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Abstract

This work deals with the theory of stability of time-periodic quantum systems. We discuss
three different notions of stability and their interrelationship. Further, we consider three
important methods: the quantum version of the KAM method, socalled adiabatic and the
anti-adiabatic method, and their use in investigation of stability of systems described by a
Hamiltonian of perturbative typeH(t) = H0 + V (t). We suppose that the spectrum ofH0 is
pure point and thatT -periodic perturbationV (t) is small in a certain sense.

The knowledge of the asymptotic behaviour of the matrix entries ofV (t) in the eigen-
basis ofH0 is important for possible applications of these methods. Wepresent results of
analysis of one-dimensional models withH0 = −~

2 d2

dx2 + |x|α, for α > 0, in the high energy
and semiclassical regime.

Next model we study is the harmonic oscillator in the so called resonant regime. We
show that it is stable under a large class of non-localised perturbations. The last part of the
thesis consist of four articles in which I participated as the co-author.
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Chapter 1

Preface

Although the theory of non-relativistic quantum mechanicswas formulated in a rigorous way
long time ago, the theory of time-dependent Hamiltonians was for its difficulty developed at
the second half of the 20th century. They are usually used as an effective-theory approxima-
tion to more complicated systems. The key question is stability; one studies the dynamics of
observables and trajectories generated by the Schrödinger equation. In the time-periodic case
some geometrical properties of trajectories can be due to [EV] and [YK] characterised with
the help of the spectral analysis of the monodromy - the evolution operator taken over one
periodU(T, 0). This is a generalisation of the celebrated RAGE (Ruelle, Amrein, Georgescu,
Enss) theorem well-known for time independent case. We distinguish two approaches to sta-
bility: a direct analysis of dynamics (dynamical stability) and the spectral analysis of the
monodromy. Further, the spectral properties of the monodromy may be either investigated
directly ([Co2], [Bo1], [BHG], [DGJKA], [Jo3], [DKGJA], [Bo2], [MM1], [MM2], . . . ) or
determined by the spectral properties of so called Floquet Hamiltonian according to results
[Ho1], [Ho2] or [Ya].

The first general method to study stability of integrable Hamiltonians under time-periodic
perturbations was the quantum adaptation of the KAM (Kolmogorov-Arnold-Moser) method
introduced by Bellissard [Be]. Since that time, time-periodic systems are thought as mecha-
nisms which could describe the quantum chaos. Although thisis a subject of great interest in
mathematical physics, up to the present day there is no satisfactory definition of the quantum
chaos. Further development of the quantum KAM method is due [Co1] and [DS] and others.

In late 80’s Howland combined in paper [Ho3] adiabatic analysis with a result of the scat-
tering theory to exclude absolutely continuous part of the spectrum of the monodromy. This
method was further extended in [Jo1] and [Ne] and we shall call it adiabatic. It was How-
land again, who introduced a further important method in [Ho4]. The idea of this method is
roughly speaking the same as the one of the adiabatic method,but with the interchange of
time and space. Therefore, we call this method anti-adiabatic.

The aim of this thesis is to study stability and instability of time-periodic quantum sys-
tems by spectral and dynamical methods. Let us describe the organisation of this work. After
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introducing some notions of stability and standard resultsof the theory (2.1-2.5), we draw
our attention in Chapter 2 to three important methods, the adiabatic, anti-adiabatic and the
quantum version of the KAM method. We illustrate how these three methods bear upon the
stability theory and try to indicate their common background. Possible application of these
methods is based on some knowledge of the behaviour of matrixentries, we present some
results of the analysis of one-dimensional oscillators. The very last part of this chapter deals
with the dynamical stability.

In Chapter 3, we consider non-localised perturbations of the resonant harmonic oscillator,
a system which is a little bit exceptional in our context (constant gaps, non-dense point spec-
trum of the Floquet Hamiltonian). An extension of the anti-adiabatic method is introduced
in Chapter 4. In Chapter 5 we summarise the results included in this thesis. The very last
part of this thesis is formed by the reprints [DLSV1], [DLSV2], [LS] and [DLS]. The first
two articles concern about a generalisation of the quantum KAM method. In the third one
a semiclassical limit of some matrix entries is proved, and in the last article an upper bound
of the energy growth of some time-periodic systems with shrinking gaps in the spectrum is
introduced.



Chapter 2

Introduction

2.1 The Propagator

In the non-relativistic quantum mechanics the time evolution is described by the Schrödinger
equation

ı
d

dt
Ψ(t) = H(t)Ψ(t),

whereH(t) is a family of self-adjoint operators acting on a Hilbert space of quantum states
H . Time evolution from times to timet of an initial stateΨs is described with the help of
thepropagator U(t, s)

Ψ(t) = U(t, s)Ψs.

U(t, s) forms a family of unitary operators jointly strongly continuous int, s ∈ R and satis-
fying the Chapman-Kolmogorov chain rule

U(t, r)U(r, s) = U(t, s)

U(t, t) = 1.

If H(t) is independent of time the propagator is obtained by the functional calculus

U(t, s) = exp (−ı(t − s)H) .

On the contrary, in the time-dependent case the existence ofthe propagator describing the
time evolution according to the Schödinger equation is notan easy matter. By a solution
of the Schödinger equation for propagator we mean a propagator, such that for alls ∈ R

and Ψs ∈ Dom H(s) the functiont 7→ U(t, s)Ψs takes the values inDomH(t) and is
continuously differentiable in the sense of the norm onH . Moreover, for allt ∈ R and
Ψs ∈ DomH(s)

ı
d

dt
U(t, s)Ψ = H(t)U(t, s)Ψ
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holds true. Let us mention a classical sufficient condition on the existence of the propagator
(see [RS]) which goes originally to Kato.

Theorem 2.1.1([Ka]). LetH(t) be a family of self-adjoint operators such that

(i) the domainDomH of H(t) is independent oft

(ii) the function

(t, s) → 1

t − s
(H(s) − H(t)) (H(s) + ı)−1

extends to a strongly continuous bounded operator-valued function onR
2.

Then there exists unique propagatorU(t, s) such thatU(t, s) DomH ⊂ DomH and for all
Ψ ∈ DomH

ı
d

dt
U(t, s)Ψ = H(t)U(t, s)Ψ

holds true. Moreover, ifH(t) is T periodic

H(t + T ) = H(t) for all t

then the propagator satisfies

U(t + T, s + T ) = U(t, s) for all t, s (2.1)

U(t + nT, s) = U(t, s) [U(s + T, s)]n

For more general sufficient conditions one can consult [Kr].We shall not be engaged in
the problem of the existence of the propagator in details, since it is not the aim of this work.

2.2 Three notions of stability

The only question we are interested in is stability of periodic time-dependent system. There
are several notions of it, we would like to introduce three ofthem. From the point of view
of the scattering theory it is an interesting question to study whether the particle escapes to
infinity or rests in a bounded region. This problem is solved by the celebrated RAGE theorem
in the time-independent case. Fortunately, the RAGE theorem was further generalised to the
time-periodic case by Enss and Veselić in [EV]. We summarise some results of this paper in
Section 2.3 introducing bound and propagating states and illustrating the significance of the
monodromy operator.
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The second notion of stability deals with the spectral properties of so called Floquet
Hamiltonian. The relationship between the Floquet Hamiltonian and the monodromy opera-
tor is described in Section 2.4. Further, in Section 2.5 we study stability of the point or ab-
solutely continuous spectrum of some Floquet Hamiltonianswith respect to time-dependent
perturbations.

The problem of dynamical stability investigates long-timebehaviour of expectation val-
ues of physical observables. We shall focus only on the energy expectation value to decide
whether the external force can pump arbitrary amount of energy into the system or not. We
shall address this question to Section 2.7.

2.3 Bound states and propagating states

In this section we introduce the first notion of stability, closely connected to the scattering
theory. Probably the first contribution to this subject was the one of Hagedorn [Ha] in 1983,
who treated the impact parameter approximation to three body scattering problem. In the
same year, Enss and Veselić collected in the beautiful paper [EV] fundamental results of the
scattering theory for time-dependent systems and generalised the results of the celebrated
RAGE theorem to time-dependent case. By chance, in the same issue of the Annales de
l’Institut Henri Poincaré as Enss and Veselić, Yajima andKitada [YK] introduced the notion
of bound states and scattering states in the context of time-dependent Schrödinger Hamil-
tonians. However the concept of the article [EV] is more abstract and powerful. Let us
summarise some results of this paper, useful for our purpose.

Suppose that for a time dependent quantum system, which is described by the Hamilto-
nianH(t), the propagatorU(t, s) exists. Then it is possible to define two closed orthogonal
subspaces inH , the spaces of bound and propagating states. The set ofbound statesis
defined by

H
p := {Ψ ∈ H | trajectory with initial state Ψ is precompact in H },

whereas the set ofpropagating statesis defined by the condition

H
f := {Ψ ∈ H | lim

t→∞

1

t

∫ t

0

‖CU(s, 0)Ψ‖ds = 0} (2.2)

which must be fulfilled for any compact operatorC. In other words, the evolution of a state
from H p is approximately finite dimensional, while the trajectory of a state fromH f will
leave any compact subset ofH in the time average.
If we moreover assume that our quantum system isT periodic, i.e.

H(t + T ) = H(t) for t ∈ R.
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then it holds true that (see [EV])

H
p = H

pp (U(T, 0))

H
f = H

cont (U(T, 0)) .

By definition, H pp (U(T, 0)) is the closure of a subspace formed by the spanned eigen-
vectors ofU(T, 0), H cont (U(T, 0)) its orthogonal complement. From this fact follows the
decomposition ofH into subspaces of bound and propagating states.

H = H
p ⊕ H

f .

The operatorU(T, 0) is therefore very important and it is called themonodromy operator
(or Floquet or period operator). If for example the spectrumof U(T, 0) is pure point, we
conclude that all quantum states are bound.

It may seem that the definition of the monodromy depends on thechoice of the origin of
the time axis. It is not so since the operatorU(T, 0) is unitary equivalent toU(T + t, t) for
anyt ∈ R. Thanks to (2.1) it holds true that

U(T + t, t) = U(T + t, T )U(T, 0)U(0, t) = U(t, 0)U(T, 0)U∗(t, 0)

At the end of this section let us remark that in [EV] a geometric definition of bound and
propagating states is discussed. Since it is not useful for our purpose, we skip the details and
refer the reader to [EV].

2.4 The Floquet theory for time-dependent Hamiltonians

In this part we will show how the spectral properties of the monodromy operator are related
to the spectral properties of the Floquet Hamiltonian. Thisrelation, useful for the theory of
stability of time-periodic Hamiltonians, was for the first time proved by Kenji Yajima [Ya]
in 1977. More abstract concept was later (in 1979) introduced by Howland [Ho2] and we
mainly refer to this paper.

Following [Ho1] let us start with a procedure, inspired by reduction to an autonomous
system in classical mechanics. Instead of the Hamilton function h(p, q, t) depending ex-
plicitly on time we extend the phase space by new independentvariables, timet and (the
conjugate momentum) energyE, and define the new Hamiltonian function

k(p, E, q, t) := E + h(p, q, t).

The Hamilton equations with new parameterσ now read

dq

dσ
=

∂k

∂p
,

dp

dσ
= −∂k

∂q
dt

dσ
=

∂k

∂E
= 1,

dE

dσ
= −∂k

∂t
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and are equivalent to the standard ones. The new parameter isjust shifted timeσ = t+const.
Analogously in quantum mechanics we consider the new Hamiltonian

K̄ := −ı∂t + H(t) (2.3)

which is calledquasienergyand acts on the extended Hilbert spacēK := L2(R, H ). So
that fort ∈ R, Ψ(t) is a vector fromH . Sometimes it is convenient to use the identification
K̄ ≃ L2(R)⊗H . Suppose that the unitary propagatorU(t, s) corresponding toH(t) exists.
Forσ ∈ R we define operatorV (σ) onK̄

V (σ)Ψ(t) := U(t, t − σ)Ψ(t − σ). (2.4)

V (σ) forms a strongly continuous unitary group on̄K , which is a consequence of the defi-
nition of the propagatorU. Thus, by the Stone theorem there exists a generator of this group.
In [Ho2] Howland shows that−ıK̄ is formally equal to the generator. Hence

V (σ) = e−ıσK̄ .

We define the unitary transformation in the spirit of the Bloch analysis into the spacẽK :=
L2 ([0, T ], l2(H )) formed by square-integrable functions ofθ with values inl2(H )

T : K̄ → K̃ : Ψ 7→ xn(θ) :=
1

T

∫

R

e−
ı2πt

T2 (Tn+θ)Ψ(t)dt,

so that the inverse transform reads

(T ∗x) (t) = Ψ(t) :=
1

T

∑

n∈Z

∫ T

0

e
ı2πt

T2 (Tn+θ)xn(θ)dθ.

If the Hamiltonian isT -periodic (this is what we suppose in what follows) then the trans-
formed quasienergy takes the form

(

T K̄T ∗x
)

(θ, n) = (Tn + θ)xn(θ) +
∑

m∈Z

Ĥn−mxm(θ),

with Ĥn := 1
T

∫ T

0
H(t)e−

ı2πt
T

ndt. K̃ may be realised asL2[0, T ] ⊗ l2(H ), too, where the
decompositionT K̄T ∗ = M(θ)⊗ 1 +1⊗ K̃ takes place withM(θ) being the multiplication
by the identity function onL2[0, T ] and

(K̃x)(n) = Tn xn +
∑

n∈Z

Ĥn−mxm

for x ∈ l2(H ). Now we take singleK̃ and proceed further transformationF which takes
the sequencex ∈ l2(H ) into

(Fx)(t) = f(t) :=
∑

n∈Z

e
ı2πn

T
txn,
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locally square-integrableH -valued function of periodT. The new operator

K̂ := FK̃F∗ = −ı∂t + H(t)

is formally the same as the original quasienergy (2.3), but it acts on periodic functions. The
relationship (2.4) between the propagatorU(t, s) andK̂ is reproduced

e−ıσK̂f(t) = U(t, t − σ)f(t − σ).

Using the property (2.1) and periodicity off we obtain

e−ıT K̂f(t) = U(t, t − T )f(t− T ) = U(t + T, t)f(t).

SinceU(t + T, t) = U(t, 0)U(T, 0)U∗(t, 0) we come to the desired formula

e−ıT K̂f(t) = U(t, 0)U(T, 0)U∗(t, 0)f(t)

which relates the monodromy operator tôK. Trivially, one can transform the operator̂K
unitarily to

K := −ı∂t + H(t) (2.5)

acting onK := L2 ([0, T ], H ) with periodic boundary condition in time, i.e.Ψ(0) = Ψ(T ).
The very last operator we shall call theFloquet Hamiltonian. We have to bear in mind, that
K = −ı∂t + H(t) is nothing, but the formal expression. In a rigour approach it is defined
(up to the factor−ı and the transformation mentioned above) as the generator ofthe group
e−ıtK̂ . One has to discuss the question of the domain ofK. In the case ofH(t) = H0 +V (t),
with V (t) uniformly bounded, which will be of our interest, it is more or less direct. Let us
formulate the main result of this section which suits to thiscase. One can find the proof in
[DSSV].

Theorem 2.4.1([DSSV]). Suppose that a quantum system is driven by aT - periodic Hamil-
tonian H(t) = H0 + V (t) acting on a separable Hilbert spaceH . Assume thatV (t) is
uniformly bounded and that the propagatorU(t, s) exists. Define the Floquet Hamiltonian
K as the closure of the operator−ı∂t + H(t) with the domain{f ∈ C∞[0, T ]|f(0) =
f(T )} ⊗ Dom H0. Then the spectral properties of the monodromy operatorU(T, 0) are the
same as those ofe−ıTK .

Remark 2.4.2. (i) Notice that the terminology in the Floquet theory is not unified. The
operators (2.3) and (2.5) are of same action and differ only by the underlying spaces.
Our notation uses bar not to get confused and distinguish between the quasienergy
and the Floquet Hamiltonian. The latter lies in the centre ofour interest, because of
its relation to the monodromy operator.

(ii) In all what follows we deal with Floquet Hamiltonians ofthe typeK = −ı∂t + H0 +
V (t), with V (t) uniformly bounded. We suppose implicitly that the domain ofK is
chosen as in Theorem 2.4.1.
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2.5 Spectral stability of pure point Floquet Hamiltonians

Suppose that a quantum system is described by a Hamiltonian of perturbative type

H(t) = H0 + V (t)

and acting on the Hilbert spaceH . HereH0 is assumed to be self-adjoint with pure point
spectrum and the spectral decomposition

H0 =

∞
∑

n=1

EnPn,

with eigen-values ordered increasinglyE1 ≤ E2 ≤ · · · . Let V (t) be a self-adjoint perturba-
tion T -periodic in time and bounded in a suitable norm. As we have shown, for the question
of the existence or absence of propagating states it is important to know spectral properties
of the monodromy operatorU(T, 0). From Theorem 2.4.1 it follows that this is equivalent to
the spectral problem of the corresponding Floquet Hamiltonian

K = D + H0 + V (t)

acting onL2 ([0, T ], H ) with periodic boundary condition in time. We use the notation
D := −ı∂t. The spectrum of the unperturbed Floquet HamiltonianK0 := D + H0 is pure
point with eigenvalues

λk,n =
2π

T
k + En

labelled by integersk andn ≥ 1. Thus the set of propagating statesH f defined by the
condition (2.2) is empty.

The goal of the perturbation problem is to prove that this holds true for the perturbed
Floquet HamiltonianK as well, if V (t) is sufficiently ”smooth or small”. This question is
not trivial at all, since forH0 unbounded the point spectrum ofK0 := D + H0 is dense inR
in generic case. More precisely (see [DSV]) the set

ωZ + {En}n∈N

is dense inR for almost allω ∈ R providedsup En = +∞.
There are several methods which deal with the spectral problem ofK, however we focus

only on three of them: the quantum adaptation of the KAM method, and what we call adi-
abatic and anti-adiabatic method. The information about the spectrum ofK is less precise
in the case of latter two methods. On the contrary to KAM, which guarantees the pure point
character of the spectrum ofK, the adiabatic and the anti-adiabatic methods just excludesthe
absolutely continuous spectrum. Later, we introduce key ideas of these three methods, now
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we just say that for their applications the asymptotic behaviour of the gaps in the spectrum
of H0 i.e.

En+1 − En

is crucial. We distinguish three classes of HamiltoniansH0 according to behaviour of the
gaps

• Constant gapsEn = n, e.g. the harmonic oscillator.

• Shrinking gaps, typicallyEn+1 − En ≃ n−2γ , with γ > 0.

• Increasing gaps,En+1 − En ≃ nα, with α > 0 for example.

The case of constant gaps is quite special. In [Co1] Monique Combescure combined the
KAM theory with the Nash-Moser trick and obtained a result about the stability of the pure
point spectrum of the monodromy under some class of periodicperturbations, which does
not include potentials however. Perturbations of the harmonic oscillator localised in space
are discussed in [EV]; we extend their result to a class of non-localised potentials in Chapter
3. The KAM and the adiabatic method apply successfully in thecase of increasing gaps,
while the anti-adiabatic method in the case of shrinking gaps.

In the picture we present, these three methods may be viewed as variants of application
of the following formula

eABe−A = B +
∞
∑

j=1

1

j!
adj

A(B) (2.6)

with a convenient choice ofA, B. We use the notationadA(B) := [A, B] = AB − BA.
Both adiabatic and anti-adiabatic methods use the following result of the scattering theory

about the stability of the absolutely continuous spectrum of U(T, 0) (orK, equivalently). See
Schmidt [Sch] and the generalisation by Howland to trace-class perturbations. The statement
presented here is, in fact a consequence of Theorem 5 in [Ho2].

Theorem 2.5.1([Ho2]). Let V (t) be a measurable self-adjoint trace-class-valued function.
Assume thatV (t) is T -periodic and that

∫ T

0

‖V (t)‖1dt < ∞.

LetH0 be self-adjoint, and letU(t, s) be the propagator associated withH(t) := H0 +V (t).
Then

σac(H0) = ∅ =⇒ σac (U(T, 0)) = ∅.
Remark 2.5.2. The absence of the absolutely continuous spectrum of the monodromy is
weaker condition than the pure-pointness and does not implythe absence of propagating
states.
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2.5.1 The adiabatic method

In 1989, James S. Howland introduced in paper [Ho3] a new method to treat stability of
time-dependent systems. In agreement with some authors we shall call this method adia-
batic. The idea is to combine adiabatic analysis with the result of the scattering theory (see
Theorem 2.5.1) to exclude any absolutely continuous part inthe spectrum of the monodromy.
An essential assumption of this method is that the gaps in thespectrum of the unperturbed
Hamiltonian have to grow. The adiabatic method was extendedby Alain Joye [Jo1] and
Georgiu Nenciu [Ne] to the case of growing multiplicities ofthe eigen-values ofH0.

To see better the similarities with the anti-adiabatic and the KAM method we present this
method in an algebraic form used by Howland in paper [Ho3]. Let us deal with the Floquet
Hamiltonian

K := D + H0 + V (t)

acting onK := L2([0, T ], H ) with periodic boundary condition imposed in time. Let the
spectrum ofH0 be discrete and obeying thegrowing gap condition

inf
En+1 − En

nα
> 0 (2.7)

for a givenα > 0. V (t) is assumed to be T-periodic sufficiently differentiable function
with values in the space ofhermitian (i.e. bounded self adjoint) operators onH . Suppose
moreover that the monodromy operatorU(T, 0) associated withH0 + V (t) exists. A typical
result of the adiabatic method (extracted from [Ho3]) is

Theorem 2.5.3([Ho3]). Assume that aT -periodic quantum system is described by the
HamiltonianH0 + V (t). Suppose that the spectrum ofH0 is pure-point and simple and
obeys the growing gap condition (2.7) forα > 0. If V (t) ∈ Cr(R, B(H )), with r ≥ [ 1

α
]+ 1

then the monodromyU(T, 0) has no absolutely continuous spectrum.

Let us explain the main idea of the proof. Suppose for simplicity that the diagonal part
of the matrix of operatorV (t) in the eigen-basis ofH0 is zero. DefineW (t) as a solution of
the commutator equation

[W (t), H0] = −V (t).

Such a solution is not unique, we can add to the given one any operator commuting withH0

and obtain a new solution. Let us chooseW (t), such that its matrix entries in the eigen-basis
of H0 take the form

Wm,n(t) :=
−Vm,n(t)

Em − En
for m 6= n

:= 0 else.
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Observe thatW (t) is anti-symmetric, thereforeeW (t) is formally unitary. Define the adiabatic
transformation ofK by

K1 := eW (t)Ke−W (t);

hence we have obtained a new Floquet Hamiltonian which is unitary equivalent to the orig-
inal one. Notice that[W (t), D] = ıẆ (t) := ı d

dt
W (t). Expanding the right hand side due to

(2.6) yields

K1 = D + H0 + V (t) + [W (t), D + H0 + V (t)] + . . .

= D + H0 + ıẆ (t) + [W (t), V (t)] + . . . (2.8)

Using the adiabatic transform we have replaced effectivelyV (t) by ıẆ (t). It is technically
difficult to prove that the remainder in (2.8), i.e.[W (t), V (t)] + . . . is “less important”. For
the matrix entries we have

Ẇm,n(t) =
−V̇m,n(t)

Em − En

for m 6= n

Notice that the diagonal oḟW (t) vanishes as well as the diagonal ofW (t). The growing gap
condition (2.7) implies

inf
m6=n

|Em − En|
|mα+1 − nα+1| > 0.

Since one can easily prove that|mα+1 − nα+1| ≥ (mn)
α
2 |m − n|, we may estimate

∣

∣

∣
Ẇm,n(t)

∣

∣

∣
≤ const

|V̇m,n(t)|
(mn)

α
2 |m − n| for m 6= n.

Thus we observe that the new perturbation has matrix elements with better decay properties
than originalV (t). We remark that the decay of entries is improved both in the direction
parallel to the diagonal (due to the presence of(mn)

α
2 ) and perpendicular to the diagonal

(term |m − n|). By repeating the adiabatic transformr times we come to a new Floquet
Hamiltonian, unitary equivalent to the original one

Kr = D + H0 + B(t),

with B(t) in trace class uniformly. The following estimate on the trace norm‖A‖1 ≤
∑

m,n |Am,n| is used. By Theorem 2.5.1 we conclude that the absolutely continuous spec-
trum of Kr is the same asσac(K0) = ∅. Consequently that the same holds forK and the
monodromyU(T, 0) corresponding toH0 + V (t).
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2.5.2 The anti-adiabatic method

To our knowledge the only general method to deal with spectral stability of systems with
shrinking gaps is the one introduced by Howland in [Ho4]. We shall see that the core of
this method is very similar to the essence of the adiabatic method. From the discussion
it hopefully clear up why we call this method anti-adiabatic. Consider again the Floquet
Hamiltonian

K := D + H0 + V (t)

on K := L2([0, T ], H ) with periodic b.c. The following theorem is our improvementof
the result in [Ho4].

Theorem 2.5.4.Let the spectrum ofH0 be pure point. Suppose that the eigen-valuesE1 ≤
E2 ≤ · · · obey theshrinking gap condition

sup n2γ(En+1 − En) < ∞ (2.9)

for a givenγ ∈]0, 1/2[. Let V (t) be aT -periodic function with values in the space of her-
mitian operators onH . Suppose that the monodromyU(T, 0) corresponding toH0 + V (t)
exists. If the matrix entries ofV (t) in the eigen-basis ofH0 are measurable functions oft
and satisfy

|Vm,n(t)| ≤ const
1

(mn)γ〈m − n〉r (2.10)

uniformly, withr > 1 + 2
γ
, then the monodromy operatorU(T, 0) has no absolutely contin-

uous spectrum.

Remark 2.5.5. (i) We use the notation〈k〉 := max{1, |k|}.

(ii) The shrinking gap condition (2.9) is equivalent to

|Em − En| ≤ const
|m − n|
(mn)γ

for m, n ∈ N (2.11)

used by Howland.

(iii) We takeγ < 1/2 since forγ > 1/2 condition (2.11) implies that the eigen-valuesEn

are bounded, what is not of our interest. We also exclude the caseγ = 1/2 which
corresponds toEkn

∼n→∞ log kn for a sub-sequence(kn).

The proof and the discussion can be found in Chapter 4, here wejust sketch the main
idea. SetV̄ := 1

T

∫ T

0
V (t)dt and denotẽV (t) := V (t) − V̄ . We define the anti-adiabatic

transformation ofK by the same formula as in the adiabatic case

K1 := eW (t)Ke−W (t) = D + H0 + V (t) + [W (t), D + H0 + V (t)] + . . . ,
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but now we chooseW (t) so thatṼ (t) and[W (t), D] cancel each other, effectively replacing
Ṽ (t) by [W (t), H0]. Recall that in the adiabatic case we have chosenW (t) so thatV (t)
and[W (t), H0] cancel each other, effectively replacingV (t) by [W (t), D]. The regularity of
the perturbationV (t) in time was used to improve the decay of matrix entries. In theanti-
adiabatic method the regularity in space (the part ofK corresponding toH ) is used. Both
methods are based on the same type of transformation, however the roles of time and space
are interchanged.

Notice that after the anti-adiabatic transformation the average part of the original pertur-
bationV̄ remains, but as we shall see it does not represent an obstacle, since this operator
does not depend on time. Using assumption (2.10) one can observe thatV̄ is compact. Let
us define

W (t) := ı

∫ t

0

Ṽ (s)ds

so thatW (t) isT -periodic and anti-hermitian for everyt. Since[W (t), D] = ıẆ (t) = −Ṽ (t)
we have

K1 = D + H0 + V̄ + [W (t), H0] + [W (t), V (t)] + . . . .

As already noticed,̄V is compact and does not depend on time. One has to overcome some
technical points to prove that[W (t), V (t)] + . . . is less important than the term[W (t), H0].
If we look at the matrix entries (in the eigen-basis ofH0) of the commutator

[W (t), H0]m,n = Wm,n(t) (Em − En)

and use condition (2.11) we obtain the estimate

|[W (t), H0]m,n| ≤
|W (t)m,n(m − n)|

(mn)γ
.

Thus, using the anti-adiabatic transformation we can improve the decay of the perturbation
along the main diagonal at the expense of the decay in the direction perpendicular to the
diagonal. Applying the anti-adiabatic machineryl := [1/2γ] times we come to

Kl = D + H0 + A + B(t)

with A compact time-independent andB(t) in the trace class uniformly. Recall that the
spectrum ofH0 is discrete. Using the Weyl’s theorem we conclude that the spectrum of
H0 + A is discrete too. The statement then follows from Theorem 2.5.1.



2.5. SPECTRAL STABILITY OF PURE POINT FLOQUET HAMILTONIANS 15

2.5.3 The KAM theory

The Kolmogorov-Arnold-Moser method well known in the classical mechanics was adopted
to the quantum case by Bellissard [Be]. Further developmentwas due to Combescure [Co1],
who used the Nash-Moser trick which consist in a splitting ofthe perturbation into parts.
Each part of the perturbation is added and the KAM-type diagonalisation procedure is ap-
plied on this partially perturbed Floquet Hamiltonian. This process is repeated infinitely
many times until the whole perturbation is added. Later, Duclos andŠ̌tovı́ček combined the
KAM method with the adiabatic one in [DS]. The Nash-Moser trick was involved into the
diagonalisation procedure; in each step of the algorithm a part of the perturbation is added.
In contrast to [Co1] the diagonalisation is applied only once. Further versions of the KAM-
type theorem are presented in the articles [DLSV1] and [DLSV2] which are included in this
thesis. The adiabatic part is omitted and the splitting of the perturbation is done in an ap-
propriate form. The algorithm of the diagonalisation is described in an abstract form with
the help of an inductive limit of Banach spaces. A convenientchoice of the norms in these
spaces led to a weakening of the regularity assumptions imposed on the perturbation. See
also Section 10 in [DLSV1]. The result of [DLSV2] include even a class of unbounded per-
turbations. An abstract concept of the algebraic background of the KAM theory is described
in [Vi]. Remark that a KAM-type algorithm was also used in time quasi-periodic case in
articles [BG], [Ge1] and [Ge2].

Let us describe the settings. Consider Floquet Hamiltonian

Kω := D + H0 + V (ωt)

onK := L2([0, T ], H ) with periodic b.c.V is now supposed to be2π-periodic and we de-
noteω := 2π/T. From reasons which become clear later we treat the problem asdepending
on the parameterω lying in a compact intervalΩ. The KAM method is iterative; one tries
to diagonalise the operatorKω by constructing a sequence of operatorsKs

ω which converges
(in an appropriate sense) to a diagonal operator unitarily equivalent toKω. The statement of
the theorem is not able to guarantee pure-point spectrum ofKω for all frequenciesω, one ex-
cludes a small (in the Lebesgue sense) set of resonant frequencies to prevent so called small
divisors problem. Unlike to the adiabatic and anti-adiabatic method,V is also supposed to
be sufficiently small. At this place we reproduce a rough version of a KAM-type theorem.

Theorem 2.5.6([DLSV1]). Let Ω be a fixed compact interval,H0 acting on a separable
Hilbert H have a simple discrete spectrum{E1 < E2 < ...} obeying the growing gap
condition

inf
En+1 − En

nα
> 0

for α > 0. LetV (t) be2π-periodic strongly continuously function with values in hermitian
operators onH . DenoteVk,m,n :=

∫ 2π

0
e−ıktVm,n(t)dt, the k-th Fourier coefficient of the
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matrix element ofV (t) in the eigen-basis ofH0. Then there existsp(α) > 0 such that for
everyr > p(α), ∃δ(α, r) > 0 andC(α, r), such that

‖V ‖r := sup
m∈N

∑

n∈N

∑

k∈Z

|Vk,m,n|〈k〉r < δ(α, r)

implies∃Ωres ⊂ Ω with |Ωres| ≤ C(α, r)‖V ‖r|Ω| so that the Floquet Hamiltonian

Kω = −ı∂t + H0 + V (ωt)

is pure point for allω ∈ Ω \ Ωres. Here|Ω| stands for the Lebesgue measure ofΩ.

Remark 2.5.7.The theorem is generalised to the case of degenerate eigen-values in [DLSV1],
and further to a class of unbounded perturbations in [DLSV2].

In the following we describe inductively the algorithm which diagonaliseKω in the limit.
For brevity we skip the labelling of the dependence onω andt. At first, we split the operator
V into a sum

V =
∞
∑

s=0

V (s).

At this place we do not specify how this splitting is defined, just remark thatV (0) is chosen so
that it commutes withH0. For details we refer to [DLSV1]. According to KAM algorithm 4
sequences of operators{Ks}, {Gs}, {Vs} and{Ws} are constructed. We work with matrices
in the eigen-basis ofD + H0. Notice that the matrices are labelled by 4-tuple of indices
k, l, m, n. The first two indices are integers, the latter two natural numbers. We shall denote
by diag A andoffdiag A the diagonal and off diagonal part of an operatorA with respect to
the eigen-basis ofD+H0. Remark thatGs will be diagonal for everys while Vs andWs will
be always off diagonal. The sequences are defined recursively by the following rules

1. G0 := V (0), V0 := 0

2. ProvidedGs, Vs were already determined, defineWs as the solution of

[D + H0 + Gs, Ws] = Vs and diag Ws = 0. (2.12)

Hence we have for off diagonal entries

(Ws)k,l,m,n =
(Vs)k,l,m,n

ω(k − l) + Em − En + (Gs)k,l,m,m − (Gs)k,l,m,n
(2.13)
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3. Set inductively,

U0 := 1, Us := exp Ws · · · exp W1.

Then
Ks+1 := eWs(D + H0 + Gs + Vs)e

−Ws + UsV
(s+1)U∗

s (2.14)

and
Gs+1 := diag Ks+1 − D − H0, Vs+1 := offdiag Ks+1 (2.15)

By induction one shows that from (2.14) and (2.15) follows

Ks = D + H0 + Gs + Vs = Us−1

(

D + H0 +

s
∑

j=0

V (j)

)

U∗
s−1.

The goal of this method is to prove the existence of the limits

Gs → G, Vs → 0, Us → U.

Then we would obtain for the Floquet Hamiltonian

D + H0 + G = U (D + H0 + V ) U∗ = UKU∗

with G diagonal and we would be done. Let us outline some points of the proof.Ws is chosen
as the solution of the commutator equation (2.12). The main problem of the algorithm is to
control the small divisors in (2.13), or in other words to keep the size ofWs comparable to
the size ofVs. However, this is not possible for all frequenciesω ∈ Ω, one has to exclude
so called resonant ones. In each steps, one defines the set of the resonant frequencies
Ωs

res ⊃ Ωs−1
res as the set ofω ∈ Ω for which the expressionω(k−l)+Em−En+(Gs)k,l,m,m−

(Gs)k,l,m,n is “small”. The final setΩres is defined as the union of theseΩs
res. It turns out that

Ωres is not so large and it is possible to yield an estimate of its Lebesgue measure proportional
to ‖V ‖r.

Overcoming this obstruction we are able to control the size of Ws comparable toVs.
Expanding (2.14) according to formula (2.6) and using the definition of Ws one obtains

Ks+1 = D + H0 + Gs + O
(

(Vs)
2
)

+ UsV
(s+1)U∗

s

It is evident thatV (s) → 0, since the sum of allV (s) givesV. The fact thatVs → 0 demon-
strates the progress of the diagonalisation procedure and is, in fact, a consequence of the
finiteness of the norm‖V ‖r (which implies power decay of the matrix entries ofV.) If the
off diagonal part ofV is small,K is transformed intoK1 in the first step, with the off diago-
nal partV1 smaller. Further, ass is increasing,Vs is shrinking. Clearly, for the convergence
of Us the convergence of the series

∑∞
s=0 ‖Ws‖ is sufficient. By a convenient choice of the

splitting ofV it is possible to satisfy this condition, too.
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2.6 Asymptotic behaviour of matrix entries

In Section 2.5 we have presented the KAM, adiabatic, and anti-adiabatic methods to study
time-periodic Hamiltonians of perturbative type

H(t) = H0 + V (t),

with H0 pure point. The problem was reformulated in the matrix representation and there-
fore the assumptions of the theorems requires some knowledge of the matrix entries of the
perturbationV (t) in the eigen-basis ofH0, see Theorems 2.5.4 and 2.5.6. The adiabatic
method (Theorem 2.5.3) is a little bit exceptional from thispoint of view. However, the dif-
ferentiability property is transformed, in fact, into the decay properties of the matrix entries
of the new perturbation. For possible applications of thesetheorems it is sufficient to know
the asymptotic behaviour of the matrix entries ofV (t) in the eigen-basis ofH0, i.e.

〈m|V (t)|n〉,

where |n〉 denotes then-th eigen-state ofH0. This fact has motivated our study of one-
dimensional models described by the Hamiltonian

H0 = −~
2 d2

dx2
+ |x|α,

acting onL2(R) with α > 0. Using standard methods one concludes thatH0 is positive with
simple pure point spectrum. LetEn denote then-th eigen-value and|n〉 the corresponding
eigen-function, so thatH0|n〉 = En|n〉. Remark that both eigen-values and eigen-functions
depend on~. For simplicity, we suppose that time-dependence ofV (t) is factorised, i.e.
V (t) = f(t)v, with f being aT -periodic continuously differentiable real-valued function
andv a hermitian operator onL2(R). The question may be formulated as follows: What are
the asymptotic properties of the transition amplitudes of an observablev

〈m|v|n〉

for m, n large. In fact, we were investigating two regimes, the high energy regime and the
semiclassical one.

2.6.1 High energy regime

In the high energy regime we treat the case whenm, n → ∞ while the Planck constant~ is
fixed. By a convenient choice of units we may suppose that~ = 1. Let us present a theorem
which deals with entries close to the main diagonal and observablesv depending only on the
position, i.e. potentials. In fact, it is a generalisation of some results of the diploma thesis
[Lev].
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Theorem 2.6.1.Let α > 0, v be an even real-valued differentiable function, such thatv′ ∈
L1(R) and for somer < 1

v(x) ≤ const

1 + |x|r ,

holds true for everyx ∈ R. Denote by|n〉 then-th normalised eigen-function of the oscillator
H0 := − d2

dx2 + |x|α acting onL2(R). The phase of|n〉 is fixed by the condition that|n〉 is
positive on a neighbourhood of+∞ and the enumeration of eigen-functions starts from the
indexn = 0. Then for everyk ∈ Z fixed

〈n|v(x)|n + 2k〉 ∼ Cα(−1)kn− 2

α+2

∫

R

v(x)dx, for n → ∞ (2.16)

holds true with an explicitly known constantCα > 0.

Remark 2.6.2. (i) SinceH0 commutes with the parity operator, the parity of|n〉 corre-
sponds to the parity of its quantum numbern. Therefore〈n|v|m〉 = 0 if the difference
n − m is odd.

(ii) Using the Bohr-Sommerfeld quantisation condition onededuces the asymptotics of the
energy levels

En ∼ Kαn
2α

α+2 , as n → ∞

with a constantKα known explicitly. Thus forα > 2 the gapsEn+1 − En between
the eigen-values are growing, forα = 2 they are constant, and finally for a parameter
α ∈]0, 2[ the gaps are shrinking.

(iii) In the proof of the theorem the approximated eigen-functions are constructed using
the WKB analysis and further studied by asymptotic methods.The proof is rather
technical, therefore we skip it and refer the reader to [Lev].

For applications one can ask whetherv lies in a classX (p, δ) defined in Definition 4.1.3.
From the theorem it follows that|〈m|v|n〉| ≤ const(mn)−

1

α+2 since one can splitv into the
positive and the negative part and apply the Schwartz inequality

〈m|A|n〉 ≤
√

〈m|A|m〉〈n|A|n〉

to both of them. Hence the rapidity of the decay along the maindiagonal is greater than
or equal to 1

α+2
. Since formula (2.16) gives the asymptotics〈m|v|m〉 ∼ const m− 2

α+2 for
n → ∞, we observe that this estimate is optimal.

If non-constant,v can not lie in any classX (p, δ) with p > 1, δ > 0. In that casev
would be compact self-adjoint and therefore pure point. This is possible only in the case of
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v(x) = const, since an operator which acts as the multiplication by a non-constant continu-
ous function has always nontrivial continuous spectrum.

Comparing this knowledge with the assumptions of Theorems 2.5.3, 2.5.4 and 2.5.6 one
concludes that it is possible to apply the KAM and adiabatic method to the model described
by

H(t) := − d2

dx2
+ |x|α + f(t)v,

with α > 2, f continuously differentiable (sufficiently many times) andT -periodic and
v satisfying the assumptions of Theorem 2.6.1. the anti-adiabatic method is not directly
applicable to this model. To assure thatv ∈ X (p, δ) wit p > 1, δ > 0 one has to treat the
case of more general observables depending non-trivially on the momentum. This is an open
question.

2.6.2 Semiclassical regime

The semiclassical limit is defined by the conditionsn → ∞ and~ → 0 in such a way that
En = E is constant. In fact, one has to choose an appropriate sequence~n → 0 so that the
Bohr-Sommerfeld quantisation condition relatingn, ~ andE is satisfied. Let us present the
following theorem.

Theorem 2.6.3.LetE > 0 andk ∈ Z be fixed. Assume thatv is a real-valued bounded and
continuously differentiable function ofx. Then there exist a sequence of positive numbers~n

and a sequence of real-valuedL2(R)-normalised functions|n〉, such that~n → 0 and |n〉 is
then-th eigen-function of

Hn := −~
2
n

d2

dx2
+ |x|α

corresponding to the eigen-valueE. The enumeration of eigen-functions starts from the index
n = 0 and their phase is fixed by the condition that|n〉 is positive on a neighbourhood of
+∞. Moreover, in the semiclassical limit, i.e.n → ∞, ~n → 0, we get

〈n|v(x)|n + k〉 → 1

T

∫ T

0

v (q(t)) eıkωtdt

where(q(t), p(t)) , t ∈ [0, T ], is the classical trajectory in the phase space at the energyE

and the initial point chosen asp(0) := 0, andq(0) := E
1

α (the right turning point).T is the
period of the classical motion andω = 2π/T is the frequency.

The theorem is further generalised in the preprint [LS] which is included in this thesis.
Not to get confused in the notation we remark that in [LS] we treat more general oscillators
H0 := −~

2 d2

dx2 +V (x), while the perturbation is denoted byW. So that the matrix〈n|W |n+
k〉 is investigated. The semiclassical regime is not directly applicable to the theory of time-
dependent systems, however it gives a qualitative information. Its asymptotic analysis is less
difficult, so it was possible to obtain more general results than in the high energy regime.
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2.7 Dynamical stability

Stability properties of a quantum system may be determined by the behaviour of the expecta-
tion values of quantum observables, for example energy. On the contrary to time independent
systems where the energy is conserved during the time evolution, it is an important question
to study behaviour of expectation values of the energy in thetime-dependent case, not nec-
essarily periodic. Mathematically, one investigates asymptotic properties of the function

〈U(t, 0)Ψ, H(t)U(t, 0)Ψ〉

in the long-time regime for aΨ from some convenient dense set inH . In the case ofH(t) =
H0 +V (t) andV (t) bounded uniformly one can choose for exampleDomH0. Provided that
H(t) = H0 + V (t), with V in C1(R, B(H )), there exists a trivial bound due to Nenciu
[Ne], which does not depend on the spectral properties ofH0. Since

∂t〈U(t, 0)Ψ, H(t)U(t, 0)Ψ〉 = 〈U(t, 0)Ψ, V̇ (t)U(t, 0)Ψ〉,

whereV̇ (s) denotes the time-derivative in the sense of the operator norm, we get

〈U(t, 0)Ψ, H(t)U(t, 0)Ψ〉 = O(t) (2.17)

for anyΨ from DomH0.
One can ask, whether the energy expectation value remains even bounded during the time

evolution of a given stateΨ form DomH0. Physically, this means that the amount of the
energy absorbed from the neighbourhood is finite. It was observed by de Oliveira in [deO]
that such a condition implies for time-periodic systems that H pp (U(T, 0)) = H . From the
Floquet theory (see Section 2.4) it further follows that thespectrum ofK is pure point. Hence
this condition is stronger then the pure-pointness of the spectrum ofK. The boundedness of
the energy expectation values was for the first time proved byAsch, Duclos and Exner in
[ADE] using the KAM theory. They have treated the case ofH(t) = H0 + V (ωt), with
V being2π-periodic andC∞. In 2005, their theorem was improved by Duclos,Š̌tovı́ček,
Soccorsi and Vittot in [DSSV]. The result is

Theorem 2.7.1.Let the assumptions of Theorem 2.5.6 be satisfied. Then the propagator
U(t, s) associated withH(t) := H0 + V (ωt) exists and for everyΨ ∈ DomH0

sup
t∈R

〈U(t, 0)Ψ, H(t)U(t, 0)Ψ〉 < ∞

holds true providedω is taken fromΩ \ Ωres.

The statement of the theorem is restricted to time-periodicsystems, non-resonant fre-
quencies and applies only in the case of growing gaps. All of these conditions were relaxed
in the papers [Ne], [Jo2], and [BJ], but with a weaker estimate

〈U(t, 0)Ψ, H(t)U(t, 0)Ψ〉 = O(tβ),



22 CHAPTER 2. INTRODUCTION

with β ∈]0, 1[. The authors applied three different methods; Nenciu used the adiabatic ma-
chinery supposing that the spectrum ofH0 is formed by bands which draw apart. Joye
availed the assumption of fast decay of the matrix entries ofV (t) along the diagonal. Fi-
nally, Barbaroux and Joye have developed another trick using the Dyson expansion under
the hypothesis that the elements decay fast in the directionperpendicular to the main diago-
nal.

In [DLS] we give an upper bound on the energy growth using a newmethod, based on
the application of the anti-adiabatic method, and the so called progressive diagonalisation.
The procedure requires periodicity and smallness of the perturbation, sufficient decay of the
matrix entries of the perturbation in the direction perpendicular to the main diagonal, and,
also, certain small decay along the diagonal. On the other hand, compared to [BJ] the method
turns out to be more efficient in the case of shrinking gaps, the diffusive exponentβ obtained
by our method is typically smaller in comparison with the onein [BJ]. Also, the set from
which the initial conditions are taken is larger then the onein [BJ] (see [DLS]) for details).
The paper [Jo2] does not give a better diffusive exponent, since it profits from the diagonal
decay only. The adiabatic method used in [Ne] is not applicable in this case since the gaps
in the spectrum do not grow.



Chapter 3

Non-localised perturbations of the
harmonic oscillator

3.1 Introduction and the result

Stability of the harmonic oscillator under time-dependentperturbations is in general a dif-
ficult question. The first result goes already to [EV] where the Stark effect and some time-
periodic perturbations in the resonant regime and localised in space are analysed. A general
quadratic time-dependent Hamiltonian was analysed in [HLS] using the solubility of the
system. A combination of KAM-type technique with the Nash-Moser trick was applied in
[Co1] to prove the stability with respect to a class of time-periodic operators at least for
non-resonant frequencies. Notice that this class of perturbation however does not contain
potentials. Stability with respect to a large class of perturbations which involves decaying
potentials is proved in the work by Duclos and Vittot which have not been published yet.

In this part, we extend some results by Enss & Veselić presented in [EV], part V.II where
the stability of the harmonic oscillator under some specialtime-dependent perturbation is
treated. New result include some non-localised potentials, e.g. any finite linear combination
of cos x multiplied by one fixed time-dependent functionf(t). Let us specify the settings.
Let

H0 :=
1

2
P 2 +

ω2

2
Q2,

be the Hamiltonian of the harmonic oscillator, acting onL2(R). Further, let

V (t, x) := f(t)v(x),

with f beingT -periodicC1(R) function, andv a bounded potential on the real line. We
assume the resonant case, i.e.ωT/2π rational. Remark that in [Co1] the frequency1/T is
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assumed to be Diophantine what is far from to be resonant. Denote byU(t, s) the unitary
propagator of

H(t) := H0 + V (t).

Under previous assumptions the propagator exists and is unique. We shall prove that the set
of propagating states which equalsH cont (U(T, 0)) is empty. In the unperturbed case when
V (t, x) = 0 the monodromy is equal toe−iH0T and is pure-point. The resonant case of the
harmonic oscillator is a little bit exceptional, as the point spectrum of its Floquet Hamiltonian
is not dense inR, however it contains some eigen-values of infinite multiplicity. We look for
perturbationsV (t, x) such that the pure-point character of the spectrum of the monodromy
is conserved. A sufficient condition is formulated in the following theorem.

Theorem 3.1.1.The set of the propagating states ofT -periodic one dimensional quantum
system driven by

H(t) :=
1

2
P 2 +

ω2

2
Q2 + f(t)v(Q)

is empty, providedf is a continuously differentiableT -periodic function,v is a real-valued
almost periodic function, andωT/2π is rational. In other words, under previous assumptions
the monodromy associated withH(t) is pure point.

Using the Fourier transform one deduces

Corollary 3.1.2. The set of the propagating states of a quantum system described by the
Hamiltonian

H(t) :=
1

2
P 2 +

ω2

2
Q2 + f(t)A,

is empty, iff is aT -periodicC1(R) function,ωT
2π

is rational andA is any linear combination
of cos(aP ) with a ∈ R.

Notice that the action of suchA may be non-localised since

cos(aP )Ψ(x) =
1

2
(Ψ(x + a) + Ψ(x − a)) .

Remark 3.1.3. (i) The set of almost periodic functions is studied in monographs [Bs]
and [Le]. Basic properties are summarised in [DSw] Chapter XI. Remark that ifv
is continuous withlimx→±∞ v(x) = 0 thenv is almost periodic. Thus any potential
localised in space is included in the set of AP functions.
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(ii) If ωT/2π is rational, the monodromy corresponding to

H(t) :=
1

2
P 2 +

ω2

2
Q2 + Q sin(

2π

T
t)

is purely absolutely continuous (see [EV]). Obviously the perturbation is not bounded
in this case, thus one can ask where the border of the stability lies.

Proof. If v(x) is constant, we can split the functionf into the time-averagēf, and peri-
odic partf̃(t). With the help of a convenient unitary transform, one can getrid of f̃(t)v.
The rest,f̄ v, is nothing but a constant which does not change the spectral properties of the
monodromy. Set

M := span {eıax|a ∈ R, a 6= 0} .

The set of all almost periodic functions may by written as thesum of the sets

AP = span{1} + M
∞

,

whereM
∞

denotes the closure ofM with respect to the supreme norm. Suppose for the rest
of the proof thatv is real and fromM

∞
. Due to Theorem5.2 in [EV] the difference

e−iH0T − U(T, 0)

is compact if this is true for

WV (t, s) :=

∫ t

s

eiHωσV (σ)e−iHωσdσ (3.1)

for all s, t ∈ [0, T ]. In Section 3.2 we show thatWf cos andWf sin are compact. By the
approximation argumentWfv is compact too. Since we are in the resonant case, the spectrum
of e−iH0T contains at most finite number of accumulation points which form the essential
spectrum. Using the Weyl’s theorem we claim that the spectrum of the monodromyU(T, 0)
has the same property, since the differencee−iH0T −U(T, 0) is compact . Thus the spectrum
of the monodromy is pure-point and therefore the set of propagating states is empty.

3.2 Potentialcos(bx) and sin(bx)

Without loss of generality we assumeb > 0. The goal is to prove that the operator

Wf cos(t, s) :=

∫ t

s

eiHωσf(σ) cos(bX)e−iHωσdσ
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is compact for alls, t ∈ [0, T ] and the same property follows forWf sin. Lemma 5.4 in [EV]
states that a sufficient condition for the compactness ofWf cos is the same property of matrix
O with entries

Om,n :=
〈m| cos(bX)|n〉

〈m − n〉 . (3.2)

Here|n〉 stands for then-th eigen-state of the harmonic oscillator〈x|n〉 = 1
4
√

π
√

2nn!
e−

x2

2 Hn(x)

and〈k〉 := max{1, |k|}. Because of the parity of the Hermite functionsOm,n vanishes if
the differencem − n is odd. In the following, we deal with matrix entriesOm,m+2u with
m, u ∈ N. This is possible, since the matrix is symmetric. To prove that O represents a
compact operator we exploit the fact that integrals of the Hermite functions with sine and
cosine can be computed explicitly. Further we study the result of integration by asymptotic
methods. For brevity we skip some lengthy computations and estimates. We believe however
that it is straightforward to reconstruct these steps for a reader.
Due to [GR], formula 7.388 (7)
∫ ∞

0

e−x2

cos(bx)Hm(x)Hm+2u(x)dx = 2m− 1

2

√

π

2
m!(−1)ub2ue−

b2

4 L(m, 2u,
b2

2
)

holds true for everyb > 0. Hence

〈m| cos(bX)|m + 2u〉 =
(−1

2
)ub2ue−

b2

4 m!L(m, 2u, b2

2
)

2
√

m!(m + 2u)!

It is well known (see for example the book of Olver [Ol]) that there is a relationship between
the Laguerre polynomialsL and the functionU

L(m, α, x) = L(α)
m (x) =

(−1)m

m!
U(−m, α + 1, x),

and that one can express the asymptotics ofU in terms of the function Gamma

U(a, b, x) = Γ(
b

2
− a +

1

4
)π− 1

2 e
x
2 x

1

4
− b

2 cos

(

√

(2b − 4a)x − (
b

2
− a − 1

4
)π

)

×
(

1 + O(| b
2
− a|− 1

2 )

)

.

If we apply the Stirling’s formula after some algebraic manipulations and estimates we come
to

|〈m| cos(bX)|m + 2u〉| ≤ C√
b
Am,uBm,u, (3.3)

with an universal constantC, andA, B defined by

Am,u :=
(m + u)m+u

m
m
2 (m + 2u)

m
2

+u
, Bm,u :=

(

1 + 3
4(m+u)

)m+u

(m + u + 3
4
)

1

4

m
1

4 (m + 2u)
1

4
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To estimateBm,u we simply use the fact that(1 + x)
1

x ≤ e, for x > 0. Thus one gets

Bm,u ≤ e
4
√

m
. (3.4)

It is convenient to rewritelog Am,u = mg( u
m

) with the help of auxiliary functiong(x) :=
(1 + x) log(1 + x) − 1

2
(1 + 2x) log(1 + 2x) defined forx > 0. Using some estimates of the

derivative ofg we obtaing(x) ≤ 0, for x ∈ [0, 2) andg(x) ≤ x log 3
4
, for x ≥ 2. Applying

this knowledge we estimateA by

Am,u ≤ 1, for u ≤ 2m

≤
(

3

4

)u

, for u ≥ 2m (3.5)

3.2.1 Compactness

Using the symmetry, (3.4) and (3.5) together in (3.3) we get for a universal constantC,
independent ofm, n, b

|〈m| cos(bX)|n〉| ≤ C√
b 4
√

min(m, n)
for [

n

5
] ≤ m ≤ 5n

≤ C√
b 4
√

min(m, n)

(√
3

2

)|m−n|

for n ≥ 5m, or m ≥ 5n. (3.6)

[a] denotes the integer part of a real numbera. Now we are ready to prove that the matrixO
defined by (3.2) represents a compact operator. We write downO as the productY ZY of a
compact operatorY and a bounded oneZ, with

Yk,m :=
δk,m

log m

Zm,n :=
log m 〈m| cos(bX)|n〉 log n

〈m − n〉 .

Clearly,Y is compact since it is diagonal and the limit of diagonal entries is 0. In Proposition
3.2.1 we show thatZ is Shur-Holmgren. Then since‖Z‖ ≤ ‖Z‖SH holds true for any
operator, we are done. Recall the definition of the Shur-Holmgren norm

‖Z‖SH := max

{

sup
n∈N

∞
∑

m=1

|Zm,n| , sup
m∈N

∞
∑

n=1

|Zm,n|
}

. (3.7)

Proposition 3.2.1.Z is Shur-Holmgren.
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Proof. SinceZ is symmetric, it is sufficient to verify thatsupn∈N

∑∞
m=1 |Zm,n| < ∞. It is

not difficult to prove using (3.6) that

∞
∑

m=1

|Zm,n| =
1√
b
O(n− 1

5 )

and this completes the proof.

3.2.2 Potentialsin(bX)

Quite similar computation may be applied in the case the potential sin(bX). Due to [GR],
formula 7.388 (6)

∫ ∞

0

e−x2

sin(bx)Hm(x)Hm+2u+1(x)dx = 2m

√

π

2
m!(−1)ub2ue−

b2

4 L(m, 2u + 1,
b2

2
)

holds true for everyb > 0. Hence

〈m| sin(bX)|m + 2u + 1〉 =
(−1

2
)ub2ue−

b2

4 m!L(m, 2u + 1, b2

2
)

2
√

m!(m + 2u + 1)!

Following the asymptotics ofL andU and using the Stirling’s formula again one obtain

|〈m| sin(bX)|m + 2u + 1〉| ≤ K

b
3

4

(m + u)m+u

m
m
2 (m + 2u)

m
2

+u

(

1 + 5
4(m+u)

)m+u

(m + u + 5
4
)

3

4

(

1 + 1
m+2u

)
m
2

+u
(m + 2u + 1)

3

4 m
1

4

≤ K

b
3

4
4
√

m

(m + u)m+u

m
m
2 (m + 2u)

m
2

+u
.

The rest is exactly the same as in the cosine case.



Chapter 4

The anti-adiabatic method

4.1 Introduction

The anti-adiabatic method was invented by J. S. Howland in [Ho4]. The idea is to apply
a gauge-type transformation to the Floquet Hamiltonian. Onthe contrary to the adiabatic
transform where the application of an inverse commutator improves the behaviour of the
perturbation, this method relies on application of the commutator withH0. This is why we
call it anti-adiabatic. We would like to introduce an improvement of the results by Howland.
By a more careful analysis, we are able to depress the assumption V (t) ∈ X (∞, γ) to
V (t) ∈ X (r, γ) with r > 1 + 1

2γ
. We have to say that Howland remarks at the end of the

article that it is possible to do it, however it does not seem to him to be worthwhile to do it.
This is not our case; this extension of the anti-adiabatic method is an important ingredient
of [DLS]. Remark that a slightly modified definition of the Howland’s classes is established
there, see [DLS] for details.

Let us begin with the result of this chapter.

Theorem 4.1.1.Let the spectrum ofH0 be discrete with eigen-valuesE1 ≤ E2 ≤ · · ·
obeying

|En − Em| ≤ const|n − m|(nm)−γ , (4.1)

for a givenγ ∈]0, 1
2
[. LetV (t) be aT -periodic function with values in the space of hermitian

operators onH . Suppose that the monodromyU(T, 0) associated withH0 + V (t) exists. If
the matrix entries ofV (t) in the eigen-basis ofH0 are measurable functions oft and satisfy

|Vm,n(t)| ≤ const
1

(mn)γ〈m − n〉r (4.2)

uniformly in time, withr > 1+ 1
2γ

, then the monodromyU(T, 0) has no absolutely continuous
spectrum.

Remark 4.1.2. (i) Shrinking gap condition (2.11) is equivalent to this one, with β = 2γ.
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(ii) If H0 is unbounded and the time-dependence ofV (t) is factorised, i.e.V (t) = f(t)v
then the theorem holds true providedf is T -periodic and integrable over[0, T ], and
the matrix entries ofv satisfy

|vm,n| ≤ const
1

〈m − n〉p ,

with p > 2 + 1
2γ

+ γ
2
.

The proof consist in the repeated application of the anti-adiabatic transform. Before we
start with this procedure, let us bring out some notions and useful facts. At first, we recall the
definition of the Howland’s classesX (p, α). Not to get confused with [DLS] where another
classes and norms are defined, we denote the Howland’s original norm by‖ · ‖H

p,α.

Definition 4.1.3. Let p > 1, α ≥ 0. We say, that an infinite matrix depending ont ∈ [0, T ]

A(t) = {An,m(t)}n,m∈N

is in classX (p, α) if and only if

‖A‖H
p,α := sup

t∈[0,T ]

sup{|An,m(t)|(nm)α〈n − m〉p : n, m ≥ 1} < ∞,

with 〈n−m〉 := max{1, |n−m|}. We say that an operator-valued function B(t) onH is in
classX (p, α) if and only if its matrix in the eigen-basis ofH0 lies in the classX (p, α).

Notice thatX (p, α) is a Banach space equipped with the norm‖·‖H
p,α. X (p, α) is a subset

of the set of bounded operators onl2(N), since for the Shur-Holmgren norm (see 3.7)

‖A‖SH ≤ (1 + 2ζ(p)) ‖A‖H
p,α

holds true.ζ(p) :=
∑∞

k=1 k−p denotes the Riemann’s zeta function. Further,A ∈ X (p, α) is
compact ifα > 0.

We will often use inequalities (holding for everyn, m, k ≥ 1)

m

k
≤ 2〈m − k〉, 〈n − m〉 ≤ 2〈n − k〉〈k − m〉, (4.3)

in fact consequences ofa, b ≥ 1 =⇒ a + b ≤ 2ab. From the definition of the norm‖ · ‖H
p,α

one deduces using (4.1) the following lemma

Lemma 4.1.4.Letp > 2. If A ∈ X (p, α), then the commutator[A, H0] is inX (p−1, α+γ)
and

‖[A, H0]‖H
p−1,α+γ ≤ const‖A‖H

p,α

holds true.
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4.2 The anti-adiabatic transform

As it was outlined in part 2.5.2, using the anti-adiabatic transformation, in fact applying
the commutator withH0, one can improve the decay of the matrix entries of the perturba-
tion along the main diagonal at the expense of the decay in thedirection perpendicular to
this diagonal. With the help of the definition of the Howland’s classes, the anti-adiabatic
transform may be viewed as the passing from a perturbationA(t) ∈ X (p, α) to a new one
Ã(t) ∈ X (p − 1, α + γ), whereγ is given by the shrinking gap condition (4.1), see Lemma
4.1.4. An important technical tool used in [Ho4] is the following lemma about the product
of two Howland’s classes.

Lemma 4.2.1. If A ∈ X (p, α) andB ∈ X (p, β), then the productAB is inX (r, α + β) if

1 < r < min{p − 1

2
− α + β

2
, p − α, p − β}

This lemma may be generalised into a result of the type

X (p, α)X (r, β) ⊂ X (q, δ),

with a convenient choice ofq andδ. For our purpose it is important that one can play with the
choice of these parameters; sometimes we concentrate ourselves to obtainδ the best possible
(it is α + β in fact), sometimes we do not need such a largeδ, but we want to obtain better
q. Let us present a new lemma about the product of two Howland’s classes. It is stated for a
special choice of the classes, suitable for the later use.

Lemma 4.2.2. Let n be a natural number or zero,p > n + 1, and i ∈ {0, · · · , n + 1}.
Suppose thatX lies inX (p − n, γ(n + 1)) andY in X (p − i, γ(i + 1)) . Then both of the
productsXY, Y X are inX (p − n − 1, γ(n + 2)) .

Let us postpone the proof of the lemma and formulate the main result of the anti-adiabatic
method.

Theorem 4.2.3.Let the spectrum ofH0 be discrete with eigen-valuesE1 ≤ E2 ≤ · · ·
obeying the condition (4.1). Further, letV (t) ∈ X (p, γ) be a measurableT -periodic and
symmetric for everyt ∈ [0, T ]. Then for every natural numberl < p− 1 there exists a family
of unitary operators J(t) onH such that

K := D + H0 + V (t) = J(t)
(

D + H0 + Wl + Ṽl(t)
)

J(t)∗,

holds true withWl symmetric compact and time-independent, andṼl(t) ∈ X (p− l, (l +1)γ)
symmetric andT -periodic.
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Proof. We proceed by induction inn ∈ {0, . . . , l}. Let us begin withn = 0. SetV0(t) :=

V (t) and decomposeV0(t) := V̄0 + Ṽ0(t) into the mean̄V0 :=
∫ T

0
V0(t)dt and the rest. Set

W0 := V̄0 andJ0(t) := 1. ThenW0 is compact, since it lies inX (p, γ) and the statement
holds true.

Let us describe the induction stepn → n + 1. Consider the Floquet Hamiltonian

Kn = D + H0 + Wn + Ṽn(t) = Jn(t)∗ (D + H0 + V (t)) Jn(t) (4.4)

with Ṽn(t) lying in X (p − n, (n + 1)γ) symmetricT -periodic and such that
∫ T

0

Ṽn(t)dt = 0.

Wn is supposed to be time-independent and compact. Set

Gn+1(t) :=

∫ t

0

Ṽn(s)ds,

so thatGn+1(t) is symmetricT -periodic and inX (p − n, γ(n + 1)) . We defineKn+1 by the
gauge-type transformation

Kn+1 := eıGn+1(t)Kne−ıGn+1(t) = D + H0 + Wn + Vn+1(t), (4.5)

with

Vn+1(t) = eıGn+1(t)
(

D + H0 + Wn + Ṽn(t)
)

e−ıGn+1(t) − (D + H0 + Wn) . (4.6)

Obviously,Vn+1(t) is T -periodic. Later, we prove the following lemma

Lemma 4.2.4.Vn+1(t) lies inX (p − n − 1, γ(n + 2)) .

DefineV̄n+1 :=
∫ T

0
Vn+1(t)dt andṼn+1(t) := Vn+1(t)−V̄n+1. SetWn+1 := Wn+1+V̄n+1.

Then it holds true that
Kn+1 = D + H0 + Wn+1 + Ṽn+1(t)

with Wn+1 compact symmetric and not depending on time, andṼn+1(t) ∈ X (p − n − 1, γ(n + 2))
symmetric andT -periodic. Further, thanks to (4.4, 4.5) we get

Kn+1 = Jn+1(t)
∗ (D + H0 + V (t)) Jn+1(t),

with Jn+1(t) = Jn(t)e−ıGn+1(t). SinceGn+1(t) is symmetric,Jn+1(t) is unitary. This com-
pletes the induction step and the proof of the theorem.

Notice that from the proof it follows that

Wn =

n
∑

i=0

V̄i,

with V̄i ∈ X (p − i, (i + 1)γ).
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4.2.1 Proof of Lemma 4.2.2 and Lemma 4.2.4

Proof of Lemma 4.2.2.We treat the caseXY, the opposite one is analogous. Using the defi-
nition of the norm‖ · ‖H

q,α we get with the help of inequalities (4.3)

‖XY ‖p−n−1,(n+2)γ = sup
m,l∈N

(ml)(n+2)γ〈m − l〉p−n−1
∞
∑

k=1

|XmkYkl|

≤ ‖X‖p−n,(n+1)γ‖Y ‖p−i,(i+1)γ sup
m,l∈N

∞
∑

k=1

(ml)(n+2)γ〈m − l〉p−n−1

(mk)(n+1)γ(kl)(i+1)γ〈m − k〉p−n〈l − k〉p−i

≤ 2p−n−1+(n−i+2)γ‖X‖p−n,(n+1)γ‖Y ‖p−i,(i+1)γLn,i,γ,

with

Ln,i,γ := sup
m,l∈N

∞
∑

k=1

k−2iγ〈m − k〉γ−1〈k − l〉(γ−1)(n−i+1). (4.7)

Let i 6= 0. From the Hölder inequality (withs = 1+γ
1−γ

, r = 1+γ
2γ

) it follows that

Ln,i,γ ≤ sup
m∈N

∞
∑

k=1

k−2γ〈m − k〉γ−1

≤
( ∞
∑

k=1

k−2rγ

)
1

r

sup
m∈N

(

1 +

∞
∑

k=1

k−s(1−γ) +

m−1
∑

k=1

k−s(1−γ)

)
1

s

= ζ
2γ

1+γ (1 + γ) (1 + 2ζ(1 + γ))
1−γ

1+γ ≤ (1 + 2ζ(1 + γ)) .

The same expression estimatesLn,0,γ for n ≥ 1 since 2γ
1−γ

< 2. Finally, one obtains directly
L0,0,γ ≤ (1 + 2ζ(2 − 2γ)) . The lemma is proved.

Proof of Lemma 4.2.4.SinceadGn+1(t) D = ıĠn+1(t) = ıṼn(t), we get by expanding the
right-hand side of (4.6) due to formula (2.6)

Vn+1(t) =

∞
∑

j=1

ıj

j!
adj−1

Gn+1(t)

(

ıṼn(t) +
[

Gn+1(t), H0 + Wn + Ṽn(t)
])

+ Ṽn(t)

=
∞
∑

j=1

ıj

j!
adj−1

Gn+1(t)
Bn,j(t), (4.8)

with

Bn,j(t) := adGn+1(t)

(

H0 + Wn +
j

j + 1
Ṽn(t)

)

.
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Recall that from the proof Theorem 4.2.3 we have

Wn =
n
∑

i=0

V̄i,

with V̄i ∈ X (p − i, (i + 1)γ).
By Lemma 4.1.4adGn+1

H0 ∈ X (p− n− 1, (n + 2)γ) and using Lemma 4.2.2 the same
holds true foradGn+1

Wn andadGn+1
Ṽn. Thus we conclude thatBn,j(t) is inX (p−n−1, (n+

2)γ). Applying Lemma 4.2.2 again we get that in the same class lies also adj−1
Gn+1(t) Bn,j(t)

and moreover

‖ adj−1
Gn+1(t)

Bn,j(t)‖H
p−n−1,(n+2)γ ≤ Cp,n,γ,H

(

Cp,n,γ,H‖Gn+1‖H
p−n,(n+1)γ

)j−1 ‖Bn,j‖H
p−n−1,(n+2)γ ,

with a constantCp,n,γ,H. Then due to the presence of the factor1
j!

it is easy to conclude that
Vn+1(t) lies inX (p − n − 1, γ(n + 2)) since such a class forms a Banach space. The proof
of Lemma 4.2.4 is complete.

4.3 Proof of Theorem 4.1.1

Proof. We apply Theorem 4.2.3 withl := [ 1
2γ

], the integer part of1
2γ

. ThereforeK =

D + H0 + V (t) is unitarily equivalent toD + H0 + Wl + Ṽl(t), with Wl compact and
Ṽl(t) ∈ X (r − l, (l + 1)γ). It is easy to see that

1 < r − l,
1

2
< (l + 1)γ < 1.

Ṽl(t) is trace-class uniformly since its trace norm may be estimate by

‖Ṽl(t)‖1 ≤
∞
∑

i,j=1

|Ṽl(t)i,j | ≤ ‖Ṽl‖H
r−l,(l+1)γ

∞
∑

i,j=1

1

(ij)(l+1)γ〈i − j〉r−l
< ∞.

It is not difficult to check that the last sum is convergent. Bythe Weyl’s theorem the spectrum
of H0 + Wl is discrete, since the same is true for the spectrum ofH0 andWl is compact. To
finish the proof it suffices to apply Theorem 2.5.1.



Chapter 5

The results of the thesis

During the study of time-periodic quantum systems I have focused myself on two direc-
tions: the first one was the development of the methods, the second one the analysis of some
models. According to this, we can organise the objectives ofmy work into two groups:

• The methods:Try to improve general methods for time-periodic systems

• The models:Analyse models withH0 being (a general) oscillator

Let us discuss the results.

5.1 The KAM method

We begin with the KAM method which deals with the spectral stability of the Floquet Hamil-
tonianK0 := −ı∂t + H0 (acting onL2([0, T ], H ) with periodic b.c.) with respect toT -
periodic perturbationsV (t). SinceH0 is supposed to have discrete spectrum, the spectrum
of K0 is pure point. By the spectral stability we mean the propertythat the spectrum of
K0 + V (t) is pure point too.

As we explain in Section 2.5, the KAM theory is applicable in that case when the gaps
in the spectrum ofH0 are growing. Remark that in [Co1] it is modified for constant gaps,
too. The statement guarantees that the spectrum ofK0 + V (t) is pure point for a set of
periodsT of non-zero Lebesgue measure. In the papers [DLSV1] and [DLSV2], the theory
was generalised to the case of growing multiplicities of theeigen-values ofH0 and a class
of unbounded perturbationsV (t). An important assumption of the theorem is thatV (t) is
sufficiently differentiable with respect to time. Let us remark that some results of these
papers were already included in my Diploma thesis [Lev].

Since the theory is most developed in the case of the growing gaps, it may seem that it is
“nice and solved”. The spectral result of the KAM-like theorem is however non-trivial. In
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the paper [Bo2], Bourget showed the evidence of purely singular spectrum (for almost allT )
for the system corresponding formally to

K = −ı∂t + H0 + |φ〉〈φ|
∑

n∈Z

δ(t − nT ),

with H0 having pure point spectrum with the eigen-valuesEn obeying the condition

En+1 − En ≥ Cn−2γ ,

for someγ > 0. The vectorφ is assumed to be cyclic with respect toH0 and satisfying some
additional properties. Notice that the time-dependence ofsuch a perturbation is singular, on
the other hand the perturbation is of the rank one.

5.2 The anti-adiabatic method

The new result of the anti-adiabatic method is formulated inTheorem 4.1.1. Provided that
V (t) is T -periodic and in classX (r, γ), with r > 1 + 1

2γ
, the statement excludes any abso-

lutely continuous part from the spectrum ofK = −ı∂t + H0 + V (t), whereH0 is supposed
to have discrete spectrum, such that the gaps in the spectrumdiminish (see 4.1).

In fact, already Howland remarked in [Ho4] that it is possible to weak the assumption
V (t) ∈ X (∞, γ) to V (t) ∈ X (r, γ) (see Definition 4.1.3), with anr > 1 finite . We think
that this generalisation is remarkable by itself, anyway itis an important ingredient of [DLS]
where we combine the anti-adiabatic method with the progressive diagonalisation and some
results of [Jo2]. Without the generalisation tor finite this work would not be possible.

Similarly to the KAM theory, the spectral result of the anti-adiabatic theory is not trivial,
since the example of Bourget (see the previous section) involves the case of the shrinking
gaps, too. Notice that there is no restrictive condition on the multiplicities of the eigen-
values ofH0 in Theorem 4.1.1, they can grow arbitrarily withn. Aside from the question of
the optimality ofr, we do not see any possible extension of this idea.

5.3 Asymptotic behaviour of matrix entries

Inspired by the methods mentioned above, we have started to analyse a family of one-
dimensional models described by

H0 = −~
2 d2

dx2
+ |x|α,

with α > 0. It is not difficult to prove thatH0 has simple pure point spectrum. Depending on
the choice ofα, the gaps in the spectrum are growing (α > 2), constant (α = 2) or shrinking
(α ∈]0, 2[). Denote by|n〉 then-th eigen-vector ofH0.
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Choosing an observableA, we are interested in the asymptotic behaviour of the matrix
entries

〈m|A|n〉,

for m, n large. We introduce two results corresponding to the high energy regime (~ = 1,
n → ∞, En → ∞) and the semiclassical regime (~ → 0, n → ∞, En = E = const). In the
first case, we prove for a localised even potentialv (see Theorem 2.6.1) that

lim
n→∞

〈n|v|n + 2k〉 = Cα(−1)kn− 2

α+2

∫

R

v(x)dx

holds true for everyk ∈ Z fixed. This is a generalisation of the result of [Lev]. It turns out
that the KAM and the adiabatic theories are applicable to this model forα > 2, however,
for possible application of the anti-adiabatic method it isnecessary to treat more general
observables depending also on the momentum.

In the semiclassical limit (see Theorem 2.6.3), we have for amore generalv

〈n|v|n + k〉 → 1

T

∫ T

0

v (q(t)) eıkωtdt

where(q(t), p(t)) , t ∈ [0, T ], is the classical trajectory in the phase space at the energyE

and the initial point chosen asp(0) := 0, andq(0) := E
1

α . T is the period of the classical
motion andω = 2π/T. For the harmonic oscillator a result of this type is known fora long
time in the physical literature (see [LL]). We extend its validity in [LS] to a class of general
oscillatorsH0 = −~

2 d2

dx2 + V (x) and prove it rigorously.

5.4 Non-localised perturbations of the harmonic oscillator

The Harmonic oscillator in the resonant regime is describedby the Floquet Hamiltonian

K0 = −ı∂t +
1

2
P 2 +

ω2

2
Q2,

which acts onL2[0, T ]⊗ L2(R), with periodic b. c. in time. The resonance is defined by the
condition thatωT/2π is rational. This is an example of a system with constant gaps. Treating
the spectral stability ofK0, we profit from the fact, that its point spectrum is not dense in R.
It turns out that for a generic Floquet Hamiltonian the opposite is true (see Section 2.5).

In Chapter 3, we prove that the spectrum of the Floquet HamiltonianK0 is stable with
respect to some large class of non-localised perturbationsV (t). The statement of Theorem
3.1.1 may be reformulated into the following shape.
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The spectrum of the Floquet Hamiltonian

K := −ı∂t +
1

2
P 2 +

ω2

2
Q2 + f(t)v(Q)

acting onL2[0, T ] ⊗ L2(R) is pure point, providedf is a continuously differentiableT -
periodic function,v is a real-valued almost periodic function, andωT/2π is rational. This is
a generalisation of the result in [EV] wherev is assumed to be compactly supported.

Applying the Fourier transform one concludes that the same theorem is valid for

K := −ı∂t +
1

2
P 2 +

ω2

2
Q2 + f(t)v(P ).

Since it is well-known (see [EV]) that the spectrum of

−ı∂t +
1

2
P 2 +

ω2

2
Q2 + Q sin(

2π

T
t)

is purely absolutely continuous is is natural to ask, whether there is a condition which relates
the growth of the perturbation in the phase space to the spectral properties ofK.

5.5 Energy growth of some systems with the shrinking gaps

In the preprint [DLS] we introduce an upper bound of the energy growth of some periodi-
cally driven quantum systems with shrinking gaps in the spectrum. Let us describe briefly
the result, see [DLS] for more details. Assume that a quantumsystem is described by the
HamiltonianH(t) := H0 + V (t), whereH0 has pure point spectrum with eigen-values
E1 < E2 < . . . obeying the shrinking gap condition

cH
|m − n|

max{m, n}2γ
≤ |Em − En| ≤ CH

|m − n|
max{m, n}2γ

,

with a γ ∈]0, 1/2[. Remark that this condition is fulfilled forEn = nα, whereα ∈]0, 1[ and
γ = (1 − 2α)/2.

Assume thatV (t) is T -periodic, stronglyC1 and sufficiently small in the norm

‖V ‖p,γ := sup
t∈[0,T ]

sup
m,n∈N

〈m − n〉p max{m, n}2γ‖V (t)m,n‖.

If p is sufficiently large then for anyΨ from the form domain ofH0 it holds true that

〈U(t, 0)Ψ, H0 U(t, 0)Ψ〉 = O(tβ),

with β = α
2[p]γ−1/2

, whereU(t, s) is the unitary propagator associated withH(t). We observe
that forp large enough, one can obtain arbitrarily smallβ. To our knowledge, the result of
this type is the first one in the case of shrinking gaps and a small decay of entries ofV (t)
along the main diagonal.
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[DLSV2] Duclos P., Lev O.,̌Štovı́ček P., Vittot M., Progressive diagonalization and ap-

plications, Proceedings of ”Operator Algebras & Mathematical Physics”, Constanta,

Romania (2001)
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WEAKLY REGULAR FLOQUET HAMILTONIANS WITH PUREPOINT SPECTRUMP. DUCLOS1,2, O. LEV3, P. ��OVÍ�EK3, M. VITTOT1

1Centre de Physique Théorique, CNRS, Luminy, Case 907, 13288 Marseille Cedex9,Frane
2PHYMAT, Université de Toulon et du Var, BP 132, F-83957 La Garde Cedex,Frane
3Department of Mathematis, Faulty of Nulear Siene, Czeh TehnialUniversity, Trojanova 13, 120 00 Prague, Czeh RepubliAbstrat. We study the Floquet Hamiltonian −i∂t + H + V (ωt), ating in

L
2([ 0, T ],H, dt), as depending on the parameter ω = 2π/T . We assume thatthe spetrum of H in H is disrete, Spec(H) = {hm}∞m=1

, but possibly degen-erate, and that t 7→ V (t) ∈ B(H) is a 2π-periodi funtion with values in thespae of Hermitian operators on H. Let J > 0 and set Ω0 = [ 8

9
J,

9

8
J ]. Supposethat for some σ > 0 it holds true that ∑hm>hn

µmn(hm − hn)−σ
< ∞ where

µmn = (min{Mm, Mn})1/2
MmMn and Mm is the multipliity of hm. We showthat in that ase there exist a suitable norm to measure the regularity of V , de-noted ǫV , and positive onstants, ǫ⋆ and δ⋆, with the property: if ǫV < ǫ⋆ thenthere exists a measurable subset Ω∞ ⊂ Ω0 suh that its Lebesgue measure ful�lls

|Ω∞| ≥ |Ω0| − δ⋆ǫV and the Floquet Hamiltonian has a pure point spetrum forall ω ∈ Ω∞. 1. IntrodutionThe problem we address in this paper onerns spetral analysis of so alled FloquetHamiltonians. The study of stability of non autonomous quantum dynamial systemsis an e�etive tool to understand most of quantum problems whih involve a smallnumber of partiles. When these systems are time-periodi the spetral analysisof the evolution operator over one period an give a fairly good information onthis stability, see e.g. [1℄. In fat this type of result generalises the elebratedRAGE theorem onerned with time-independent systems (one an onsult [2℄ for asummary). As shown in [3℄ and [4℄ the spetral analysis of the evolution operatorover one period (so alled monodromy operator or Floquet operator) is equivalentto the spetral analysis of the orresponding Floquet Hamiltonian (sometimes alledoperator of quasi-energy). This is also what we are aiming for in this artile. More1



2 P. DUCLOS, O. LEV, P. ��OVÍ�EK, M. VITTOTpreisely, we analyse time-periodi quantum systems whih are weakly regular intime and "spae" in the sense of an appropriately hosen norm, and give su�ientonditions to insure that the Floquet Hamiltonians has a pure point spetrum.Suh a program is not new. In the pioneering work [5℄ Bellissard has onsideredthe so alled pulsed rotor whih is analyti in time and spae, using a KAM typealgorithm. Then Combesure [6℄ was able to treat harmoni osillators driven bysu�iently smooth perturbations by adapting to quantum mehanis the well knownNash-Moser trik (.f. [7℄ and [8℄). Later on these ideas have been extended to awider lass of systems in [9℄; it was even possible to require no regularity in spae byusing the so alled adiabati regularisation, originally proposed in [10℄ and furtherextended in [11℄, [12℄. However none of these papers an be onsidered as optimalin the sense of having found the minimal value of regularity in time below whih theFloquet Hamiltonian eases to be pure point.Though it is impossible to mention all the relevant ontributions to the study ofstability of time-dependent quantum systems we would like to mention the followingones. Perturbation theory for a �xed eigenvalue has been extended, in [13℄, toFloquet Hamiltonians whih generially have a dense point spetrum. Boundedquasi-periodi time dependent perturbations of two level systems are onsidered in[14℄ whereas the ase of unbounded perturbation of one dimensional osillators arestudied in [15℄. Averaging methods ombined with KAM tehniques were desribedin [16℄ and [17℄.In the present paper we attempt to further improve the KAM algorithm, parti-ularly having in mind more optimal assumptions as far as the regularity in timeis onerned. As a thorough analysis of the algorithm has shown this is possibleowing to the fat that the algorithm ontains several free parameters (for examplethe hoie of norms in auxiliary Banah spaes that are onstruted during the algo-rithm) whih may be adjusted. This type of improvements is also illustrated on anexample following Theorem 1 in Setion 2. A more detailed disussion of this topiis postponed to onluding remarks in Setion 10.Another generalisation is that in the present result (Theorem 1) we allow degenerateeigenvalues of the unperturbed Hamilton operator (denoted H in what follows). Thedegeneray of eigenvalues hm of H an grow arbitrarily fast with m provided thetime-dependent perturbation is su�iently regular. To our knowledge this is a newfeature in this ontext. Previously two onditions were usually imposed, namelybounded degeneray and a growing gap ondition on eigenvalues hm, reduing thisway the sope of appliations of this theory to one dimensional on�ned systems.Owing to the generalisation to degenerate eigenvalues we are able to onsider alsosome models in higher dimensions, for example the N-dimensional quantum top, i.e.,the N-dimensional version of the pulsed rotor. A short desription of this model isgiven, too, in Setion 2 after Theorem 1.The artile is organised as follows. In Setion 2 we introdue the notation and for-mulate the main theorem. The basi idea of the KAM-type algorithm is outlined in



WEAKLY REGULAR FLOQUET HAMILTONIANS WITH PURE POINT SPECTRUM 3Setion 3. The algorithm onsists in an iterative proedure resulting in diagonalisa-tion of the Floquet Hamiltonian. For this sake one onstruts an auxiliary sequeneof Banah spaes whih form in fat a direted sequene. The proedure itself mayformally be formulated in terms of an indutive limit. Setions 4�8 ontain someadditional results needed for the proof, partiularly the details of the onstrutionof the auxiliary Banah spaes and how they are related to Hermitian operators inthe given Hilbert spae, and a onstrution of the set of "non-resonant" frequeniesfor whih the Floquet Hamiltonian has a pure point spetrum (the frequeny is on-sidered as a parameter). Setion 9 is devoted to the proof of Theorem 1. In Setion10 we onlude our presentation with several remarks onerning omparison of theresult stated in Theorem 1 with some previous ones.2. Main theoremThe entral objet we wish to study in this paper is a self-adjoint operator of theform K + V ating in the Hilbert spae
K = L2([ 0, T ], dt) ⊗H ∼= L2([ 0, T ],H, dt)where T = 2π/ω, ω is a positive number (a frequeny) and H is a �xed separableHilbert spae. The operator K is self-adjoint and has the form

K = −i ∂t ⊗ 1 + 1 ⊗Hwhere the di�erential operator −i∂t ats in L2([ 0, T ], dt) and represents the self-adjoint operator haraterised by periodi boundary onditions. This means that theeigenvalues of −i∂t are kω, k ∈ Z, and the orresponding normalised eigenvetorsare χk(t) = T−1/2 exp(ikωt). H is a self-adjoint operator in H and is supposedto have a disrete spetrum. Finally, V is a bounded Hermitian operator in Kdetermined by a measurable operator-valued funtion t 7→ V (ωt) ∈ B(H) suh that
supt∈R ‖V (t)‖ < ∞, V (t) is 2π-periodi, and for almost all t ∈ R, V (t)∗ = V (t).Naturally, (Vψ)(t) = V (ωt)ψ(t) in K ∼= L2([ 0, T ],H, dt).Let

∑

k∈Z

kω Pkbe the spetral deomposition of −i∂t in L2([ 0, T ], dt) and let
H =

∑

m∈N

hmQmbe the spetral deomposition of H in H. Thus we an write
H =

∑⊕

m∈N

Hmwhere Hm = RanQm are the eigenspaes. We suppose that the multipliities are�nite,
Mm = dimHm <∞, ∀m ∈ N.



4 P. DUCLOS, O. LEV, P. ��OVÍ�EK, M. VITTOTHene the spetrum of K is pure point and its spetral deomposition reads
K =

∑

k∈Z

∑

m∈N

(kω + hm)Pk ⊗Qm, (1)implying a deomposition of K into a diret sum,
K =

∑⊕

(k,m)∈Z×N

Ran(Pk ⊗Qm) .Here is some additional notation. Set
Vknm =

1

T

∫ T

0

e−ikωtQnV (ωt)Qm dt =
1

2π

∫ 2π

0

e−iktQnV (t)Qm dt ∈ B(Hm,Hn) .(2)Further,
∆mn = hm − hn,and
∆0 = inf

m6=n
|∆mn|.Finally we set

µmn = (min{Mm,Mn})1/2 MmMn.Now we are able to formulate our main result. Though not indiated expliitly inthe notation the operator K + V is onsidered as depending on the parameter ω.Theorem 1. Fix J > 0 and set Ω0 := [ 8
9
J, 9

8
J ]. Assume that ∆0 > 0 and that thereexists σ > 0 suh that

∆σ(J) := Jσ
∑

m,n∈N

∆mn>J/2

µmn

(∆mn)σ
<∞ .Then for every r > σ + 1

2
there exist positive onstants (depending, as indiated, on

σ, r, ∆0 and J but independent of V ), ǫ⋆(r,∆0, J) and δ⋆(σ, r, J), with the property:if
ǫV := sup

n∈N

∑

k∈Z

∑

m∈N

‖Vknm‖ max{|k|r, 1} < min

{

ǫ⋆(r,∆0, J),
|Ω0|

δ⋆(σ, r, J)

}(here |Ω∗| stands for the Lebesgue measure of Ω∗) then there exists a measurablesubset Ω∞ ⊂ Ω0 suh that
|Ω∞| ≥ |Ω0| − δ⋆(σ, r, J) ǫV (3)and the operator K + V has a pure point spetrum for all ω ∈ Ω∞



WEAKLY REGULAR FLOQUET HAMILTONIANS WITH PURE POINT SPECTRUM 5Remarks. 1) In the ourse of the proof we shall show even more. Namely, for all
ω ∈ Ω∞ and any eigenvalue of K + V the orresponding eigen-projetor P belongsto the Banah algebra with the norm

‖P‖ = sup
n∈N

∑

k∈Z

∑

m∈N

‖Pknm‖ max{|k|r−σ− 1

2 , 1}.This shows that P is (r − σ − 1/2)-di�erentiable as a map from [ 0, T ] to the spaeof bounded operators in H2) The onstants ǫ⋆(r,∆0, J) and δ⋆(σ, r, J) are in fat known quite expliitly andare given by formulae (70), (71), (77) and (78). Setting α = 2 and qr = e2 in theseformulae (this is a possible hoie) we get
ǫ⋆(r,∆0, J) = min

{

2

135 e3
∆0,

1

270 e3
J

}

,and
δ⋆(σ, r, J) = 1440 e52σ





2σ + 1
(

1 − e−
2

r

)

e





σ+ 1

2 ( ∞
∑

s=1

s2e−
2

r
(r−σ− 1

2
)s

)

∆σ(J)

= 1440





2σ + 1
(

1 − e−
2

r

)

e





σ+ 1

2

2σe3+
2

r (σ+ 1

2)
1 + e−2+ 2

r(σ+ 1

2)
(

1 − e−2+ 2

r(σ+ 1

2)
)3 ∆σ(J)3) The formulae for ǫ⋆ and δ⋆ an be further simpli�ed if we assume that r is nottoo big, more preisely under the assumption that r ≤ 7

8
(2σ + 1) (if this is not thease we an always replae r by a smaller value but still requiring that r > σ + 1

2
).A better hoie than that made in the previous remark is α = 2 and q = e4/(2σ+1).We get (.f. (71))

ǫ⋆(r,∆0, J) =
min{4 ∆0, J}

270 e
e−4r/(2σ+1) ≥ min{4 ∆0, J}

270 e9/2and (.f. (77) and (78))
δ⋆(σ, r, J) = 1440 e 2σ





2σ + 1
(

1 − e−
4

2σ+1

)

e





σ+ 1

2

e
8r

2σ+1

( ∞
∑

s=1

s2e−2 2r−2σ−1

2σ+1
s

)

∆σ(J) .Using the estimate
∞
∑

s=1

s2e−2xs =
cosh(x)

4 sinh(x)3
≤ 1

4 x3we �nally obtain
δ⋆(σ, r, J) ≤ 45 e 2σ





2σ + 1
(

1 − e−
4

2σ+1

)

e





σ+ 1

2

e
8r

2σ+1

(

2σ + 1

r − σ − 1
2

)3

∆σ(J) .



6 P. DUCLOS, O. LEV, P. ��OVÍ�EK, M. VITTOTWe onlude this setion with a brief desription of two models illustrating the e�e-tiveness of Theorem 1. In the �rst model we set H = L2([ 0, 1 ], dx), H = −∂2
x withDirihlet boundary onditions, and V (t) = z(t)x2 where z(t) is a su�iently regular

2π-periodi funtion. As shown in [18℄ the spetral analysis of this simple modelis essentially equivalent to the analysis of the so alled quantum Fermi aelerator.The partiularity of the latter model is that the underlying Hilbert spae itself istime-dependent, Ht = L2([ 0, a(t) ], dx) where a(t) is a stritly positive periodi fun-tion. The time-dependent Hamiltonian is −∂2
x with Dirihlet boundary onditions.Using a onvenient transformation one an pass from the Fermi aelerator to theformer model getting the funtion z(t) expressed in terms of a(t), a′(t) and a′′(t).But let us return to the analysis of our model. Eigenvalues of H are non-degenerate,

hm = m2π2 for m ∈ N, with normalised eigenfuntions equal to √
2 sin(mπx). Notethat in the notation we are using in the present paper 0 /∈ N. A straightforwardalulation gives

Vknm = zk ×







8(−1)m+nmn
(m2−n2)2π2 if m 6= n,

1
3
− 1

2m2π2 if m = n,where zk = 1
2π

∫ 2π

0
e−iktz(t) dt is the Fourier oe�ient of z(t). Hene one derivesthat

ǫV = sup
n∈N

(

1

3
+

2

n2π2
+

4

π2

n−1
∑

j=1

1

j2

)

∑

k∈Z

|zk|max{|k|r, 1} =
∑

k∈Z

|zk|max{|k|r, 1}.For any J > 0, ∆σ(J) is �nite if and only if σ > 1. On the other hand, to have ǫV�nite it is su�ient that z(t) ∈ Cs where s > r + 1 > σ + 1
2

+ 1 > 5
2
. So z(t) ∈ C3su�es for the theory to be appliable. This may be ompared to an older result in[9℄, �4.2, giving a muh worse ondition, namely z(t) ∈ C17.The seond model is the pulsed rotator inN dimensions. In this aseH = L2(SN , dµ),with SN ⊂ R

N+1 being the N-dimensional unit sphere with the standard (rota-tionally invariant) Riemann metri and the indued normalised measure dµ, and
H = −∆LB is the Laplae-Beltrami operator on SN . The spetrum of H is wellknown, Spec(H) = {hm}∞m=0, where

hm = m(m+N − 1)and the multipliities are
Mm =

(

m+N

N

)

−
(

m+N − 2

N

)

.The time-dependent operator V (t) inH ats via multipliation, (V (t)ϕ)(x) = v(t, x)ϕ(x),where v(t, x) is a real measurable bounded funtion on R× SN whih is 2π-periodiin the variable t. Consequently, K ∼= L2([ 0, T ] × SN , dt dµ) and (Vψ)(t, x) =
v(ωt, x)ψ(t, x). Note that the asymptoti behaviour of the eigenvalues and the mul-tipliities, as m→ ∞, is hm ∼ m2, Mm ∼ (2/(N − 1)!)mN−1. So ∆σ(J) is �nite, for



WEAKLY REGULAR FLOQUET HAMILTONIANS WITH PURE POINT SPECTRUM 7any J > 0, if and only if
∑

m2−n2>J/2

n
3

2
(N−1)mN−1

(m2 − n2)σ
<∞ .To ensure this ondition we require that σ > 5

2
(N −1)+1. Let us assume that thereexist s, u ∈ Z+ suh that, for any system of loal (smooth) oordinates (y1, . . . , yN)on SN , the derivatives ∂ α

t ∂
β1

y1
. . . ∂ βN

yN
v(t, y1, . . . , yN) exist and are ontinuous forall α, β, α ≤ s and β1 + . . . + βN ≤ u. If u ≥ 4 then [H, [H, V (t) ]℄ is a wellde�ned seond order di�erential operator with ontinuous oe�ient funtions andthe operator [H, [H, V (t) ]](1 +H)−1 is bounded. Clearly,

(hm − hn)2

1 + hm
QnV (t)Qm = Qn[H, [H, V (t) ]](1 +H)−1Qm.Using this relation one derives an estimate on Vknm,
‖Vknm‖ ≤ onst 1 + min{hn, hm}

|k|s(hm − hn)2
,valid for k 6= 0 and m 6= n. The number

sup
n∈Z+

∑

m∈Z+, m6=n

1 + min{hn, hm}
(hm − hn)2is �nite. To see it one an employ the asymptotis of hm and the fat that thesequene

an =
∑

m∈Z+, m6=n

1 + min{n2, m2}
(m2 − n2)2

=

(

1 +
1

n2

)

π2

12
− 3

16n2
+

5

16n4
− 1

2n

2n−1
∑

m=1

1

m
,

n = 1, 2, 3, . . ., is bounded. It follows that the norm ǫV is �nite if s > r + 1 >
σ + 1

2
+ 1 > 5

2
(N − 1) + 1 + 3

2
= 5

2
N . Thus the theory is appliable provided u ≥ 4and s > 5

2
N . The same example has also been treated by adiabati methods in [11℄.In that ase the assumptions are weaker. It su�es that v(t, x) be (N + 1)-timesdi�erentiable in t with all derivatives ∂ α

t v(t, x), 0 ≤ α ≤ N + 1, uniformly bounded.However the onlusion is somewhat weaker as well. Under this assumption K + Vhas no absolutely ontinuous spetrum but nothing is laimed about the singularontinuous spetrum. 3. Formal limit proedureSuppose there is given a direted sequene of real or omplex Banah spaes, {Xs}∞s=0,with linear mappings
ιus : Xs → Xu if s ≤ u, with ‖ιus‖ ≤ 1,(and ιss is the unite mapping in Xs) and suh that

ιvuιus = ιvs if s ≤ u ≤ v .



8 P. DUCLOS, O. LEV, P. ��OVÍ�EK, M. VITTOTTo simplify the notation we set in what follows
ιs = ιs+1,s.Denote by X∞ the norm indutive limit of {Xs, ιus} in the sense of [19℄, �1.3.4or [20℄, �1.23 (the algebrai indutive limit is endowed with a seminorm indued by

lim sups ‖·‖s, the kernel of this seminorm is divided out and the result is ompleted).
X∞ is related to the original direted sequene via the mappings ι∞s : Xs → X∞obeying ‖ι∞s‖ ≤ 1 and ι∞uιus = ι∞s if s ≤ u. By the onstrution, the union
⋃

s≥s0
ι∞s(Xs) is dense in X∞ for any s0 ∈ Z+.If {As ∈ B(Xs)} is a family of bounded operators, de�ned for s ≥ s0 and suh that

Auιus = ιusAs if s0 ≤ s ≤ u, and sup
s

‖As‖ <∞,then A∞ ∈ B(X∞) designates the indutive limit of this family haraterised by theproperty A∞ι∞s = ι∞sAs, ∀s ≥ s0.Let D∞ ∈ B(X∞) be the indutive limit of a family of bounded operators {Ds ∈
B(Xs); s ≥ 0}, with the property

‖Ds‖ ≤ 1, ‖1 −Ds‖ ≤ 1, ∀s. (4)We also suppose that there is given a sequene of one-dimensional spaes kKs,
s = 0, 1, . . . ,∞, where the Ks are distinguished basis elements. Here the �eld k iseither C or R depending on whether the Banah spaes Xs are omplex or real. Set

X̃s = kKs ⊕ Xs, s = 0, 1, . . . ,∞.Then {X̃s}∞s=0 beomes a direted sequene of vetor spaes provided one de�nes
ι̃us : X̃s → X̃u by

ι̃us|Xs
= ιus and ι̃us(Ks) = Ku if s ≤ u.Set

φ(x) =
1

x

(

ex − ex − 1

x

)

=
∞
∑

k=0

k + 1

(k + 2)!
xk . (5)Proposition 2. Suppose that, in addition to the sequenes {Xs}∞s=0, {Ks}∞s=0 and

{Ds}∞s=0, there are given sequenes {Vs}∞s=0 and {Θs
u}∞u=s+1 suh that Vs ∈ Xs, Θs

u ∈
B(Xu), and

Θs
vιvu = ιvuΘs

u if s < u ≤ v. (6)Set
Ts = eΘ

s−1
s eΘ

s−2
s . . . eΘ

0
s ∈ B(Xs) for s ≥ 1 . (7)Let {Ws}∞s=0 be another sequene, with Ws ∈ Xs, de�ned reursively:

W0 = V0,

Ws+1 = ιs(Ws) + Ts+1(Vs+1 − ιs(Vs)) (8)
+ Θs

s+1φ(Θs
s+1)ιs(1 −Ds)(Ws − ιs−1(Ws−1)),



WEAKLY REGULAR FLOQUET HAMILTONIANS WITH PURE POINT SPECTRUM 9where we set, by onvention, X−1 = 0 , W−1 = 0. Extend the mappings Θs
u to

Θ̃s
u : X̃u → X̃u by

Θ̃s
u(Ku) = −Θs

uDu(ιus(Ws)) − (1 −Du)(ιus(Ws) − ιu,s−1(Ws−1)), (9)and onsequently the mappings Ts to T̃s : X̃s → X̃s,
T̃s = eΘ̃

s−1
s eΘ̃

s−2
s . . . eΘ̃

0
s for s ≥ 1, T̃0 = 1.Then it holds

T̃s(Ks + Vs) = Ks + Ds(Ws) + (1 −Ds)(Ws − ιs−1(Ws−1)), s = 0, 1, 2, . . . . (10)Remark. Sine Θ̃s
u(Ku) ∈ Xu it is easy to observe that

T̃s(Ks) −Ks ∈ Xs.Furthermore, note that (9) implies that Θ̃s
v(Kv) = ιvuΘ̃s

u(Ku) if 0 ≤ s < u ≤ v, andso the mappings Θ̃s
u still satisfy

Θ̃s
v ι̃vu = ι̃vuΘ̃s

u if s < u ≤ v.Proof. By indution in s. For s = 0 the laim is obvious. In the indution step
s→ s+ 1 one may use the indution hypothesis and relations (9) and (8):
T̃s+1(Ks+1 + Vs+1) = T̃s+1ι̃s(Ks + Vs) + Ts+1(Vs+1 − ιs(Vs))

= eΘ̃
s
s+1 ι̃sT̃s(Ks + Vs) + Ts+1(Vs+1 − ιs(Vs))

= eΘ̃
s
s+1 ι̃s(Ks + Ds(Ws) + (1 −Ds)(Ws − ιs−1(Ws−1)))

+Ts+1(Vs+1 − ιs(Vs))

= Ks+1 + Ds+1(ιs(Ws)) +
eΘ

s
s+1 − 1

Θs
s+1

Θ̃s
s+1ι̃s(Ks + Ds(Ws))

+eΘ
s
s+1ιs(1 −Ds)(Ws − ιs−1(Ws−1)) + Ts+1(Vs+1 − ιs(Vs))

= Ks+1 − (1 −Ds+1)ιs(Ws) + ιs(Ws) + Ts+1(Vs+1 − ιs(Vs))

+

(

eΘ
s
s+1 − eΘ

s
s+1 − 1

Θs
s+1

)

ιs(1 −Ds)(Ws − ιs−1(Ws−1))

= Ks+1 − (1 −Ds+1)ιs(Ws) +Ws+1

= Ks+1 + Ds+1(Ws+1) + (1 −Ds+1)(Ws+1 − ιs(Ws)) .Proposition 3. Assume that the sequenes {Vs}∞s=0, {Ws}∞s=0 and {Θs
u}∞u=s have thesame meaning and obey the same assumptions as in Proposition 2. Denote

ws = ‖Ws − ιs−1(Ws−1)‖(with w0 = ‖W0‖). Assume, in addition, that there exist a sequene of positive realnumbers, {Fs}∞s=0, suh that
‖Θs

u‖ ≤ Fsws, ∀s, u, u > s, (11)



10 P. DUCLOS, O. LEV, P. ��OVÍ�EK, M. VITTOTa sequene of non-negative real numbers {vs}∞s=0 suh that
‖Vs − ιs−1(Vs−1)‖ ≤ vs, ∀s,(for s = 0 this means ‖V0‖ ≤ v0) and a onstant A ≥ 0 suh that

Fsv
2
s ≤ Avs+1, ∀s, (12)and that it holds true

B =
∞
∑

s=0

Fsvs <∞. (13)Denote
C = sup

s
Fsvs. (14)If d > 0 obeys

edB + Aφ(dC) d2 ≤ d (15)then
ws ≤ d vs, ∀s. (16)Proof. We shall proeed by indution in s. If s = 0 then v0 = w0 = ‖V0‖ and (16)holds true sine (15) implies that d ≥ 1. The indution step s → s + 1: aordingto (8), (7), (4) and (15), and owing to the fat that φ(x) is monotone, we have

ws+1 ≤ ‖Ts+1‖ vs+1 + ‖Θs
s+1‖φ(‖Θs

s+1‖)ws

≤ exp

(

s
∑

j=0

Fjwj

)

vs+1 + φ(Fsws)Fsw
2
s

≤ exp

(

d

s
∑

j=0

Fjvj

)

vs+1 + φ(d Fsvs)Fsd
2v 2

s

≤ edBvs+1 + φ(dC)d2Avs+1

≤ d vs+1.Remark. If
B ≤ 1

3
ln 2 and Aφ(3C) ≤ 1

9then (15) holds true with d = 3.Reall that Θs
∞ ∈ B(X∞) is the unique bounded operator on X∞ suh that

Θs
∞ι∞u = ι∞uΘ

s
u, ∀u > s.If (11) is true then its norm is estimated by

‖Θs
∞‖ ≤ Fsws. (17)



WEAKLY REGULAR FLOQUET HAMILTONIANS WITH PURE POINT SPECTRUM 11Corollary 4. Under the same assumptions as in Proposition 3, if d > 0 exists suhthat ondition (15) is satis�ed, and
Finf = inf

s
Fs > 0 (18)then the limits

V∞ = lim
s→∞

ι∞s(Vs), W∞ = lim
s→∞

ι∞s(Ws)exist in X∞, the limit
T∞ = lim

s→∞
eΘ

s−1
∞ . . . eΘ

0
∞exists in B(X∞), and T∞ ∈ B(X∞) an be extended to a linear mapping T̃∞ : X̃∞ →

X̃∞ by
T̃∞(K∞) −K∞ = lim

s→∞
ι∞s

(

T̃s(Ks) −Ks

)

, (19)with the limit existing in X∞. These objets obey the equality
T̃∞(K∞ + V∞) = K∞ + D∞(W∞). (20)Proof. If u ≥ s then

‖ι∞u(Vu) − ι∞s(Vs)‖ =
∥

∥

u
∑

j=s+1

ι∞j(Vj − ιj−1(Vj−1))
∥

∥ ≤
u
∑

j=s+1

vj .Sine
∞
∑

s=0

vs ≤
1

Finf

∞
∑

s=0

Fsvs <∞the sequene {ι∞s(Vs)} is Cauhy in X∞ and so V∞ ∈ X∞ exists. Under assumption(16) we an apply the same reasoning to the sequene {ι∞s(Ws)} to onlude thatthe limit W∞ = lims→∞ ι∞s(Ws) exists in X∞. Set
T̄s = eΘ

s−1
∞ . . . eΘ

0
∞ if s ≥ 1, and T̄0 = 1.If u ≥ s then, owing to (17) and (16), we have

‖T̄u − T̄s‖ ≤
(

exp

(

u−1
∑

j=s

‖Θj
∞‖
)

− 1

)

exp

(

s−1
∑

j=0

‖Θj
∞‖
)

≤ exp

(

d

u−1
∑

j=0

Fjvj

)

− exp

(

d

s−1
∑

j=0

Fjvj

)

.Assumption (13) implies that {T̄s} is a Cauhy sequene in B(X∞) and so T∞ ∈
B(X∞) exists.To show (19) let us �rst verify the inequality

‖eΘ̃s
u(Ku) −Ku‖ ≤ 1 + dB

Finf (

eFsws − 1
)

, (21)



12 P. DUCLOS, O. LEV, P. ��OVÍ�EK, M. VITTOTvalid for all u > s. Atually, using de�nition (9) and assumption (11), we get
‖eΘ̃s

u(Ku) −Ku‖ ≤ e‖Θ
s
u‖ − 1

‖Θs
u‖

‖Θ̃s
u(Ku)‖

≤ e‖Θ
s
u‖ − 1

‖Θs
u‖

(‖Θs
u‖‖Ws‖ + ‖Ws − ιs−1(Ws−1)‖)

≤
(

eFsws − 1
)

(

‖Ws‖ +
1

Fs

)

.To �nish the estimate note that (13) and (16) imply
‖Ws‖ =

s
∑

j=1

(‖Wj‖ − ‖Wj−1‖) + ‖W0‖ ≤
∞
∑

j=0

dvj ≤
d

Finf ∞
∑

j=0

Fjvj =
dB

Finf .With the aid of an elementary identity,
aj . . . a0 − 1 = aj . . . a1(a0 − 1) + aj . . . a2(a1 − 1) + · · ·+ (aj − 1),we an derive from (21): if 0 ≤ s ≤ t < u then
‖eΘ̃t

u . . . eΘ̃
s
u(Ku) −Ku‖ ≤ e‖Θ

t
u‖+···+‖Θs+1

u ‖‖eΘ̃s
u(Ku) −Ku‖

+ e‖Θ
t
u‖+···+‖Θs+2

u ‖‖eΘ̃s+1
u (Ku) −Ku‖

+ · · ·+ ‖eΘ̃t
u(Ku) −Ku‖

≤ 1 + dB

Finf (

eFtwt+···+Fs+1ws+1
(

eFsws − 1
)

+ eFtwt+···+Fs+2ws+2
(

eFs+1ws+1 − 1
)

+ · · ·+
(

eFtwt − 1
))

=
1 + dB

Finf (

eFtwt+···+Fsws − 1
)

.Set temporarily in this proof
τs = ι∞s(T̃s(Ks) −Ks) ∈ X∞.If t ≥ s then

τt − τs = ι∞t

(

eΘ̃
t−1
t . . . eΘ̃

0
t (Kt) − ιtse

Θ̃s−1
s . . . eΘ̃

0
s(Ks)

)

= ι∞t

(

eΘ̃
t−1
t . . . eΘ̃

0
t (Kt) − eΘ̃

s−1
t . . . eΘ̃

0
t (Kt)

)

= ι∞t

((

eΘ
t−1
t . . . eΘ

s
t − 1

)(

eΘ̃
s−1
t . . . eΘ̃

0
t (Kt) −Kt

)

+ eΘ̃
t−1
t . . . eΘ̃

s
t (Kt) −Kt

)

.
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‖τt − τs‖ ≤ 1 + dB

Finf ((

eFt−1wt−1+···+Fsws − 1
) (

eFs−1ws−1+···+F0w0 − 1
)

+ eFt−1wt−1+···+Fsws − 1
)

=
1 + dB

Finf (

eFt−1wt−1+···+F0w0 − eFs−1ws−1+···+F0w0
)

.This shows that the sequene {τs} is Cauhy and thus the limit on the RHS of (19)exists.We onlude that it holds true, in virtue of (10), that
T̃∞(K∞ + V∞) = K∞ + lim

s→∞
ι∞s(T̃s(Ks) −Ks) + lim

s→∞
T̄sι∞s(Vs)

= K∞ + lim
s→∞

ι∞s(T̃s(Ks + Vs) −Ks)

= K∞ + lim
s→∞

ι∞s

(

Ds(Ws) + (1 −Ds)(Ws − ιs−1(Ws−1))
)

= K∞ + lim
s→∞

(

D∞(ι∞s(Ws)) + (1 −D∞)(ι∞s(Ws) − ι∞,s−1(Ws−1))
)

= K∞ + D∞(W∞).So equality (20) has been veri�ed as well.4. Convergene in a Hilbert spaeLet {Xs, ιus} be a direted sequene of real or omplex Banah spaes, as introduedin Setion 3. In this setion it is su�ient to know that K is a separable omplexHilbert spae and K is a losed (densely de�ned) operator in K . Suppose that foreah s ∈ Z+ there is given a bounded linear mapping,
κs : Xs → B(K), with ‖κs‖ ≤ 1,and suh that
∀s, u, 0 ≤ s ≤ u, κuιus = κs.If the Banah spaes Xs are real then the mappings κs are supposed to be linearover R otherwise they are linear over C. Then there exists a unique linear boundedmapping κ∞ : X∞ → B(K) satisfying, ∀s ∈ Z+, κ∞ι∞s = κs. Clearly, ‖κ∞‖ ≤ 1.Extend the mappings κs to κ̃s : X̃s = kKs + Xs → CK + B(K) by de�ning
κ̃s(Ks) = K, ∀s ∈ Z+ ∪ {∞}.So κ̃s(Ks +X) = K+κs(X), with X ∈ Xs, is a losed operator in K with Dom(K+

κs(X)) = Dom(K).Suppose, in addition, that there exists D ∈ B(B(K)) suh that
∀s ∈ Z+, Dκs = κsDs.Then it holds true, ∀s ∈ Z+, ∀X ∈ Xs,

κ∞D∞(ι∞sX) = κ∞ι∞sDs(X) = κsDs(X) = Dκs(X) = Dκ∞(ι∞sX).



14 P. DUCLOS, O. LEV, P. ��OVÍ�EK, M. VITTOTSine the set of vetors {ι∞s(X); s ∈ Z+, X ∈ Xs} is dense in Xs we get κ∞D∞ =
Dκ∞.Proposition 5. Under the assumptions of Corollary 4 and those introdued abovein this setion, let {As}∞s=0 be a sequene of bounded operators in K suh that,

∀s, u, 0 ≤ s < u, ∀X ∈ Xu, κu

(

Θs
u(X)

)

= [As, κu(X) ], (22)
∀s ∈ Z+, As(DomK) ⊂ DomK,and

∀s, u, 0 ≤ s < u, [As,K ] = κu(Θ̃
s
u(Ku))

∣

∣

Dom(K)
.Moreover, assume that

∞
∑

s=0

‖As‖ <∞. (23)Set
V = κ∞(V∞), W = κ∞(W∞).Then the limit

U = lim
s→∞

eAs−1 . . . eA0 (24)exists in the operator norm, the element U ∈ B(K) has a bounded inverse, and itholds true that
U(DomK) = DomKand

U(K + V)U−1 = K + D(W). (25)For the proof we shall need a lemma.Lemma 6. Assume that H is a Hilbert spae, K is a losed operator in H, A,B ∈
B(H),

A(DomK) ⊂ DomK,and
[A,K ] = B

∣

∣

Dom(K)
.Then it holds, ∀λ ∈ C,

eλA(DomK) = DomK (26)and
e−λAKeλA = K +

e−λ adA − 1

adA
B.Remark. Here and everywhere in what follows we use the standard notation: adAB =

[A,B ] and so eλ adAB = eλAB e−λA.
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∀n ∈ Z+, vn =

n
∑

k=0

λk

k!
Akv .Then vn ∈ Dom(K) and vn → eλAv as n→ ∞. On the other hand,

Kvn =

n
∑

k=0

λk

k!
(K Ak − AkK)v +

n
∑

k=0

λk

k!
AkKv

= −
n
∑

k=1

λk

k!

k−1
∑

j=0

AjBAk−1−jv +
n
∑

k=0

λk

k!
AkKv .So the limit limn→∞Kvn exists. Consequently, sine K is losed, eλA(DomK) ⊂

DomK. But (eλA)−1 = e−λA has the same property and thus equality (26) follows.Furthermore, the above omputation also shows that
K eλA = −

∞
∑

k=1

λk

k!

k−1
∑

j=0

AjBAk−1−j + eλAK .Appliation of the following algebrai identity (easy to verify),
∞
∑

k=1

λk

k!

k−1
∑

j=0

AjBAk−1−j = eλA

(

1 − e−λ adA

adA
B

)

,onludes the proof.Proof of Proposition 5. We use notation of Corollary 4. From (22) follows that,
∀s, u, 0 ≤ s < u, ∀X ∈ Xu,

κ∞Θs
∞(ι∞uX) = κuΘ

s
u(X) = [As, κu(X) ] = [As, κ∞(ι∞uX) ].Sine the set of vetors {ι∞u(X); s < u, X ∈ Xu} is dense in X∞, we get, ∀X ∈ X∞,

κ∞Θs
∞(X) = [As, κ∞(X) ], and hene

κ∞
(

eΘ
s
∞(X)

)

= eAsκ∞(X) e−As.Set
Us = eAs−1 . . . eA0 for s ≥ 1, U0 = 1.Assumption (23) implies that both sequenes {Us} and {U−1

s } are Cauhy in B(K)and hene the limit (24) exists in the operator norm, with U
−1 = lims→∞ U

−1
s ∈

B(K). Moreover, ∀X ∈ X∞,
κ∞T∞(X) = κ∞

(

lim
s→∞

eΘ
s−1
∞ . . . eΘ

0
∞X

)

= lim
s→∞

Usκ∞(X)U
−1
s . (27)Next let us ompute κ̃sT̃s(Ks). For 0 ≤ s < u, set Bs = κu(Θ̃

s
u(Ku)) ∈ B(K). Bsdoesn't depend on u > s sine if 0 ≤ s < u ≤ v then

κu

(

Θ̃s
u(Ku)

)

= κv

(

ιvuΘ̃s
u(Ku)

)

= κv

(

Θ̃s
v(Kv)

)

.



16 P. DUCLOS, O. LEV, P. ��OVÍ�EK, M. VITTOTWe an apply Lemma 6 to the operators K, As, Bs to onlude that e−As(DomK) =
DomK and

eAsK e−As = K +
eadAs − 1

adAs

Bs. (28)On the other hand,
κ̃u

(

eΘ̃
s
u(Ku)

)

= κ̃u

(

Ku +
eΘ

s
u − 1

Θs
u

Θ̃s
u(Ku)

)

= K +
eadAs − 1

adAs

Bs.Thus κ̃u

(

eΘ̃
s
u(Ku)

)

= eAsK e−As . Consequently, Us(DomK) = DomK and
κ̃sT̃s(Ks) = UsKU

−1
s . (29)Set Cs = UsKU

−1
s − K. Aording to (28), Cs ∈ B(K). Now we an ompute,using relation (29), a limit in B(K),

C = lim
s→∞

Cs = lim
s→∞

κs(T̃s(Ks) −Ks)

= κ∞

(

lim
s→∞

ι∞s(T̃s(Ks) −Ks)
)

= κ∞(T̃∞(K∞) −K∞).So K + C = κ̃∞(T̃∞(K∞)). From the loseness of K, the equality UsKU
−1
s =

K+Cs, and from the fat that the sequenes {U±1
s }, {Cs} onverge one dedues that

U
±1(DomK) ⊂ DomK and hene, in fat, U

±1(DomK) = DomK. In addition,
UKU

−1 = K + C = κ̃∞T̃∞(K∞). (30)Combining (27) and (30) one �nds that
κ̃∞T̃∞(X) = Uκ̃∞(X)U−1, ∀X ∈ X̃∞.To onlude the proof it su�es to apply the mapping κ̃∞ to equality (20).5. Choie of the direted sequene of Banah spaesSuppose that there are given a dereasing sequene of subsets of the interval ]0,+∞[,

Ω0 ⊃ Ω1 ⊃ Ω2 ⊃ . . ., a dereasing sequene of positive real numbers {ϕs}∞s=0 and astritly inreasing sequene of positive real numbers {Es}∞s=0, 1 ≤ E1 < E2 < . . ..We onstrut a omplex Banah spae 0Xs, s ≥ 0, as a subspae
0Xs ⊂ L∞

(

Ωs × Z × N × N,
∑

n∈N

∑⊕

m∈N

B(Hm,Hn)

)formed by those elements X = {Xknm(ω)} whih satisfy
Xknm(ω) ∈ B(Hm,Hn), ∀ω ∈ Ωs, ∀(k, n,m) ∈ Z × N × N,and have �nite norm

‖X‖s = sup
ω,ω′∈Ωs

ω 6=ω′

sup
n∈N

∑

k∈Z

∑

m∈N

(‖Xknm(ω)‖ + ϕs ‖∂Xknm(ω, ω′)‖) e|k|/Es (31)



WEAKLY REGULAR FLOQUET HAMILTONIANS WITH PURE POINT SPECTRUM 17where the symbol ∂ designates the disrete derivative in ω,
∂X(ω, ω′) =

X(ω) −X(ω′)

ω − ω′ .In fat, this norm is onsidered in Appendix B (.f. (87)), and it is shown there that
0Xs is an operator algebra with respet to the multipliation rule (89).Let Xs ⊂ 0Xs be a losed real subspae formed by those elements X ∈ 0Xs whihsatisfy,

∀(k, n,m) ∈ Z × N × N, ∀ω ∈ Ωs, Xknm(ω)∗ = X−k,m,n(ω) ∈ B(Hn,Hm). (32)Note, however, that Xs is not an operator subalgebra of 0Xs.The sequene of Banah spaes, {Xs}∞s=0, beomes direted with respet to mappingsof restrition in the variable ω: if u ≥ s then we set
ιus : Xs → Xu, ιus(X) = X|Ωu

.Beause of the monotoniity of the sequenes {ϕs} and {Es} we learly have ‖ιus‖ ≤
1.Next we introdue a bounded operator Ds ∈ B(Xs) as an operator whih extratsthe diagonal part of a matrix,

Ds(X)knm(ω) = δk0δnmX0nn(ω). (33)Clearly, ‖Ds‖ ≤ 1 and ‖1 −Ds‖ ≤ 1.Let
V ∈ L∞

(

Z × N × N,
∑

n∈N

∑⊕

m∈N

B(Hm,Hn)

)be the element with the omponents Vknm ∈ B(Hm,Hn) given in (2). Sine, byassumption, V (t) is Hermitian for almost all t it hold true that
(Vknm)∗ = V−k,m,n.We still assume, as in Theorem 1, that there exists r > 0 suh that

ǫV = sup
n∈N

∑

k∈Z

∑

m∈N

‖Vknm‖ max{|k|r, 1} <∞ . (34)Let us de�ne elements Vs ∈ Xs, s ≥ 0, by
(Vs)knm(ω) = Vknm if |k| < Es

= 0 if |k| ≥ Es

(35)



18 P. DUCLOS, O. LEV, P. ��OVÍ�EK, M. VITTOTFor s ≥ 1 we get an estimate,
‖Vs − ιs−1(Vs−1)‖s = sup

n∈N

∑

k∈Z

Es−1≤|k|<Es

∑

m∈N

‖Vknm‖ e|k|/Es

≤ e sup
n∈N

∑

k∈Z

∑

m∈N

‖Vknm‖
max{|k|r, 1}

(Es−1)r
(36)

=
e ǫV

(Es−1)r
.Similarly, for s = 0, we get

‖V0‖ ≤ e ǫV .It is onvenient to set E−1 = 1, V−1 = 0.The sequene {Ks}∞s=0 has the same meaning as in Setion 3, i.e., eah Ks is adistinguished basis vetor in a one-dimensional vetor spae RKs. Furthermore, asequene Θs
u ∈ B(Xu), 0 ≤ s < u, is supposed to satisfy rule (6). Similarly as inProposition 2 we onstrut sequenes Ts ∈ B(Xs), s ≥ 1, and Ws ∈ Xs, s ≥ 0, usingrelations (7) and (8), respetively.Proposition 7. Suppose that it holds

‖Θs
u‖ ≤ 5

ϕs+1

‖Ws − ιs−1(Ws−1)‖s, ∀s, u, 0 ≤ s < u, (37)and set
A⋆ = 5e sup

s≥0

(Es)
r

ϕs+1(Es−1)2r
, B⋆ = 5e

∞
∑

s=0

1

ϕs+1(Es−1)r
, C⋆ = 5e sup

s≥0

1

ϕs+1(Es−1)r
.(38)If

ǫVB⋆ ≤ 1

3
ln 2 and ǫVA⋆φ(3ǫVC⋆) ≤

1

9
(39)then the onlusions of Corollary 3 hold true, partiularly, the objets V∞,W∞ ∈ X∞,

T∞ ∈ B(X∞) and T̃∞ ∈ B(X̃∞) exist and satisfy the equality
T̃∞(K∞ + V∞) = K∞ + D∞(W∞) .Remark. Respeting estimates (36) and (37) we set in what follows
Fs =

5

ϕs+1

and vs =
e ǫV

(Es−1)r
, s ≥ 0. (40)Proof. Taking into aount the de�ning relations (40) one �nds that the onstants

A, B and C introdued in Proposition 3 may be hosen as
A = ǫVA⋆, B = ǫVB⋆ and C = ǫVC⋆. (41)The assumption (39) implies that
B ≤ 1

3
ln 2 and Aφ(3C) ≤ 1

9
(42)



WEAKLY REGULAR FLOQUET HAMILTONIANS WITH PURE POINT SPECTRUM 19and so, aording to the remark following Proposition 3, inequality (15) holds truewith d = 3. Sine Finf = 5/ϕ1 > 0 assumption (18) of Corollary 4 as well as allassumptions of Proposition 3 are satis�ed and so the onlusions of Corollary 4 holdtrue.6. Relation of the Banah spaes Xs to Hermitian operators in KThe real Banah spaes Xs have been hosen in the previous setion. Set
Ω∞ =

∞
⋂

s=0

Ωs.Suppose that Ω∞ 6= ∅ and �x ω ∈ Ω∞ (so ω > 0).To an operator-valued funtion [ 0, T ] ∋ t 7→ X(t) ∈ B(H) there is naturally relatedan operator X in K = L2([ 0, T ],H, dt) de�ned by (Xψ)(t) = X(t)ψ(t). As is wellknown,
‖X‖ ≤ ‖X‖SHwhere ‖ · ‖SH is the so alled Shur-Holmgren norm,

‖X‖SH = max







sup
(ℓ,n)∈Z×N

∑

(k,m)∈Z×N

∥

∥Pℓ ⊗QnXPk ⊗Qm

∥

∥ ,

sup
(k,m)∈Z×N

∑

(ℓ,n)∈Z×N

∥

∥Pℓ ⊗QnXPk ⊗Qm

∥

∥







(43)
= max

{

sup
n∈N

∑

k∈Z

∑

m∈N

‖Xknm‖, sup
m∈N

∑

k∈Z

∑

n∈N

‖Xknm‖
}

.Here
Xknm =

1

T

∫ T

0

e−iωktQnX(t)Qm dt .It is also elementary to verify that the Shur-Holmgren norm is an operator norm,
‖XY ‖SH ≤ ‖X‖SH‖Y ‖SH , with respet to the multipliation rule (89).IfX(t) is Hermitian for (almost) every t ∈ [ 0, T ] then it holds, ∀(k, n,m), (Xknm)∗ =
X−k,m,n, and so

‖X‖SH = sup
n∈N

∑

k∈Z

∑

m∈N

‖Xknm‖ .Note also that, ∀s ∈ Z+, ∀X ∈ Xs,
‖X(ω)‖SH ≤ ‖X‖sand, onsequently, the same is also true for s = ∞.



20 P. DUCLOS, O. LEV, P. ��OVÍ�EK, M. VITTOTTo an element X ∈ 0Xs ⊂ L∞
(

Ωs × Z × N × N,
∑

n∈N

∑⊕

m∈N

B(Hm,Hn)
) suhthat ‖X(ω)‖SH < ∞ we an relate an operator-valued funtion de�ned on the in-terval [ 0, T ],

t 7→
∑

k∈Z

∑

n∈N

∑

m∈N

eikωt Xknm(ω) .The orresponding operator in K is denoted by κs(X), with a norm being boundedfrom above by ‖X(ω)‖SH. In partiular, ∀X ∈ Xs,
‖κs(X)‖ ≤ ‖X(ω)‖SH ≤ ‖X‖s.In addition, if X ∈ Xs then the operator κs(X) is Hermitian due to the property(32) of X. This way we have introdued the mappings κs : Xs → B(K) for s ∈ Z+.Another property we shall need is that κs is an algebra morphism in the sense: if

X, Y ∈ 0Xs suh that ‖X(ω)‖SH <∞ and ‖Y (ω)‖SH <∞ then ‖(XY )(ω)‖SH <∞and
κs(XY ) = κs(X)κs(Y ) .Partiularly this is true for all X, Y ∈ Xs.Let D ∈ B(B(K)) be the operator on B(K) taking the diagonal part of an operator

X ∈ B(K),
D(X) =

∑

k∈Z

∑

m∈N

Pk ⊗QmX Pk ⊗Qm.Clearly, Dκs = κsDs. Sine
‖D(X)‖ = sup

(k,m)∈Z×N

‖Pk ⊗QmX Pk ⊗Qm‖ ≤ ‖X‖we have ‖D‖ ≤ 1.A onsequene of (34) is that V = {Vknm} has a a �nite Shur-Holmgren norm,
‖V ‖SH <∞. Let Vs ∈ Xs, s ∈ Z+, be the ut-o�s of V de�ned in (35). Then

‖V − Vs‖SH = sup
n∈N

∑

k∈Z, |k|≥Es

∑

m∈N

‖Vknm‖

≤ 1

(Es)r
sup
n∈N

∑

k∈Z

∑

m∈N

‖Vknm‖ max{|k|r, 1}

=
ǫV

(Es)r
.We shall impose an additional ondition on the inreasing sequene {Es} of positivereal numbers that our in the de�nition of the norm ‖ · ‖s in Xs (.f. (31)), namelywe shall require

lim
s→∞

Es = +∞ . (44)In this ase lims→∞ ‖V − Vs‖SH = 0 and so
V = lim

s→∞
κs(Vs) in the operator norm. (45)



WEAKLY REGULAR FLOQUET HAMILTONIANS WITH PURE POINT SPECTRUM 21We also assume that there exist As ∈ Xs+1, s ∈ Z+, suh that
(As)knm(ω)∗ = −(As)−k,m,n(ω), (46)and, using these elements, we de�ne mappings 0Θ

s
u ∈ B(0Xu), u > s, by

0Θ
s
u(X) = [ ιu,s+1(As), X ] (47)(where the ommutator on the RHS makes sense sine 0Xu is an operator algebra).Clearly, ‖0Θ

s
u‖ ≤ 2‖As‖s+1. One �nds readily that Xu ⊂ 0Xu is an invariant subspaewith respet to the mapping 0Θ

s
u and so one may de�ne Θs

u = 0Θ
s
u

∣

∣

Xu
∈ B(Xu). Sine

iAs ∈ Xs+1 we an set
As = −i κs+1(iAs+1) ∈ B(K).Clearly, As is anti-Hermitian and satis�es ‖As‖ ≤ ‖As‖s+1. Note that (47) impliesthat, ∀s, u, 0 ≤ s < u, ∀X ∈ Xu,
κu

(

Θs
u(X)

)

= [As, κu(X) ] .Lemma 8. Let {Ws}∞s=0 be a sequene of elementsWs ∈ Xs and let Θ̃s
u : X̃u → X̃u bethe extension of Θs

u, 0 ≤ s < u, de�ned in (9). Assume that the elements As ∈ 0Xs+1,
s ∈ Z+, satisfy

(kω − ∆mn) (As)knm(ω) (48)
=
(

Θs
u

(

ιusDs(Ws)
)

+ ιus(1 −Ds)
(

Ws − ιs−1(Ws−1)
))

knm
(ω),

∀(k,m, n) ∈ Z × N × N, ∀s, u, 0 ≤ s < u.Then it holds true that,
∀s ∈ Z+, As(DomK) ⊂ DomK,and

∀s, u, 0 ≤ s < u, [As,K ] = κu(Θ̃
s
u(Ku))

∣

∣

Dom(K)
.Proof. Set

Bs = −κu

(

Θ̃s
u(Ku)

)

.Sine the RHS of (48) is in fat a matrix entry of −Θ̃s
u(Ku) (.f. (9)) this assumptionmay be rewritten as the equality

KPℓ ⊗QnAsPk ⊗Qm = Pℓ ⊗QnAsPk ⊗QmK + Pℓ ⊗QnBsPk ⊗Qm,valid for all (ℓ, n), (k,m) ∈ Z×N. Sine K is losed one easily derives from the lastproperty that it holds true, ∀(k,m) ∈ Z × N,
KAsPk ⊗Qm = AsPk ⊗QmK + BsPk ⊗Qm. (49)Partiularly, As Ran(Pk ⊗Qm) ⊂ Dom(K). But Ran(Pk ⊗Qm) are mutually orthog-onal eigenspaes of K. Consequently, if v ∈ Dom(K), then the sequene {vN}∞N=1,

vN =
∑

k, |k|≤N

∑

m, m≤N

Pk ⊗Qmv



22 P. DUCLOS, O. LEV, P. ��OVÍ�EK, M. VITTOThas the property: vN → v and KvN → Kv, as N → ∞. Equality (49) implies that
KAsvN = AsKvN + BsvN , ∀N.Again owing to the fat that K is losed one onludes that Asv ∈ Dom(K) and

KAsv = AsKv + Bsv.Proposition 9. Assume that ω ∈ Ω∞ and the norms ‖ · ‖s in the Banah spaes Xssatisfy (44). Let Θs
u ∈ B(Xu), 0 ≤ s < u, be the operators de�ned in (47) with theaid of elements As ∈ 0Xs+1 satisfying (46), and let Ws ∈ Xs, s ∈ Z+, be a sequenede�ned reursively in aordane with (8). Assume that the elements As, s ∈ Z+,satisfy ondition (48) and that
‖As‖ ≤ 5

2ϕs+1
‖Ws − ιs−1(Ws−1)‖, ∀s ∈ Z+. (50)Moreover, assume that the numbers A⋆, B⋆, C⋆, as de�ned in (38), satisfy ondition(39).Then there exist, in K, a unitary operator U and a bounded Hermitian operator Wsuh that

U(DomK) = DomKand
U(K + V)U−1 = K + D(W).Proof. The norm of Θs

u may be estimated as
‖Θs

u‖ ≤ 2‖As‖ ≤ 5

ϕs+1
‖Ws − ιs−1(Ws−1)‖.This way the assumptions of Proposition 7 are satis�ed and onsequently, aordingto Proposition 7 (and its proof), the same is true for Proposition 3 and Corollary 4(with Fs and vs de�ned in (40) and the onstants A, B, C de�ned in (41)). Sineit holds ‖As‖ ≤ ‖As‖ ≤ 1

2
Fsws (where Fs = 5/ϕs+1) and, by assumption, ondition(15) is satis�ed with d = 3 we get

∞
∑

s=0

‖As‖ ≤ 1

2

∞
∑

s=0

Fsws ≤
3

2

∞
∑

s=0

Fsvs =
3B

2
<∞.This veri�es assumption (23) of Proposition 5; the other assumptions of this propo-sition are veri�ed as well as follows from Lemma 8. Note that, in virtue of (45),

κ∞(V∞) = lims→∞ κs(Vs) oinides with the given operator V. Furthermore, W =
κ∞(W∞) = lims→∞ κs(Ws) is a limit of Hermitian operators and so is itself Her-mitian, and U = lims→∞ eAs−1 . . . eA0 is unitary. Equality (25) holds true and thisonludes the proof.



WEAKLY REGULAR FLOQUET HAMILTONIANS WITH PURE POINT SPECTRUM 237. Set of non-resonant frequeniesLet J > 0 be �xed and assume that, ∀s ∈ Z+,
Ωs ⊂

[ 8

9
J,

9

8
J
]

.The following de�nition onerns indies (k, n,m) orresponding to non-diagonalentries, i.e., those indies for whih either k 6= 0 or m 6= n. The diagonal indies,with k = 0 and m = n, will always be treated separately and, in fat, in a quitetrivial manner.De�nition. We shall say that a multi-index (k, n,m) ∈ Z × N × N is ritial if
m 6= n and

kJ

∆mn
∈
]1

2
, 2
[ (51)(hene sgn(k) = sgn(hm − hn) 6= 0). In the opposite ase the multi-index will bealled non-ritial.De�nition. Let ψ(k, n,m) be a positive funtion de�ned on non-diagonal indiesand W ∈ Xs. A frequeny ω ∈ Ωs will be alled (W,ψ)�non-resonant if for allnon-diagonal indies (k, n,m) ∈ Z × N × N it holds

dist (Spec(kω − ∆mn +W0nn(ω)), Spec(W0mm(ω))) ≥ ψ(k, n,m). (52)In the opposite ase ω will be alled (W,ψ)�resonant.Note that, in virtue of (32), W0mm(ω) is a Hermitian operator in Hm.Lemma 10. Assume that Ωs ⊂ [ 8
9
J, 9

8
J ], W ∈ Xs and ψ is a positive funtionde�ned on non-diagonal indies and obeying a symmetry ondition,

ψ(−k,m, n) = ψ(k, n,m) for all (k, n,m) non-diagonal. (53)If
∀m ∈ N, ∀ω, ω′ ∈ Ωs, ω 6= ω′, ‖∂W0mm(ω, ω′)‖ ≤ 1

4
, (54)and if ondition (52) is satis�ed for all ω ∈ Ωs and all non-ritial indies (k, n,m)then the Lebesgue measure of the set Ωbad

s ⊂ Ωs formed by (W,ψ)�resonant frequen-ies may be estimated as
|Ωbad

s | ≤ 8
∑

m,n∈N,
∆mn > 1

2
J

∑

k∈N,
∆mn
2J

<k< 2∆mn
J

MmMn

k
ψ(k, n,m) . (55)Proof. Let λm

1 (ω) ≤ λm
2 (ω) ≤ · · · ≤ λm

Mm
(ω) be the inreasingly ordered set ofeigenvalues of W0mm(ω), m ∈ N. Set

Ωbad
s (k, n,m, i, j) = {ω ∈ Ωs; |ωk − ∆mn + λn

i (ω) − λm
j (ω)| < ψ(k, n,m)}.



24 P. DUCLOS, O. LEV, P. ��OVÍ�EK, M. VITTOTThen
Ωbad

s =
⋃

(k,n,m)

⋃

i,j
1≤i≤Mn

1≤j≤Mm

Ωbad
s (k, n,m, i, j).By assumption, if (k, n,m) is a non-ritial index then Ωbad

s (k, n,m, i, j) = ∅ (for any
i, j). Further notie that, due to the symmetry ondition (53), Ωbad

s (k, n,m, i, j) =
Ωbad

s (−k,m, n, j, i).Aording to Lidskii Theorem ([21℄, Chap. II �6.5), for any j, 1 ≤ j ≤Mm, λm
j (ω)−

λm
j (ω′) may be written as a onvex ombination (with non-negative oe�ients) ofeigenvalues of the operator W0mm(ω) −W0mm(ω′). Consequently,
∀j, 1 ≤ j ≤Mm, ∀ω, ω′ ∈ Ωs, ω 6= ω′, |∂λm

j (ω, ω′)| ≤ ‖∂W0mm(ω, ω′)‖ ≤ 1

4
.If ω, ω′ ∈ Ωbad

s (k, n,m, i, j), ω 6= ω′, then (k, n,m) is neessarily a ritial index and
2ψ(k, n,m)

|ω − ω′| >

∣

∣

∣

∣

(ωk − ∆mn + λn
i (ω) − λm

j (ω)) − (ω′k − ∆mn + λn
i (ω′) − λm

j (ω′))

ω − ω′

∣

∣

∣

∣

≥ |k| − 1

2
≥ 1

2
|k| .This implies that |Ωbad

s (k, n,m, i, j)| ≤ 4ψ(k, n,m)/|k| and so
|Ωbad

s | ≤ 2
∑

(k,n,m)
k>0

∆mn
2J

<k< 2∆mn
J

∑

i,j
1≤i≤Mn

1≤j≤Mm

4

k
ψ(k, n,m) .This immediately leads to the desired inequality (55).8. Constrution of the sequenes {Ωs} and {As}For a non-diagonal multi-index (k, n,m) and s ∈ Z+ set

ψs(k, n,m) =
1

2
∆0 if (k, n,m) is non-ritial and k = 0,

=
7

18
J

(

|k| − 1

2

) if (k, n,m) is non-ritial and k 6= 0,

= ϕs+1 (min{Mm,Mn})1/2 |k|1/2e−̺s|k|/2 if (k, n,m) is ritial,(56)where
̺s =

1

Es

− 1

Es+1

.Observe that ψs obeys the symmetry ondition (53). The hoie of ψs(k, n,m) for anon-ritial index (k, n,m) was guided by the following lemma.
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9
J, 9

8
J ], (k, n,m) ∈ Z × N × N is a non-ritial indexand W ∈ Xs satis�es

‖W0mm(ω)‖, ‖W0nn(ω)‖ ≤ min

{

1

4
∆0,

7

72
J

} (57)then the spetra Spec(kω−∆mn +W0nn(ω)), Spec(W0mm(ω)) are not interlaed (i.e.,they are separated by a real point p suh that one of them lies below and the otherabove p) and it holds
dist (Spec(kω − ∆mn +W0nn(ω)), Spec(W0mm(ω))) ≥ ψ(k, n,m).Proof. We distinguish two ases. If k 6= 0 then

|kω − ∆mn| = |k|
∣

∣

∣

∣

ω − ∆mn

k

∣

∣

∣

∣

≥ 7

18
J |k|sine, by assumption,

∆mn

k
− ω ∈ ] −∞,

1

2
J − 8

9
J ] ∪ [ 2J − 9

8
J,+∞[ .So the distane may be estimated from below by

7

18
J |k| − ‖W0nn(ω)‖ − ‖W0mm(ω)‖ ≥ 7

18
J

(

|k| − 1

2

)

.If k = 0 then a lower bound to the distane is simply given by
∆0 − ‖W0nn(ω)‖ − ‖W0mm(ω)‖ ≥ 1

2
∆0.Next we speify the way we shall onstrut the dereasing sequene of sets {Ωs}∞s=0.Let Ω0 = [ 8

9
J, 9

8
J ]. IfWs ∈ Xs has been already de�ned then we introdue Ωs+1 ⊂ Ωsas the set of (Ws, ψs)�non-resonant frequenies. Reall that the real Banah spae

Xs is determined by the hoie of data ϕs, Es and Ωs, as explained in Setion 5.As a next step let us onsider , for s ∈ Z+, ω ∈ Ωs+1 and a non-diagonal index
(k, n,m), a ommutation equation,

(kω − ∆mn + (Ws)0nn(ω))X −X (Ws)0mm(ω) = Y, (58)with an unknown X ∈ B(Hm,Hn) and a right hand side Y ∈ B(Hm,Hn). Sine ω is
(Ws, ψs)�non-resonant the spetra Spec(kω−∆mn+(Ws)0nn(ω)) and Spec((Ws)0mm(ω))don't interset and so a solution X exists and is unique. This way one an introduea linear mapping

(Γs)knm(ω) : B(Hm,Hn) → B(Hm,Hn)suh that X = (Γs)knm(ω)Y solves (58). Moreover, aording to Appendix A,
‖(Γs)knm(ω)‖ ≤ (min{Mm,Mn})1/2

ψ(k, n,m)
(59)



26 P. DUCLOS, O. LEV, P. ��OVÍ�EK, M. VITTOTin the general ase, and provided the spetra Spec(kω − ∆mn + (Ws)0nn(ω)) and
Spec((Ws)0mm(ω)) are not interlaed it even holds that

‖(Γs)knm(ω)‖ ≤ 1

ψ(k, n,m)
. (60)From the uniqueness it is lear that Ker((Γs)knm(ω)) = 0.We extend the de�nition of (Γs)knm to diagonal indies by letting (Γs)0nn(ω) = 0 ∈

B(B(Hn,Hn)). This way we get an element
Γs ∈ Map

(

Ωs+1 × Z × N × N,
∑

n∈N

∑⊕

m∈N

B(B(Hm,Hn))

)

, (61)whih naturally de�nes a linear mapping, denoted for simpliity by the same symbol,
Γs : 0Xs → 0Xs+1, aording to the rule

Γs(Y )knm(ω) := (Γs)knm(ω)(Yknm(ω)) .Lemma 12. Assume that for all non-diagonal indies (k, n,m) and ω, ω′ ∈ Ωs+1,
ω 6= ω′, it holds

‖∂(Γs)
−1
knm(ω, ω′)‖ ≤ |k| + 1

2
, (62)if ω ∈ Ωs+1 and (k, n,m) is a non-ritial index then the spetra Spec(kω − ∆mn +

(Ws)0nn(ω)) and Spec((Ws)0mm(ω)) are not interlaed and
ϕs+1 ≤ min

{

2

3
∆0,

1

6
J

}

. (63)Then the following upper estimate on the norm of Γs ∈ B(0Xs,
0Xs+1) holds true:

‖Γs‖ ≤ 5

2ϕs+1
.Proof. To estimate ‖Γs‖ we shall use relation (94) of Proposition 15 in Appendix B.Note that

‖∂(Γs)knm(ω, ω′)‖ = ‖(Γs)knm(ω) ∂(Γs)
−1
knm(ω, ω′) (Γs)knm(ω′)‖

≤ ‖(Γs)knm(ω)‖‖(Γs)knm(ω′)‖
(

|k| + 1

2

)

. (64)If (k, n,m) is ritial then we have, aording to (59) and (56),
‖(Γs)knm(ω)‖ ≤ 1

ϕs+1|k|1/2
e̺s|k|/2
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e−̺s|k| (‖(Γs)knm(ω)‖ + ϕs+1‖∂(Γs)knm(ω, ω′)‖)

≤ e−̺s|k|
(

1

ϕs+1|k|1/2
e̺s|k|/2 +

|k| + 1
2

ϕs+1|k|
e̺s|k|

)

≤ 1

ϕs+1

(

1 + 1 +
1

2|k|

)

≤ 5

2ϕs+1

.If (k, n,m) is non-ritial and k 6= 0 then we have, aording to (60) and (56),
‖(Γs)knm(ω)‖ ≤ 18

7J
(

|k| − 1
2

)and onsequently
e−̺s|k| (‖(Γs)knm(ω)‖ + ϕs+1‖∂(Γs)knm(ω, ω′)‖)

≤ 18

7J
(

|k| − 1
2

)

(

1 + ϕs+1

18
(

|k| + 1
2

)

7J
(

|k| − 1
2

)

)

≤ 1

ϕs+1

1

6

36

7

(

1 +
1

6

54

7

)

<
2

ϕs+1

.In the ase when (k, n,m) is non-ritial and k = 0 one gets similarly ‖(Γs)knm(ω)‖ ≤
2/∆0 and

e−̺s|k| (‖(Γs)knm(ω)‖ + ϕs+1‖∂(Γs)knm(ω, ω′)‖)

≤ 2

∆0

(

1 + ϕs+1
1

∆0

)

≤ 1

ϕs+1

4

3

(

1 +
2

3

)

<
5

2ϕs+1
.Now we are able to speify the mappings Θs

u. Set
As = Γs

(

(1 −Ds)(Ws − ιs−1(Ws−1))
)

∈ 0Xs+1. (65)
Ws ∈ Xs satis�es (32) and thus one �nds, when taking Hermitian adjoint of (58),that

((Γs)knm(ω)Y )∗ = −(Γs)−k,m,n(ω)(Y ∗) .This implies that As obeys ondition (46). The mappings Θs
u, s < u, are de�ned byequality (47) (see also the omment following the equality).9. Proof of Theorem 1We start from the spei�ation of the sequenes {ϕs} and {Es},

ϕs = a sαq−rs for s ≥ 1, Es = qs+1 for s ≥ 0, (66)where α > 1 and q > 1 are onstants that are arbitrary exept of the restritions
qr ≥ eα and q−rζ(α) ≤ 3 ln 2 (67)



28 P. DUCLOS, O. LEV, P. ��OVÍ�EK, M. VITTOT(ζ stands for the Riemann zeta funtion), and
a = 45 e q2rǫV . (68)For example, α = 2 and qr = e2 will do. The value of ϕ0 ≥ ϕ1 = a q−r doesn'tin�uene the estimates whih follow, and we automatially have E−1 = 1 (this is aonvenient onvention). Condition r ln(q) ≥ α guarantees that the sequene {ϕs} isdereasing. Note also that̺

s =
1

Es

− 1

Es+1

=

(

1 − 1

q

)

q−s−1.Another reason for the hoie (66) and (68) is that the onstants A⋆, B⋆ and C⋆,as de�ned in (38), obey assumption (39) of Proposition 7. Partiularly, a onstrainton the hoie of {ϕs} and {Es}, namely ∑∞
s=0 1/(ϕs+1(Es−1)

r) < ∞, is imposed byrequiring B⋆ to be �nite. However this is straightforward to verify. Atually, theonstants may now be expressed expliitly,
A⋆ =

5e q2r

a
, B⋆ =

5e qr

a
ζ(α), C⋆ =

5e qr

a
,and thus onditions (39) mean that

ǫV
5e qr

a
ζ(α) ≤ 1

3
ln 2, ǫV

5e q2r

a
φ

(

ǫV
15e qr

a

)

≤ 1

9
. (69)The latter ondition in (69) is satis�ed sine the LHS is bounded from above by (.f.(5))

1

9
φ

(

1

3
q−r

)

≤ 1

9
φ

(

1

3

)

= 1 − 2

3
e1/3 <

1

9
.Conerning the former ondition, the LHS equals q−rζ(α)/9 and so it su�es tohose α and q so that (67) is ful�lled. An additional reason for the hoie (66) willbe explained later.Let us now summarise the onstrution of the sequenes {Xs}, {Ws} and {Θs

u}s>uwhih will �nally amount to a proof of Theorem 1. Some more details were alreadygiven in Setion 8. We set Ω0 = [ 8
9
J, 9

8
J ] and W0 = V0. Reall that the ut-o�s Vs of

V were introdued in (35). In every step, numbered by s ∈ Z+, we assume that Ωtand Wt, with 0 ≤ t ≤ s, and At, with 0 ≤ t ≤ s− 1, have already been de�ned. Themappings Θt
u, with u > t, are given by Θt

u(X) = [ ιu,t+1(At), X ] provided At ∈ 0Xt+1satis�es ondition (46). We de�ne Ωs+1 ⊂ Ωs as the set of (Ws, ψs)�non-resonantfrequenies, with ψs introdued in (56). Consequently, the real Banah spae Xs+1 isde�ned as well as its de�nition depends on the data Ωs+1, ϕs+1 and Es+1. Then weare able to introdue an element Γs (in the sense of (61)) whose de�nition is based onequation (58) and whih in turn determines a bounded operator Γs ∈ B(0Xs,
0Xs+1)(with some abuse of notation). The element As ∈ 0Xs+1 is given by equality (65)and atually satis�es ondition (46). Knowing Wt, t ≤ s, and Θt

s+1, t ≤ s, (whih isequivalent to knowing At, t ≤ s) one is able to evaluate the RHS of (8) de�ning theelement Ws+1. Hene one proeeds one step further.
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3e

1 − q−r
ǫ⋆(r,∆0, J) ≤ min

{

1

4
∆0,

7

72
J

} (70)and
45 e qrǫ⋆(r,∆0, J) ≤ min

{

2

3
∆0,

1

6
J

}

. (71)We laim that this hoie guarantees that the onstrution goes through. Basiallythis means that ǫV < ǫ⋆(r,∆0, J) is su�iently small so that all the assumptionsourring in the preeding auxiliary results are satis�ed in every step, with s ∈ Z+.This onerns assumption (57) of Lemma 11,
‖(Ws)0mm(ω)‖ ≤ min

{

1

4
∆0,

7

72
J

}

, ∀ω ∈ Ωs, ∀m ∈ N, (72)assumption (54) of Lemma 10,
‖∂(Ws)0mm(ω, ω′)‖ ≤ 1

4
, ∀ω, ω′ ∈ Ωs, ω 6= ω′, ∀m ∈ N, (73)assumptions (62) and (63) of Lemma 12,

‖∂(Γs)
−1
knm(ω, ω′)‖ ≤ |k| + 1

2
, ∀(k, n,m), ∀ω, ω′ ∈ Ωs, ω 6= ω′, (74)and

ϕs+1 ≤ min

{

2

3
∆0,

1

6
J

}

, (75)and assumption (50) of Proposition 9,
‖As−1‖ ≤ 5

2ϕs
‖Ws−1 − ιs−2(Ws−2)‖ . (76)We an immediately do some simpli�ations. As the sequene {ϕs} is non-inreasingondition (75) redues to the ase s = 0. Sine ϕ1 = 45 e qrǫV the upper bound (71)implies (75).Note also that (74) is a diret onsequene of (73). Atually, one dedues from thede�nition of (Γs)knm(ω) (based on equation (58)) that, ∀Y ∈ B(Hm,Hn),

(Γs)
−1
knm(ω)Y = (kω − ∆mn + (Ws)0nn(ω))Y − Y (Ws)0mm(ω) .Hene

∂(Γs)
−1
knm(ω, ω′)Y = (k + ∂(Ws)0nn(ω, ω′)) Y − Y ∂(Ws)0mm(ω, ω′)and, assuming (73),

‖∂(Γs)
−1
knm(ω, ω′)‖ ≤ |k| + ‖∂(Ws)0nn(ω, ω′))‖ + ‖∂(Ws)0mm(ω, ω′)‖ ≤ |k| + 1

2
.Let us show that in every step, with s ∈ Z+, onditions (72), (73) and (76) areatually ful�lled. For s = 0, ondition (76) is empty and ondition (73) is obvious



30 P. DUCLOS, O. LEV, P. ��OVÍ�EK, M. VITTOTsine W0 = V0 doesn't depend on ω. Condition (72) is obvious as well due toassumption (70) and the fat that ‖(W0)0mm(ω)‖ = ‖(V0)0mm‖ ≤ ǫV .Assume now that t ∈ Z+ and onditions (72), (73) and (76) are satis�ed in eah step
s ≤ t. Reall that in (40) we have set Fs = 5/ϕs+1 and vs = e ǫV /(Es−1)

r. We alsokeep the notation ws = ‖Ws − ιs−1(Ws−1)‖s, with the onvention W−1 = 0.We start with ondition (76). Using the indution hypothesis, Lemma 11 and Lemma12 one �nds that ‖Γt‖ ≤ Ft/2 and so ‖At‖ ≤ ‖Γt‖‖Wt − ιt−1(Wt−1)‖ ≤ Ftwt/2 (.f.(65) and (4)).By the indution hypothesis and the just preeding step, ‖As‖ ≤ Fsws for all s ≤ t.As we already know the onstants A⋆, B⋆ and C⋆ ful�l (39) and so the quantities A,
B and C given by A = ǫVA⋆, B = ǫVB⋆ and C = ǫVC⋆ (.f. (41)) obey (42) andonsequently inequality (15) with d = 3. By the very hoie of A, B and C (.f. (38)and (40)) the quantities also obey relations (12), (13) and (14). This means that allassumptions of Proposition 3 are ful�lled for s ≤ t (reall that ‖Θs

u‖ ≤ 2‖As). Oneeasily �nds that the onlusion of Proposition 3, namely ws ≤ d vs, holds as well forall s, s ≤ t+ 1. Clearly, ‖(Ws)0mm(ω)‖ ≤ ‖Ws‖s for all s, and
‖Wt+1‖t+1 ≤

t+1
∑

s=0

ws ≤ 3
∞
∑

s=0

vs = 3e ǫV

∞
∑

s=0

q−rs =
3e

1 − q−r
ǫV .By (70) we onlude that (72) is true for s = t+ 1.Finally, using one more that ws ≤ 3vs for s ≤ t+ 1,

‖∂(Wt+1)0mm(ω, ω′)‖ ≤
t+1
∑

s=0

‖∂
(

Ws − ιs−1(Ws−1)
)

0mm
(ω, ω′)‖

≤
t+1
∑

s=0

1

ϕs

‖Ws − ιs−1(Ws−1)‖s

≤
∞
∑

s=0

3vs

ϕs+1

.However, the last sum equals (.f. (40) and (42))
3

5

∞
∑

s=0

Fsvs =
3

5
B ≤ 1

5
ln 2 <

1

4
.This veri�es (73) for s = t+1 and hene the veri�ation of onditions (72), (73) and(76) is omplete.Set, as before, Ω∞ =

⋂∞
s=0 Ωs. Next we are going to estimate the Lebesgue measureof Ω∞,

|Ω∞| = |Ω0| − |Ω0 \ Ω∞| =
17

72
J −

∞
∑

s=0

|Ωs \ Ωs+1| =
17

72
J −

∞
∑

s=0

|Ωbad
s | .



WEAKLY REGULAR FLOQUET HAMILTONIANS WITH PURE POINT SPECTRUM 31Realling Lemma 10 jointly with Lemma 11 showing that the assumptions of Lemma10 are satis�ed, and the expliit form of ψ (56) we obtain
|Ωbad

s | ≤ 8ϕs+1

∑

m,n∈N,
∆mn > 1

2
J

µmn

∑

k∈N,

max{1,∆mn
2J

}<k< 2∆mn
J

k−1/2e−̺sk/2

≤ 8ϕs+1

∑

m,n∈N,
∆mn > 1

2
J

µmn
2∆mn

J

(

∆mn

2J

)−1/2

e−̺s∆mn/4J

= 32 (2J)σϕs+1

∑

m,n∈N,
∆mn > 1

2
J

µmn

(∆mn)σ

(

∆mn

2J

)σ+ 1

2

e−̺s∆mn/4J

≤ 32 2σϕs+1

(

2σ + 1

e̺s

)σ+ 1

2

∆σ(J)where we have used that if α > 0 and β > 0 then supx>0 x
αe−βx = ( α

eβ
)α. Toomplete the estimate we need that the sum ∑∞

s=0 ϕs+1/(̺s)
σ+ 1

2 should be �nitewhih imposes another restrition on the hoie of {ϕs} and {Es}. With our hoie(66) this is guaranteed by the ondition r > σ + 1
2
sine in that ase

∞
∑

s=0

ϕs+1

(̺s)
σ+ 1

2

=
a

(

1 − 1
q

)σ+ 1

2

∞
∑

s=0

(s+ 1)αq−(r−σ− 1

2
)(s+1) <∞ .Hene

|Ω∞| ≥ 17

72
J − δ1(σ, r) ∆σ(J) ǫV (77)where

δ1(σ, r) = 1440 e q2r2σ





2σ + 1
(

1 − 1
q

)

e





σ+ 1

2

Li−α(q−r+σ+ 1

2 ) (78)Here Lin(z) =
∑∞

k=1 z
k/kn (|z| < 1) is the polylogarithm funtion. This shows (3).To �nish the proof let us assume that ω ∈ Ω∞. We wish to apply Proposition9. Going through its assumptions one �nds that it only remains to make a noteonerning equality (48). In fat, this equality is a diret onsequene of the on-strution of As ∈ 0Xs+1. Atually, by the de�nition of As (.f. (65)), As =

Γs

(

(1 − Ds)(Ws − ιs−1(Ws−1))
), whih means that for any ω ∈ Ωs+1 and all indies

(k, n,m),
(

kω − ∆mn + (Ws)0nn(ω)
)

(As)knm(ω) − (As)knm(ω)(Ws)0mm(ω)

=
(

(1 −Ds)(Ws − ιs−1(Ws−1))
)

knm
(ω).

(79)



32 P. DUCLOS, O. LEV, P. ��OVÍ�EK, M. VITTOTOn the other hand, by the de�nition of Θs
u (.f. (47)) and the de�nition of Ds (.f(33)), and sine ω ∈ Ω∞, it holds true that, ∀u, u > s,

Θs
u(ιusDs(Ws))knm(ω) =

(

[ ιu,s+1(As), ιusDs(Ws) ]
)

knm
(ω)

= (As)knm(ω)(Ws)0mm − (Ws)0nn(As)knm(ω).
(80)A ombination of (79) and (80) gives (48). We onlude that aording to Proposition9 the operator K + V is unitarily equivalent to K + D(W) and hene has a purepoint spetrum. This onludes the proof of Theorem 1.10. Conluding remarksThe bakbone of the proof of Theorem 1 forms an iterative proedure loosely alledhere and elsewhere the quantum KAM method. One of the improvements attemptedin the present paper was a sort of optimalisation of this method, partiularly fromthe point of view of assumptions imposed on the regularity of the perturbation V .In this �nal setion we would like to brie�y disuss this feature by omparing ourpresentation to an earlier version of the method. We shall refer to paper [9℄ but themain points of the disussion apply as well to other papers inluding the originalartiles [5℄, [6℄ where the quantum KAM method was established. For the sake ofillustration we use a simple but basi model: H =

∑

m∈N
m1+αQm, i.e., hm = m1+α,with 0 < α ≤ 1, and dimQm = 1; thus µmn = 1 and any σ > 1/α makes ∆σ(J)�nite. The perturbation V is assumed to ful�ll (34) for a given r ≥ 0.Aording to Theorem 1, r is required to satisfy r > σ+1/2 whih may be omparedto referene [9, Theorem 4.1℄ where one requires

r > r1 = 4σ + 6 +

[

(4σ + 6)σ

1 + σ

]

+ 1. (81)The reason is that the proedure is done in two steps in the earlier version; in the �rststep preeding the iterative proedure itself the so-alled adiabati regularisation isapplied on V in order to ahieve a regularity in time and �spae� (by the spatial partone means the fator H in K = L2([ 0, T ], dt) ⊗H) of the type
∃r1, r2 > r2 = 4σ + 6, sup

knm
|k|r1|n−m|r2|Vknm| <∞. (82)The adiabati regularisation brings in the summand [ (4σ+6)σ

1+σ

]

+ 1. In the presentversion both the adiabati regularisation and ondition (82) are avoided. This isrelated to the hoie of the norm in the auxiliary Banah spaes Xs,
‖X‖s = sup

ω 6=ω′

sup
n

∑

k,m

Fs(k, n,m) (|Xknm(ω)| + ϕs|∂Xknm(ω, ω′)|) .In the earlier version the weights were hosen as Fs(k, n,m) := exp((|k| + |n −
m|)/Es) in order to ompensate small divisors ourring in eah step of the iterativemethod. A more areful ontrol of the small divisors in the present version allowsless restritive weights, namely Fs(k, n,m) = exp(|k|/Es). In more detail, indies



WEAKLY REGULAR FLOQUET HAMILTONIANS WITH PURE POINT SPECTRUM 33labelling the small divisors are loated in a ritial subset of the lattie Z × N × N.De�nition (51) of the ritial indies implies a simple estimate,
|k| ≤ |k| + |n−m| ≤ |k| + |∆mn| ≤ |k|(1 + 2J),whih explains why we e�etively have, in the present version, r2 = 0.The seond remark onerns Diophantine-like estimates of the small divisors gov-erned by the sequene {ψs}. A bit ompliated de�nition (56) is aused by thelassi�ation of the indies into ritial and non-ritial ones. However only theritial indies are of importane in this ontext and thus we an simplify, for thepurpose of this disussion, the de�nition of ψs to

ψs = γs|k|1/2e−ρs|k|/2, ϕs+1 ≥ γs > 0.Let us ompare it to the hoie made in [9℄, namely ψs = γs|k|−σ. The fators γsthen our in some key estimates; let us summarise them. The norm of the operators
Γs : Xs → Xs+1 are estimated as

‖Γs‖ ≤ const
ϕs+1

γ 2
s(this is shown in Lemma 12 but note that in this lemma we have set γs = ϕs+1).Another important ondition is the onvergene of the series

B⋆ = const
∞
∑

s=0

ϕs+1

γ 2
s (Es−1)r

<∞(.f. (38) but there again γs = ϕs+1). Finally, the measure of the set of resonantfrequenies, | ∪s Ωbad
s |, is estimated by

∞
∑

s=0

|Ωbad
s | ≤ const

∞
∑

s=0

γs

ρ
σ+ 1

2
s

<∞, ρs =
1

Es
− 1

Es+1(shown in the part of the proof of Theorem 1 preeding relation (77)). We reallthat Es denotes the width of the trunation of the perturbation V at step s of thealgorithm (.f. (35)). These onditions restrit the hoie of the sequenes {Es} and
{γs} whih may also be regarded as parameters of the proedure. Spei�ation (66)of these parameters, with γs = ϕs+1, an be ompared to a polynomial behaviour of
Es and γs in the variable s in [9℄ where one sets ϕs+1 ≡ 1 and

Es = const (s+ 1)ν−1, ν > 2, γs = const (s+ 1)−µ, µ > 1.The latter de�nition �nally leads to the bound on the order of regularity of V
r >

(2σ + 1)ν + 3

ν − 1
.Thus in that ase the bound varies from r > 4σ + 5 (for ν → 2+; this ontributesto r1 in (81)) to r > 2σ + 1 (ν → +∞). This shows why we have hosen here totrunate with exponential Es, see (66).



34 P. DUCLOS, O. LEV, P. ��OVÍ�EK, M. VITTOTIn the last remark let us mention a onsequene of the equality γs = ϕs+1. Theonditions for onvergene of B⋆ and ∪sΩ
bad
s beome (notie that ρs = const/Es)

∑

s

1

ϕs+1(Es−1)r
<∞ and ∑

s

ϕs+1E
σ+ 1

2
s <∞and are ful�lled for r > σ+ 1

2
. There is however a drawbak with this hoie. Notiethe role the oe�ients ϕs play in the de�nition (31) of the norm ‖·‖s. Sine ϕs → 0as s → ∞ one looses the ontrol of the Lipshitz regularity in ω in the limit of theiterative proedure. This means that we have no information about the regularityof the eigenvetors and the eigenvalues of K+V with respet to ω. With r > 2σ+1we ould have taken ϕs+1 = 1 and obtained that these eigenvalues and vetors areindeed Lipshitz in ω.Appendix A. Commutation equationSuppose that X and Y are Hilbert spaes, dim X < ∞, dim Y < ∞, A ∈ B(Y),

B ∈ B(X), both A and B are self-adjoint, and V ∈ B(X,Y). If γ is a simple losedand positively oriented urve in the omplex plane suh that Spec(A) lies in thedomain enirled by γ while Spec(B) lies in its omplement then the equation
AW −WB = V (83)has a unique solution W ∈ B(X,Y) given by

W =
1

2πı

∮

γ

(A− z)−1V (B − z)−1dz . (84)The veri�ation is straightforward.Denote M1 = dim X, M2 = dim Y. We shall need the following two estimates on thenorm of X ∈ B(X,Y):
‖X‖2 ≤

M2
∑

i=1

M1
∑

j=1

|Xij|2 = TrX∗X (Hilbert− Shmidt norm), (85)
‖X‖2 ≥ max

{

max
1≤i≤M2

M1
∑

j=1

|Xij|2, max
1≤j≤M1

M2
∑

i=1

|Xij |2
}

, (86)where (Xij) is a matrix of X expressed with respet to any orthonormal bases in Xand Y.If sup Spec(A) < inf Spec(B) or sup Spec(B) < inf Spec(A) we shall say that Spec(A)and Spec(B) are not interlaed.Proposition 13. If Spec(A) and Spec(B) are not interlaed then
‖W‖ ≤ ‖V ‖

dist(Spec(A), Spec(B))
,



WEAKLY REGULAR FLOQUET HAMILTONIANS WITH PURE POINT SPECTRUM 35otherwise, if Spec(A) and Spec(B) don't interset but are interlaed,
‖W‖ ≤ (min {dim X, dimY})1/2 ‖V ‖

dist(Spec(A), Spec(B))
.Proof. (1) If d = inf Spec(B) − sup Spec(A) > 0 then, after a usual limit proedure,we an hoose for the integration path in (84) the line whih is parallel to the imagi-nary axis and intersets the real axis in the point x0 = (sup Spec(A)+inf Spec(B))/2.So

‖W‖2 ≤ 1

2π

∫ ∞

−∞
‖(A− x0 − ıs)−1‖‖V ‖‖(B − x0 − ıs)−1‖ ds

=
‖V ‖
2π

∫ ∞

−∞

ds
(

d
2

)2
+ s2

=
‖V ‖
d

.(2) In the interlaed ase we hoose orthonormal bases in X and Y so that A and Bare diagonal, A = diag(a1, . . . , aM2
) and B = (b1, . . . , bM1

). For brevity let us denote
dist(Spec(A), Spec(B)) by d. Then Wij = Vij/(ai − bj), and we an use (85), (86) toestimate

‖W‖2 ≤
M2
∑

i=1

M1
∑

j=1

∣

∣

∣

∣

Vij

ai − bj

∣

∣

∣

∣

2

≤
M2
∑

i=1

M1
∑

j=1

|Vij|2
d2

≤
M2
∑

i=1

‖V ‖2

d2
= M2

‖V ‖2

d2
.Symmetrially, ‖W‖ ≤M

1/2
1 ‖V ‖/d, and the result follows.Appendix B. Choie of a norm in a Banah spaeLet

H =
∑⊕

n∈N

Hnbe a deomposition of a Hilbert spae into a diret sum of mutually orthogonalsubspaes, and Ω ⊂ R. To any ouple of positive real numbers, ϕ and E, we relatea subspae
A ⊂ L∞

(

Ω × Z × N × N,
∑

n∈N

∑⊕

m∈N

B(Hm,Hn)

)formed by those elements V whih satisfy
Vknm(ω) ∈ B(Hm,Hn)
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‖V‖ = sup

ω,ω′∈Ω
ω 6=ω′

sup
n∈N

∑

k∈Z

∑

m∈N

(‖Vknm(ω)‖ + ϕ ‖∂Vknm(ω, ω′)‖) e|k|/E (87)where ∂ stands for the di�erene operator
∂V(ω, ω′) =

V(ω) − V(ω′)

ω − ω′ .Note that the di�erene operator obeys the rule
∂(UV)(ω, ω′) = ∂U(ω, ω′)V(ω′) + U(ω)∂V(ω, ω′) . (88)Proposition 14. The norm in A is an algebra norm with respet to the multiplia-tion

(UV)knm(ω) =
∑

ℓ∈Z

∑

p∈N

Uk−ℓ,n,p(ω)Vℓpm(ω) . (89)Proof. We have to show that
‖UV‖ ≤ ‖U‖‖V‖ . (90)For brevity let us denote (in this proof)

Xp(ω) =
∑

ℓ∈Z

∑

m∈N

‖Vℓpm(ω)‖ e|ℓ|/E,

∂Xp(ω, ω
′) =

∑

ℓ∈Z

∑

m∈N

‖∂Vℓpm(ω, ω′)‖ e|ℓ|/E.Here ∂X is an �inseparable� symbol (whih this time doesn't have the meaning ∂ of
X ). It holds

∑

k

∑

m

‖(UV)knm(ω)‖ e|k|/E

≤
∑

k

∑

m

∑

ℓ

∑

p

‖Uk−ℓ,n,p(ω)‖ e|k−ℓ|/E‖Vℓpm(ω)‖ e|ℓ|/E

=
∑

k

∑

m

∑

ℓ

∑

p

‖Uknp(ω)‖ e|k|/E‖Vℓpm(ω)‖ e|ℓ|/E

=
∑

k

∑

p

‖Uknp(ω)‖ e|k|/EXp(ω) .
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∑

k

∑

m

‖∂(UV)knm(ω)‖ e|k|/E ≤
∑

k

∑

m

∑

ℓ

∑

p

(

‖Uknp(ω)‖ e|k|/E‖∂Vℓpm(ω, ω′)‖ e|ℓ|/E

+‖∂Uknp(ω, ω
′)‖ e|k|/E‖Vℓpm(ω′)‖ e|ℓ|/E

)

=
∑

k

∑

p

(‖Uknp(ω)‖ ∂Xp(ω, ω
′)

+‖∂Uknp(ω, ω
′)‖Xp(ω

′)) e|k|/E .A ombination of these two inequalities gives
∑

k

∑

m

(‖(UV)knm(ω)‖ + ϕ ‖∂(UV)knm(ω, ω′)‖) e|k|/E

≤
∑

k

∑

p

(‖Uknp(ω)‖(Xp(ω) + ϕ∂Xp(ω, ω
′)) + ϕ ‖∂Uknp(ω, ω

′)‖Xp(ω
′)) e|k|/E

≤ sup
ω,ω′

sup
p

(Xp(ω) + ϕ∂Xp(ω, ω
′))
∑

k

∑

p

(‖Uknp(ω)‖ + ϕ ‖∂Uknp(ω, ω
′)‖)e|k|/E

= ‖V‖
∑

k

∑

p

(‖Uknp(ω)‖ + ϕ ‖∂Uknp(ω, ω
′)‖)e|k|/E .To obtain (90) it su�es to apply supω,ω′ supn to this inequality.Suppose now that two ouples of positive real numbers, (ϕ1, E1) and (ϕ2, E2), aregiven and that it holds

̺ =
1

E1
− 1

E2
≥ 0 and ϕ2 ≤ ϕ1 . (91)Consequently, we have two Banah spaes, A1 and A2. Furthermore, we supposethat there is given an element

Γ ∈ Map

(

Ω × Z × N × N,
∑

n∈N

∑⊕

m∈N

B(B(Hm,Hn))

)

, (92)suh that for eah ouple (ω, k) ∈ Ω × Z and eah double index (n,m) ∈ N × N,
Γknm(ω) belongs to B(B(Hm,Hn)). Γ naturally determines a linear mapping, alledfor the sake of simpliity also Γ, from A1 to A2, aording to the presription

Γ(V)knm(ω) = Γknm(ω)(Vknm(ω)) . (93)Conerning the di�erene operator, in this ase one an apply the rule
∂ (Γ(V)) (ω, ω′) = ∂Γ(ω, ω′) (V(ω′)) + Γ(ω)(∂V(ω, ω′)) .Proposition 15. The norm of Γ : A1 → A2 an be estimated as follows,

‖Γ‖ ≤ sup
ω,ω′∈Ω
ω 6=ω′

sup
k∈Z

sup
(n,m)∈N×N

e−̺|k| (‖Γknm(ω)‖ + ϕ2 ‖∂Γknm(ω, ω′)‖) . (94)



38 P. DUCLOS, O. LEV, P. ��OVÍ�EK, M. VITTOTProof. Notie that, if onvenient, one an interhange ω and ω′ in ‖∂U(ω, ω′)‖. Itholds
∑

k

∑

m

(‖Γknm(ω)(Vknm(ω))‖ + ϕ2 ‖∂ (Γknm(Vknm)) (ω, ω′)‖) e|k|/E2

≤
∑

k

∑

m

(

‖Vknm(ω)‖(‖Γknm(ω)‖ + ϕ2 ‖∂Γknm(ω, ω′)‖)e−̺|k|

+ϕ2 ‖∂Vknm(ω, ω′)‖ ‖Γknm(ω′)‖e−̺|k|) e|k|/E1

≤ sup
ω,ω′

sup
k

sup
(n,m)

e−̺|k| (‖Γknm(ω)‖ + ϕ2 ‖∂Γknm(ω, ω′)‖)

×
∑

k

∑

m
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PROGRESSIVE DIAGONALIZATION AND APPLICATIONS

P. DUCLOS, O. LEV, P. ŠŤOVÍČEK AND M. VITTOT

ABSTRACT. We give a partial review of what is known so far on stability of periodically
driven quantum systems versus regularity of the bounded driven force. In particular we
emphasize the fact that unbounded degeneracies of the unperturbed Hamiltonian are al-
lowed. Then we give a detailed description of an extension to some unbounded driven
forces. This is done by representing the Schrödinger equation in the instantaneous basis
of the time dependent Hamiltonian with a method that we call progressive diagonaliza-
tion.

1. THE MAIN THEOREM

This paper is concerned with the spectral analysis of Floquet Hamiltonians associated
to quantum systems which are periodically driven. They are described by the Schrödinger
equation:

����� ��� � � ������ � ��

�������
�� self-adjoint on��
�� � ���� �� periodic,
� 	 �� a real frequency,
� � �� ���� � ��

(1)

where � is a separable Hilbert space, and �� has the following type of spectral de-
composition (
�� �� denoting respectively the eigenvalues in ascending order and the
eigenprojections):

�� �

��
���


���� �� �� 	�
�� �

with a growing gap condition of the type

�� 	 �� �

��
���
��

�
����

����

�
� �
��� ��(2)

The driven force is given by a time dependent real potential � which is, in the first part
of this paper, bounded in the norm

	� 	� �� ��
���

�
���

�
���

	� ����� ��	
��
����� ���(3)
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where 	� ����� ��	 denotes the operator norm of

� ����� �� ��
�

��

� ��

�

�������� ����� 	� � � � ��(4)

The following main theorem is about the self-adjoint operator� �� � � � � with�� ��
����� � � � ���� acting on the Hilbert space  �� ��������, i.e. functions which
are ��-periodic in time.

Theorem 1.1. Let �� 	 �, �� ��
�
�
����

�
���

�
, assume (2) for some � 	 �, and let
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� �
���

Then �� 	 � � �
� , ��� 	 � and ����� �� 	 � such that
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implies ��� � �� with
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	� 	�
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	�


�
�

��

�� �
so that� is pure point for all � � ��. Here ���� denotes the Lebesgue measure of ��.

The proof of this theorem and its complement that we state at the end of this section
can be found in [7]. This theorem is a result in singular perturbation theory since, as
shown in [9], one has

���
	
��	���
�� ��
 ��

���

� � �� [9]

�� � a.a. �� ������ � ��

i.e. for almost all �, �� has a dense pure point spectrum. To be able to overcome this
small divisors difficulty we use a technique which consists in applying to � � � � an
infinite sequence of unitary transformations so that at the � �� step

�� � � � �� ��� � ��� with �� � ��	� 	����

���� �

�

��

i.e. �� � � is unitary equivalent to a diagonal part �� � �� in the eigenbasis of ��,
plus an off diagonal part �� which is super exponentially small in the � variable pro-
vided 	� 	� is small enough. This is why we like to call this method progressive di-
agonalization although it is known usually under the name KAM-type method, since
this is an adaptation of the famous Kolmogorov-Arnold-Moser method originally in-
vented to treat perturbations of integrable Hamiltonians in classical mechanics. An ex-
tension of the previous theorem to certain classes of unbounded perturbations � is given
in Section 3 (see Theorem 3.3). We shall do it by (block-) diagonalizing � � � � ���
for each �, i.e. by constructing a time dependent unitary transformation ���� such that
�� � � ��� � ������� ����������

�, where�� ����� commutes with��, thus

�� � � � ����� ��� ������ ������� �����
( �� denotes the time derivative of �). � and �� are such that the new perturbation
����� ������� ����� is bounded, so that we can apply Theorem 1.1. This diagonalization
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of���� will be done in detail with a progressive diagonalization method (PDM) which
is simpler than the one used for Theorem 1.1 since we do not have small divisors here.
We think this is a good starting point for readers who are not familiar with this PDM. This
idea of regularizing an unbounded � by going to the instantaneous basis of � � � � ���
is not new, (see e.g. [13, 1]). Let us also mention the recent work [4] which also treats
the Schrödinger equation with unbounded perturbations which are quasi-periodic and an-
alytic in time; here we treat the differential periodic case. The use of KAM technique to
diagonalize quantum Floquet Hamiltonians first appeared in [3], where pulsed rotors of
the type

����� ��� � ����� ��� acting on ������� �������(5)

where � � �,�� � ��, � and� are analytic, were considered. Later on, the adaptation
of the Nash-Moser ideas to treat non-analytic perturbations was done in [6] for the special
case of (one dimensional) driven harmonic oscillators. These ideas where extended to a
large class of models in [8]. However, to our knowledge, the above Theorem 1.1 is the
first result that allows degeneracies of eigenvalues of�� which are not uniformly bounded
with respect to the quantum number�. Consequently we can exhibit frequencies such that
the quantum top model in arbitrary dimension, i.e. the higher dimensional versions of the
pulsed rotor (see (5) and Section 4.1), is pure point. One of the main goals of the spectral
analysis of these Floquet hamiltonians is the study of the stability of periodically driven
quantum systems, since it is known that

�� � � is pure point [10]�� ��

���

��
�	�

��� ��
���

������
��� � �� ����� � �(6)

because ������� ��� � � �� is unitary equivalent to ��  ��� �� where  ��� �� denotes
the propagator over the period � associated to the Schrödinger equation (1), (see [11, 16]).
The condition in the right-hand side of (6) says that the probability that the quantum tra-
jectory with an arbitrary initial condition ���� explores in the full history the eigenstates
of �� of energy higher than 
� becomes smaller and smaller as � gets larger and larger.
On the other hand, if ���� belongs to the continuous spectral subspace of  ��� �� then
(see [10]):

��

���

�

�

� �

�

	������	 	� � �� �� � ��

which means that in the time average the probability that the trajectory stays in the � ��

spectral subspace of �� vanishes. The conclusion that can be drawn from the articles
[3, 8, 7] is that for non-resonant (i.e. diophantine) frequencies the pulsed rotor is stable
if the driving force is sufficiently regular in time (see Figure 1 below) and sufficiently
small in amplitude. In addition it is known (see [10]) that if � is sufficiently regular in
time and � is resonant (i.e. rational) the pulsed rotor is stable. The situation is different
for the kicked rotor (i.e. ���� �� Æ���, the Dirac distribution): it was proved in [5] that if
the frequency is rational or even Liouville, then one can find� ’s such that  ��� �� has a
continuous spectral component. However nothing is known for non resonant frequencies.
Since the kicked rotor corresponds to �  �� in the notation of (3) and the known values
of � for which  ��� �� is pure point are � 	 �

� the sequences of papers [3, 8, 7] can be
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considered as reports on the efforts devoted to the long march from the pulsed rotor to
the kicked rotor (in the non resonant case). In Figure 1 below we give a diagram which
tells the history of this march. Since the regularity in the space variable has also played a
role, we present this diagram in the plane of points ���� ��� which says that the following
generalization of (3)

	� 	���� �� ��
���

�
���

�
���

	� ����� ��	�������� ����

is finite, with ���� �� � � ��.

�
��

�
��

analyticity

analyticity KAM
Pulsed Rotor

[3, ’85]

�
�
�
�
�
�
��
1710

Nash-Moser
[8, ’96]

Nash-Moser
+ Adiabatic Regularization

[8, ’96]

10

�
�

Nash-
Moser
+ tricks
[7, ’01]

�

�
��Æ

kicked rotor

��

���
��� ��

� � � � �, ��	
�

�� ��, � non resonant and �� ������ small enough

�
�

this paper
��

Figure 1. Historical diagram of progress toward the kicked rotor

The pure point property of � from which the stability (6) follows does not imply in
general that

��
�	�

�������� ����� �(7)

i.e. the energy is uniformly bounded. Notice that the converse is obviously true. It is
believed that to get (7) one should require sufficient regularity of the eigenprojectors of
�. That is why the following complement to Theorem 1.1 may be of interest. We have
also added some explicit bound on the constants �� and ��. It will be necessary in
Section 3 to consider potentials � which depend on the frequency � in a more elaborate
way. Suppose that � � � � �� � ���� is a bounded measurable function, which is ��
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periodic with respect to the first variable and such that for almost all � � � and � � �� ,
� ��� ��� � � ��� ��. For such � we modify 	� 	� as follows:

	� 	� �� ��
������

��
���

�
���
���

�	�������	� ��	��������� ���	�
��
����� ���

where

������� ��
�

��

� ��

�

�������� ��� ���� 	�

and

��������� �
�� ��

�������� ��������
� � �� �

Complement of Theorem 1.1. In addition to the statements in Theorem 1.1 one also has:
(a) each eigenprojection � of� is bounded in the norm

	�	���� �

�

� ��
���

�
���

�
���

	� ����� ��	
��
������� �

� � ���

(b) the following values of the constants are allowed: �� � �����, and

����� �� �
����


��
� � � � �
� �

�
� ��� � ����

�

with

���� � ��������� � ���

�
���� � ��

�

�� ���


��

����

����� �

�

�

(c) Theorem 1.1 extends to � � � � �� � ���� of the type described above.

In the progressive diagonalization method one must solve at each step a commutator
equation of the type

��� ������� � ���

This is done block-componentwise, i.e. with the notation (4), solving for each ����� �� �
�� � � � the following matrix equation in the unknown� ������ ��:

��� �
� �������������� ���������� ���
� ������� � ������� ���

We are interested in the best possible estimate of 	������� ��	 in terms of 	������� ��	.
In Section 2 we report on a method to solve this equation which is, in our opinion, the
best one known so far. Finally we present two applications in Section 4.

2. ON THE COMMUTATOR EQUATION

Let 
 and ! be two Hilbert spaces and ��
����! � the Banach spaces of bounded
endomorphisms on 
 and ! respectively, equipped with the usual operator norm. Let
" � ��
� and # � ��! � be self-adjoint operators such that

��� �� 	�� �����"� ����#� 	 ��(8)
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To each $ in the space ��!�
� of bounded operators from! into
, we want to associate
% � ��!�
� defined as follows:

�	��% � $� where �	��% �� "% �%#
A review on answers about this question can be found in the beautiful paper [2]. In
particular one can find there the following result.

Lemma 2.1. Under the conditions described above �	�� is a bounded linear mapping
which has a bounded inverse ��� and

	���	 � �

�

�

���
�

Remark 2.2. (a) In fact, in some special cases the constant �
� can be replaced by 1. We

have not found useful to pay attention to these subtleties here.
(b) The solution% is given by

% ��

�
�

�����$ �������� 	�

for any � � ����� such that its Fourier transform �� obeys
�
�� ����� � ��� on the set

����" � ����#. Clearly this shows that 	%	 � 	�	�	$ 	. Optimizing over such �
leads to the constant �� .

3. UNBOUNDED PERTURBATIONS

3.1. The setting. We start by the description of the class of unbounded perturbations
we shall consider. Let �� be a positive self-adjoint operator on the Hilbert space � and

������ be a complete set of mutually orthogonal projections which reduces � �. We
denote 
� �� ������ � ����, �� ��  ����, and let ���� be the algebraic direct
sum

�
���

 ����. We introduce the following Banach spaces: for all � � & � �

�������� � ' � �
���

'� � 	'	�� ��
�
���

	'�	� ��

where 	 � 	 is the norm of�. Of course�������� is nothing but� and 	'	� ����
�
	'�	.

Then ���, � � &� ( � �, will denote the Banach spaces of bounded operators defined
on �������� with values in �������� and 	 � 	�� its operator norm. We note that

	%	�� � ��
����

	%�����	

and
	%	�� � ��

���

�
���

	%�����	� 	%	�� � ��
���

�
���

	%�����	�

where %����� is the block element of % which acts from�� into�� and 	%�����	
its norm as a bounded operator on �. We shall say that % � � �� is symmetric, respec-
tively antisymmetric, if %����� � %������, respectively%����� � �%������, for
all ���. This definition coincides with the usual one in � �� � ����. We remark that
if % is symmetric or antisymmetric then % � ��� if and only if % � ���, if and
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only if % � ��� �� ��� � ���; this last operator space is equipped with the norm
	%	�� �� 
��
	%	��� 	%	���. It is known (see [14, Example III.2.3]) that ��� is
contained in all ��� , � � & ��, and in particular in ����. It is easy to check that ���

is a Banach algebra. We require the two following conditions on the spectra of� �:
�

�

�� ��

�

�
����

�

���

�(GGC��)

with
��� �� 	�� �����
�� ����
���

which expresses that the distances between the spectrum of two blocks
� and
� grows
sufficiently rapidly with �����. The second condition says that each blocks
� must be
bounded:


� � ����� ���(BBC��)

3.2. A class of unbounded perturbations. We make the following assumptions on the
perturbation of�� to be considered:

� � ��� and is symmetric�(UV)
Strictly speaking such a � is not in general an operator acting on � but the following
estimate shows that it can be seen as ��-bounded in the quadratic form sense with zero
relative bound: if )��*� �� ��� � *��� with *  �, then

	)��*�
�

� � )��*�
�

� 	 �
�
���

	� 	��

	�� �*� ����
��

������ ��

Indeed, since that )��*�
�

� acts diagonally on���� one gets immediately from (GGC��)
that


��
�	)��*�

�

� 	��� 	)��*�
�

� 	��
� � 
�

���

�

	�� �*� ����
��

� �

�

�

This allows to consider )��*�
�

�� )��*�
�

� as

��������
�����

�

��� ��������
��� ��������

�����
�

��� ���������

hence its above estimate and limiting behaviour as *�� follow easily.

3.3. Progressive diagonalization of�� � � . Here we show

Theorem 3.1. Assume�� � � and � obey (GGC��), (BBC��) and (UV). If

	� 	�� � �


!
�

then there exists � � ��� and� � ��� such that
�� � � � ���� ����

�

with
(i) ���� �� � �;

(ii) � unitary in ���;
(iii) 	�	�� � �

� and 	�	 � �	� 	��;
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(iv) ���� � � � ���.

Remark 3.2. (a) Since �
 is smaller than the smallest gap of ��, the bound on 	�	 �
�
��
 says in particular that each gap of �� remains open after perturbation by � . The
bound on � will be used later on.

(b) The algorithm says that � belongs to ���, which combined with (i) gives � �
���.

(c) The property (iv) is the key of the so-called “adiabatic regularization method” first
proposed by Howland ([12]) for the case of bounded � . Its proof is immediate from the
formula���� � ��������

� since it is equivalent to ���� � � � ��� � � and since
� � ��� � ���, �� � � ���. This trick was systematically used in [8, Section 3].

3.3.1. The formal algorithm. With �� � � we form a first �-tuple of operators

� � �� �	 � �� �� 	��"�� �� �� #$	��"���� �� �� ��� � ��� �

where
	��"% ��

�
���

��%��� #$	��"% ��
�
����

��%���

Clearly � is unitary,�� diagonal (i.e. commutes with��), and �� is symmetric. Starting
from this �-tuple we generate recursively an infinite sequence of such �-tuples as follows:
let �� be the solution of

��� ������� � �� and 	��" �� � ��

we shall use the notations �	�# �� �"�#� �� "# �#". Then we define

���� �� �
�����

��� � �� ��� �
��
���

�

�� � ��%
�	���

��(9)

and set

 � �� �
�� ���� ���� �� 	��"���� ���� ���� � #$	��"�����

Since�� ��� and �� are symmetric�� is antisymmetric and therefore ��� and  � are
formally unitary. Consequently

�� ����� � ���� �  ���� � � � 
��
� �(10)

and to achieve our goal we have to prove that � � � �, �� � �� and  � �  � as
���.

3.3.2. Convergence of the algorithm. We solve the commutator equation �� �������� �
�� block-wise, i.e. for all � �� �, we look for������� such that

�
� �����������������������
� ������� � ��������

Notice the notation����� �� �������. Assume for the moment that

�	�����	 � �� �� ��&
����

���� �� � �� �� � ��(11)

This implies that�� ��� fulfills (BBC��) and

	�� �����
� ������� ����
� ������� � �

�
���� �� �� ��
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Hence by the lemma of Section 2 we know that������� is well defined and obeys

	�������	 � �
	��	��

���

� 	��	�� � �
	��	��

�

�

i.e. �� belongs to ��� � ���. This shows that �	��
� ��� � ��� is bounded by

��	��	���

��, and due to (9),

	����	�� � '
��	��	��

�


�
	��	���

where ' � �� � �� is the strictly increasing analytic function defined by '��� ��
�� � �

�
��� � �� whose Taylor expansion is

�
���

�
�������

�.

�
�

��
����

�
�
�
�
�
�
�
��

��

�

�

Figure 2. Graph of � �� �
���� and its fixed point �� � �

�

With �� �� �	��	���

��, the above inequality becomes ���� � '�������. This is

an elementary exercise to check that the series 
���� is summable if ��  �� ��
�
� . Thus

we get

	� 	�� � �


!
�

��
���

	��	�� �
��
���

�� � ��

��'����� �

The summability of 
���� implies that 	��	�� � � as ���, and that
�
���

	��	�� 
�. This last property shows that  � is convergent in ��� to some  � as � � �.
We must check now whether the required property on � �, i.e. (11), is verified. Since
���� ��� � 	��"'��	��

��� and�� 	 �
, we have successively

���� �
��
���

	���� ���	� 	��	 � �

�
��

�
��
���

��'�����
�

�
�
 � 	��	 � �

�
�


� 	��	 � �����
 � 	� 	�� � �


!
�

since one can check numerically that �
� � �

�

��
���

��'����� � ���� if �� � �
� (see below

for this bound on ��). Thus (11) is true and we have also shown that�� converges to some
diagonal and bounded�� as ���. To pass from (10) to����� �  ������ � 

��
�

using the three ingredients 	��	�� � �, �� � �� and  � �  � is not as obvious as
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it seems; we have to adapt the technique of [8, Section 2.4]. We have renamed�� by �
and  � by � for later convenience. Finally we derive the bound on 	 �	�� and 	��	.

	 �	�� � ���
 ��
���

	��	��
�
� �

�
�

since one can check numerically that ���
 ��
���

��'�����
�
� �

� , with

�� ��
�	��	��

�

� �

!
�

Concerning��, notice that 	%	�� � 	%	 if % is diagonal. Then we get

	��	 � 	��	�
��
���

	���� ���	 � 	� 	�� �

��
���

��'�����
�

�
�


� 	� 	�� �



'����� �

'�����'����'������

��'����'�����'����'�������
�
��
�


�

� 	� 	��



� � '����� �

'�����'����'������

��'����'�����'����'�������
�

� �	� 	���

The above analytic bound on
��
���

��'����� is obtained with elementary manipulation and

we end up with a numerical computation with �� � �
� (notice that ' is increasing).

3.4. Pure pointness of���� . Let � � � � ��� be a ��-periodic symmetric function,
with the notation (4) we define the new norm

���� ���� �� ��
����

�
���

	� ����� ��	
��
����� ���(12)

We shall prove that� �� �� � � is self-adjoint on a suitable domain and

Theorem 3.3. Let �� 	 �, �� ��
�
�
����

�
���

�
, assume (2) for some � 	 �, and let

�� �� 
��
����

�
� �
��. Then �� 	 � � �
� , ��� 	 � and ������ �� 	 �, such that

���� ���� 
�

��� � ! ��
�
 �


��

	
���

��
�
��

��
�
�����



�
�
��

��
� ���

�
 � !��
�

�
implies

��� � ��� with
����
���� � ��

��� � ! ��
�
 ����� ����

��
�	�


�
�

��

�� �

so that� is pure point for all � � ��.
In addition each eigenprojection � of � is bounded in the norm

	�	���� �

�

� ��
���

�
���

�
���

	� ����� ��	
��
������� �

� � ��

and ������ �� � ����� � � ��, where �� and �� are the constants from Theorem 1.1.
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Proof. (a) As mentioned in the introduction the strategy consists in proving that � � �
� ��� � ������� �������

���� using Theorem 3.1 for each �. Then

�� � � � ����� ��� � � � ������� ��� � �� ���
where �� ��� �� ����� ������� ����� will be seen to fulfill Theorem 1.1.

(b) The self-adjointness of �� � � is not an easy matter since the quadratic form
technique cannot be used here because �� is not bounded below. We shall establish it
indirectly. First with the PDM we shall get the existence of the strongly � � map � �
�� � ��� such that � � �� � � � ��� � �� � ���

�. Then it is easily verified that
�� � � is self-adjoint on �	#
�� since �� is bounded.

(c) Let +���� �� ��
��
����� �� for some � � �. We shall use the notation

+�� �� 
+����� ����� �� � � � �� �� � � �� �
It is straightforward to check that

�� �� 
� � �� � ��� � ���+�� ���� �� and

 � �� 
� � �� � ��� � 	+�� 	� ��
are respectively a Banach space and a Banach algebra, with � � �� and with

 ��� � �� ��	 �� � � ���
We simply follow Section 3.3 with�� ��� � , ��� and ��� replaced respectively by ,
����, �� � �� � ���, �� and  � so that we get as for Theorem 3.1:

If ���+�� ���� � �

� , there exists � �  � and � � �� such that �� � ��� � � �

�������� ����
� together with

	+��	� � �

�
and 	+��	� � ����+�� �����

Therefore 	+����	� � �
� and 	+����	� � ���+�� ���� since +��� � �

���

. Of course it

follows that 	+�����	� � �
� . It remains to estimate 	+� ��	�. One has, with � �

��
���

���

and �� �� ����+�� �����
�� � �
� ,

	+��� ��	� �
��
���

	+��� ���	� ���
�
��
���

	+�����	�
�

�
�

�

��
���

	+���	� ���
�
�

��
���

	+���	�
�

� �

�

��

��'����� ���


�

�

��

��'�����
�

� � ���+�� ����
�


� � ��
���+�� ����
�
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since one can check numerically that �����'�������� ���


��
�����������

�
is less than �

if �� � �
� . Thus we have obtained for all � � ��

����	�� 	��� � 	+��� �� 	� � 	+����	� � (

!
��	+�����	 	+��� ��	

�


� �

(

!
� �
�
��

��

�


�
���+�� ���� �


� � !

��

�


�
������ �����

Finally we apply Theorem 1.1 to����� with � replaced by ��� and 	� 	� by �
�
��! ���


�
����� ����. We also have to impose the additional condition ���+�� ���� � �


� .

4. APPLICATIONS

4.1. The � dimensional quantum top. Here we give an example of Theorem 1.1 with
unbounded multiplicities of the spectrum of ��. We consider the model (5). �� is the
Laplace-Beltrami operator on the �-dimensional sphere � �. Then the ��� eigenvalue
obeys


� � ���� �� �� with �� �



�� �

�

�
�


�� �� �

�

�
���� �����

��� ��%
so that the growing gap condition (2) is fulfilled if and only if�

���

�������

��� � ���� � � � 	 ��� ��

If � � ����� and� � ������ with

� 	 � � � 	 � �
�

�
� � 	 ���

�

�
��	 ' � ��

then Theorem 1.1 applies (see [7] for details). This model has already been studied by
Nenciu in [15] who found a sufficient condition to rule out the absolutely continuous
spectrum. We have gathered in Figure 3 below what is known so far about this model.

4.2. The pulsed rotor with a Æ point interaction. As an application of Theorem 3.3 we
shall consider the pulsed rotor (5) with � � � ����� and � the delta point interaction
located at 0. We recall that this is the interaction associated to the quadratic form on
������ defined by '� �'�����. One has for the ��� eigenprojection of��

�� � � � � ,���,�� � � � � ,��,�� with ,���� ��
��
��
�����

except for �� � � � � ,��,�. (UV) is true since 	Æ	�� � ��� because

	��Æ��	 �
���� ���



� �
� �

����� � �

�
�� � �� �

	��Æ��	 �
���� ��� �� �

����� � ��
��

� �� �

	��Æ��	 � �

��
�
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Moreover

�

�

� ��

���

�
�	����

�

��� � ��� �
)

�
� �GGC���

	
�	 �
������
� �

� �

����� � �� � � �BBC����

Let

���� �
�
���

�������
be the Fourier expansion of � . Then

����� ���� �
�

�

�
���

� ����
��
����� ���
Since the eigenvalues of�� are 
������, every � 	 � will insure that�
� �. Thus
in order to apply Theorem 3.3 one needs � 	 �� �

� i.e. � 	 �
� and finally � 	 �

� to insure
that ����� ���� is finite. We have proved:

Let � � ����� )� be a ��-periodic function with � 	 �
� and - a real constant.

The Floquet operator associated to the time dependent Schr ödinger operator �� �
-�����Æ��� on ������ is pure point provided - is small enough and for appropriate fre-
quencies �. In such conditions this quantum system is stable in the sense of equation (6).

�
�

�
�

1 2 3
2

3

4

��
��

��
��

��
��

��
��

��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
� � 	� �, [15, ’97]

spect
 ??

�
�
��

� � �	� �

�
, [7, ’01]

�	��
��

 � �

�	��
��

 � �

and
�	��

�

 � �

if
� � ��, � � �

and � small enough

Figure 3. About the quantum top
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Théor 67(1997), 411–424.
[16] K. YAJIMA, Scattering theory for Schrödinger equations with potential periodic in time, J. Math. Soc.

Japan 29(1977), 729–743.
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CENTRE DE PHYSIQUE THÉORIQUE, MARSEILLE, FRANCE AND PHYMAT, UNIVERSITÉ DE TOULON
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Abstract

Let H(~) = −~
2
d
2
/dx

2 + V (x) be a Schrödinger operator on the real line,
W (x) be a bounded observable depending only on the coordinate and k be a
fixed integer. Suppose that an energy level E intersects the potential V (x) in
exactly two turning points and lies below V∞ = lim inf |x|→∞ V (x). We consider
the semiclassical limit n → ∞, ~ = ~n → 0 and En = E where En is the
nth eigen-energy of H(~). An asymptotic formula for 〈n|W (x)|n + k〉, the non-
diagonal matrix elements of W (x) in the eigenbasis of H(~), has been known
in the theoretical physics for a long time. Here it is proved in a mathematically
rigorous manner.

Keywords: semiclassical limit, non-diagonal matrix elements, WKB method

1 Introduction

In the quantum mechanics the matrix elements of an observable occur in various
situations. Let us mention few of them. They measure transition probabilities between
two states and the coefficients in the stationary perturbation theory are expressed in
terms of the matrix elements of the perturbation. The distribution of matrix elements
is of interest for quantum systems stemming from classically chaotic systems, see
for example [9, 6] and references in the latter paper. Our immediate motivation to
study the matrix elements was the quantum version of the Kolmogorov-Arnold-Moser
method [1], [8]. One of the assumptions under which this method is applicable is that
a time-dependent perturbation of a quantum system must be sufficiently small with
respect to certain norm which is also expressed in terms of matrix elements.

One may hope to obtain at least a qualitative information about the behavior of
matrix elements when considering the semiclassical limit. In fact this idea goes back to
the very origins of the quantum mechanics. A semiclassical formula for non-diagonal
matrix elements in the one-dimensional case has been suggested already a long time
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ago [12]. In [9] one can find another derivation, also on the level of rigor usual in the
theoretical physics, for absolute values of the non-diagonal matrix elements.

Despite of the ancient history rigorous mathematical results have been published
essentially more recently. Moreover, they cover only some particular cases even though
the technical tools necessary for the derivation may be at hand nowadays. One usually
assumes that the corresponding classical system is either ergodic [5], [6] or completely
integrable [19], [2], [15], [7]. The semiclassical limit of diagonal matrix elements is now
treated in detail [5]. In the case of multi-dimensional completely integrable systems a
formula for non-diagonal matrix elements was proved in [19], [15], [7], see also [16] for
some generalizations. The one-dimensional case seems to be rather particular. In [14]
one can find a derivation of the semiclassical formula for pseudo-differential operators
in one variable such that the Weyl symbol of the Hamiltonian is a real polynomial on
the phase space while imposing an additional assumption on the discreteness of the
operator spectrum.

The present paper aims to provide a mathematically rigorous verification of the
semiclassical limit of non-diagonal matrix elements for Schrödinger operators on the
real line. We prove the formula under mild assumptions on the potential. In addition,
we take care about identifying the quantum number coming from the Bohr-Sommerfeld
quantization condition with the index determined by the natural enumeration of eigen-
values in ascending order. Our approach relies on a transparent application of some
well established tools in the spectral and semiclassical analysis. So we briefly recall the
corresponding results while adjusting their formulation to our purposes. On the other
hand, the chosen method restrict us to considering observables which depend on the
coordinate only. This particular case was sufficient for the applications we originally
had in mind, as mentioned above.

Let us now formulate precisely in what sense the semiclassical limit is understood.
Set

H(~) = −~
2 d

2

dx2
+ V (x) in L2(R, dx). (1)

We consider a fixed energy E and an observable W = W (x) depending only on the
coordinate x. The assumptions are as follows.

We suppose that V (x) is bounded from below and three times continuously differ-
entiable, W (x) is bounded and continuously differentiable,

E < V∞ := lim inf
|x|→∞

V (x). (2)

We assume that at the energy E there are exactly two regular turning points, i.e.,
V −1(E) = {x−, x+}, x− < x+, and V ′(x±) 6= 0. Set

f(x) = V (x) −E. (3)

In addition we introduce an assumption making it possible to apply the WKB approx-
imation, namely we assume that

∫

R\[−a,a]

∣

∣

∣

∣

1

f 1/4

d2

dx2

(

1

f 1/4

)∣

∣

∣

∣

dx <∞ (4)
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where a is a positive number chosen so that f(x) ≥ δ > 0 for |x| ≥ a. Notice that

1

f 1/4

d2

dx2

(

1

f 1/4

)

=
5(V ′)2 − 4(V −E)V ′′

16(V −E)5/2
.

It may be convenient to replace condition (4) by two simpler conditions,

∫

R\[−a,a]

|V ′|2
(V −E)5/2

dx <∞,

∫

R\[−a,a]

|V ′′|
(V −E)3/2

dx <∞. (5)

The part of the spectrum of H(~) lying below V∞ is known to be formed exclusively
of simple isolated eigenvalues. We fix the phase of an eigenfunction ψn corresponding
to an eigenvalue En < V∞ by requiring ψn to be positive on a neighborhood of +∞.
Moreover, there exists a strictly decreasing sequence of positive numbers tending to 0,
{~n}∞n=n0

, and a constant ~0 > 0 such that for ~ ∈ ]0, ~0], E belongs to the spectrum
of H(~) if and only if ~ = ~n and in that case E = En is the nth eigenvalue of H(~)
provided the enumeration of eigenvalues starts from the index n = 0.

Under these assumptions we claim that if k ∈ Z is fixed, n → ∞, ~ = ~n → 0,
with E = En, then

〈n|W (x)|n+ k〉 → 1

T

∫ T

0

W (q(t)) eikωt dt (6)

where (q(t), p(t)), t ∈ [0, T ], is the classical trajectory in the phase space at the energy
E and with the initial point chosen so that the kinetic energy vanishes, i.e., p(0) = 0,
and q(0) coincides the right turning point x+. Furthermore, T > 0 is the period of the
classical motion and ω = 2π/T is the frequency.

Remark. If the phase of the wave function ψn was chosen so that ψn was positive on a
neighborhood of −∞ then formula (6) would be again true with (q(0), p(0)) = (x−, 0).

As already said, we have confined ourselves to observables depending only on the
coordinate because our method of proof is based on the WKB approximation. One
naturally expects, however, that for any smooth bounded classical observable A(q, p),

〈n|Â|n+ k〉 → 1

T

∫ T

0

A(q(t), p(t)) eikωtdt

where Â is a suitable quantization of A. We have already mentioned that this result
is actually proved in [14] in the case when the potential V (x) is a polynomial.

Let us rewrite the RHS in formula (6). The equation of the classical trajectory in
the phase space reads p2 + V (x) = E and its period equals

T =

∫ x+

x
−

dx
√

E − V (x)
. (7)

For x ∈ [x−, x+] set

τ(x) =
1

2

∫ x+

x

dy
√

E − V (y)
. (8)
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Then τ(x+) = 0, τ(x−) = T/2, q(τ(x)) = x, and

∫ T

0

W (q(t)) eikωt dt =

∫ x+

x
−

W (x)
√

E − V (x)
cos

(

2πk

T
τ(x)

)

dx.

The paper is organized as follows. In Sections 2 through 4 we recall some prelim-
inaries that we need for the proof of the formula. Section 2 is devoted to the basic
spectral properties of the Schrödinger operator, Section 3 is concerned with the Weyl
asymptotic formula and some basic facts about the WKB approximation are sum-
marized in Section 4. By counting the zeroes of wave functions we show in Section 5
that the quantum number coming from the Bohr-Sommerfeld quantization condition
equals the index of the corresponding eigenvalue. The semiclassical formula is then
proved in Section 6.

2 Properties of the spectrum lying below V∞

Here we briefly recall two well known properties of Schrödinger operators. In the mono-
graphs they are usually formulated and derived for potentials diverging at infinity. We
just wish to point up that the same assertions apply also for more general potentials
provided one takes care only about the part of the spectrum lying below V∞. The
corresponding proofs can be taken almost literally from the cited monographs.

In this section (and only in it) the Planck constant is not relevant and so we set it
equal to 1 and consider the Hamiltonian

H = − d2

dx2
+ V (x) in L2(R, dx).

The following theorem is in fact widely used. We recall it in a form which is a direct
modification of Theorem XIII.16 in [17]. Its proof is based on the min-max principle
and is applicable in any dimension of the underlying Euclidean space. Moreover, the
differentiability of V (x) is not required.

Theorem 1. Let V be a measurable function in R
n which is bounded from below. De-

fine H = −∆+V as the sum of quadratic forms in L2(Rn, dnx). Then the lower edge of
the essential spectrum of H, if any, is greater than or equal to V∞ = lim inf |x|→∞ V (x).

Let us note that in the one-dimensional case and provided the potential is contin-
uous Theorem 1 also follows from a well known estimate on the number of negative
eigenvalues.

Here and everywhere in what follows, if A is a self-adjoint operator then P (A; ·)
designates the associated projector-valued measure, and for K ∈ R we denote

N(A,K) = rankP (A; ] −∞, K[).

Further, for a real-valued function W (x) we set

W−(x) = max{0,−W (x)}.
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It holds (see, for example, Theorem 5.3 in [3])

N(H, 0) ≤ 1 +

∫

R

|x| V−(x) dx.

In particular, if V (x) is continuous and bounded from below then for any c < V∞ the
function (V −c)−(x) has a compact support and, by this estimate, N(H, c) <∞. This
again implies that the lower edge of the essential spectrum of H is greater than or
equal to V∞.

The next property is specific for the one-dimensional case. The potential V (x) is
supposed to be continuous and bounded from below.

As is well known from the theory of ordinary differential equations, for E < V∞, any
nontrivial solution of the Schrödinger equation either grows at least exponentially or
decays at least exponentially at +∞ (see, for example, Corollary 1 in [3, Section II]).
The latter solution is called recessive at +∞ and is unique up to a multiplicative
constant. Of course, an analogous assertion is also true for −∞. It immediately follows
that all eigenvalues of the Hamiltonian H lying below V∞ are simple. Moreover, in
virtue of Theorem 1, they have no accumulation points below V∞. Consequently, the
eigenvalues of H below V∞ can be arranged into a strictly increasing sequence, empty
or finite or infinite,

E0 < E1 < E2 < . . . < V∞.

The following theorem is a straightforward modification of Theorem 3.5 in [3,
Chapter II].

Theorem 2. The number of zeroes of the mth eigenfunction of H corresponding to
the eigenvalue Em < V∞ is exactly equal to m.

3 The Weyl asymptotic formula

In this section we aim to recall the Weyl asymptotic formula generalized to Schrödinger
operators. It can be derived from the Gutzwiller trace formula [10] which was rigor-
ously proved in [4] under the assumption that the potential is positive and infinitely
differentiable. In [18] there is given a short review of the history and the Weyl asymp-
totic formula is recalled even under stricter assumptions which among others mean
that the potential does not grow faster than polynomially. A weaker version of the
formula is also stated in [17, Theorem XIII.79] but only for compactly supported
potentials.

Here we wish to point out that the proof of Theorem XIII.79 in [17] can be extended
in a straightforward manner and thus the Weyl asymptotic formula can be derived just
under the assumption that the potential is semi-bounded and continuous. We restrict
ourselves, however, to the one-dimensional case only. In addition, this approach is
quite simple as it is based merely on an application of the min-max principle and the
Dirichlet-Neumann bracketing. On the other hand, if compared to the result based on
the trace formula, as presented in [18], the control of the error term is essentially worse;
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it is known to be of order O(1) while the present method only yields the asymptotic
behavior of the type o(~−1).

From now on, the Planck constant is again relevant. This means that the discussion
concerns the Hamiltonian H(~) introduced in (1). Since what follows is nothing but
a slight modification of known results we just indicate the basic steps.

First let us recall a definition from [17, XIII.15] making it possible to compare
self-adjoint operators defined in different Hilbert spaces. The symbol Q(A) stands for
the form domain of A. If ψ ∈ Q(A) then the scalar product 〈ψ,Aψ〉 is automatically
understood in the form sense.

Definition. Let H1 ⊂ H be a closed subspace, let A be a semi-bounded self-adjoint
operator in H and let B be a semi-bounded self-adjoint operator in H1. We shall write
A ≤ B if and only if it holds

(i) Q(A) ⊃ Q(B),

(ii) ∀ψ ∈ Q(B), 〈ψ,Aψ〉 ≤ 〈ψ,Bψ〉.

With the aid of the min-max principle one can show [17, XIII.15] that if A ≤ B
then

(i) ∀K ∈ R, rankP (A; ] −∞, K[) ≥ rankP (B; ] −∞, K[),

(ii) ∀K ∈ R, rankP (A; ] −∞, K]) ≥ rankP (B; ] −∞, K]).

The following lemma is analogous to Proposition 2 in [17, XIII.15] in the one-
dimensional case and its proof is based on rather elementary explicit computations of
the eigenvalues for the involved operators.

Lemma 1. Let I = [a, b] be a compact interval. Let us introduce HD, HN and HM as
self-adjoint operators in L2(I, dx) such that all of them act as the differential operator
−~

2 d2/dx2 and whose domain is respectively determined by the Dirichlet, Neumann
and mixed boundary conditions. Then for all K > 0 it holds

−1 ≤ rankP (H ; ]−∞, K[) − ℓ

π~

√
K ≤ rankP (H ; ] −∞, K]) − ℓ

π~

√
K ≤ 1,

where H is any of the operators HD, HN , HM , and ℓ = b − a is the length of the
interval.

The following lemma coincides with Proposition 4 in [17, XIII.15] in the one-
dimensional case.

Lemma 2. Let −∞ < a < b < c < +∞ and let H be a self-adjoint operator in
L2([a, c], dx) which acts as the differential operator −d2/dx2 with either the Dirichlet
or the Neumann boundary condition imposed at each of the points a and c (mixed

boundary conditions are admitted). Let H
(1)
D and H

(1)
N be the self-adjoint operators in

L2([a, b], dx) also acting as −d2/dx2 and with the domain being determined by the same
boundary condition at the point a as imposed in the case of the operator H and by the
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Dirichlet or Neumann boundary condition at the point b, respectively. Analogously one
introduces the self-adjoint operators H

(2)
D and H

(2)
N in L2([b, c], dx). Then it holds

H
(1)
N ⊕H

(2)
N ≤ H ≤ H

(1)
D ⊕H

(2)
D .

First let us state the Weyl asymptotic formula for a finite interval. It can be prover
in a way very close to the proof of Theorem XIII.79 in [17]. So we do not reproduce
the proof but let us note that it is based on a limit procedure when the interval is
split into N subintervals of equal length with N tending to ∞. In the course of the
proof one uses Lemma 1 and 2, the additivity of the numbers N(A,K), i.e.,

N(A1 ⊕ A2 ⊕ . . .⊕AN , K) = N(A1, K) +N(A2, K) + . . .+N(AN , K),

and the fact that the integral on the RHS of (9) exists in the Riemann sense.

Theorem 3. Let −∞ < a < b < +∞, V ∈ C([a, b]), and let

Hf(~) = −~
2 d2

dx2
+ V (x)

be a self-adjoint operator in L2([a, b], dx) with either the Dirichlet or Neumann bound-
ary condition imposed at each of the boundary points a and b (mixed boundary condi-
tions are admitted). Then for all K ∈ R,

lim
~→0+

~N(Hf(~), K) =
1

π

∫ b

a

√

(V −K)−(x) dx. (9)

Finally let us proceed to the case of the Hamiltonian H(~).

Theorem 4. Let V ∈ C(R) be a real-valued function which is bounded from below.
Then for all K < V∞ it holds true that

lim
~→0+

~N(H(~), K) =
1

2π
VolZ

(

H
−1(] −∞, K[)

)

=
1

π

∫

R

√

(V −K)−(x) dx (10)

where H (x, p) = p2 + V (x) and VolZ(X) designates the Lebesgue measure of a mea-
surable set X in the phase space.

Proof. If K < V∞ then the support of (V − K)− is compact. Suppose that
supp(V −K)− ⊂ [a, b], −∞ < a < b < +∞. Set

H1(~) = −~
2 d2

dx2
− (V −K)−(x) in L2(R, dx)

and

H2(~) = −~
2 d2

dx2
+ V (x) −K in L2([a, b], dx)

with the Dirichlet boundary condition imposed at the points a and b. Observe that
−(V − K)−(x) ≤ V (x) − K on R and so Q(H(~) − K) ⊂ Q(H1(~)). Furthermore,
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L2([a, b], dx) can be naturally regarded as a subspace in L2(R, dx). If ψ ∈ Q(H2(~))
then ψ̃ defined by ψ̃(x) = ψ(x) for x ∈ [a, b], ψ̃(x) = 0 for x ∈ R \ [a, b], belongs to
Q(H(~)−K) (ψ̃ is an absolutely continuous function). This implies that Q(H2(~)) ⊂
Q(H(~) −K). We have find that H1(~) ≤ H(~) −K ≤ H2(~). Hence

N(H2(~), 0) ≤ N(H(~), K) ≤ N(H1(~), 0).

Formula (10) for compactly supported potentials is stated in [17, Theorem XIII.79].
Hence it holds

lim
~→0+

~N(H1(~), 0) =
1

π

∫

R

√

(V −K)−(x) dx,

and from Theorem 3 we know that

lim
~→0+

~N(H2(~), 0) =
1

π

∫ b

a

√

(V −K)−(x) dx =
1

π

∫

R

√

(V −K)−(x) dx.

Formula (10) for a general potential then follows by bracketing.

For our purposes the following immediate corollary of Theorem 4 will be sufficient.
Suppose that V (x) is continuously differentiable and an interval ]a, b[, a < b ≤ V∞,
contains at least one regular value of the classical Hamiltonian H (x, p), i.e., there
exists λ ∈ ]a, b[ satisfying H −1({λ}) 6= ∅ and V (x) = λ implies V ′(x) 6= 0. Then the
number of eigenvalues of H(~) in the interval ]a, b[ tends to infinity as ~ → 0+.

4 The WKB method for one and two turning points

Here we summarize some basic facts about the WKB approximation, also called
Liouville-Green approximation, that we need for the proof of the formula in Section 6.
At the same time we introduce the necessary notation. We stick to the presentation
given in the monograph [13] whose distinguished feature is that it provides explicit
bounds on the error terms.

Let us first consider the situation with one turning point. Let ]a, b[⊂ R be an
interval, finite or infinite, x0 ∈ ]a, b[, and f(x) be a real-valued function defined on
]a, b[ such that f(x)/(x − x0) is positive and twice continuously differentiable (hence
f(x0) = 0, f ′(x0) > 0). For x ∈ ]a, b[ set

2

3
ζ3/2 =

∫ x

x0

√

f(t) dt if x ≥ x0, (11a)

2

3
(−ζ)3/2 =

∫ x0

x

√

−f(t) dt if x < x0. (11b)

Then ζ(x) is strictly monotone, ζ(x)/(x − x0) is positive and twice continuously dif-
ferentiable in ]a, b[, see Lemma 3.1 in [13, Chapter 11].

Assume further that
∫ b

x0

√

f(t) dt = ∞ (12)
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and
∫

]a,b[ \U0

|f ′′|
|f |3/2

dt <∞,

∫

]a,b[ \U0

(f ′)2

|f |5/2
dt <∞, (13)

where U0 = [x0 − ε, x0 + ε] and ε is any positive number such that a < x0 − ε and
x0 + ε < b.

Notice also that

ζ ′ =

(

f

ζ

)1/2

and ζ ′(x0) = f ′(x0)
1/3. (14)

Denote by ξ the inverse function to ζ . Theorem 3.1 in [13, Chapter 11, §3.3] can be
rephrased as follows.

Theorem 5. Under the above assumptions, the solution of the differential equation

~
2 d2w

dx2
= f(x)w (15)

which is recessive as x tends to b exists on ]a, b[, is unique up to a multiplicative
constant and equals

ψ(x) =

(

ζ

f

)1/4
(

Ai(~−2/3ζ) + ε(~, x)
)

(16)

with the error term satisfying the estimates

|ε(~, x)| ≤ Φ0(~
−2/3ζ) ~,

∣

∣

∣

∣

∂ε(~, x)

∂x

∣

∣

∣

∣

≤
(

f

ζ

)1/2

Φ1(~
−2/3ζ) ~

1/3,

where Φ0(x), Φ1(x) are certain continuous positive functions on R such that

Φ0(x) ∼















const
exp
(

−2
3
x3/2

)

x1/4
as x→ +∞,

const
1

|x|1/4
as x→ −∞,

Φ1(x) ∼











const exp

(

−2

3
x3/2

)

as x→ +∞,

const as x→ −∞.

Let us now turn to the case when f(x) is given by (3) and so is defined on the
entire real line. From now on the potential V satisfies all assumptions as formulated
in the Introduction. In particular, it follows that the function

V (x) − E

(x− x−)(x− x+)
is positive on R and belongs to C2(R). (17)
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Moreover, there exists an open neighborhood of E, UE = ]E−, E+[, E− < E < E+,
such that these assumptions apply for any λ ∈ UE as well.

For λ ∈ UE set
γλ = H

−1({λ})
where H (x, p) = p2 + V (x). Thus γλ is a closed curve in the phase space and the
energy takes on it the value λ. Let us further introduce the action integral,

J(λ) =

∫

H (x,p)≤λ

dxdp =

∫

γλ

p dx = 2

∫ x+(λ)

x
−

(λ)

√

λ− V (x) dx (18)

where x−(λ) < x+(λ) are the turning points at the energy λ. Then

T (λ) = J ′(λ) =

∫ x+(λ)

x
−

(λ)

dx
√

λ− V (x)
(19)

is the period of the classical trajectory in the phase space.
In the following theorem we summarize the result derived in [13, Chapter 13, §8.2].

Theorem 6. Under the assumptions on V formulated in the Introduction (in particu-
lar, we assume that condition (17) is fulfilled as well as the convergence of the integrals
in (5)) there exist a neighborhood UE of E, ~0 > 0, n0 ∈ N and for every λ ∈ UE a
sequence {~n(λ)}∞n=n0

, ~0 > ~n0
(λ) > ~n0+1(λ) > ~n0+2(λ) > . . . > 0, such that for

~ ∈ ]0, ~0[ the energy λ is an eigenvalue of H(~) if and only if ~ = ~n(λ) for some
n ≥ n0. Moreover, the sequence {~n(λ)} asymptotically behaves like

~n(λ)−1 = (2n + 1)πJ(λ)−1 +O(n−1) (20)

where the error term O(n−1) decays in n uniformly with respect to λ ∈ UE.

Remark. It is known that if V ∈ Cr(R), with r ≥ 1, and E < V∞ is a regular value of
V (x) then the action integral J(λ) defined in (18) is r times continuously differentiable
on some neighborhood of E (see, for example, [18]).

The verification of this assertion is quite elementary in the one-dimensional case
and with two turning points at the energy E. For a sufficiently small neighborhood
UE = ]E−, E+[ the function V (x) is strictly decreasing on the interval [x−(E+), x−(E−)]
and strictly increasing on [x+(E−), x+(E+)], with nowhere vanishing derivative. Let
us write

T (λ) =

(

∫ x
−

(E
−

)

x
−

(λ)

+

∫ x+(E
−

)

x
−

(E
−

)

+

∫ x+(λ)

x+(E
−

)

)

dx
√

λ− V (x)

= T−(λ) + T0(λ) + T+(λ).

Clearly, T0(λ) ∈ C∞(UE). Thus it is sufficient to verify that T−(λ), T+(λ) ∈ Cr−1(UE).

Let us focus only on the latter function. Set W+ =
(

V
∣

∣

[x+(E
−

),x+(E+)]

)−1

. Hence W+
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is r times continuously differentiable. After some elementary manipulations one can
show that

T+(λ) =

∫ x+(λ)

x+(E
−

)

dx
√

λ− V (x)
= 2
√

λ− E−

∫ 1

0

dt

V ′
(

W+

(

λ(1 − t2) + E−t2
)) .

From the last expression it is obvious that T+(λ) is r− 1 times continuously differen-
tiable.

5 Number of zeroes derived from the WKB method

We need to show that if ~ = ~m(λ) and hence λ is an eigenvalue of H(~), as claimed in
Theorem 6, then λ is exactly the mth eigenvalue of H(~). According to Theorem 2, the
index of an eigenvalue lying below V∞ equals the number of zeroes of the corresponding
eigenfunction. Fortunately, the WKB approximation, as explained in [13], is precise
enough to control the number of zeroes.

Let us recall some facts concerning the Airy functions. Let us denote by an and bn
the zeroes of the Airy functions Ai(x) and Bi(x), respectively, arranged in ascending
order of the absolute value, i.e., . . . < b3 < a2 < b2 < a1 < b1 < 0. It is known that

an = −
(

3

2
π

(

n− 1

4

)

+ Z

(

n− 1

4

))2/3

, bn = −
(

3

2
π

(

n− 3

4

)

+ Z

(

n− 3

4

))2/3

,

(21)
where Z(x) = O(x−1).

First we again consider the situation with one turning point. Recall defining re-
lations (11a), (11b) for ζ . In the following theorem we summarize the results from
§§ 6.1, 6.2 and 6.3 in [13, Chapter 11].

Theorem 7. Under the same assumptions as in Theorem 5, let w(x) be a nonzero
solution of the differential equation (15) on ]a, b[ which is recessive as x tends to b
(hence w(x) is unique up to a multiplicative constant). Then the set of zeroes of w(x)
in ]a, b[, denoted {zn}n≥1 and arranged in descending order, is at most countable. Any
such a zero z fulfills ζ(z) < ~

2/3b1. Furthermore, for all sufficiently small ~ it is true
that if ζ(a) < ~

2/3bn+1 then the nth zero, zn, does exist and obeys the estimate

~
2/3bn+1 < ζ(zn) < ~

2/3bn.

Moreover, it holds
|ζ(zn) − ~

2/3an| = O(n−1/3)~

where the symbol O(n−1/3) is uniform with respect to ~.

Remarks. From Theorem 7 it immediately follows that there are no zeroes in the
interval [x0, b[. Furthermore, the number of zeroes of w(x) in any fixed nonempty
subinterval ]c, d[⊂ ]a, x0[ tends to infinity as ~ → 0+.
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Now we come back to the case when f(x) is given by (3), with V (x) satisfying the
assumptions from the Introduction. In particular, there are two turning points at the
energy E, x− and x+, and V (x) satisfies (17) and (5). Then for any a, x− < a < x+,
the function f(x) satisfies the assumptions of Theorem 7 with b = +∞ and x0 being
replaced by x+. Actually, condition (5) implies (13) and condition (12) is fulfilled
automatically for E < V∞. Analogous arguments apply also for the other turning
point x−.

According to Theorem 6 there exist ~0 > 0 and a sequence {~n}∞n=n0
, ~0 > ~n0

>
~n0+1 > ~n0+2 > . . . > 0, such that for ~ ∈ ]0, ~0[, E is an eigenvalue of H(~) if and
only ~ = ~n for some n ≥ n0. Let ψn(x) be an eigenfunction of H(~n) corresponding
to the eigenvalue E. Thus ψn(x) is recessive both at +∞ and −∞ and is unique up to
a multiplicative constant. We can suppose that ~0 is sufficiently small so that ψn(x)
has at least one zero in the interval ]x−, x+[. By Theorem 7, ψn(x) has no zeroes in
the set R\ ]x−, x+[.

Let us choose a point x1 ∈ ]x−, x+[ independently of n. Let x′1 be the zero of ψn

which is nearest to x1. This means that x′1 depends on n but the distance between x1

and x′1 tends to zero as n tends to infinity. Denote by m+ and m− the number of zeroes
of ψn in the interval [x′1, x+[ and ]x−, x

′
1], respectively (hence the zero x′1 is counted

both in m+ and m−). Denote by ζ+(x) the function defined by relations (11a) and
(11b), with x0 being replaced by x+. In virtue of Theorem 7, there exists a constant
c+ ≥ 0 (independent of n) such that

|ζ+(x′1) − ~
2/3
n am+

| ≤ c+~n

m
1/3
+

for all n ≥ n0. An application of the mean value theorem,

|u3/2 − v3/2| ≤ 3

2
(max{u, v})1/2 |u− v| for u > 0, v > 0,

yields the inequality

∣

∣|ζ+(x′1)|3/2 − ~n|am+
|3/2
∣

∣ ≤ 3

2

(

3

2

∫ x+

x
−

√

E − V (x) dx

)1/3
c+~n

m
1/3
+

(22)

which is valid for all sufficiently large n. Analogously, for the other turning point we
get the estimate

∣

∣|ζ−(x′1)|3/2 − ~n|am
−

|3/2
∣

∣ ≤ 3

2

(

3

2

∫ x+

x
−

√

E − V (x) dx

)1/3
c−~n

m
1/3
−

(23)

where again c− ≥ 0 is a constant independent of n. Set

c =

(

3

2

∫ x+

x
−

√

E − V (x) dx

)1/3

max{c−, c+}.
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Combining (22) and (23) we arrive at the inequality

∣

∣

∣

∣

1

~n

∫ x+

x
−

√

E − V (x) dx− 2

3

(

|am
−

|3/2 + |am+
|3/2
)

∣

∣

∣

∣

≤ c

(

1

m
1/3
−

+
1

m
1/3
+

)

.

Let m = m(n) be the number of zeroes of ψn(x). Obviously, m = m− + m+ − 1.
Recalling the asymptotic behavior of ~n, as stated in (20) (see also (18)), as well as
the asymptotic formulas (21) for the roots of the Airy functions we finally find that

∣

∣

∣

∣

n−m+O(n−1) − Z

(

m− − 1

4

)

− Z

(

m+ − 1

4

)
∣

∣

∣

∣

≤ c

π

(

1

m
1/3
−

+
1

m
1/3
+

)

.

By Theorem 7, both m− and m+ tend to infinity as n tends to infinity. This implies
that m(n) = n for all sufficiently large n and therefore, in virtue of Theorem 2, E
is the nth eigenvalue of the Hamiltonian H(~n) (with the numbering starting from
n = 0).

All estimates can be carried out in a uniform manner for E being replaced by λ
running over some neighborhood of E. We conclude that

with the assumptions on V (x) formulated in the Introduction, there exist n0 ∈ N

and a neighborhood UE of E such that for all n ≥ n0 and λ ∈ UE, λ equals exactly the
nth eigenvalue of H

(

~n(λ)
)

(with ~n(λ) introduced in Theorem 6).

6 Proof of the formula

Here we prove the limit (6). We know that there exists a sequence of positive numbers,
{~n}∞n=n0

, such that E is the nth eigenvalue of H(~n) (Theorem 6). This sequence is
strictly decreasing and tends to 0. We even known that ~n ∼ n−1 as n → ∞ (see
(20)). Therefore everywhere in what follows the symbol O(~) should be understood as
a substitute for O(n−1).

Let us fix x1, x
′
1, x

′′
1 ∈ ]x−, x+[, x′1 < x1 < x′′1. For a given ~ = ~n we shall denote by

ψ a conveniently normalized eigenfunction corresponding to the eigenvalue E = En.
Hence ψ is recessive both at +∞ and −∞. The normalization is fixed by requiring
the eigenfunction ψ to coincide on the interval ]x′1,+∞[ with the solution described in
Theorem 5 (with f(x) = V (x)−E and x0 = x+ being the single turning point in this
interval). Theorem 5 is also applicable to the interval ]−∞, x′′1[ containing the turning
point x−. On this interval, ψ equals κ times the solution described in Theorem 5 for
some κ ∈ C \ {0}.

There exists a neighborhood of E, UE = ]E−, E+[, such that any λ ∈ UE satisfies
the same assumptions as those imposed on E. Recall that we have fixed k ∈ Z. For all
sufficiently large n, the (n+k)th eigenvalue ofH(~n), called En+k, exists and lies in UE .
For brevity we shall denote En+k sometimes by Ẽ. We show below that Ẽ−E = O(~),
see (24). The eigenfunction of H(~n) corresponding to the eigenvalue Ẽ = En+k and
coinciding on ]x′1,+∞[ with the solution from Theorem 5 will be denoted by ψ̃. In
this case, too, there exists κ̃ ∈ C \ {0} such that on the interval ] −∞, x′′1[ , ψ̃ equals
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κ̃ times the solution from Theorem 5. Furthermore, denote by x̃± the turning points
corresponding to Ẽ, i.e., V (x̃±) = Ẽ. Since V (x̃±) − V (x±) = Ẽ − E and V ′(x±) 6= 0
it is clear that x̃± − x± = O(~) as well.

The verification of (6) is based on a series of estimates relying on Theorem 5. This
will be done in several steps.
(1) Relation between Ẽ and E. Let Em(~) be the mth eigenvalue of H(~). From the
perturbation theory [11] one deduces that if it exists and lies below V∞ then Em(~)
is strictly increasing and real analytic as a function of ~. According to the conclusion
of Section 5, Em(~) and ~m(λ) are mutually inverse functions. Therefore if ~ = ~n(E)
then ~ = ~n+k(Ẽ). Thus we have

~n(E) = ~n+k(Ẽ)

and from the asymptotic formula (20) we get

(2n+ 2k + 1)J(E) − (2n+ 1)J(Ẽ) = O(n−1).

Since

J(Ẽ) = J(E) +
∂J(E)

∂λ
(Ẽ − E) +O((E ′ −E)2)

we finally arrive at the equation

2k

2n+ 1

J(E)

T (E)
− Ẽ + E = O(n−2) +O((Ẽ −E)2)

whose solution satisfies

Ẽ = E +
J(E)

T (E)

k

n
+O(n−2). (24)

(2) Asymptotic behavior of κ and κ̃. On the interval ]x′1, x
′′
1[ one can compare the

asymptotics of the solutions which are respectively recessive at +∞ and −∞ and infer
this way the asymptotic behavior of κ as ~ → 0. For a moment we shall distinguish by
a subscript the functions ζ± related to the turning points x± and defined respectively
on the intervals [x′1,+∞[ and ] −∞, x′′1]. Thus

2

3
|ζ+|2/3 =

∣

∣

∣

∣

∫ x

x+

|f(t)| dt
∣

∣

∣

∣

,
2

3
|ζ−|2/3 =

∣

∣

∣

∣

∫ x
−

x

|f(t)| dt
∣

∣

∣

∣

,

and both ζ+/f and ζ−/f are positive functions on their domains. We have

ψ(x) =

(

ζ+
f

)1/4
(

Ai(~−2/3ζ+) + ε+(~, x)
)

for x ≥ x′1, and

ψ(x) = κ

(

ζ−
f

)1/4
(

Ai(~−2/3ζ−) + ε−(~, x)
)
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for x ≤ x′′1. Suppose that x ∈ [x′1, x
′′
1]. Recalling that

Ai(−z) =
1

π1/2z1/4

(

cos

(

2

3
z3/2 − π

4

)

+O(z−3/2)

)

as z → +∞ (25)

and the error term estimates from Theorem 5 we arrive at the equality

cos

(

2

3
~
−1|ζ+|3/2 − π

4

)

+O(~) = κ

(

cos

(

2

3
~
−1|ζ−|3/2 − π

4

)

+O(~)

)

.

Furthermore, in virtue of (20) it holds

2

3
~
−1
(

|ζ+|2/3 + |ζ−|2/3
)

= ~
−1

∫ x+

x
−

|f(t)| dt =

(

n +
1

2

)

π +O(~).

Combining the last two equalities we find that

cos

(

2

3
~
−1|ζ+|3/2 − π

4

)

+O(~) = κ

(

(−1)n cos

(

2

3
~
−1|ζ+|3/2 − π

4

)

+O(~)

)

.

For ~ sufficiently small it clearly exists x ∈ [x′1, x
′′
1] such that

cos

(

2

3
~
−1|ζ+|3/2 − π

4

)

= 1.

It follows immediately that
κ = (−1)n +O(~). (26)

Similarly,
κ̃ = (−1)n+k +O(~). (27)

(3) The leading asymptotic term on the interval ]x+ − δ,∞[. Fix δ > 0 sufficiently
small (at least x1 < x+ − δ). Let us show that

∫ ∞

x+−δ

ψ2 dx = δ1/2O(~1/3),

∫ x
−

+δ

−∞
ψ2 dx = δ1/2O(~1/3). (28)

We shall verify only the first equality in (28). In view of (26) and (27), the verification
of the second one is analogous.

Here and everywhere in what follows the symbol O(~ε) should be interpreted prop-
erly. It means that there exists a constant c ≥ 0 (independent of δ) and ~0(δ) > 0
such that for all ~, 0 < ~ < ~0(δ), it holds |O(~ε)| ≤ c~ε.

First let us estimate the contribution from the leading asymptotic term of ψ.
Applying the substitution x = ξ(~2/3z) we get the expression

∫ ∞

x+−δ

(

ζ

f

)1/2

Ai(~−2/3ζ)2 dx = ~
4/3

∫ ∞

~−2/3ζ(x+−δ)

z

f
(

ξ(~2/3z)
) Ai(z)2 dz. (29)
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By the assumptions, there exist x2 > x+ and c1 > 0 such that f(x) ≥ c1 for x ≥ x2. The
function ζ(x)/f(x) is continuous on the interval [x1, x2] and therefore it is majorized
on this interval by a constant c2 ≥ 0. This also means that

0 <
y

f
(

ξ(y)
) ≤ c2 for ζ(x1) ≤ y ≤ ζ(x2).

This way we get the following upper bound on (29), namely

~
2/3

∫

~
−2/3ζ(x2)

~−2/3ζ(x+−δ)

c2 Ai(z)2 dz + ~
4/3

∫ ∞

~−2/3ζ(x2)

z

c1
Ai(z)2 dz

≤ c2~
2/3
(

Ai′(x)2 − xAi(x)2
)

∣

∣

∣

x=~−2/3ζ(x+−δ)
+ o(~4/3).

Here we have used the knowledge of the primitive function
∫

Ai(x)2 dx = xAi(x)2 − Ai′(x)2.

In addition to formula (25) let us recall also the asymptotic behavior of the derivative
of the Airy function,

Ai′(−z) =
z1/4

π1/2

(

sin

(

2

3
z3/2 − π

4

)

+O(z−3/2)

)

as z → +∞. (30)

Since ζ(x+−δ) = −ζ ′(y)δ for some y ∈ [x+−δ, x+] we find that for x = ~
−2/3ζ(x+−δ)

it holds
|~2/3 Ai′(x)2| ≤ const ~

2/3
(

~
−2/3δ

)1/2
= const ~

1/3δ1/2

and
|~2/3xAi(x)2| ≤ const ~

2/3
~
−2/3δ

(

~
−2/3δ

)−1/2
= const ~

1/3δ1/2.

We have shown that
∫ ∞

x+−δ

(

ζ

f

)1/2

Ai(~−2/3ζ)2 dx = δ1/2O(~1/3).

(4) The error term on the interval ]x+ − δ,∞[. Further let us write

ψ2 =

(

ζ

f

)1/2

Ai(~−2/3ζ)2 + ε2(~, x).

It is known that

Ai(x) ≤ 1

2
√
π
x−1/4 exp

(

−2

3
~
−1x3/2

)

for x > 0,

see [13, Chapter 11]. Using also the estimates of error terms from Theorem 5 one can
check that

|ε2(~, x)| ≤ const f−1/2 exp

(

−4

3
~
−1ζ3/2

)

~
4/3 for x > x+.
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It follows that
∣

∣

∣

∣

∫ ∞

x+

ε2(~, x) dx

∣

∣

∣

∣

≤ const ~
4/3

∫ ∞

x+

f−1/2 exp

(

−4

3
~
−1ζ3/2

)

dx

= const ~
4/3

∫ ∞

0

y1/2

f
(

ξ(y)
) exp

(

−4

3
~
−1y3/2

)

dy. (31)

There exists c ≥ 0 such that for y > 0, f
(

ξ(y)
)−1 ≤ c(1+y−1). Hence (31) is majorized

by

const ~
4/3

∫ ∞

0

(y1/2 + y−1/2) exp

(

−4

3
~
−1y3/2

)

dy = O(~5/3).

The asymptotic formula (25) implies that |Ai(x)| ≤ const |x|−1/4 for x < 0. Re-
calling once more Theorem 5 we have

∣

∣

∣

∣

∫ x+

x1

ε2(~, x) dx

∣

∣

∣

∣

≤ const ~
4/3

∫ x+

x1

|f |−1/2 dx = O(~4/3). (32)

This concludes the verification of (28).
(5) Oscillating integral on the interval ]x1, x+ − δ[. By the usual integration by parts
one can verify the following claim.
Let [a, b] be a compact interval, F ∈ C1([a, b]), µ ∈ C2([a, b]) and ν(~, z) be twice
continuously differentiable in z on [a, b]. Assume that µ′(z) nowhere vanishes on [a, b]
and

sup
z∈[a,b]

|∂zν(~, z)| = O(1), sup
z∈[a,b]

|∂2
zν(~, z)| = O(1).

Then for all sufficiently small ~ it holds true that
∣

∣

∣

∣

∫ b

a

F (z) sin
(

~
−1µ(z) + ν(~, z)

)

dz

∣

∣

∣

∣

≤ const ~

where the constant depends only on the length of the interval [a, b] and on the quantities

µ−1
0 ‖F‖C , µ

−2
0 ‖F‖C‖µ′′‖C , µ

−1
0 ‖F ′‖C ,

with
µ0 = min

z∈[a,b]
|µ′(z)|

and ‖ · ‖C standing for the norm in the Banach space C([a, b]).
As a consequence we find that if W ∈ C1(R) then

∫ x+−δ

x1

W√
E − V

sin

(

2

3
~
−1
(

|ζ |3/2 + |ζ̃|3/2
)

)

dx = δ−1O(~). (33)

To show this asymptotics it suffices to set in the above claim F = W/
√
E − V , µ =

(4/3)|ζ |3/2 and

ν(~, z) =
2

3
~
−1
(

|ζ̃(z)|3/2 − |ζ(z)|3/2
)

= ~
−1

(
∫ x̃+

z

√

Ẽ − V (t) dt−
∫ x+

z

√

E − V (t) dt

)

.
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Hence µ′(z) = −2
√

E − V (z) and

∂zν(~, z) =
E − Ẽ

~

(

√

E − V (z) +

√

Ẽ − V (z)

)−1

,

∂2
zν(~, z) =

E − Ẽ

2~
V ′(z)

(

E − V (z)
)−1/2(

Ẽ − V (z)
)−1/2

×
(

√

E − V (z) +

√

Ẽ − V (z)

)−1

.

(6) The leading asymptotic term on the interval ]x1, x+ − δ[. Let us check the con-
tribution to the matrix element coming from the interval [x1, x+ − δ]. The leading
asymptotic term in the expansion of ψ is given in (16). We also need the asymptotic
behavior of the Airy function (25) and the fact that the function f/ζ is continuous
and hence bounded on the interval [x1, x+]. We conclude that

ψ ∼
(

ζ

f

)1/4

Ai(~−2/3ζ) =
~

1/6

√
π |f |1/4

cos

(

2

3
~
−1|ζ |3/2 − π

4

)

+
1

|f |7/4
O(~7/6).

Observe that

~
4/3

∫ x+−δ

x1

dx

|f |2 = δ−1O(~4/3),

and on the interval [x1, x+ − δ],

(Ẽ − V )−1/4 = (E − V )−1/4
(

1 + δ−1O(~)
)

.

From the boundedness of W and from an estimate similar to (32) it follows that

∫ x+−δ

x1

Wψψ̃ dx =

∫ x+−δ

x1

W

(

ζ

f

)1/4
(

ζ̃

f

)1/4

Ai(~−2/3ζ) Ai(~−2/3ζ̃) dx+O(~4/3)

=
~

1/3

π

∫ x+−δ

x1

W

|f |1/2

(

1 + δ−1O(~)
)

× cos

(

2

3
~
−1|ζ |3/2 − π

4

)

cos

(

2

3
~
−1|ζ̃|3/2 − π

4

)

dx

+ δ−1O(~4/3).

Using the asymptotic behavior (33) we have

∫ x+−δ

x1

Wψψ̃ dx =
~

1/3

2π

∫ x+−δ

x1

W√
E − V

cos

(

2

3
~
−1(|ζ |3/2 − |ζ̃|3/2)

)

dx+ δ−1O(~4/3).

(34)
(7) The argument of the cosine on the interval ]x1, x+ − δ[. Let us show that for
x ∈ [x1, x+ − δ],

2

3
~
−1(|ζ |3/2 − |ζ̃|3/2) = −2πk

T
τ(x) + δ1/2O(1) (35)
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where τ(x) was defined in (8). We have

2

3
~
−1(|ζ |3/2 − |ζ̃|3/2) = ~

−1

(
∫ x+

x

√
E − V dt−

∫ x̃+

x

√

Ẽ − V dt

)

= ~
−1

(
∫ x+−δ

x

(√
E − V −

√

Ẽ − V
)

dt

+

∫ x+

x+−δ

√
E − V dt−

∫ x̃+

x+−δ

√

Ẽ − V dt

)

.

Set temporarily

g(y) =

∫ y

x+−δ

√

V (y) − V (t) dt.

Then for y lying between x+ and x̃+ it holds

|g′(y)| =

∣

∣

∣

∣

∣

1

2

∫ y

x+−δ

V ′(y)
√

V (y) − V (t)
dt

∣

∣

∣

∣

∣

≤ 1

2
const

∫ y

x+−δ

dt√
y − t

≤ const
√

|x+ − x̃+| + δ.

Hence
∣

∣

∣

∣

∫ x+

x+−δ

√
E − V dt−

∫ x̃+

x+−δ

√

Ẽ − V dt

∣

∣

∣

∣

= |g(x+) − g(x̃+)|

≤ const
√

|x+ − x̃+| + δ |x+ − x̃+|
= δ1/2O(~). (36)

Furthermore,

√
E − V −

√

Ẽ − V − E − Ẽ

2
√
E − V

=
(E − Ẽ)2

2
(√

E − V +
√

Ẽ − V
)2 √

E − V

≤ (E − Ẽ)2

2(E − V )3/2

and
∫ x+−δ

x

(E − Ẽ)2

(E − V )3/2
dt = δ−1/2O(~2).

From (24) it follows that

~
−1(Ẽ −E) =

2πk

T
+O(~)
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where T is the period of the classical motion, see (7). Altogether this means that

~
−1

∫ x+−δ

x

(√
E − V −

√

Ẽ − V
)

dt = −
(

2πk

T
+O(~)

)
∫ x+−δ

x

dt

2
√

E − V (t)

+ δ−1/2O(~)

= −2πk

T

∫ x+

x

dt

2
√

E − V (t)
(37)

+ δ1/2O(1) + δ−1/2O(~).

Relations (36) and (37) jointly imply (35).
(8) The final step. From (34) and (35) we derive that
∫ x+−δ

x1

Wψψ̃ dx =
~

1/3

2π

(
∫ x+−δ

x1

W (x)
√

E − V (x)

× cos

(

2πk

T
τ(x) + δ1/2O(1) + δ−1/2O(~)

)

dx+ δ−1O(~)

)

=
~

1/3

2π

(

∫ x+

x1

W (x)
√

E − V (x)
cos

(

2πk

T
τ(x)

)

dx+ δ1/2O(1)

)

. (38)

The interval [x− + δ, x1] can be treated similarly. We have
∫ x1

x
−

+δ

Wψψ̃ dx = κκ̃
~

1/3

2π

(

∫ x1

x
−

W (x)
√

E − V (x)
cos

(

2πk

T
τ−(x)

)

dx+ δ1/2O(1)

)

where

τ−(x) =
1

2

∫ x

x
−

dy
√

E − V (y)
=

1

2
T − τ(x).

Taking into account also (26) and (27) we finally find that
∫ x1

x
−

+δ

Wψψ̃ dx =
~

1/3

2π

(

∫ x1

x
−

W (x)
√

E − V (x)
cos

(

2πk

T
τ(x)

)

dx+ δ1/2O(1)

)

. (39)

From the boundedness of W and relations (28), (38) and (39) it follows that
∫

R

Wψψ̃ dx =
~

1/3

2π

(
∫ T

0

W
(

q(t)
)

eikωt dt+ δ1/2O(1)

)

. (40)

As a particular case, with W (x) = 1 and k = 0, we have
∫

R

ψ2 dx =
~

1/3

2π

(

T + δ1/2O(1)
)

. (41)

The same relation holds also for the squared norm of ψ̃.
Relations (40) and (41) imply that there exists c ≥ 0 such that for all sufficiently

small positive δ and all n, n ≥ n0(δ), it holds
∣

∣

∣

∣

〈n|W (x)|n+ k〉 − 1

T

∫ T

0

W (q(t)) eikωtdt

∣

∣

∣

∣

≤ cδ1/2.

Since δ is arbitrary this concludes the verification of the limit (6).
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Abstract

We consider quantum Hamiltonians of the formH(t) = H +V (t) where the spectrum
of H is semibounded and discrete, and the eigenvalues behave asEn ∼ n

α, with
0 < α < 1. In particular, the gaps between successive eigenvalues decay asnα−1.
V (t) is supposed to be bounded, continuously differentiable in the strong sense and
such that the matrix entries with respect to the spectral decomposition ofH obey the
estimate‖V (t)m,n‖ ≤ ε |m − n|−p max{m,n}−2γ for m 6= n whereε > 0, p ≥ 1
andγ = (1 − α)/2. We show that the energy diffusion exponent can be arbitrarily
small providedp is sufficiently large andε is small enough. More precisely, for any
initial condition Ψ ∈ Dom(H1/2), the diffusion of energy is bounded from above
as〈H〉Ψ(t) = O(tσ) whereσ = α/(2[p]γ − 1

2). As an application we consider the
HamiltonianH(t) = |p|α + εv(θ, t) on L

2(S1
,dθ) which was discussed earlier in the

literature by Howland.

1 Introduction

One of the basic questions one can ask about time-dependent quantum systems is the growth
of energy on a long time scale for a given initial condition. Unfortunately the quantum
dynamics in the time-dependent case proved itself to be rather difficult to analyze in its
full generality and complexity. The systems which allow forat least partially analytical
treatment and whose dynamics has been perhaps best studied from various points of view are
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either driven harmonic oscillators or periodically kickedquantum Hamiltonians [2, 14, 7, 8,
9, 3, 5]. On a more general level, it is widely believed that there exist close links between
long time behavior of a quantum system and its spectral properties. For time-independent
quantum systems such a relation is manifested by the famous RAGE theorem, see [25] for a
summary. In a modified form this theorem has been extended to periodic and quasi-periodic
quantum systems [12, 18, 24]. In this case the relevant operator whose spectral properties
are of interest is the Floquet (monodromy) operator. Let us mention that a refined analysis
of how the spectral properties determine the quantum dynamics is now available, see for
example [13, 6, 11] and other papers, but here we are not directly concerned with this
question.

Thus for periodically time-dependent systems one can distinguish as a related prob-
lem the spectral analysis of the Floquet operator under certain assumptions on the quantum
Hamiltonian. Frequently one writes the time-dependent Hamiltonian in the formH(t) =
H + V (t) while imposing assumptions on the spectral properties of the unperturbed partH
and requiring some sort of regularity from the perturbationV (t). For our purposes an ap-
proach is rather important which is based on the adiabatic methods and which was initiated
by Howland [15, 16] and further extended in [22, 19]. An essential property imposed on
the unperturbed Hamiltonian in this case is the discreteness of the spectrum with increasing
gaps between successive eigenvalues.

Under this hypothesis Nenciu in [23] was not only able to strengthen the results due to
Howland but he derived in addition an upper bound on the diffusive growth of the energy
having the formconst ta/n wherea > 0 is given by the spectral properties ofH andn
is the order of differentiability ofV (t). Inspired by this result on the energy growth, Joye
in [20] considered another class of time-dependent quantumHamiltonians with rather mild
assumptions on the spectral properties ofH but on the other hand assuming that the strength
of the perturbationV (t) is in some sense small with respect toH. Moreover, as far as the
energy diffusion is discussed, the periodicity ofV (t) is required neither in [23] nor in [20].

It is worthwhile to mention that Howland in [17] succeeded totreat also the case when
the spectrum ofH is discrete but the gaps between successive eigenvalues aredecreasing. To
achieve this goal he restricted himself to certain classes of perturbationsV (t) characterized
by the behavior of matrix entries with respect to the eigen-basis ofH. In particular, he
discussed as an example the following model:H(t) = |p|α + v(θ, t) in L2(S1, dθ) where
0 < α < 1 andv(θ, t) is in C∞(S1 × S1). It seems to be natural to look in this case, too,
for a result parallel to that due to Nenciu [23] and to attempta derivation of a nontrivial
bound on the diffusive growth of energy. But we are aware of only one contribution in this
direction made by Barbaroux and Joye [1]; it is based on the general scheme proposed in
[20].

In this paper we wish to complete or to strengthen the resultsfrom [1] while making
use of some ideas from [20]. Thus we aim to consider other classes of time-dependent
Hamiltonians whose unperturbed partH has a discrete spectrum with decreasing gaps. In
particular, the derived results are applicable to the Howland’s model introduced in [17]. In
more detail, we deal with a quantum system described by the HamiltonianH(t) := H+V (t)
acting on a separable Hilbert spaceH and such thatH is semibounded and has a pure point
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spectrum with the spectral decomposition

H =
∑

n∈N

EnPn.

Assume that the eigen-valuesE1 < E2 < . . . obey the shrinking gap condition

cH
|m − n|

max{m, n}2γ
≤ |Em − En| ≤ CH

|m − n|
max{m, n}2γ

(1)

for γ ∈ ]0, 1
2
[ and strictly positive constantscH , CH . Notice that condition (1) impliesEn ∼

nα whereα = 1 − 2γ ∈ ]0, 1[ (more precisely, (1) implies that the sequenceEnn−α is
bounded both from below and from above by strictly positive constants for all sufficiently
large n). To simplify the discussion let us assume, without loss of generality, thatH is
strictly positive, i.e.,E1 > 0.

The time-dependent perturbationV (t) ∈ B(H ) is supposed to beT -periodic andC1

in the strong sense. From the strong differentiability it follows that the propagatorU(t, s)
associated to the HamiltonianH +V (t) exists and preserves the domainDom(H) (see, e.g.,
[21]).

Let us suppose thatV is small with respect to the norm

‖V ‖p,γ := sup
t∈[0,T ]

sup
m,n∈N

〈m − n〉p max{m, n}2γ ‖V (t)m,n‖, (2)

wherep is such that[p] > 1/(2(1 − α)),

〈m − n〉 := max{1, |m− n|},

and‖V (t)m,n‖ denotes the norm of the operator

V (t)m,n := PmV (t)Pn : Ran Pn → RanPm.

We claim that the propagatorU(t, s) preserves the form domainQH = Dom(H1/2) and for
anyΨ from QH one can estimate the long-time behavior of the energy expectation value by

〈U(t, 0)Ψ, HU(t, 0)Ψ〉 = O(tσ), with σ =
2α

2[p](1 − α) − 1

(more details are given in Theorem 5 below). Here[p] is standing for the integer part ofp.
Provided that[V (t), V (s)] = 0 for every t, s and

∫ T

0
V (t) dt = 0, the assumption

‖V ‖p,γ ≤ ε can be replaced by‖V ‖p+1,0 ≤ ε, i.e.,

‖PmV (t)Pn‖ ≤ ε

〈m − n〉p+1
.

The condition[V (t), V (s)] = 0 is satisfied for example whenV (t) is a potential (i.e., a
multiplication operator by a function on a certainL2 space) or when the time dependence
of V (t) is factorized, i.e.,V (t) = f(t)v wheref(t) is a real-valued (T -periodic andC1)
function andv is a time-independent operator onH .
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Let us compare the result of the current paper, as briefly described above, to the re-
sults derived in [20] and [1]. Paper [20] focuses on the general scheme and is not so much
concerned with particular cases as that one we are going to deal with here. Nevertheless a
possible application to the Howland’s classes of perturbations is shortly discussed in Propo-
sition 5.1 and Lemma 5.1. The Howland’s classes are determined by a norm which some-
what differs from (2), as explained in more detail in Subsection 2.1. But the difference is
not so essential to prevent a comparison. To simplify the discussion let us assume that the
eigenvalues ofH are simple and behave asymptotically asEn ∼ const nα, with 0 < α < 1.
In the particular case when‖V ‖p,γ < ∞ for somep > 1 andγ = (1 − α)/2 the bound on
the energy diffusion exponent derived in [20] equalsα/(2γ − 1

2
) providedγ > (1 + α)/4,

i.e.,α < 1/3. Our boundα/(2[p]γ − 1
2
), valid for 0 < α < 1 and provided[p] > 1/(4γ), is

achieved by making use of the rapid decay of matrix entries ofV in the direction perpendic-
ular to the diagonal. It follows that we can make the growth ofthe energy〈H〉Ψ arbitrarily
small by imposing more restrictive assumptions on the perturbationV , i.e., by letting the
parameterp be sufficiently large.

In paper [1] one treats in fact a larger class of perturbations than we do since one requires
only the finiteness of the norm‖V ‖p,0 < ∞ for p sufficiently large. In other words, no decay
of matrix entries ofV along the diagonal is supposed. On the other hand, one assumes that
the initial quantum state belongs to the domainDom(Hβ) for β sufficiently large;β is
never assumed therein to be smaller than3/2. Furthermore, there is no assumption on the
periodicity ofH(t) both in [1] and [20]. On the other hand, our assertion concerns all initial
states from the domainDom(H1/2) but we need a decay of matrix entries ofV along the
diagonal at least of order2γ = 1−α. For the sake of comparison let us also recall the bound
on the energy diffusion exponent which has been derived in [1]. It is roughly of the form
α/(1−f(p))2 whereα has the same meaning as above,f(p) is positive andf(p) = O(p−1)
as p → ∞. Hence this bound is never smaller thanα and approaches this value as the
parameterp tends to infinity.

2 Upper bound on the energy growth

2.1 The gap condition and the modified Howland’s classes

On the contrary to Howland who introduced in [17] the classesX (p, δ) equipped with the
norm

‖A‖H
p,δ = sup

m,n
{(mn)δ〈m − n〉p ‖Am,n‖; m, n ≥ 1},

we prefer to work with somewhat modified classes, calledY(p, δ), whose definition is ad-
justed to the gap condition (1). Our choice is dictated by an expected asymptotic behavior
of eigenvalues ofH in a typical situation. Let us briefly explain where condition (1) comes
from.

We expect the eigenvalues to behave asymptotically asEn = const nα(1 + o(1)) where
the error termo(1) is supposed to tend to zero sufficiently fast. The spectral gapsEn+1−En

tend to zero asn → ∞ if α ∈ ]0, 1[. Keeping the notationγ := (1 − α)/2 we wish to
estimate the difference|Em−En|. To this end we replaceEn simply by the power sequence
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nα. Then one gets

mα − nα

m − n
(mn)γ =

sinh(αy)

sinh(y)
= e−(1−α)|y| 1 − e−2α|y|

1 − e−2|y|

wheree2y := m/n. Since the fraction(1−e−2α|y|)/(1−e−2|y|) can be estimated by positive
constants both from above and from below we finally find that

C1
|m − n|

max{m, n}2γ
≤ |mα − nα| ≤ C2

|m − n|
max{m, n}2γ

for someC1, C2 > 0 and allm, n ∈ N.

Definition 1. Let p ≥ 1, δ ≥ 0 andp + 2δ > 1. We say that an operatorA ∈ B(H )
belongs to the classY(p, δ) if and only if

‖A‖p,δ := sup
m,n∈N

〈m − n〉p max{m, n}2δ ‖Am,n‖ < ∞. (3)

Let A(t) be aT -periodic function with values in the spaceY(p, δ). With some abuse of
notation we shall also write

‖A‖p,δ := sup
t∈[0,T ]

sup
m,n∈N

〈m − n〉p max{m, n}2δ ‖A(t)m,n‖ < ∞.

Remarks. (i) It is straightforward to check that‖ · ‖p,δ is indeed a norm. Let us note that
an equivalent norm is obtained if one replacesmax{m, n} by (m + n) in (3).

(ii) Obviously,Y(p, δ) ⊂ X (p, δ). Notice thatY(p, δ) is a Banach space equipped with
the norm‖ · ‖p,δ.

(iii) For the sake of convenience we have chosen the norm (3) with the restrictionsp ≥
1, δ ≥ 0 andp+2δ > 1 so that if it is finite for a matrix{Amn}, Amn ∈ B(Ran Pn, RanPm),
then the matrix corresponds to a bounded operatorA ∈ B(H ). Indeed, it is so since one
can estimate the operator norm‖A‖ by the Shur-Holmgren norm

‖A‖SH := max

{

sup
m∈N

∑

n∈N

‖Am,n‖, sup
n∈N

∑

m∈N

‖Am,n‖
}

.

It clearly holds

‖A‖SH ≤ ‖A‖p,δ sup
m∈N

∞
∑

n=1

1

〈m − n〉p max{m, n}2δ
.

The sum on the RHS equals

1

m2δ
+

m−1
∑

n=1

1

(m − n)pm2δ
+

∞
∑

n=m+1

1

(n − m)pn2δ
≤ 2 +

1

m2δ

∫ m

1

dx

xp
+

∞
∑

k=1

1

kp+2δ

= 2 +
1 − m−p+1

(p − 1)m2δ
+ ζ(p + 2δ).
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Setting temporarilyx = ln(m) andǫ = p − 1 one can make use of the inequality

1

ǫ

(

e−2δx − e−(ǫ+2δ)x
)

≤ 1

ǫ + 2δ

which is true for allx ≥ 0 providedǫ ≥ 0, δ ≥ 0 andǫ + 2δ > 0. Thus one arrives at the
estimate

‖A‖SH ≤
(

2 +
1

p + 2δ − 1
+ ζ(p + 2δ)

)

‖A‖p,δ.

Hereζ(u) :=
∑∞

k=1 k−u denotes the Riemann’s zeta function.
(iv) Finally let us note that the valuep = ∞ is admissible. We shall use the norm‖·‖∞,δ

exclusively in the case of diagonal matrices when it simply reduces to

‖A‖∞,δ := sup
n∈N

n2δ ‖An,n‖.

From Definition 1 one immediately deduces the following lemma.

Lemma 2. Suppose thatH is an operator onH with pure point spectrum whose eigen-
valuesE1 < E2 < . . . obey the upper bound in (1). Letp ≥ 2 . If A ∈ Y(p, δ) then the
commutator[A, H ] lies inY(p − 1, δ + γ) and

‖[A, H ]‖p−1,δ+γ ≤ CH‖A‖p,δ.

A basic technical tool we need is the following lemma concerned with products of two
classesY . For its proof as well as for the remainder of the paper the following two elemen-
tary inequalities will be useful. According to the first one,for everym, k ≥ 1 it holds

m

k
≤ 2〈m − k〉. (4)

In fact, this is a direct consequence of the implicationa, b ≥ 1 =⇒ a + b ≤ 2ab.
The second inequality claims that ifa, b ≥ 0 then

〈a + b〉
〈a〉〈b〉 ≤ 2

〈min{a, b}〉 .

This can be reduced to the inequality〈2a〉 ≤ 2〈a〉 which is quite obvious.

Lemma 3. Consider two classesY(p1, δ1), Y(p2, δ2), with p1, p2 ≥ 1, δ1, δ2 ≥ 0, and
p1 + 2δ1, p2 + 2δ2 > 1. Suppose that the numbersp, δ satisfy the inequalities

1 ≤ p ≤ min{p1, p2}, max{δ1, δ2} ≤ δ ≤ δ1 + δ2,

1 < p + 2δ ≤ min{p1 + 2δ1, p2 + 2δ2}, p + 2δ < max{p1 + 2δ1, p2 + 2δ2}.
If A ∈ Y(p1, δ1) andB ∈ Y(p2, δ2) then

‖AB‖p,δ ≤ C(p, p1, p2, δ, δ1, δ2) ‖A‖p1,δ1‖B‖p2,δ2 (5)

where

C(p, p1, p2, δ, δ1, δ2) = 2max{p1,p2}+2(δ−δ0)

×
(

3 + 3ζ(max{p1 + 2δ1, p2 + 2δ2} − 2δ) +
1

e(max{p1 + 2δ1, p2 + 2δ2} − p − 2δ)

)

andδ0 = min{δ1, δ2}. Consequently,Y(p1, δ1)Y(p2, δ2) ⊂ Y(p, δ).
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Proof. Under the assumptions we have

〈m − n〉p max{m, n}2δ‖(AB)mn‖ ≤ 〈m − n〉p max{m, n}2δ
∞
∑

ℓ=1

‖Amℓ‖‖Bℓn‖

which is less than or equal to

‖A‖p1,δ1‖B‖p2,δ2

∞
∑

ℓ=1

〈m − n〉p max{m, n}2δ

〈m − ℓ〉p1 max{m, ℓ}2δ1〈n − ℓ〉p2 max{n, ℓ}2δ2
. (6)

Observe that

max{m, n}2δ

max{m, ℓ}2δ1 max{n, ℓ}2δ2
≤ 22(δ−δ0)〈m − ℓ〉2(δ−δ1)〈n − ℓ〉2(δ−δ2)

Without loss assume thatmax{p1 + 2δ1, p2 + δ2} = p1 + 2δ1 > p + 2δ. The summand in
(6) can be estimated from above by

22(δ−δ0)〈|m − ℓ| + |n − ℓ|〉p
〈m − ℓ〉p1+2(δ1−δ)〈n − ℓ〉p2+2(δ2−δ)

≤ 2p+2(δ−δ0)

〈min{|m− ℓ|, |n − ℓ|}〉p〈m − ℓ〉p1−p+2(δ1−δ)

For definiteness let us suppose thatm > n. With the help of inequality
∑i

k=1 k−1 ≤ 1+log i
the sum in (6) is estimated from above by

2p+2(δ−δ0)

(

n
∑

ℓ=1

〈n − ℓ〉−p〈m − ℓ〉p−p1+2(δ−δ1)

+

[ m+n
2

]
∑

ℓ=n+1

(ℓ − n)−1(m − ℓ)p−p1+2(δ−δ1) +
∞
∑

ℓ=[ m+n
2

]+1

〈m − ℓ〉−p1+2(δ−δ1)

)

≤ 2p+2(δ−δ0)

(

(

2

m − n

)p1−p+2(δ1−δ)

(1 + log(
m − n

2
)) + 2 + 3ζ(p1 + 2(δ1 − δ))

)

Using the fact thatx−α log x ≤ 1/(eα) holds true forx, α > 0 one gets easily (5). The cases
m < n, m = n may be investigated similarly.

Corollary 4. Let p ≥ 2, i ≥ 1 and γ ∈ ]0, 1
2
[. Then the following product formulas hold

true:

Y(p, iγ)Y(p, iγ) ⊂ Y(p − 1, (i + 1)γ)

Y(p, (i− 1)γ)Y(p − 1, iγ) ⊂ Y(p − 1, iγ)

Y(p + 1, (i− 1)γ)Y(p − 1, (i + 1)γ) ⊂ Y(p − 1, (i + 1)γ)

The formulas are also true for the opposite order of factors on the LHS. Moreover, if oper-
atorsA andB belong to the corresponding classes on the LHS then

‖AB‖p−1,(i+1)γ ≤ Cp,γ ‖A‖p,iγ‖B‖p,iγ

‖AB‖p−1,iγ ≤ Cp,γ ‖A‖p,(i−1)γ‖B‖p−1,iγ

‖AB‖p−1,(i+1)γ ≤ 2Cp,γ ‖A‖p+1,(i−1)γ‖B‖p−1,(i+1)γ,
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where

Cp,γ := 2p+2(3 + 3 ζ(p− 2γ) +
1

e(1 − 2γ)
). (7)

The norm estimates hold true also for the opposite order of factorsA andB in the product.

2.2 The main theorem

Theorem 5. Let a quantum system be described by a Hamiltonian of the form

H(t) = H + V (t) onH

whereH is a self-adjoint operator with a pure point spectrum and thespectral decomposi-
tion

H =
∑

n∈N

EnPn.

Suppose that the eigen-values ofH are ordered increasingly and obey the gap condition (1)
with γ ∈ ]0, 1

2
[ . Setα = 1 − 2γ. Assume that

[p] >
1

2(1 − α)
. (8)

Then there existsε > 0 such that ifV (t) is T -periodic, symmetric, continuously differen-
tiable in the strong sense and obeys‖V ‖p,γ ≤ ε then the propagatorU(t, s) associated
to the HamiltonianH + V (t) mapsQH , the form domain ofH, onto itself and for every
Ψ ∈ QH it holds

〈H〉Ψ(t) := 〈U(t, 0)Ψ, HU(t, 0)Ψ〉 = O(tσ) (9)

where

σ =
2α

2[p](1 − α) − 1
.

Remark 6. (i) There is no assumption on the dimension ofRanPn. The multiplicities of
eigenvalues may grow arbitrarily, they can even be infinite.

(ii) Suppose thatV (t) ∈ Y(p + 1, 0), with p > 2, is T -periodic, symmetric, continuously
differentiable in the strong sense and such that[V (t), V (s)] = 0 for everyt, s, and
V̄ := T−1

∫ T

0
V (t) dt = 0. Then one arrives at the same estimate (9). Let us outline

the proof for this case. According to Remark 12 one can transform anti-adiabatically
H+V (t) toH+V1(t), withV1(t) ∈ Y(p, γ), and afterwards one can apply Theorem 5.
The first diagonalization procedure is not necessary sinceV̄ = 0.

(iii) Provided thatH(t) = H + V (t), with V in C1(R, B(H )) in the strong sense there
exists a trivial bound (see [23]) which does not depend on thespectral properties of
H, namely

|〈U(t, 0)Ψ, H(t)U(t, 0)Ψ〉| ≤ |〈Ψ, H(0)Ψ〉|+ |t| sup
s∈R

‖V̇ (s)‖‖Ψ‖2. (10)
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For the derivation it suffices to notice that

∂t〈U(t, 0)Ψ, H(t)U(t, 0)Ψ〉 = 〈U(t, 0)Ψ, V̇ (t)U(t, 0)Ψ〉

where V̇ (s) denotes the time derivative in the strong sense. The estimate given by
Theorem 5 is better than this trivial bound if

[p] > pmin :=
2α + 1

2(1 − α)
.

For example, in the case ofα = 2/3 (the quantum ball) we getpmin = 7/2. The
condition[p] > pmin is fulfilled if p ≥ 4 and then Theorem 5 tells us that〈H〉Ψ(t) =
O(t4/5).

2.3 An application to the Howland’s model

Let us apply the results of Theorem 5 to the model introduced by Howland in [17] and
described by the Hamiltonian|p|α + εv(θ, t), with α ∈ ]0, 1[ , which is supposed to act on
L2(S1, dθ) and to be2π-periodic in time. SetH := |p|α. The spectral decomposition ofH
reads

H =
∑

n≥0

nαPn where PnΨ(θ) =
1

π

∫ 2π

0

cos (n(θ − s))Ψ(s) ds.

Except of the first one the multiplicities of the eigen-values are equal2. Using integration
by parts one derives that any multiplication operatora by a functiona(θ) ∈ Ck obeys the
estimate

‖Pm a Pn‖ ≤ 2
√

2π ‖a(k)‖
〈m − n〉k .

Hencea ∈ Y(k, 0). Applying Theorem 5 and Remark 6 ad (ii) we get

Proposition 7. Letα ∈ ]0, 1[ andv(θ, t) be a real-valued function which is2π-periodic both
in the space and in the time variable. Suppose thatv(θ, t) is Ck in θ andC1 in t and such
that

∫ 2π

0
v(θ, t) dt = 0. If k > 3 andk > (3− 2α)/(2(1− α)) then there existsε0 > 0 such

that for every realε, |ε| < ε0, the propagatorU(t, s) associated to

H(t) := |p|α + εv(θ, t) onL2(S1, dθ)

preserves the domainDom(|p|α/2) and for everyΨ from this domain it holds true that

〈U(t, 0)Ψ, H(t)U(t, 0)Ψ〉 = O(tσ)

where

σ =
2α

2(k − 1)(1 − α) − 1
.

Let us summarize that the energy diffusion exponent in the Howland’s model can be
made arbitrarily small provided the potential on the circleis sufficiently smooth and the
coupling constant is sufficiently small.
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3 Derivation of the main result

3.1 Two additional theorems

The proof of Theorem 5 is based on the following two theorems,Theorem 8 and Theorem 9.
In what follows we use the notationD := −i∂t on the interval[0, T ] with the periodic
boundary condition.

Theorem 8. LetK = D + H + V (t) be a Floquet Hamiltonian onL2([0, T ], H ), with H
andV (t) satisfying the assumptions of Theorem 5. Letp ≥ 1 andq ≤ p − 1 be a natural
number or zero. Then there existsε > 0 such that‖V ‖p,γ ≤ ε implies the existence of a
T -periodic family of unitary operatorsJ(t) on H which is continuously differentiable in
the strong sense and such that

K = J(t)(D + H + A + B(t))J(t)∗

whereB(t) ∈ Y(p − q, (q + 1)γ) is T -periodic, Hermitian and strongly continuously dif-
ferentiable, andA is bounded, symmetric and commutes withH.

The remainder of the current paper is concerned with the proof of Theorem 8. Theorem 9
to follow is a mere modification of Proposition 5.1 in [20] in combination with some ideas
from [1, Section 2]. This is why we present its proof in a rather sketchy form. Let us also
note that the basic idea standing behind the estimates goes back to Nenciu [23].

Theorem 9. Let H be a positive operator with a pure point spectrum and the spectral
decompositionH =

∑

n EnPn. Assume that the eigen-values0 < E1 < E2 < . . . satisfy
En = O(nα), withα > 0. SetQn = 1−Pn. Let an operator-valued functionW (t) ∈ B(H )
be Hermitian,C1 in the strong sense and such that

∀n ∈ N, ‖PnW (t)QnH−1/2‖ ≤ const

nµ+ α
2

uniformly in time for someµ > 1/2. Then the propagatorU(t, s) associated withH +W (t)
preservesQH , the form domain ofH, and for everyΨ fromQH ,

〈U(t, 0)Ψ, HU(t, 0)Ψ〉 = O(t2α/(2µ−1)).

Remark. The bound on the energy expectation value is nontrivial ifµ > 1
2

+ α.

Proof. Let

Wd(t) :=

∞
∑

n=1

PnW (t)Pn

be the diagonal part ofW (t). It is straightforward to see thatWd(t) is againC1 in the strong
sense. LetUd(t, s) be the propagator associated toH + Wd(t). SinceWd(t) commutes with
H the same if true forUd(t, s). Equivalently this means thatUd(t, s) commutes with all
projectorsPn. From the Duhamel’s formula we have

R(t) := U(t, 0) − Ud(t, 0) = −i

∫ t

0

Ud(t, s)
(

W (s) − Wd(s)
)

U(s, 0) ds.
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Fix t > 0 and chooseΨ ∈ Dom(H) ⊂ Dom(H1/2). Notice thatPn

(

W (s) − Wd(s)
)

=
PnW (s)Qn. For anyt′, 0 ≤ t′ ≤ t, it holds

‖H1/2U(t′, 0)Ψ‖2 ≤
∞
∑

n=1

En‖PnU(t′, 0)Ψ‖2 ≤ EN‖Ψ‖2 +
∞
∑

n=N+1

En‖PnU(t′, 0)Ψ‖2.

Furthermore,
‖PnU(t′, 0)Ψ‖2 ≤ 2(‖PnΨ‖2 + ‖PnR(t′)Ψ‖2)

and

‖PnR(t′)Ψ‖ ≤
∫ t

0

‖PnW (s)QnH−1/2‖ ds sup
0≤s≤t

‖H1/2U(s, 0)Ψ‖

≤ c t

nµ+ α
2

sup
0≤s≤t

‖H1/2U(s, 0)Ψ‖.

From these estimates one concludes that for anyt > 0, all Ψ ∈ Dom(H), N ∈ N and
some positive constantsc1, c2 independent oft, Ψ andN it holds

(

1 − c1t
2

N2µ−1

)

sup
0≤s≤t

‖H1/2U(s, 0)Ψ‖2 ≤ c2N
α‖Ψ‖2 + 2‖H1/2Ψ‖2.

SettingN = [Ct2/(2µ−1)] whereC > 0 is a sufficiently large constant one deduces that there
existsc3 > 0 such that it holds

‖H1/2U(t, 0)Ψ‖2 ≤ c3

(

t2α/(2µ−1)‖Ψ‖2 + ‖H1/2Ψ‖2
)

(11)

for all t ≥ 1 andΨ ∈ Dom(H).
One can extend the validity of (11) toΨ ∈ Dom(H1/2). To this end it suffices to use

the fact thatDom(H1/2) is a Banach space with respect to the norm‖Ψ‖∗ = (‖Ψ‖2 +
‖H1/2Ψ‖2)1/2, andDom(H) ⊂ Dom(H1/2) is a dense subspace. ChoosingΨ ∈ Dom(H1/2)
one can find a sequence{Ψk} in Dom(H) such thatΨk → Ψ in Dom(H1/2). Then (11)
implies that{U(t, 0)Ψk} is a Cauchy sequence inDom(H1/2) whose limit necessarily
equalsU(t, 0)Ψ. HenceDom(H1/2) is U(t, 0)–invariant and (11) is valid also for allΨ ∈
Dom(H1/2). This concludes the proof.

3.2 Proof of Theorem 5

Here we show how Theorem 5 follows from Theorem 8 and Theorem 9.

Lemma 10. Assume thatH is a positive operator with a pure point spectrum and the spec-
tral decompositionH =

∑∞
n=1 EnPn, and such that the eigen-values satisfyinf Enn−α > 0,

with α > 0. SetQn = 1 − Pn. Then for anyp ≥ 1 there exist a constantc(p, α) > 0 such
that for all δ > 0,

∀W ∈ Y(p, δ), ∀n ∈ N, ‖PnWQnH−1/2‖ ≤ c(p, α)
‖W‖p,δ

n2δ+ α
2

.
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Proof. Suppose thatW ∈ Y(p, δ). By the assumptions,En ≥ c nα for all n and somec > 0.
We have

‖PnWQnH−1/2‖2 ≤
∑

m,m6=n

‖Wn,m‖2

Em
≤ 1

c

∑

m,m6=n

‖W‖ 2
p,δ

|m − n|2p max{m, n}4δmα
.

Now one splits the range of summation inm into three segments:1 ≤ m < n/2, n/2 ≤
m < n andn < m. For each case one can apply elementary and rather obvious estimates to
show that the expression decays inn at least asn−4δ−α. In the first case one has to use the
fact thatα < 1. We omit the details.

Proof of Theorem 5.Theorem 8, withq := [p−1], implies the existence of a transformation

K = J(t)(D + H + A + B(t))J(t)∗ (12)

whereA is bounded and diagonal andB(t) ∈ Y(p − q, (q + 1)γ). Sinceq = [p − 1]
we havep − q ≥ 1. SetW (t) := A + B(t). ThenPnW (t)Qn = PnB(t)Qn. The gap
condition (1) guarantees that the assumptions of Lemma 10 are satisfied and thus one finds
that ‖PnW (t)QnH−1/2‖ ≤ const · n−µ−α

2 , with µ = 2(q + 1)γ = [p](1 − α). Notice
that assumption (8) means thatµ > 1/2. In virtue of Theorem 9, the propagator̃U(t, s)
associated toH + W (t) maps the form domainQH onto itself and fulfills

〈Ũ(t, 0)Ψ̃, HŨ(t, 0)Ψ̃〉 = O(tσ), with σ =
2α

2[p](1 − α) − 1
,

for everyΨ̃ ∈ QH .
Equality (12) implies that

H + V (t) = J(t)HJ(t)∗ + iJ̇(t)J(t)∗ + J(t)W (t)J(t)∗. (13)

Since the familyJ(t) is known to be continuously differentiable in the strong sense it fol-
lows from the uniform boundedness principle that the derivative J̇(t) is a bounded operator.
Moreover, using the periodicity and applying the uniform boundedness principle once more
one finds that‖J̇(t)‖ is bounded uniformly int. Hence all operators occurring in equality
(13), except ofH, are bounded. One deduces from (13) thatJ(t) mapsDomH onto itself for
everyt and that the same is also true for the form domain. SetU(t, s) := J(t)Ũ(t, s)J(s)∗.
ThenU(t, s) is the propagator corresponding toH + V (t). For anyΨ ∈ QH we have

〈H〉Ψ(t) = 〈U(t, 0)Ψ, H U(t, 0)Ψ〉 = 〈U(t, 0)Ψ, J(t)HJ(t)∗U(t, 0)Ψ〉 + O(1)

= 〈Ũ(t, 0)Ψ̃, HŨ(t, 0)Ψ̃〉 + O(1) = O(tσ)

whereΨ̃ := J(0)∗Ψ. This proves the theorem.

3.3 The idea of the proof of Theorem 8

It remains to prove Theorem 8. The proof is somewhat lengthy and the remainder of the
paper is devoted to it. Let us explain the main idea. The proofcombines the anti-adiabatic
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transformation due to Howland (see Section 4) with a (properly modified) diagonalization
method, as presented in [10] (see Section 5). This procedureis applied repeatedly until
achieving the required properties of the perturbation. Letus describe one step in this ap-
proach when starting from the Floquet Hamiltonian

K△ := D + H + Y + Z(t)

whereY ∈ Y(∞, γ) is Hermitian and diagonal (i.e., commuting withH) and Z(t) ∈
Y(r, iγ) is symmetric,T -periodic and stronglyC1. The parameters are supposed to satisfy
i ≥ 1, r ≥ 2.

Firstly, using the anti-adiabatic transform we try to improve the decay of entries ofZ(t)
along the main diagonal when paying for it by a worse decay of elements in the direction
perpendicular to the diagonal. In more detail, we would liketo transformZ(t) ∈ Y(r, iγ)
into Z♦(t) ∈ Y(r − 1, (i + 1)γ). Unfortunately, we are not able to get rid of the extra term
Z̄ ∈ Y(r, iγ), the time average ofZ(t). The anti-adiabatic transform can be schematically
described as

K△ = D + H + Y + Z(t) → K♦ = D + H + Y + Z̄ + Z♦(t).

To cope with the unwanted extra term we apply afterwards a diagonalization procedure
which in fact means the transform

K♦ = D + H + Y + Z̄ + Z♦(t) → K♥ := D + H + A + B(t)

whereA andB(t) already have the desired properties, i.e.,B(t) ∈ Y(r − 1, (i + 1)γ) is
symmetric,T -periodic and stronglyC1, andA ∈ Y(∞, γ) is Hermitian and commuting
with H.

4 The anti-adiabatic transform

In this section we adapt the strategy of Howland [17] and makeprecise the mappingK△ →
K♦, as announced in Subsection 3.3. Using the anti-adiabatic transform, i.e., roughly speak-
ing, applying the commutator withH, one can improve the decay of matrix entries of the
perturbation along the main diagonal at the expense of a slower decay in the direction per-
pendicular to the diagonal. Using the language of classesY(p, δ), the anti-adiabatic trans-
form may be viewed as passing from a perturbationZ(t) ∈ Y(p, δ) to a new perturbation
Z1(t) ∈ Y(p − 1, δ + γ) whereγ comes from the gap condition (1) (see Lemma 2).

Let us introduce the transform in detail. LetK△ be a Floquet Hamiltonian of the form

K△ = D + H + Y + Z(t),

with H satisfying the assumptions of Theorem 5,Y ∈ Y(∞, γ) being Hermitian and com-
muting with H, andZ(t) ∈ Y(r, iγ) being Hermitian,T -periodic and continuous in the
strong sense. By the uniform boundedness principle,‖Z(t)‖ is bounded uniformly int. The
parameters are supposed to satisfyr ≥ 2 , i ≥ 1. Set

Z̄ :=
1

T

∫ T

0

Z(t) dt, Z̃(t) = Z(t) − Z̄.
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Define

F (t) :=

∫ t

0

Z̃(s) ds,

so thatF (t) is Hermitian,T -periodic, stronglyC1 and lying inY (r, iγ). Let us defineK♦
by the gauge-type transformation ofK△,

K♦ := eiF (t)K△e−iF (t) = D + H + Y + Z̄ + Z♦(t),

with
Z♦(t) = eiF (t) (D + H + Y + Z(t)) e−iF (t) −

(

D + H + Y + Z̄
)

. (14)

The main result related to the anti-adiabatic transform is as follows.

Proposition 11. Let r ≥ 2 , i ≥ 1, γ ∈ ]0, 1
2
[, and H be a self-adjoint operator with

a pure point spectrum and the spectral decompositionH =
∑

n EnPn. Assume that the
eigen-values{En}∞n=1 are ordered increasingly and satisfy the inequality

|Em − En| ≤ CH
|m − n|

max{m, n}2γ
.

Furthermore,Y andZ(t) obey the assumptions formulated above.
ThenZ♦(t) defined in (14) isT -periodic, continuous in the strong sense, Hermitian, and

lies inY (r − 1, (i + 1)γ). The norm ofZ♦ obeys the bound

‖Z♦‖r−1,(i+1)γ ≤ exp(4Cr,γT ‖Z‖r,iγ) − 1

2Cr,γ
(CH + 4‖Y ‖∞,γ + 2Cr,γ‖Z‖r,iγ) , (15)

with the constantCr,γ defined in (7). The operator-valued functioneiF (t) is C1 in the strong
sense. Moreover, ifZ(t) is C1 in the strong sense then the same is true forZ♦(t).

Proof. The periodicity and the differentiability are clear from the above discussion. The
RHS of (14) can be expanded according to the formula

eABe−A = B +

∞
∑

j=1

1

j!
adj

A(B).

Here we use the notationadA(B) := [A, B] = AB − BA. SinceadF (t) D = iḞ (t) = iZ̃(t)
we get

Z♦(t) =
∞
∑

j=1

ij

j!
ad j−1

F (t)

(

iZ̃(t) + [F (t), H + Y + Z(t)]
)

+ Z̃(t)

=

∞
∑

j=1

ij

j!
ad j−1

F (t) X(t) (16)

where

X(t) := adF (t)

(

H + Y + Z(t) − 1

j + 1
Z̃(t)

)

= adF (t)

(

H + Y +
j

j + 1
Z(t) +

1

j + 1
Z̄

)

.
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By Lemma 2,adF (t) H ∈ Y(r − 1, (i + 1)γ), and according to Corollary 4, the same holds
true for adF (t) Z(t) and adF (t) Z̄. Notice also that‖Z̄‖p,δ ≤ ‖Z‖p,δ. Furthermore, since
Y ∈ Y(∞, γ) is diagonal we have

〈m − n〉r−1 max{m, n}2(i+1)γ‖(F (t)Y )m,n‖

≤ 1

〈m − n〉

(

max{m, n}
n

)2γ

n2γ‖F‖r,iγ‖Yn,n‖ ≤ 22γ‖F‖r,iγ‖Y ‖∞,γ.

Hence‖F (t)Y ‖r−1,(i+1)γ ≤ 2‖F‖r,iγ‖Y ‖∞,γ. The same estimate is true for‖Y F (t)‖r−1,(i+1)γ

and therefore‖ adF Y ‖r−1,(i+1)γ ≤ 4‖F‖r,iγ‖Y ‖∞,γ. We conclude thatX(t) belongs to
Y(r − 1, (i + 1)γ) and

‖X‖r−1,(i+1)γ ≤ ‖F‖r,iγ (CH + 4‖Y ‖∞,γ + 2Cr,γ‖Z‖r,iγ) . (17)

Recalling Corollary 4 once more we have

Y(r − 1, (i + 1)γ)Y(r, iγ), Y(r, iγ)Y(r − 1, (i + 1)γ) ⊂ Y(r − 1, (i + 1)γ)

and soad j−1
F (t) X(t) lies inY(r − 1, (i + 1)γ) as well and

‖ ad j−1
F X‖r−1,(i+1)γ ≤ (2Cr,γ‖F‖r,iγ)

j−1 ‖X‖r−1,(i+1)γ . (18)

Consequently, the series (16) converges in the Banach spaceY (r − 1, (i + 1)γ). To derive
inequality (15) from (17) and (18) one applies the estimate‖F‖r,iγ ≤ 2T‖Z‖r,iγ which
immediately follows from the definition ofF (t) andZ̃(t). This completes the proof.

Remark 12. The proposition holds also true fori = 0 provided[Z(t), Z(s)] = 0 for every
t, s. In this caseF (t) commutes withZ(t) and Z̄, and the formula (16) holds true with
X(t) = adF (t)(H +Y ). Repeating the steps from the proof of the proposition one arrives at
the inequality

‖Z♦‖r−1,(i+1)γ ≤ exp(4Cr,γT ‖Z‖r,iγ) − 1

2Cr,γ
(CH + 2‖Y ‖∞,γ).

5 The diagonalization procedure

5.1 Formulation of the result

The main result of this section is formulated in the following proposition.

Proposition 13. Let i ≥ 1 be a natural number,γ ∈ ]0, 1
2
[ , andH be a self-adjoint operator

with a pure point spectrum and the spectral decompositionH =
∑

n EnPn. Assume that
the eigen-values{En}∞n=1 are ordered increasingly and satisfy the inequality

|Em − En| ≥ cH
|m − n|

max{m, n}2γ
. (19)
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Let Y ∈ Y(∞, γ) be Hermitian and commuting withH. Suppose that̄Z is Hermitian and
belongs to the classY(r, iγ) for somer ≥ 2 . Finally, assume that

‖Y ‖∞,γ + ‖Z̄‖r,iγ ≤ cH

4π Cr+1,γ
, (20)

with the constantCr+1,γ given by (7).
Then there existsU , a unitary operator onH , such that it holds

U(H + Y + Z̄)U∗ = H + A (21)

whereA ∈ Y(∞, γ) commutes withH and obeys

‖A‖∞,γ ≤ 2
(

‖Y ‖∞,γ + ‖Z̄‖r,iγ

)

. (22)

Moreover, for every operatorX ∈ Y(r − 1, (i + 1)γ) we have the estimate

‖UXU∗‖r−1,(i+1)γ ≤ exp

(

2
Cr,γ

Cr+1,γ

)

‖X‖r−1,(i+1)γ . (23)

SinceU does not depend on time this result can be interpreted in the following way.

Corollary 14. Let us consider a Floquet Hamiltonian of the form

K♦ = D + H + Y + Z̄ + Z♦(t)

whereH, Y andZ̄ obey the same assumptions as in Proposition 13, withr ≥ 2 andi ≥ 1,
and Z♦(t) ∈ Y (r − 1, (i + 1)γ) is T -periodic, continuously differentiable in the strong
sense and Hermitian.

Then there exists a unitary operatorU on H such that for the transformed Floquet
Hamiltonian

K♥ := UK♦U∗ = D + H + A + B(t)

it holds:A ∈ Y(∞, γ) commutes withH and fulfills (22),

B(t) := UZ♦(t)U∗ ∈ Y(r − 1, (i + 1)γ)

is T -periodic, continuously differentiable in the strong sense, Hermitian and satisfies

‖B‖r−1,(i+1)γ ≤ exp

(

2
Cr,γ

Cr+1,γ

)

‖Z♦‖r−1,(i+1)γ .

The proof of Proposition 13 is a modification (to the case of shrinking gaps) of a diago-
nalization procedure introduced in [10] and conventionally called the progressive diagonal-
ization method.
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5.2 The algorithm

The diagonalization procedure is constructed iteratively, let us first describe the algorithm.
Starting fromH + Y + Z̄ we construct the first 4-tuple of operators

U0 := 1, G1 := Y + diag Z̄, V1 := offdiag Z̄, H1 := H + G1 + V1,

where
diag X :=

∑

n∈N

PnXPn, offdiag X :=
∑

m6=n

PmXPn

denote the diagonal and the off diagonal part of the matrix ofan operatorX with respect to
the eigen-basis ofH. We define recursively a sequence of operatorsHs, Gs, Vs, Ws andUs

by the following rules: providedGs andVs have been already defined letWs be the solution
of

[H + Gs, Ws] = Vs and diag Ws = 0. (24)

We define
Hs+1 := eWsHse

−Ws. (25)

Finally, we set

Us := eWsUs−1, Gs+1 := diag Hs+1 − H, Vs+1 := offdiag Hs+1. (26)

SinceHs = H + Gs + Vs for all s and with the aid of (24) one derives from (25) that

Hs+1 = Hs +

∞
∑

k=1

1

k!
ad k−1

Ws
[Ws, Hs] = H + Gs + Vs +

∞
∑

k=1

1

k!
adk−1

Ws
(−Vs + [Ws, Vs])

= H + Gs + Φ(adWs
)Vs (27)

where

Φ(x) :=
∞
∑

k=1

k

(k + 1)!
xk = ex − 1

x
(ex − 1) (28)

Observe also that in the course of the algorithm,Gs is always diagonal (commuting with
H) and symmetric,Vs is symmetric and off diagonal,Ws is antisymmetric and off diagonal.
ThereforeeWs andUs are unitary. It is straightforward to prove by induction that for every
s = 1, 2, . . .,

H + Gs+1 + Vs+1 = Us(H + Y + Z̄)U∗
s . (29)

5.3 Auxiliary facts

To solve the commutator equation (24) we need the following result taken from a paper by
Bhatia and Rosenthal.

Lemma 15([4]). LetE andF be two Hilbert spaces. LetA andB be Hermitian operators
(i.e., bounded and self-adjoint) onE andF , respectively, such thatdist(σ(A), σ(B)) > 0.
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Then for every bounded operatorY : F → E there exists a unique bounded operator
X : F → E such that

AX − XB = Y.

Moreover, the inequality

‖X‖ ≤ π

2 dist(σ(A), σ(B))
‖Y ‖,

holds true.

Remark. The solutionX is given by

X =

∫

R

e−itAY eitBf(t) dt

for anyf ∈ L1(R) such that its Fourier image obeyŝf(s) = 1/
√

2πs on the setσ(A) −
σ(B). This implies‖X‖ ≤ ‖f‖1‖Y ‖, and optimizing over suchf one gets the constant
π/2.

In the algorithm plays a certain role the functionΦ(x) introduced in (28). It is supposed
to be defined on the interval[0,∞[. Let us point out here some of its elementary properties.
This is a strictly increasing function mapping the interval[0,∞[ onto itself. It holdsΦ(0) =
0, Φ(1) = 1, and so the function maps also the interval]0, 1[ onto itself. Moreover,Φ(x) is
a convex function and so

∀x ∈ ]0, 1[, Φ(x) < x. (30)

Further, let us consider a sequence{xs}∞s=1 formed by nonnegative numbers obeying the
inequalities

∀s ∈ N, xs+1 ≤ Φ(xs)xs. (31)

If x1 < 1 then the sequence is non-increasing and (30), (31) imply that xs+1 ≤ x 2
s . It follows

that
∀s ∈ N, xs ≤ x 2s−1

1 ,

and ∞
∑

s=1

xs ≤
x1

1 − x1
< ∞. (32)

5.4 Convergence of the algorithm

Proof of Proposition 13.We have to prove thatVs → 0, Gs → A andUs → U . The key
ingredient of the algorithm is the control of the size ofWs given as the off diagonal solution
to the commutator equation (24). For everym 6= n we seekWs(m, n) such that

(Em + (Gs)m,m) (Ws)m,n − (Ws)m,n (En + (Gs)n,n) = (Vs)m,n.

Suppose for the moment thatGs lies inY(∞, γ) for everys ∈ N with

‖Gs‖∞,γ ≤ cH

6
. (33)
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The norm‖ · ‖∞,γ makes sense in this case sinceGs is diagonal for everys ∈ N. The
spectrum ofEn + (Gs)n,n is a subset of the interval

[

En − ‖Gs‖∞,γ

n2γ
, En +

‖Gs‖∞,γ

n2γ

]

.

Owing to (19) the distance between the spectrum ofEm + (Gs)m,m andEn + (Gs)n,n can
be estimated from below by

|Em − En| − ‖Gs‖∞,γ

(

m−2γ + n−2γ
)

≥ cH
|m − n|

max{m, n}2γ
− cH

6
(m−2γ + n−2γ)

≥ cH |m − n|
2 max{m, n}2γ

. (34)

The last inequality in (34) is a consequence of the followingestimate where we assume for
definiteness thatm > n (recall that2γ < 1):

3(m − n)

m2γ
≥ m−2γ +

m

n
m−2γ ≥ m−2γ + n−2γ .

Applying Lemma 15 we conclude that

‖(Ws)m,n‖ ≤ π max{m, n}2γ

cH |m − n| ‖(Vs)m,n‖. (35)

Set

M :=
cH

2πCr+1,γ
, xs :=

‖Vs‖r,iγ

M
, (36)

If Vs lies in the classY(r, iγ) then one derives from (35) thatWs ∈ Y(r + 1, (i− 1)γ) and

‖Ws‖r+1,(i−1)γ ≤ π

cH
‖Vs‖r,iγ =

xs

2Cr+1,γ
. (37)

From Corollary 4 it follows thatad k
Ws

Vs ∈ Y(r, iγ) and

‖ adk
Ws

Vs‖r,iγ ≤
(

2Cr+1,γ‖Ws‖r+1,(i−1)γ

)k ‖Vs‖r,iγ ≤ x k
s ‖Vs‖r,iγ, (38)

SinceVs+1 is defined as the off diagonal part ofHs+1 we get from (27) and (38) that

Vs+1 = offdiag(Φ(adWs
)Vs) .

and so
‖Vs+1‖r,iγ ≤ Φ(xs)‖Vs‖r,iγ.

Hence the sequence{xs} defined in (36) fulfills inequalities (31).
Since‖V1‖r,iγ ≤ ‖Z̄‖r,iγ assumption (20) impliesx1 ≤ 1/2. We know from the discus-

sion at the end of Subsection 5.3 that in that case the series
∑

xs is convergent. It follows
that‖Vs‖r,iγ → 0 and, using the estimate

‖Ws‖ ≤ ‖Ws‖SH ≤ (1 + 2ζ(r + 1)) ‖Ws‖r+1,(i−1)γ
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and (37), also thatUs converges to a unitary operatorU in B(H ). Furthermore, from (27)
and (26) one deduces that

Gs+1 − Gs = diag(Φ(adWs
)Vs) .

SinceGs is diagonal andi ≥ 1 we have

‖Gs+1 − Gs‖∞,γ = ‖Gs+1 − Gs‖r,γ ≤ ‖Gs+1 − Gs‖r,iγ ≤ ‖Φ(adWs
)Vs‖r,iγ.

Using once more (37) and (38) one finds that

‖Gs+1 − Gs‖ = ‖Gs+1 − Gs‖∞,0 ≤ ‖Gs+1 − Gs‖∞,γ ≤ MΦ(xs)xs. (39)

From here one concludes that{Gs} is a Cauchy sequence both inY(∞, γ) andB(H ).
HenceGs converges to a diagonal operatorA which lies inY(∞, γ).

We must verify that condition (33) is actually fulfilled. Observe from (7) thatCr+1,γ ≥
26 · 3 if r ≥ 2. By the assumptions,

‖G1‖∞,γ ≤ ‖Y ‖∞,γ + ‖Z̄‖r,iγ <
cH

12
.

Furthermore, from (39) it follows that

‖Gs+1‖∞,γ ≤ ‖G1‖∞,γ +

s
∑

j=1

‖Gs+1 − Gs‖∞,γ ≤ cH

12
+ M

∞
∑

j=1

xjΦ(xj). (40)

Recalling thatx1 ≤ 1/2 one gets

M

∞
∑

j=1

xjΦ(xj) ≤
Mx 2

1

1 − x1
≤ Mx1 ≤ ‖Z̄‖r,iγ <

cH

12
. (41)

The last inequality is again a consequence of assumption (20). One concludes that condition
(33) is fulfilled for all s.

Since all operators occurring in (29) except ofH are bounded one deduces from this
equality thatUs preserves the domain ofH for all s. SinceH is a closed operator the limit
in equality (29), ass → ∞, can be carried out and results in equality (23).

From the computations in (40), (41) it also follows that

‖Gs+1‖∞,γ ≤ ‖G1‖∞,γ + Mx1 = ‖G1‖∞,γ + ‖V1‖r,iγ ≤ ‖Y ‖∞,γ + 2‖Z̄‖r,iγ.

Sendings to infinity one verifies the estimate (22). Further, estimate(37) implies

∞
∑

s=1

‖Ws‖r+1,(i−1)γ ≤ 1

2Cr+1,γ

∞
∑

s=1

xs ≤
x1

2Cr+1,γ(1 − x1)
≤ 1

2Cr+1,γ
.

From Corollary 4 we deduce that the operatoradWs
is well defined on the Banach space

Y(r − 1, (i + 1)γ), with a norm bounded from above by4Cr,γ‖Ws‖r+1,(i−1)γ . Thus for
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X ∈ Y(r − 1, (i + 1)γ) one can estimate

‖UXU∗‖r−1,(i+1)γ = lim
s→∞

‖eWseWs−1 · · · eW1Xe−W1 · · · e−Ws−1e−Ws‖r−1,(i+1)γ

≤ exp

(

4Cr,γ

∞
∑

s=1

‖Ws‖r+1,(i−1)γ

)

‖X‖r−1,(i+1)γ

≤ exp

(

2
Cr,γ

Cr+1,γ

)

‖X‖r−1,(i+1)γ.

This shows (23). The proof is complete.

6 Proof of Theorem 8

As already announced, the proof of Theorem 8 is based on a combination of the anti-
adiabatic transform (Proposition 11) and the progressive diagonalization method (Corol-
lary 14). Let us formulate it as a corollary.

Corollary 16. Let r ≥ 2 , i ≥ 1, γ ∈ ]0, 1
2
[, andH be a self-adjoint operator with a pure

point spectrum and the spectral decompositionH =
∑

n EnPn. Assume that the eigen-
values{En}∞n=1 are ordered increasingly and satisfy (1). Further assume thatY ∈ Y(∞, γ)
is Hermitian and commutes withH, andZ(t) ∈ Y(r, iγ) is Hermitian,T -periodic andC1

in the strong sense. If

‖Y ‖∞,γ + ‖Z‖r,iγ ≤ cH

4π Cr+1,γ

then there exists a familyU(t) of unitary operators onH which isT -periodic andC1 in
the strong sense and such that

U(t) (D + H + Y + Z(t))U(t)∗ = D + H + A + B(t)

whereA ∈ Y(∞, γ) is Hermitian, commutes withH and fulfills

‖A‖∞,γ ≤ 2 (‖Y ‖∞,γ + ‖Z‖r,iγ) ,

andB(t) ∈ Y(r − 1, (i + 1)γ) is T -periodic, Hermitian, continuously differentiable in the
strong sense and satisfies

‖B‖r−1,(i+1)γ ≤ 1

2Cr,γ
exp

(

2
Cr,γ

Cr+1,γ

)

×
(

exp(4Cr,γT ‖Z‖r,iγ) − 1
)

(CH + 4‖Y ‖∞,γ + 2Cr,γ‖Z‖r,iγ) .

To prove Corollary 16 it suffices to setU(t) = U exp(iF (t)) whereF (t) comes from
Proposition 11 andU comes from Corollary 14. Apart of this one applies the following
elementary estimate: if the norm‖X‖p,δ of a T -periodic familyX(t) formed by bounded
operators is finite for somep > 1 andδ ≥ 0 then the time averagēX of X(t) over the
periodT fulfills ‖X̄‖p,δ ≤ ‖X‖p,δ.

Equipped with Corollary 16 we are ready to approach the proofof Theorem 8.
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Proof of Theorem 8.One starts from the Floquet HamiltonianK = D + H + V (t) and
applies to itq times Corollary 16, with each step being enumerated byi = 1, 2, . . . , q. In
the ith step one assumes that a strongly continuous functionJi−1(t) with values in unitary
operators onH has been already constructed so that

K = Ji−1(t) (D + H + Ai−1 + Bi−1(t)) Ji−1(t)
∗,

with Ai−1 ∈ Y(∞, γ) being Hermitian and commuting withH, andBi−1(t) ∈ Y(p − i +
1, iγ) being symmetric,T -periodic andC1 in the strong sense. In the first step one sets
A0 := 0, B0(t) := V (t) andJ0(t) := 1.

Corollary 16 can be applied to the Floquet HamiltonianKi−1 := D+H+Ai−1+Bi−1(t),
with r = p − i + 1, provided there is satisfied the assumption

‖Ai−1‖∞,γ + ‖Bi−1‖p−i+1,iγ ≤ cH

4πCp−i+2,γ

. (42)

Recall that the constantCp is given by (7). Under this assumption, there exists a strongly
differentiable family of unitary operatorsUi(t) such that

Ki := D + H + Ai + Bi(t) = Ui(t)Ki−1 Ui(t)
∗

whereAi ∈ Y(∞, γ) is symmetric and diagonal, andBi(t) ∈ Y(p − i, (i + 1)γ) is T -
periodic, symmetric and stronglyC1. Moreover,

‖Ai‖∞,γ ≤ 2 (‖Ai−1‖∞,γ + ‖Bi−1‖p−i+1,iγ) (43)

and

‖Bi‖p−i,(i+1)γ ≤ 1

2Cp−i+1,γ
exp

(

2
Cp−i+1,γ

Cp−i+2,γ

)

(

exp(4Cp−i+1,γT ‖Bi−1‖p−i+1,iγ) − 1
)

× (CH + 4‖Ai−1‖∞,γ + 2Cp−i+1,γ‖Bi−1‖p−i+1,iγ) . (44)

Finally, Ji(t) := Ji−1(t)Ui(t)
∗ is a family of unitary operators which is continuously differ-

entiable in the strong sense and such that

K = Ji(t) (D + H + Ai + Bi(t)) Ji(t)
∗.

To finish the proof we have to chooseε > 0 sufficiently small so that if‖V ‖p,γ < ε then
condition (42) is satisfied in each stepi = 1, 2, . . . , q.

From (43) one derives by induction

‖Ai‖∞,γ ≤
i−1
∑

j=0

2i−j‖Bj‖p−j,(j+1)γ.

From here we deduce that inequalities (42) are satisfied fori = 1, 2, . . . , k, provided the
inequalities

i−1
∑

j=0

2i−1−j‖Bj‖p−j,(j+1)γ ≤ cH

4πCp−i+2,γ

(45)

22



are satisfied for the same range of indices. Furthermore, relations (42) and (44) imply that

‖Bi‖p−i,(i+1)γ ≤ φi(‖Bi−1‖p−i+1,iγ) (46)

where

φi(y) :=
exp
(

2
Cp−i+1,γ

Cp−i+2,γ

)

2Cp−i+1,γ

(

exp(4Cp−i+1,γT y)−1
)

(

CH +
cH

πCp−i+2,γ

+ (2Cp−i+1,γ − 4)y

)

.

Set

Fi(y) := 2i−1y +

i−1
∑

j=1

2i−1−jφj ◦ φj−1 ◦ · · · ◦ φ1(y), i = 1, 2, . . . , q.

It follows from (46) that inequalities (45) are satisfied fori = 1, 2, . . . , k, if it holds

Fi(‖B0‖p,γ) ≤
cH

4πCp−i+2,γ

for the same range of indices.
Recall thatB0(t) = V (t). From this discussion it is clear that condition (42) is satisfied

in all stepsi = 1, 2, . . . , q, provided‖V ‖p,γ ≤ ε andε > 0 is chosen so that

∀i ∈ {1, 2, . . . , q}, ∀y ∈ [0, ε ], Fi(y) ≤ cH

4πCp−i+2,γ
.

But all functionsφi(y) are continuous, strictly increasing and satisfyφi(0) = 0. Conse-
quently, the same is true for all functionsFi(y). Hence the following choice ofε will do:

ε = min

{

F −1
i

(

cH

4πCp−i+2,γ

)

; 1 ≤ i ≤ q

}

.

This completes the proof of Theorem 8.
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(1989) 309-323.

[16] Howland J. S.,Floquet operators with singular spectrum, II, Ann. Inst. H. Poincaré,
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