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Abstract

This work deals with the theory of stability of time-periedjuantum systems. We discuss
three different notions of stability and their interretatship. Further, we consider three
important methods: the quantum version of the KAM methodcated adiabatic and the
anti-adiabatic method, and their use in investigation ab#ity of systems described by a
Hamiltonian of perturbative typ# (t) = Hy + V (t). We suppose that the spectrum/éf is
pure point and thaf’-periodic perturbatior (¢) is small in a certain sense.

The knowledge of the asymptotic behaviour of the matrixieatof V/(¢) in the eigen-
basis ofH, is important for possible applications of these methods. présent results of
analysis of one-dimensional models wiily = —FP% + |z|*, for a > 0, in the high energy
and semiclassical regime.

Next model we study is the harmonic oscillator in the so caliesonant regime. We
show that it is stable under a large class of non-localisetligmations. The last part of the
thesis consist of four articles in which | participated as tlo-author.
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Chapter 1

Preface

Although the theory of non-relativistic quantum mechames formulated in a rigorous way
long time ago, the theory of time-dependent Hamiltonians fwaits difficulty developed at
the second half of the 20century. They are usually used as an effective-theory aqmia
tion to more complicated systems. The key question is stglbihe studies the dynamics of
observables and trajectories generated by the Schradeggeation. In the time-periodic case
some geometrical properties of trajectories can be dueV$ #ad [YK] characterised with
the help of the spectral analysis of the monodromy - the énmiwoperator taken over one
periodU (T, 0). This is a generalisation of the celebrated RAGE (Ruelle, &imiGeorgescu,
Enss) theorem well-known for time independent case. Wendigish two approaches to sta-
bility: a direct analysis of dynamics (dynamical stabilignd the spectral analysis of the
monodromy. Further, the spectral properties of the monogrmay be either investigated
directly ([Co2], [Bol], [BHG], [DGJKA], [J03], [DKGJA], [B2], [MM1], [MM2], ...) or
determined by the spectral properties of so called FloquhiHonian according to results
[Ho1], [Ho2] or [Ya].

The first general method to study stability of integrable Heomians under time-periodic
perturbations was the quantum adaptation of the KAM (Kolarog-Arnold-Moser) method
introduced by Bellissard [Be]. Since that time, time-pdraosystems are thought as mecha-
nisms which could describe the quantum chaos. Althoughdl@subject of great interest in
mathematical physics, up to the present day there is ndazbsy definition of the quantum
chaos. Further development of the quantum KAM method is @od] and [DS] and others.

In late 80’s Howland combined in paper [Ho3] adiabatic as@lyvith a result of the scat-
tering theory to exclude absolutely continuous part of fhectrum of the monodromy. This
method was further extended in [Jo1] and [Ne] and we shdllicatliabatic. It was How-
land again, who introduced a further important method in4Hd he idea of this method is
roughly speaking the same as the one of the adiabatic mebabavith the interchange of
time and space. Therefore, we call this method anti-adiabat

The aim of this thesis is to study stability and instabilifytime-periodic quantum sys-
tems by spectral and dynamical methods. Let us describeglaigation of this work. After
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introducing some notions of stability and standard respiitthe theory (2.1-2.5), we draw
our attention in Chapter 2 to three important methods, thebadic, anti-adiabatic and the
guantum version of the KAM method. We illustrate how thesed¢hmethods bear upon the
stability theory and try to indicate their common backgrdu®ossible application of these
methods is based on some knowledge of the behaviour of naitines, we present some
results of the analysis of one-dimensional oscillatorse V¥éry last part of this chapter deals
with the dynamical stability.

In Chapter 3, we consider non-localised perturbationsefésonant harmonic oscillator,
a system which is a little bit exceptional in our context (s@mt gaps, non-dense point spec-
trum of the Floquet Hamiltonian). An extension of the ardiadbatic method is introduced
in Chapter 4. In Chapter 5 we summarise the results includelis thesis. The very last
part of this thesis is formed by the reprints [DLSV1], [DLSVS] and [DLS]. The first
two articles concern about a generalisation of the quantéiviKnethod. In the third one
a semiclassical limit of some matrix entries is proved, anthe last article an upper bound
of the energy growth of some time-periodic systems withrgting gaps in the spectrum is
introduced.



Chapter 2

Introduction

2.1 The Propagator

In the non-relativistic quantum mechanics the time evoluis described by the Schrodinger
equation

d

"at

whereH (t) is a family of self-adjoint operators acting on a Hilbert spaf quantum states

2. Time evolution from times to timet of an initial statel, is described with the help of
the propagator U(t, s)

W(t) = H(t)W(t),

U(t)=Ul(t,s)¥s.
U(t, s) forms a family of unitary operators jointly strongly contious in¢, s € R and satis-
fying the Chapman-Kolmogorov chain rule
U(t,r)U(r,s) = U(t,s)
U(t,t) = 1.
If H(t)is independent of time the propagator is obtained by thetfonal calculus
U(t,s) =exp (—u(t —s)H).

On the contrary, in the time-dependent case the existentieegiropagator describing the
time evolution according to the Schodinger equation isaroeasy matter. By a solution
of the Schodinger equation for propagator we mean a prdpggauch that for alk € R
and ¥, € Dom H(s) the functiont — U(t,s)V, takes the values iDom H(t) and is
continuously differentiable in the sense of the norm.sh Moreover, for allt € R and
U, € Dom H(s)

d
zaU(t, )W =H()U(t,s)V
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holds true. Let us mention a classical sufficient conditiorihee existence of the propagator
(see [RS]) which goes originally to Kato.

Theorem 2.1.1([Ka]). Let H(t) be a family of self-adjoint operators such that
(i) the domainDom H of H(t) is independent of

(i) the function

(¢,8) =

—— (H(s) = H(t)) (H(s) +1)"

extends to a strongly continuous bounded operator-valuedtion onR?.

Then there exists unique propagatd(t, s) such that (¢, s) Dom H C Dom H and for all
¥ € Dom H

d
ZaU(t, s\ = H(t)U(t,s)¥

holds true. Moreover, ifi (t) is T periodic
H({t+T)=H(t) forallt
then the propagator satisfies

Ut+T,s+T)="U(ts) forallt,s (2.1)
Ut +nT,s)=U(t,s)[U(s + T,s)]"

For more general sufficient conditions one can consult [Mv& shall not be engaged in
the problem of the existence of the propagator in detaigesit is not the aim of this work.

2.2 Three notions of stability

The only question we are interested in is stability of pegdone-dependent system. There
are several notions of it, we would like to introduce threg¢r@m. From the point of view
of the scattering theory it is an interesting question tagtwhether the particle escapes to
infinity or rests in a bounded region. This problem is solvedhe celebrated RAGE theorem
in the time-independent case. Fortunately, the RAGE timeavas further generalised to the
time-periodic case by Enss and Veseli¢ in [EV]. We sumness@ne results of this paper in
Section 2.3 introducing bound and propagating states &rstriting the significance of the
monodromy operator.
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The second notion of stability deals with the spectral proge of so called Floquet
Hamiltonian. The relationship between the Floquet Hamitia and the monodromy opera-
tor is described in Section 2.4. Further, in Section 2.5 wesstability of the point or ab-
solutely continuous spectrum of some Floquet Hamiltonvaitis respect to time-dependent
perturbations.

The problem of dynamical stability investigates long-tibehaviour of expectation val-
ues of physical observables. We shall focus only on the grexgectation value to decide
whether the external force can pump arbitrary amount ofgynigito the system or not. We
shall address this question to Section 2.7.

2.3 Bound states and propagating states

In this section we introduce the first notion of stabilityp®kly connected to the scattering
theory. Probably the first contribution to this subject waes dne of Hagedorn [Ha] in 1983,
who treated the impact parameter approximation to threg Isodttering problem. In the
same year, Enss and Veseli¢ collected in the beautifulrd&hg fundamental results of the
scattering theory for time-dependent systems and gesedathe results of the celebrated
RAGE theorem to time-dependent case. By chance, in the sssue of the Annales de
I'Institut Henri Poincaré as Enss and Veseli¢, Yajima &itdda [YK] introduced the notion
of bound states and scattering states in the context of diependent Schrodinger Hamil-
tonians. However the concept of the article [EV] is more adattand powerful. Let us
summarise some results of this paper, useful for our putpose

Suppose that for a time dependent quantum system, whiclseided by the Hamilto-
nian H (t), the propagatot/(t, s) exists. Then it is possible to define two closed orthogonal
subspaces 7, the spaces of bound and propagating states. The dsiwfd statesis
defined by

S = {V¥ € | trajectory with initial state ¥ is precompact in ¢},

whereas the set giropagating statesis defined by the condition
1 t
A= W € A Jim E/ ICU(s,0)9||ds = 0} 2.2)
—00 0

which must be fulfilled for any compact operatdr In other words, the evolution of a state
from 77 is approximately finite dimensional, while the trajectofyacstate fromz7/ will
leave any compact subset.gf in the time average.

If we moreover assume that our quantum systeffi periodic, i.e.

H(t+T)=H(t) fort e R.
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then it holds true that (see [EV])

AP = AP (U(T,0))
AT = " (U(T,0)).

By definition, 5277 (U(T,0)) is the closure of a subspace formed by the spanned eigen-
vectors ofU(T,0), s (U(T,0)) its orthogonal complement. From this fact follows the
decomposition o7 into subspaces of bound and propagating states.

H =P oA

The operatoU (T, 0) is therefore very important and it is called theonodromy operator
(or Floquet or period operator). If for example the spectmwind/(7,0) is pure point, we
conclude that all quantum states are bound.

It may seem that the definition of the monodromy depends onttbie of the origin of
the time axis. It is not so since the operat&(T’, 0) is unitary equivalent té&/(7" + ¢, t) for
anyt € R. Thanks to (2.1) it holds true that

U(T +t,t) = U(T +t, T)U(T,0)U(0, ) = U(t, 0)U(T, 0)U*(t,0)

At the end of this section let us remark that in [EV] a geoneetiefinition of bound and
propagating states is discussed. Since it is not usefuloporpose, we skip the details and
refer the reader to [EV].

2.4 The Floquet theory for time-dependent Hamiltonians

In this part we will show how the spectral properties of thenmadromy operator are related
to the spectral properties of the Floquet Hamiltonian. Thiation, useful for the theory of
stability of time-periodic Hamiltonians, was for the firghe proved by Kenji Yajima [Ya]
in 1977. More abstract concept was later (in 1979) introduzg Howland [Ho2] and we
mainly refer to this paper.

Following [Ho1] let us start with a procedure, inspired byluetion to an autonomous
system in classical mechanics. Instead of the Hamiltontioma.(p, ¢,t) depending ex-
plicitly on time we extend the phase space by new independgsiables, time and (the
conjugate momentum) enerdy, and define the new Hamiltonian function

k(p,E,q,t) == E + h(p, q,1).
The Hamilton equations with new parametenow read
dg 0Ok dp Ok

do  dp do Bq
dt _ ok _, dE _ ok

do 0E 7 do Ot
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and are equivalent to the standard ones. The new paramgtst shifted timer = ¢+ const.
Analogously in quantum mechanics we consider the new Hamdah

K == =0, + H(t) (2.3)

which is calledquasienergyand acts on the extended Hilbert spage:= L*(R, 7). So
that fort € R, W(t) is a vector froms#’. Sometimes it is convenient to use the identification
KX ~ L*(R)® . Suppose that the unitary propagaltd(t, s) corresponding td (t) exists.
Foro € R we define operatov (o) on .7z

V(e)U(t) :=U(t,t —o)V(t— o). (2.4)

V(o) forms a strongly continuous unitary group gfi, which is a consequence of the defi-
nition of the propagatol/. Thus, by the Stone theorem there exists a generator of thiggr
In [Ho2] Howland shows that: K is formally equal to the generator. Hence

V(o) = e K,

We define the unitary transformation in the spirit of the Bi@nalysis into the spac#” :=
L* ([0, T],1?(o#)) formed by square-integrable functionstofvith values ini?(#)

T:Ji/—><%}:‘lﬂ—>xn(8)::l/e_
R

227t

7% (In+0) L (t) dt,

T
so that the inverse transform reads

(T*z) (t) Z / 12 (Tnt0) 3 (9)do.

nGZ

If the Hamiltonian isT-periodic (this is what we suppose in what follows) then ttaens-
formed quasienergy takes the form

(T[_(T*w) 0,n) = (Tn+0)x,(0) + Z H, mTm (0
meZ

_ 127t

with H,, := %fOT H(t)e= 7 "dt. 4 may be realised a&%[0,T] ® I*(¢), too, where the
decompositiorTf(T* — M(f)®1+1® K takes place with//(#) being the multiplication
by the identity function or.?[0, 7' and

(K.CE) (n)=Tnx, + Z H, T,
nez

for z € 1>(). Now we take singlek” and proceed further transformatidh which takes
the sequence € [?(7) into

227Tn
(Fx)(t E eT ',

neL
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locally square-integrablgZ’-valued function of period’. The new operator
K = FKF* = <0, + H(t)

is formally the same as the original quasienergy (2.3), taitts on periodic functions. The
relationship (2.4) between the propagaity, s) and K is reproduced

e K f(t) =U(t,t — o) f(t — o).
Using the property (2.1) and periodicity gfwe obtain
e TEf(t) = Ut t = T)f(t = T) = U(t + T, ) f(£).
SinceU(t + T,t) = U(t,0)U(T,0)U*(t,0) we come to the desired formula
e K f(t) = U(t,0)U(T,0)U*(t,0) f (1)

which relates the monodromy operator & Trivially, one can transform the operatéf
unitarily to
K = —0, + H(t) (2.5)

actingonx” := L? ([0, T, ##) with periodic boundary condition in time, i.&(0) = ¥(T).
The very last operator we shall call tRéoquet Hamiltonian. We have to bear in mind, that
K = —0, + H(t) is nothing, but the formal expression. In a rigour approddh defined
(up to the factor—: and the transformation mentioned above) as the generatbeafroup
e~ One has to discuss the question of the domaiR ofih the case of7 (t) = Hy+ V (),
with V' (¢) uniformly bounded, which will be of our interest, it is moreless direct. Let us
formulate the main result of this section which suits to tase. One can find the proof in
[DSSV].

Theorem 2.4.1([DSSV]). Suppose that a quantum system is driven by periodic Hamil-
tonian H(t) = Hy + V/(t) acting on a separable Hilbert spac#’. Assume thai/(¢) is
uniformly bounded and that the propagafdft, s) exists. Define the Floquet Hamiltonian
K as the closure of the operater:0, + H(t) with the domain{f € C>[0,T]|f(0) =
f(T)} ® Dom Hy. Then the spectral properties of the monodromy oper&it@r, 0) are the
same as those ef ‘7%,

Remark 2.4.2. (i) Notice that the terminology in the Floquet theory is naified. The
operators (2.3) and (2.5) are of same action and differ onylytHe underlying spaces.
Our notation uses bar not to get confused and distinguistvéen the quasienergy
and the Floquet Hamiltonian. The latter lies in the centreoof interest, because of
its relation to the monodromy operator.

(i) In all what follows we deal with Floquet Hamiltonians tife typeK = —0; + Hy +
V(t), with V(¢) uniformly bounded. We suppose implicitly that the domaik’as
chosen as in Theorem 2.4.1.
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2.5 Spectral stability of pure point Floquet Hamiltonians
Suppose that a quantum system is described by a Hamiltohpartorbative type
H(t) = Hy+ V (t)

and acting on the Hilbert spac#’. Here H, is assumed to be self-adjoint with pure point
spectrum and the spectral decomposition

Hy = i E,P,,
n=1

with eigen-values ordered increasindly < F, < --- . Let V() be a self-adjoint perturba-
tion T-periodic in time and bounded in a suitable norm. As we hawsvshfor the question
of the existence or absence of propagating states it is itapbto know spectral properties
of the monodromy operat@r(7,0). From Theorem 2.4.1 it follows that this is equivalent to
the spectral problem of the corresponding Floquet Hamigton

K=D+Hy+V(t)

acting onL? ([0, 7], #) with periodic boundary condition in time. We use the notatio
D := —0;. The spectrum of the unperturbed Floquet Hamiltomin:= D + H, is pure
point with eigenvalues

27
N = T k+ E,
labelled by integers& andn» > 1. Thus the set of propagating states’ defined by the
condition (2.2) is empty.

The goal of the perturbation problem is to prove that this holds traethe perturbed
Floquet Hamiltoniank™ as well, if V(¢) is sufficiently "smooth or small”. This question is
not trivial at all, since forH, unbounded the point spectrum &% := D + H, is dense iR
in generic case. More precisely (see [DSV]) the set

wZ + {En}nEN

is dense iR for almost allv € R providedsup F,, = 4o00.

There are several methods which deal with the spectral pnobif A, however we focus
only on three of them: the quantum adaptation of the KAM métlamd what we call adi-
abatic and anti-adiabatic method. The information aboetsiiectrum ofi is less precise
in the case of latter two methods. On the contrary to KAM, \algaarantees the pure point
character of the spectrum &f, the adiabatic and the anti-adiabatic methods just exclindes
absolutely continuous spectrum. Later, we introduce kewsdof these three methods, now
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we just say that for their applications the asymptotic behavof the gaps in the spectrum
of Hy i.e.

En+1 - En

is crucial. We distinguish three classes of Hamiltoni&fysaccording to behaviour of the
gaps
e Constant gap#&,, = n, e.g. the harmonic oscillator.

e Shrinking gaps, typicallyz,, ., — E,, ~ n=2, with v > 0.
e Increasing gapsy, 11 — E, ~ n®, with o > 0 for example.

The case of constant gaps is quite special. In [Col] Monigomlé&scure combined the
KAM theory with the Nash-Moser trick and obtained a resubb@ithe stability of the pure
point spectrum of the monodromy under some class of peripéiturbations, which does
not include potentials however. Perturbations of the haimoscillator localised in space
are discussed in [EV]; we extend their result to a class oflocalised potentials in Chapter
3. The KAM and the adiabatic method apply successfully inda®e of increasing gaps,
while the anti-adiabatic method in the case of shrinkingsgap

In the picture we present, these three methods may be viesvedrints of application
of the following formula

¢*Be* = B+ ) —ad)(B) (2.6)

with a convenient choice of, B. We use the notatioad 4(B) := [A, B] = AB — BA.

Both adiabatic and anti-adiabatic methods use the follgnesult of the scattering theory
about the stability of the absolutely continuous spectr@ibi(@’, 0) (or K, equivalently). See
Schmidt [Sch] and the generalisation by Howland to traessperturbations. The statement
presented here is, in fact a consequence of Theorem 5 in [Ho2]

Theorem 2.5.1([Ho2]). LetV (¢) be a measurable self-adjoint trace-class-valued function
Assume that/(t) is T-periodic and that

T
/ |V (#)|l1dt < 0.
0

Let H, be self-adjoint, and Iel/ (¢, s) be the propagator associated with(t) := Hy+ V (¢).
Then

Oac(Ho) =0 = 04 (U(T,0)) = 0.

Remark 2.5.2. The absence of the absolutely continuous spectrum of thedmamy is
weaker condition than the pure-pointness and does not itip@yabsence of propagating
states.
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2.5.1 The adiabatic method

In 1989, James S. Howland introduced in paper [Ho3] a new odketb treat stability of
time-dependent systems. In agreement with some authorhavecsll this method adia-
batic. The idea is to combine adiabatic analysis with thalted the scattering theory (see
Theorem 2.5.1) to exclude any absolutely continuous paaispectrum of the monodromy.
An essential assumption of this method is that the gaps ispletrum of the unperturbed
Hamiltonian have to grow. The adiabatic method was extermyedlain Joye [Jol] and
Georgiu Nenciu [Ne] to the case of growing multiplicitiestbé eigen-values ofi,.

To see better the similarities with the anti-adiabatic dr@dl AM method we present this
method in an algebraic form used by Howland in paper [Ho3}. usedeal with the Floquet
Hamiltonian

acting on?” := L?([0, T, ») with periodic boundary condition imposed in time. Let the
spectrum ofH,, be discrete and obeying tiggowing gap condition

En+1 - En
ne

inf >0 (2.7)
for a givena > 0. V(¢) is assumed to be T-periodic sufficiently differentiable dtion
with values in the space dfermitian (i.e. bounded self adjoint) operators 6ff. Suppose
moreover that the monodromy operatof?’, 0) associated witti, + V' (¢) exists. A typical
result of the adiabatic method (extracted from [Ho3]) is

Theorem 2.5.3([H03]). Assume that & -periodic quantum system is described by the
Hamiltonian H, + V (t). Suppose that the spectrum &f is pure-point and simple and
obeys the growing gap condition (2.7) fer> 0. If V() € C"(R, #()), withr > [1] +1
then the monodromy (7, 0) has no absolutely continuous spectrum.

Let us explain the main idea of the proof. Suppose for sintglitat the diagonal part
of the matrix of operato¥/(¢) in the eigen-basis off, is zero. DefindV (¢) as a solution of
the commutator equation

[W(t), Ho] = =V (t).

Such a solution is not unique, we can add to the given one asratyy commuting withH
and obtain a new solution. Let us chodggt), such that its matrix entries in the eigen-basis
of H, take the form

Winn(t) form #n
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Observe thalV (t) is anti-symmetric, therefore” *) is formally unitary. Define the adiabatic
transformation of" by

Ky = e"OKe WO,

hence we have obtained a new Floquet Hamiltonian which tgnequivalent to the orig-
inal one. Notice thaliV (¢), D] = «W (t) := +& W (t). Expanding the right hand side due to
(2.6) yields

Ki = D+Ho+V(@t)+[W(t),D+Ho+ V()] +...
D+ Hy+ W (t) + [W(t),V(t)] + ... (2.8)

Using the adiabatic transform we have replaced effectiVéls) by 17/ (¢). It is technically
difficult to prove that the remainder in (2.8), i.@V (), V(¢)] + ... is “less important”. For
the matrix entries we have

—Vinn(1)

Wona(t) = E,—E

form #n

Notice that the diagonal di/(t) vanishes as well as the diagonall&f(¢). The growing gap
condition (2.7) implies

b fmat o]~

Since one can easily prove tHat**! — n®*+!| > (mn)2|m — n|, we may estimate

|Vinn (2)]

(mn)%\m— n|

’Wmn(t)’ < const for m # n.

Thus we observe that the new perturbation has matrix eleswaitit better decay properties
than originalV'(¢). We remark that the decay of entries is improved both in theation
parallel to the diagonal (due to the presencedrafi)2) and perpendicular to the diagonal
(term |m — n|). By repeating the adiabatic transfonrtimes we come to a new Floquet
Hamiltonian, unitary equivalent to the original one

K, =D+ Hy + B(t),

with B(¢) in trace class uniformly. The following estimate on the &rawrm ||A]|; <
> i [Amn] is used. By Theorem 2.5.1 we conclude that the absoluteltireoyus spec-
trum of K, is the same as,.(K,) = (). Consequently that the same holds férand the
monodromyU (T, 0) corresponding tdd, + V().
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2.5.2 The anti-adiabatic method

To our knowledge the only general method to deal with spkstebility of systems with
shrinking gaps is the one introduced by Howland in [Ho4]. Wallssee that the core of
this method is very similar to the essence of the adiabatithote From the discussion
it hopefully clear up why we call this method anti-adiabatiConsider again the Floquet
Hamiltonian

on.# := L*([0,T], »#) with periodic b.c. The following theorem is our improvemefit
the result in [Ho4].

Theorem 2.5.4.Let the spectrum off, be pure point. Suppose that the eigen-valBigs<
E, < --- obey theshrinking gap condition

sup n?" (B, — B,) < 00 (2.9)

for a giveny €]0,1/2|. LetV (¢) be aT-periodic function with values in the space of her-
mitian operators on”’. Suppose that the monodrortiyT’, 0) corresponding taH, + V (¢)
exists. If the matrix entries df (¢) in the eigen-basis off, are measurable functions of

and satisfy
1

(mn)y(m —n)"

uniformly, withr > 1 + %, then the monodromy operat6i(7’,0) has no absolutely contin-
uous spectrum.

|Vinn(t)| < const (2.10)

Remark 2.5.5. (i) We use the notatiotk) := max{1, |k|}.
(i) The shrinking gap condition (2.9) is equivalent to

im —n|

|E,, — E,| < const form,n € N (2.11)

(mn)7
used by Howland.

(iii) We takey < 1/2 since fory > 1/2 condition (2.11) implies that the eigen-valugs
are bounded, what is not of our interest. We also exclude #ise¢ = 1/2 which
corresponds tdvy,, ~" > log k,, for a sub-sequencg,, ).

The proof and the discussion can be found in Chapter 4, hergstesketch the main
idea. Setl’ := L [/ V(t)dt and denotd/(t) := V(t) — V. We define the anti-adiabatic
transformation of’ by the same formula as in the adiabatic case

K = VUKW = D+ Hy+ V() + [W(t),D+Ho+ V()] + ...,
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but now we choos®/ (t) so thatV/(t) and[WW(t), D] cancel each other, effectively replacing
V(t) by [W(t), Hy|. Recall that in the adiabatic case we have chddgp) so thatV/(t)
and[W (t), Hy| cancel each other, effectively replaciidt) by [W (¢), D]. The regularity of
the perturbatiori/(¢) in time was used to improve the decay of matrix entries. Inahig-
adiabatic method the regularity in space (the part#zofcorresponding to7’) is used. Both
methods are based on the same type of transformation, hotheveoles of time and space
are interchanged.

Notice that after the anti-adiabatic transformation therage part of the original pertur-
bationV’ remains, but as we shall see it does not represent an ohstaute this operator
does not depend on time. Using assumption (2.10) one camveodatl is compact. Let
us define

W(t) = z/otf/(s)ds

so thatiV/ (¢) is T-periodic and anti-hermitian for evetySince[WW (t), D] = «W (t) = =V (t)
we have

Ki=D+Hy+V + [W(@t),H + [W(E), V()] +....
As already noticedy’ is compact and does not depend on time. One has to overconge som

technical points to prove théitl/ (¢), V(¢)] + ... is less important than the terf#i/ (¢), Hy|.
If we look at the matrix entries (in the eigen-basisHy) of the commutator

and use condition (2.11) we obtain the estimate

W(t)m,n (m —n)|
(mn)? '

W (), Hol| < |

Thus, using the anti-adiabatic transformation we can impitbe decay of the perturbation
along the main diagonal at the expense of the decay in thetireperpendicular to the
diagonal. Applying the anti-adiabatic machinéry= [1/2~] times we come to

Ki=D+ Hy+ A+ B(t)
with A compact time-independent arig¢(¢) in the trace class uniformly. Recall that the

spectrum ofH, is discrete. Using the Weyl's theorem we conclude that thextspm of
H, + Ais discrete too. The statement then follows from Theoremnil2.5
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2.5.3 The KAM theory

The Kolmogorov-Arnold-Moser method well known in the cliassmechanics was adopted
to the quantum case by Bellissard [Be]. Further developmeastdue to Combescure [Co1],
who used the Nash-Moser trick which consist in a splittinghedf perturbation into parts.
Each part of the perturbation is added and the KAM-type dhatjsation procedure is ap-
plied on this partially perturbed Floquet Hamiltonian. Jfrocess is repeated infinitely
many times until the whole perturbation is added. Later,|BsiandStovicek combined the
KAM method with the adiabatic one in [DS]. The Nash-Mosetknvas involved into the
diagonalisation procedure; in each step of the algorithraraqf the perturbation is added.
In contrast to [Co1l] the diagonalisation is applied only @n€Eurther versions of the KAM-
type theorem are presented in the articles [DLSV1] and [DEBWVhich are included in this
thesis. The adiabatic part is omitted and the splitting ef plerturbation is done in an ap-
propriate form. The algorithm of the diagonalisation isaésed in an abstract form with
the help of an inductive limit of Banach spaces. A convenaglatice of the norms in these
spaces led to a weakening of the regularity assumptionssetpon the perturbation. See
also Section 10 in [DLSV1]. The result of [DLSVZ2] include @va class of unbounded per-
turbations. An abstract concept of the algebraic backgtainthe KAM theory is described
in [Vi]. Remark that a KAM-type algorithm was also used in #mquasi-periodic case in
articles [BG], [Gel] and [Ge2].
Let us describe the settings. Consider Floquet Hamiltonian

K, = D+ Hy+ V(wt)

on.# := L*(|0, T],.») with periodic b.c.V is now supposed to ber-periodic and we de-
notew := 27 /7. From reasons which become clear later we treat the problefe@esnding
on the parametev lying in a compact intervaf). The KAM method is iterative; one tries
to diagonalise the operatdf,, by constructing a sequence of operatifswhich converges
(in an appropriate sense) to a diagonal operator unitagiynvalent toK . The statement of
the theorem is not able to guarantee pure-point spectruif),dor all frequenciesv, one ex-
cludes a small (in the Lebesgue sense) set of resonant freigseo prevent so called small
divisors problem. Unlike to the adiabatic and anti-adiabatethod,V" is also supposed to
be sufficiently small. At this place we reproduce a roughioeref a KAM-type theorem.

Theorem 2.5.6([DLSV1]). Let () be a fixed compact interval{, acting on a separable

Hilbert 2 have a simple discrete spectrupy; < E, < ...} obeying the growing gap

condition

EnJrl - En
nO{

inf >0
for a > 0. LetV(¢) be27-periodic strongly continuously function with values irrinéian

operators onsZ. DenoteV, ., , 1= 02“ e~V .(t)dt, the k-th Fourier coefficient of the
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matrix element o#/(¢) in the eigen-basis off,. Then there existg(«) > 0 such that for
everyr > p(a), 36(a, ) > 0 andC(«, r), such that

HWM:$£§ZENWMM%V<M%ﬂ

neN ke€Z

implies3Q,..; C Q with |Q,..;| < C(a,7)||V|||2| so that the Floquet Hamiltonian
Kw = —z@t + HQ + V(wt)
is pure point for allw € Q \ Q,.,. Here Q2| stands for the Lebesgue measuréof

Remark 2.5.7.The theorem is generalised to the case of degenerate eajaasin [DLSV1],
and further to a class of unbounded perturbations in [DLSV2]

In the following we describe inductively the algorithm whidiagonalisey,, in the limit.
For brevity we skip the labelling of the dependence.asndt. At first, we split the operator
V into a sum

V:fi%#
s=0

At this place we do not specify how this splitting is definagstjremark that’ ) is chosen so
that it commutes witlH,. For details we refer to [DLSV1]. According to KAM algorithm 4
sequences of operatof &, }, {Gs}, {Vi} and{W,} are constructed. We work with matrices
in the eigen-basis oD + H,. Notice that the matrices are labelled by 4-tuple of indices
k,l, m,n. The first two indices are integers, the latter two natural hara. We shall denote
by diag A andoftfdiag A the diagonal and off diagonal part of an operatiowith respect to
the eigen-basis ab + H,. Remark thatz, will be diagonal for every while vV, andW will

be always off diagonal. The sequences are defined recwréiyehe following rules

1. Go:=VO V5:=0
2. ProvidedG,, V; were already determined, defiii, as the solution of
[D+ Hy+ Gs, W] =V, and diagW, = 0. (2.12)
Hence we have for off diagonal entries

(Vo) kmon
w(k - l) + Em - En + (Gs)k,l,m,m - (Gs)kz,l,m,n

(Ws)k:,l,m,n = (213)
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3. Setinductively,
Up:=1, Us:=expW,---expW.

Then
Koy o= eV*(D+ Hy + G, + V)e Vs 4 UV (2.14)

and
GS+1 = dlag Ks+1 —D — Ho, ‘/S-i-l = offdlag K5_|_1 (215)

By induction one shows that from (2.14) and (2.15) follows

K,=D+ Hy+ G+ V. =Usy <D+HO+ZVU>> Uz,

j=0
The goal of this method is to prove the existence of the limits
Gs— G, Vy—0, U, — U.
Then we would obtain for the Floquet Hamiltonian
D+Hy+G=U(D+ Hy+V)U*=UKU*

with G diagonal and we would be done. Let us outline some pointseghithof. 1V, is chosen
as the solution of the commutator equation (2.12). The meblpm of the algorithm is to
control the small divisors in (2.13), or in other words to pehe size ofi¥, comparable to
the size ofV,. However, this is not possible for all frequenciesc 2, one has to exclude
so called resonant ones. In each stemne defines the set of the resonant frequencies
Q.. D Qs lasthe setab € O for which the expression(k—1)+ E,, — B, + (G ktmm —
(Gs)k.1mn is “small”. The final sef?,. is defined as the union of theé, .. It turns out that
Q.5 Isnot so large and it is possible to yield an estimate of itsdsgue measure proportional
to [V,

Overcoming this obstruction we are able to control the siz&p comparable td/;.
Expanding (2.14) according to formula (2.6) and using thend®n of 1/, one obtains

Kop1 =D+ Hy+ G5+ O ((V,)?) + UV EHIUs

It is evident thatl’®) — 0, since the sum of alV®) givesV. The fact that/, — 0 demon-
strates the progress of the diagonalisation procedure gnd fact, a consequence of the
finiteness of the nornjV’||,. (which implies power decay of the matrix entrieslaj If the
off diagonal part ot is small, K is transformed intd<; in the first step, with the off diago-
nal partV; smaller. Further, as is increasing)/; is shrinking. Clearly, for the convergence
of U, the convergence of the seri®3.” ||| is sufficient. By a convenient choice of the
splitting of V' it is possible to satisfy this condition, too.
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2.6 Asymptotic behaviour of matrix entries

In Section 2.5 we have presented the KAM, adiabatic, andaaiéibatic methods to study
time-periodic Hamiltonians of perturbative type

H(t) = Ho+ V(1)

with H, pure point. The problem was reformulated in the matrix repr¢ation and there-
fore the assumptions of the theorems requires some knowleflthe matrix entries of the
perturbationV/ () in the eigen-basis off,, see Theorems 2.5.4 and 2.5.6. The adiabatic
method (Theorem 2.5.3) is a little bit exceptional from thasnt of view. However, the dif-
ferentiability property is transformed, in fact, into theahy properties of the matrix entries
of the new perturbation. For possible applications of titeserems it is sufficient to know
the asymptotic behaviour of the matrix entriesigft) in the eigen-basis aoff, i.e.

(m|V(t)[n),

where|n) denotes the-th eigen-state of{,. This fact has motivated our study of one-
dimensional models described by the Hamiltonian

2 d2

H() = —FL @ + ‘$| s
acting onL*(R) with o > 0. Using standard methods one concludes fiiais positive with
simple pure point spectrum. Lét, denote the:-th eigen-value an¢h) the corresponding
eigen-function, so thally|n) = E,|n). Remark that both eigen-values and eigen-functions
depend on:. For simplicity, we suppose that time-dependencé/¢f) is factorised, i.e.
V(t) = f(t)v, with f being aT-periodic continuously differentiable real-valued fuoct
andv a hermitian operator oh*(R). The question may be formulated as follows: What are
the asymptotic properties of the transition amplitudesrobhservable

(m[v|n)

for m,n large. In fact, we were investigating two regimes, the higargy regime and the
semiclassical one.

2.6.1 High energy regime

In the high energy regime we treat the case whem — oo while the Planck constaifitis
fixed. By a convenient choice of units we may suppose/thatl. Let us present a theorem
which deals with entries close to the main diagonal and elbéesy depending only on the
position, i.e. potentials. In fact, it is a generalisatidrsome results of the diploma thesis
[Lev].
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Theorem 2.6.1.Leta > 0, v be an even real-valued differentiable function, such tHat
L*(R) and for some- < 1

v(x) < const

T 14|z
holds true for every: € R. Denote byn) then-th normalised eigen-function of the oscillator
Hy = —% + |z|* acting onL?*(R). The phase ofn) is fixed by the condition that) is
positive on a neighbourhood afco and the enumeration of eigen-functions starts from the
indexn = 0. Then for every: € Z fixed

(n|v(x)|n + 2k) ~ Ca(—l)k”n_a%2 / v(x)dz, forn — oo (2.16)
R

holds true with an explicitly known constady > 0.

Remark 2.6.2. (i) SinceH, commutes with the parity operator, the parity|ef corre-
sponds to the parity of its quantum numberTherefore(n|v|m) = 0 if the difference
n — m is odd.

(i) Using the Bohr-Sommerfeld quantisation condition dieeluces the asymptotics of the
energy levels

2a
E, ~ K.,not2z, asn — oo

with a constant/’, known explicitly. Thus foex > 2 the gapsE, ., — E, between
the eigen-values are growing, far= 2 they are constant, and finally for a parameter
a €]0, 2[ the gaps are shrinking.

(i) In the proof of the theorem the approximated eigenelions are constructed using
the WKB analysis and further studied by asymptotic methdds proof is rather
technical, therefore we skip it and refer the reader to [LeV]

For applications one can ask whethdies in a classt (p, ) defined in Definition 4.1.3.

From the theorem it follows thatm|v|n)| < const(mn) = since one can split into the
positive and the negative part and apply the Schwartz irlggua

(mlAln) < v/(m]AJm)(n|Aln)

to both of them. Hence the rapidity of the decay along the ndaagonal is greater than
or equal to#?. Since formula (2.16) gives the asymptotigs|v|m) ~ const m~a+2 for
n — oo, we observe that this estimate is optimal.

If non-constanty can not lie in any clas’(p, d) with p > 1,6 > 0. In that casev
would be compact self-adjoint and therefore pure pointsi$ipossible only in the case of
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v(x) = const, since an operator which acts as the multiplication by a mamstant continu-
ous function has always nontrivial continuous spectrum.

Comparing this knowledge with the assumptions of Theorem$822.5.4 and 2.5.6 one
concludes that it is possible to apply the KAM and adiabagthad to the model described
by

2

da?
with a > 2, f continuously differentiable (sufficiently many times) aihdperiodic and
v satisfying the assumptions of Theorem 2.6.1. the antikadia method is not directly
applicable to this model. To assure that X (p,0) wit p > 1,5 > 0 one has to treat the
case of more general observables depending non-trivialthe momentum. This is an open
guestion.

H(t) := + [z + f (),

2.6.2 Semiclassical regime

The semiclassical limit is defined by the conditions—~ co ands — 0 in such a way that
E, = E'is constant. In fact, one has to choose an appropriate segfign— 0 so that the
Bohr-Sommerfeld quantisation condition relating and F is satisfied. Let us present the
following theorem.

Theorem 2.6.3.Let £ > 0 andk € Z be fixed. Assume thats a real-valued bounded and
continuously differentiable function of Then there exist a sequence of positive numbgrs
and a sequence of real-valuéd(R)-normalised functiong:), such thati,, — 0 and|n) is
then-th eigen-function of

d2
Hn = _hi—g + |w‘a
T

corresponding to the eigen-vald& The enumeration of eigen-functions starts from the index
n = 0 and their phase is fixed by the condition tha} is positive on a neighbourhood of
+o00. Moreover, in the semiclassical limit, i.e.— oo, h,, — 0, we get

(nlo@ln+ 1) = 7 [ vav)ear

where(q(t),p(t)),t € [0,T], is the classical trajectory in the phase space at the enérgy
and the initial point chosen gg0) := 0, and¢(0) := Ex (the right turning point).T" is the
period of the classical motion and = 27 /T is the frequency.

The theorem is further generalised in the preprint [LS] viahiE included in this thesis.
Not to get confused in the notation we remark that in [LS] veatrmore general oscillators
Hy = —thd—; +V(z), while the perturbation is denoted by. So that the matriXn|W|n +
k) is investigated. The semiclassical regime is not direqgtlyliaable to the theory of time-
dependent systems, however it gives a qualitative infdonatts asymptotic analysis is less
difficult, so it was possible to obtain more general resuigsitin the high energy regime.
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2.7 Dynamical stability

Stability properties of a quantum system may be determigetdbehaviour of the expecta-
tion values of quantum observables, for example energyh®ndntrary to time independent
systems where the energy is conserved during the time @woJuttis an important question
to study behaviour of expectation values of the energy irtithe-dependent case, not nec-
essarily periodic. Mathematically, one investigates gstyitic properties of the function

(U(t,0)¥, H(t)U(t,0)¥)

in the long-time regime for & from some convenient dense set#fi. In the case of{ (¢) =
Hy+ V (t) andV(¢) bounded uniformly one can choose for examipten H,. Provided that
H(t) = Hy + V(t), with V in CY(R, B()), there exists a trivial bound due to Nenciu
[Ne], which does not depend on the spectral propertiggpfSince

whereV/ (s) denotes the time-derivative in the sense of the operatonnee get
(U(t,0)¥, H(t)U(t,0)¥) = O(t) (2.17)

for any ¥ from Dom H,.

One can ask, whether the energy expectation value remagnd@unded during the time
evolution of a given stat& form Dom H,. Physically, this means that the amount of the
energy absorbed from the neighbourhood is finite. It was wieseby de Oliveira in [deO]
that such a condition implies for time-periodic systems thé&” (U(7,0)) = .. From the
Floquet theory (see Section 2.4) it further follows thatspectrum of is pure point. Hence
this condition is stronger then the pure-pointness of tleespm of K. The boundedness of
the energy expectation values was for the first time proveddxsh, Duclos and Exner in
[ADE] using the KAM theory. They have treated the case/it) = Hy + V(wt), with
V being2r-periodic andC. In 2005, their theorem was improved by Ducl&ovigek,
Soccorsi and Vittot in [DSSV]. The result is

Theorem 2.7.1.Let the assumptions of Theorem 2.5.6 be satisfied. Then tpagptor
Ul(t, s) associated with (t) := Hy + V (wt) exists and for every € Dom H

sup (U(t,0)¥, H(t)U(t,0)¥) < oo

teR
holds true provided is taken front2 \ €,.,.

The statement of the theorem is restricted to time-perisgigtems, non-resonant fre-
guencies and applies only in the case of growing gaps. Alhe$¢ conditions were relaxed
in the papers [Ne], [Jo2], and [BJ], but with a weaker estamat

(U(t,0), H)U(t,0)T) = O(t?),
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with 3 €]0, 1[. The authors applied three different methods; Nenciu useddiabatic ma-
chinery supposing that the spectrum Bf is formed by bands which draw apart. Joye
availed the assumption of fast decay of the matrix entrie§ @ along the diagonal. Fi-
nally, Barbaroux and Joye have developed another trickgusia Dyson expansion under
the hypothesis that the elements decay fast in the direpggmendicular to the main diago-
nal.

In [DLS] we give an upper bound on the energy growth using a mathod, based on
the application of the anti-adiabatic method, and the sie@grogressive diagonalisation.
The procedure requires periodicity and smallness of theugsation, sufficient decay of the
matrix entries of the perturbation in the direction perpentar to the main diagonal, and,
also, certain small decay along the diagonal. On the othet,fedmpared to [BJ] the method
turns out to be more efficient in the case of shrinking gapesdifiusive exponent obtained
by our method is typically smaller in comparison with the am¢BJ]. Also, the set from
which the initial conditions are taken is larger then the onfBJ] (see [DLS]) for details).
The paper [Jo2] does not give a better diffusive exponentesit profits from the diagonal
decay only. The adiabatic method used in [Ne] is not appléecabthis case since the gaps
in the spectrum do not grow.



Chapter 3

Non-localised perturbations of the
harmonic oscillator

3.1 Introduction and the result

Stability of the harmonic oscillator under time-dependge@itturbations is in general a dif-
ficult question. The first result goes already to [EV] where 8tark effect and some time-
periodic perturbations in the resonant regime and locdlisespace are analysed. A general
quadratic time-dependent Hamiltonian was analysed in [Histhg the solubility of the
system. A combination of KAM-type technique with the Naslogdr trick was applied in
[Col] to prove the stability with respect to a class of timesipdic operators at least for
non-resonant frequencies. Notice that this class of peation however does not contain
potentials. Stability with respect to a large class of pddtions which involves decaying
potentials is proved in the work by Duclos and Vittot whiclv@aot been published yet.

In this part, we extend some results by Enss & Veseli¢ pteskn [EV], part V.Il where
the stability of the harmonic oscillator under some spetimk-dependent perturbation is
treated. New result include some non-localised potentads any finite linear combination
of cos z multiplied by one fixed time-dependent functigit). Let us specify the settings.
Let

1 w?
Hy,:= -P?>+ —(;22
0 2 2 )

be the Hamiltonian of the harmonic oscillator, actingloriR). Further, let

V(t,x) = f(t)v(x),

with f beingT-periodic C'(R) function, andv a bounded potential on the real line. We
assume the resonant case, i.d./2x rational. Remark that in [Co1l] the frequentyT is
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assumed to be Diophantine what is far from to be resonantof@doy U (¢, s) the unitary
propagator of

H(t) := Hy+ V().

Under previous assumptions the propagator exists and ggianWe shall prove that the set
of propagating states which equatg“>™ (U (T, 0)) is empty. In the unperturbed case when
V(t,z) = 0 the monodromy is equal to T and is pure-point. The resonant case of the
harmonic oscillator is a little bit exceptional, as the ga@ipectrum of its Floquet Hamiltonian
is not dense iR, however it contains some eigen-values of infinite multipfioVe look for
perturbations/ (¢, ) such that the pure-point character of the spectrum of theoth@my

is conserved. A sufficient condition is formulated in thddaling theorem.

Theorem 3.1.1.The set of the propagating states@fperiodic one dimensional quantum
system driven by

1

H{) = 1P+ Q"+ f(10(Q)

is empty, provided is a continuously differentiablé-periodic functionp is a real-valued
almost periodic function, and7’ /2 is rational. In other words, under previous assumptions
the monodromy associated with(¢) is pure point.

Using the Fourier transform one deduces

Corollary 3.1.2. The set of the propagating states of a quantum system dedcop the
Hamiltonian

2
H(t) = %PQ +2Q2+ f(0)A,

is empty, iff is aT-periodicC*(R) function,% is rational andA is any linear combination
of cos(aP) witha € R.

Notice that the action of such may be non-localised since

cos(aP)¥(z) = = (V(z+a) + V(x —a)).

N =

Remark 3.1.3. (i) The set of almost periodic functions is studied in moapys [Bs]
and [Le]. Basic properties are summarised in [DSw] Chaptér Remark that ifv
is continuous witHim, ..., v(z) = 0 thenv is almost periodic. Thus any potential
localised in space is included in the set of AP functions.
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(i) If wT'/27 is rational, the monodromy corresponding to

1 2 2
H(t) = 3P+ %QQ + Qsin(%t)

is purely absolutely continuous (see [EV]). Obviously tegyrbation is not bounded
in this case, thus one can ask where the border of the stahdi.

Proof. If v(z) is constant, we can split the functighinto the time-averagg, and peri-
odic partf(t). With the help of a convenient unitary transform, one canrgkbf f(t)v.
The rest,fv, is nothing but a constant which does not change the spectipégies of the
monodromy. Set

M :=span{e'|a € R,a # 0} .
The set of all almost periodic functions may by written assbe of the sets
AP = span{1} + M~

whereM " denotes the closure @ with respect to the supreme norm. Suppose for the rest
of the proof that is real and fromM/ " . Due to Theorens.2 in [EV] the difference

e~ T — (T, 0)

is compact if this is true for
t . .
Wy (t,s) := / eV (g)e Heo do (3.1)
for all s,¢ € [0,7]. In Section 3.2 we show thal/;..; and W;, are compact. By the
approximation argument’;, is compact too. Since we are in the resonant case, the spectru
of e~*HoT' contains at most finite number of accumulation points whimimf the essential
spectrum. Using the Weyl’'s theorem we claim that the spatwéithe monodromy/ (7, 0)

has the same property, since the differeacé&°” — U(T,0) is compact . Thus the spectrum
of the monodromy is pure-point and therefore the set of pyapag states is empty. [

3.2 Potentialcos(bx) and sin(bx)

Without loss of generality we assurhe- 0. The goal is to prove that the operator

t
Weeos(t, s) ::/ 7 f (o) cos(bX e 7 do
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is compact for alk, ¢ € [0, 7] and the same property follows fo¥;,. Lemma 5.4 in [EV]
states that a sufficient condition for the compactnes$ af,; is the same property of matrix
O with entries

(m| cos(bX)|n)

(m —n)

(3.2)

Ompn =

22
Here|n) stands for thex-th eigen-state of the harmonic oscillatain) = Wme*?Hn(;ﬁ)

and (k) := max{l, |k|}. Because of the parity of the Hermite functio@s, ,, vanishes if
the differencen — n is odd. In the following, we deal with matrix entri€s,, ,,, 2, with
m,u € N. This is possible, since the matrix is symmetric. To provd thaepresents a
compact operator we exploit the fact that integrals of thentie functions with sine and
cosine can be computed explicitly. Further we study thelresuntegration by asymptotic
methods. For brevity we skip some lengthy computations atichates. We believe however
that it is straightforward to reconstruct these steps faraler.

Due to [GR], formula 7.388 (7)

/ e cos(b) Hup (1) Hyyou (z)dz = 2m=3 \/gm!(—l)“b%e_bfL(m, 2u,
0

holds true for every > 0. Hence

b?

5)

2
(—%)“bQue_bTm!L(m, 2u, %)

2y/ml(m + 2u)!

(m| cos(bX)|m + 2u) =

It is well known (see for example the book of Olver [Ol]) thiaete is a relationship between
the Laguerre polynomials and the functior/

_1)ym
L(m,a,z) = L% (z) = %U(—m,a +1,x),
m!

and that one can express the asymptotids af terms of the function Gamma

If we apply the Stirling’s formula after some algebraic m@arations and estimates we come
to

|(m]| cos(bX)|m + 2u)| < %AmﬂBm,u, (3.3)

with an universal constardt, and A, B defined by

1+ 2 eru(m—l—ujL§)i
(m + w)™t o A(mtu) 1

Amu = ™ m )
’ mz2 (m+ 2u)z

mi(m + 2u)i
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1

To estimateB,,, , we simply use the fact that + x)z < e, for x > 0. Thus one gets

€
By < ——. 3.4
oS = (3.4)
It is convenient to rewritéog A,,,, = mg(%) with the help of auxiliary functiory(x) :=

(14 z)log(1l+ x) — (1 + 2z) log(1 + 2z) defined forz > 0. Using some estimates of the
derivative ofg we obtaing(z) < 0, for x € [0,2) andg(z) < zlog2, for x > 2. Applying
this knowledge we estimaté by

Apu < 1, foru<2m

(Z) , foru > 2m (3.5

IN

3.2.1 Compactness

Using the symmetry, (3.4) and (3.5) together in (3.3) we getd universal constar®,
independent ofn, n, b
C
Vb+y/min(m, n)
~ Vby/min(m,n) \ 2
[a] denotes the integer part of a real numbeNow we are ready to prove that the matéx

defined by (3.2) represents a compact operator. We write dowa the product’ 7Y of a
compact operatoy” and a bounded ong&, with

[(m] cos(bX)|n)]

IN

for [%] <m < b5n

[m—nl|
) forn > 5m, or m > 5n. (3.6)

)
Yim = ki
’ logm
7 logm (m| cos(bX)|n) logn

(m —mn)

Clearly,Y is compact since it is diagonal and the limit of diagonaliestis 0. In Proposition
3.2.1 we show thaZ is Shur-Holmgren. Then sincgZ|| < | Z|/sg holds true for any
operator, we are done. Recall the definition of the Shur-Hpén norm

| Z|lsu == maa:{sugZ\me\,su%Z\me\}. (3.7)
ne me

m=1 n=1

Proposition 3.2.1. 7 is Shur-Holmgren.
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00
m=1

Proof. SinceZ is symmetric, it is sufficient to verify thatip,, .y >
not difficult to prove using (3.6) that

Zmn| < oc0.ltis

[e¢) 1 )
D N Zmnl = —=0(n"%)
m=1 b

=

and this completes the proof. O

3.2.2 Potentialsin(bX)

Quite similar computation may be applied in the case therfiatiesin(b.X'). Due to [GR],
formula 7.388 (6)

2

*° 2 2 b
/ e " sin(bx) Hp (2) Hppyour 1 (x)de = Qm\/gm!(—l)"bQUe_bTL(m, 2u+1, 5)
0

holds true for every > 0. Hence

2
(=1 pPee T mL(m, 2u + 1, %)

2¢/m!(m+2u + 1)!

(m|sin(bX)|m + 2u+ 1) =

Following the asymptotics af andU and using the Stirling’s formula again one obtain

5 m—+u 51 3
K (m+u)m+u <1+m> (m+u+z)4
b3 m’= (m+ 2u)z (1+ ﬁ)%ﬂ (m + 2u + 1)%m%
K (m+u)me

b1 y/mm’ (m+ 2u)z

|(m|sin(bX)|m +2u+1)] <

<

The rest is exactly the same as in the cosine case.



Chapter 4

The anti-adiabatic method

4.1 Introduction

The anti-adiabatic method was invented by J. S. Howland m4]H The idea is to apply
a gauge-type transformation to the Floquet Hamiltonian. ti@ncontrary to the adiabatic
transform where the application of an inverse commutat@roves the behaviour of the
perturbation, this method relies on application of the cartator with H,. This is why we
call it anti-adiabatic. We would like to introduce an impewwent of the results by Howland.
By a more careful analysis, we are able to depress the asmmiptt) € X(oco,v) to
V(t) € X(r,v) withr > 14 5-. We have to say that Howland remarks at the end of the
article that it is possible to do |t however it does not seeriim to be worthwhile to do it.
This is not our case; this extension of the anti-adiabatithoekis an important ingredient
of [DLS]. Remark that a slightly modified definition of the Hamd's classes is established
there, see [DLS] for details.

Let us begin with the result of this chapter.

Theorem 4.1.1.Let the spectrum of{, be discrete with eigen-values, < FE, < ---
obeying

|E, — E,,| < const|n — m|(nm)™7, (4.2)
for a giveny €]0, 5[. LetV (¢) be aT-periodic function with values in the space of hermitian

operators onsZ’. Suppose that the monodroitiy7’, 0) associated with, + V' (¢) exists. If
the matrix entries o/ (¢) in the eigen-basis aff, are measurable functions 6find satisfy

1

|Vinn(t)| < const ()T m =y

(4.2)

uniformly in time, with- > 1+%, then the monodromy (7', 0) has no absolutely continuous
spectrum.

Remark 4.1.2. (i) Shrinking gap condition (2.11) is equivalent to this pné&h § = 2.
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(i) If Hy is unbounded and the time-dependenc® () is factorised, i.eV (t) = f(t)v
then the theorem holds true provid¢ds T-periodic and integrable oveld, T'], and
the matrix entries ob satisfy

|Um.n| < const

1
(m —n)r’
withp > 2+ 5 + 2.

The proof consist in the repeated application of the antdaatic transform. Before we
start with this procedure, let us bring out some notions aedul facts. At first, we recall the
definition of the Howland’s classe¥(p, «). Not to get confused with [DLS] where another
classes and norms are defined, we denote the Howland's alriginm by|| - ||/ .

Definition 4.1.3. Letp > 1, a« > 0. We say, that an infinite matrix depending oa [0, T'|
A(t) = {Anm () }nmen
isin classX (p, «) if and only if
1Al = S, sup{|Anm(t)[(nm)*(n —m)? - n,m > 1} < oo,

with (n —m) := max{1, |[n —m|}. We say that an operator-valued function B(t).#fiis in
classX (p, «) if and only if its matrix in the eigen-basis @f; lies in the classt' (p, ).

Notice thatX (p, o) is a Banach space equipped with the ndrfi/, . X' (p, «) is a subset
of the set of bounded operators B(N), since for the Shur-Holmgren norm (see 3.7)

1Allse < (1+2¢() 1 All

holds true.{(p) := > .-, k¥~ denotes the Riemann’s zeta function. Furtbeg X (p, «) is
compact ifa > 0.
We will often use inequalities (holding for everym, k > 1)

%g(m—k), (n—m) < 2(n — k) {k —m), (4.3)
in fact consequences ofb > 1 — a + b < 2ab. From the definition of the norr - ||/,
one deduces using (4.1) the following lemma

Lemma4.1.4.Letp > 2. If A € X(p, ), then the commutatdid, Ho] isin X(p—1,a+7)
and

I[A, Holllp- 1,04 < const]|All;q

holds true.
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4.2 The anti-adiabatic transform

As it was outlined in part 2.5.2, using the anti-adiabatansformation, in fact applying
the commutator withH,, one can improve the decay of the matrix entries of the peaturb
tion along the main diagonal at the expense of the decay inliteetion perpendicular to
this diagonal. With the help of the definition of the Howlamdlasses, the anti-adiabatic
transform may be viewed as the passing from a perturbatigh € X' (p, «) to a new one
A(t) € X(p — 1,a + v), wherey is given by the shrinking gap condition (4.1), see Lemma
4.1.4. An important technical tool used in [Ho4] is the feliog lemma about the product
of two Howland'’s classes.

Lemma4.2.1.1f A € X(p,a) and B € X(p, 3), then the product B is in X (r, a + ) if

1
1<r<min{p—§—&;_ﬁ

P —a,p — 6}
This lemma may be generalised into a result of the type
X(p,a)X(r, 8) C X(q,9),

with a convenient choice gfandd. For our purpose it is important that one can play with the
choice of these parameters; sometimes we concentratdvegse obtain the best possible
(itis a + [ in fact), sometimes we do not need such a laxgeut we want to obtain better
q. Let us present a new lemma about the product of two Howlard&ses. It is stated for a
special choice of the classes, suitable for the later use.

Lemma 4.2.2.Letn be a natural number or zergs > n + 1, andi € {0,--- ,n + 1}.
Suppose thakX liesin X (p —n,v(n+ 1)) andY in X (p —i,v(i + 1)) . Then both of the
productsXY,YX areinX (p —n—1,v(n+2)).

Let us postpone the proof of the lemma and formulate the neginltof the anti-adiabatic
method.

Theorem 4.2.3.Let the spectrum of{, be discrete with eigen-values, < FE, < ---
obeying the condition (4.1). Further, 1&t(t) € X (p,~) be a measurabl&-periodic and
symmetric for every € [0, T']. Then for every natural numbeér< p — 1 there exists a family
of unitary operators J(t) oZ’ such that

K =D+ Ho+ V(t) = J(t) (D + Hy+ Wi+ i(1)) J(0)

holds true withi/; symmetric compact and time-independent, &iit) € X (p— 1, (1+1)7)
symmetric and -periodic.
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Proof. We proceed by induction in € {0,...,l}. Let us begin withn = 0. SetVj(t) :=
V (t) and decompose(t) := V; + Vo(t) into the meart, := fOT Vo(t)dt and the rest. Set
Wy = Vp and Jy(t) := 1. ThenW, is compact, since it lies i’ (p, ) and the statement
holds true.

Let us describe the induction step— n + 1. Consider the Floquet Hamiltonian

K, =D+ Hy+ W, + V,(t) = J,(t)" (D + Ho + V(t)) Ju(t) (4.4)
with V() lying in X (p — n, (n + 1)) symmetricT-periodic and such that

ATWQMﬁ:Q

W, is supposed to be time-independent and compact. Set

G (£) = /0 V(s)ds,
so thatGz,, 1 (t) is symmetricI-periodic and inX (p — n,y(n + 1)) . We definek,,, by the
gauge-type transformation
Kpp1 = e WK e7 @0 = Dy Hy + W, + Vi (0), (4.5)
with
WH@:J%W%D+%+W}HMMdWW@—@+wamy (4.6)

Obviously,V;,;1(t) is T-periodic. Later, we prove the following lemma
Lemma4.2.4.V, ., (t) liesinX (p —n—1,7(n+2)).

Deﬁneanrl = fOT Vn+1(t)dt andffnﬂ(t) = Vn+1(t)—‘7n+1. SethH = Wn+1+‘_/n+1-
Then it holds true that )
Kni1 =D+ Hy+ Wi+ Viia(t)

with 1W,,.; compact symmetric and not depending on time, 86nd (t) € X (p — n — 1,7(n + 2))
symmetric and-periodic. Further, thanks to (4.4, 4.5) we get

K1 = Joi1 ()" (D + Ho + V(1)) Jnsa (D),

with J,, 1 (t) = J,(t)e %+ ® SinceG,, 1 (t) is symmetric,J,, () is unitary. This com-
pletes the induction step and the proof of the theorem.
Notice that from the proof it follows that

Wn = zn: ‘72'7
=0

with V; € X(p — i, (i + 1)7). O
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4.2.1 Proofof Lemma4.2.2 and Lemma4.2.4

Proof of Lemma 4.2.2We treat the cas& Y, the opposite one is analogous. Using the defi-
nition of the norm| - || we get with the help of inequalities (4.3)

| XY |lp—n—1,(nt2)y = sup (ml)
m,leEN

(n+2)'y<m . l>p7n71 Z |kaYkl‘
=1

(D)2 (= Ly
< [|X Y »
[ X Np=n 03 1Y lp—i. 1) vwfug kz mk) 07 (K1) DY (m — kyp—n (1 — kyp—i

< PO X | iy 1Y Nl i1y D

with

Lnin = sup Y k7 (m — k)7~ (k — )0 D=y, (4.7)
m,lEN =1

1 -
Let: # 0. From the Holder inequality (with = 1—” r= 2%”) it follows that

oo

L,;~ < sup E2(m — k)71

0 % [e%¢} m—1 %
< (Z /{:_27”“’) sup <1 + Es=n 4 Z k_s(l_“’)>
=1 meN =1 =1
2y 1y
= (T (1+7) (T+2¢(1+7)™ < (1+2¢(1+7)).

The same expression estimalgs, , forn > 1 smce - <2 Finally, one obtains directly
Lo, < (142¢(2—2v)). The lemma s proved. O

Proof of Lemma 4.2.4Sinceadg, ., ;) D = 1G11(t) = 1V,(t), we get by expanding the
right-hand side of (4.6) due to formula (2.6)

Voa(t) = i 5 adl, ! ) (zV (t) + [Gn+1(t),H0 + W, + f/n(t)D + Vo (t)

Zj j—1
- Z — adg o Bu(t), (4.8)
=
with
Bn,j@) = adGnJrl(t) (HO + W, + %f/n(w) .

J
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Recall that from the proof Theorem 4.2.3 we have

Wn = i ‘7i7
1=0

with V; € X(p —i, (i + 1)7).

By Lemma4.1.4dg, ., Hy € X(p—n—1,(n+2)y) and using Lemma 4.2.2 the same
holds true fomdg, ,, W, andadg,,,, V,,. Thus we conclude tha,, ;(¢) isin X (p—n—1, (n+
2)7v). Applying Lemma 4.2.2 again we get that in the same class Iiﬂsaﬂgil(t) B, ;(t)
and moreover

1
H adJG nt1(t (t)”f—n—l,(n+2)'y < prnv’YvH (Cpn’YHHGnJral n,(n+1)y ) HB"]Hp n—1,(n+2)y>

with a constanC,, ,, , . Then due to the presence of the fac}_pit is easy to conclude that
Vos1(t) liesinX (p —n — 1,v(n + 2)) since such a class forms a Banach space. The proof
of Lemma 4.2.4 is complete. O

4.3 Proof of Theorem4.1.1

Proof. We apply Theorem 4.2.3 with := [%], the integer part o%. Therefore K =

D + Hy + V(t) is unitarily equivalent toD + Ho + W, + 17}(15), with T/, compact and
Vi(t) € X(r —1,(1 4 1)7). Itis easy to see that

1
1<r—1, §<(l+1)7<1.

V() is trace-class uniformly since its trace norm may be estrbgt

[e.e]

[o¢]
Vil < D Vil < IV gy, Z Iz _]> ; < o0
i,j=1 =1

Itis not difficult to check that the last sum is convergent.tBgy Weyl’'s theorem the spectrum
of Hy + W, is discrete, since the same is true for the spectrugand1V; is compact. To
finish the proof it suffices to apply Theorem 2.5.1. O



Chapter 5

The results of the thesis

During the study of time-periodic quantum systems | haveised myself on two direc-
tions: the first one was the development of the methods, twnskeone the analysis of some
models. According to this, we can organise the objectivesyfvork into two groups:

e The methods: Try to improve general methods for time-periodic systems
e The models: Analyse models with{, being (a general) oscillator

Let us discuss the results.

5.1 The KAM method

We begin with the KAM method which deals with the spectrabgiiy of the Floquet Hamil-
tonian K := —d; + H, (acting onL?([0, T], ») with periodic b.c.) with respect t@'-
periodic perturbationd’(¢). Since H, is supposed to have discrete spectrum, the spectrum
of Ky is pure point. By the spectral stability we mean the propémt the spectrum of
Ky + V(t) is pure point too.

As we explain in Section 2.5, the KAM theory is applicablehattcase when the gaps
in the spectrum of{, are growing. Remark that in [Col] it is modified for constaapsg,
too. The statement guarantees that the spectrudiof V' (¢) is pure point for a set of
periodsT of non-zero Lebesgue measure. In the papers [DLSV1] and \2.3he theory
was generalised to the case of growing multiplicities of éigen-values of{, and a class
of unbounded perturbatiorig(¢). An important assumption of the theorem is tha() is
sufficiently differentiable with respect to time. Let us rark that some results of these
papers were already included in my Diploma thesis [LevV].

Since the theory is most developed in the case of the grovapg,gt may seem that it is
“nice and solved”. The spectral result of the KAM-like theor is however non-trivial. In
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the paper [BoZ2], Bourget showed the evidence of purely sargpectrum (for almost all’)
for the system corresponding formally to

K = =10, + Ho + |¢)(¢] Y _ 6(t — nT),

neL

with H, having pure point spectrum with the eigen-valdgsobeying the condition
EnJrl - En Z Cni?y;

for somey > 0. The vectorp is assumed to be cyclic with respecthiyg and satisfying some
additional properties. Notice that the time-dependencaioh a perturbation is singular, on
the other hand the perturbation is of the rank one.

5.2 The anti-adiabatic method

The new result of the anti-adiabatic method is formulate@heorem 4.1.1. Provided that
V (t) is T-periodic and in clasg’(r, ), with r > 1 + %, the statement excludes any abso-
lutely continuous part from the spectrum &f= —:0, + Hy + V (t), whereH, is supposed
to have discrete spectrum, such that the gaps in the spedimmish (see 4.1).

In fact, already Howland remarked in [Ho4] that it is possibd weak the assumption
V(t) € X(oc0,v) toV(t) € X(r,v) (see Definition 4.1.3), with an > 1 finite . We think
that this generalisation is remarkable by itself, anywasy &n important ingredient of [DLS]
where we combine the anti-adiabatic method with the pragyvesliagonalisation and some
results of [Jo2]. Without the generalisationvtéinite this work would not be possible.

Similarly to the KAM theory, the spectral result of the aatliabatic theory is not trivial,
since the example of Bourget (see the previous section)vesdhe case of the shrinking
gaps, too. Notice that there is no restrictive condition lo@ multiplicities of the eigen-
values ofH, in Theorem 4.1.1, they can grow arbitrarily with Aside from the question of
the optimality ofr, we do not see any possible extension of this idea.

5.3 Asymptotic behaviour of matrix entries

Inspired by the methods mentioned above, we have startedalyse a family of one-
dimensional models described by

2 d2
HO = —h @ + ‘[L’| s
with o > 0. Itis not difficult to prove that, has simple pure point spectrum. Depending on
the choice ofy, the gaps in the spectrum are growing¥$ 2), constant¢ = 2) or shrinking
(a €]0, 2[). Denote by|n) then-th eigen-vector of,.
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Choosing an observablé, we are interested in the asymptotic behaviour of the matrix
entries

(m|Aln),

for m,n large. We introduce two results corresponding to the higtrggnregime § = 1,
n — oo, B, — oo) and the semiclassical regime 0, n — oo, F,, = E = const). In the
first case, we prove for a localised even potentiédee Theorem 2.6.1) that

lim (n|v|n + 2k) = C’O((—l)k’ﬁfa%2 / v(x)de
n—odo R

holds true for everyk € Z fixed. This is a generalisation of the result of [Lev]. It tarout
that the KAM and the adiabatic theories are applicable t® tnodel foraw > 2, however,
for possible application of the anti-adiabatic method inecessary to treat more general
observables depending also on the momentum.

In the semiclassical limit (see Theorem 2.6.3), we have fooge generab

(n|vin+ k) — %/0 v (q(t)) e dt

where(q(t), p(t)),t € [0,T], is the classical trajectory in the phase space at the enérgy
and the initial point chosen ag0) := 0, andg(0) := E=. T is the period of the classical
motion andv = 27 /T. For the harmonic oscillator a result of this type is knownddong
time in the physical literature (see [LL]). We extend itsigdl in [LS] to a class of general
oscillatorsH, = —h*L, + V(x) and prove it rigorously.

5.4 Non-localised perturbations of the harmonic oscillato

The Harmonic oscillator in the resonant regime is descriethe Floquet Hamiltonian

2
Ky =1, + 2P+ @2,
2 2
which acts on’.?[0, 7] ® L*(R), with periodic b. c. in time. The resonance is defined by the
condition thatvT' /27 is rational. This is an example of a system with constant gégesating
the spectral stability oy, we profit from the fact, that its point spectrum is not demsk.i
It turns out that for a generic Floquet Hamiltonian the opigois true (see Section 2.5).
In Chapter 3, we prove that the spectrum of the Floquet Hamidin K, is stable with
respect to some large class of non-localised perturbafidins The statement of Theorem
3.1.1 may be reformulated into the following shape.
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The spectrum of the Floquet Hamiltonian

1 2
K i= =y + 5P+ %QQ 4 F(0(Q)
acting onL?[0,T] ® L*(R) is pure point, provided is a continuously differentiablé*-
periodic functiony is a real-valued almost periodic function, and@ /2 is rational. This is
a generalisation of the result in [EV] wheras assumed to be compactly supported.
Applying the Fourier transform one concludes that the sdmerem is valid for

1, w?
K = —zat+§P +?Q + f(t)v(P).

Since it is well-known (see [EV]) that the spectrum of

1 2 2
—10; + §P2 + %QQ + Qsin(%t)
is purely absolutely continuous is is natural to ask, whetinere is a condition which relates

the growth of the perturbation in the phase space to the igpp@coperties ofi.

5.5 Energy growth of some systems with the shrinking gaps

In the preprint [DLS] we introduce an upper bound of the epagpwth of some periodi-
cally driven quantum systems with shrinking gaps in the spet. Let us describe briefly
the result, see [DLS] for more details. Assume that a quargystem is described by the
Hamiltonian H(t) := H, + V (t), where H, has pure point spectrum with eigen-values
FE, < E5 < ... obeying the shrinking gap condition

|m — n| |m — n|

max{m, n}27 max{m, n}2r’

with a~ €]0, 1/2[. Remark that this condition is fulfilled faF,, = n, wherea €0, 1] and
v=(1-2a)/2.
Assume that/(t) is T-periodic, stronglyC'! and sufficiently small in the norm

|V [py := sup sup (m — n)’ max{m, n}QVHV(t)m’nH.
t€[0,7] m,neN

If pis sufficiently large then for any from the form domain ofd;, it holds true that
(U(t,0)¥, HyU(t,0)¥) = O(t°),

with 3 = S 173 whereU (t, s) is the unitary propagator associated wiffi¢). \We observe
that forp large enough, one can obtain arbitrarily smalTo our knowledge, the result of
this type is the first one in the case of shrinking gaps and dl sleeay of entries of/ ()

along the main diagonal.
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ABSTRACT. We study the Floquet Hamiltonian —id; + H + V(wt), acting in

3

L2([0,T],H,dt), as depending on the parameter w = 27/T. We assume that
the spectrum of H in H is discrete, Spec(H) = {hy}5°_;, but possibly degen-
erate, and that t — V(¢) € B(H) is a 2m-periodic function with values in the
space of Hermitian operators on H. Let J > 0 and set Qg = [%J, %J]. Suppose
that for some o > 0 it holds true that th>hn tnn (R, — hyp) ™7 < oo where

fomn = (min{ M,,, M,,})"/>M,, M,, and M,, is the multiplicity of h,,. We show
that in that case there exist a suitable norm to measure the regularity of V', de-
noted ey, and positive constants, €, and d,, with the property: if e,y < €, then
there exists a measurable subset Q., C Qg such that its Lebesgue measure fulfills
Q0| > |Q0] — dxey and the Floquet Hamiltonian has a pure point spectrum for
all w € Q.

1. INTRODUCTION

The problem we address in this paper concerns spectral analysis of so called Floquet
Hamiltonians. The study of stability of non autonomous quantum dynamical systems
is an effective tool to understand most of quantum problems which involve a small
number of particles. When these systems are time-periodic the spectral analysis
of the evolution operator over one period can give a fairly good information on
this stability, see e.g. [1]. In fact this type of result generalises the celebrated
RAGE theorem concerned with time-independent systems (one can consult 2] for a
summary). As shown in [3] and [4] the spectral analysis of the evolution operator
over one period (so called monodromy operator or Floquet operator) is equivalent
to the spectral analysis of the corresponding Floquet Hamiltonian (sometimes called

operator of quasi-energy). This is also what we are aiming for in this article. More
1
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precisely, we analyse time-periodic quantum systems which are weakly regular in
time and "space" in the sense of an appropriately chosen norm, and give sufficient
conditions to insure that the Floquet Hamiltonians has a pure point spectrum.

Such a program is not new. In the pioneering work [5] Bellissard has considered
the so called pulsed rotor which is analytic in time and space, using a KAM type
algorithm. Then Combescure [6] was able to treat harmonic oscillators driven by
sufficiently smooth perturbations by adapting to quantum mechanics the well known
Nash-Moser trick (c.f. [7] and [8]). Later on these ideas have been extended to a
wider class of systems in [9]; it was even possible to require no regularity in space by
using the so called adiabatic regularisation, originally proposed in [10]| and further
extended in [11], [12|. However none of these papers can be considered as optimal
in the sense of having found the minimal value of regularity in time below which the
Floquet Hamiltonian ceases to be pure point.

Though it is impossible to mention all the relevant contributions to the study of
stability of time-dependent quantum systems we would like to mention the following
ones. Perturbation theory for a fixed eigenvalue has been extended, in [13], to
Floquet Hamiltonians which generically have a dense point spectrum. Bounded
quasi-periodic time dependent perturbations of two level systems are considered in
[14] whereas the case of unbounded perturbation of one dimensional oscillators are
studied in [15]. Averaging methods combined with KAM techniques were described
in [16] and [17].

In the present paper we attempt to further improve the KAM algorithm, partic-
ularly having in mind more optimal assumptions as far as the regularity in time
is concerned. As a thorough analysis of the algorithm has shown this is possible
owing to the fact that the algorithm contains several free parameters (for example
the choice of norms in auxiliary Banach spaces that are constructed during the algo-
rithm) which may be adjusted. This type of improvements is also illustrated on an
example following Theorem 1 in Section 2. A more detailed discussion of this topic
is postponed to concluding remarks in Section 10.

Another generalisation is that in the present result (Theorem 1) we allow degenerate
eigenvalues of the unperturbed Hamilton operator (denoted H in what follows). The
degeneracy of eigenvalues h,, of H can grow arbitrarily fast with m provided the
time-dependent perturbation is sufficiently regular. To our knowledge this is a new
feature in this context. Previously two conditions were usually imposed, namely
bounded degeneracy and a growing gap condition on eigenvalues h,,, reducing this
way the scope of applications of this theory to one dimensional confined systems.
Owing to the generalisation to degenerate eigenvalues we are able to consider also
some models in higher dimensions, for example the N-dimensional quantum top, i.e.,
the N-dimensional version of the pulsed rotor. A short description of this model is
given, too, in Section 2 after Theorem 1.

The article is organised as follows. In Section 2 we introduce the notation and for-
mulate the main theorem. The basic idea of the KAM-type algorithm is outlined in
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Section 3. The algorithm consists in an iterative procedure resulting in diagonalisa-
tion of the Floquet Hamiltonian. For this sake one constructs an auxiliary sequence
of Banach spaces which form in fact a directed sequence. The procedure itself may
formally be formulated in terms of an inductive limit. Sections 4-8 contain some
additional results needed for the proof, particularly the details of the construction
of the auxiliary Banach spaces and how they are related to Hermitian operators in
the given Hilbert space, and a construction of the set of "non-resonant" frequencies
for which the Floquet Hamiltonian has a pure point spectrum (the frequency is con-
sidered as a parameter). Section 9 is devoted to the proof of Theorem 1. In Section
10 we conclude our presentation with several remarks concerning comparison of the
result stated in Theorem 1 with some previous ones.

2. MAIN THEOREM

The central object we wish to study in this paper is a self-adjoint operator of the
form K 4 V acting in the Hilbert space

K =L*[0,T],dt) ® H = L*([0,T],H,dt)

where T' = 27 /w, w is a positive number (a frequency) and H is a fixed separable
Hilbert space. The operator K is self-adjoint and has the form

K=—-i0,®1l+10H

where the differential operator —id; acts in L?([0,T],dt) and represents the self-
adjoint operator characterised by periodic boundary conditions. This means that the
eigenvalues of —id, are kw, k € Z, and the corresponding normalised eigenvectors
are xi(t) = T2 exp(ikwt). H is a self-adjoint operator in H and is supposed
to have a discrete spectrum. Finally, V is a bounded Hermitian operator in /C
determined by a measurable operator-valued function ¢ — V(wt) € B(H) such that
supser ||V (1)]] < oo, V() is 2m-periodic, and for almost all t € R, V(¢)* = V(1).
Naturally, (Vi)(t) = V(wt)y(¢) in K = L2([0,T], H, dt).

Let
Z kw Pk
keZ
be the spectral decomposition of —id; in L2([0,T],dt) and let
meN

be the spectral decomposition of H in ‘'H. Thus we can write

H=3S"Hp,

meN

where H,, = Ran(@),, are the eigenspaces. We suppose that the multiplicities are
finite,

M,, = dimH,, < oo, Vm € N.
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Hence the spectrum of K is pure point and its spectral decomposition reads

K=> "> (kv + hm) P ® Qm, (1)

k€Z meN

implying a decomposition of K into a direct sum,

K= 3" Ran(P,® Q).

(k,m)€EZxN

Here is some additional notation. Set

1 T ) 1 2T )
Vinm = — / et QuV (Wt) Qdt = — / e QuV (1) Qu dt € B(Hom, Hy) -
T Jo 21 Jo
(2)
Further,
Amn - hm - hn7
and
Ay = inf |A,,.
0 ngr;n! |

Finally we set
. 1/2
fnpn, = (min{ M,,,, M, }) / M, M,.
Now we are able to formulate our main result. Though not indicated explicitly in
the notation the operator K 4+ V is considered as depending on the parameter w.

Theorem 1. Fiz J >0 and set Qo :=[5J,3J]. Assume that Ao > 0 and that there
exists o > 0 such that

A T)y=0 Y (KZ:)U < 0.

m,neN
Amn>J/2

Then for every r > o + % there exist positive constants (depending, as indicated, on
o, r, Ag and J but independent of V'), €,(r, Ao, J) and 6,(o,r, J), with the property:
if

. |
€y 1= sup | Vienm || max{|k|", 1} < min {e*(r, No,J), ——=
w) D 5.0, )

(here || stands for the Lebesque measure of €),.) then there exists a measurable
subset Qo C Qg such that

’Qoo‘ 2 |QO‘ _5*(0—7Ta J) €y (3)

and the operator K +V has a pure point spectrum for all w € Q
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Remarks. 1) In the course of the proof we shall show even more. Namely, for all
w € € and any eigenvalue of K + V the corresponding eigen-projector P belongs
to the Banach algebra with the norm

1P| = Supz D [ Penm| max{|k]"0 2, 1}.
kGZ meN

This shows that P is (r — o — 1/2)-differentiable as a map from [0,7"] to the space
of bounded operators in H

2) The constants €,(r, Ay, J) and d,(o,r, J) are in fact known quite explicitly and
are given by formulae (70), (71), (77) and (78). Setting a = 2 and ¢" = ¢* in these
formulae (this is a possible choice) we get

) 2 1
(1, A, J) = min { T35 53 Ao, 57063 J} ,

1
oty

2041 G
Su(o,r, J) = 1440€°2° % (ZSQe_%(T_”_%)S> Ay (J)
e

(1 —er s=1

1
O'+§

and

*2+% o+
~ oqp | 2ot gottE(orl) _1te (7+3)

<1 — e*%> e <1 — @_2+%("+%)>3

3) The formulae for €, and 4, can be further simplified if we assume that r is not
too big, more precisely under the assumption that r < %(20 + 1) (if this is not the
case we can always replace r by a smaller value but still requiring that » > o + %)

As(J)

A better choice than that made in the previous remark is o = 2 and ¢ = e*/(?7+1),
We get (c.f. (71))

min{4 A, J} /(2o 41) min{4 A, J}

* 7A 7<] =
e(r, o, J) 270 ¢ = T 270692
and (c.f. (77) and (78))
cr-‘,—%
2 1 2r—2c—1
(5*(0,7“, J) = 1440¢2° < J+4 620+1 (ZS e —2 5 > AU(J).
1-— e_TJrl> e

Using the estimate

Z 82 —2xs COSh(I‘) < 1

— ‘ T4 sinh(z)3 — 423
we finally obtain
o+3 X
S (oyr, J) < 45e27 2041 et (7?00;11) Ay (J)
2

(1 — eiﬁﬂ) e
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We conclude this section with a brief description of two models illustrating the effec-
tiveness of Theorem 1. In the first model we set H = L?([0,1],dx), H = —9? with
Dirichlet boundary conditions, and V (t) = z(t)z? where z(t) is a sufficiently regular
2m-periodic function. As shown in [18] the spectral analysis of this simple model
is essentially equivalent to the analysis of the so called quantum Fermi accelerator.
The particularity of the latter model is that the underlying Hilbert space itself is
time-dependent, H, = L*([0, a(t) ], dx) where a(t) is a strictly positive periodic func-
tion. The time-dependent Hamiltonian is —9? with Dirichlet boundary conditions.
Using a convenient transformation one can pass from the Fermi accelerator to the
former model getting the function z(¢) expressed in terms of a(t), a'(t) and a”(t).
But let us return to the analysis of our model. Eigenvalues of H are non-degenerate,
B = m?7? for m € N, with normalised eigenfunctions equal to v/2sin(mmx). Note
that in the notation we are using in the present paper 0 ¢ N. A straightforward
calculation gives

8(=1)™t"mn .
e e if m #n,

anm = 2 X

5= gz m=n,
where z, = 5- fo27r e~*2(t) dt is the Fourier coefficient of z(¢). Hence one derives
that
1 2 44 ) )
€y = Sup g + ) + — Z I Z ’Zk‘ max{\k\ s 1} = Z ’Zk’ max{]k] s 1}
nen T ez kez

For any J > 0, A,(J) is finite if and only if 0 > 1. On the other hand, to have €y
finite it is sufficient that z(¢) € C* where s >r+1>0+3+1> 2. So 2(t) € C?
suffices for the theory to be applicable. This may be compared to an older result in
[9], §4.2, giving a much worse condition, namely z(t) € C'7.

The second model is the pulsed rotator in N dimensions. In this case H = L2(SY, du),
with S¥ C R¥*! being the N-dimensional unit sphere with the standard (rota-
tionally invariant) Riemann metric and the induced normalised measure du, and
H = —A,p is the Laplace-Beltrami operator on SY. The spectrum of H is well
known, Spec(H) = {h,,}>_,, where

hpy =m(m+ N —1)

and the multiplicities are

M — (m—i—N) B (m—I—N—Q)‘
N N
The time-dependent operator V() in H acts via multiplication, (V (t)p)(x) = v(t, z)e(x),
where v(t, x) is a real measurable bounded function on R x S¥ which is 27-periodic
in the variable t. Consequently, X = L*([0,7] x SV, dtdpu) and (V)(t,x) =
v(wt, x)(t, ). Note that the asymptotic behaviour of the eigenvalues and the mul-
tiplicities, as m — oo, is by, ~ m?2, My, ~ (2/(N —1)1)m™N=1. So A,(J) is finite, for
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any J > 0, if and only if

To ensure this condition we require that o > g(N — 1)+ 1. Let us assume that there
exist s, u € Z, such that, for any system of local (smooth) coordinates (y1,... ,yn)
on SV, the derivatives 8t°‘8£1 .. .8£\§Vv(t,y1, ...,yn) exist and are continuous for
all a, B, o« < sand /1 + ...+ 0y < u. Ifu >4 then [H [H,V(t)] is a well
defined second order differential operator with continuous coefficient functions and
the operator [ H,[H,V(¢)]](1+ H)~ ' is bounded. Clearly,

(hm - hn)2 . 1
W an(t)Qm = Qn[H> [Ha V(t) ]](1 + H) Qm-

Using this relation one derives an estimate on Vi,

1 + min{hy, hpy, }
’kls(hm o hn)2 7

| Vienm|| < const

valid for k£ # 0 and m # n. The number

1+ min{hy,, hy, }
(hm - hn)2

sup

neZy meZy,m#n

is finite. To see it one can employ the asymptotics of h,, and the fact that the
sequence

1 + min{n?, m?} 1\ 72 3 5 1311
n — = 1 5 | 74 TA 4 o >
¢ Z (m? — n2)? * n?) 12 16n? + 16n*  2n 231 m

MEZy, m#n m=

n = 1,2,3,..., is bounded. It follows that the norm ¢y is finite if s > r 4+ 1 >
o+ % +1> %(N -1 +1+ % = gN. Thus the theory is applicable provided u > 4
and s > gN. The same example has also been treated by adiabatic methods in [11].
In that case the assumptions are weaker. It suffices that v(t,z) be (N + 1)-times
differentiable in ¢ with all derivatives 9 v(t,z), 0 < o < N + 1, uniformly bounded.
However the conclusion is somewhat weaker as well. Under this assumption K +V
has no absolutely continuous spectrum but nothing is claimed about the singular
continuous spectrum.

3. FORMAL LIMIT PROCEDURE
Suppose there is given a directed sequence of real or complex Banach spaces, {X}22,,
with linear mappings
lys » X — X, if s <, with [|es]] <1,
(and ¢4 is the unite mapping in X;) and such that

boulus = bps s <u<w.
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To simplify the notation we set in what follows

ls = ls41,s-

Denote by X, the norm inductive limit of {X,, t,s} in the sense of [19], §1.3.4
or |20], §1.23 (the algebraic inductive limit is endowed with a seminorm induced by
lim sup, || - ||, the kernel of this seminorm is divided out and the result is completed).
X is related to the original directed sequence via the mappings toos : X5 — Xoo
obeying ||toos|| < 1 and tooulus = toos if § < u. By the construction, the union
Uszso loos(Xs) 1s dense in X, for any sg € Z,.

If {A, € B(X,)} is a family of bounded operators, defined for s > sy and such that
Aytus = tysAs  if 5o < s <, and sup || A4 < oo,
S
then A, € B(X.) designates the inductive limit of this family characterised by the
property Aoolocs = loosAs, VS > Sg.

Let Do, € B(X) be the inductive limit of a family of bounded operators {D, €
B(X;); s > 0}, with the property

IDs|| <1, |1 =Dy <1, Vs, (4)

We also suppose that there is given a sequence of one-dimensional spaces kK,
s =0,1,...,00, where the K, are distinguished basis elements. Here the field k is
either C or R depending on whether the Banach spaces X are complex or real. Set

X, =kK,®X,, s=0,1,...,00

Then {X,}32, becomes a directed sequence of vector spaces provided one defines

lus - Xs — Xy by

lus|x, = tus and ,5(Ks) = K, if s <.
Set
1 et —1 =\ k+1 b
= (e ) 5
o) =1 (¢ -0 =X i )

Proposition 2. Suppose that, in addition to the sequences {X}2,, {Ks}2, and
{D,}2,, there are given sequences {Vi}22, and {©5}52 .1 such that V; € X, ©3 €
B(X.), and

O tyy = L©;,  if s <u <. (6)
Set
T, =% 97 %8 e B(Xs) fors>1. (7)
Let {W,}22, be another sequence, with Wy € X, defined recursively:
Wo = W,
Werr = ts(Ws) 4+ To1(Via — 15(V5)) (8)

+ @s+1¢( s+1)Ls( - DS)(WS - Lsfl(stl))’
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where we set, by convention, X_1 = 0, W_y = 0. Extend the mappings ©; to
@5 X, — X, by
éZ(Ku) = =0, Dy (tus(Ws)) — (1 = Do) (tus(Ws) — tus-1(Wis-1)), (9)

and consequently the mappings Ty to T, : %s — X,
T, = O O 88 fors>1, Ty=1.

Then it holds

To(Ks+ Vi) = Ky + Dy(Wy) + (1 = Dy) (W — t5-1(W,1)), s=0,1,2,.... (10)
Remark. Since ©3(K,) € X, it is easy to observe that

T.(K,) - K, € X,.

Furthermore, note that (9) implies that 03 (K,) = 1u©5(K,) if 0 < s < u < v, and
so the mappings O still satisfy

éi[w = Zyuéi if s<u<o.

Proof. By induction in s. For s = 0 the claim is obvious. In the induction step
s — s+ 1 one may use the induction hypothesis and relations (9) and (8):

Terl(Kerl + ‘/erl) = TerlZs(Ks + ‘/s) + Terl(‘/erl - Ls(‘/s))
- eei'HZsTs(Ks + ‘/s) + Ts—l—l(‘/s—I—l - Ls(‘/s))
= eez“ZS(Ks + DS(WS) + (1 - DS)(WS - Lsfl(stl)))
+T o1 (Vegr — 15(V5))
€%+ — 1
Oin
+€ S“L (1 - D )(Ws - Lsfl(stl)) + Ts+1(Vs+1 - Ls(Vs))
- Ks+1 - (1 - Ds-{—l)bs(Ws) + LS(WS) + Ts-i—l(‘/s-i-l - Ls(‘/s))
os %1 — 1
+ | e st — s Ls(l - Ds)(Ws - Lsfl(stl))
®s+1
= Kerl - (1 - Derl)Ls(Ws) + Ws+1
= K1 +Dey1(Wein) + (1 = Dyy1)(Waga — 1(W5)) -

= Kop1 + Doy (6:(W5)) + é§+1ZS(Ks + Dy(Ws))

0

Proposition 3. Assume that the sequences {V;}22,, {Ws}2, and {©2}°° . have the
same meaning and obey the same assumptions as in Proposition 2. Denote

Ws = HWS - Ls—l(Ws—l)H

(with wo = ||Wy||). Assume, in addition, that there exist a sequence of positive real
numbers, {Fs}2,, such that

||@ZH S F8w87 vsaua u > 87 (11)
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a sequence of non-negative real numbers {vs}2, such that

Vs = ts1(Vior) || S vs, Vs,
(for s = 0 this means |Vy|| < vo) and a constant A > 0 such that

Fow? < Avgyq, Vs, (12)
and that it holds true
B = ZFSUS < 00. (13)
s=0
Denote
C' = sup Fv;. (14)
If d > 0 obeys
e+ Ap(dC) d* < d (15)
then
ws < dvs, Vs. (16)

Proof. We shall proceed by induction in s. If s = 0 then vy = wy = ||Vo|| and (16)
holds true since (15) implies that d > 1. The induction step s — s + 1: according
to (8), (7), (4) and (15), and owing to the fact that ¢(x) is monotone, we have

Wer1 < || Toqr|l vser + |05 ] (1O 4 |]) ws

< €xXp (Z F}w]> Us41 + ¢(sts)st52

J=0

IN

exp (dz Fjvj> Vo1 + ¢(d Fovg) Fod®v?

j=0
edB/Uerl + ¢(d0)d2A Vs+1

dvs—i—l'

IAINA

Remark. If
1
B < gan and A¢(3C) <

Nel i

then (15) holds true with d = 3.

Recall that ©%_ € B(X,) is the unique bounded operator on X, such that
O loou = Loou©Ol, YU > s.
If (11) is true then its norm is estimated by
105.]| < Fuws. (17)
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Corollary 4. Under the same assumptions as in Proposition 3, if d > 0 exists such
that condition (15) is satisfied, and

Fo=infF, >0 (18)
then the limits
Vo = m 1005(V5), Woo = lim 150(W5)

S§—0Q S§—00
exist in X, the limit

. s—1 0
T, = lim €9~ ... %

§—00

..e

exists in B(Xs), and Ty € B(X4) can be extended to a linear mapping Tao : X s —
X by

Too(Koo) - Koo = lim loos <TS(KS) - Ks) 5 (19)
with the limit existing in Xo.. These objects obey the equality
Too (Koo + Vao) = Koo + Doo(Wao). (20)

Proof. 1f u > s then

u

leocu (Vi) = toes (VI = [| D toes(Vi = (Vi) < D s

Jj=s+1 J=s+1
Since
o0 1 [o¢]
E Vg < 7 F.ou, < o0
s=0 inf s=0

the sequence {tos(Vs)} is Cauchy in X, and so V,, € X, exists. Under assumption
(16) we can apply the same reasoning to the sequence {ios(Ws)} to conclude that
the limit Weo = im0 Loos(Ws) exists in X. Set

T, — 0% % ifg >1, and T = 1.
If u > s then, owing to (17) and (16), we have

u—1 s—1
IT. - Toll < (exp (Z H@io!|> - 1) exp (Z H@io!|>
j=s =0
u—1 s—1
< exp <dZFjvj> — exp <dZFjvj> .
=0 =0

Assumption (13) implies that {T,} is a Cauchy sequence in B(X.,) and so T,, €
B(X) exists.

To show (19) let us first verify the inequality
1+dB

inf

e (K) — Kol <

(e — 1), (21)
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valid for all u > s. Actually, using definition (9) and assumption (11), we get

o el — 1
e (K,) — K| e |0 (K.,)||
il _y
< o (OuNWl + W — tsa(Ws—1) 1)

< (e - (Wl + ).

To finish the estimate note that (13) and (16) imply

s 00 d 00 dB
IWall = D AWl = IWmall) + [Woll < ) dvy < ﬁZﬂvj =7
=0 inf =)

=1 inf

With the aid of an elementary identity,
aj...ap—1=uaj...a1(a0 — 1) +aj...ax(ac1 — 1)+ -+ (a; — 1),
we can derive from (21): if 0 < s <t < u then
€% QLK) — Kol < el O 08 (1) — £ |
+ell®i|l+---+||®i+2ll||eéi+1(Ku) — K,

o (|0 (E,) — K|

eFtwt+“‘+Es+1ws+1 <6sts _ 1)

IN

-Finf
=+ 6Ftwt+'"+Fs+2ws+2 (6Fs+1ws+1 . 1)

Feeet (e 1))
1+dB .

Frwi+--+Fsws _ 1)
Enf

Set temporarily in this proof

Ty = LOOS(TS(KS) — K;) € X

If t > s then

T —Ts = loot (eéiil . eGQ(Kt) - Ltseé?l .. .692(K8)>
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Hence
1+dB
HTt _ Ts” < _}:inf ((ethlwtfl‘f'""i‘sts _ 1) (6F571wsf1+~'+F0w0 _ 1)
+ eFt—lwt—1+“‘+sts _ 1)
— 1+dB (ethlwtfl‘f'""f'FOwO _ 6F571w571+~'+F0w0)
Enf ‘

This shows that the sequence {7y} is Cauchy and thus the limit on the RHS of (19)
exists.

We conclude that it holds true, in virtue of (10), that
To(Koo + Vo) = Koo+ lm tooy(To(K) — K,) + lim Ttas (Vi)

= Koo+ lm 1oy (To(K + Vi) — K
= Koo+ lIm 1o (Ds(Wo) + (1 = Do) (W = 151 (We1)))
= Koo 1 (Do toen(W2)) + (1= Do) (toea (W) — t0aa (W)
= Ko+ Do(Wy).
So equality (20) has been verified as well. O

4. CONVERGENCE IN A HILBERT SPACE

Let {X, tus} be a directed sequence of real or complex Banach spaces, as introduced
in Section 3. In this section it is sufficient to know that K is a separable complex
Hilbert space and K is a closed (densely defined) operator in K . Suppose that for
each s € Z, there is given a bounded linear mapping,

ks 1 X5 — B(K), with ||ks] <1,
and such that
Vs,u, 0<s<u, Kylys= Ks.

If the Banach spaces X are real then the mappings x, are supposed to be linear
over R otherwise they are linear over C. Then there exists a unique linear bounded
mapping ks @ Xoo — B(K) satisfying, Vs € Z,, Kooloos = ks. Clearly, ||koo| < 1.
Extend the mappings k, to s : X, = kK, + X, — CK + B(K) by defining

Ro(KL) = K, Vs € Z, U {oo}.

So ks(Ks+X) = K+ ks(X), with X € X, is a closed operator in K with Dom(K +
ks(X)) = Dom(K).

Suppose, in addition, that there exists D € B(B(K)) such that
Vs € Zy, Dks = ksD;.
Then it holds true, Vs € Z,, VX € X,
Koo Doo (Loos X ) = Kooloos Ds(X) = ksDs(X) = DEg(X) = DKoo (LoosX ).
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Since the set of vectors {1o0s(X); s € Zy, X € X} is dense in X, we get £ooDoy =
| DS

Proposition 5. Under the assumptions of Corollary 4 and those introduced above
in this section, let {A}2, be a sequence of bounded operators in K such that,

Vs,u, 0 <s<u, VX € X,, ﬁu(Gi(X)) =[Ag ko (X) ], (22)

Vs €Zy, As(DomK)C DomK,
and
Vs,u, 0 <s<u, [AgK]|= nu(éZ(Ku))}Dom(K).

Moreover, assume that

D ALl < oo (23)
s=0

Set
V = koo Vo), W = koo (Woo).
Then the limit
U = lim e®1 .. 0 (24)

§—00

exists in the operator norm, the element U € B(K) has a bounded inverse, and it
holds true that

U(DomK) = DomK
and

UK+ V)U!'=K+D(W). (25)

For the proof we shall need a lemma.

Lemma 6. Assume that H is a Hilbert space, K is a closed operator in H, A, B €
B(H),

A(Dom K) C Dom K,

and
[A’K] - B‘Dom(K)'
Then it holds, VA € C,
e (Dom K) = Dom K (26)
and
e—)\adA -1
eMKeM=K+-—— —B.
adA

Remark. Here and everywhere in what follows we use the standard notation: ady B =
[A, B] and so e**4 B = M B e,
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Proof. Choose an arbitrary vector v € Dom(K) and set
Vne€Zy, v,=)» A

Then v, € Dom(K) and v, — e*wv as n — oo. On the other hand,

— A\ k kg A
Kv, = k k‘ (KA" - A"K v—l—zk'AKv

= - AT B ARy 4 AFKv.
Z Z Zk,

So the limit lim,,_,, Kv, exists. Consequently, since K is closed, e*(Dom K) C
Dom K. But (e*)~! = ¢=* has the same property and thus equality (26) follows.
Furthermore, the above computation also shows that

PO
Z ZAJBAk 4 MK

Application of the following algebraic 1dent1ty (easy to verify),
k—1

Z v S (“cn),
adA

concludes the proof. ]

Proof of Proposition 5. We use notation of Corollary 4. From (22) follows that,
Vs,u, 0 <s<u, VX € X,,

KooO2 (toouX ) = KuO5(X) = [As, ku(X) | = [ As, Koo (toouX) .

Since the set of vectors {teou(X); s <u, X € X, }is dense in X, we get, VX € X,
Koo O2 (X) = [ As, keo(X) |, and hence

Koo (6620()()) = e pg (X)) e e,

Set
U,=el1.  eMfors>1, Uy=1.

Assumption (23) implies that both sequences {U,} and {U '} are Cauchy in B(K)
and hence the limit (24) exists in the operator norm, with U™ = lim, ., U/ ! €
B(K). Moreover, VX € X,

FooToo(X) = Koo <lim 9% e®g°X> = lim Uskoo(X) U (27)

S
§—00 §—00

Next let us compute #,Ts(K,). For 0 < s < u, set B, = £,(0%(K,)) € B(K). B,
doesn’t depend on u > s since if 0 < s < u < v then

Ru(O5(Ku)) = Fo (1w O35 (L)) = ki (05(K,)).
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We can apply Lemma 6 to the operators K, A, B, to conclude that e=#:(Dom K) =
Dom K and

6adA5 -1
eAKe ™ =K+ — B, (28)
adAs
On the other hand,
S} ad

T - eon —1 ~, e?as — 1

o (P4 = R ( K & (K,) ) =K+<——"B,.

Fu (€94 (1) n<+93 u()> i

Thus &, (eéi(Ku)) = e K e A+, Consequently, U (DomK) = Dom K and
R, (K,) =UKU L (29)
Set Cy = UKU; ! — K. According to (28), C, € B(K). Now we can compute,
using relation (29), a limit in B(K),
C = lim C, = lim #,(T,(K,) — K,)

= Ko <hm Loos(Ts(KS) - KS))
= b (Too(Koo) — Koo).

So K + C = fi(Ts(Ky)). From the closeness of K, the equality U KU =
K+C,, and from the fact that the sequences {UF!'}, {C,} converge one deduces that
U*(Dom K) C Dom K and hence, in fact, U¥!(Dom K) = Dom K. In addition,

UKU ' =K + C = f T (Koo (30)
Combining (27) and (30) one finds that
FiooToo(X) = Uk (X)U™Y, VX € X
To conclude the proof it suffices to apply the mapping <., to equality (20). O

5. CHOICE OF THE DIRECTED SEQUENCE OF BANACH SPACES

Suppose that there are given a decreasing sequence of subsets of the interval |0, +o0],
Qo D D Qe D ..., adecreasing sequence of positive real numbers {p;}2° and a
strictly increasing sequence of positive real numbers {E}2 ), 1 < B} < By < ...

We construct a complex Banach space °X,, s > 0, as a subspace

"X, C [* (Q xZxNxN 3 37 B(Hm,Hn)>

neN meN
formed by those elements X = { X}, (w)} which satisfy
Xinm(w) € B(Hpm, Hy), Yw € Qq, Y(k,n,m) € Z x N x N,
and have finite norm

X1l = sup sup 3= 3 (WX + 02 (0K )P eV (31)

!
ww €8s NEN Yoz neN
wHw
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where the symbol 0 designates the discrete derivative in w,

X(w) = X(W)

w—w

0X (w,w') =

In fact, this norm is considered in Appendix B (c.f. (87)), and it is shown there that
9X, is an operator algebra with respect to the multiplication rule (89).

Let X, C °X, be a closed real subspace formed by those elements X € %X, which
satisfy,

V(k, n, m) € Z x N x N7 Vw € Qs: anm(w)* = X—k,m,n(w) € B(HnaHm) (32)
Note, however, that X, is not an operator subalgebra of °X;.

The sequence of Banach spaces, {X;}52,,, becomes directed with respect to mappings
of restriction in the variable w: if © > s then we set

bus * :{s - %u> Lus(X) = X‘Qu

Because of the monotonicity of the sequences {¢s} and {E;} we clearly have ||i,s]| <
1.

Next we introduce a bounded operator Dy € B(X;) as an operator which extracts
the diagonal part of a matrix,

DS(X)knm(w) - 5k06nmXO'rm(w)‘ (33)
Clearly, ||Dy]| < 1 and |1 — Dy < 1.
Let
VerL® (Z «xNxN 3 3 B(Hm,Hn)>
neN meN

be the element with the components Vi, € B(H,,, Hy) given in (2). Since, by
assumption, V(t) is Hermitian for almost all ¢ it hold true that

(anm)* = ka,m,n-
We still assume, as in Theorem 1, that there exists » > 0 such that
v :SHPZZ | Vienm || max{|k|",1} < co. (34)
neN yeZ meN
Let us define elements V, € X,, s > 0, by

39
~= 0 it |k| > E, (35)
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For s > 1 we get an estimate,

Ve = tsa(Veet)lls = sup > > ([ Vil /5

neN keZ meN
By 1<|k|<Es
max{|k|", 1}
€N yeZ meN s—1
- €ey
(Es—l)r '
Similarly, for s = 0, we get
Voll < eev.

It is convenient to set F_; =1, V_; = 0.

The sequence {K,}2°, has the same meaning as in Section 3, i.e., each K; is a
distinguished basis vector in a one-dimensional vector space RK,. Furthermore, a
sequence ©F € B(X,), 0 < s < u, is supposed to satisfy rule (6). Similarly as in
Proposition 2 we construct sequences Ts € B(X,), s > 1, and W, € X, s > 0, using
relations (7) and (8), respectively.

Proposition 7. Suppose that it holds
5

102 < IWs = ts—1(Ws—1)|ls, Vs,u, 0 <s<u, (37)
s+1
and set
(E,) - 1 1
A, =besup————, B, =be —— C,=besup————.
5210) 908+1(Es—1)2r s—0 Qos—l—l(Es—l)r SZ%) (ps—i—l(Es—l)T
(38)
If
1 1

ey B, < 3 In2 and ey Ad(3evCy) < 5 (39)

then the conclusions of Corollary 3 hold true, particularly, the objects Vo, Woo € Xoo,
Ty € B(Xy) and T, € B(X.) exist and satisfy the equality

Too (Koo + Vio) = Koo + Do (W) .

Remark. Respecting estimates (36) and (37) we set in what follows

d €ey
and vg = V4«70 ——,
Ps+1 (Es—l)r

Proof. Taking into account the defining relations (40) one finds that the constants
A, B and C introduced in Proposition 3 may be chosen as

A=eyA,, B=¢yB, and C = ¢, C,. (41)
The assumption (39) implies that

F, =

s> 0. (40)

B < %an and A¢(3C) < (42)

O =
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and so, according to the remark following Proposition 3, inequality (15) holds true
with d = 3. Since Fius = 5/¢1 > 0 assumption (18) of Corollary 4 as well as all
assumptions of Proposition 3 are satisfied and so the conclusions of Corollary 4 hold
true. ]

6. RELATION OF THE BANACH SPACES X, TO HERMITIAN OPERATORS IN

The real Banach spaces X, have been chosen in the previous section. Set

Qoo = ﬁ Q.
s=0

Suppose that Q. # 0 and fix w € Q (so w > 0).

To an operator-valued function [0,7'] 5 t — X (t) € B(H) there is naturally related
an operator X in K = L%([0,T], H,dt) defined by (X)(t) = X (t)1(t). As is well

known,
X < 1 X]sm

where || - ||sz is the so called Schur-Holmgren norm,

IX|lsy = max{ sup Y ||P®QuXP®Qn

Y

(4,n)eZxN (k,m)E€ZXN
sip Y [P @ QuXPe @ Qu| (43)
(k,m)€eZxN (£,n)€ZXN
S O3 SIS 3) SIEA] S
keZ meN k‘GZ neN
Here
1 g —iwkt
T Jo

It is also elementary to verify that the Schur-Holmgren norm is an operator norm,
| XY |lsg < | X||su||Y||sm, with respect to the multiplication rule (89).

If X (t) is Hermitian for (almost) every ¢t € [0,T'] then it holds, V(k, n,m), (Xgnm)* =

X_kmn, and so
[ Xl = SUPZ D 1 Xkl

N ez men
Note also that, Vs € Z,, VX € X,

X @)llsz < 1 X5

and, consequently, the same is also true for s = oo.
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To an element X € %X, C L™ (QS x Z x N x N, Z . Z@ NB('Hm,Hn)) such
ne me

that ||X(w)|sg < oo we can relate an operator-valued function defined on the in-

terval [0,7],
t— Z Z Z e* X pnm (W) .

k€Z neN meN
The corresponding operator in K is denoted by k4(X), with a norm being bounded
from above by || X (w)||sy. In particular, VX € X,
[es (X < ([ X (w)l[sm < I Xl
In addition, if X € X, then the operator k,(X) is Hermitian due to the property
(32) of X. This way we have introduced the mappings ks : X — B(K) for s € Z,..

Another property we shall need is that x, is an algebra morphism in the sense: if
X,Y € %% such that || X (w)|sg < oo and ||V (w)||sx < 0o then [|[(XY)(w)|sxr < oo
and

Rs(XY) = ks (X)rs(Y) .
Particularly this is true for all X,Y € X,.

Let D € B(B(K)) be the operator on B(K) taking the diagonal part of an operator
X € B(K),

DX)=) ) P®QuXP®Qn.

keZ meN
Clearly, Dk, = ksD,. Since

ID(X) sup [Py ® QX Py ® Ql| < [1X]]

|| B (k,m)€ZxN
we have ||D|| < 1.

A consequence of (34) is that V' = {Vi,,} has a a finite Schur-Holmgren norm,
|Vsg < oo. Let Vs € X5, s € Zy, be the cut-offs of V' defined in (35). Then

IV =Villsy = sup D Y [[Vioml

nEN Lz, k> Es meN

1
sup > || Vil| max{[k[", 1}

(Es)" nen k€Z meN
€y
(Es)"
We shall impose an additional condition on the increasing sequence {E} of positive

real numbers that occur in the definition of the norm || - [|s in X, (c.f. (31)), namely
we shall require

<

3

lim Fy = 400. (44)

§—00

In this case lims o ||V — Vi||sg = 0 and so

V = lim k4(V;) in the operator norm. (45)
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We also assume that there exist Ay € X,,1, s € Z,, such that

(As)knm(w)* = _(As)fk,m,n(w% (46)
and, using these elements, we define mappings 0@2 € B(°X,), u > s, by
00, (X) = [tus1(As), X] (47)

(where the commutator on the RHS makes sense since °X,, is an operator algebra).
Clearly, [|°0; || < 2||Aslls+1. One finds readily that X,, C °X, is an invariant subspace
with respect to the mapping °©; and so one may define ©% = 0@2’36“ € B(X,). Since
1As € X411 we can set

AS = —1 /‘is+1(iAs+1) € B(’C)

Clearly, A, is anti-Hermitian and satisfies ||Ag|| < ||As|/s+1. Note that (47) implies
that, Vs,u, 0 <s <u, VX € X,

’fu(@Z(X» = [As, ku(X)].
Lemma 8. Let {W}2°, be a sequence of elements Wy € X and let (:)Z X, — X, be

the extension of ©5, 0 < s < u, defined in (9). Assume that the elements A € 0% i1,
s € Z., satisfy

(kw = Apn) (As)nm (W) (48)
= (03 (tusDs(W5)) + tus(1 = D) (W — 1sm1(Witr))) . (w),
V(k,m,n) € Zx NxN, Vs,u, 0<s < u.
Then it holds true that,
Vs €Zy, As(DomK)C DomK,
and

Vo,u, 0< s <u, [Ay K] = k(05K pomic

Proof. Set
B, = —ky ((:)Z(Ku))

Since the RHS of (48) is in fact a matrix entry of —©2 (K,) (c.f. (9)) this assumption
may be rewritten as the equality

valid for all (¢,n), (k,m) € Z x N. Since K is closed one easily derives from the last
property that it holds true, V(k,m) € Z x N,

Particularly, A; Ran(P, ® Q,,) C Dom(K). But Ran(P, ® @Q,,) are mutually orthog-
onal eigenspaces of K. Consequently, if v € Dom(K), then the sequence {vy}%_;,

Uy = Z Z P ® Qv

E,|k|<N m, m<N
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has the property: vy — v and Kvy — Kv, as N — oo. Equality (49) implies that
KASUN = ASKUN + BSUN, VN.

Again owing to the fact that K is closed one concludes that Ao € Dom(K) and
KA, v = A,Kv + B,v. O

Proposition 9. Assume that w € Qo and the norms || - ||s in the Banach spaces X

satisfy (44). Let ©F € B(X,), 0 < s < u, be the operators defined in (47) with the
aid of elements A, € °X 41 satisfying (46), and let W, € X,, s € Z, be a sequence
defined recursively in accordance with (8). Assume that the elements As, s € Z,
satisfy condition (48) and that

>

Ps+1

[ As]] < 5 W5 — ts—1(Ws_1)||, Vs € Z,. (50)

Moreover, assume that the numbers A,, By, C,, as defined in (38), satisfy condition
(39).

Then there exist, in K, a unitary operator U and a bounded Hermitian operator W
such that

U(DomK) = Dom K
and

UK+ V)U!'=K+D(W).

Proof. The norm of ©; may be estimated as

5

1051 < 2] Ayl <
Ps+1

HWS - Ls—l(Ws—l) H

This way the assumptions of Proposition 7 are satisfied and consequently, according
to Proposition 7 (and its proof), the same is true for Proposition 3 and Corollary 4
(with Fy and v, defined in (40) and the constants A, B, C defined in (41)). Since
it holds ||A,|| < ||Asl| < 5Fsws (where Fy = 5/¢,41) and, by assumption, condition
(15) is satisfied with d = 3 we get

S 1 o 3 & 3B
Z HASH S §Zsts S §ZFSUS = 7 < 0.
5=0 s=0 s=0

This verifies assumption (23) of Proposition 5; the other assumptions of this propo-
sition are verified as well as follows from Lemma 8. Note that, in virtue of (45),
Roo(Vao) = limg_, o ks(V5) coincides with the given operator V. Furthermore, W =
Foo(Wao) = limg oo ks(Ws) is a limit of Hermitian operators and so is itself Her-
mitian, and U = lim,_,, e®s=1 ... eA0 is unitary. Equality (25) holds true and this
concludes the proof. ]
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7. SET OF NON-RESONANT FREQUENCIES

Let J > 0 be fixed and assume that, Vs € Z,,

8.9
Qs C|=J,=J].
<575l
The following definition concerns indices (k,n,m) corresponding to non-diagonal
entries, i.e., those indices for which either £ # 0 or m # n. The diagonal indices,
with £ = 0 and m = n, will always be treated separately and, in fact, in a quite
trivial manner.

Definition. We shall say that a multi-index (k,n,m) € Z x N x N is critical if
m # n and

kJ 1
=, 2 o1
B < 1221 o
(hence sgn(k) = sgn(h,, — h,) # 0). In the opposite case the multi-index will be
called non-critical.

Definition. Let ¢(k,n,m) be a positive function defined on non-diagonal indices
and W € X,. A frequency w € g will be called (W, ¢)-non-resonant if for all
non-diagonal indices (k,n,m) € Z x N x N it holds

dist (Spec(kw — Ay + Wonn(w)), Spec(Womm (w))) > ¥(k,n,m). (52)
In the opposite case w will be called (W,4) resonant.

Note that, in virtue of (32), Wo,m(w) is a Hermitian operator in H,,.

Lemma 10. Assume that Q, C [3J,2J], W € X, and 4 is a positive function

9
defined on non-diagonal indices and obeying a symmetry condition,
w(—=k,m,n) =Y(k,n,m) for all (k,n,m) non-diagonal. (53)
If
1
Vm e N, Vw,w' € Qy, w# W, [|0Womm(w,w')|| < T (54)

and if condition (52) is satisfied for all w € Qs and all non-critical indices (k,n, m)
then the Lebesgue measure of the set QP C Q, formed by (W, 1)-resonant frequen-
cies may be estimated as

o< S S A (55)

k
m,neN, keN,
Apn > 5J Amn o 28mn

Proof. Let \"(w) < Ap'(w) < -+ < A} (w) be the increasingly ordered set of
eigenvalues of Wy, (w), m € N. Set

Qg’ad(k,n,m,i,j) ={w € Qg |wk — A + A (w) — /\;”(w)\ < (k,n,m)}.
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Then
o= J U @knmig).

(k,n,m) ivj

1<iEM,,

1<j<Mpm
By assumption, if (k,n,m) is a non-critical index then Q24 (k, n,m, 1, j) = 0 (for any
i,7). Further notice that, due to the symmetry condition (53), Q> (k, n,m,i,j) =

Qbd(—k m,n,j,1i).

According to Lidskii Theorem ([21], Chap. 11 §6.5), for any j, 1 < j < M,,, AT (w) —
AT (w') may be written as a convex combination (with non-negative coefficients) of
eigenvalues of the operator Wo,,m(w) — Womm(w'). Consequently,

Vi, 1< < My, Yw,w' € Q, w# W, |0A] (w0, )] < [[0Womm(w, )| <

»-lk|>—‘

If w,w' € Q%K n,m,i,j), w# W', then (k,n,m) is necessarily a critical index and
20(k,n,m) | Wk = A + N(W) = AT(W)) — (W' — A + AV(W) = AP (W)
lw — | w—w

1 1
> |kl—= > = 1k|.
> k=5 > 5 I

This implies that [Q*(k, n,m, i, j)| < 49(k,n m)/]k] and so

o <2 Y] Z Y(k,n,m).

(kyn,m)
k>0 1<Z<Mn
A 2A 1<5<M,
gan < ssmn 155 Mm

This immediately leads to the desired inequality (55). a

8. CONSTRUCTION OF THE SEQUENCES {{};} AND {A,}

For a non-diagonal multi-index (k,n,m) and s € Z, set

1

vs(k,n,m) = = AO if (k,n,m) is non-critical and k = 0,
= 178 <\k\ - —) if (k,n,m) is non-critical and k # 0,
= o1 (min{M,,, M, })"/? k| /2e0sIKI/2 if (k,n,m) is critical,
(56)

where

1
o= Es Es+1 '

Observe that s obeys the symmetry condition (53). The choice of 1s(k,n, m) for a
non-critical index (k,n, m) was guided by the following lemma.



WEAKLY REGULAR FLOQUET HAMILTONIANS WITH PURE POINT SPECTRUM 25

Lemma 11. Ifw € Q, C [5J,3J], (k,n,m) € Z x N x N is a non-critical index
and W € X, satisfies

7

W) W) < i {5 Ao, J} 57

then the spectra Spec(kw Amn—l—WOnn( )) Spec(WOmm( )) are not interlaced (z e.,

ab()m’ p) (md 7f hold9
dist (Spec(kw — Ay + Wonn(w)), Spec(Womm (w))) > ¥ (k,n,m).

Proof. We distinguish two cases. If k # 0 then

kw — Apn| = K| Jlk‘l

B
A

since, by assumption,

Brn el moo 2y 8 9J — = J, +o0l.
? w €] 00,2,] 9J]U[J 8J, o0

So the distance may be estimated from below by
7 1
— Jk| — [[Wonn — [Womm 2—J El—=.
T = [ Wonn()] = 1ol 2 157 (141 - 3
If £ =0 then a lower bound to the distance is simply given by

1
Ao = [Wonn (@)l = [IWomm (@)} = 5 Bo-

Next we specify the way we shall construct the decreasing sequence of sets {2},
Let Q0 = [SJ, gJ]. If Wy € X, has been already defined then we introduce €251 C €
as the set of (Wj,1s)-non-resonant frequencies. Recall that the real Banach space
X, is determined by the choice of data ¢,, F, and (), as explained in Section 5.

As a next step let us consider , for s € Z,, w € ();,; and a non-diagonal index
(k,n,m), a commutation equation,

(hw = A + (We)onn (@) X = X (We)omm (w) =Y, (58)

with an unknown X € B(H,,, H,) and a right hand side Y € B(H,,, H,). Since w is
(W5, 1s) non-resonant the spectra Spec(kw—2,+(Ws)onn(w)) and Spec((Wy)omm (w))
don’t intersect and so a solution X exists and is unique. This way one can introduce

a linear mapping

(Ls)knm(w) : B(Hm, Hy) — B(Hom, Ha)
such that X = (I's)gum(w)Y solves (58). Moreover, according to Appendix A,
(min{M,,, M, })"*

W(k,m,m) (59)

[I(Fs)krm (W) || <
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in the general case, and provided the spectra Spec(kw — A, + (Ws)onn(w)) and
Spec((Ws)omm(w)) are not interlaced it even holds that

1

(60)

From the uniqueness it is clear that Ker((T's)gnm(w)) = 0.

We extend the definition of (T'y)g.m to diagonal indices by letting (I's)gnn(w) =0 €
B(B(H,,H,)). This way we get an element

Iy, € Map (QS+1 x 7 x N x N,Z Z@ B(B(Hm,Hn))> , (61)

neN meN

which naturally defines a linear mapping, denoted for simplicity by the same symbol,
I, : %%, — %%,44, according to the rule

Ls(Y)knm (W) := (Ts) knm (W) (Yenm (w)) -
Lemma 12. Assume that for all non-diagonal indices (k,n,m) and w,w’ € Qqyq,
w # W', it holds
1
1) g (0, ) < K] + 3, (62)

if w € Qgy1 and (k,n,m) is a non-critical indez then the spectra Spec(kw — Ay, +
(Ws)onn(w)) and Spec((Ws)omm(w)) are not interlaced and

2 1
si1 <min< = Ag, = J p. 63
<P+1_m1n{3 05 } (63)
Then the following upper estimate on the norm of Ty € B(YX,,°X,,1) holds true:
D
Ir) < 5o
Ps+1

Proof. To estimate ||T's|| we shall use relation (94) of Proposition 15 in Appendix B.
Note that

[0(Ts)knm (w, )| = [[(Ts)knm(w) (T )knlm(ww)(FS)knm(wl)H
T () R

If (k,n,m) is critical then we have, according to (59) and (56),

1

L e
penF?

(T ) krm (W) || <
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and consequently

& (|2 )]+ @i |0 i (0, )]

k|l + 35
%H’k’lﬂ Pst1l|k|

1 1
< (1 +1+ —) < 0
Ps+1 2|k| 2 Pst1
If (k,n, m) is non-critical and k # 0 then we have, according to (60) and (56),

18
[(Ts)knm (@)l < (=1

and consequently

e oI (L) knm (W) + @s4[|OT )knm(w ol
18 +3)

)
W( E >>
2

< 1 136 (1+154) -
T 5167 67 Pstr1

In the case when (k, n, m) is non-critical and k£ = 0 one gets similarly ||(Is)gnm(w)|| <

2/ and

e (0, @) + @110 (0, )]

(e D) e (1)
AV A, Ost13 3 20041

Now we are able to specify the mappings OF. Set
Ay =T((1 = Ds)(Wy — t521(Wi_1))) € “Xgin. (65)

W, € X, satisfies (32) and thus one finds, when taking Hermitian adjoint of (58),
that

(Co)knm(W)Y)" = —(Ls)—kmn(W)(Y™).

This implies that A, obeys condition (46). The mappings O

5, 8 < u, are defined by
equality (47) (see also the comment following the equality).

9. PROOF OF THEOREM 1

We start from the specification of the sequences {¢s} and {E;},
s =as*q " for s > 1, B, = ¢*™! for s > 0, (66)
where o > 1 and ¢ > 1 are constants that are arbitrary except of the restrictions

¢~ >e* and ¢ "((a) <3In2 (67)
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(¢ stands for the Riemann zeta function), and
a=45eq”ey. (68)

For example, a = 2 and ¢" = €? will do. The value of ¢y > ¢; = aq™" doesn’t
influence the estimates which follow, and we automatically have E_; = 1 (this is a
convenient convention). Condition r In(q) > « guarantees that the sequence {p;} is
decreasing. Note also that

1 L 1 1Y
Qs—ES Es+1_ 7 q .

Another reason for the choice (66) and (68) is that the constants A,, B, and C,,
as defined in (38), obey assumption (39) of Proposition 7. Particularly, a constraint
on the choice of {p,} and {E,}, namely > > 1/(ps11(Es—1)") < 0o, is imposed by
requiring B, to be finite. However this is straightforward to verify. Actually, the
constants may now be expressed explicitly,

27 T r
A*:E)e—qa B*: 56(] C(Oé), C*: 56(] s
a a a
and thus conditions (39) mean that
S5eq” 1 Se q*" 15eq" 1
< -1In2 < -. 69
ev——C((a) < 5 In2, ey— ¢(€v ol B (69)

The latter condition in (69) is satisfied since the LHS is bounded from above by (c.f.

(5))
1 (1 .\ _1 (1\ . 2., 1
§¢’(§q )f§¢(§)—1 3¢ <5

Concerning the former condition, the LHS equals ¢~"((«)/9 and so it suffices to
chose v and ¢ so that (67) is fulfilled. An additional reason for the choice (66) will
be explained later.

Let us now summarise the construction of the sequences {X.}, {W,} and {©:},~,
which will finally amount to a proof of Theorem 1. Some more details were already
given in Section 8. We set, () = [SJ, %J] and Wy = Vj. Recall that the cut-offs V of
V' were introduced in (35). In every step, numbered by s € Z,, we assume that €
and W, with 0 <t < s, and A, with 0 < < s—1, have already been defined. The
mappings O, with u > ¢, are given by O (X) = [1,11(A;), X | provided A; € °X, 4
satisfies condition (46). We define Q4,1 C € as the set of (W, 1s)-non-resonant
frequencies, with v, introduced in (56). Consequently, the real Banach space X,y is
defined as well as its definition depends on the data .1, @s11 and F, 1. Then we
are able to introduce an element I'; (in the sense of (61)) whose definition is based on
equation (58) and which in turn determines a bounded operator I'y € B(°X,,°X,,1)
(with some abuse of notation). The element A, € °X,,; is given by equality (65)
and actually satisfies condition (46). Knowing W;, ¢t < s, and ©,,, t < s, (which is
equivalent to knowing A;, t < s) one is able to evaluate the RHS of (8) defining the
element W, ;. Hence one proceeds one step further.
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We choose ¢€,(r, Ag, J) maximal possible so that

3e (1 7
= €x(r, Ag, J) < mm{z AO’EJ} (70)
and
. 2 1
45eq"€,(r, Ao, J) < min {§ Ay, A J} ) (71)

We claim that this choice guarantees that the construction goes through. Basically
this means that ey < €,(r, Ay, J) is sufficiently small so that all the assumptions
occurring in the preceding auxiliary results are satisfied in every step, with s € Z,..
This concerns assumption (57) of Lemma 11,

(W Yomm ()] < min {i A, 7_72 J}  Vweq, YmeN, (72)
assumption (54) of Lemma 10,
1O(W) omm (w, )| < %, Vw,w' € Qy, w#w', Ym €N, (73)
assumptions (62) and (63) of Lemma 12,
10(Cs)t (w, || < |K| + %, V(k,n,m), Yw,w' € Q, w # W/, (74)
and
Vo1 < min{ng,éJ}, (75)
and assumption (50) of Proposition 9,
[Auall < 5o [Was = taa( W) (76)

S

We can immediately do some simplifications. As the sequence {p,} is non-increasing
condition (75) reduces to the case s = 0. Since p; = 45e ¢ €y the upper bound (71)
implies (75).

Note also that (74) is a direct consequence of (73). Actually, one deduces from the
definition of (I')gum(w) (based on equation (58)) that, VY € B(H, Hn),

(FS)I;zlm(W)Y = (kw — A + (W) onn (W)Y = Y (Ws) omm (w) -
Hence
ITs) (W, W)Y = (k 4+ 0(Ws)onn(w, )Y =Y (W) omm(w, ')

and, assuming (73),

O e, )| < k] + 1OV om0, DI + [0V Yo (0,6 < K]+ 5

knm 9

Let us show that in every step, with s € Z,, conditions (72), (73) and (76) are
actually fulfilled. For s = 0, condition (76) is empty and condition (73) is obvious
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since Wy = V4 doesn’t depend on w. Condition (72) is obvious as well due to
assumption (70) and the fact that ||(Wo)omm (w)|| = (Vo) omm|| < ev.

Assume now that t € Z, and conditions (72), (73) and (76) are satisfied in each step
s < t. Recall that in (40) we have set Fy = 5/ps.1 and vs = eey /(Fs—1)". We also
keep the notation wg = ||Ws — t5_1(Ws_1)||s, with the convention W_; = 0.

We start with condition (76). Using the induction hypothesis, Lemma 11 and Lemma
12 one finds that ||| < Fi/2 and so || A¢l| < ||Te||[|We — tem1 (Wi1)|| < Fow/2 (c.f.
(65) and (4)).

By the induction hypothesis and the just preceding step, ||A|| < Fsw, for all s < ¢.
As we already know the constants A,, B, and C, fulfil (39) and so the quantities A,
B and C given by A = ey A,, B = ey B, and C = €,C, (c.f. (41)) obey (42) and
consequently inequality (15) with d = 3. By the very choice of A, B and C (c.f. (38)
and (40)) the quantities also obey relations (12), (13) and (14). This means that all
assumptions of Proposition 3 are fulfilled for s < ¢ (recall that ||©3|| < 2||As). One
easily finds that the conclusion of Proposition 3, namely w, < dwv,, holds as well for
all s, s <t +1. Clearly, [|[(Ws)omm(w)|| < [[Ws|s for all s, and

t+1

Wit llesr < Zws < 3205 — 366qu

By (70) we conclude that (72) is true for s =t + 1.

GV.

Finally, using once more that w,; < 3v, for s <t +1,

t+1

1OWes1)omm (@, )| < ZH@( = L1 (Wam1)) g (@0, )

t+1
1

Z — HWS - Ls—l(Ws—l)Hs

s=0

Si?ms‘

s=0 Ps+1

IN

However, the last sum equals (c.f. (40) and (42))

3 — 3 1 1
°N P, =2B<-In2<-.
5; i S

This verifies (73) for s = ¢+ 1 and hence the verification of conditions (72), (73) and
(76) is complete.

Set, as before, Qo = (o, 5. Next we are going to estimate the Lebesgue measure
of Qu,

Qo] = 1€Q20] = 1820 \ Qoo| = J Z\Q \ Qo] = J Z!Qbad!
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Recalling Lemma 10 jointly with Lemma 11 showing that the assumptions of Lemma
10 are satisfied, and the explicit form of ¢ (56) we obtain

] < 8pan Z Hmn Z L= 1/2¢—esk/2
m,nEN, k€N7
Amn > %J max{1, Agrb]n y<k< 2A}nn
28mm { A\
< SSDerl Z Hmn n< n) eigSAmn/éu
m,neN, J 2‘]
Amn > 5J
> e ()™ s
= 32(2/)7pun m( m) 0B 4
o= (Ban)7 \ 27
Amn > 5J

1
9 1 ot+35
< 3220903+1( i ) AU(J)
(&

S

where we have used that if & > 0 and 8 > 0 then sup,.,r% 7% = (55)" To

complete the estimate we need that the sum » ©s41/(0s)° 2 should be finite
which imposes another restriction on the choice of {¢,} and {E,}. With our choice
(66) this is guaranteed by the condition > o + £ since in that case

= (708 a - (6% —7'—0'—l S
il = o1 D (s+1)%q 7D <00,
s=0 (QS) 2 <1 _ l) 2 s=0
q
Hence
17
|Q0o| > iJ—(Sl(a,r) A (J) ey (77)
where
O'+%
2 1
61(o,7) = 1440 e ¢*"2° i Li—a(q_r+a+%) (78)

(1 — 1) e
q
Here Li,(z) = > po, 2" /k™ (|z] < 1) is the polylogarithm function. This shows (3).

To finish the proof let us assume that w € Q.. We wish to apply Proposition
9. Going through its assumptions one finds that it only remains to make a note
concerning equality (48). In fact, this equality is a direct consequence of the con-
struction of A, € °X,.;. Actually, by the definition of A, (c.f. (65)), A, =
Ly ((1 = Ds)(Ws — t5-1(Ws_1))), which means that for any w € Q,.; and all indices
(k,n,m),

(kw — A + (WS)Onn(W))(AS)knm(W) — (A knm (W) (W) omm (w)

= (1 =D)(Wy = ts21(Ws-1))),.(w). (79)
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On the other hand, by the definition of ©2 (c.f. (47)) and the definition of Dy (c.f
(33)), and since w € , it holds true that, Yu, u > s,
Oy, (LusDs(We) ) knm(w) = ([Lu,S—l—l(AS)vLusDS(WS)])knm(w)
= (As)knm(w)(WS)Omm - (Ws)Onn(As)knm(w)
A combination of (79) and (80) gives (48). We conclude that according to Proposition

9 the operator K + V is unitarily equivalent to K + D(W) and hence has a pure
point spectrum. This concludes the proof of Theorem 1.

(80)

10. CONCLUDING REMARKS

The backbone of the proof of Theorem 1 forms an iterative procedure loosely called
here and elsewhere the quantum KAM method. One of the improvements attempted
in the present paper was a sort of optimalisation of this method, particularly from
the point of view of assumptions imposed on the regularity of the perturbation V.
In this final section we would like to briefly discuss this feature by comparing our
presentation to an earlier version of the method. We shall refer to paper |9] but the
main points of the discussion apply as well to other papers including the original
articles [5], [6] where the quantum KAM method was established. For the sake of
illustration we use a simple but basic model: H =% -m!'t*Q,,, i.e., h,, =m'**,
with 0 < a < 1, and dimQ,,, = 1; thus g, = 1 and any o > 1/a makes A,(J)
finite. The perturbation V' is assumed to fulfill (34) for a given r > 0.

According to Theorem 1, r is required to satisfy » > o+ 1/2 which may be compared
to reference |9, Theorem 4.1| where one requires

(4o + 6)0] ey

’I“>I'1:40'+6+{ i
o

(81)
The reason is that the procedure is done in two steps in the earlier version; in the first
step preceding the iterative procedure itself the so-called adiabatic regularisation is
applied on V' in order to achieve a regularity in time and “space” (by the spatial part
one means the factor H in K = L?([0,T],dt) ® H) of the type

Iry,re > 19 =40+ 6, sup k| n — m|"?|Vim| < oc. (82)

knm

MC{%?“] + 1. In the present

version both the adiabatic regularisation and condition (82) are avoided. This is
related to the choice of the norm in the auxiliary Banach spaces X,

1 Xls = S;lp Sup ZFS(k>n> ) (| Xpnm(W)] + @50 X pnm (w, W) -
wFw' n m

The adiabatic regularisation brings in the summand [

In the earlier version the weights were chosen as Fy(k,n,m) := exp((|k| + |n —
m|)/Es) in order to compensate small divisors occurring in each step of the iterative
method. A more careful control of the small divisors in the present version allows
less restrictive weights, namely Fi(k,n,m) = exp(|k|/Es). In more detail, indices
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labelling the small divisors are located in a critical subset of the lattice Z x N x N.
Definition (51) of the critical indices implies a simple estimate,

k[ < k[ + |n —m| < [k] + |Apn| < [E[(142J),
which explains why we effectively have, in the present version, ry = 0.

The second remark concerns Diophantine-like estimates of the small divisors gov-
erned by the sequence {t¢s}. A bit complicated definition (56) is caused by the
classification of the indices into critical and non-critical ones. However only the
critical indices are of importance in this context and thus we can simplify, for the
purpose of this discussion, the definition of v to

e = sl k| Y22 o >y > 0.

Let us compare it to the choice made in [9], namely ¥s = 74|k|~?. The factors s
then occur in some key estimates; let us summarise them. The norm of the operators
Iy : Xy — X541 are estimated as

Ps+1

2
s

ITs]] < const

(this is shown in Lemma 12 but note that in this lemma we have set vs = @411).
Another important condition is the convergence of the series

(c.f. (38) but there again 7, = @sy1). Finally, the measure of the set of resonant
frequencies, | Uy QP is estimated by

QPad| < const ° - < o0, = — —
s < R

(shown in the part of the proof of Theorem 1 preceding relation (77)). We recall
that E, denotes the width of the truncation of the perturbation V' at step s of the
algorithm (c.f. (35)). These conditions restrict the choice of the sequences { £} and
{75} which may also be regarded as parameters of the procedure. Specification (66)
of these parameters, with 75 = @11, can be compared to a polynomial behaviour of
E, and 4 in the variable s in |9] where one sets ¢,,1 = 1 and

E, =const (s +1)""', v>2, vs =const (s +1)7#, > 1.
The latter definition finally leads to the bound on the order of regularity of V'
(20 4+ 1)v+3
B —
v—1

Thus in that case the bound varies from r > 40 4+ 5 (for v — 2+; this contributes
to ry in (81)) tor > 20 + 1 (¥ — 400). This shows why we have chosen here to
truncate with exponential F, see (66).
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In the last remark let us mention a consequence of the equality vs = ps11. The
conditions for convergence of B, and U, become (notice that p, = const/E;)

1

o+
———— < oo and psp1lls 2 < o0
s Sszrl(Esfl)r zs: ° °

and are fulfilled for r > o + % There is however a drawback with this choice. Notice
the role the coefficients g play in the definition (31) of the norm |[|-||s. Since @5 — 0
as s — 0o one looses the control of the Lipschitz regularity in w in the limit of the
iterative procedure. This means that we have no information about the regularity
of the eigenvectors and the eigenvalues of K+ V with respect to w. With r > 20+ 1
we could have taken p,.; = 1 and obtained that these eigenvalues and vectors are
indeed Lipschitz in w.

APPENDIX A. COMMUTATION EQUATION

Suppose that X and Q) are Hilbert spaces, dimX < oo, dim%) < oo, A € B(9),
B € B(X), both A and B are self-adjoint, and V' € B(X,9). If v is a simple closed
and positively oriented curve in the complex plane such that Spec(A) lies in the
domain encircled by v while Spec(B) lies in its complement then the equation

AW —-WB =V (83)
has a unique solution W € B(X,9)) given by
_ 1 -1 -1
W = - j{(A 2) V(B —2z) dz. (84)

Y

The verification is straightforward.

Denote M; = dim X, My = dim Q). We shall need the following two estimates on the
norm of X € B(X,9):

Mo My
IXI1* < YO XyP =TrX*X (Hilbert — Schmidt norm), (85)
i=1 j=1
M1 M2
2 > |2 2
x| > max{lgg;@?;w maﬁZ‘X‘ } (86)
J= i=

where (X;;) is a matrix of X expressed with respect to any orthonormal bases in X
and ).

If sup Spec(A) < inf Spec(B) or sup Spec(B) < inf Spec(A) we shall say that Spec(A)
and Spec(B) are not interlaced.

Proposition 13. If Spec(A) and Spec(B) are not interlaced then
V1l
(Spec(A), Spec(B)) '

Wil <
W< 3
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otherwise, if Spec(A) and Spec(B) don't intersect but are interlaced,

VIl

min {dim im 1/2 :
IWIl < (min {dim %, dim D} e Spec(B))

Proof. (1) If d = inf Spec(B) — sup Spec(A) > 0 then, after a usual limit procedure,
we can choose for the integration path in (84) the line which is parallel to the imagi-
nary axis and intersects the real axis in the point o = (sup Spec(A)+inf Spec(B))/2.
So

1 o0

WP < OOH(A—xo—Zs)leHVHH(B—xo—28)71\!058
_ i r= ds
o |
i
d

(2) In the interlaced case we choose orthonormal bases in X and ) so that A and B
are diagonal, A = diag(ay,...,ay,) and B = (by, ..., by, ). For brevity let us denote
dist(Spec(A), Spec(B)) by d. Then W;; = V;;/(a; — b;), and we can use (85), (86) to

estimate

My My 2 Mo
|Vis?
WWSZZWw_ZZ”
i=1 j=1 =1 j=1
Mo
VIE o VP
= 2z @
=1
Symmetrically, ||[W|| < M;"?||V||/d, and the result follows. 0

APPENDIX B. CHOICE OF A NORM IN A BANACH SPACE

Let
H=3"H,
neN

be a decomposition of a Hilbert space into a direct sum of mutually orthogonal
subspaces, and €2 C R. To any couple of positive real numbers, ¢ and F, we relate
a subspace

2AC L™ (QxeNxN,Z Z@B(Hm,Hn)>

neN meN

formed by those elements )V which satisfy
Vinm(w) € B(Hpm, Hy)
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and have finite norm

VIl = sup SUPZZ Vinmn (@)l + @ 10V (w, ) [) €F (87)

ww'eQ neN oy N
w;éw

where 0 stands for the difference operator

V(w) V()

w—w'

NV(w,w') =

Note that the difference operator obeys the rule

UV (w,w") = U (w,w") V(W) + U(w)OV(w,w) . (88)

Proposition 14. The norm in A is an algebra norm with respect to the multiplica-
tion

UV k(@) = D > Un—0p(w) Vipm (@) - (89)

LeZ peEN

Proof. We have to show that
VI < [l ][V} (90)

For brevity let us denote (in this proof)

Ko@) = D > IVem(w)ll eV,
LeZ meN
0Xy(w, ) = > ¥ |0V (w, )| V",
LeZ meN

Here 0X is an “inseparable” symbol (which this time doesn’t have the meaning 0 of
X). Tt holds

22 N im0
<ZZZZH% e (@) | B, ()] €l
‘ZZZZWM /2 Vg ()] 17
—ZZH%W ) /B2, ().
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Similarly, using (88),

323 O @ < ST SN (el Vi 1
k m

+| U (0, ) || €M1 [ Vi ()| €177
- ZZ Uiy ()] DX, (w, )

Hlﬁuknp(w, W) (') eH/E

A combination of these two inequalities gives

ZZ [@UV) ki (@)[| + & 10UV ki (w0, ) ) €17
< ZZ Huknp ( )+ 908.)( (w w )) + Haz/{knp(w,w/)H Xp(w’)) e|k\/E

<supsup( p(W) + ¢ 0, (w,w) ZZ [ (@) + 0 | 0Usp (w0, ) | 1P

ww' p

=V ZZ Ui () wuauknp(w W) )el/E

To obtain (90) it sufﬁces to apply sup,, ., sup,, to this inequality. O

Suppose now that two couples of positive real numbers, (@1, E1) and (@9, Fy), are
given and that it holds
1 1
=———2>0 and < 91
=TT P2 < 1. (91)
Consequently, we have two Banach spaces, 2; and 2,. Furthermore, we suppose
that there is given an element

' € Map (Q xZxNxNY " Z@ B(B(Hm,Hn))> , (92)

neN meN

such that for each couple (w,k) € Q x Z and each double index (n,m) € N x N,
['jnm (w) belongs to B(B(H,,, Hy)). I' naturally determines a linear mapping, called
for the sake of simplicity also I', from 2l; to s, according to the prescription

LWV)knm (@) = Tinm(w) Vinm(w)) - (93)
Concerning the difference operator, in this case one can apply the rule

(W) (w,w) =0 (w,w) (V(W)) + T'(w)(OV(w,u).

Proposition 15. The norm of I : >y — Ay can be estimated as follows,

Tl < sup sup  sup e @ (|| Dann (@) | + 02 |0k (w, ) - (94)
ww' €N kEZ (n,m)ENXN
w#w'
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Proof. Notice that, if convenient, one can interchange w and ' in [|0U(w,)||. Tt
holds

kK m
< Z Z (Hvknm(w)H(HFknm(w)H + 2 H&Fknm(w,w’)u)e*@\kl

+02 [|0Vinm (@, W)|| [T nm () [| e 2FT) elF1/Er
< Sup sup sup G—QW (Hrknm(w)H + P2 Harknm(wgwl)n)

ww'  k (n,m)

<Y Wk @)l + 1 10V (w0, &) [[) /5
k m

To finish the proof it suffices to apply sup,, ., sup,, to this inequality. O
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PROGRESSIVE DIAGONALIZATION AND APPLICATIONS

P. DUCLOS, O. LEV, P. STOVICEK AND M. VITTOT

ABSTRACT. Wegive apartia review of what isknown so far on stability of periodicaly
driven quantum systems versus regularity of the bounded driven force. In particular we
emphasize the fact that unbounded degeneracies of the unperturbed Hamiltonian are al-
lowed. Then we give a detailed description of an extension to some unbounded driven
forces. Thisis done by representing the Schrddinger equation in the instantaneous basis
of the time dependent Hamiltonian with a method that we call progressive diagonaliza-
tion.

1. THE MAIN THEOREM

This paper is concerned with the spectral analysis of Floquet Hamiltonians associated
to quantum systems which are periodically driven. They are described by the Schridinger
equation:

H, sef-adjoint on 4,

t — V(t), 27 periodic,
w > 0, areal frequency,
Rot—>yt)eXH

(1) (=10, + Hp + V (wt)) ¢ = 0,

where 7 is a separable Hilbert space, and H, has the following type of spectral de-
composition (E,,, P,, denoting respectively the eigenvalues in ascending order and the
eigenprojections):

=Y En.Pn, M, :=dimP, < oo
with a growing gap condition of the type

) 35 >0, Z| —EI" < 0.

The driven force is given by atime dependent real potential V' which is, in the first part
of this paper, bounded in the norm

3) V|| o= sup Z > NIV (k,m,n)|| max{|k|", 1},

LGZ neN

2000 Mathematics Subject Classification. 47A75, 81Q15.
Key words and phrases. Perturbation of dense point spectrum, KAM type method.
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where ||V (k,m, n)|| denotes the operator norm of

2w
4 V(k,m,n) = QL/ e P, V)P, dt : H — H.
T Jo

Thefollowing main theorem is about the self-adjoint operator K := Ko + V with K :=
—iwd; ® 1 + 1 ® Hy acting on the Hilbert space K := L2(S') ® H, i.e. functionswhich
are 2wr-periodicin time.

Theorem 1.1. Letwy > 0, Qo := [Swo, Jwo], assume (2) for some o > 0, and let
Ap := min |E,, — E,|.
m#n
ThenVr > o + £,3Cy > 0 and Cz(o, ) > 0 such that

. 4N\ wo wo [(AE, 7
Il <min{ G2 22 2 (5

implies3Q,, C Qg with
Qocl o ¢ VI
Q0] ~ wo (%)

Ca wo

sothat K ispurepoint for all w € Q. Here || denotes the Lebesgue measure of (2..

The proof of this theorem and its complement that we state at the end of this section
can be found in [7]. This theorem is a result in singular perturbation theory since, as
shownin [9], one has

(2) PO Jim sup E, = +00 [:gL Vaa w, spect Ko = R,
n—oo
i.e. for amost all w, K has a dense pure point spectrum. To be able to overcome this
small divisors difficulty we use a technique which consists in applying to Ky + V' an
infinite sequence of unitary transformations so that at the s ** step

Ko+V ~ Ko+ Gy + Vs, withV, =0(|VI[Z~_,),

r—o—sz

i.e. Ko+ V isunitary equivalent to adiagona part Ky + G5 in the eigenbasis of K,
plus an off diagonal part V; which is super exponentially small in the s variable pro-
vided ||V||,- is small enough. Thisis why we like to call this method progressive di-
agonalization although it is known usualy under the name KAM-type method, since
this is an adaptation of the famous Kolmogorov-Arnold-Moser method originally in-
vented to treat perturbations of integrable Hamiltonians in classical mechanics. An ex-
tension of the previous theorem to certain classes of unbounded perturbations V' is given
in Section 3 (see Theorem 3.3). We shall do it by (block-) diagonalizing H + V' (t)
for each ¢, i.e. by constructing a time dependent unitary transformation .J(¢) such that
Hy + V(t) = J(t)(Ho + G(t))J(t)*, where Hy + G(t) commutes with Hy, thus

Ko+ V ~ —iwdy + Ho + G(t) — iwJ(£)* J (1)

(J denotes the time derivative of J). V and H, are such that the new perturbation

G(t) —iwJ(t)*J(t) is bounded, so that we can apply Theorem 1.1. This diagonalization
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of Hy+ V will bedonein detail with aprogressive diagonalization method (PDM) which
is simpler than the one used for Theorem 1.1 since we do not have small divisors here.
We think thisis agood starting point for readerswho are not familiar with this PDM. This
idea of regularizing an unbounded V' by going to the instantaneous basis of H o + V' (¢)
is not new, (see e.g. [13, 1]). Let us also mention the recent work [4] which also treats
the Schrddinger equation with unbounded perturbations which are quasi-periodic and an-
alytic in time; here we treat the differential periodic case. The use of KAM technique to
diagonalize quantum Floguet Hamiltonians first appeared in [3], where pulsed rotors of
thetype

(5) —iwd; + Ho + f(t)W(x) actingon L*(S') ® L*(S?),

whered = 1, Hy = —A, f and W areanalytic, were considered. Later on, the adaptation
of the Nash-Moser ideas to treat non-analytic perturbationswas donein [6] for the special

case of (one dimensional) driven harmonic oscillators. These ideas where extended to a
large class of modelsin [8]. However, to our knowledge, the above Theorem 1.1 is the
first result that allows degeneracies of eigenvaluesof H, which are not uniformly bounded
with respect to the quantum number n.. Consequently we can exhibit frequencies such that
the quantum top model in arbitrary dimension, i.e. the higher dimensional versions of the
pulsed rotor (see (5) and Section 4.1), is pure point. One of the main goals of the spectral

analysis of these Flogquet hamiltonians is the study of the stability of periodically driven
guantum systems, since it is known that

(6) Ko+ V ispurepoint L1:01 nlgréo sup H Z me(t)H =0, V¢(0)eH

t <0 m=n

because exp(—iT' (Ko + V)) is unitary equivalentto 1 ® U (T, 0) where U (T, 0) denotes
the propagator over the period T" associated to the Schrodinger equation (1), (see[11, 16]).
The condition in the right-hand side of (6) says that the probability that the quantum tra-
jectory with an arbitrary initial condition ¢/(0) exploresin the full history the eigenstates
of Hy of energy higher than E,, becomes smaller and smaller as n. gets larger and larger.
On the other hand, if 1(0) belongs to the continuous spectral subspace of U(T, 0) then
(see[10]):

1t
Jim 3 [Pt =0, v e

which means that in the time average the probability that the trajectory stays in the m th
spectral subspace of H, vanishes. The conclusion that can be drawn from the articles
[3, 8, 7] isthat for non-resonant (i.e. diophantine) frequencies the pulsed rotor is stable
if the driving force is sufficiently regular in time (see Figure 1 below) and sufficiently
small in amplitude. In addition it is known (see [10]) that if f is sufficiently regular in
time and w is resonant (i.e. rational) the pulsed rotor is stable. The situation is different
for the kicked rotor (i.e. f(t) := d(t), the Dirac distribution): it was proved in [5] that if
the frequency isrational or even Liouville, then one can find W’'s such that U (7', 0) hasa
continuous spectral component. However nothing is known for non resonant frequencies.
Since the kicked rotor correspondsto » < —1 in the notation of (3) and the known values
of r for which U(T',0) is pure point are > 2 the sequences of papers|[3, 8, 7] can be
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considered as reports on the efforts devoted to the long march from the pulsed rotor to
the kicked rotor (in the non resonant case). In Figure 1 below we give a diagram which
tells the history of this march. Since the regularity in the space variable has also played a
role, we present this diagram in the plane of points (1, r») which says that the following
generalization of (3)

IV s o= sup > IV (k,m,n)[[(k)" (m — n)"
mEN 1 7 neN

isfinite, with (z)? := 1 + 22
o =1+0, sup M, < oo, w non resonant and ||V ||, ,», small enough

T2
. KAM
analyticity Pulsed Rotor
[3,785]
kicked rotor
Nash-Moser
[8,96]
Nash-
Moser
10 - + tricks
[7,701]
Nash-Moser
+ Adiabatic Regularization
[8,796]
0.1) 5 10 17 analyticity
| 2 | |
-1 32 this paper ™1
—1 e

Figure 1. Historical diagram of progress toward the kicked rotor

The pure point property of K from which the stability (6) follows does not imply in
general that

) sup (Hot(t),¥(t)) < oo
20

i.e. the energy is uniformly bounded. Notice that the converse is obvioudly true. It is
believed that to get (7) one should require sufficient regularity of the eigenprojectors of
K. That iswhy the following complement to Theorem 1.1 may be of interest. We have
also added some explicit bound on the constants C'; and C5. It will be necessary in
Section 3 to consider potentials V' which depend on the frequency w in a more elaborate
way. Supposethat V' : R x Ry — B(H) isabounded measurable function, which is 2w
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periodic with respect to the first variable and such that for aimost all t € Randw € R,
V (t,w)* = V(t,w). For such V we modify || V||, asfollows:

VIl = sup  sup » (Vimn (@) + w0ll00 Vimn (w, w")[|) max{|k|", 1},
w,w' Qo mEN kez
neN

where
1 27 .
V() = 5= [ e P (1) P e
2 Jo

and

_ '
akamn (w, w') = Vkmn (wu)J — lecmn (W ) .

Complement of Theorem 1.1. In addition to the statementsin Theorem 1.1 one also has:
(a) each eigenprojection P of K isbounded in the norm

IPll,—p—y = sup > [|P(k,m,n)|| max{|k]"~7"%,1};
mEN L ez neN
(b) the following values of the constants are allowed: C'; = 24305, and
C(o)

C =
20 = = = LI2o+ 1)}

with

N o 1y 2(20 +1) ”%
C(0) = 25223 (20 + 1) <e(1—exp(ﬁ))> ,

(c) TheoremL.1lextendstoV : R x Ry — B(H) of the type described above.

In the progressive diagonalization method one must solve at each step a commutator
equation of the type

Ko+ G, W5] =Vs.

Thisisdone block-componentwise, i.e. with the notation (4), solving for each (k, m,n) €
Z x N x N the following matrix equation in the unknown W (k, m, n):

(Wk + Ep + Gs(m))Ws(k,m,n) — Wg(k,m,n)(E, + Gs(n)) = Vs(k,m,n).

Weareinterested in the best possibleestimate of || (k, m, n)|| intermsof ||V (k, m,n)||.
In Section 2 we report on a method to solve this equation which is, in our opinion, the
best one known so far. Finally we present two applicationsin Section 4.

2. ON THE COMMUTATOR EQUATION

Let £ and F' be two Hilbert spaces and B(E), B(F') the Banach spaces of bounded
endomorphisms on E and F' respectively, equipped with the usual operator norm. Let
A € B(F) and B € B(F) be self-adjoint operators such that

(8) da,p := dist (spect A, spect B) > 0.
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ToeachY inthespace B(F, E) of bounded operatorsfrom F' into E, we want to associate
X € B(F, E) defined asfollows:

ada,BX =Y, whereads X :=AX - XB

A review on answers about this question can be found in the beautiful paper [2]. In
particular one can find there the following result.

Lemma 2.1. Under the conditions described above ad 4, is a bounded linear mapping
which has a bounded inverseI' 4 p and

T 1

r < ——.
ICaell < 5 72—

Remark 2.2. (a) In fact, in some special cases the constant 7 can be replaced by 1. We
have not found useful to pay attention to these subtleties here.
(b) The solution X is given by

X = / e tAY B (1) dt
R

for any f € L'(R) such that its Fourier transform f obeys v/27f(s) = s~! on the set
spect A — spect B. Clearly this shows that || X|| < ||f||1||Y||- Optimizing over such f
leads to the constant 7.

3. UNBOUNDED PERTURBATIONS

3.1. The setting. We start by the description of the class of unbounded perturbations
we shall consider. Let H, be a positive self-adjoint operator on the Hilbert space H and
{P,}nen be a complete set of mutually orthogonal projections which reduces H,. We
denote E,, := P,HyP, = HyP,, H, := Ran P,, and let (9 be the algebraic direct

sum @ Ran P,. We introduce the following Banach spaces: forall 1 < p < oo
neN

PHD) su= Qu. & [ulZ:= 3 uall” < oo,
neN neN

where|| - || isthenorm of H. Of course L?(HV) isnothing but H and ||| o :=sup ||u, |-

Then B%?,1 < p,q < oo, will denote the Banach spaces of bounded operators? defined
on LP(HD) with valuesin LI(HD) and || - ||,., its operator norm. We note that
1 XTlo01 = sup [1X (m, n)|
and
1XM0 = sup > X (m,n)ll, X oo,c0 = sup > [IX (m,n)],
nENmEN meNnEN

where X (m, n) isthe block element of X which acts from # ,, into #,, and || X (m, n)||
its norm as a bounded operator on H. We shall say that X € 5 %P is symmetric, respec-
tively antisymmetric, if X (n,m) = X (m,n)*, respectively X (n,m) = — X (m,n)*, for
al m,n. This definition coincides with the usual onein B2 ~ B(H). We remark that
if X is symmetric or antisymmetric then X € Bb! if and only if X € B>, if and
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only if X € Bgg := B! N B>, this last operator space is equipped with the norm
1 X ||s := max{||X||1,1, || X||co,00}- It isknown (see[14, Example11.2.3]) that Bsy is
containedinal BP?,1 < p < oo, and in particular in B(#). Itiseasy to check that Bsy
is a Banach algebra. We require the two following conditions on the spectraof H :

1 1

< 0
#m
with

Ap,,n = dist (spect E,, spect E,,),
which expresses that the distances between the spectrum of two blocks E,,, and E,, grows
sufficiently rapidly with |m — n|. The second condition says that each blocks E ,, must be
bounded:

(BBCH,) E, € B(H), Vn.

3.2. A class of unbounded perturbations. We make the following assumptions on the
perturbation of H to be considered:

(UV) V € B°! andis symmetric.

Strictly speaking such a V' is not in general an operator acting on # but the following
estimate shows that it can be seen as Hy-bounded in the quadratic form sense with zero
relative bound: if Ry(a) := (Hy — a) ! witha < 0, then

1 1 IV llso,1 R
[|[Ro(a)2V Ro(a)z|| < Z dist (a, spect E,,) - "
neN ’ "

Indeed, since that Ry (a)? acts diagonally on (9 one gets immediately from (GGCH )
that

a, spect Ep,)

1 1 1 3
max {|[Ro (@) |12, | Ro ()% 12,00} < (Z - ) .
meN
Thisallowsto consider Ry(a)?V Ro(a)? as

1 1
L2(HD) Fl® pr(gq@y Yy poo(gy(@)y Fold® 2 g (),
henceits above estimate and limiting behaviour as a — oc follow easily.
3.3. Progressivediagonalization of Hy + V. Here we show

Theorem 3.1. Assume Hy > 0 and V' obey (GGCH,), (BBCH,) and (UV). If
AFE
||V||oo,1 S Ta

then there exists J € Bgy and G € B%? such that
Hy+V = J(Hy +G)J*
with
(i) [Ho,G] = 0;
(ii) J unitary in B2,
(i) (|7 l|se < 5 and |G| < 2(|V [|oo,1;
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(iv) [Ho, J] € B>

Remark 3.2. (a) Since AE is smaller than the smallest gap of H, thebound on ||G|| <
iAE says in particular that each gap of H remains open after perturbation by V. The
bound on J will be used later on.

(b) The algorithm says that G belongs to B°°:!, which combined with (i) gives G €
B%2.

(c) The property (iv) is the key of the so-called “adiabatic regularization method” first
proposed by Howland ([12]) for the case of bounded V. Its proof isimmediate from the
formulaHy +V = J(Hy + G)J* sinceitisequivalentto [Hy, J] = JG — V.J and since
J € Bt n B> G,V € B! Thistrick was systematically used in [8, Section 3].

3.3.1. Theformal algorithm. With Hy + V we form afirst 4-tuple of operators
(UO = id,Gl = dlag V, V1 = offdlag V, H1 = Ho + G1 + Vi) ,

where
diag X := Z P,XP,, offdiagX := Z P, XP,.
neN m#n
Clearly Uy isunitary, G, diagonal (i.e. commuteswith H), and V; issymmetric. Starting
from this 4-tuple we generate recursively an infinite sequence of such 4-tuplesasfollows:
let W be the solution of

[Ho + Gs,Ws] =V, and diag W, = 0;
we shall usethe notationsad 4 B := [A, B] := AB — BA. Then we define
[ee]
k
oW -W. _ LT
9) H, ,:=e""H,e —H0+Gs+; (k+1)!a‘dWsVs
and set
Us := eWS Us_1, Gs+1 = dlag HS+1 — Hy, V;+1 = of'fdlag HS+1.

Since Hy + G and V, are symmetric T, is antisymmetric and thereforeeVs and U, are
formally unitary. Consequently

(10) Ho+Gyp1 + Vepr = Us(Ho + VU,

and to achieve our goal we have to provethat V, — 0, Gs = Goo and U; — Uy 88
S — 00.

3.3.2. Convergenceof thealgorithm. We solvethe commutator equation [H o +Gs, W] =
Vs block-wise, i.e. for al m # n, welook for W (m, n) such that

(Em + G5 (m))Ws(m,n) — Wy(m,n)(Ey + Gs(n)) = Va(m,n).
Notice the notation G ;(m) := G(m, m). Assume for the moment that

(12) 4|Gs(m)]| < Ay := ir;éf Appn, Vs>1,VmeN
Thisimpliesthat Hy + G fulfills (BBCH,) and

dist (spect By, + Gs(m),spect Ep, + Gs(n)) > =Appn, Vm #n.

DN | =
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Hence by the lemmaof Section 2 we know that W (m, n) iswell defined and obeys

1Villoo 1
Am,n

i.e. W, belongsto B4t N B>>°. This showsthat adyy, : B> — B°! is bounded by
27T||Vs||oo,1AE71, and dueto (9),

||[s||oo 1
|| S(m’n)” =7 || s”SH =T AE

2Vl
Wertlloon € (5= ) IVillours

where @ : Ry — Ry is the strictly increasing analytic function defined by ®(z) :=
e® — 1(e® — 1) whose Taylor expansionis kgl ﬁwk

z®(2x)

(M

T T
1
2

Figure 2. Graph of z — z®(2x) and itsfixed point z. =

With zs := 7||Vs||oo,s AE~, the above inequality becomes z 5,1 < ®(2z5)zs. Thisis
an elementary exerciseto check that the series {z ; } s issummableif z; < z, := % Thus
we get

AFE > bl I
< — < <—.
Voo < 5 = ;HWSHSH < ;:n < T3]

The summability of {z}, impliesthat ||V;[|co,1 — 0a@Ss — oo, andthat  [|[W;||sa <
s>1

oo. This last property shows that U is convergent in Bsy to some Uy 855 — 00.
We must check now whether the required property on G 5, i.e. (11), is verified. Since
Gsi1 — G = diag ®(adw, ) Vs and A,,, > AE, we have successively

= 1
(11) <« ZIIGs+1—Gsll+IIG1IISZAm

s=1

- 1 1
s=1

AE
< ||G1| €013AE < [[V]|eoq < 3

since one can check numerically that + — 1 21 zs®(2x5) > 0.13if 21 < I (seebelow

forthisboundonz). Thus(11) istrueand Wé?]ave also shownthat G 5 convergesto some
diagonal and bounded G , ass — oo. Topassfrom (10)t0 Ho+G oo = Uso (Ho+V)UL!
using the three ingredients ||Vs||co,1 — 0, Gs = G and Us — U, isnot as obvious as
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it seems; we have to adapt the technique of [8, Section 2.4]. We haverenamed G , by G
and U, by J for later convenience. Finally we derive the bound on ||U o ||sir and ||G s |-

— 3
1Usellsn < exp (D IWillsu) < 5.
k=1

since one can check numerically that exp ( > xsfb(st)) < 2, with
s=1

T Villooy 7
= Plloot 7
o AE 8

Concerning G, noticethat || X ||sug = || X|| if X isdiagonal. Then we get

o0 o0 1
1Gooll S NG+ IGss1 = Gsll < NNV lloo + Zwsfb(?ws);AE

s=1 s=1

D(221)P (221 P(221)) AE
<V oo,1 + <<I>(2x1) + 1— @(23:1'1)(2331)@(2&‘1’(2%)))> ES

®(22,)® (221 B(21,)) )
1 — (221 ®(221)® (221 P (221)))

™

— [Vlloou (1 £ B@m) +

< 2[[Vfoo,1-

Theaboveanalytichoundon Y z,®(2z,) isobtained with elementary manipulation and
s=1

we end up with anumerical co_mputation withz, = % (noticethat ® isincreasing).

3.4. Purepointnessof Ko+V. LetV : R — B>! bea2r-periodic symmetric function,
with the notation (4) we define the new norm

(12) IV, := sup > ||V (k,m,n)|| max{[k", 1}.

m,nGNkeZ
We shall provethat K := K + V is self-adjoint on a suitable domain and

Theorem 3.3. Let wy > 0, Qo := [Swo, Jwo], assume (2) for some o > 0, and let
Ao = min |Ey — Ey|. ThenVr > o + 2.3¢, > 0and Cs(a,r) > 0, suchthat
mFEn

V1, < gy min { 2, 2 (SEe) g 2Bt R}
2(1+83%) Ci "Ci"Cy \ wo 4
implies
con can witn |0l 5 204880V,
Cla wo

so that K ispure point for all w € Q.
In addition each eigenprojection P of K isbounded in the norm

_o_2
I1Pll, 2 = sup >N Pk, m,n)|| max{|k|""7"2, 1}
mEN L 7 neN

and Cs(o,r) = Ca(o,r — 1), where Cy and C, are the constants from Theorem 1.1.
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Proof. (a) As mentioned in the introduction the strategy consists in proving that Ho +
V(t) = J(t)(Ho + G(t))JJ*(t) using Theorem 3.1 for each t. Then

Ko+ V = —iwd; + Hy + V = J(—iwd, + Ho + V)J*

where V() := G(t) — iw.J* (¢).J (t) will be seen to fulfill Theorem 1.1.

(b) The self-adjointness of Ky + V is not an easy matter since the quadratic form
technique cannot be used here because K is not bounded below. We shall establish it
indirectly. First with the PDM we shall get the existence of the strongly C'* map J :
S' — Bsy suchthat 1 ® Hy +V = J(1 ® Ho + G)J*. Thenit is easly verified that
K, + V is sdf-adjoint on Jdom K, since V' is bounded.

(c) Let w, (k) := 2" max{|k|", 1} for somer > 0. We shall use the notation

w,V = {w,(k)V(k,m,n) | k € Z, m,n € N} .
Itis straightforward to check that
£ = {V:8" = B! | Ju, V||, < 0} and
Ar = A{V 1 St = B [ [Jw, Vo < oo}
are respectively a Banach space and a Banach algebra, with 4,. C &, and with
A&, Cc & and E.A, CE,.

We simply follow Section 3.3 with , H, V', B>! and Bsy replaced respectively by /C,
1® Hp, S' 2t — V(t),E, and A, so that we get as for Theorem 3.1:

If Jw, V], < &, thereexists J € A, and G € &, suchthat (1 ® Ho) +V =
J((1® Hy) + G).J* together with

3
lwrJllo < 5 and - JlwrGllo < 2w V],

Therefore ||w,—1J|jo < § and |lw,1Gllo < lw, V||, Sincew, 1 < 5-. Of courseit

. o0
followsthat [|w,—1J*||o < 2. It remainsto estimate ||w,.J||o. Onehas, with J = ] e"=
s=1

and z, := 7w, V||, AE~' < %,

o0 o0
w1 llo <D llwp—1 Willo exp (Z ”wr—leHO)

s=1 s=1

o0 1 [ee]
>l Wil exe (5 > o, Wsllo)

N S S U
1-®22,) P\21-82z)

lw- Vo llw-Vlo
<qgi - Tog_ g To
<7 AL 3=3m AL

1
2
1
< =
-2
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since one can check numerically that (2(1 — ®(2z,)) ™! exp (m) islessthan 3
if z; < §. Thuswe have obtained for all w € €2

. _ 9 . -
2" MV lr—1 = lwp—1V]lo < [lwp—1Gllo + —w0||wr—1J [ w1 J|

9 3, wo -
< (145 Jam iy ) vl < (1482 2V

Finally we apply Theorem 1.1to K o+V with replacedby r—1 and ||V || » by 2 (1+82.)

V.- We also have to impose the additional condition ||w, V||, < &Z. O

4. APPLICATIONS

4.1. The d dimensional quantum top. Here we give an example of Theorem 1.1 with
unbounded multiplicities of the spectrum of H,. We consider the model (5). H, is the
Laplace-Beltrami operator on the d-dimensional sphere S?. Then the n'* eigenvalue
obeys

: d d—2 2nd-1
E,=n(n+d-1) W|tth:<nJr >—<n+ >”7$°°n7

d d (d—1)!
so that the growing gap condition (2) isfulfilled if and only if
d—1
Zm<oo & o>2d-1.
m>n (m2 a n2)0

If f € C*(R) andW € C*(S?) with
s>r+1>a+%+1>2d+% and u >4,

then Theorem 1.1 applies (see [7] for details). This model has already been studied by
Nenciu in [15] who found a sufficient condition to rule out the absolutely continuous
spectrum. We have gathered in Figure 3 below what is known so far about this model.

4.2. Thepulsed rotor with ad point interaction. Asan application of Theorem 3.3 we
shall consider the pulsed rotor (5) with f € C*(S!) and W the delta point interaction
located at 0. We recall that this is the interaction associated to the quadratic form on
L?(S*) defined by u — |u(0)|%. One has for the n'" eigenprojection of H,

: 1 inx
Po=(,00)pn+(,0n)en Withe,(z):= \/ﬂe )

except for Py = (-, ¢0)@o. (UV) istruesince||6||<><> 1 = 7! because

0l e

1P 6P0||—H H Lm0

[P0 Pl =

|Pod Poll = =
7T
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Moreover
1 1 7
-~ — Sup ﬁ = - = (GGCH())
AE meNNBn;ﬁm |m n | 4
2 (1 0 2
1Eall = |n*(, 1)|=n"<oc = (BBCHy).
Let

Ft) =" fre™

kEZ

be the Fourier expansion of f. Then

1 ~
7w, < ~ > | el max{|k[", 1},

kEZ

Since the eigenvalues of Hy are {n?},.cn, every o > 1 will insurethat AE, < co. Thus
in order to apply Theorem3.3oneneedsr > o + 2 i.e.r > 5 andfinaly s > I toinsure
that || f1V]),. is finite. We have proved:

Let f € C*(R,R) be a 2n-periodic function with s > % and g a real constant.
The Floquet operator associated to the time dependent Schr ddinger operator —A +
gf (wt)d(x) on L2(S') is pure point provided g is small enough and for appropriate fre-
quenciesw. In such conditions this quantum systemis stable in the sense of equation (6).

spect,. K =0
and
spect, K = ()

w € Qoo,u >4
and W small enough

L 07,01]

PRl

spect,, K =0

s=d+1, [15,°97]

spect K 72

1 2 3 d

Figure 3. About the quantum top
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Abstract

Let H(h) = —h%d?/dx® + V(z) be a Schrédinger operator on the real line,
W (x) be a bounded observable depending only on the coordinate and k& be a
fixed integer. Suppose that an energy level E intersects the potential V(z) in
exactly two turning points and lies below Voo = liminf ;o V(x). We consider
the semiclassical limit n — oo, A = h, — 0 and E, = E where E, is the
nth eigen-energy of H(h). An asymptotic formula for (n|W(z)|n + k), the non-
diagonal matrix elements of W (z) in the eigenbasis of H (%), has been known
in the theoretical physics for a long time. Here it is proved in a mathematically
rigorous manner.

Keywords: semiclassical limit, non-diagonal matrix elements, WKB method

1 Introduction

In the quantum mechanics the matrix elements of an observable occur in various
situations. Let us mention few of them. They measure transition probabilities between
two states and the coefficients in the stationary perturbation theory are expressed in
terms of the matrix elements of the perturbation. The distribution of matrix elements
is of interest for quantum systems stemming from classically chaotic systems, see
for example [9, 6] and references in the latter paper. Our immediate motivation to
study the matrix elements was the quantum version of the Kolmogorov-Arnold-Moser
method [1], [8]. One of the assumptions under which this method is applicable is that
a time-dependent perturbation of a quantum system must be sufficiently small with
respect to certain norm which is also expressed in terms of matrix elements.

One may hope to obtain at least a qualitative information about the behavior of
matrix elements when considering the semiclassical limit. In fact this idea goes back to
the very origins of the quantum mechanics. A semiclassical formula for non-diagonal
matrix elements in the one-dimensional case has been suggested already a long time



ago [12]. In [9] one can find another derivation, also on the level of rigor usual in the
theoretical physics, for absolute values of the non-diagonal matrix elements.

Despite of the ancient history rigorous mathematical results have been published
essentially more recently. Moreover, they cover only some particular cases even though
the technical tools necessary for the derivation may be at hand nowadays. One usually
assumes that the corresponding classical system is either ergodic [5], [6] or completely
integrable [19], [2], [15], [7]. The semiclassical limit of diagonal matrix elements is now
treated in detail [5]. In the case of multi-dimensional completely integrable systems a
formula for non-diagonal matrix elements was proved in [19], [15], [7], see also [16] for
some generalizations. The one-dimensional case seems to be rather particular. In [14]
one can find a derivation of the semiclassical formula for pseudo-differential operators
in one variable such that the Weyl symbol of the Hamiltonian is a real polynomial on
the phase space while imposing an additional assumption on the discreteness of the
operator spectrum.

The present paper aims to provide a mathematically rigorous verification of the
semiclassical limit of non-diagonal matrix elements for Schrodinger operators on the
real line. We prove the formula under mild assumptions on the potential. In addition,
we take care about identifying the quantum number coming from the Bohr-Sommerfeld
quantization condition with the index determined by the natural enumeration of eigen-
values in ascending order. Our approach relies on a transparent application of some
well established tools in the spectral and semiclassical analysis. So we briefly recall the
corresponding results while adjusting their formulation to our purposes. On the other
hand, the chosen method restrict us to considering observables which depend on the
coordinate only. This particular case was sufficient for the applications we originally
had in mind, as mentioned above.

Let us now formulate precisely in what sense the semiclassical limit is understood.

Set
2

d
H(h) = —hQW +V(z) in L*(R,dz). (1)
x
We consider a fixed energy E and an observable W = W (z) depending only on the
coordinate x. The assumptions are as follows.
We suppose that V(x) is bounded from below and three times continuously differ-
entiable, W(z) is bounded and continuously differentiable,

E < Vg = liminf V(). (2)

|z|—o0

We assume that at the energy E there are exactly two regular turning points, i.e.,
VY E)={z_,x,}, v <z, and V'(z1) # 0. Set

f(2) = V() - E. (3)

In addition we introduce an assumption making it possible to apply the WKB approx-

imation, namely we assume that
1 d? 1
F1/a g2 \ f1/a

\/R\[_ava}
2

dr < o0 (4)




where a is a positive number chosen so that f(xz) > ¢ > 0 for |z| > a. Notice that

1 a2/ 1\ 5(V)2—4V-EV"
f1/4da:2 f1/4 - 16(V—E)5/2

It may be convenient to replace condition (4) by two simpler conditions,

V' V"
———dz < ————dz < 0. 5
/R\[a,a] (V = E)5/2 e R\[—aa (V — E)3/? e ©)

The part of the spectrum of H (%) lying below V, is known to be formed exclusively
of simple isolated eigenvalues. We fix the phase of an eigenfunction ¢, corresponding
to an eigenvalue E, < V by requiring ,, to be positive on a neighborhood of 4oc0.
Moreover, there exists a strictly decreasing sequence of positive numbers tending to 0,
{hn )., and a constant Ay > 0 such that for i €]0, o), £ belongs to the spectrum
of H(h) if and only if A = A, and in that case E = E, is the nth eigenvalue of H(h)
provided the enumeration of eigenvalues starts from the index n = 0.

Under these assumptions we claim that iof k € Z s fixed, n — oo, h = h, — 0,

with B = FE,, then

W@+ 1) = 7 [ W) e ar ()

where (q(t),p(t)), t € [0,T1], is the classical trajectory in the phase space at the energy
E and with the initial point chosen so that the kinetic energy vanishes, i.e., p(0) = 0,
and q(0) coincides the right turning point x. Furthermore, T > 0 is the period of the
classical motion and w = 27/T is the frequency.

Remark. If the phase of the wave function ,, was chosen so that 1, was positive on a
neighborhood of —oo then formula (6) would be again true with (¢(0), p(0)) = (x_,0).

As already said, we have confined ourselves to observables depending only on the
coordinate because our method of proof is based on the WKB approximation. One
naturally expects, however, that for any smooth bounded classical observable A(q, p),

mMm+k%+%A_MﬁmM®ﬁmﬁt

where A is a suitable quantization of A. We have already mentioned that this result
is actually proved in [14] in the case when the potential V(z) is a polynomial.

Let us rewrite the RHS in formula (6). The equation of the classical trajectory in
the phase space reads p? + V(x) = E and its period equals

T+ dz
T:A_—f?ﬁﬁ. (7)

For z € [x_,x] set



Then 7(z4) =0, 7(z_) =T/2, q(7(z)) = x, and

/0 W (qt)) et = / f+ \/% 003(2;’“ T(x)) dz.

The paper is organized as follows. In Sections 2 through 4 we recall some prelim-
inaries that we need for the proof of the formula. Section 2 is devoted to the basic
spectral properties of the Schrédinger operator, Section 3 is concerned with the Weyl
asymptotic formula and some basic facts about the WKB approximation are sum-
marized in Section 4. By counting the zeroes of wave functions we show in Section 5
that the quantum number coming from the Bohr-Sommerfeld quantization condition
equals the index of the corresponding eigenvalue. The semiclassical formula is then
proved in Section 6.

2 Properties of the spectrum lying below V,

Here we briefly recall two well known properties of Schrédinger operators. In the mono-
graphs they are usually formulated and derived for potentials diverging at infinity. We
just wish to point up that the same assertions apply also for more general potentials
provided one takes care only about the part of the spectrum lying below V... The
corresponding proofs can be taken almost literally from the cited monographs.

In this section (and only in it) the Planck constant is not relevant and so we set it
equal to 1 and consider the Hamiltonian

H = L2 +V(z) in L*(R,dz).

The following theorem is in fact widely used. We recall it in a form which is a direct
modification of Theorem XIII.16 in [17]. Its proof is based on the min-max principle
and is applicable in any dimension of the underlying Euclidean space. Moreover, the
differentiability of V'(z) is not required.

Theorem 1. Let V' be a measurable function in R™ which is bounded from below. De-
fine H = —A+V as the sum of quadratic forms in L*(R",d"x). Then the lower edge of
the essential spectrum of H, if any, is greater than or equal to Vo = liminf|y .o V().

Let us note that in the one-dimensional case and provided the potential is contin-
uous Theorem 1 also follows from a well known estimate on the number of negative
eigenvalues.

Here and everywhere in what follows, if A is a self-adjoint operator then P(A; ")
designates the associated projector-valued measure, and for K € R we denote

N(A, K) =rank P(A;] — oo, KJ).
Further, for a real-valued function W (z) we set

W_(z) = max{0, =W (x)}.

4



It holds (see, for example, Theorem 5.3 in [3])
N(H,0) <1 +/ |z| V_(z) dz.
R

In particular, if V(z) is continuous and bounded from below then for any ¢ < V,, the
function (V' —¢)_(z) has a compact support and, by this estimate, N(H, ¢) < co. This
again implies that the lower edge of the essential spectrum of H is greater than or
equal to V.

The next property is specific for the one-dimensional case. The potential V() is
supposed to be continuous and bounded from below.

As is well known from the theory of ordinary differential equations, for £ <V, any
nontrivial solution of the Schrédinger equation either grows at least exponentially or
decays at least exponentially at +00 (see, for example, Corollary 1 in [3, Section IIJ).
The latter solution is called recessive at 400 and is unique up to a multiplicative
constant. Of course, an analogous assertion is also true for —oo. It immediately follows
that all eigenvalues of the Hamiltonian H lying below V., are simple. Moreover, in
virtue of Theorem 1, they have no accumulation points below V. Consequently, the
eigenvalues of H below V,, can be arranged into a strictly increasing sequence, empty
or finite or infinite,

Ey< Ei < By <...< V.

The following theorem is a straightforward modification of Theorem 3.5 in [3,
Chapter I1].

Theorem 2. The number of zeroes of the mth eigenfunction of H corresponding to
the eigenvalue E,, < V. s exactly equal to m.

3 The Weyl asymptotic formula

In this section we aim to recall the Weyl asymptotic formula generalized to Schrodinger
operators. It can be derived from the Gutzwiller trace formula [10] which was rigor-
ously proved in [4] under the assumption that the potential is positive and infinitely
differentiable. In [18] there is given a short review of the history and the Weyl asymp-
totic formula is recalled even under stricter assumptions which among others mean
that the potential does not grow faster than polynomially. A weaker version of the
formula is also stated in [17, Theorem XIII.79] but only for compactly supported
potentials.

Here we wish to point out that the proof of Theorem XIII.79 in [17] can be extended
in a straightforward manner and thus the Weyl asymptotic formula can be derived just
under the assumption that the potential is semi-bounded and continuous. We restrict
ourselves, however, to the one-dimensional case only. In addition, this approach is
quite simple as it is based merely on an application of the min-max principle and the
Dirichlet-Neumann bracketing. On the other hand, if compared to the result based on
the trace formula, as presented in [18], the control of the error term is essentially worse;



it is known to be of order O(1) while the present method only yields the asymptotic
behavior of the type o(A™1).

From now on, the Planck constant is again relevant. This means that the discussion
concerns the Hamiltonian H (k) introduced in (1). Since what follows is nothing but
a slight modification of known results we just indicate the basic steps.

First let us recall a definition from [17, XIII.15] making it possible to compare
self-adjoint operators defined in different Hilbert spaces. The symbol Q(A) stands for
the form domain of A. If ¢» € Q(A) then the scalar product (¢, Ay) is automatically
understood in the form sense.

Definition. Let H; C H be a closed subspace, let A be a semi-bounded self-adjoint
operator in H and let B be a semi-bounded self-adjoint operator in H;. We shall write
A < B if and only if it holds

(i) Q(A) > Q(B),
(if) Vi € Q(B), (¢, Ay) < (¢, By).

With the aid of the min-max principle one can show [17, XIII.15] that if A < B
then

(i) VK € R, rank P(A;] — 00, K[) > rank P(B; ] — o0, K|),
(ii) VK € R, rank P(A;] — oo, K]) > rank P(B;] — 00, K]).

The following lemma is analogous to Proposition 2 in [17, XIIL.15] in the one-
dimensional case and its proof is based on rather elementary explicit computations of
the eigenvalues for the involved operators.

Lemma 1. Let I = [a,b] be a compact interval. Let us introduce Hp, Hy and Hy as
self-adjoint operators in L*(I,dx) such that all of them act as the differential operator
—h?d?/dx? and whose domain is respectively determined by the Dirichlet, Neumann
and mized boundary conditions. Then for all K > 0 it holds

_

—1 <rank P(H;| — o0, K|) .
7r

l
VK <rank P(H;] — 00, K]) — —h\/E <1,

s
where H is any of the operators Hp, Hy, Hy, and { = b — a 1is the length of the
interval.

The following lemma coincides with Proposition 4 in [17, XIIL.15] in the one-
dimensional case.

Lemma 2. Let —00 < a < b < ¢ < 400 and let H be a self-adjoint operator in
L*([a, c],dx) which acts as the differential operator —d?/dx? with either the Dirichlet
or the Neumann boundary condition imposed at each of the points a and ¢ (mized
boundary conditions are admitted). Let H,(jl) and H](\}) be the self-adjoint operators in
L*([a, b],dx) also acting as —d?/dx? and with the domain being determined by the same
boundary condition at the point a as imposed in the case of the operator H and by the
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Dirichlet or Neumann boundary condztzon at the (pomt b, respectively. Analogously one
introduces the self-adjoint operators HD and Hy, 2 in L3([b,c],dx). Then it holds

HY @ HY <H <HY ® HY.

First let us state the Weyl asymptotic formula for a finite interval. It can be prover
in a way very close to the proof of Theorem XIII.79 in [17]. So we do not reproduce
the proof but let us note that it is based on a limit procedure when the interval is
split into N subintervals of equal length with N tending to oco. In the course of the
proof one uses Lemma 1 and 2, the additivity of the numbers N(A, K), i.e

NA @A d... AN, K) = N(A,K)+ N(Ay, K) + ...+ N(An, K),
and the fact that the integral on the RHS of (9) exists in the Riemann sense.

Theorem 3. Let —o0o < a < b < 400, V € C([a,b]), and let
d2
Hy(h) = —h? 12 +V(z)

be a self-adjoint operator in L*([a, b, dz) with either the Dirichlet or Neumann bound-
ary condition imposed at each of the boundary points a and b (mized boundary condi-
tions are admitted). Then for all K € R,

lim A N(H¢(h / VIV = K)_(x)dx. (9)

h—0+
Finally let us proceed to the case of the Hamiltonian H(h).

Theorem 4. Let V € C(R) be a real-valued function which is bounded from below.
Then for all K <V, it holds true that

lim h N(H(h), K) = %wz (7] - 00, K)) = % /R\/(v K (@)dz (10)

h—0+

where 7 (x,p) = p* + V() and Volz(X) designates the Lebesgue measure of a mea-
surable set X in the phase space.

Proof. If K < V. then the support of (V — K)_ is compact. Suppose that
supp(V — K)_ C [a,b], —00 < a < b < +00. Set

d2

H,(h) = —h? i (V- K)_(z) in L*(R,dz)
and )
Hy(h) = —h? % +V(z) — K in L*([a,b],dz)

with the Dirichlet boundary condition imposed at the points a and b. Observe that
—(V—-K)_(z) <V(z) — K on R and so Q(H(h) — K) C Q(Hy(h)). Furthermore,

7



L*([a, b],dz) can be naturally regarded as a subspace in L*(R,dz). If ¢ € Q(H(h))
then ¢ defined by () = ¥(z) for z € [a,b], ¥(z) = 0 for z € R\ [a,b], belongs to
Q(H (k) — K) (1 is an absolutely continuous function). This implies that Q(H,(h)) C
Q(H(h) — K). We have find that H,(h) < H(h) — K < Hy(h). Hence

N(Hy(h),0) < N(H(h), K) < N(Hy(h),0).

Formula (10) for compactly supported potentials is stated in [17, Theorem XIII.79].

Hence it holds .
lim A N(H,(h),0) = —/ VIV =R (2)dz.
T Jr

h—0+

and from Theorem 3 we know that

lim A N(Hs(h),0) = %/ VIV =K (2)de = l/]R\/(V—K)(x)dx.

h—0+ e
Formula (10) for a general potential then follows by bracketing. O]

For our purposes the following immediate corollary of Theorem 4 will be sufficient.
Suppose that V' (x) is continuously differentiable and an interval |a,b[, a < b < V.,
contains at least one regular value of the classical Hamiltonian J#(x,p), i.e., there
exists \ € a, b[ satisfying #71({\}) # 0 and V(x) = X implies V'(z) # 0. Then the
number of eigenvalues of H(h) in the interval |a, b] tends to infinity as h — 0+.

4 The WKB method for one and two turning points

Here we summarize some basic facts about the WKB approximation, also called
Liouville-Green approximation, that we need for the proof of the formula in Section 6.
At the same time we introduce the necessary notation. We stick to the presentation
given in the monograph [13] whose distinguished feature is that it provides explicit
bounds on the error terms.

Let us first consider the situation with one turning point. Let |a,b[C R be an
interval, finite or infinite, zy €la,b[, and f(z) be a real-valued function defined on
la, b such that f(z)/(x — ) is positive and twice continuously differentiable (hence
f(zo) =0, f'(zg) > 0). For x €]a, b| set

2= / VIBdt iz > (11a)
; (_<)3/2 — /xo vV—ft)dt if x < xo. (11b)

Then ((z) is strictly monotone, (z)/(x — x¢) is positive and twice continuously dif-
ferentiable in ]a, b], see Lemma 3.1 in [13, Chapter 11].

Assume further that ,
/ V() dt = (12)
xo

8



and

/" / (f')?
dt < oo, dt < oo, (13)
/]a,b[\Uo | f13/2 Jas\vo 172

where Uy = [xg — €, 29 + €| and ¢ is any positive number such that a < zo — ¢ and
To+ e < b.
Notice also that

¢ = (%)/ and (o) = f'(w0)"* (14)

Denote by & the inverse function to . Theorem 3.1 in [13, Chapter 11, §3.3] can be
rephrased as follows.

Theorem 5. Under the above assumptions, the solution of the differential equation

o
dz?

= f(z)w (15)

which is recessive as x tends to b exists on la,b|, is unique up to a multiplicative
constant and equals

1/4
U(z) = (%) (Ai(R73¢) + e(h, x)) (16)

with the error term satisfying the estimates

Oe(h, x)

(h,2)] < BB b, |

f 1/2
< (Z) @1(h72/3<) h1/3’

where ®g(x), ®1(x) are certain continuous positive functions on R such that

exp(—%x?’/Q)

const as xr — +00,

1/4
Do () ~ ] v
const !w\”“ as r — —0Q,
(57)
const exp| —=x as r — +00,
Py (z) ~ 3

const as r — —oQ.

Let us now turn to the case when f(z) is given by (3) and so is defined on the
entire real line. From now on the potential V' satisfies all assumptions as formulated
in the Introduction. In particular, it follows that the function

V(z)—F

(t— 2 )@ —a3)

is positive on R and belongs to C*(R). (17)



Moreover, there exists an open neighborhood CLE, Up =|E_ B[, E- < E < FEy,
such that these assumptions apply for any A € Ug as well.
For \ € Ug set

M= ({\})
where J#(z,p) = p? + V(). Thus 7, is a closed curve in the phase space and the
energy takes on it the value A. Let us further introduce the action integral,

z1(A)
J(/\):/ dxdp:/ pdr =2 VA= V(z)de (18)
A (z,p) <A A N

where x_(A) < z1 () are the turning points at the energy A. Then

w4 () d
T =T = [ (19)
=) VA= V()
is the period of the classical trajectory in the phase space.
In the following theorem we summarize the result derived in [13, Chapter 13, §8.2].

Theorem 6. Under the assumptions on' V' formulated in the Introduction (in particu-
lar, we assume that condition (17) is fulfilled as well as the convergence of the integrals
in (5)) there exist a neighborhood Ug of E, hy > 0, ng € N and for every A € Ug a
sequence {hn(A) ol Bo > Tng(A) > Rpgii(A) > hyga(X) > ... > 0, such that for
h €10, ho[ the energy A is an eigenvalue of H(h) if and only if h = h,(\) for some
n > ng. Moreover, the sequence {h,(\)} asymptotically behaves like

R(A) 7' =(2n+ DrJ(A) T+ 0t (20)
where the error term O(n™1) decays in n uniformly with respect to \ € Ug.

Remark. 1t is known that if V€ C"(R), with r > 1, and E < V, is a regular value of
V' (z) then the action integral J(\) defined in (18) is r times continuously differentiable
on some neighborhood of E (see, for example, [18]).

The verification of this assertion is quite elementary in the one-dimensional case
and with two turning points at the energy FE. For a sufficiently small neighborhood
Ugr =]E_, E,] the function V() is strictly decreasing on the interval [z_(E, ), x_(E_)]
and strictly increasing on [z, (F_), x4 (FEy)], with nowhere vanishing derivative. Let

us write
r_(E-) z4(E-) z4+(A) d
o) = ( [ ) e
z_(\) x (E_) e (B_) A—V(x)
= T_-(A\) +To(A\) + T (N).

Clearly, To(A\) € C*°(Ug). Thus it is sufficient to verify that T_(\), T () € C""}(Ug).
1
Let us focus only on the latter function. Set W, = < . Hence W,

V} [z4 (E-),4 (E+)]>

10



is r times continuously differentiable. After some elementary manipulations one can
show that

N de dt
T (M) = —— =24/ - E_ .
W /g; ) VA= V(x / V(Wi (A1 —t2) + E_?))
From the last expression it is obvious that T (\) is r — 1 times continuously differen-
tiable.

5 Number of zeroes derived from the WKB method

We need to show that if & = £,,(A) and hence A is an eigenvalue of H (%), as claimed in
Theorem 6, then A is exactly the mth eigenvalue of H (/). According to Theorem 2, the
index of an eigenvalue lying below V, equals the number of zeroes of the corresponding
eigenfunction. Fortunately, the WKB approximation, as explained in [13], is precise
enough to control the number of zeroes.

Let us recall some facts concerning the Airy functions. Let us denote by a,, and b,
the zeroes of the Airy functions Ai(z) and Bi(x), respectively, arranged in ascending
order of the absolute value, i.e., ... < b3 < as < by < a; < by < 0. It is known that

3 1 1)\ 3 3 3\ \**
w=-(5e(n-1)3(n-1)) = (G- 1) 300 2))
(21)
where 3(z) = O(z71).
First we again consider the situation with one turning point. Recall defining re-
lations (11a), (11b) for ¢. In the following theorem we summarize the results from
§8 6.1, 6.2 and 6.3 in [13, Chapter 11].

Theorem 7. Under the same assumptions as in Theorem 5, let w(x) be a nonzero
solution of the differential equation (15) on la,b| which is recessive as x tends to b
(hence w(x) is unique up to a multiplicative constant). Then the set of zeroes of w(zx)
in |a, b], denoted {z,}n>1 and arranged in descending order, is at most countable. Any
such a zero z fulfills ((z) < h?/3by. Furthermore, for all sufficiently small h it is true
that if ((a) < 1?/3b, 1 then the nth zero, z,, does exist and obeys the estimate

B30 < C(20) < B30,

Moreover, it holds
C(2n) = B*Pan| = O(n™"*)h

where the symbol O(n=Y/3) is uniform with respect to h.

Remarks. From Theorem 7 it immediately follows that there are no zeroes in the
interval [z, b[. Furthermore, the number of zeroes of w(z) in any fixed nonempty
subinterval |c, d[ C a, x| tends to infinity as i — 0+.
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Now we come back to the case when f(z) is given by (3), with V' (z) satisfying the
assumptions from the Introduction. In particular, there are two turning points at the
energy F, x_ and z, and V(z) satisfies (17) and (5). Then for any a, z_ < a < x4,
the function f(x) satisfies the assumptions of Theorem 7 with b = +o0c and zy being
replaced by z,. Actually, condition (5) implies (13) and condition (12) is fulfilled
automatically for £ < V.. Analogous arguments apply also for the other turning
point x_.

According to Theorem 6 there exist hy > 0 and a sequence {h,};2,, , ho > Ay, >
Png+1 > Ppgi2 > ... > 0, such that for h €]0, hy[, £ is an eigenvalue of H(h) if and
only A = h,, for some n > ny. Let 1, (z) be an eigenfunction of H(A,,) corresponding
to the eigenvalue E. Thus 9, (x) is recessive both at 400 and —oo and is unique up to
a multiplicative constant. We can suppose that fy is sufficiently small so that ¢, (z)
has at least one zero in the interval |z_,z,[. By Theorem 7, v, (z) has no zeroes in
the set R\ Jz_, = |.

Let us choose a point x; € |x_, x| independently of n. Let x| be the zero of 1,
which is nearest to x;. This means that ] depends on n but the distance between x;
and x) tends to zero as n tends to infinity. Denote by m_ and m_ the number of zeroes
of ¢, in the interval [}, z,[ and |x_, 2], respectively (hence the zero 2/ is counted
both in m, and m_). Denote by (,(z) the function defined by relations (11a) and
(11b), with zo being replaced by z.. In virtue of Theorem 7, there exists a constant
¢+ > 0 (independent of n) such that

C+hn
|C+(I/1) - h3/3am+| < 1/3
my

for all n > ng. An application of the mean value theorem,
3
[u?? — 32| < 3 (max{u,v})"? |u—v| for u>0,v>0,

yields the inequality

3 /3 [* V3 ¢ b
Gl ~ ol P2 <3 (3 [7 VE=TGIA) SR e

+

which is valid for all sufficiently large n. Analogously, for the other turning point we
get the estimate

3 (3 [™ Y3 n,
e = mlon 2 <3 (3 [T VE-V@) S @)

m

where again c_ > 0 is a constant independent of n. Set

c:<glfv@t7@amfﬁmw@ﬂ@}
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Combining (22) and (23) we arrive at the inequality

Ty
i [ VEV@ e = 2 (2 o, )

< 1 n 1
<c|—m+—=].
m? mi/B

Let m = m(n) be the number of zeroes of ¢, (z). Obviously, m = m_ +m, — 1.
Recalling the asymptotic behavior of h,, as stated in (20) (see also (18)), as well as
the asymptotic formulas (21) for the roots of the Airy functions we finally find that

_ 1 1 c 1 1
e e R [ ]

By Theorem 7, both m_ and m, tend to infinity as n tends to infinity. This implies
that m(n) = n for all sufficiently large n and therefore, in virtue of Theorem 2, F
is the nth eigenvalue of the Hamiltonian H(h,) (with the numbering starting from
n=0).

All estimates can be carried out in a uniform manner for F being replaced by A
running over some neighborhood of F. We conclude that

with the assumptions on V(x) formulated in the Introduction, there exist ng € N
and a neighborhood Ug of E such that for all n > ng and A € Ug, X\ equals exactly the
nth eigenvalue of H (F, (X)) (with F,(X) introduced in Theorem 6).

6 Proof of the formula

Here we prove the limit (6). We know that there exists a sequence of positive numbers,
{hn}5e,,, such that £ is the nth eigenvalue of H(h,) (Theorem 6). This sequence is
strictly decreasing and tends to 0. We even known that i, ~ n~! as n — oo (see
(20)). Therefore everywhere in what follows the symbol O(%) should be understood as
a substitute for O(n™1).

Let us fix x, 2}, 2] €|x_, x|, 2} < x1 < &}. For a given h = h,, we shall denote by
1 a conveniently normalized eigenfunction corresponding to the eigenvalue £ = E,,.
Hence 1) is recessive both at +00 and —oo. The normalization is fixed by requiring
the eigenfunction v to coincide on the interval |2, +o00[ with the solution described in
Theorem 5 (with f(z) = V(z) — F and xy = x4 being the single turning point in this
interval). Theorem 5 is also applicable to the interval | — oo, /[ containing the turning
point x_. On this interval, ¢ equals k times the solution described in Theorem 5 for
some k € C\ {0}.

There exists a neighborhood of E, Ug =|E_, E,|, such that any A € Ug satisfies
the same assumptions as those imposed on E. Recall that we have fixed k£ € Z. For all
sufficiently large n, the (n+k)th eigenvalue of H (%), called E,, 1, exists and lies in Ug.
For brevity we shall denote E, |, sometimes by E. We show below that F—E = O(h),
see (24). The eigenfunction of H(h,) corresponding to the eigenvalue E = E, . and
coinciding on |2/}, +oo[ with the solution from Theorem 5 will be denoted by . In

this case, too, there exists & € C \ {0} such that on the interval | — co, /[, ¥ equals
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k times the solution from Theorem 5. Furthermore, denote by 7. the turning points
corresponding to E, i.e., V(i) = E. Since V(i) — V(zs) = E — E and V'(z4) # 0
it is clear that T, — x4 = O(h) as well.

The verification of (6) is based on a series of estimates relying on Theorem 5. This
will be done in several steps.
(1) Relation between E and E. Let E,,(h) be the mth eigenvalue of H (k). From the
perturbation theory [11] one deduces that if it exists and lies below Vi, then E,,(h)
is strictly increasing and real analytic as a function of A. According to the conclusion
of Section 5, E,,(h) and h,,(\) are mutually inverse functions. Therefore if h = h,(FE)
then i = Fi,1(F). Thus we have

h(E) = iy (E)
and from the asymptotic formula (20) we get

(2n+2k+1)J(E) - (2n+1)J(E) =0(n1).

Since

~ 0J(FE) , ~
J(E)=J(E)+ 8(/\ )(E —E)+O((F — E)Q)
we finally arrive at the equation
% JE) o
whose solution satisfies J(E) K
E=FE+ ——— 2. 24
+T(E)n+0(n ) (24)

(2) Asymptotic behavior of k and K. On the interval |z}, z][ one can compare the
asymptotics of the solutions which are respectively recessive at +0o and —oo and infer
this way the asymptotic behavior of k as A — 0. For a moment we shall distinguish by
a subscript the functions (4 related to the turning points x4 and defined respectively
on the intervals [z}, +00[ and | — oo, z/]. Thus
Tr_
JCL

/ () at

and both (,/f and (_/f are positive functions on their domains. We have

)

2 2
3 ‘C+|2/3 = '3 |C—‘2/3 -

Cr

1/4
) () e )

v = (

for x > 2/, and

1/4
U(z) =k (%) (Ai(ﬁ_Q/?’C_) +e_(h,z))
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for x < . Suppose that = € [z, 2]]. Recalling that

Ai(—z2) = 1 (m(g 232 %) + 0(23/2)) as z — 400 (25)

T1/2,1/4 3

and the error term estimates from Theorem 5 we arrive at the equality

cos(g RGP — %) +O(h) =k (cos(g Y32 — %) + O(h)) .

Furthermore, in virtue of (20) it holds

9 Ty 1
S PP =i [Tl (4 3) 7000

Combining the last two equalities we find that

cos<§ h’1|C+|3/2 — %) +O0(h) =k ((_1)n oS (% hil‘@+|3/2 - %) + O(h)) :

For h sufficiently small it clearly exists x € [z}, 2] such that

2
cos(g Y2 — g) = 1.

It follows immediately that
k= (—=1)"+ O(h). (26)

Similarly,
f= (1" +O(h). (27)

(3) The leading asymptotic term on the interval |x; — d,00[. Fix 6 > 0 sufficiently
small (at least z; < z; — J). Let us show that

/ Y?dz = 6V20(R'?), / Y?dz = 620 (R'?). (28)
T4—0 —00
We shall verify only the first equality in (28). In view of (26) and (27), the verification
of the second one is analogous.

Here and everywhere in what follows the symbol O(h¢) should be interpreted prop-
erly. It means that there exists a constant ¢ > 0 (independent of ¢) and FAy(d) > 0
such that for all i, 0 < i < hy(d), it holds |O(h%)| < ch®.

First let us estimate the contribution from the leading asymptotic term of .
Applying the substitution z = £(h*3z) we get the expression

00 C 1/2 /33 43 00 » . )
/xm <?) AR do = R /hmcma)mfwz) dz.  (29)
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By the assumptions, there exist 3 > 2, and ¢; > 0 such that f(x) > ¢; for x > x5. The
function ((z)/f(z) is continuous on the interval [z1, z5] and therefore it is majorized
on this interval by a constant ¢, > 0. This also means that

y
&)

This way we get the following upper bound on (29), namely

0<

< ¢ for ((z1) <y < ((22).

h=2/3¢ (x2) 00 p
K23 / ey Ai(2)? dz + B3 / = Ai(2)*dz
h=2/3¢(24.—6) h=2/3¢(z2) €1

< e h?? (Al'(z)? — a:Ai(a:)Q)) /(s + o(B*?).
r= Ty —

Here we have used the knowledge of the primitive function
/Ai(a:)2 dr = z Ai(z)? — Ai'(2)2

In addition to formula (25) let us recall also the asymptotic behavior of the derivative
of the Airy function,

.y M2 32 T -3/2
Ai'(—2) = ey ] +O(z77%) | asz— +oo. (30)

Since ((x; —8) = —('(y)d for some y € [z, —6, x| we find that for z = h=2/3((z, —6)
it holds n
|h*/% Al (2)?] < const h*/® (h~2/%5) = const /35172

and
K232 Ai(z)?] < const B¥3R~2/3§ (h_2/36)_1/2 — const /362

We have shown that
00 ¢ 1/2
/ (—) Ai(h~3¢0)2 dz = §Y20(RY?).
r4—0 f

(4) The error term on the interval |x4 — 6, 00[. Further let us write

¢ 1/2
W = (?) Ai(R2PC)? + e5(h, o).

It is known that
Ai(z) < —
i(x —
27

see [13, Chapter 11]. Using also the estimates of error terms from Theorem 5 one can
check that

2
% exp (_§ h_1x3/2) for x > 0,

4
|ea(h, x)| < const f~1/2 exp(—§ h1<3/2) 3 for x> xy.
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It follows that

/oo eo(h, x) dx

Ty

> 4
< const h*/3 f Y% exp (_§ ﬁ—lgi%/?) de

T4

_ 4/3 OOL/QX(ZL 13/2)
= const i /0 TEw) exp 3h dy. (31)

There exists ¢ > 0 such that for y > 0, f(f(y))_1 < ¢(1+yY). Hence (31) is majorized
by

o 4
const A3 / (2 + y~1?) exp <—§ h_1y3/2) dy = O(K*/3).
0

The asymptotic formula (25) implies that | Ai(x)| < const |z|~'/4 for < 0. Re-
calling once more Theorem 5 we have

T4
/ eo(h, x) dx
z1

This concludes the verification of (28).

(5) Oscillating integral on the interval |zy,xy — d[. By the usual integration by parts
one can verify the following claim.

Let [a,b] be a compact interval, F € C([a,b]), p € C*([a,b]) and v(h,z) be twice
continuously differentiable in z on |a,b]. Assume that (' (z) nowhere vanishes on [a, b]
and

Ty
< const h4/3/ |f|7Y% dz = O(RY?). (32)

1

sup |0.v(h, 2)] = O(1), sup |0°v(h, 2)] = O(1).

2€[a,b] z€[a,b]
Then for all sufficiently small h it holds true that

b
/ F(z)sin(h " pu(2) + v(h, 2)) dz| < const h

where the constant depends only on the length of the interval [a, b] and on the quantities

to IE Ny po *IF Nelnlles mo Il

with
po = min ['(z)]
z€[a,b]
and || - || standing for the norm in the Banach space C([a,b]).

As a consequence we find that if W € C*(R) then

:D+5

2
sin
m(

To show this asymptotics it suffices to set in the above claim FF = W/ E -V, u =
(4/3)|¢[** and

“H(IC1P + |§\3/2)) dz = 67'O(h). (33)

v(h,2) = ZE(ICGR)P? = 1¢(2))?)

([ VEvaa- [T,
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Hence p/(z) = =24/ E — V(z) and

d.v(h,z) = E;FLE( E—V(z)+\/E—V(z))1,

O2v(h,z) = E;}_LEV’(Z)(E—V(Z)) 1/2(E V(s ))71/2

><< F—V() + E—V(z))_l.

(6) The leading asymptotic term on the interval |xi,z, — 0[. Let us check the con-
tribution to the matrix element coming from the interval [x;,z, — ¢]. The leading
asymptotic term in the expansion of 1 is given in (16). We also need the asymptotic
behavior of the Airy function (25) and the fact that the function f/( is continuous
and hence bounded on the interval [z, 2, ]. We conclude that

1/4 71/6 2 1
w~(§) AP0 = © ( e ‘) 7 O

Observe that

x4 —0
it/ / - \(JiCTQ — 50",

and on the interval [x1, 2, — ],
(E-V) 'V =(E-V)"Y(1+5'0(n)).
From the boundedness of W and from an estimate similar to (32) it follows that

-0 B x4 —6 C 1/4 5 14 ~
/ Winpdr = / W(?) <?> Ai(R723¢) Ai(h~%30) dz + O(K*?)

h1/3 Ty — ) W
B ES /m |f‘l/2 (1 +o- 1O(h))

2 2 -
xcos( L¢P - 4)cos(§h_1\§\3/2—g) dz

+67TO(RY3).

Using the asymptotic behavior (33) we have

e 7 A 3/2 _ | F13/2 1 (54/3
dr = — d 0 O(RY?).
[ e =B [ o (B - G ) o+ 5700
(34)
(7) The argument of the cosine on the interval |z1, x4 — 6[. Let us show that for
S [xlaer - 6])

G2~ 1) = =2 7(2) + 2 0(1) (3)

18



where 7(z) was defined in (8). We have
%h—l(mw — 182 = B! (/+ VE -Vt - /+ mdt)
= hl(t/%+6<x/E?:77——\/ET:R;>(h
+/x+5mdt - /ha \/ﬁdt)
- -

Set temporarily
Y

9(y) = VVi(y) = V(t)dt

4—90

Then for y lying between x, and 7, it holds

l9'(y)| =

y / y
l/ V) di] < 1const/ i
2 Jas-s VVI(y) = V() 2 wy-s VY~ L

< const\/|ry — |+ 9.

Hence

T4 57+ —
[ vEva- [T VEVal = i) - sl
$+—5 $+—5
< const/|zy — T |+ 0 |xy — Ty

5Y20(h). (36)
Furthermore,
= E-E E — E)?
VE-V —-VE-V - = ( ~> .
WE-V 2@@—V+ E—v) E—V
(E - E)?
< -~ @
= (E-V)P
and

I+7(5 o [\ 2
[ R = ou

From (24) it follows that
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where T is the period of the classical motion, see (7). Altogether this means that

h! /:+6 <\/ﬁ— \/ﬂ) dt = — (% + O(h)) e dt

T «  2VE-V()
+67Y20(h)
2k [T dt

T ), 2JE-VQ) (37)

+620(1) + 67 20(h).

Relations (36) and (37) jointly imply (35).
(8) The final step. From (34) and (35) we derive that

Ty—0 5 B h1/3 Ty—0 W(l’)
/xl Wiyypdr = ?( 5 7E—V(x)

X COS (# 7(x) + 0Y20(1) + 5‘1/20(h)) da + 5—10(h))

_ hl/g (/ 8 v (2”’“ (x)) dx+61/20(1)>. (38)

The interval [z_ + d,x;] can be treated smularly. We have

/ Wiy dw = w1 </ \/ﬁ (%k (x)) dz + 61/20(1)>

where

1

i dy 1,
2/M/E—v<y> p T

Taking into account also (26) and (27) we finally find that

/gc : W de = 1 ( / \/ﬁ (27”‘“ (:1:)) dz + 51/20(1)) (39)
From the boundedness of W and relations (28), (38) and (39) it follows that
/ Wepth dz = 21—: (/OT W (q(t))e™* dt + 51/20(1)) : (40)
As a particular case, with W (z) = 1 and k = 0, we have
/¢ dx = T+51/20( 1)). (41)

The same relation holds also for the squared norm of .
Relations (40) and (41) imply that there exists ¢ > 0 such that for all sufficiently
small positive § and all n, n > ng(¢), it holds

i @la+1) - 1 [ W) ei’mdt\ < o'

Since ¢ is arbitrary this concludes the verification of the limit (6).
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Abstract

We consider quantum Hamiltonians of the fofi{t) = H + V (t) where the spectrum
of H is semibounded and discrete, and the eigenvalues behalg as n®, with

0 < a < 1. In particular, the gaps between successive eigenvaluesy desn® '
V(t) is supposed to be bounded, continuously differentiabldénstrong sense and
such that the matrix entries with respect to the spectrabmposition of H obey the
estimate]|V (t)m..| < e|m — n|Pmax{m,n}~27 for m # n wheree > 0,p > 1
andvy = (1 — «)/2. We show that the energy diffusion exponent can be arbitrari
small providedp is sufficiently large and is small enough. More precisely, for any
initial condition ¥ € Dom(H'/?), the diffusion of energy is bounded from above
as(H)gy(t) = O(t°) wheres = «/(2[p]y — 3). As an application we consider the
HamiltonianH (t) = |p|® + ev(#,t) on L2(S!, d#) which was discussed earlier in the
literature by Howland.

1 Introduction

One of the basic questions one can ask about time-depenganttgn systems is the growth
of energy on a long time scale for a given initial conditiomfbrtunately the quantum
dynamics in the time-dependent case proved itself to beerattificult to analyze in its
full generality and complexity. The systems which allow #drleast partially analytical
treatment and whose dynamics has been perhaps best studieghfrious points of view are



either driven harmonic oscillators or periodically kickgdantum Hamiltonians [2, 14, 7, 8,
9, 3, 5]. On a more general level, it is widely believed tharéhexist close links between
long time behavior of a quantum system and its spectral ptiege For time-independent
guantum systems such a relation is manifested by the famAG&ERheorem, see [25] for a
summary. In a modified form this theorem has been extendeertogic and quasi-periodic
guantum systems [12, 18, 24]. In this case the relevant tperdnose spectral properties
are of interest is the Floquet (monodromy) operator. Let estion that a refined analysis
of how the spectral properties determine the quantum dyceminow available, see for
example [13, 6, 11] and other papers, but here we are nottl§iregncerned with this
guestion.

Thus for periodically time-dependent systems one canmgjatsh as a related prob-
lem the spectral analysis of the Floquet operator undeaiceaissumptions on the quantum
Hamiltonian. Frequently one writes the time-dependent iaman in the formH (t) =
H + V (t) while imposing assumptions on the spectral propertiesefitiperturbed paf!
and requiring some sort of regularity from the perturbatioft). For our purposes an ap-
proach is rather important which is based on the adiabattbods and which was initiated
by Howland [15, 16] and further extended in [22, 19]. An es$sgproperty imposed on
the unperturbed Hamiltonian in this case is the discregeakthe spectrum with increasing
gaps between successive eigenvalues.

Under this hypothesis Nenciu in [23] was not only able torgiteen the results due to
Howland but he derived in addition an upper bound on the siitigrowth of the energy
having the formconst t*™ wherea > 0 is given by the spectral properties &f andn
is the order of differentiability of/(¢). Inspired by this result on the energy growth, Joye
in [20] considered another class of time-dependent quaktamiltonians with rather mild
assumptions on the spectral propertieg/dbut on the other hand assuming that the strength
of the perturbatior/(¢) is in some sense small with respectfo Moreover, as far as the
energy diffusion is discussed, the periodicityloft) is required neither in [23] nor in [20].

It is worthwhile to mention that Howland in [17] succeededreat also the case when
the spectrum off is discrete but the gaps between successive eigenvalugs@asasing. To
achieve this goal he restricted himself to certain clas§eexurbations/ (¢) characterized
by the behavior of matrix entries with respect to the eigasib of H. In particular, he
discussed as an example the following modé(t) = |p|* + v(0,t) in L*(S*,d#) where
0 < a < 1andv(f,t)isin C>(S* x S'). It seems to be natural to look in this case, too,
for a result parallel to that due to Nenciu [23] and to attemterivation of a nontrivial
bound on the diffusive growth of energy. But we are aware & one contribution in this
direction made by Barbaroux and Joye [1]; it is based on timeiged scheme proposed in
[20].

In this paper we wish to complete or to strengthen the reswdta [1] while making
use of some ideas from [20]. Thus we aim to consider othesetasf time-dependent
Hamiltonians whose unperturbed p@fthas a discrete spectrum with decreasing gaps. In
particular, the derived results are applicable to the Had®model introduced in [17]. In
more detail, we deal with a quantum system described by tinalktenian H (¢) := H+V (t)
acting on a separable Hilbert spaz€ and such that/ is semibounded and has a pure point



spectrum with the spectral decomposition

H= Z E,P,.

neN

Assume that the eigen-valués < F, < ... obey the shrinking gap condition

lm — n| |m — n|

CH

max{m, n} max{m, n}

forv €]0, %[ and strictly positive constantsg;, C';. Notice that condition (1) implieg,, ~
n® wherea = 1 — 2y €]0,1] (more precisely, (1) implies that the sequeri¢g.* is
bounded both from below and from above by strictly positisastants for all sufficiently
large n). To simplify the discussion let us assume, without loss efegality, thatH is
strictly positive, i.e..l’; > 0.

The time-dependent perturbatidf(t) € £(#) is supposed to b&-periodic andC"
in the strong sense. From the strong differentiability itdas that the propagatdy (¢, )
associated to the Hamiltoniah+ V' (¢) exists and preserves the dom&iom(H) (see, e.g.,
[21)).

Let us suppose thaf is small with respect to the norm

|Vllp~ := sup sup (m — n)? max{m, n}27 V(&) mnll, (2)
t€[0,7] m,neN

wherep is such thafp] > 1/(2(1 — «)),
(m —n) = max{1,[m —nl[},
and||V (t),..»|| denotes the norm of the operator
V(t)mn = PnV(t)P, : Ran P, — Ran P,,.

We claim that the propagat®f(t, s) preserves the form domai; = Dom(H'/?) and for
anyV from )y one can estimate the long-time behavior of the energy eapentvalue by

2c
2[p](1 =) =1

(more details are given in Theorem 5 below). Hpilds standing for the integer part pf
Provided that[V'(¢), V' (s)] = 0 for everyt,s and fOT V(t)dt = 0, the assumption
|1V]lp~ < € can be replaced by || ,110 < ¢, i.e.,

(U(t,0)V, HU(t,0)¥) = O(t?), with ¢ =

€

P.VHP,| <——.
1AV OP < o

The condition[V'(¢), V(s)] = 0 is satisfied for example wheVi(¢) is a potential (i.e., a
multiplication operator by a function on a certalii space) or when the time dependence
of V(t) is factorized, i.e.} (t) = f(t)v where f(t) is a real-valued{-periodic andC")
function andv is a time-independent operator Gff.
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Let us compare the result of the current paper, as brieflyrdest above, to the re-
sults derived in [20] and [1]. Paper [20] focuses on the garrheme and is not so much
concerned with particular cases as that one we are goingationddh here. Nevertheless a
possible application to the Howland’s classes of pertiobatis shortly discussed in Propo-
sition 5.1 and Lemma 5.1. The Howland’s classes are detedrby a norm which some-
what differs from (2), as explained in more detail in Subsec®.1. But the difference is
not so essential to prevent a comparison. To simplify theudision let us assume that the
eigenvalues off are simple and behave asymptoticallylas~ const n®, with0 < o < 1.

In the particular case whefi/ ||, , < oo for somep > 1 andy = (1 — «)/2 the bound on
the energy diffusion exponent derived in [20] equal$2+y — 3) providedy > (1 + «)/4,
i.e., v < 1/3. Our boundv/(2[p]y — 3), valid for0 < o« < 1 and providedp] > 1/(4~), is
achieved by making use of the rapid decay of matrix entrids$ of the direction perpendic-
ular to the diagonal. It follows that we can make the growtlthef energy( H )y arbitrarily
small by imposing more restrictive assumptions on the pleationV’, i.e., by letting the
parametep be sufficiently large.

In paper [1] one treats in fact a larger class of perturbatiban we do since one requires
only the finiteness of the norfii’||, o < oo for p sufficiently large. In other words, no decay
of matrix entries ofl” along the diagonal is supposed. On the other hand, one asshate
the initial quantum state belongs to the dom&iam(H”) for 3 sufficiently large;s is
never assumed therein to be smaller tB@n. Furthermore, there is no assumption on the
periodicity of H (¢) both in [1] and [20]. On the other hand, our assertion corgaltinitial
states from the domaibom(H'/?) but we need a decay of matrix entriesiofalong the
diagonal at least of ord@ry = 1 — «. For the sake of comparison let us also recall the bound
on the energy diffusion exponent which has been derived]in{is roughly of the form
a/(1— f(p))? wherea has the same meaning as abofg,) is positive andf (p) = O(p™*)
asp — oo. Hence this bound is never smaller tharand approaches this value as the
parametep tends to infinity.

2 Upper bound on the energy growth

2.1 The gap condition and the modified Howland'’s classes

On the contrary to Howland who introduced in [17] the clas&€s, §) equipped with the
norm
1Al = sup {(mn)* (m — n)? || A all; m,m > 1},

we prefer to work with somewhat modified classes, calEd, 0), whose definition is ad-
justed to the gap condition (1). Our choice is dictated by>greeted asymptotic behavior
of eigenvalues off in a typical situation. Let us briefly explain where conditid) comes
from.

We expect the eigenvalues to behave asymptotically,as const n®*(1 + o(1)) where
the error termo(1) is supposed to tend to zero sufficiently fast. The spectpd §a.,, — E,
tend to zero asr — oo if a €]0,1[. Keeping the notatiory := (1 — «)/2 we wish to
estimate the differendé”,, — E,,|. To this end we replacg,, simply by the power sequence

4



n®. Then one gets

me — n® sinh(ay) ey L — e~2alyl

’y = =
m—n (mn) sinh(y) c 1 —e2l

wheree? := m/n. Since the fractioril — e~2*1¥!) /(1 — ¢~2¥!) can be estimated by positive
constants both from above and from below we finally find that

|m — n| |m — n|

1 < |m®* —n% < Cy

max{m, n}> max{m,n}"

for someC;, Cy > 0 and allm,n € N.

Definition 1. Letp > 1, > 0 andp + 25 > 1. We say that an operatot € #()
belongs to the clasB(p, 0) if and only if

[Allps = sup (m — n)? max{m, n} | Ay, < . ©)
m,neN

Let A(¢) be aT-periodic function with values in the spag&p, §). With some abuse of
notation we shall also write

|All,5 :== sup sup (m — n)? max{m, n}% |At)mn| < oo.
t€[0,7] m,neN

Remarks. (i) It is straightforward to check that - ||, 5 is indeed a norm. Let us note that
an equivalent norm is obtained if one replages<{m, n} by (m + n) in (3).

(if) Obviously,Y(p,d) C X(p,d). Notice that)(p, ) is a Banach space equipped with
the norm|| - ||, 5.

(i) For the sake of convenience we have chosen the norm i{B)the restrictiong >
1,9 > 0andp+26 > 1sothatifitisfinite foramatriX A, }, Amn € Z(Ran P,,Ran P,,),
then the matrix corresponds to a bounded operdtar %(.7). Indeed, it is so since one
can estimate the operator noffd|| by the Shur-Holmgren norm

HMM¥—mw{wpz]mewm§:W%d@

neN meN

It clearly holds

1

m — n)? max{m,n}?

oo
[Allsi < [Allps sup 3
meN n—1 <

The sum on the RHS equals

s > 1 1 [Mmdr & 1
pm25 + Z (n — m)Pn2 < 2+ m20 /1 P + Z fp+20
n=1 n=m-+1 k=1
1 J— m_p+1
= 24—+ + 26).
TS C(p +20)



Setting temporarily: = In(m) ande = p — 1 one can make use of the inequality

1 —26x __ _—(e+20)x 1
€ (e ‘ ) < €+20

which is true for allz > 0 providede > 0, 6 > 0 ande + 26 > 0. Thus one arrives at the
estimate

1
Al < (24— Glp+29) ) 4l

Here((u) := Y ;- , k~* denotes the Riemann'’s zeta function.
(iv) Finally let us note that the valye= oo is admissible. We shall use the nofini| - s
exclusively in the case of diagonal matrices when it simpijuces to

[A]lc,5 7= sup n* || Ay o
neN

From Definition 1 one immediately deduces the following leaam

Lemma 2. Suppose thal is an operator onzZ with pure point spectrum whose eigen-
valuesFk; < E, < ... obey the upper bound in (1). Let> 2 . If A € Y(p, ) then the
commutatofA, H| liesinY(p — 1,0 + ) and

1A Hlllp-1,544 < Crrl|Allps-

A basic technical tool we need is the following lemma conedrwith products of two
classeg). For its proof as well as for the remainder of the paper thiefahg two elemen-
tary inequalities will be useful. According to the first offie;, everym, k > 1 it holds

%§2<m—k). (4)

In fact, this is a direct consequence of the implicatioh > 1 — a + b < 2ab.
The second inequality claims thatidfb > 0 then
(a + b) < 2
(a)(b) ~ (min{a,b}) "

This can be reduced to the inequali:) < 2(a) which is quite obvious.

Lemma 3. Consider two classe¥(p1,01), Y(p2,d2), With p1,p2 > 1, 61,62 > 0, and
p1 + 201, p2 + 265 > 1. Suppose that the numbers) satisfy the inequalities

1 <p < min{py,po}, max{dy,da} <6 < dy + o,
1 <p+426 <min{p; + 251, p2 + 202}, p+ 25 < max{p; + 241, p2 + 202}.
If A e y(pl,(sl) andB € y(pg,ég) then

HABH;D,(S S C(paplap27 (5, 51, 62) HAHP1,51 HBHPQ,52 (5)
where
C(p7 pl? p27 5, 61, 52) — 2maX{P1>P2}+2(6—6O)
1
3+3 20 255} — 26
g ( + 3C(max{py + 201, pa + 202} )+ e(max{p; + 201,p2 + 265} —p — 25))

anddy = min{d, 4o }. Consequentlyy(p, d1)V(p2, d2) C V(p,9).
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Proof. Under the assumptions we have

(m = n)? max{m, n}**||(AB)l| < (m — n)? max{m, n}** > || Aml|| Benl|
{=1
which is less than or equal to

- (m — n)? max{m, n}*

A B :
[ Allps 11 Bllpa 2 ; (m — £)Pr max{m, £}?%1 (n — £)P> max{n, £}2%2

(6)

Observe that

max{m,n}? 256 -
’ <9 (6—d0) Vi (6—61) .y 2(6—d2)
max{m, £}?% max{n, £}?%> — (m — 0" n 1)

Without loss assume thatax{p; + 201, p2 + d2} = p1 + 207 > p + 26. The summand in
(6) can be estimated from above by
22(5—50)(\m — U+ |n— )P 9p+2(5—80)
(m = Q263 (= (7269 = fmin{Jm — 0], fo = f})7(m — (77269

For definiteness let us suppose that- n. With the help of inequalit)ZZ:1 k=1 < 1+logi
the sum in (6) is estimated from above by

gp+2(6—00) (Z(n _ @ fp<m _ g>pfp1+2(5*61)

S (g 3 m—@pl“m))

l=n+1 = [m+n]+1

p1—p+2(61—9)
< gpt2(6=b0) (( 2 ) (1+ log( 5 )) +243((p1 +2(0, — 5)))

m-—-n
Using the fact that—“log z < 1/(ea) holds true forz, « > 0 one gets easily (5). The cases
m < n,m = n may be investigated similarly. O
Corollary 4. Letp > 2,7 > 1 and~y €]0, %[. Then the following product formulas hold
true:
Y(p,iv) Y(p,iv) CY(p— 1, (i + 1)7)
Y(p, (i —1)7) V(p—1,i7) C V(p—1,i7)
The formulas are also true for the opposite order of factargtee LHS. Moreover, if oper-
ators A and B belong to the corresponding classes on the LHS then
HABHP—L(i-i-l)’Y < Op,’y HAHP,WHBHP,W
[ABllp-1y < Cpy [ Allp. -7 1 Bllp-1.i9
[AB|p-1,i+17 < 2Cp5 [|Allp+1,6-19 | Bllp-1,641)7

7



where

Op,’y = 2p+2(3 + 3C(p - 27) + m) (7)

The norm estimates hold true also for the opposite orderaibfa A and B in the product.

2.2 The main theorem

Theorem 5. Let a quantum system be described by a Hamiltonian of the form
H(t)=H+V() on

whereH is a self-adjoint operator with a pure point spectrum and $pectral decomposi-

tion
H = Z E,P,.

neN

Suppose that the eigen-valuesrbhire ordered increasingly and obey the gap condition (1)
with~y €10, 3. Sete = 1 — 2. Assume that

o> o ®

Then there exists > 0 such that ifl/(¢) is T-periodic, symmetric, continuously differen-
tiable in the strong sense and obéyg]||,, < ¢ then the propagatot/(t, s) associated
to the HamiltonianH + V' (t) mapsQy, the form domain off, onto itself and for every
v € Qg it holds

(H)w(t) == (UL, 0)¥, HU(¢,0)¥) = O(t’) ©)
where
B 2c
Y,

Remark 6. (i) There is no assumption on the dimensioikaeh P,. The multiplicities of
eigenvalues may grow arbitrarily, they can even be infinite.

(i) Suppose that/(t) € Y(p + 1,0), with p > 2, is T-periodic, symmetric, continuously
differentiable in the strong sense and such thétt), V(s)] = 0 for everyt, s, and
V=T fOT V(t)dt = 0. Then one arrives at the same estimate (9). Let us outline
the proof for this case. According to Remark 12 one can t@ansfnti-adiabatically
H+V(t)to H+Vi(t), with Vi (t) € Y(p,v), and afterwards one can apply Theorem 5.
The first diagonalization procedure is not necessary sirice 0.

(iii) Provided thatH (t) = H + V(t), with V in C'(R, #()) in the strong sense there
exists a trivial bound (see [23]) which does not depend orsiiextral properties of
H, namely

(U 0%, HOU(,0)¥)] < (¥, HO)W)] + J¢] sup V(). o)



For the derivation it suffices to notice that
O{U (£, 00, H(H)U(t,0)) = (U(£,0)%, V(t)U(t,0)¥)

WhereV(s) denotes the time derivative in the strong sense. The estigia¢n by
Theorem 5 is better than this trivial bound if

20+ 1
2(1 —a)’

(D] > Prmin =

For example, in the case of = 2/3 (the quantum ball) we get,.;, = 7/2. The
condition[p] > py.i, is fulfilled if p > 4 and then Theorem 5 tells us th@{) ¢ (t) =
O(t*/5).

2.3 An application to the Howland’s model

Let us apply the results of Theorem 5 to the model introdugedHbwland in [17] and
described by the Hamiltonidp|* + cv (6, t), with o €]0, 1[, which is supposed to act on
L*(S',df) and to be2r-periodic in time. Sef{ := |p|*. The spectral decomposition &f
reads )
1 7y
H =" n"P, where P,¥(0) = ~ / cos (n(0 — )W (s) ds.
n>0 T Jo
Except of the first one the multiplicities of the eigen-vawee equal. Using integration
by parts one derives that any multiplication operatdoy a functiona(f) € C* obeys the

estimate
221 Ha ||
(m—n)k

Hencea € Y(k,0). Applying Theorem 5 and Remark 6 ad (ii) we get

| Pna P <

Proposition 7. Leta €0, 1] andv(6, t) be a real-valued function which #&sr-periodic both
in the space and in the time variable. Suppose thétt) is C* in  andC'! in t and such

thatf v(0,t)dt = 0.1f £ > 3andk > (3 —2a)/(2(1 — «)) then there exists, > 0 such
that for every reak, |¢| < ¢, the propagatol/ (¢, s) associated to

H(t) == |p|* + ev(0,t) onL*(S,do)
preserves the domaibom(|p|*/?) and for everyl from this domain it holds true that
(U, 0%, HOU(L,0)¥) = Ot7)

where
2cv

2k — )(1—a)—1°

Let us summarize that the energy diffusion exponent in the/leiod’s model can be
made arbitrarily small provided the potential on the cirdesufficiently smooth and the
coupling constant is sufficiently small.

o =



3 Derivation of the main result

3.1 Two additional theorems

The proof of Theorem 5 is based on the following two theorefhgorem 8 and Theorem 9.
In what follows we use the notatioP := —id; on the interval[0, 7] with the periodic
boundary condition.

Theorem 8. Let K = D + H + V (t) be a Floquet Hamiltonian oi?([0, T, 2#), with H
andV(t) satisfying the assumptions of Theorem 5. ket 1 andg < p — 1 be a natural
number or zero. Then there exists> 0 such that||V'||,, < ¢ implies the existence of a
T-periodic family of unitary operatord(¢) on .7 which is continuously differentiable in
the strong sense and such that

K=Jt)(D+H+ A+ B(t))J(t)"

whereB(t) € Y(p — q,(q + 1)7) is T-periodic, Hermitian and strongly continuously dif-
ferentiable, and4 is bounded, symmetric and commutes viith

The remainder of the current paper is concerned with theffpfobheorem 8. Theorem 9
to follow is a mere modification of Proposition 5.1 in [20] inrabination with some ideas
from [1, Section 2]. This is why we present its proof in a rathketchy form. Let us also
note that the basic idea standing behind the estimates go&sdNenciu [23].

Theorem 9. Let H be a positive operator with a pure point spectrum and the spkc
decomposition! = ) E,P,. Assume that the eigen-values< £, < E, < ... satisfy
E, = O0(n%),witha > 0. Set),, = 1—P,. Let an operator-valued functidW (t) € A(.%¢)
be Hermitian,C! in the strong sense and such that

const

vn e N, ||P,W(H)Q.H Y?| <

nit3s

uniformly in time for some > 1/2. Then the propagatdy (¢, s) associated withH + W ()
preserves)y, the form domain off, and for everyW from Q) y,

(U(t,0)¥, HU(t,0)¥) = O(t2a/(2“_1))'
Remark. The bound on the energy expectation value is nontrivialif 1 + .
Proof. Let

Wa(t) =Y P,W(t)P,
n=1
be the diagonal part ¥/ (¢). It is straightforward to see th@t/;(¢) is againC" in the strong
sense. Let,(t, s) be the propagator associateddo+ W, (t). SincelV,(t) commutes with

H the same if true fol,(t, s). Equivalently this means thdf,(¢, s) commutes with all
projectorsP,. From the Duhamel’s formula we have

R(t) :=U(t,0) — Uy(t,0) = —i/ot Ua(t, s) (W (s) — Wy(s))U(s,0) ds.

10



Fix ¢ > 0 and choos& € Dom(H) C Dom(H'/?). Notice thatP, (W (s) — Wy(s)) =
P,W(s)Q,. Foranyt’,0 <t < t, it holds

HHl/QU(t/,O)\I’”Q < ZEnHPnU(t/aO)\IJHQ < ENH\I/H2+ Z EnHPnU(t/,O)\IJHQ.
n=1 n=N+1

Furthermore,
P U, 0)¥]* < 2| P %> + || P R(t)W]?)

and

0<s<t

t
|P.R(E)Y|| < / | PV (5)QuH 2| ds sup [[HY2U(s,0)¥]
ct

<

= sup ||H1/2U(s, 0)||.

nit2 g<s<t

From these estimates one concludes that fortany0, all ¥ € Dom(H), N € N and
some positive constants, ¢, independent of, ¥ and NV it holds

t2
(1 s ) s 120 (5, 0[P < o P + 21 720

N2=1 <ot

SettingN = [Ct*?»—1] whereC > 0 is a sufficiently large constant one deduces that there
existscs > 0 such that it holds

|H'2U (£, 009> < c5 (£2/Co=D)| W |]* 4 | H'/2P %) (11)

forallt > 1 andV¥ € Dom(H).

One can extend the validity of (11) 8 € Dom(H'/?). To this end it suffices to use
the fact thatDom(H'/?) is a Banach space with respect to the ndnin|, = (||¥||? +
| HY2W||?)1/2, andDom(H) C Dom(H'/?)is a dense subspace. Choosing Dom (H/?)
one can find a sequend@, } in Dom(H) such that¥, — ¥ in Dom(H'/?). Then (11)
implies that{U(¢,0)¥,} is a Cauchy sequence idom(H'/?) whose limit necessarily
equalsU (¢, 0)¥. HenceDom(H'/?) is U(t, 0)—invariant and (11) is valid also for all ¢
Dom(H'/?). This concludes the proof. O

3.2 Proof of Theorem 5
Here we show how Theorem 5 follows from Theorem 8 and Theorem 9

Lemma 10. Assume that{ is a positive operator with a pure point spectrum and the spec
tral decompositiodd = >~ | E, P,, and such that the eigen-values satisfly~,,n~* > 0,
with o > 0. SetQ),, = 1 — P,. Then for anyp > 1 there exist a constanip, o) > 0 such
that for all § > 0,

W[5

n26+3 -

YW € Y(p,8),¥n €N, [|P,WQ,H || < c(p, )

11



Proof. Suppose thatl” € Y(p, ). By the assumptiongy,, > ¢n® for all n and some > 0.
We have

IBWQHEP< Y Womll® _ 1 3
ne e - E, ~c

m,m#n m,m#n

W,

|m — n|? max{m,n}*om> "

Now one splits the range of summationsininto three segmentsd: < m < n/2, n/2 <

m < n andn < m. For each case one can apply elementary and rather obvibonseess to
show that the expression decaysiimat least as—*°~“. In the first case one has to use the
fact thata < 1. We omit the details. O

Proof of Theorem 5Theorem 8, withy := [p— 1], implies the existence of a transformation
K=Jt)(D+H+A+DB(t))J(t)" (12)

where A is bounded and diagonal arfél(t) € Y(p — q,(q + 1)7). Sinceq = [p — 1]
we havep — ¢ > 1. SetW (t) := A + B(t). ThenP,W(t)Q,, = P,B(t)Q.. The gap
condition (1) guarantees that the assumptions of Lemmaé 8adisfied and thus one finds
that || P,W (t)Q, H~'/?|| < const - n=#~%, with u = 2(q + 1)y = [p](1 — a). Notice
that assumption (8) means that> 1/2. In virtue of Theorem 9, the propagatbi(t, s)
associated té¢/ + W (¢) maps the form domai®y;; onto itself and fulfills

(04,000, HU(1.0)%) = 0("). with 7 = 5 2_O‘a) —,
for everyU € Q.
Equality (12) implies that
H4+ V() = JOHI)" +1J(6) () + J6W ()T (1) (13)

Since the family.J(t) is known to be continuously differentiable in the strongseit fol-
lows from the uniform boundedness principle that the ddaineai(t) is a bounded operator.
Moreover, using the periodicity and applying the unifornubdedness principle once more
one finds that|.J(t)|| is bounded uniformly irt. Hence all operators occurring in equality
(13), except off, are bounded. One deduces from (13) th@) mapsDom H onto itself for
everyt and that the same is also true for the form domain.Sets) := J(t)U(t, s).J(s)*.
ThenU (t, s) is the propagator correspondingtb+ V' (t). For anyV € Q) we have

(Hyg(t) = (U(t,0)0, HU(t,0)%) = (U(t,0)¥, J()HJI() Ut 0)T) + O(1)
— (U(t,0)0, HU(t,0)%) + O(1) = O(t%)

whereV := .J(0)*¥. This proves the theorem. O

3.3 The idea of the proof of Theorem 8

It remains to prove Theorem 8. The proof is somewhat lengtid/the remainder of the
paper is devoted to it. Let us explain the main idea. The ptoafbines the anti-adiabatic

12



transformation due to Howland (see Section 4) with a (prygpaodified) diagonalization
method, as presented in [10] (see Section 5). This proceaduapplied repeatedly until
achieving the required properties of the perturbation. wetlescribe one step in this ap-
proach when starting from the Floquet Hamiltonian

Kn=D+H+Y + Z(t)

whereY € Y(o0o,7) is Hermitian and diagonal (i.e., commuting wiffi) and Z(t) €
Y(r,iv) is symmetric,I-periodic and strongly’!. The parameters are supposed to satisfy
1> 1,r > 2.

Firstly, using the anti-adiabatic transform we try to impedhe decay of entries df(¢)
along the main diagonal when paying for it by a worse decayl@hents in the direction
perpendicular to the diagonal. In more detail, we would tikéransformZ(t) € Y(r,iv)
into Zo(t) € Y(r — 1, (i + 1)y). Unfortunately, we are not able to get rid of the extra term
7 € Y(r,iv), the time average of (¢). The anti-adiabatic transform can be schematically
described as

Krn=D+H+Y+Z(t) > Ks=D+H+Y + 7+ Zy(1).

To cope with the unwanted extra term we apply afterwards gaalization procedure
which in fact means the transform

Koe=D+H+Y +Z+ Zy(t)— Ko :=D+ H+ A+ B(t)

where A and B(t) already have the desired properties, i(t) € Y(r — 1,(i + 1)v) is
symmetric,T-periodic and strongly”!, and A € Y(o0,~) is Hermitian and commuting
with H.

4 The anti-adiabatic transform

In this section we adapt the strategy of Howland [17] and npakeise the mapping, —
K, as announced in Subsection 3.3. Using the anti-adiabatisform, i.e., roughly speak-
ing, applying the commutator with/, one can improve the decay of matrix entries of the
perturbation along the main diagonal at the expense of aesldecay in the direction per-
pendicular to the diagonal. Using the language of cla34eso), the anti-adiabatic trans-
form may be viewed as passing from a perturbatitqn) € Y(p, d) to a new perturbation
Z1(t) € Y(p — 1, + ) wherey comes from the gap condition (1) (see Lemma 2).

Let us introduce the transform in detail. L&t, be a Floquet Hamiltonian of the form

Kn=D+H+Y +Z(t),

with H satisfying the assumptions of TheoremY5¢ (oo, ) being Hermitian and com-
muting with H, and Z(t) € )(r,iy) being Hermitian,I-periodic and continuous in the
strong sense. By the uniform boundedness princj#&¢)|| is bounded uniformly irt. The
parameters are supposed to satisty 2,7 > 1. Set

:—/ tydt, Z(t)=2(t) - 2.

13



Define

so thatF(t) is Hermitian,T-periodic, stronglyC'! and lying inY (r, iy). Let us definek
by the gauge-type transformation &t

Ko =etOKpe™ D =D+ H4+Y + 7+ Zy(t),

with
Zo®) =D+ H+Y +Z(t) e ™D — (D+ H+Y + Z). (14)

The main result related to the anti-adiabatic transfornsifdows.

Proposition 11. Letr > 2,4 > 1, v €]0, %[, and H be a self-adjoint operator with
a pure point spectrum and the spectral decomposifibn= ) FE,P,. Assume that the
eigen-valueg F, }°° , are ordered increasingly and satisfy the inequality

B, — B,| < Cy—m ="

max{m,n}*’

Furthermore,Y” and Z(t) obey the assumptions formulated above.
ThenZ, (t) defined in (14) iF-periodic, continuous in the strong sense, Hermitian, and
liesiny (r — 1, (i + 1)). The norm o7, obeys the bound

eXp(4C7wT ||Z||7‘,W) —1
20, 4

HZO”rfl,(iJrl)v < (CH + 4HYH00,7 + QCr,v”Z”r,iv) ) (15)

with the constang’, ., defined in (7). The operator-valued functigfi® is C* in the strong
sense. Moreover, i (t) is C'' in the strong sense then the same is trueAgrt).

Proof. The periodicity and the differentiability are clear frometlabove discussion. The
RHS of (14) can be expanded according to the formula

Here we use the notatienl (B) := [A, B] = AB — BA. Sinceadyxy D = iF(t) = iZ(t)
we get

Zo(t) = Z ladj ) (1200 + [P, H+Y + 2(0)]) + Z(1)

= Z,—'ad;(g)((t) (16)
=17
where
1 j 1.
X(t) :==ad H+Y +Z(t)———Z(t) ) =ad H+Y+—7Z(t)+—72).
(1) 1= adeo (0= —720)) =ade (H+Y + 200 + 2



By Lemma 2adr;) H € Y(r — 1, (i + 1)7), and according to Corollary 4, the same holds
true for adp ) Z(t) andadpq) Z. Notice also that|Z||,s < ||Z||,s. Furthermore, since
Y € Y(o0,7) is diagonal we have

(m —n)" " max{m, n}* (PO )l

1 max{m,n}\*’ 2y 2
S Tm—n) - D E il Yol < 27 E i [[Y Moo -

Hence|| F'(t)Y ||;-1,64+1)y < 2| F||riy||Y || 0, The same estimate is true oY ()| —1,¢i+1)~
and thereford| adr Y|;—1,G+1)y < 4| Friy||Y ]|o0,,- We conclude thatX (¢) belongs to
Y(r—1,(i+1)y)and

[ XNr—1,6+1)y < NF vy (Cr + 4 Y Mooy + 2G4 [ Z 1riv) - (17)
Recalling Corollary 4 once more we have

and saady, ) X(t) liesinY(r — 1, (i + 1)v) as well and

j—1 j—1
Fadg™ Xl 1y < QO Fllrin)” 11Xl 15 - (18)

Consequently, the series (16) converges in the Banach §pace 1, (i + 1)v). To derive
inequality (15) from (17) and (18) one applies the estimgtd,;, < 27|Z|[,;, which
immediately follows from the definition of' (¢) and Z(t). This completes the proof. O

Remark 12. The proposition holds also true for= 0 provided|Z(t), Z(s)] = 0 for every
t, s. In this caseF (t) commutes withZ(t) and Z, and the formula (16) holds true with
X(t) = adry)(H +Y). Repeating the steps from the proof of the proposition oriees at
the inequality

exp(4C, ;T | Z||riy) — 1
1 Zollr—1,G41)y < 720 ! (Cr +2[[Y [Jooy)-
Y

5 The diagonalization procedure

5.1 Formulation of the result

The main result of this section is formulated in the follog/proposition.

Proposition 13. Leti > 1 be a natural number € |0, %[, andH be a self-adjoint operator
with a pure point spectrum and the spectral decompositios- ) E, P,. Assume that
the eigen-value$E, }>° | are ordered increasingly and satisfy the inequality

Im —n|

| B — Ey| > ch (19)

max{m,n}>v’
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LetY € Y(oco,) be Hermitian and commuting witH. Suppose that is Hermitian and
belongs to the clas¥(r, i) for somer > 2. Finally, assume that

— C
1Y ooy + | 2]l < e (20)

Ty X )
47 CT+1,'Y

with the constant’, ., , given by (7).
Then there exist§, a unitary operator onsZ’, such that it holds

UH+Y +2)U"=H+ A (21)
whereA € Y(o0,y) commutes witt{ and obeys
1Al < 2 (1Y llooy + 12117 - (22)

Moreover, for every operatak € Y(r — 1, (i + 1)) we have the estimate

* OT,
[UXU|lr—1,64+1)y < exp (2 o ) X =1, (23)
r+1,y

SinceU does not depend on time this result can be interpreted irollening way.

Corollary 14. Let us consider a Floquet Hamiltonian of the form
Ko=D+H+Y +Z+ Zy(t)

whereH, Y and Z obey the same assumptions as in Proposition 13, with2 andi > 1,
and Z,(t) € Y(r—1,(i+ 1)) is T-periodic, continuously differentiable in the strong
sense and Hermitian.
Then there exists a unitary operator on .7 such that for the transformed Floquet
Hamiltonian
Ko :=UKy,U" =D+ H+ A+ B(t)

it holds: A € Y(o0, ) commutes with and fulfills (22),
B(t) :=UZst)U" € Y(r —1,(i+1)y)

is T-periodic, continuously differentiable in the strong sendermitian and satisfies

C,
1Bl -s < exp(2 57 ) 1 Zoll s

r+1,y

The proof of Proposition 13 is a modification (to the case oiindting gaps) of a diago-
nalization procedure introduced in [10] and conventionedllled the progressive diagonal-
ization method.
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5.2 The algorithm

The diagonalization procedure is constructed iteratielyus first describe the algorithm.
Starting fromH + Y + Z we construct the first 4-tuple of operators

Up:=1, G, :=Y +diag Z, V; .= offdiag Z, H, := H + G + 11,

where
diag X := Y P, XP,, offdiagX := > P,XP,
neN m#n
denote the diagonal and the off diagonal part of the matrexobperatorX’ with respect to
the eigen-basis aoff. We define recursively a sequence of operatdysG,, Vi, W, andU,
by the following rules: provided:, andV, have been already defined & be the solution
of

[H + G5, W, =V, and diag W, = 0. (24)
We define
Hoy ="V He ™. (25)
Finally, we set
Us == €W5Usfl> Goy1:=diag Hypy — H, Vi = offdiag H, 1. (26)

SinceH, = H + G, + V, for all s and with the aid of (24) one derives from (25) that

= 1 — 1
Hop = Hot+ ), oadi ' Wo B = Ht Go+ Vet ) adip ! (= Ve + W, Vi)
k=1 """ k=1 """

= H+ G, + ®(adw,)Vi (27)
where
=k 1
k=1 ’

Observe also that in the course of the algoritlifnjs always diagonal (commuting with
H) and symmetricV; is symmetric and off diagonall/, is antisymmetric and off diagonal.
Thereforee's andU, are unitary. It is straightforward to prove by induction ttar every
s=1,2,...,
H4+ G+ Ve =U(H+Y + Z)U;. (29)

5.3 Auxiliary facts

To solve the commutator equation (24) we need the followesylit taken from a paper by
Bhatia and Rosenthal.

Lemma 15([4]). Let E and F' be two Hilbert spaces. Let and B be Hermitian operators
(i.e., bounded and self-adjoint) dfi and ', respectively, such thalist(c(A), o (B)) > 0.
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Then for every bounded operatdt : /' — FE there exists a unique bounded operator
X : F — E such that

AX —XB=Y.
Moreover, the inequality

™

X1 < 2dist(0(A),0(B)) |

Y1,

holds true.

Remark. The solutionX is given by
X = / e Y B f(1) dt
R

for any f € L'(R) such that its Fourier image obey$s) = 1/v/27s on the setr(A4) —
o(B). This implies|| X|| < || f|l1||[Y]|, and optimizing over suclf one gets the constant
/2.

In the algorithm plays a certain role the functidz) introduced in (28). It is supposed
to be defined on the intervéll, oo[. Let us point out here some of its elementary properties.
This is a strictly increasing function mapping the interfgabo| onto itself. It holdsb(0) =
0, ®(1) = 1, and so the function maps also the interjall[ onto itself. Moreoverd(z) is
a convex function and so

Vo €]0,1], ®(z) < z. (30)

Further, let us consider a sequerag}$, formed by nonnegative numbers obeying the

inequalities
Vs €N, z51 < O(xg)xs. (31)
If z; < 1then the sequence is non-increasing and (30), (31) imptytha < 2. It follows

that
s—1
VseN, o, <2,

and

sz < LN (32)
=1 1-— T

5.4 Convergence of the algorithm

Proof of Proposition 13We have to prove that; — 0, G, — A andU, — U. The key
ingredient of the algorithm is the control of the sizelBf given as the off diagonal solution
to the commutator equation (24). For eveny+ n we seekV,(m, n) such that

(Em + (Gs)m,m) (Ws)m,n - (Ws)m,n (En + (Gs)n,n) = (Vs)m,n

Suppose for the moment th@t lies in ) (co, ) for everys € N with

Cc
[Galloory < - (33)
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The norm|| - ||, Mmakes sense in this case singeg is diagonal for everys € N. The
spectrum ofF,, + (Gs),.» IS @ subset of the interval

GS oo GS o0
(5, 1Gals | 1Geka]

n? n2y
Owing to (19) the distance between the spectrunvQf+ (Gs)m.m and E, + (G),,., CanN
be estimated from below by
Bl S Cdm=nl  em oy
B = Bl = [Culle (™ 4070 2 ey o e = o 7
culm —n|

2max{m,n}?’ "’ (34)

The last inequality in (34) is a consequence of the follovesgimate where we assume for
definiteness that > n (recall that2y < 1):

3(m —n)

_ m _ _
5 >m ™ 4+ —=m I >mT 472,
m=7 n

Applying Lemma 15 we conclude that

7 max{m, n}*

s/m,n S V..‘? m,n||- 35
IOVl € TV, (35)
> Vsl
CH sllryiy
Moo= g = el 36
27Crnn M (36)

If V; lies in the clas9/(r, i) then one derives from (35) théit; € V(r + 1, (i — 1)) and

T

™
Willrir,i-0y < —Vellniy = 57— 37
Wollesn i1 < - WVellan = 55— @7
From Corollary 4 it follows thatd;. Vi € Y(r,iv) and
k k k
| adWS VSHM’V < (2Cr+1,v||WsHrJrl,(ifl)'y) HVSHT,W <z HVSHT,Z'W (38)

SinceV,, is defined as the off diagonal part &f,,; we get from (27) and (38) that
Vo1 = offdiag(®(adw,)V;) .

and so
||VS+1’|T,i’Y S (I)(xs)H‘/SHT,Z’Y

Hence the sequende;, } defined in (36) fulfills inequalities (31).

Since||Vi,iy < || Z||.4- assumption (20) implies, < 1/2. We know from the discus-
sion at the end of Subsection 5.3 that in that case the Sgtiesis convergent. It follows
that||V;]|,;» — 0 and, using the estimate

IWall < Wellsm < (14 2¢0r + 1) [Willrt,6-1)4
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and (37), also that/; converges to a unitary operattrin #(.7). Furthermore, from (27)
and (26) one deduces that

Gy — Gy = diag(P(adw, ) Vs) .
Sinced, is diagonal and > 1 we have
[Gost1 = Gisllooyy = [|Gor1 = Gsllry < N Gsir — Gsllrin < [ (adw, ) Villr,ir-
Using once more (37) and (38) one finds that
|Gsr1 — G|l = [|Gs41 — Gillooo < [|Gst1 — Gsllooy < MO (z5)s. (39)

From here one concludes thgt;} is a Cauchy sequence both Ji(co,v) and B(.7).
HenceG, converges to a diagonal operatbmwhich lies in) (oo, ).

We must verify that condition (33) is actually fulfilled. Géyse from (7) thatC,. ., , >
20. 3 if » > 2. By the assumptions,

CH

1G ooy < Y llooiy + 1 21l < 75

Furthermore, from (39) it follows that
S c o0
1Gstillooy < 1Gillooy + Z 1Gsi1 — Gsllooy < % + szjq)(xj)‘ (40)
j=1 j=1
Recalling that:;; < 1/2 one gets

M}

< My < || Z|psy < 22, (41)

1—3}'1 E

MZ[EJ(I)([BJ) S
7j=1
The last inequality is again a consequence of assumptign@@ concludes that condition
(33) is fulfilled for all s.

Since all operators occurring in (29) exceptffare bounded one deduces from this
equality thatU/; preserves the domain &f for all s. SinceH is a closed operator the limit
in equality (29), as — oo, can be carried out and results in equality (23).

From the computations in (40), (41) it also follows that

1Gss1lloon < NGillscry + Ma1 = [|Gillooyy + Villriy < 1Y ooy + 211 Z i

Sendings to infinity one verifies the estimate (22). Further, estim(&® implies

oo
T 1

Ws r i— < o7 Ty < = ’
; W]l +1,(i—1)y 2C, 114 ; 2C 1141 —21) = 20114

From Corollary 4 we deduce that the operaidsy, is well defined on the Banach space
Y(r —1,(i + 1)y), with a norm bounded from above By, . ||W||,41,i-1)y. Thus for

20



X € Y(r—1, (i + 1)y) one can estimate

HUXU*HTfl,(iJrl)'y _ SIEEO HeVVsewsfl . erXe—Wl e sfle_VVs (1)
< exp (407“,7 > HWerJrL(z'—l)v) [ X 1, (+1)
s=1
C,
< exp <2 G . ) X =1, G+1)-
r+1,y
This shows (23). The proof is complete. O

6 Proof of Theorem 8

As already announced, the proof of Theorem 8 is based on ainatidn of the anti-
adiabatic transform (Proposition 11) and the progressiagahalization method (Corol-
lary 14). Let us formulate it as a corollary.

Corollary 16. Letr > 2,7 > 1, €]0, 5[, and H be a self-adjoint operator with a pure
point spectrum and the spectral decompositién= ) E,P,. Assume that the eigen-
values{ E,, }°°_, are ordered increasingly and satisfy (1). Further assuna¢Yhe ) (oo, )

is Hermitian and commutes witl, and Z(¢) € )(r, iy) is Hermitian,T-periodic andC"

in the strong sense. If

CH
Y Ipiy < ————
IV sy + 1Z1in < i

then there exists a family(¢) of unitary operators onw# which isT-periodic andC" in
the strong sense and such that

UL)(D+H+Y +Z(t)Ut) =D+ H+ A+ B(t)
whereA € Y(o0, ) is Hermitian, commutes witH and fulfills
[Allooy < 2 (Y lloory + [[21lr37)

andB(t) € Y(r — 1, (i + 1)) is T-periodic, Hermitian, continuously differentiable in the
strong sense and satisfies

1 C
B —1(i < exp (2 Y )
1 Bllr=1,G+1)y 2C, Cri1y

x (exp(4Co,T [ Z]lrin) — 1) (Cr + 4IY llooy + 2Cs [ Z e -

To prove Corollary 16 it suffices to séf(t) = U exp(iF'(t)) where F'(t) comes from
Proposition 11 and/ comes from Corollary 14. Apart of this one applies the follogv
elementary estimate: if the norfjX ||, s of a T-periodic family X (¢) formed by bounded
operators is finite for somg > 1 andd > 0 then the time averag& of X (t) over the
periodT fulfills || X||,s < || X]||,.s-

Equipped with Corollary 16 we are ready to approach the pobdheorem 8.
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Proof of Theorem 80ne starts from the Floquet Hamiltonida = D + H + V (¢) and
applies to itq times Corollary 16, with each step being enumerated by 1,2,...,q. In

theith step one assumes that a strongly continuous fundtiorit) with values in unitary
operators o’ has been already constructed so that

K= Jlfl(t) (D + H + Ai—l + Bzfl(t)) Ji*l(t)*a

with A,_; € Y(oo,v) being Hermitian and commuting witH, andB;_(t) € Y(p — i +
1,47y) being symmetricI-periodic andC"! in the strong sense. In the first step one sets
AO =0, Bo(t) = V(t) andjo(t> = 1.

Corollary 16 can be applied to the Floquet Hamiltonign, := D+H+A;_1+B;_1(t),
with » = p — i + 1, provided there is satisfied the assumption

CH
Aictlloon + [1Bimallp=itrin < g *
[ Ai—1llooqy + |l 1lp—it1,iy 4 Cp_iya~ )

Recall that the constaudt, is given by (7). Under this assumption, there exists a styong
differentiable family of unitary operatots;(¢) such that

K, =D+ H+ A+ Bi(t) = U;(t) K1 U ()"

where A; € Y(oo,7) is symmetric and diagonal, and;(t) € Y(p — 4, (i + 1)) is T-
periodic, symmetric and strongty'. Moreover,

[ Ailloory <2 ([Ai—tlloony + [ Bictllp—it1,iy) (43)

and

1 C,_;
| Billp—i,it1)y < m/——exp (2 S H’V) (exp(4Cp—ip14T || Bi-1llp-i+1,9) — 1)
QOp—i—i—l,’y Op—i+2m

x (Cg + 4[| Ai1lloory + 2C—iv1 /| Bictllp—it1.i) - (44)

Finally, J;(t) :== J;_1(t)U;(t)* is a family of unitary operators which is continuously diffe
entiable in the strong sense and such that

K =J(t)(D+ H+ A, + B;(t)) Ji(t)".

To finish the proof we have to choose> 0 sufficiently small so that ifjV/||,,, < ¢ then
condition (42) is satisfied in each steg- 1,2, ..., ¢.
From (43) one derives by induction

i—1

I Aillcory < 277 Bjllp—j 41y

J=0

From here we deduce that inequalities (42) are satisfied fer1,2, ... k, provided the

inequalities
i—1

Q=N BA s s L 45
jzo H ]”P 5G4+ = 47T0p_i+2ﬁ ( )
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are satisfied for the same range of indices. Furthermoratioek (42) and (44) imply that

| Billp—iiit1)y < G| Biillp—it1,v) (46)
where
exp (222 ) i
oi(y) == (exp(40p_i+17q,T y)—l) (CH +—+(2C—it15 — 4)y) i
2Cp7i+1,'y ﬂ—Cp*iJr?v’Y

Set

i—1
E<y) = 2i_1y + 222_1_j¢3 © ¢j_1 ©--+0 ¢1(y)7 Z - 17 27 - q.
j=1
It follows from (46) that inequalities (45) are satisfied for 1,2, ...k, if it holds

CH
Fi(||B < ——
(H 0 pr) 47r0p7i+2ﬁ

for the same range of indices.
Recall thatB,(t) = V'(¢). From this discussion it is clear that condition (42) is sféd
inall stepsi = 1,2,...,q, provided||V|,, < eande > 0 is chosen so that

. CH
Vie{l,2,....¢".Wye [0,e], Fi(y) < — 2
{ q},Vy € [0,¢], Fi(y) =0y i

But all functions¢;(y) are continuous, strictly increasing and satisfy0) = 0. Conse-
quently, the same is true for all functioi$(y). Hence the following choice af will do:

. _ Cg X
€ = min Fil(i);lgzgq}.
{ ArCp ity

This completes the proof of Theorem 8. O
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