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Introduction

Quantum mechanics on non-simply connected manifolds covers a large group
of quantum models where the quantum properties of the systems are observ-
able. There exists more than one equivalent model, how to describe the
quantum mechanics on non-simply connected manifolds, some of them are
discussed in [12]. The Hilbert space of U-equivariant functions defined on
the universal covering M of the manifold M is used in one of them. Schul-
man ansatz proposes the straightforward connection between the kernel of
the propagator of the Hamiltonian defined on LQ(M ) and the kernel of the
propagator corresponding to formally the same Hamiltonian acting on U-
equivariant functions. The advantage of this processus is that in some cases,
it is easier to find the kernel of the propagator on the simply-connected man-
ifold M than in case of U-equivariant functions. The aim of this work was to
proof the Schulman ansatz not only formally, to discuss its field of validity,
existence of the kernel for U-equivariant functions as well as the uniqueness.

In the first chapter the basic definitions and theorems are pointed out,
mainly those which will be used in the following parts of this thesis.

The proof of the existence and uniqueness of the kernel is based on the
Schwartz kernel theorem and its reformulation for U-equivariant function,
both of which are done in chapter 2. It is necessary to introduce the connec-
tion between CSO(M ) and Hilbert space of U-equivariant functions, to prove
that this map is well defined and to explore its properties. The second part
of the chapter concerns the main properties of the derived kernels.

In chapter 3, the Schulman ansatz is introduced. The ansatz is rigor-
ously proved for identity operator; and also some necessary properties are
discussed.

The next two chapters describe two different models of quantum mechan-
ics on non-simply connected manifolds, the Aharonov-Bohm effect with one
solenoid and the quantum model for two and more anyons. In both cases the
Schulman ansatz is used to find the kernel of the free propagator.



Chapter 1

Basic definitions

1.1 Covering space

Definition 1 (Path and homotopy class). Path in a space X is a con-
tinuous map [ : I — X where I is the unit interval [0;1]. A homotopy of
paths in X is a family f, - I — X, 0 <t <1, such that

e the endpoints f;(0) = xo and fi(1) = x1 are independent of t

e the associated map F : I x [ — X defined by F(s,t) = fi(s) is contin-
uous

When two paths fo and fi; are connected in this way by a homotopy f;, they
are said to be homotopic. This property will be denoted by fo ~ fi.

Proposition 1. The relation of homotopy on paths with fixed endpoints is
an equivalence relation.

Definition 2. Composition of two paths f,g: I — X, such that f(1) = g(0)
is defined by the formula

[ f(2s) 0<s<g
f.9(5) = { 12023 (1)
Path with the same starting and ending point f(0) = f(1) = xo are called the

loops, xq is called the basepoint.

Definition 3 (Fundamental group). Set of all homotopy classes [f] of
loops at the base point xq is called the fundamental group of X and is denoted
by m (X, zo).



If X is path-connected, the group 7 (X, z¢) is, up to isomorphism, inde-
pendent of the choice of the basepoint xq . In this case the notation (X, x¢)
is often abbreviated to m;(X).

Definition 4. Space is called simply-connected if it is path-connected and its
fundamental group is trivial.

Definition 5. A covering space of a space X is a space X together with a
map p : X — X satisfying the following condition: There exists an open
cover (Uy) of X such that for each o, p~*(Uy,) is a disjoint union of open
sets in X, each of which is mapped by p homeomorphically onto U, .

Definition 6. Two covering spaces N(X'o,po), (X1,p1) are isomorphic if there
exists a homeomorphism f : Xo — X1 such that py o f = py.

Proposition 2. A covering space of a connected , locally path-connected
topological space 1s connected.

Definition 7 (Universal covering). Universal covering of X is (X,m, x)
where X = {(p,7)/ ~,where v is a path from xo to p € X} and (p1,71) ~
(pa,7v2) iff p1 = p2 and v1.75 "+ are homotopically equivalent to a point, m :
X — X defined by 7((p,7)) = p.

Proposition 3. The universal covering manifold X is a principal fibre bun-
dle over X with group m(X) and projection p.

Proposition 4. The universal covering space of a connected manifold X is
simply connected, and it is the only one covering space of X with this property
(up to the isomorphism,).

Definition 8 (Induced homeomorphism). Let p : X — Y be a con-
tinuous map, yo € Y, xg € X base points such that yo = p(xo). Then p
induces a homeomorphism p, : 7 (X, xo) — m(Y,y0) defined by composing
loops f: 1 — X based at xo with p, it means p.[f] = [po f].

1.2 Properly discontinuous action

Definition 9 (properly discontinuous 1). Let G be an action of a group
on a manifold X. Action is called properly discontinuous, if Vo € X there
exists a neighborhood U such that for varying g € G all the images g.U are
disjoint, it means that g1.U (N go.U # 0 implies g1 = go.

Definition 10 (properly discontinuous 2). Action of the group on X is
called properly discontinuous if for every point v € X there exists a neigh-
borhood U such that U N g.U is nonempty only for finitely many g € G.
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Proposition 5. If G acts freely, then the previous two definitions are equiv-
alent.

Definition 11. Letp : X — X, X is a covering of X. G(X,p, X) is a group
defined by

G(X,p,X) ={h: X — X, h homeomorphism such that poh =p,} (1.2)
Proposition 6. If p,m (X, ) is normal in (X, z0) then
G(X,p, X) = m (X, z0)/pemi (X, Zo), (1.3)
where o = p(Zo)

If we take as X the universal covering of X, because it is simply connected
( m (X, Zo) is trivial) p.m (X, Zo) is also trivial, so normal and G(X,p, z) is
isomorphic to m (X, x).

Theorem 1. If X is continuous and locally linearly continuous, then the
action of the group G(X,p, X) on X is properly discontinuous.

As the direct result we obtain that if the universal covering space is
continuous and locally linearly continuous, then the action of 7 (X, x) is
properly discontinuous. So the sufficient request is X continuous and locally
linearly continues.

For proofs see [11].

1.3 Quadratic form

Definition 12 (quadratic form). Let H be a Hilbert space. A quadratic
form is a map q : Q(q) X Q(q) — C, where Q(q) is a dense linear subset of H
called the form domain, such that q(.,v) is conjugate linear, q(p,.) is linear
for v, 0 € Qq). q is symmetric if q(p,v) = (¥, ). If a(p, ) > 0 for
all o € Q(q) then q is called positive. If there exists M such that q(p, ) >
—M||pl]? then q is semibounded.

Definition 13. Let q be a semibounded quadratic form, q(v,v) > —M||]|?.
q is called closed if Q(q) is complete under the norm

[ll+1 = Va(w, ) + (M + 1)||9]2, (1.4)

where ||.|| is the norm generated by the scalar product. 1If q is closed and
D C Q(q) is dense in Q(q) in the ||.||+1 norm, then D is called a form core

for q.




Remark 1: |.|[+1 comes from the inner product

(¥, 0)11=q(¥,0) + (M +1)(¥, ). (1.5)

Proposition 7. g is closed if and only if for Vi, € Q(q), such that 1, — 1
and Q(wn - ¢m7¢n - wm) — 0 fOT n,m — oQ, then w € Q(Q) and Q(wn -

Theorem 2. If q is a closed semibounded quadratic form, then q is the
quadratic form of a unique self-adjoint operator.

Proof. in [9]. O

Theorem 3 (the Fridrichs extension). Let A be a positive symmetric
operator and let q(p, V) = (@, AY) for p,1» € Dom(A). Then q is a closable
quadratic form and its closure q is the quadratic form of a unique self-adjoint
operator A. A is a positive extension of A, and the lower bound of its spec-
trum 1s the lower bound of q. Further, A is the only self-adjoint extension of
A whose domain is contained in the form domain of q.

Remark: It is sufficient for A to be bounded from below.

Proof. in [9]. O



Chapter 2

The Schwartz Kernel theorem

2.1 The Schwartz kernel theorem

Theorem 4 (Schwartz kernel theorem). Let K € D'(X; x X,). Then by
the equation

(Ko, ¥) = K(¥ @ ¢), ¢ € C°(X1), ¢ € C°(Xa), (2.1)

is defined a linear map K : C$°(Xs) — D'(X;) which is continuous in the
sense that K¢; — 0 in D'(Xy) if ¢; — 0 in C3°(Xz). Conversely, to every
such linear map K there is one and only one distribution K such that 2.1 is

valid. One calls K the kernel of K.
Proof. in [10]. O

For the rigorous proof of Schulman ansatz we use a following reformula-
tion of the Schwart kernel theorem:

Theorem 5. Let B € B(H), H = {12(]\;[, dp), then there exists one and only
one 3 € D'(M x M) such that 3(¢1 ® ¢2) = (¢1, Bda) for Vou,d2 € D(M).

Moreover the map B — (3 is an injection.

Proof. The proof comes directly from the fact, that B restricted to C§°(M)
is continuous as the function B : Cg°(M) — L*(M, dp). Because C5°(M)
is dense in L2(M,du) and I : L2(M,du) — D'(M), where I is the identity
map, is continuous, so B : C5°(M) — D'(M) is continuous and there exists

unique ( from the previous theorem. n

Distribution ¢ is § from previous definition for B = I. So

(616 62) = (61,02) = [ 61(@)en() dp(a). (22)
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In the following, symbol § will be use in previous meaning, so §(z — y) in
the standard meaning.

Definition 14. Let I' be a group acting freely and transitively on M , M =
F/M and let U be a one dimensional unitary representation of I'. The U-
equivariant function is 1 : M — C, ¥(g.z) = U(g)(x) and [y 1] du < oo,
where D is a fundamental domain of M. The scalar product is defined by
(W, 8) = oo dy.

Because the metric is I'-invariant and ¢ (g.x)¢(g.2) = ¥ (z)¢p(x) the scalar
product is independent on the choice of D. For ¢ : M — C, 9(g.x) =
U(g)Y(x), there exists a unique ¢ : M — R, such that |[¢)| = p*¢ = ¢ op. So
Ip [¥1? du = [y ¢* dpe. i

Let ¢ : M — C, we can define ¢ : C5°(M) — U-equivariant functions by

Pip(z) =Y U (g)v(g.2), (2:3)

gel’
for Vi € C3°(M).

Lemma 1. Let Hy be a Hilbert space of U-ekvivariant function defined on
M, M = F/M, I'=m (M), M continuous and locally linearly continuous,
D fundamental sheet of M, ® is the map from the previous. Then ® :
C(M) — Hy is well defined linear map and is continuous. Let L, be
the left action of T on M :

Lg:MﬁM:ng.x
Ly : O3 (M) — Cg* (M), (Lgp)(x) = ¢(g.2).

Then ® o L} = U(g)®.

Proof. Because the properties of M, I' is properly discontinuous. For Vz € M
there exists a neighborhood V. of x such that for all y € V,, the set of g such
that ¢ (g.y) # 0 is finite and independent on the choice of y. Because suppy
is compact, for all z € M the set of ¢ such that ¢(g.z) is finite and can be
taken the same for all z (will be denoted by I').

First of all we will proof that &y € Hy. $1 is U-equivariant:

(g x) = > U Hgw(gg'x) =D Ulg U (9.9)¢(g.9'x) =

g€l ger”’

U(g) > UM g)w(g.x) =U(q)Pv(x).

ger’



For ¢ € C§°, there exists ¢ such that |®y| = p*¢, supp(¢) C p(supp)(¥). So
[oul* = [ 6% du < oo. (2.4)
M

® : C5°(M) — Hy is continuous. 1; — 0 in C° if

358 ¢ M, S compact, such that suppy); C S,
Vo, 0,1; — 0 regularly. (2.5)

So @1, — 0 locally regularly. Because I can be chosen independently on
J, ®; — 0 converge regularly. Moreover there exists a unique ¢; such that
|DY;| = p*o;, ¢; € C(M), suppg; C p(S), Vj. ¢; — 0 regularly on M, and
19953, = Jas @5 dp — 0.

Finally L; = Ul(g)®:

BoLip(zr) =Y U (g)e(g.g.7) ZU "9)o(g g.x) =
Ulg) 2 U~ (g)o(g'x) = Ulg)®p(x). (2.6)

]

Theorem 6 (Schwartz kernel theorem for U—equivariant functions).
Let Hy be a Hilbert space of U-ekvivariant function defined on M and B €
B(Hy), M = T/M, T' = m (M), M continuous and locally linearly con-
tinuous, D fundamental sheet of M. Then there exists one and only one
distribution By € D'(M x M), such that

Bu(d1 @ ¢o) = (3. U 9)¢1(g.2), BY U (9)$(g.2)), Y1, ¢ € D(M),

gel gel

where (¢1,¢2) = [p d1(7)¢a(7) du(z).

Proof. The proof comes from the theorem 4 and the lemma 1. B® : (g —
Hy is continuous and linear, I : Hy — D'(M), where I is the identity map,
is continuous. The uniquness is because ®(C§°(M)) is dense in Hy. O

2.2 Properties of § and [y

First of all let us mention that for F' diffeomorphism, f € D’ the following is
valid:

(F@), vt = ), LDy, (2.7
In this case the mesure is I'-invariant, so d“#;'x) = 1.



o Bu(g-x,y) =Ulg)-Bu(z,y), where g € T"
Proof: Using the lemma 1

Bul(gz,y) (¢ ® @) = (PL; 10
({U(g ") ®p(x), Bdp(x)) =

e Bu(z,g.y) =U(g")Bu(x,y), where g € I.
Proof:

Bu(z, g.y) (¢ ® ) = (Po(x), BOL 1p(x)) =
(@p(x), BU(g ") Pp(x)) = U(g™")(P(x), BOp(x))
=U(g ")Bu(z.y)(¢ @ ¢). (2.9)

Remark 1 Kernel obtained from the Schwartz kernel theorem has the sim-
ilar meaning as the kernel known from physical applications: Cg° is dense
in D’ in the sense of limit in 7. It means that in case of B € H (M) there
exists G (x,y) € C°(M x M) such that

lim Bi(6 @ @) = (¢, B). (2.10)
We also know, that
I}eroloﬁk¢®g0—,}LIgo//ﬁkxy dp(z) duly) =
lim [ o /my uly) du(e) =

/M 6(@)(By)(@) du(x),  (2.11)

in the sense of limit in D'(M x M). It means that

lim [ o@)( [ Gila.u)e(y) duly) - (Bo)() dp(e) =
Jlim (o, / Bl ply) = (Be)) =0, (212)

for all ¢ € C5°(M). So

Be = Jim [ B.(.5)e(y) duly) in D'() (2.13)
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In case of B € B(Hy) the situation is more complicated: There exists
Bur(z,y) € C(M x M) such that

M Bu(6 @ @) = (2(0), BE(9)), (2.14)

where ®¢(x) = 3 jer U(g7")¢(g.x). It means that

Jim Sy (¢ @ @) = lim /M /M Bu(z, y)e(x)ely) du(e) dply) =
lim / ( / Buk(e, y)e(y) duly)) du(z) =
/ 5" Ulg™)o(9.0)BOY. Ulg ™ e(g-2) dula). (2.15)

ger gel’

Remark 2 Direct consequence of theorem 5 is that Vip(z) € D/(M) the
function (G(z,y), ¢(y)) is regular distribution. This property will be used in
the following.

Remark 3 ((By(z,y),?(y)) from the theorem 6 is also regular distribution:

5U<¢®so>=< ¢< ), BOp(x)) =
> U™ [ 6lgr) B Ulg™)elg.0)) AV () =

ger gel

/M O(@)] (@) B(X Ulg™)elg.0) dV (a), (2.16)

gel

where f(x) =U(g™ "), g is such that g~ t.z € D.
Kernel of identity on U-equivariant functions will be denoted by ;. Then

du (1 @ d2) = (P1 (1), Pea(z)) =
/ YU (g)pi(gx) > U g ga(g' ) dp (2.17)

gerl’ g'elr

Because the sums are finite

bl ® ) = X X UNg'g7") [ drlg)onlg'a) dule).  (218)

gel’ g’el’
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Chapter 3

Schulman ansatz

Schulman ansatz gives the relation between two operators which are formally
the same, but are defined on two different Hilbert spaces. Let M be simply
connected Riemann manifold and I' be a discrete group acting freely on M*
and the Riemann metric is T-invariant. Let M = I'/M, then m(M) = T.
One of the Hilbert spaces is H := L*(M), H is Hamiltonian on H which is
[-invariant?, U(t) is corresponding propagator, it means

Ut) = exp(—;Ht). (3.1)

U(t) is bounded operator on H and it is possible to use Schwartz kernel
theorem to find the kernel of (). The second Hilbert spaces is defined by

Hy = {¢ mesurable on M,Yg € I, ¢(g.2) = U(g)¢(z), /D |p(z)|* dp < oo}

and let Hy be formally the same Hamiltonianon Hy, Uy (t) its propagator.
Also in this case Kernel theorem for U-equivariant functions may be used.

Remark: U(t) is in both cases unitary operator,{U(t)}; is one parametric
group with properties

UU(s) =U(t+ s),
u(t)_l = Z/[(—t)7
U(0) = 1. (3.2)

Let Ky, resp. KY be a kernel of operator U(t), resp. Uy(t). Schulman
ansatz proposes that

K (z,y) =>_Ulg " )Ki(g.z,y). (3.3)

gel’

Tt means if g.x = x for some z, then g =identity in T.
2H is I'-invariant Hamiltonian if L;,lHL; =Hforallge . If H=—-Arg+V,
where V' is I'—invariant potential, then H is I'-invariant.

12



Using the notation from the previous chapter, Schulman ansatz reads:

(@Y(), Uy ()P ()1, = D Ulg™ )W), UM (g™ @) oy, (34)

ger

for 4, p € C°(M).

3.0.1 Schulman ansatz for identity operator

Let us proof that oy (x,y) = Y ,er U(g7')d(g.2,y) It means to prove that

Really

S S Ugg) [ arlga)onl ) dux) =

gel’ g’el

S U™ [ il a)enle) dua). (35)

gel’

S U(g™) [ oy w)on(a) dula) =

gel

S UG [ oilg a)oa() dula) =

ger g'er”9

SUHYY [ ailg™ g 2oy ) dnle) =

gel g'el

Y > U g ) /D $1(g-2)¢2(g"x) dp(). (3.6)

gel' g’el

All the relations are correct, because for V¢ € D(M) fixed, the subset of T
such that ¢(g.z) # 0,Va € D, is finite.

3.1 Properties of K; and KV

3.1.1 Properties of K,

o Ki(g.w,9.y) = Ki(x,y) it means Ky(g.z,y) = Ki(x, g 1y)

Proof:

),
because if H is T-invariant, also U (t) is M-invariant and (U(g)o(x), U(t)U(g)e(z))

Ki(9.2,9.9) (¢ @ @) = (dp(g " 2),U(t)p(g " .x)) =

(p(x),U(t)p(x)) = Ki(z,y) (¢ @ ¢ (3.7)

(o(x),U(t)p(x))

13



° htho*_ ICt(x, y) = (5($, y)
Proof:

Jim K (2, y)(0(x) ® ¢(y)) = lim (6, U(t)p) =
(9, 0) = d(z,y)(o(z) ® p(y)). (3.8)

b ]Ct(ywr) = IC,t(x,y)
Proof: First of all let us mention that for f € D', ¢ € D, (f, p) =

(f, @)
7 Ky, 2)(6(z) ® ¢(y)) = (o U(t)9) =
UB), ) = (6. U(—1)p) = K_i(z,y)(6(z) @ ¢(y)). (3.9)
o (12 +ALp)I(t)Ki(z,y) = i6(t)d(x,y), where J(t) is the Heaviside step
function.
Proof:

<Z§t + Apg)0( K (z,y) =

i9(t );IQ(:U y) + 0 () Co(x,y) + H)ALpKi(x,y). (3.10)

Because Ko(z,y) = d(z,y) it is sufficient to prove that i K, (z,y) +
AppKi(z,y) =0, for t > 0:

(1K) + DusKilr, ) (6(2) @ () =

G oUW + Asth(D)e) =0, (31)

because U(t) is a solution of Schrodinger equation

o [ Ko(z,9)Ki(y,2) AV (y) = Kepi(, 2) in the following sense®:

[ (Kl ), 6@ (Kl 2)0()) AV (9) = Kasa(0 @ ).
Proof:

(3.12)

[ U)ol (Kuly, 2)e(2) 4V () =
[ UES@UER) @) AV () = U-)8,UD)) =
(GUBIUDE) = (6.Us +1)0) = Kunalz,9)(6() © 9(y)). (3.13)

3<’Ct(xay)7¢)(x)> and <Ict(y7x) (b( )> fOI‘ ¢ € C(O (

1), are regular distributions.

14



3.1.2 Properties of KV

Kernel of the propagator defined on Hy must fulfil following properties (all
the relations are defined as in previous):

o K{(g.x,y) = U(9)K{ (z,y)

o K (z,9.y) =U(g K (z.y)

o K(z,y) = KY,(y, )

o [pKY(z,y)K{ (y,2) dV(y) = KT (, 2)
o (ig +Aw)I()KY (2, y) = i6(t)d" (x,y)

Remark All the properties are well defined, because KV (x,y)p(y) is regu-
lar distribution.
We will prove that KU defined by Schulman ansatz formally fulfil the

previous relations.

o K/(¢.x,y) =U(g" K (2,y):

Proof:
KV(gay) = S UG HK(g.g' x,y)
gel
= Ug) YU U(g K9 . y)
gel
= U(¢) D Ulg HKi(gw,y) = U(g)K{ (2,y).
gel

o K (x,g'y) =U(g " HK{(z,y) :

Proof:
Ki(z.dy) = Y Ulg " Kigx,gy)
gel
= ZU ’Ct g 9$ y)
gGF
= / 1 ZU _1 ICt( g$7y)
gel

= Uy "K{(z,y).

15



¢
Proof
K¢ (z,y) = Y Ulg HKi(g.x,y)=> U(g)K_i(y,g.2)
gel’ gEF
gel’

b fD ICE(Q%Z/)]C?(%Z) dV(y) = ’Cngt(x?Z):
Proof:

/ KY (x y)ICU(y z) dV(y)
- / > U(gK(g,9) > U(g™ gy, 2) AV (y)

gel g'el’

= LY U U [ KilgayKilg'y.2) dV ()

gel’ g’el

= > U(h_l)/ Ko(g™ ha, y)Ki(g'y, 2) AV (y)
hel g’el’

= Y U™ Z//C (h.z,q y)Ki(dy, 2) dV (y)
hel g'el’

= Y Un! / Ka(h.a,y)Ki(y, z) dV(y)
hel’

= Z Uh™)Ksii(h.z, 2)
hel

= ICgrs(x,z).

In the third equality the substitution h = g=1¢'~! is used.
o (i% + Arg)d(KY (z,y) = i6(t)6Y (z, y):

Proof:
(aat—i-ALB)ﬁ( HKY (z,y) = (aat—i-ALB ZFU YKi(g.2,y)
= X;U(gl)(ig + Arp)9()KY (2, y)
= E;U £)(x,y)

— 50V (z, y).
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Chapter 4

Aharonov-Bohm Effect

Aharonov-Bohm effect with one solenoid was first published in 1959 and
it helped to understand the role of potentials in quantum mechanics and
geometric properties of fields. Aharonov-Bohm effect with one solenoid is
based on the following model: Non relativistic quantum particle is moving
in external field with the flux concentrated in one infinitely thin solenoid.
Outer the solenoid the flux vanishes. Even though the particles do not pass
throw the field, they are influenced by this field.

Configuration space of each particle is M = R?—(0,0) (solenoid is located
in (0,0)). On M the flux is null, but the electromagnetic potential A is non-
null.

In nonrelativistic quantum mechanics, Hamiltonian of charged particle in
electromagnetical field is given by

H = i(?—eﬁf—l—eqﬁ, (4.1)

where 7’ is an impulse operator of a free particle, Z, resp. ¢ is a vector,
resp. a scalar potential (i electromagnetic field. In case of Aharonov-Bohm
effect with one solenoid A is given by

A (I’ )(—x2,x1), (4.2)

- 27 (23 + 23

and Hamiltonian is in the form
h? e 2 e 2
<81 — ZhAl) + (62 — ZhA2> ‘| y (43)

H= -
2p

where Dom(H) = {¢ € AC?*(R?), the second derivatives quadratically

integrable}. In polar coordinates

T1 = TCosp
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Ty = rsineg

and with a = — == the Hamiltonian can be expressed as

(o 19 1[0 ’
H=—|—S+-———+—=5|=—+1 . 4.4
241 (8T2+r87’+r2 <8g0+2a>) (44)
Solving the problem of finding the eigen-functions of the operator H we
obtain the equation

rlor 10 1[0 \*

The generalized solution is a linear combination of Bessel functions

“+oo
=3 exp(ime)amSmrakr) + bnd—(ma) (kr)], (4.5)

m=—0oQ

where a,,, b,, are some arbitrary constants.
Eliminating the functions with singularities in » = 0 we obtain the solu-
tion

—+00

S Z exp(im)cp (k) Jpmta) (K1), (4.6)

m=—00

where k2 is fixed value of the energy. Spectrum of the operator H is the
interval [0, 00[ and is absolutely continues and infinitely degenerated. The
wave function is

1 o)
Y = \/_m;w exp zmgo)/ A (k) Jjmga) (kr)k dE. (4.7)
Finally, {Jg(kr);k > 0,5 > 0} is generalized set of eigen-functions in
L*(R,r dr), so the map
L*(R,, k dk) — L*(Ry,r dr) : a(k) — a(r) = /Oo a(k)Js(kr)k dk  (4.8)
0

is unitary and

[l = 3 [ Pk at,

He = \/127 zo_jo exp(imep) /Ooodem(k)J|m+a|(k:r)k k. (4.9)
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4.1 Propagator for the Aharonov-Bohm ef-
fect with one solenoid

In this paragraph we will find the propagator for Aharonov-Bohm effect with
one solenoid using the Schulman ansatz. From the previous chapter, M =
R* - (0,0) and T' = m(M) = Z, U(n) = exp(2wina), where a € (0,1).
M is complete with the point A, a copy of (0,0). Using polar coordinates
(r,¢), we can identify fundamental domain with R* x (0,2m). Universal
covering space M can be identified with Rt x R. The action of I is given by
n.(r,p) = (r,¢ + 2mn).

First of all we must find free propagator on M. The geometry of M is
special. Two points x = (r,¢), zo = (ro, o) can be connected by a geodesic
curve only if | — o] < 7. Let us define the function

X(CC,LU()) = 1if |SO - 900| <,
= 0 otherwise. (4.10)

The free propagator on M (for free particle with mass equal to u) is

Ki(z, xo) = x(z, o) =—— exp(—dlst (x,20)) +

2ht
>exp(mR2(s)/2ht), (4.11)

[

2miht
0 ds( 1

27r1ht —00 21 \® — 7 +1s <I>+7T+is

where R?(s) = r? + 12 + 2rrg coth(s) and ® = p — .
To derive the above expression we use the fact that the complete set of
generalized eigenfunctions for the free particle on M are

{(V2rh) " (pr/h) expive = B,,,v € R,p > 0}. (4.12)

Each function ¢ € L?(M) can be writen as ¢ = [ dv [r+ dp(), B,) B, in
sense of equality in D’. From the definition of the propagator

) = / Kb =
[ [ exp=itun? /20) 8, (pro/B) (0, Buy) dvp dp =
| [ espl=itu® 120)8, 0. 00) ([ 010, )p(r.0)r dr dg) dup dp =
S [ exo(=itup?/2m)8u,(r0, 20) Bl 9) dvp dp)i(r, o)r dr . (4.13)
So
Ki(x,z9) =

19



1 ) ) ) .
Py /0 pdp [ N dvJy (pr/h)Jy (pro/h) exp(iv®) exp(—itup® /2h) =

L .
i exp(ip(r? +r3)/2ht) x

/O:O dv exp(—i|v|7/2)J) (rro/2ht) exp(iv®). (4.14)

Using the identity
exp(—ivm/2)J,(z) =

/oo exp(iz cosh(s) — vs) ds,
0

sin(7v)

1 /7r exp(—iz cos(s)) cos(vs) ds —
m Jo s
for v, z positive, we obtain the expression (4.11).

From this expression one can derives formula (4.17), which is useful in
case of Aharonov-Bohmov with more solenoids.

For three points a1, 2o, 5 € M U {A} such that x(x1,22) = x(2e,23) =1
and for two positive times tq, 5 we put

T3,To, 1 g ( 1 1 >
% = — — 4.1
( to, 1 ) p\—7m+is O+mw+is/’ (4.15)

where 6 is the oriented angle xyz9x3, u = In(tery /t1re) and r = dist(xq, z2),
ro = dist(z2, x3). Using the substitution

s=In(tyro/tor), ds=1t5(t; +to—t)I(t1)I(to)(t1to)~" dt; dty, (4.16)
we obtain
Ki(z, x0) = Zy(x,z0) +

[ [ atdtedin +to - v ( oA T ) Zu, (0, A) Ziy (A, o),
1,0

where

VO
Zi(x,x9) = V(t)x(z, xO)Qﬂ'l;ht exp (2;;dlst2(x, x0)> : (4.17)

4.1.1 Proof of the kernel

Not only we can derive the above mentioned formula using the eigen-functions,
but we can also prove by the direct computation that the formula (4.17) for
the kernel on M is correct. It means to prove that

o R

(ihg; + 5, AOK: (@, 20) = BE(0)3(x o). (4.18)
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In other words it means

th%l Ki(z,z0) = 6(x,x0) (4.19)
—U+

o  n
(lhﬁt + A)ICt(x xg) = 0, fort > 0. (4.20)

First of all let us mention that Z;(x, zq) is kernel of the free propagator
on R?. It is true that

o B i
(5, + 5, N2l 20) = o exp (zm dist (:c,xo>2) (070, +0701(3:21)

where 07, resp. d;_ are defined by

(O, ¥(r,9)) = /Ooo Y(r,m)r dr, (4.22)

resp.
(Or_,¢(r,¢)) = /000 Y(r,m_)r dr. (4.23)

It holds true for any f(t) € C1(R,),

_ 1 1 1

t 1 1 ir?
/ 0 +iln({= )t— eXp(t—s)f(S) ds =
o . r tro
T exp(l(r + 1)) [F()80) -
. r .T()(T + To) tro tro , tro
17"+7’0((1+1 13 )f(r—irro * =4 To r—l—?"o))é(e)] (4.24)

After few transformations we obtain

h?
(zhat+—(82+ 8 +- 89))

¢ 1 h ir? 2h$
ex ds =
b a2 )

7T7“0h
r2u(r + o)
o i,urg(r + rO))f( 2htr,
r+ro 2ht p(r -+ o)

expi(r + o) ) [

27‘1tr0 , 277/157’()
p(r +mo)” " p(r +ro)

)0'(0) —

)+ ))3(6)](4.25)
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Setting f(u) = exp( 8) we obtain
) o, 1 1,
(zh@t + ﬂ(@q + ;5’,« + ﬁag)) X

¢ 1 h ir?g L irdu
d pu—
/0 9+ﬂn(a5m)t_sexp(zn(t_s)>2ns eXp(Zhs °

nroh? ur )[,u(r +70) exp <i7“8,u(r + 7’0)> 5(6) —

exp(i(r + ro)=—

r2u(r + o) 2hnt"" 2htry 2htry
. puro(r + 7o)\ p(r + 1o) irgu(r + o)
—A4(1
17“ + 10 {(L+i 2ht ) 2htr, exp 2htrg
2htr u(r +ro)?  ipdrd(r+rg)? iprd(r +ro
(MU Tl WU O o (MU o)) )
p(r + 7o) 4h=t?rg 8nt3ry 2htrg

% exp <2lgt(r +70) > &'(0)(4.26)

Using this identity we obtain
, n? 1 1
// dty dtod(ty + tg — 1)V ( x;A;xO ) Z (2, A) Zyy (A, 1) =
1,00

h?
(1hat+ (82+ a 63))><

i 1 ! ] x
4hn? Jo 9—w+iln(%) 0+ m+iln( tirtzm)
1 i, r? T
b e dto =
(to — t)to ST ) 0=

1
——e
4r2tm

b (oh (r+70)?) (B0 =) =0+ ). (4.27)
Finally using the formula *

1 !

(0 F ) = L0501, (4.28)

we obtain (4.20).
Before the justification of (4.19), let us prove the following proposition:

lfR+XR L8O F m)p(r,0)r dr d9——fR 1090(r, £m) =—Ji, 7o 9. dl
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Proposition 8. Let ¢(x) € D(R). Then

+oo 1 1
/0 —exp(-x)Y(z) de — (0), fort — oo,

it t
50
lim 1 exp(i Y9(x) = d(x) in D'
t—0 gt t
Proof.
lim 1 exp(i Y(z) doe =
t=0Jo 1t t

i

~ limlexp(;) (@) + iy [ explja)o(@) do =
$(0) + lim{—it exp(c (@)} + lim | +°°texp<tx>w"<x> dr = (0).
O

The equation (4.19) comes from the fact that Z;(x, ) is a free propaga-
tor, so

lir% Zi(x,x0) = 0(z, o). (4.29)

This can be also easily proof using the previous proposition. It remains to
prove that

hm// dtl dto(S(tl + to - t)v ( x%f;jo > Zt1 (:Ea A)Zto(APxO) =0

in D'

hm// dtl dtod(tl + 1ty — t)V ( x%?;fo > Zt1 ([E,A)Zto(A, l’o) =

2 7'2

. exp( (2 4 1)) p

1 d / dt o fg

00 R2 . 0 —7r—|—1ln((t—ti)%) 47r2h2(t—to)to¢<x) *
2 r2
exp (3 (7 + i) p

1. d / t to to ’
tli% R2 v 0+7T+11I1( (t— to )47T2h2<t—t0) w(x)

where 7 = dist*(z, (0,0)) and 7o = dist*(zo, (0,0)).

r2 2
eXp( <t—to + i)) /JQ
— 7+ iln( ) 4m2R2 (t — to)to

lim [ da / o
R2

t—0

() =
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3 2
. ) 1 T
1 7o
20 Jo 2xht, Pl to) X
R LC ) p
,o)r dr dy) dt
(/o /1%9—7r+iln(('5_7}fg”>)27rh(t—to)¢(r p)r dr dp) dto

i g
2N to

_ K _
= %E,% o 2rhite exp( )F(t to) dty,

where F(t - tO) = 027T IR Q_Tr_’_ilnz(t—to)ro) 2wh(¢_t0) eXP(gh(trtO))W(ﬁ QO)T dr d‘p-
rtQ

It is easy to see from the proposition 8 that F'(t —ty) € C°([0,1]) and that
limt*}to F(t - t()) =0.

_ t1 i oo 1 ) 1
llgrg ) cos(%)F(t —tg) dtg = %E,% Vi s cos(is) F'(t — g) ds =
[ +1] s Z42km 3"+2k7r 1
(lim [ ™" > / —|—/ —cos(is)F(t — =) ds =
t—o00 1/t k—[i 1 +2k7r T +2km 8 S
- 27rt 4
|— 7rt+ -| ]_
lim [ —cos(is)F(t — —) ds +
t—=0J1/t S
T +2km F(t+-1 F(t — -
lim Z / cos(is < =3 _ ( S_W)> ds = 0.(4.30)
T2k s s—m
k= |—27rt
Because
[z tal 1 1
li -F{t(l—-))ds=0
lim | SEE1 =)l ds =0,

because there exists integrable majorant and we can change the limit and
the integral.

. §H2kn Flt—4)—F(t—=) Ft-Yr
P—{% Z / |COSlS< s— _3(3—7T)>|S

1 5+2km
k= |—27rt + 4

+o0 C C
li ds=0
tl—r% [h+1] S(S—W)Z + 82(8—71')2 S )
where we have used that |F(t — 1) — F(t — )| < C’\ | because F' €

([0, 1]).

4.1.2 Use of Schulman ansatz

The summation in Schulman ansatz is based on the formula

— 97 — =
> exp(—2mian) (2(I>—|-27m—7r+i8 2c1>+27r+7r+i8)

n=—oo
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exp(—a(s —i®))

—s1 4.31
sm(wa)l + exp(—s +i®)’ (4:31)
for a € (0,1), ®,s € R, s # 0. We obtain the propagator
U _ : H < 2
Ky (x,x0) = exp(—2mian) —— exp(ip|z — xo|”/2ht) —
2miht
sin(ma) /00 i . exp(—a(s —iP))
d 2ht 4.32
T oo iRt exp(inf(s)/ )1 + exp(—s +i®)’ (4.32)

where n is such that ® + 27mn € (—m, 7).
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Chapter 5

Models for More Anyons

Anyons are indistinguishable particles with the configuration space of one
particle R2. In this section, we will describe model for two and more anyons,
which enables us to use Schulman Ansatz (chapter 3).

Let 0y C R* be a diagonal (position of at least two points coincide) and
let Sy be a group of permutations acting naturally on R?". Configuration
space of N indistinguishable particles which cannot penetrate each other is

My = (R* —6x)/Sw. (5.1)

Fundamental group 71 (My) of the manifold My is a braid group denoted
as By! and it becomes the structure group of its universal covering My.

Different quantizations corresponds to different choices of a unitary rep-
resentation U of the group By. Properties of the group By imply that

U(oy) =...=U(on-1) = exp(2mic).

Let us suppose that « € (0,1).

IThe braid group By is an infinite group with N — 1 generators o1,...,0nx—_1 which
satisfy two following properties:

0i0i+104 = 0§+1070i+1,
fori=1,2,...,n—2 and
0i0j = 0505,
for |i — j| > 2. In case of Sy also the third property is valid:
o;0; = identity,

which is not valid for By.
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The free Hamiltonian is given by the structure of My, resp. My following
from the Euclidean geometry on R?Y. Suppose we have a potential V' defined
on My and let V be its lift to My. Hamiltonian

Hy :=A+V, (5.2)
acts in the Hilbert space
Hy = {9, quadratical integrable, ¢¥(g.z) = U(g)¢¥(z)Vg € By},  (5.3)

The integration in the scalar product is over any fundamental domain? of the
action of By and A is Laplce-Beltram operator on My.

Next we cut the manifold My to get a simply connected domain D. D
can also be taken as one sheet of universal covering My. Let us define the
coordinates of a point x € R* by z = (2',2?) and let Ej;, be hyperplanes
determinated by the equations z? = 2, where = (z1,29,...,2x) € R*N.
Let F := Uj<xEjx D dy, then R*” — F be a subset of open simply connected
domains. Fix one of them, D, defined by

ri<al <. <2y,

D can be identified with a subset of My. Split 0D\dy to 2(N — 1) cells
Cije,j=1,...,N —1,e = £ given by the equations

B <...<ai=al, <. <ay ez —aj,) <0 (5.4)
Then D is a fundamental domain of M N-

One unitary equivalent description of quantum mechanics can be obtained
by the restriction from My to D (the inverse process is evident because the
Hilbert space on My are U-equivariant functions). Hilbert space on D is
L*(D) with the following boundary conditions: Let x € C; , then from (5.3)
one obtains the boundary conditions

(o g, g, ) = exp(—2miasgn(ay — 2)) (.. 25, T4, ),
in the limit (z7,, — ) | 0. (5.5)

Hamiltonian is also obtained by restriction from My to D.
It is useful to separate the center of mass by appropriate choice of coor-
dinates:

AR xl—l—...—l—xN)aylzxj+1—xj,j:1,...,]\7—1.

¢

2Fundamental domain D C M is a simply connected domain such that g.D are disjoin
(9 € mi(M)) and |, g.D is equal to M up to zero set measure.
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Diagonal does not depend to the configuration space, so

Yityje1+...+ye #0, proj <k (5.6)

Generators of the group Sy act in the following way:

oj(y) =y, withy, = wk, pro|k—j|>1
= yty, |k—j]=1
Yy, k—j=0. (57)

The action of Sy on z is trivial.
Laplacian expressed in new coordinates is in the form:

1 N-2
A=A 428, =23V, -V, (5.8)

j=1
New coordinates can be also defined on D: D = R* x D" D! = R? x
... x R%, where R? := R x R, a R, :=]0,+o0[, 0D = R? x §D".

In the following we will consider only the non-trivial part. Coordinates

of DT@dJ (5777) = (517"'751\7—177]17"'7T]N—1)7 gj € R7 1 > 07 \V/j, SatiSfY
boundary conditions

(& mlny=0, = exp(=2miag;) (& Mly=0,, J=1,...,N=1,  (5.9)

where

gllq = Skv pI’Ok’?é]—l,j,]—i—l,
Eimr = Gu+&al;=—¢;

5.1 Propagator for two free anyons

In this case M = R? x M™ with variables z := (z1 + 22)/2,y 1= T2 — 21.
Then V, = %VZ + 2V, Mred = R, x R in the polar coordinates, D™ =
R, x (0,7). The group I' = m;(M) is an infinite group with one generator
h, h.(r,¢) = (r,¢ —m), U(h) = exp(27icr). Boundary condition (5.9) is

W(r,m_) = exp(—2mia)y(r, 04). (5.10)

We will focus only on the propagator in L?(D"*?) with the previous bound-
ary condition, with the mass 1/4. Hamiltonian is given by the equation
02 10 1 0? )

H = —4h? <+

o T ror 2o (5.11)
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where
W(r, ¢ — m) = exp(2mia)p(r, ). (5.12)
We try to find eigenfunction in the separated form
U(r, ¢) = exp(ime)B(r).

It means to solve the equation

_452(82 1o 1

o ror T a¢> exp(img)8(r) = 4h°k*5(r).

Finally we obtain the equation

or2  ror r?

< 0? 10 m?
The solutions are Bessel functions
B(r) = amdm(kr) + by JJ_p (kr). (5.13)
The boundary condition (5.12) implies that

exp(im(¢ — m)) = exp(ime + 2mia). (5.14)

Solving this equation and eliminating functions with singularity in r = 0 we
obtain the complete set of generalized eigen-functions

{712 Japnsay (pr) exp(—2i(n + @)¢),n € Z,p > 0}, (5.15)
Consequently, as in the section 4.1,

K?(ya yO) =
1

= i /OOO exp(—2ip2t)J2|n+al<pr)J2‘n+a|(pro) exp(—2i(n + a)(¢ — ¢g))p dp.

n=—oo

The same result may be obtained by using Schulman’s ansatz. The prop-
agator K;(.,.) on M" is given by

1 -
Ki(z,z0) = x(z, xo)% exp(idist?(z, x0) /8t) +

1 © (s 1 1 .
87Tlt/—0027r((I)—W+13_(I)+W+IS)GXP(IR (S>/8t)
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Applying the Schulman ansatz (chapter 3.3) we obtain

> exp(2mia)Ki(g.z, z9) =
= . 1 o
> exp(%l&)(x(g-x,xo)ﬁ exp(idist®(g.x, 20)/8t) +
n=-—0o Tl
o ds 1 1 L
87T1t/ ( —7T7l+7T+iS o CI)‘I—?T’II—I—W—}-LS‘) eXp(lR (S>/8t))7(516)

where R%(s) = 72 + r2 + 2rro cosh(s). Finally, using the identity

1 & 1 1

- o7 — =

Zn;ooexp( man)(@—i—ﬂn—ﬂ—l—is <I>+7m—|—7r—|—is>
exp(2a(s — i®))

1 —exp(2(s — i®))’

—2sin(27a) (5.17)

valid for a € (0,1), s # 0 we obtain K. Restriction of K on D" (denoted
by KP, used only for simplification in notation) is in form

1 1 _
KL (y,y0) = —— exp(ily — yo|*/8t) + exp(F2mia) o exp(ily + yo|?/8t)

it
ST [ g e exp(iR2(s)/81) iz&?_(;?)@))’

where ® € (0,7), resp. ® € (—,0).
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Summary

One of the possibilities how to describe quantum mechanics on non-simply
connected manifold is to use the Hilbert space of U-equivariant functions.
In this paper, there is mainly investigated the proof of the Schulman ansatz,
which permits to derive the kernel of the propagator in this case. For this
purpose, the Schwartz kernel theorem was introduced and its reformulation
for U-equivariant was derived in case of continuous and locally linearly con-
tinuous manifolds (section 2.1). In the next section the properties of the
kernel are explored. Schulamn ansatz is then proved for identity operator in
chapter 3, where the idea of the rigorous proof is also formulated. We have
proved that the left hand side of the equality (3.4) is well-defined, it remains
to future investigation to proof the convergence of the sum on the right hand
side of this equality.

On the example of two anyons and Aharonov-Bohm effect with one solenoid
we can see the use of Schulman ansatz which brings the result very quickly in
case of knowledge of the kernel of the propagator defined on L?(M ). Never-
theless this knowledge is the limitative factor for this method. For example in
case of tree anyons the kernel of the free propagator on L?(M) is not known
and we can conclude only the existence and uniqueness of the kernel for U-
equivariant functions. To find this kernel remains one of the open question

of quantum mechanics on non-simply connected manifold.
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