1.6. Generally the question of essential self-adjointess of Schridinger operators
on Riemannian manifolds is nontrivial and is still in active study. It has been answered for
special classes of potentials V' and magnetic fields A and the proofs often use heavily the
theory of bundles and connection, as can be seen in Bravermann-Milatovic-Shubin [9].

Remark 4.2.1.7. The reason that we need only the special case is that we consider the
periodic scalar potential V = 0.

4.3 Spectral analysis of the magnetic Hamiltonian

4.3.1 The Hamiltonian H;, of the system

We will analyze a well-known problem of Comtet [11],[12]. Our manifold, or, more physically
speaking, our universe will be the Lobachevsky plane model with the curvature parameter
a defined in 2.3.1.2.
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Let (U, ¢) be a local chart. The magnetic field is expressed as a differential form A €
C>(AY(M)) which is written as

A= Aldwl + Agdxg
in the coordinate neighborhood U. Hence the magnetic induction B € A%2(M) is given by
B =dA = (BxAQ - 8yA1) dr1 Ndxs .

We will examine the case where B oc /gdxzdy. In [11] ,[12] this is referred as the "constant
magnetic field". The proportionality implies

k 2
B = izdxdy
Y

for some real non-zero k. For our case we will choose a particular gauge, specifically the

Landau gauge

b
Ai(z1,20) = — ,  Ag(w1,m2) =0, b= kd®
T2
From Definition 4.2.1.2 we have the formal pariatl differential expression

2
_T2

L=-= ((a1 A2+ (9s + iA2)2>

T2

_ % af@2 92 ) = =L (2202 + 2202 + 2ibwady — B
= 1 +0y | = (12(562 1+ 2505 + 21020904 )

and the operator
HLO,mm’u, = Lu y Dom(Tmm) = Cgo (H) (43)

Theorem 4.3.1.1. Hyg i 45 essentially self-adjoint.

Proof. Obvious. Let (U, ¢) be a local chart. Since Ay (z1,z2) = % and As(x1,22) = 0, we

xT

have Aj, Ay € Lipjo.(U), which implies A, Ay € Lipjo.(M). So the self-adjointness follows
from Theorem 4.2.1.5. O

Definition 4.3.1.2. Denote by Hrg the closure of Hromin.

4.3.2 The eigenvalue problem of automorphic forms on the hyperbolic
plane

We will use the definitions, notations and theorems from the papers of Elstrod [16] and
Roelcke [32].

Let G be a discrete subgroup of SL(2,R) containing —I, and let B denote the fundamen-
tal region of G. Let k € R and let v be a multiplier system of weight 2k. Let M = <z 2)
Now we take a function f : H — C and we define a new function f|[M,k] :H — C :

FIIM, K)(z) = e~ 2ikare(e=td) £ (012 |

az+b
cz+d

where Mz = . By z we mean z = x1 + 1x2.
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Definition 4.3.2.1. Let Hi(G, B,v) denote the Hilbert space of all the ug-measurable func-
tions f : H — C satisfying:

1. fI[M,k] =v(M)f for all M € G.

2. [ f1Pdumn(z) < +oo.

The scalar product on Hy(G, B,v) is defined as

()= [ TEIa ().
Now we define the partial differential expression Ly:
Ly, = 23 (0} + 03) — 2ikx20, .

Definition 4.3.2.2. Denote by D? the set of all twice-differentiable functions f : H — C
such that L. f € Hi(G, B,v). Denote by Dy° the set of all infinitely differentiable functions
f:H — C having a support, that is modulo G compact(that is, supp f/G is compact).

Thus obviously D° = C§°(B).
Definition 4.3.2.3. Define the operators Az and AP°:
Aif=Lrf, f€Dom(A})=Dj.
APf=Lof, f€Dom(AY) =Dy
Now we come to a very important theorems, that is proved in [32].
Theorem 4.3.2.4 (Roelcke). The following statements are true:

1. The operators —Ai and —AP° are essentially self-adjoint and have the same self-
adjoint extension, denoted by —Ay, with the domain Dy,.

2. Buvery twice-differentiable function from Dy lies in D,%,
3. The spectrum of —Ay lies in {@ (1 — @) ,—i—oo).

Elstrod in [16] analyzed the case of the whole H by taking the group G = {I,—I},
choosing v to be trivial(v(I) = V(—I) = 1) and using Roelcke’s theorem he received the

following results:

Theorem 4.3.2.5 (Elstrod). Let G ={I,—I}, v(I)=V(-I)=1 and k € R. Then:
1. op(—Ak) = {(Jk| = m)(1 — [k| + m);0 < m < |k| — 1, m € Z}.
2. 0o(=Ak) = [1,400).
3. The spectrum o(—Ay) has infinite spectral multiplicity.

To calculate the corresponding eigenfunctions, Elstrod passed the problem to the Poincaré
disc model used the connections hetween the operator Ay on the Poincaré disc and the Gauss
hypergeometric function 9F}(a, b; ¢; z). The results follow:
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Theorem 4.3.2.6 (Elstrod). The eigenfunctions gm,n : B — C, defined on the Poincaré
disc, corresponding to the eigenvalue A\, = (|k| — m)(1 — |k| +m) are :

G (re'®) = rMlem (1 — p2)F=m ) By (k| — m — kn, [k] — m + Ky + |nl; 2] + 1572)

Jor0<r<0,0<¢<2m, 0<m<|k|l— %;m,n € Z. Also, ky, = £|k|, where the sign is
chosen to satisfy:
k| —m —kn € Zy V|k| —m+ky,+|n| €Zy .

To express the eigenfunctions fy,, : Hl — C on the Lobachevsky plane, one can use the
transformation
rsin ¢ 1=
- +1 - .
|1 — rei®|? |1 — rei®|2

z = —

4.3.3 The spectrum of the Hamiltonian H/

The two theorems of Elstrod, Theorem 4.3.2.5 and Theorem 4.3.2.6 elegantly solve the
spectrum of Hry. Thus we can summarize:

Corollary 4.3.3.1. The following statements are true:

1 1
1. op(Hpo) = {a2(|b| + 2|blm —m —m?);0 <m < |b| — 5 M€ Z}.

2. 0c(Hro) = [;2 (i + b2> ,—I—oo>.

3. o(Hro) has infinite spectral multiplicity.

4. The eigenfunctions, written in the Poincaré disc coordinates, corresponding to the
eigenvalue 25 (|b] + 2|blm — m — m?) are
Gmn(re®) = rl"lemo (1 — p)P=m o By (6] — m— by, [b] — m+ b + 3 n] + 1577)

Jor0<r<0,0<¢<2m, 0<m<|b|— %;m,n € Z. Also, b, = £|b|, where the sign
18 chosen to satisfy:

b] —m — by, € Zg V |b| —m +b, + n| €Zy .

Remark 4.3.3.2. But with the previous theorem our work has not finished. Next we will
try to uncover some information about the spectrum by using an analysis that has many
features of a Bloch decomposition, but it is not a Bloch decomposition in a true sense. We
will then see, how much information from Theorem 4.3.3.1 can be verified by our method.

4.3.4 The decomposition of H;, under the parabolic group P(Z)

In this subsection we will construct a decomposition of our operator Hrg under the group
P(Z). First, we present a few more definitions.

1. We here restrict ourselves to the case b € Z.

2. We shall operate with the fundamental region F' := F(P(Z)) defined in 2.3.2.9. We
will also be working with the group P(Z) which has the same fundamental region as
P(Z).
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3. We use the multiplication system vy defined in Theorem 2.3.3.5 on the group P(Z).
4. The norm in L?(H, duy) will be denoted by |.]|.

5. Define the Hilbert space H'(0) = Hy(P(Z), F,vg) for 6 € [0,27), where Hy(G, B,v) is
the Hilbert space from the Definition 4.3.2.1. We will denote the norm in H'(6) by
I-llo-

Now we define the direct integral

@
H = (o)L

[0,27) 2’

with the norm in H denoted by ||.||2. Thus from the definition of H'(6) its obvious, that for
every f € H'(6) one has

672ibarg(02+d)f(Mz) =v(M)f(z), Me P(Z) , z e H.

Since for any M € P(Z) we have ¢ = 0 and d = £1, and we restrict to the case b € Z, the
last equation reduces to

f(Mz) =vo(M)[(2),
hence '
flz+n)=e"f(z), zeH.

Define the mapping U : L?(H, dug) — H :

“+o0o

Uhe(z)= > e fz+n), (4.4)

n=—oo

for @ € [0,27) and z € F. For the following theorem we use the proof of a lemma in
Reed-Simon (31, p. 289.

Theorem 4.3.4.1. U is well defined for C§°(H) and uniquely extendable to a unitary oper-
ator.

Proof. First, we prove that for any f € C5°(H) the image Uf is in H. For f € C§°(H) the
sum (4.4) converges absolutely. Thus using the theorem of Fubini and the orthogonality of
the functions ¢, n € Z on [0,27] we have the following:

INTAYA

1 +o0o0 4o
do d
:/ / Z Z flx+iy+n)f :L‘+zy+j> n)? dx —‘g
R+ \ Jo 2 Y

N=-—00 j=—00

A (o et)e) = L

“+o0

Z e*inef(x +iy+mn)

n=—oo

dy \ do

2
de | &2 1 &2
v y2 | 2w
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Hence U can be extended on the whole L?(H, duy) to an isometry. Now we prove the
surjectivity. For g € H, we define, for z € F,n € Z the mapping U*:

2w
R RO

If one makes the compositions UU* and U*U:

+oo
(U(U*g))o(2) = Z efién(U* (z+n) Z zen/ m@’gév ﬁ = go(2) .

n=—oo n=—oo

since the right-hand side is the Fourier series expansion and the for the other one:

2
(US(U £))(2+n) :/0 eint Z —Zj9f Z—|—] Z f(z45) / e i(j—n)Q% = f(z+n),

j=—00

since e’ n € 7 are orthogonal on [0, 27]. Nex we have:

1U7gll® = /IU* |dNH—/0 </1 (n_ZOJ (U*g) z+n)|2> dm>zg
:/0+oo< 1 <n+io‘/27r 2) dx)(ng

Using the Parseval relation for the Fourier series:

2 2 2
T de 4 db
| ey = [ lary,
0 n 0 T
we finally get the equality

_ /0+°° (/01 </027r ‘gg(Z)PZi) dm) /m (/ lgo(= Hedw> @

= llgll3-

+o0o

2.

n=—0oo

Thus the equality:
U7 gl = llgll2

is proven along with the surjectivity. O

Now we define the operator Hy using the operator Ay defined in 4.3.2.3:
Dom(Hy) := D§°
where Dy is defined in 4.3.2.2 and we set:

Hof =~ (A, ~BI)f . f € Dom(Hy).

Denote the self-adjoint extension(according to Theorem 4.3.2.4 it is unique) of Hy by Hp.
Here again, we use the lemma in Reed-Simon [31, p. 289].
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Theorem 4.3.4.2. The following equality holds:

D
U(Hpo) U™t :/ Y

[0’27r) 9% (45)

Proof. We denote the right hand side of (4.5) as A. Since for all 8 € [0, 27) Hy is self-adjoint,
we have from Theorem 2.2.2.21 that A is self adjoint. Denote the differential expression
1 .
L= — 3 (x%@% + 2202 + 2ibx20; — b2)
If we prove for f € C§°(H) that Uf € Dom(A) and the equation
U(Lf) = AUY), (4.6)

holds, we will prove the equality UH o min = AU on the domain C§°(H) and our job will
be done, since then UHzo,mmU_l = A*, from Theorem 4.3.1.1 Hpg mn is essentially self-
adjoint, thus Hyg .., = Hro and A = A, hence leading us to the equality:
UHp U™t = A
So let f € C5°(H).
Let 0 be fixed. From the definition of U we have:

+00 oo
Uhez+n)= Y e fa+n+k) =Y ee™fz+1)
k=—0oc0 l=—00

+o0
= Y ez D) = e™(Ufo()
l=—00
One clearly observes, that (Uf)y € C*°(H) and for any p,q € Ny and m,n = 1,2 the
equality
e 0n(Uf)o(z) = (U207 f))e(2) . 2= m1 +izo

holds. Since f has compact support in H, there exist R > 0 such that for all z; € R,z9 > R
we have f(21+ix2) = 0 and the topological structure of F implies, that (U f) has a modulo
P(Z) compact support. Hence (Uf)y € Dom(Hy), moreover

Ap(Uf)o = (ULS)g

To make the statement Uf € Dom(A) true it remains to prove

/[02

77r)

do
[40(U foli3 < +oo.

But again, since f has compact support in H, there exists a rectangle [-N, N|x [¢, R], N € N
such that suppf C [N, N] x [¢, R], so we can make the estimate

140U follo = I (ULS)g llo < 2NILF|
for all 6 € [0, 27), thus

do
| 1Al <2Vl < oo
[0,27) ™

since f € Dom(Hro min). Hence Uf € Dom(A) and U(Lf) = A(U f) and the equality 4.5
is proved. O
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4.3.5 The eigenvalue problem of Hy

We are going to study the spectrum of Hy and hence eigenvalue problem
1
- (2307 + 2303 + 2ibx201 — b*) Y = Ay . (4.7)
We will use the following ansatz:
Y(x1, m2) = @ p(ze), 1ER. (4.8)

The equation (4.7) is reduced to

2bl 2\ — b2
¢//+ _k2_7+a 5 6=0

From the boundary conditions on the functions in Hj we have the following restriction on
the parameter [: -
d(xg) = e P(xg) , 23>0,

thus
=2t —0, n€Z.

After applying the substitution z = 2|l|z2 and defining v(z) = ¢(z2) we have

d?v 1 b a?)\—b?

which is the famous Whittaker differential equation. Now define the formal differential
expression Ty

TW—a2 sgn > 22

S0

Tw = A\

Now the corresponding minimal operator 1w mn :
Twmint = Twu ,  u € Dom(Tw,min) (4.9)

Dom(Tiwmin) = {f € L*Ry,2722) ; ff € ACo(R1);7f € L* (R4, 272d2))}
Lets take the substitution z = ¢! and define the mapping U;:
Up: LRy, 27%dz) — LA(R, e tdt)
Ur: f(2) = f(e)

Obviously U; is a bijection and

+oo +o0
| wers e = [ et
0 —00
s0 its also unitary. Analogically we have the mapping Us:

Uy : L*(R,e~tdt) — L3(R, dt)
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Us : g(t) — g(t)e™"/?

again a bijection and

+oo +00
/ (et e "t = / p(eh)e 2 2dt

so again, unitary. Hence the composition
Us = UsUy, Us: L*(Ry, 2 2dz) — L*(R, dx) (4.10)
is unitary. After applying the transformations on T we get :

1 > 1 PR B
6L2< ﬁ‘i‘*@ +897’L(l)b€ +4+b>

Let Usyp = £ So we get
1 1 1
— (— + —e? + sgn(l)be’ + i bz) =X,

or equivalently

d2+1e b4 sgn(l)be! | € = ué g PO
— g =pE, p= 10
Define 8 = —sgn(l)b and define the formal differential expression
2 1 :
S )

We will continue by analyzing the spectrum of a self-adjoint realization of .

4.3.6 The ordinary Schriédinger operator with a Morse potential

Through the solution ansatz and the unitary transformations Uy, Us, Us we have transformed
the 2-dimensional problem into a one-dimensional. In this subsection we will analyze the
one-dimensional differential operators generated by the differential expression (4.11).

Definition 4.3.6.1. A Morse potential is a function V(z) : R — R of the form
Vi (z;a,c,pn) =c (eih(r*”) - 267(1(%7“)) (4.12)
where a,c, u € R.

Remark 4.3.6.2. In our case we will study the Schrédinger operator with the potential

V(z) = iQI Be* (4.13)

where 8 € R\ {0}. If 8 > 0, we have the special case of (4.12) :

V() = 16 — e = Vag(a: ~1, 8% In29)

with parameters a = —1, ¢ = 8%, u = In24.
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For the rest of this subsection, we will use the following notations. By V(x) we will
always denote the potential (4.13). Define 7j; to be the Schrodinger differential expression
on R:

™= dx 46 ¢ '

Define T};, and Ths to be the minimal, resp. maximal operators on L*(R,dz) with their
domains

Dom(T}ye) = {f € L*(R,dx)|f, f € ACo(R);7f € L*(R,dz)} (4.15)
Dom(Ty) = {f € L*(R,dz)|f, f' € AC(R);7f € L*(R,dx)}. (4.16)

Since according to Corollary 3.1.1.13, Ty, is symmetric, we may define Thro = T},,- Now
we will take a closer look at V(z). We set V_(z) = max{—V(x),0}. We have the following
observations:

1. V() has its global minimum at —32.
2. If B < 0 then V() is non-negative on R.
3. If 8> 0 then :

(a) The potential V(x) is negative on (—oo,In4p5).

(b)
/ V_(z)dx = 2/3°. (4.17)
R
(c) Let Ry > In4p, then
+o0 1
Rl/ V_o(z)dx =0 < —. (4.18)
R 4
(d) Let Ry > —1In4g, then
+o0 1
RQ/ V_(—x)dz = Roe T2(5 — —e1t2), (4.19)
R 8
which decays exponentially as Ry — +00 so we can find an IV > 0 such that
_R 1 _p 1
Roe™"2(8 — ¢ 2) < 1 (4.20)

And now we return to 7.

Lemma 4.3.6.3. The following statements hold:
1. 7 is a singular differential expression.
2. T is the limit point case at both +oo.

Proof. 1) Obviously from the definition, since all coefficients are locally integrable and the
endpoints of the interval are £oo.

2) Here we use Theorem 3.1.3.1. We have the Sturm-Liouville differential expression
with p(z) = 1,q(z) = V(x) on the interval (a,b) = (—o00,400). Let ¢ € R and define the

function g(z):
1
x) = ——dr =z —c,
o) /c p(z)
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so g ¢ L*(R,dz). Also

liminf ¢(z) = liminf V(z) = lim V(z) = 400 > —o0,

r—+00 T—+00 T—+00
hence 7 is the limit point case at +00. The endpoint —oo is treated analogously. O
Lemma 4.3.6.4. The operator Ty is essentially self-adjoint.

Proof. This fact comes from Theorem 3.2.1.5. Define the operator 7"
Dom(T)=C5*R), Tf=7f, fe Dom(T).
From the properties of our potential V(z) we have V(z) > —32. By setting Q(x) = 3? for
all x € R we have
T dx

e V/QRz)

So the requirements of the theorem are fulfilled and thus T is essentially self-adjoint and
since T' C Ty, the operator Th is essentially self-adjoint. O

V(z) > -Q(z),Yx e R | +00

But we can prove even more, hence the following:
Lemma 4.3.6.5. The operator T is self-adjoint.

Proof. We first use Theorem 3.1.1.16, from which we have T = T, then Theorem 3.1.2.6,
since 7 is the limit point case at both ends. Thus we have T,y = Ty = Tho. So Ty is
self-adjoint. O

In this part of subsection we will examine the spectrum of o(Tys). First we start with
its location.

Lemma 4.3.6.6. o(T) C [—f?,+00).
Proof. The proof follows from Theorem 3.2.2.3 since for all z € R V(z) > —32. O

One could also apply Theorem 3.2.2.7 but after a simple straightforward calculation the
function vy yields:

26% et — 1
=——— t>0
vt t el +1
with lim; g4 14 = —3%. And if we use the estimate 3.21, we get

2 16m5
U(TS)C [_/8 7+OO) C v — 2 ,F0oo |,

so our estimate will not improve. Hence Theorem 3.2.2.7 is not useful in our case. We
continue with the essential spectrum:

Lemma 4.3.6.7. 0.ss(Th) = [0, +00).
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Proof. 1) 0ess(Tar) D [0,400). We apply Theorem 3.2.2.10 since [, V_(z)dz < 4oco. We
set I,, = (—n,In4|g|) for every n € N and p = 0. We can write

I 413)
xa@uxg/) V(@)|dz , ¥n €N,
I, —0o0
hence the inequalities
In 4]
0<IL [ V@lde < L [ V@)ds
In —00

hold and since lim,,—, ;o |I,| = +00 we have

lim m;4/|vmmm:o
n—-+4o0o In

thus the inclusion is proved.
2) 0ess(Thr) C [0,4+00). Now we put Theorem 3.2.2.9 to work. So the functions A, wy
for t > 0 with our potential V(x) are

Yt
A¢ = liminf t_l/ V(z)dz =0
g

[yl —+o0

since V(x) exponentially diverges to 400 when x — 400 and decays exponentially when
r — —oo and

v+t
w; = lim sup t_l/ V_(z)dx =0
g

Iy|—=+o0

since for 8 < 0is V_(z) = 0 for all z € R, and for 5 > 01is V_(x) nonzero only on (—oo,In4/5)
and also decays exponentially when x — —oo. Hence

16w?
Jess(TS) C |:)\(] — 71_20,4-00) = [0, +OO) .

So 0ess(Ts) = [0, +00). O
And now we examine the point spectrum:

Lemma 4.3.6.8. The following statements hold:
1. Ths has at most finite number of eigenvalues.
2. Every eigenvalue of Th is negative.

3. The bound on the number of eigenvalues
N_(Ty) < g + 26 — 367 +23%In4p

valid for every 8 > 0.
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Proof. 1) Since [ V_(x)dx is finite and from the properties of V(z) mentioned earlier we
can use Theorem 3.2.2.5.

2) Obvious consequence from Theorem 3.2.2.1.

3) We use Theorem 3.2.2.6 and have the estimate for 3 > 0

N_(Ty) < g + 26 — 367 + 232 In 4.
O

So far, the point spectrum is an isolated finite set and the essential spectrum is the set
[0, +00), we may write:

Lemma 4.3.6.9. For every 3 € R\ {0}, 0c(Th) = 0ess(Tar) = [0, +00).

Proof. Obvious. From Theorem 2.1.2.5 we have

UC(T]V[) = Oess (TM) \ Up(TM) = Oess (T]y[),

since the point spectrum and the essential spectrum are disjoint, because every eigenvalue
is of finite multiplicity < 2, otherwise 7p; would have a fundamental system of at least three
solutions, which is a contradiction with the theory of linear differential equations. O

Now, since we know that Tj; has a finite number of eigenvalues and that o.(Th) =
Oess(Thr) = [0,400), all that remains is to locate the eigenvalues with their corresponding
eigenfunctions and investigate the absolutely continuous and singular continuous spectrum.
This will be done in the following. But first, we return for a little while to the potential
V(z). In order to use the asymptotic expressions for the solutions of the equation 771 = k1)
with the spectral parameter k2, we must check, if V(z) satisfies the conditions 3.11 for the
endpoint —oo. But that is simple computation and estimation: For 29 < min{0,1n2|3|} we
have:

Ze* —

xo ] 1
/ V' (2)|*dx = / e’

2 o
> dr < / ¢*(1+ |B])2da = (1 +|6])%¢™ < +o.

—00

For 29 < min {0,1n |G|} we have:
o Zo xo
/ V" (x)|dx :/ e%|e® — | g/ e* (14 |6))dz = (1 + |B])e™ < +o0.

One might want an asymptotic behavior towards +oo, but to our misfortune V' (z) does not
satisfy the second of the conditions in 3.11. But we are armed with Theorem 3.2.1.7 which
will gratefully satisfy our needs. We will always assume Sk > 0. The one solution of the
equation Ty = k21 is:

Uz, k) = e 2 W ap(e”) = e 2 Wy _ip(e”), (4.21)

where Wy, (%) is the Whittaker function. We now give the asymptotic behavior and both
endpoints for 2ik ¢ Z.

D(Z2ik) | P = 2ik)e” o, (e“))

T _ eik:c
Vi, k) (r@—ﬂ—z‘k) (5 =B —ik)
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—ika [ L(2ik) BT(—1 + 2ik)e” . o
h <F(§—B+z’k) (3 —B+ik) O )>  for @ — —o0 (4.22)
(k) = e T (6_96/2 +0 (6_371>) , for x — 4o0. (4.23)

From the asymptotic behavior towards +oo we can see, that ¢ (x, k) is faster then exponen-
tially decaying. The solution is real for real k2 € R, thus 4 is a suitable choice for s;(z, k?).
The exist an another independent real solution ¢(z, k) as the other solution sa(z, k?) for

which we define %, where W (¢(x, k), 1 (x, k)) denotes the Wronskian of the two

solutions. But we only need s1(z, k?) to find the eigenvalues.
Thus we have the system of fundamental solution according to Definition 3.2.2.11:

o (x, k)
W(g(x, k), ¢ (x, k)

By u(z, k) we will denote the unique solution having the asymptotic behavior towards —oo
determined by Theorem 3.2.1.8 and chosen such that for k? being an eigenvalue it is ex-
ponentially decaying. Then from the same theorem we have an another, u(z, —k), being
divergent at —oo, thus having a second system of independent solutions. Hence there exist
unique functions a(k), 5(k) satisfying

81($, kQ) = w(fﬂ,k) ) 82(1’, k2) =

V(z, k) = a(k)u(z, k) + B(k)u(z, —k),
but since for real k2, ¢(z, k) is real, we can write the equality in the form
¢($a k) = a(k)u(:r, k) + a(—k)u(ac, _k)v (424)

and obviously «a(k) = a(—k).
So the asymptotic behavior of ¢(z, k) will be a superposition of the asymptotic behavior
of u(z, k), u(x, —k):

Y(x, k) ~ (k) [exp <zk /wo \/1-— V};?dt) (1+ 0(1))]
+a(—k) [exp (zk /IO \/1-— V;;?dt) (1+ 0(1))] .

But if we slightly modify (4.22), we get

I'(—2ik)
(3 — 8 —ik)

I'(2ik)

eikx +o eQa:-‘,—ik:x +
( ) I3 —B+ik)

e—ikx + 0<€2x—ikx> _

w(-% k) =

I'(—2ik ~ ’ '(2ik
— 1( ¢ ) ezkx+0(€zkm)+ - ( ¢ ) :
L'(; — 3 —ik) (5 — B +ik)
Here we use elementary rules from asymptotic analysis. For given functions f, g satisfying
the relation f(x) ~ g(z)(1+ o(1)) we have

f(@) = g(x)(1 + o(1)) + o(g(x)(1 + o(1))) = g(x) + o(g(x)) + o(g(z) + o(g()))

= g(x)+o(g(x))+o(g(x))+o(o(g(x))) = g(x) +o(g(x)) +o(g(x)) +o(g(x)) = g(x)+o(g(x)).

e~k 4 o(e~ ), (4.25)
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So for fi(x) ~ gi(x)(1 +0(1)), i = 1,2, and for some a; € C, i = 1,2 such that

a1 f1(x) + azfa(w) ~ a1g1(x)(1 + o(1)) + azgz(z)(1 + o(1)),
we have
a1 f1(z) + a2 fa(z) = a191(z) + 0(g1(2)) + a2g2(z) + o(g2(z)).

Now if we apply this trace of thought on equations (4.24) and (4.25) and compare them, we
find the coefficient a(k):

_ T(2ik)
a(k) = —F(% i) (4.26)
The Wronskian of the system s1(z, k%), u(x, k) is
R A G 2L) B O AN
W(Sl(x7k2)vu(‘rvk)) - F(% —ﬂ—’lk)W( ( ) k)? ( 7k))7 (427)

which is exactly what we need to find all the eigenvalues of 7. The Wronskian W (u(x, —k), u(z, k))
will not cause any trouble, because its nonzero for k # 0, and holomorphic in C. The function
a(k) has zeros at the poles of the Gamma function, which is when

1
i—ﬂ—ik’n:—n,neNo,

thus, applying Theorem 3.2.2.21, we have the eigenvalues of Thy:

o3 ()

with n satisfying 0 < n < 5—%, because k,, = i|k,| and so —ik, > 0 thus —n = 5 —F—ik, >
% —band n < g — % Hence eigenvalues exist only for 3 > 0.

And the fact, that we used the asymptotic behavior with the restriction 2ik ¢ 7Z, will
not cause a loss of generality since we are interested in the zero points of the Wronskian,
not its singularity points.

Now we focus on the spectral measure. From Theorem 5.1 in Kodaira’s paper [25] the
following holds:

W (u(z, —k),u(x, k)) = —2ik, (4.28)
so if we write u(z, k) as the linear combination of si(z, k%) and sz (z, k?)

u(z, k) = A(k)sa(x, k%) — B(k)si(z, k?),

we have: QAT (~2ik)
kI (=214
A(k) = W(u(z, k), s1(2, k) = —5————, (4.29)
TS — 6 —ik)
and here we use the expression for the spectral measure from Theorem 3.2.3.3
1 kW —k k

va |A(F)]

since our u(x, k) is the function ¢(z, k) in Theorem 3.2.3.3. Thus

dp(k*) = =+/ksinh(27k) ‘r (; — 8- zk:) ’ dk ,k > 0. (4.31)

1
s
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The function on the right side of (4.31) is well-defined for every k& > 0(the only critical point
may be k = 0 when the the argument in the gamma function is a negative integer, but this
is a removable singularity). Hence this answers the question about the absolute continuity
of the spectrum o.(7T), which can be summarized in the following:

Corollary 4.3.6.10. The following assertions hold:
1. 04e(Trr) = 0c(Tar) = [0, 4+00).
2. 05(T) = 0.
Remark 4.3.6.11. The second assertion of the corollary can be proven via Theorem 3.1.7.1.

Returning to the case 8 > 0 and the eigenvectors, they can be written in the form:

x eT 1 2
s1(2,Ep) = ¢ i Wy g, () = ¢~ 7 TITLI ety | By = kg = - <5 5~ n> ,

where L (

the relation

x) is the generalized Laguerre polynomial. Here we used Corollary 6.1.2.9 and

L (z) = (_1)nU(—n, a+1,z)

n!
with the Tricomi confluent hypergeometric function. Now we will normalize them using the
equality
+o00 +00 T 1
/ e *2%(Ln(2))%dz = a/ e 22 (L n(2))2dz = w
0 0 n.

from Gradshteyn-Ryzhik [19] and the substitutions z = e*, o = 23 — 2n — 1. We have the

relation I )
-n
/Rsl(m’E“ TR —2n—1)

which is well-defined, sice n < § — %
Finally, using Theorem 3.2.3.3, which conditions our case satisfies, we have the complete
system of generalized eigenvectors for the operator Thy:

e Case b <O0:

U(a k) = - kmm@ﬂﬁﬁ<;—ﬂ—w>e§W%%Mﬂ, k>0 (4.32)
T

e Case b > 0:

nl(28—2n—1) €~ —n)z 7 (26—2n—1) .
m%m:{ g © ° L (e%) $—WE”} (4.33)

(8
e
L. /ksinh(2rk) ‘ (53— —zk)‘e 2W57ik(ez) k>0
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4.3.7 The spectrum of Hy

First we return to the operator Ty iy defined in (4.9). By the transformation Us, defined
in (4.10), we know that

1 1
Twmin = Us ! [QQ ((T}wo + <4 + b2> I>] Us.

From Theorem 4.3.6.5 we have the essential self-adjointness of Ty, so Tw = T}y ,in 1S
self-adjoint. Applying the unitary transformation, we get the spectrum and the complete
system of generalized eigenvectors for the operator Ty defined as

1 1y ¢, 1 2 -1
Twf= = <_dt2 + 1€ + sgn(l)be’ + 1 +b > [, feDom(Tw)=U; (Dom(Ty)).
The spectrum:

e The continuous spectrum : o.(Hp) = [a% (1 +0?),+00).
e The point spectrum : o,(Hp) = {a% (i +b%— (b — % — n)2> 0<n<|b|—3, z€ Z}.
The generalized eigenvectors, [ # 0:

e The continuous spectrum:

k sinh(27k)

\IIW(t7k7l) = 27’(2’”

1
r (2 + sgn(l)b - Zk‘) ' ngn(l)b,ik(2’l|t) ,/{1 >0 (434)

e The point spectrum: k = \/6112 (i +02— (|| — 5 — n)2)

nl(|b] —2n—1) _ _ o
i} - [t (o1 714)10l=n 1,(1b]=2n—1) (9 4.

where we chosen to 'normalize’ even the generalized eigenvectors for the continuous.

And now we analyze the operator Hy. Here we keep in mind the fact, that the eigenvalues
exist only in the case § = —sgn(l)b > 0, or equivalently (b < 0.

The generalized eigenvectors:

e The continuous spectrum: k > 0, [, = 27m — 0, m € Z.

ksinh(27k)

(I)(t,k,lm) = 471_3” ’

1
r (2 + sgn(ly)b — zk:)

eilmxl ngn(lm)b,ik<2’lm‘m2)
(4.36)

e The point spectrum : eigenvalue a% <% +b%—(|p| — 1 - n)2>: With the condition
I;mb < 0 we have the two cases:

— Caseb>0,0=0: l,, =2mrm—0, meZ~
— Case b> 0,0 #0: I, =2mrm — 0, m € Z
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— Caseb<0: [, =2mm —0, meN

n!(|o] —2n—1) 4 —u 3 o
D, (t k1) = il o —|lmlt (o I b]—n 1 (Ib|—2n—1) (9 I,
(8,1 L) \/ T = @l L2 2l )

(4.37)
Finally, we can make the summary:

Corollary 4.3.7.1. The following statements are true:

1. every element of the set

1 (1 1 2 1
— | = — - - — < - = 7,
{a2<4+b <|b| 5 n>>,0n<|b| 5 # € }

is an element of the point spectrum of the operator Hy having infinite spectral multi-
plicity.

1
2. every element of the set [2 <4 + b? ,-|—oo> is an element of the continuous spectrum
a
of the operator Hy having infinite spectral multiplicity.
Now we return to the operator Hpg.

Theorem 4.3.7.2. The following statements are true:

1. every element of the set

1 (1 1 2 1
— | = — [ )< - — 7
{a2<4+b <|b| 5 n)),()_n<|b| 5 # € }

is an element of the point spectrum of the operator Hpg.

1 /1
2. every element of the set [2 <4 + b2) ,—i—oo) 1s an element of the continuous spectrum
a
of the operator Hpy.

Proof. To proof both assertions one uses Theorem 2.2.2.21 and Corollary 4.3.7.1. O
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Summary of the problem

5.0.8 Evaluation of the analysis of Hy

With Theorem 4.3.7.2 we have partially verified Theorem 4.3.3.1. However, if one wants
to complete this task, it is necessary to prove that the generalized eigenvectors mentioned
above is the complete system of generalized eigenvectors of the operator Hy. And if not,
one must find the remaining generalized eigenvectors. This investigation will not be carried
out here.

The reason, why we did not carry out the decomposition of L?(H, dug) into the direct
@ do
integral / L?([0,1] x R*, dun) o (and thus making the Bloch decomposition), is that
[0,27) ™
we would be forced to undertake the spectral analysis of the operator Hy on a more com-
plicated domain. It was not, however, our aim to take such endeavors deep into the field of
partial differential equations.

The problem concerning periodic magnetic Hamiltonians on the Lobachevsky plane is
far from being solved. One of the most challenging problems is to carry a Bloch decompo-
sition with a general non-commutative group of isometries of the Lobachevsky plane, which
produces non-compact, infinite-area cusps in the plane, where the rigorous analysis has pro-
duced even fewer results. Another reason for investigating the problem is its deep connection
with number theory, especially the Eisenstein series and the Riemann zeta fuction. These
are just few of many reasons, why the topic of quantum systems on hyperbolic geometries
is worth studying.
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Appendix

6.1 The Whittaker differential equation

Through this entire section we will follow the monograms Whittaker-Watson [43] and Andrews-
Askey-Roy|[1].

6.1.1 The differential equation

Definition 6.1.1.1. Let k,m € C. The differential equation

d>W 1k 1/4—m?
_— —_— —_— W: ‘].
d22+<4+z+ - > 0 (6.1)

1s called the Whittaker differential equation. Its solutions are called the Whittaker
functions.

Remark 6.1.1.2. From the theory of second-order differential equations we know, that the
Whittaker differential equation is a special case of the more general Riemann differential
equation with singularities.

6.1.2 The Whittaker functions
Definition 6.1.2.1. Let Mj, ,,,(2)be a function defined as

1
Mim(2) = e #2pl/2m By (2 +m—k,1+2m; z)

where 1 Fy(a, b; x) is the confluent hypergeometric function.

Theorem 6.1.2.2. For 2m ¢ Z the functions My, ,,(2), My —m(z) form the system of fun-
damental solutions of the equation (6.1).

Theorem 6.1.2.3 (Kummer’s first formula). For 2m ¢ Z~ the equality
S M () = (=2) 72 M e (—2)
holds.

As pointed out in Whittaker-Watson [43| the functions My, ,,(2), My, —m(2) are not the
most suitable system of fundamental solutions. This was the motivation to define an another
system of fundamental solutions containing the function W, ,,(z), which is defined next.
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Definition 6.1.2.4. Let Wy, ,,(2) be a function defined by the integral
1 1 1 (0+) 1 t hmgtm
%% ——_—T - -1z k ~k—g+m (1L —t
km (%) i (k + 5 m> e 27z / (—1) 2 ( + z) e "dt

such that arg z has its principal value and the contour(the path of integration from the com-
plex infinity 0o to 0+ ) is so chosen that the point t = —z is outside it. We take |arg(—t)| <
and when t — 0 along the contour, arg(l + é) — 0. So we have a single-valued integral.

Theorem 6.1.2.5. The function Wy, ,(2) can be transformed into the form
-1 kK 400 " k7%+m
Wi (2) = f“:/ k= gtm (1 i > etdt
F (§ — k + m) 0 z
and so Wy (%) is defined for all k,m € C and for all z € C\ R™ under the condition
R(k— 3 —m) <0.

Remark 6.1.2.6. When z is real and negative, W}, ,,(2) may be defined to be either Wy, ,, (2 +
0i) or Wy, ,,(z — 07), whichever is more convenient.

In the following theorem, we find the fundamental system containing Wy, ,,()z.
Theorem 6.1.2.7 (Asymptotic properties and the second solution for Wy, ,). When | arg (z)| <
m then )
Wim(z) = e 272" (1+0(=)
whereas, when |arg (—z)| < m then
W_pm(—2) = e2*(=2)F (1+ 0(z7)).

A more precise formula for |arg (z)| < 7 is the following:

+00 rn—1, 2 12
- (k11
Wim(2) ~ e 27k <1+ E =1 (m” 2) )> , 2 — 00.
n=1

nlzn
Moreover, the functions Wi, ,(2), W_i m(—2) form a fundamental system of solutions of the
Whittaker differential equations.
The last theorem gives useful relations betweenWy, ,, and M, ,,
Theorem 6.1.2.8. If |arg (z)| < 37 and 2m ¢ Z, then

I'(—2m) I'(2m)

W m == —M m + — /1 . N —m
k, (Z) T(%—m—k‘) k, (Z) F(%—{—m—k) k, (Z)
Furthermore, when |arg (—2)| < 37 and 2m ¢ Z, then
I'(—2m) I'(2m)
W_tm(—2) = —————M_pm(—2)+ =———M_j (=
and when —3imarg (2) < 3w and —3warg(—z) < im, then
M., :—zww_m_ 42T piptm 7er )
A T A L ol

Corollary 6.1.2.9. For 2m ¢ Z \ {0} the function Wy, ,,(2) can be expressed as
1
Wim(2) = e 221 /24m g (2 +m—k,1+2m; z> ,

where U(a, b, z) is the Tricomi confluent hypergeometric function.
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