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Introduction

Quantum mechanics on non-simply connected manifolds covers a large group
of quantum models where the quantum properties of the systems are observ-
able. There exists more than one equivalent model, how to describe the
quantum mechanics on non-simply connected manifolds, some of them are
discussed in [12]. The Hilbert space of U -equivariant functions defined on
the universal covering M̃ of the manifold M is used in one of them. Schul-
man ansatz proposes the straightforward connection between the kernel of
the propagator of the Hamiltonian defined on L2(M̃) and the kernel of the
propagator corresponding to formally the same Hamiltonian acting on U -
equivariant functions. The advantage of this processus is that in some cases,
it is easier to find the kernel of the propagator on the simply-connected man-
ifold M̃ than in case of U -equivariant functions. The aim of this work was to
proof the Schulman ansatz not only formally, to discuss its field of validity,
existence of the kernel for U -equivariant functions as well as the uniqueness.

In the first chapter the basic definitions and theorems are pointed out,
mainly those which will be used in the following parts of this thesis.

The proof of the existence and uniqueness of the kernel is based on the
Schwartz kernel theorem and its reformulation for U -equivariant function,
both of which are done in chapter 2. It is necessary to introduce the connec-
tion between C∞

0 (M̃) and Hilbert space of U -equivariant functions, to prove
that this map is well defined and to explore its properties. The second part
of the chapter concerns the main properties of the derived kernels.

In chapter 3, the Schulman ansatz is introduced. The ansatz is rigor-
ously proved for identity operator; and also some necessary properties are
discussed.

The next two chapters describe two different models of quantum mechan-
ics on non-simply connected manifolds, the Aharonov-Bohm effect with one
solenoid and the quantum model for two and more anyons. In both cases the
Schulman ansatz is used to find the kernel of the free propagator.
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Chapter 1

Basic definitions

1.1 Covering space

Definition 1 (Path and homotopy class). Path in a space X is a con-
tinuous map f : I → X where I is the unit interval [0; 1]. A homotopy of
paths in X is a family ft : I → X, 0 ≤ t ≤ 1, such that

• the endpoints ft(0) = x0 and ft(1) = x1 are independent of t

• the associated map F : I × I → X defined by F (s, t) = ft(s) is contin-
uous

When two paths f0 and f1 are connected in this way by a homotopy ft, they
are said to be homotopic. This property will be denoted by f0 ' f1.

Proposition 1. The relation of homotopy on paths with fixed endpoints is
an equivalence relation.

Definition 2. Composition of two paths f, g : I → X, such that f(1) = g(0)
is defined by the formula

f.g(s) =
{

f(2s) 0 ≤ s ≤ 1
2

g(2s− 1) 1
2
≤ s ≤ 1

. (1.1)

Path with the same starting and ending point f(0) = f(1) = x0 are called the
loops, x0 is called the basepoint.

Definition 3 (Fundamental group). Set of all homotopy classes [f ] of
loops at the base point x0 is called the fundamental group of X and is denoted
by π1(X, x0).
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If X is path-connected, the group π1(X, x0) is, up to isomorphism, inde-
pendent of the choice of the basepoint x0 . In this case the notation π1(X, x0)
is often abbreviated to π1(X).

Definition 4. Space is called simply-connected if it is path-connected and its
fundamental group is trivial.

Definition 5. A covering space of a space X is a space X̃ together with a
map p : X̃ → X satisfying the following condition: There exists an open
cover (Uα) of X such that for each α, p−1(Uα) is a disjoint union of open
sets in X̃, each of which is mapped by p homeomorphically onto Uα .

Definition 6. Two covering spaces (X̃0, p0), (X̃1, p1) are isomorphic if there
exists a homeomorphism f : X̃0 → X̃1 such that p1 ◦ f = p0.

Proposition 2. A covering space of a connected , locally path-connected
topological space is connected.

Definition 7 (Universal covering). Universal covering of X is (X̃, π, x0)
where X̃ = {(p, γ)/ ∼,where γ is a path from x0 to p ∈ X} and (p1, γ1) ∼
(p2, γ2) iff p1 = p2 and γ1.γ

−1
2 are homotopically equivalent to a point, π :

X̃ → X defined by π((p, γ)) = p.

Proposition 3. The universal covering manifold X̃ is a principal fibre bun-
dle over X with group π1(X) and projection p.

Proposition 4. The universal covering space of a connected manifold X is
simply connected, and it is the only one covering space of X with this property
(up to the isomorphism).

Definition 8 (Induced homeomorphism). Let p : X → Y be a con-
tinuous map, y0 ∈ Y , x0 ∈ X base points such that y0 = p(x0). Then p
induces a homeomorphism p∗ : π1(X, x0) → π1(Y, y0) defined by composing
loops f : I → X based at x0 with p, it means p∗[f ] = [p ◦ f ].

1.2 Properly discontinuous action

Definition 9 (properly discontinuous 1). Let G be an action of a group
on a manifold X. Action is called properly discontinuous, if ∀x ∈ X there
exists a neighborhood U such that for varying g ∈ G all the images g.U are
disjoint, it means that g1.U

⋂
g2.U 6= 0 implies g1 = g2.

Definition 10 (properly discontinuous 2). Action of the group on X is
called properly discontinuous if for every point x ∈ X there exists a neigh-
borhood U such that U ∩ g.U is nonempty only for finitely many g ∈ G.
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Proposition 5. If G acts freely, then the previous two definitions are equiv-
alent.

Definition 11. Let p : X̃ → X, X̃ is a covering of X. G(X̃, p,X) is a group
defined by

G(X̃, p,X) = {h : X̃ → X̃, h homeomorphism such that p ◦ h = p, } (1.2)

Proposition 6. If p∗π1(X̃, x̃0) is normal in π1(X, x0) then

G(X̃, p, X) ∼= π1(X, x0)/p∗π1(X̃, x̃0), (1.3)

where x0 = p(x̃0)

If we take as X̃ the universal covering of X, because it is simply connected
( π1(X̃, x̃0) is trivial) p∗π1(X̃, x̃0) is also trivial, so normal and G(X̃, p, x) is
isomorphic to π1(X, x).

Theorem 1. If X̃ is continuous and locally linearly continuous, then the
action of the group G(X̃, p, X) on X̃ is properly discontinuous.

As the direct result we obtain that if the universal covering space is
continuous and locally linearly continuous, then the action of π1(X, x) is
properly discontinuous. So the sufficient request is X continuous and locally
linearly continues.

For proofs see [11].

1.3 Quadratic form

Definition 12 (quadratic form). Let H be a Hilbert space. A quadratic
form is a map q : Q(q)×Q(q) → C, where Q(q) is a dense linear subset of H
called the form domain, such that q(., ψ) is conjugate linear, q(ϕ, .) is linear
for ϕ, ψ ∈ Q(q). q is symmetric if q(ϕ, ψ) = q(ψ, ϕ). If q(ϕ, ϕ) ≥ 0 for
all ϕ ∈ Q(q) then q is called positive. If there exists M such that q(ϕ, ϕ) ≥
−M‖ϕ‖2 then q is semibounded.

Definition 13. Let q be a semibounded quadratic form, q(ψ, ψ) ≥ −M‖ψ‖2.
q is called closed if Q(q) is complete under the norm

‖ψ‖+1 =
√

q(ψ, ψ) + (M + 1)‖ψ‖2, (1.4)

where ‖.‖ is the norm generated by the scalar product. If q is closed and
D ⊂ Q(q) is dense in Q(q) in the ‖.‖+1 norm, then D is called a form core
for q.
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Remark 1: ‖.‖+1 comes from the inner product

(ψ, ϕ)+1 = q(ψ, ϕ) + (M + 1)(ψ, ϕ). (1.5)

Proposition 7. q is closed if and only if for ∀ψn ∈ Q(q), such that ψn → ψ
and q(ψn − ψm, ψn − ψm) → 0 for n,m → ∞, then ψ ∈ Q(q) and q(ψn −
ψ, ψm − ψ) → 0.

Theorem 2. If q is a closed semibounded quadratic form, then q is the
quadratic form of a unique self-adjoint operator.

Proof. in [9].

Theorem 3 (the Fridrichs extension). Let A be a positive symmetric
operator and let q(ϕ, ψ) = (ϕ,Aψ) for ϕ, ψ ∈ Dom(A). Then q is a closable
quadratic form and its closure q̂ is the quadratic form of a unique self-adjoint
operator Â. Â is a positive extension of A, and the lower bound of its spec-
trum is the lower bound of q. Further, Â is the only self-adjoint extension of
A whose domain is contained in the form domain of q̂.

Remark: It is sufficient for A to be bounded from below.

Proof. in [9].
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Chapter 2

The Schwartz Kernel theorem

2.1 The Schwartz kernel theorem

Theorem 4 (Schwartz kernel theorem). Let K ∈ D′(X1×X2). Then by
the equation

〈Kφ, ψ〉 = K(ψ ⊗ φ), ψ ∈ C∞
0 (X1), φ ∈ C∞

0 (X2), (2.1)

is defined a linear map K : C∞
0 (X2) → D′(X1) which is continuous in the

sense that Kφj → 0 in D′(X1) if φj → 0 in C∞
0 (X2). Conversely, to every

such linear map K there is one and only one distribution K such that 2.1 is
valid. One calls K the kernel of K.

Proof. in [10].

For the rigorous proof of Schulman ansatz we use a following reformula-
tion of the Schwart kernel theorem:

Theorem 5. Let B ∈ B(H̃), H̃ = L2(M̃, dµ), then there exists one and only
one β ∈ D′(M̃ × M̃) such that β(φ̄1 ⊗ φ2) = 〈φ1, Bφ2〉 for ∀φ1, φ2 ∈ D(M̃).
Moreover the map B → β is an injection.

Proof. The proof comes directly from the fact, that B restricted to C∞
0 (M̃)

is continuous as the function B : C∞
0 (M̃) → L2(M̃, dµ). Because C∞

0 (M̃)
is dense in L2(M̃, dµ) and I : L2(M̃, dµ) → D′(M̃), where I is the identity
map, is continuous, so B : C∞

0 (M̃) → D′(M̃) is continuous and there exists
unique β from the previous theorem.

Distribution δ is β from previous definition for B = I. So

δ(φ1 ⊗ φ2) = 〈φ̄1, φ2〉 =
∫

M̃
φ1(x)φ2(x) dµ(x). (2.2)
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In the following, symbol δ will be use in previous meaning, so δ(x− y) in
the standard meaning.

Definition 14. Let Γ be a group acting freely and transitively on M̃ , M =
Γ/M̃ and let U be a one dimensional unitary representation of Γ. The U-
equivariant function is ψ : M̃ → C, ψ(g.x) = U(g)ψ(x) and

∫
D |ψ|2 dµ < ∞,

where D is a fundamental domain of M̃ . The scalar product is defined by
〈ψ, φ〉 =

∫
D ψφ̄ dµ.

Because the metric is Γ-invariant and ψ(g.x)φ̄(g.x) = ψ(x)φ(x) the scalar
product is independent on the choice of D. For ψ : M̃ → C, ψ(g.x) =
U(g)ψ(x), there exists a unique φ : M → R, such that |ψ| = p∗φ = φ ◦ p. So∫
D |ψ|2 dµ =

∫
M φ2 dµ.

Let ψ : M̃ → C, we can define Φ : C∞
0 (M̃) → U -equivariant functions by

Φψ(x) =
∑

g∈Γ

U−1(g)ψ(g.x), (2.3)

for ∀ψ ∈ C∞
0 (M̃).

Lemma 1. Let HU be a Hilbert space of U-ekvivariant function defined on
M̃ , M = Γ/M̃ , Γ = π1(M), M continuous and locally linearly continuous,
D fundamental sheet of M̃ , Φ is the map from the previous. Then Φ :
C∞

0 (M̃) → HU is well defined linear map and is continuous. Let Lg be
the left action of Γ on M̃ :

Lg : M̃ → M̃ : x → g.x

L∗g : C∞
0 (M̃) → C∞

0 (M̃), (L∗gϕ)(x) = ϕ(g.x).

Then Φ ◦ L∗g = U(g)Φ.

Proof. Because the properties of M , Γ is properly discontinuous. For ∀x ∈ M̃
there exists a neighborhood Vx of x such that for all y ∈ Vx the set of g such
that ψ(g.y) 6= 0 is finite and independent on the choice of y. Because suppψ
is compact, for all x ∈ M̃ the set of g such that ψ(g.x) is finite and can be
taken the same for all x (will be denoted by Γ′).

First of all we will proof that Φψ ∈ HU . Φψ is U -equivariant:

Φψ(g′.x) =
∑

g∈Γ′
U−1(g)ψ(g.g′.x) =

∑

g∈Γ′
U(g′)U−1(g.g′)ψ(g.g′.x) =

U(g′)
∑

g∈Γ′
U−1(g)ψ(g.x) = U(g′)Φψ(x).
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For ψ ∈ C∞
0 , there exists φ such that |Φψ| = p∗φ, supp(φ) ⊂ p(supp)(ψ). So

‖Φψ‖2 =
∫

M
φ2 dµ < ∞. (2.4)

Φ : C∞
0 (M̃) → HU is continuous. ψj → 0 in C∞

0 if

∃S ⊂ M̃, S compact, such that suppψj ⊂ S,

∀α, ∂αψj → 0 regularly. (2.5)

So Φψj → 0 locally regularly. Because Γ′ can be chosen independently on
j, Φψj → 0 converge regularly. Moreover there exists a unique φj such that
|Φψj| = p∗φj, φj ∈ C(M), suppφj ⊂ p(S), ∀j. φj → 0 regularly on M , and
‖Φψj‖2

HU
=

∫
M φ2

j dµ → 0.
Finally L∗g = U(g)Φ:

Φ ◦ L∗gφ(x) =
∑

g∈Γ

U−1(g′)φ(g′.g.x) =
∑

g′∈Γ

U(g)U−1(g′.g)φ(g′.g.x) =

U(g)
∑

g′∈Γ

U−1(g′)φ(g′.x) = U(g)Φφ(x). (2.6)

Theorem 6 (Schwartz kernel theorem for U−equivariant functions).
Let HU be a Hilbert space of U-ekvivariant function defined on M̃ and B ∈
B(HU), M = Γ/M̃ , Γ = π1(M), M continuous and locally linearly con-
tinuous, D fundamental sheet of M . Then there exists one and only one
distribution βU ∈ D′(M̃ × M̃), such that

βU(φ̄1 ⊗ φ2) = 〈∑
g∈Γ

U−1(g)φ1(g.x), B
∑

g∈Γ

U−1(g)φ2(g.x)〉,∀φ1, φ2 ∈ D(M̃),

where 〈φ1, φ2〉 =
∫
D φ̄1(x)φ2(x) dµ(x).

Proof. The proof comes from the theorem 4 and the lemma 1. BΦ : C∞
O →

HU is continuous and linear, I : HU → D′(M̃), where I is the identity map,
is continuous. The uniquness is because Φ(C∞

0 (M̃)) is dense in HU .

2.2 Properties of β and βU

First of all let us mention that for F diffeomorphism, f ∈ D′ the following is
valid:

〈f(F (x)), ψ(x)〉 = 〈f(x),
dµ(F−1(x))

dµ(x)
ψ(F−1(x))〉. (2.7)

In this case the mesure is Γ-invariant, so dµ(g−1.x)

dµ(x)
= 1.
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• βU(g.x, y) = U(g).βU(x, y), where g ∈ Γ.

Proof: Using the lemma 1

βU(g.x, y)(φ⊗ ϕ) = 〈ΦL∗g−1φ̄(x), BΦϕ(x)〉 =

〈U(g−1)Φφ̄(x), BΦϕ(x)〉 = U(g)〈Φφ̄(x), BΦϕ(x)〉. (2.8)

• βU(x, g.y) = U(g−1)βU(x, y), where g ∈ Γ.

Proof:

βU(x, g.y)(φ⊗ ϕ) = 〈Φφ̄(x), BΦL∗g−1ϕ(x)〉 =

〈Φφ̄(x), BU(g−1)Φϕ(x)〉 = U(g−1)〈Φφ̄(x), BΦϕ(x)〉
= U(g−1)βU(x, y)(φ⊗ ϕ). (2.9)

Remark 1 Kernel obtained from the Schwartz kernel theorem has the sim-
ilar meaning as the kernel known from physical applications: C∞

0 is dense
in D′ in the sense of limit in D′. It means that in case of B ∈ H(M̃) there
exists βk(x, y) ∈ C∞

0 (M̃ × M̃) such that

lim
k→∞

βk(φ⊗ ϕ) = 〈φ̄, Bϕ〉. (2.10)

We also know, that

lim
k→∞

βk(φ̄⊗ ϕ) = lim
k→∞

∫

M̃

∫

M̃
βk(x, y)φ(x)ϕ(y) dµ(x) dµ(y) =

lim
k→∞

∫

M̃
φ(x)(

∫

M̃
βk(x, y)ϕ(y) dµ(y)) dµ(x) =

∫

M̃
φ(x)(Bϕ)(x) dµ(x), (2.11)

in the sense of limit in D′(M̃ × M̃). It means that

lim
k→∞

∫

M̃
φ(x)(

∫

M̃
βk(x, y)ϕ(y) dµ(y)− (Bϕ)(x)) dµ(x) =

lim
k→∞

〈φ,
∫

M̃
βk(., y)ϕ(y) dµ(y)− (Bϕ)〉 = 0, (2.12)

for all φ ∈ C∞0 (M̃). So

Bϕ = lim
k→∞

∫

M̃
βk(., y)ϕ(y) dµ(y) in D′(M̃). (2.13)
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In case of B ∈ B(HU) the situation is more complicated: There exists
βU,k(x, y) ∈ C∞

0 (M̃ × M̃) such that

lim
k→∞

βU,k(φ⊗ ϕ) = 〈Φ(φ̄), BΦ(ϕ)〉, (2.14)

where Φφ(x) =
∑

g∈Γ U(g−1)φ(g.x). It means that

lim
k→∞

βU,k(φ⊗ ϕ) = lim
k→∞

∫

M̃

∫

M̃
βU,k(x, y)φ(x)ϕ(y) dµ(x) dµ(y) =

lim
k→∞

∫

M̃
φ(x)(

∫

M̃
βU,k(x, y)ϕ(y) dµ(y)) dµ(x) =

∫

D

∑

g∈Γ

U(g−1)φ(g.x)B(
∑

g∈Γ

U(g−1)ϕ(g.x)) dµ(x). (2.15)

Remark 2 Direct consequence of theorem 5 is that ∀ϕ(x) ∈ D′(M̃) the
function 〈β(x, y), ϕ(y)〉 is regular distribution. This property will be used in
the following.

Remark 3 〈βU(x, y), ψ(y)〉 from the theorem 6 is also regular distribution:

βU(φ⊗ ϕ) = 〈Φφ̄(x), BΦϕ(x)〉 =
∑

g∈Γ

U(g−1)
∫

D
φ(g.x)B(

∑

g∈Γ

U(g−1)ϕ(g.x)) dṼ (x) =

∫

M̃
φ(x)f(x)B(

∑

g∈Γ

U(g−1)ϕ(g.x)) dṼ (x), (2.16)

where f(x) = U(g−1), g is such that g−1.x ∈ D.
Kernel of identity on U -equivariant functions will be denoted by δU . Then

δU(φ1 ⊗ φ2) = 〈Φφ̄1(x), Φφ2(x)〉 =∫

D

∑

g∈Γ

U−1(g)φ1(g.x)
∑

g′∈Γ

U−1(g′)φ2(g
′.x) dµ. (2.17)

Because the sums are finite

δU(φ1 ⊗ φ2) =
∑

g∈Γ

∑

g′∈Γ

U−1(g′.g−1)
∫

D
φ1(g.x)φ2(g

′.x) dµ(x). (2.18)
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Chapter 3

Schulman ansatz

Schulman ansatz gives the relation between two operators which are formally
the same, but are defined on two different Hilbert spaces. Let M̃ be simply
connected Riemann manifold and Γ be a discrete group acting freely on M̃1

and the Riemann metric is Γ-invariant. Let M = Γ/M̃ , then π1(M) = Γ.
One of the Hilbert spaces is H̃ := L2(M̃), H is Hamiltonian on H̃ which is
Γ-invariant2, U(t) is corresponding propagator, it means

U(t) = exp(− i

h̄
Ht). (3.1)

U(t) is bounded operator on H̃ and it is possible to use Schwartz kernel
theorem to find the kernel of U(t). The second Hilbert spaces is defined by

HU = {φ mesurable on M̃, ∀g ∈ Γ, φ(g.x) = U(g)φ(x),
∫

D
|φ(x)|2 dµ < ∞}

and let HU be formally the same Hamiltonianon HU , UU(t) its propagator.
Also in this case Kernel theorem for U -equivariant functions may be used.

Remark: U(t) is in both cases unitary operator,{U(t)}t is one parametric
group with properties

U(t)U(s) = U(t + s),

U(t)−1 = U(−t),

U(0) = 1. (3.2)

Let Kt, resp. KU
t be a kernel of operator U(t), resp. UU(t). Schulman

ansatz proposes that

KU
t (x, y) =

∑

g∈Γ

U(g−1)Kt(g.x, y). (3.3)

1It means if g.x = x for some x, then g =identity in Γ.
2H is Γ-invariant Hamiltonian if L∗g−1HL∗g = H for all g ∈ Γ. If H = −∆LB + V ,

where V is Γ−invariant potential, then H is Γ-invariant.
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Using the notation from the previous chapter, Schulman ansatz reads:

〈Φψ(x),UU(t)Φϕ(x)〉HU
=

∑

g∈Γ

U(g−1)〈ψ(x),U(t)ϕ(g−1.x)〉L2(M̃), (3.4)

for ψ, ϕ ∈ C∞
0 (M̃).

3.0.1 Schulman ansatz for identity operator

Let us proof that δU(x, y) =
∑

g∈Γ U(g−1)δ(g.x, y) It means to prove that

∑

g∈Γ

∑

g′∈Γ

U−1(g.g′)
∫

D
φ1(g.x)φ2(g

′.x) dµ(x) =

∑

g∈Γ

U(g−1)
∫

M̃
φ1(g

−1.x)φ2(x) dµ(x). (3.5)

Really

∑

g∈Γ

U(g−1)
∫

M̃
φ1(g

−1.x)φ2(x) dµ(x) =

∑

g∈Γ

U(g−1)
∑

g′∈Γ

∫

g′.D
φ1(g

−1.x)φ2(x) dµ(x) =

∑

g∈Γ

U(g−1)
∑

g′∈Γ

∫

D
φ1(g

−1.g′.x)φ2(g
′.x) dµ(x) =

∑

g∈Γ

∑

g′∈Γ

U−1(g′−1.g)
∫

D
φ1(g.x)φ2(g

′.x) dµ(x). (3.6)

All the relations are correct, because for ∀φ ∈ D(M̃) fixed, the subset of Γ
such that φ(g.x) 6= 0, ∀x ∈ D, is finite.

3.1 Properties of Kt and KU
t

3.1.1 Properties of Kt

• Kt(g.x, g.y) = Kt(x, y) it means Kt(g.x, y) = Kt(x, g−1.y)

Proof:

Kt(g.x, g.y)(φ⊗ ϕ) = 〈φ̄(g−1.x),U(t)ϕ(g−1.x)〉 =

〈φ(x),U(t)ϕ(x)〉 = Kt(x, y)(φ⊗ ϕ), (3.7)

because if H is Γ-invariant, also U(t) is Γ-invariant and 〈U(g)φ̄(x),U(t)U(g)ϕ(x)〉 =
〈φ̄(x),U(t)ϕ(x)〉
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• limt→0+ Kt(x, y) = δ(x, y)

Proof:

lim
t→0+

Kt(x, y)(φ(x)⊗ ϕ(y)) = lim
t→0+

〈φ,U(t)ϕ〉 =

〈φ, ϕ〉 = δ(x, y)(φ(x)⊗ ϕ(y)). (3.8)

• Kt(y, x) = K−t(x, y)

Proof: First of all let us mention that for f ∈ D′, ϕ ∈ D, 〈f̄ , ϕ〉 = 〈f, ϕ̄〉.
Kt(y, x)(φ(x)⊗ ϕ(y)) = 〈ϕ,U(t)φ̄〉 =

〈U(t)φ̄, ϕ〉 = 〈φ̄,U(−t)ϕ〉 = K−t(x, y)(φ(x)⊗ ϕ(y)). (3.9)

• (i ∂
∂t

+ ∆LB)ϑ(t)Kt(x, y) = iδ(t)δ(x, y), where ϑ(t) is the Heaviside step
function.

Proof:

(i
∂

∂t
+ ∆LB)ϑ(t)Kt(x, y) =

iϑ(t)
∂

∂t
Kt(x, y) + iδ(t)K0(x, y) + ϑ(t)∆LBKt(x, y). (3.10)

Because K0(x, y) = δ(x, y) it is sufficient to prove that i ∂
∂t
Kt(x, y) +

∆LBKt(x, y) = 0, for t > 0:

(i
∂

∂t
Kt(x, y) + ∆LBKt(x, y))(φ(x)⊗ ϕ(y)) =

〈φ, (i
∂

∂t
U(t) + ∆LBU(t))ϕ〉 = 0, (3.11)

because U(t) is a solution of Schrodinger equation.

• ∫
M̃ Ks(x, y)Kt(y, z) dṼ (y) = Ks+t(x, z) in the following sense3:

∫

M̃
(Ks(x, y), φ(x))(Kt(y, z)ϕ(z)) dṼ (y) = Ks+t(φ⊗ ϕ). (3.12)

Proof:
∫

M̃
(Ks(x, y), φ(x))(Kt(y, z)ϕ(z)) dṼ (y) =

∫

M̃
(U(−s)φ)(x)(U(t)ϕ)(x) dṼ (x) = 〈U(−s)φ,U(t)ϕ〉 =

〈φ,U(s)U(t)ϕ〉 = 〈φ,U(s + t)ϕ〉 = Ks+t(x, y)(φ(x)⊗ ϕ(y)). (3.13)

3〈Kt(x, y), φ(x)〉 and 〈Kt(y, x), φ(x)〉, for φ ∈ C∞0 (M̃), are regular distributions.
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3.1.2 Properties of KU
t

Kernel of the propagator defined on HU must fulfil following properties (all
the relations are defined as in previous):

• KU
t (g.x, y) = U(g)KU

t (x, y)

• KU
t (x, g.y) = U(g−1)KU

t (x, y)

• KU
t (x, y) = KU

−t(y, x)

• ∫
DKU

s (x, y)KU
t (y, z) dV (y) = KU

s+t(x, z)

• (i ∂
∂t

+ ∆LB)ϑ(t)KU
t (x, y) = iδ(t)δU(x, y)

Remark All the properties are well defined, because KU
t (x, y)ϕ(y) is regu-

lar distribution.
We will prove that KU

t defined by Schulman ansatz formally fulfil the
previous relations.

• KU
t (g′.x, y) = U(g′)KU

t (x, y):

Proof:

KU
t (g′.x, y) =

∑

g∈Γ

U(g−1)Kt(g.g′.x, y)

= U(g′)
∑

g∈Γ

U(g′−1)U(g−1)Kt(g.g′.x, y)

= U(g′)
∑

g∈Γ

U(g−1)Kt(g.x, y) = U(g′)KU
t (x, y).

• KU
t (x, g′.y) = U(g′−1)KU

t (x, y) :

Proof:

KU
t (x, g′.y) =

∑

g∈Γ

U(g−1)Kt(g.x, g′.y)

=
∑

g∈Γ

U(g−1)Kt(g
′−1g.x, y)

= U(g′−1)
∑

g∈Γ

U(g′)U(g−1)Kt(g
′−1.g.x, y)

= U(g′−1)KU
t (x, y).
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• KU
t (x, y) = KU

−t(y, x) :

Proof:

KU
t (x, y) =

∑

g∈Γ

U(g−1)Kt(g.x, y) =
∑

g∈Γ

U(g)K−t(y, g.x)

=
∑

g∈Γ

U(g)K−t(g
−1.y, x) = KU

−t(y, x).

• ∫
DKU

s (x, y)KU
t (y, z) dV (y) = KU

s+t(x, z):

Proof:
∫

D
KU

s (x, y)KU
t (y, z) dṼ (y)

=
∫

D

∑

g∈Γ

U(g−1)Ks(g.x, y)
∑

g′∈Γ

U(g′−1)Kt(g
′.y, z) dṼ (y)

=
∑

g∈Γ

∑

g′∈Γ

U(g−1)U(g′−1)
∫

D
Ks(g.x, y)Kt(g

′.y, z) dṼ (y)

=
∑

h∈Γ

∑

g′∈Γ

U(h−1)
∫

D
Ks(g

′−1.h.x, y)Kt(g
′.y, z) dṼ (y)

=
∑

h∈Γ

U(h−1)
∑

g′∈Γ

∫

D
Ks(h.x, g′.y)Kt(g

′.y, z) dṼ (y)

=
∑

h∈Γ

U(h−1)
∫

M̃
Ks(h.x, y)Kt(y, z) dṼ (y)

=
∑

h∈Γ

U(h−1)Ks+t(h.x, z)

= KU
t+s(x, z).

In the third equality the substitution h = g−1g′−1 is used.

• (i ∂
∂t

+ ∆LB)ϑ(t)KU
t (x, y) = iδ(t)δU(x, y):

Proof:

(i
∂

∂t
+ ∆LB)ϑ(t)KU

t (x, y) = (i
∂

∂t
+ ∆LB)ϑ(t)

∑

g∈Γ

U(g−1)Kt(g.x, y)

=
∑

g∈Γ

U(g−1)(i
∂

∂t
+ ∆LB)ϑ(t)KU

t (x, y)

=
∑

g∈Γ

U(g−1)iδ(t)δ̃(x, y)

= iδ(t)δU(x, y).
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Chapter 4

Aharonov-Bohm Effect

Aharonov-Bohm effect with one solenoid was first published in 1959 and
it helped to understand the role of potentials in quantum mechanics and
geometric properties of fields. Aharonov-Bohm effect with one solenoid is
based on the following model: Non relativistic quantum particle is moving
in external field with the flux concentrated in one infinitely thin solenoid.
Outer the solenoid the flux vanishes. Even though the particles do not pass
throw the field, they are influenced by this field.

Configuration space of each particle is M = R2−(0, 0) (solenoid is located

in (0,0)). On M the flux is null, but the electromagnetic potential
−→
A is non-

null.
In nonrelativistic quantum mechanics, Hamiltonian of charged particle in

electromagnetical field is given by

H =
1

2µ

(−→p − e
−→
A

)2
+ eφ, (4.1)

where −→p is an impulse operator of a free particle,
−→
A , resp. φ is a vector,

resp. a scalar potential of electromagnetic field. In case of Aharonov-Bohm
effect with one solenoid

−→
A is given by

−→
A =

Φ

2π(x2
1 + x2

2)
(−x2, x1), (4.2)

and Hamiltonian is in the form

H = − h̄2

2µ

[(
∂1 − i

e

h̄
A1

)2

+
(
∂2 − i

e

h̄
A2

)2
]
, (4.3)

where Dom(H) = {ψ ∈ AC2(R2), the second derivatives quadratically
integrable}. In polar coordinates

x1 = r cos ϕ
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x2 = r sin ϕ

and with α = − eΦ
2πh̄

the Hamiltonian can be expressed as

H = − h̄2

2µ


 ∂2

∂r2
+

1

r

∂

∂r
+

1

r2

(
∂

∂ϕ
+ iα

)2

 . (4.4)

Solving the problem of finding the eigen-functions of the operator H we
obtain the equation

− h̄2

2µ


 ∂2

∂r2
+

1

r

∂

∂r
+

1

r2

(
∂

∂ϕ
+ iα

)2

+ k2


 ψ = 0.

The generalized solution is a linear combination of Bessel functions

ψ =
+∞∑

m=−∞
exp(imϕ)[amJm+α(kr) + bmJ−(m+α)(kr)], (4.5)

where am, bm are some arbitrary constants.
Eliminating the functions with singularities in r = 0 we obtain the solu-

tion

ψ =
+∞∑

m=−∞
exp(imϕ)cm(k)J|m+α|(kr), (4.6)

where k2 is fixed value of the energy. Spectrum of the operator H is the
interval [0,∞[ and is absolutely continues and infinitely degenerated. The
wave function is

ψ =
1√
2π

+∞∑

m=−∞
exp(imϕ)

∫ ∞

0
dm(k)J|m+α|(kr)k dk. (4.7)

Finally, {Jβ(kr); k > 0, β > 0} is generalized set of eigen-functions in
L2(R, r dr), so the map

L2(R+, k dk) → L2(R+, r dr) : a(k) → â(r) =
∫ ∞

0
a(k)Jβ(kr)k dk (4.8)

is unitary and

‖ψ‖2 =
∞∑

−∞

∫ ∞

0
|dm(k)|2k dk,

Hψ =
1√
2π

+∞∑

m=−∞
exp(imϕ)

∫ ∞

0
k2dm(k)J|m+α|(kr)k dk. (4.9)
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4.1 Propagator for the Aharonov-Bohm ef-

fect with one solenoid

In this paragraph we will find the propagator for Aharonov-Bohm effect with
one solenoid using the Schulman ansatz. From the previous chapter, M =
R2 − (0, 0) and Γ = π1(M) = Z, U(n) = exp(2πinα), where α ∈ (0, 1).
M̃ is complete with the point A, a copy of (0, 0). Using polar coordinates
(r, ϕ), we can identify fundamental domain with R+ × (0, 2π). Universal
covering space M̃ can be identified with R+×R. The action of Γ is given by
n.(r, ϕ) = (r, ϕ + 2πn).

First of all we must find free propagator on M̃ . The geometry of M̃ is
special. Two points x = (r, ϕ), x0 = (r0, ϕ0) can be connected by a geodesic
curve only if |ϕ− ϕ0| < π. Let us define the function

χ(x, x0) = 1 if |ϕ− ϕ0| < π,

= 0 otherwise. (4.10)

The free propagator on M̃ (for free particle with mass equal to µ) is

Kt(x, x0) = χ(x, x0)
µ

2πih̄t
exp(

iµ

2h̄t
dist2(x, x0)) +

µ

2πih̄t

∫ ∞

−∞
ds

2π

(
1

Φ− π + is
− 1

Φ + π + is

)
exp(iµR2(s)/2h̄t), (4.11)

where R2(s) = r2 + r2
0 + 2rr0 coth(s) and Φ = ϕ− ϕ0.

To derive the above expression we use the fact that the complete set of
generalized eigenfunctions for the free particle on M̃ are

{(
√

2πh̄)−1J|ν|(pr/h̄) exp iνϕ = βν,p, ν ∈ R, p > 0}. (4.12)

Each function ψ ∈ L2(M̃) can be writen as ψ =
∫
R dν

∫
R+ dp〈ψ, βν,p〉βν,p in

sense of equality in D′. From the definition of the propagator

U(t)ψ =
∫
Ktψ =

∫ ∫
exp(−itµp2/2h̄)βν,p(pr0/h̄)〈ψ, βν,p〉 dνp dp =

∫ ∫
exp(−itµp2/2h̄)βν,p(r0, ϕ0)(

∫
ψ(r, ϕ)βν,p(r, ϕ)r dr dϕ) dνp dp =

∫
(
∫ ∫

exp(−itµp2/2h̄)βν,p(r0, ϕ0)βν,p(r, ϕ) dνp dp)ψ(r, ϕ)r dr dϕ. (4.13)

So

Kt(x, x0) =
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1

2πh̄2

∫ ∞

0
p dp

∫ ∞

−∞
dνJ|ν|(pr/h̄)J|ν|(pr0/h̄) exp(iνΦ) exp(−itµp2/2h̄) =

µ

2πih̄t
exp(iµ(r2 + r2

0)/2h̄t)×
∫ ∞

−∞
dν exp(−i|ν|π/2)J|ν|(rr0/2h̄t) exp(iνΦ). (4.14)

Using the identity

exp(−iνπ/2)Jν(z) =

1

π

∫ π

0
exp(−iz cos(s)) cos(νs) ds− sin(πν)

π

∫ ∞

0
exp(iz cosh(s)− νs) ds,

for ν, z positive, we obtain the expression (4.11).
From this expression one can derives formula (4.17), which is useful in

case of Aharonov-Bohmov with more solenoids.
For three points x1, x2, x3 ∈ M̃ ∪{A} such that χ(x1, x2) = χ(x2, x3) = 1

and for two positive times t1, t2 we put

V

(
x3, x2, x1

t2, t1

)
=

ih̄

µ

(
1

θ − π + is
− 1

θ + π + is

)
, (4.15)

where θ is the oriented angle x1x2x3, u = ln(t2r1/t1r2) and r1 = dist(x1, x2),
r2 = dist(x2, x3). Using the substitution

s = ln(t1r0/t0r), ds = tδ(t1 + t0 − t)ϑ(t1)ϑ(t0)(t1t0)
−1 dt1 dt0, (4.16)

we obtain

Kt(x, x0) = Zt(x, x0) +
∫ ∫

dt1 dt0δ(t1 + t0 − t)V

(
x, A, x0

t1, t0

)
Zt1(x,A)Zt0(A, x0),

where

Zt(x, x0) = ϑ(t)χ(x, x0)
µ

2πih̄t
exp

(
iµ

2h̄t
dist2(x, x0)

)
. (4.17)

4.1.1 Proof of the kernel

Not only we can derive the above mentioned formula using the eigen-functions,
but we can also prove by the direct computation that the formula (4.17) for
the kernel on M̃ is correct. It means to prove that

(ih̄
∂

∂t
+

h̄2

2µ
∆)ϑ(t)Kt(x, x0) = ih̄δ(t)δ(x, x0). (4.18)
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In other words it means

lim
t→0+

Kt(x, x0) = δ(x, x0) (4.19)

(ih̄
∂

∂t
+

h̄2

2µ
∆)Kt(x, x0) = 0, for t > 0. (4.20)

First of all let us mention that Zt(x, x0) is kernel of the free propagator
on R2. It is true that

(ih̄
∂

∂t
+

h̄2

2µ
∆)Zt(x, x0) =

ih̄

4πt
exp

(
iµ

2h̄t
dist (x, x0)

2
)

(∂−→n δL+ + ∂−→n δL−)(4.21)

where δL+ , resp. δL− are defined by

〈δL+ , ψ(r, ϕ)〉 =
∫ ∞

0
ψ(r, π+)r dr, (4.22)

resp.

〈δL− , ψ(r, ϕ)〉 =
∫ ∞

0
ψ(r, π−)r dr. (4.23)

It holds true for any f(t) ∈ C1(R̄+),

(i∂t +
1

4
(∂2

r +
1

r
∂r +

1

r2
∂2

θ ))×
∫ t

0

1

θ + i ln( (t−s)r0

sr
)

1

t− s
exp(

ir2

t− s
)f(s) ds =

πr0

2r2(r + r0)
exp(i(r + r0)

r

t
)
[
f(

tr0

r + r0

)δ′(θ)−

i
r

r + r0

((1 + i
r0(r + r0)

t
)f(

tr0

r + r0

) +
tr0

r + r0

f ′(
tr0

r + r0

))δ(θ)
]
. (4.24)

After few transformations we obtain

(ih̄∂t +
h̄2

2µ
(∂2

r +
1

r
∂r +

1

r2
∂2

θ ))×
∫ t

0

1

θ + i ln( (t−s)r0

sr
)

h̄

t− s
exp(

ir2µ

2h̄(t− s)
)f(

2h̄s

µ
) ds =

πr0h̄
2

r2µ(r + r0)
exp(i(r + r0)

µr

2h̄t
)
[
f(

2h̄tr0

µ(r + r0)
)δ′(θ)−

i
r

r + r0

((1 + i
µr0(r + r0)

2h̄t
)f(

2h̄tr0

µ(r + r0)
) +

2h̄tr0

µ(r + r0)
f ′(

2h̄tr0

µ(r + r0)
))δ(θ)

]
.(4.25)
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Setting f(u) = 1
u

exp
(

ir2
0

u

)
we obtain

(ih̄∂t +
h̄2

2µ
(∂2

r +
1

r
∂r +

1

r2
∂2

θ ))×
∫ t

0

1

θ + i ln( (t−s)r0

sr
)

h̄

t− s
exp(

ir2µ

2h̄(t− s)
)

µ

2h̄s
exp

(
ir2

0µ

2h̄s

)
ds =

πr0h̄
2

r2µ(r + r0)
exp(i(r + r0)

µr

2h̄t
)[

µ(r + r0)

2h̄tr0

exp

(
ir2

0µ(r + r0)

2h̄tr0

)
δ′(θ)−

i
r

r + r0

{(1 + i
µr0(r + r0)

2h̄t
)
µ(r + r0)

2h̄tr0

exp

(
ir2

0µ(r + r0)

2h̄tr0

)
+

2h̄tr0

µ(r + r0)
(−µ(r + r0)

2

4h̄2t2r2
0

− iµ3r2
0(r + r0)

3

8h̄3t3r3
0

) exp

(
iµr2

0(r + r0)

2h̄tr0

)
}δ(θ)] =

π

2r2t
exp

(
iµ

2h̄t
(r + r0)

2
)

δ′(θ).(4.26)

Using this identity we obtain

(ih̄∂t +
h̄2

2µ
(∂2

r +
1

r
∂r +

1

r2
∂2

θ ))×
∫ ∫

dt1 dt0δ(t1 + t0 − t)V

(
x,A, x0

t1, t0

)
Zt1(x,A)Zt0(A, x0) =

(ih̄∂t +
h̄2

2µ
(∂2

r +
1

r
∂r +

1

r2
∂2

θ ))×
−iµ

4h̄π2

∫ t

0
[

1

θ − π + i ln( (t0−t)r1

t0r2
)
− 1

θ + π + i ln( (t0−t)r1

t0r2
)
]×

1

(t0 − t)t0
exp(

iµ

2h̄t
(

r2

t0 − t
+

r2
0

t0
)) dt0 =

i

4r2tπ
exp

(
iµ

2h̄t
(r + r0)

2
)

(δ′(θ − π)− δ′(θ + π)). (4.27)

Finally using the formula 1

1

r2
δ′(θ ∓ π) = ±∂−→n δL± (4.28)

we obtain (4.20).
Before the justification of (4.19), let us prove the following proposition:

1
∫

R+×R
1
r2 δ′(θ ∓ π)ϕ(r, θ)r dr dθ = − ∫

R+

1
r ∂θϕ(r,±π) dr = − ∫

L±
∂ϕ

∂−→n dl
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Proposition 8. Let ψ(x) ∈ D(R). Then

∫ +∞

0

1

it
exp(

i

t
x)ψ(x) dx → ψ(0), for t →∞,

so

lim
t→0

1

it
exp(

i

t
x)ϑ(x) = δ(x) in D′.

Proof.

lim
t→0

∫ +∞

0

1

it
exp(

i

t
x)ψ(x) dx =

− lim
t→0

[exp(
i

t
x)ψ(x)]+∞0 + lim

t→0

∫ +∞

0
exp(

i

t
x)ψ′(x) dx =

ψ(0) + lim
t→0

[−it exp(
i

t
x)ψ(x)]+∞0 + lim

t→0

∫ +∞

0
t exp(

i

t
x)ψ′′(x) dx = ψ(0).

The equation (4.19) comes from the fact that Zt(x, x0) is a free propaga-
tor, so

lim
t→0

Zt(x, x0) = δ(x, x0). (4.29)

This can be also easily proof using the previous proposition. It remains to
prove that

lim
t→0

∫ ∫
dt1 dt0δ(t1 + t0 − t)V

(
x,A, x0

t1, t0

)
Zt1(x,A)Zt0(A, x0) = 0

in D′:

lim
t→0

∫ ∫
dt1 dt0δ(t1 + t0 − t)V

(
x,A, x0

t1, t0

)
Zt1(x,A)Zt0(A, x0) =

− lim
t→0

∫

R2
dx

∫ t

0
dt0

exp( iµ
2h̄

( r2

t−t0
+

r2
0

t0
))

θ − π + i ln( (t−t0)r0

t0r
)

µ2

4π2h̄2(t− t0)t0
ψ(x) +

lim
t→0

∫

R2
dx

∫ t

0
dt0

exp( iµ
2h̄

( r2

t−t0
+

r2
0

t0
))

θ + π + i ln( (t−t0)r0

t0r
)

µ2

4π2h̄2(t− t0)t0
ψ(x),

where r = dist2(x, (0, 0)) and r0 = dist2(x0, (0, 0)).

lim
t→0

∫

R2
dx

∫ t

0
dt0

exp( iµ
2h̄

( r2

t−t0
+

r2
0

t0
))

θ − π + i ln( (t−t0)r0

t0r
)

µ2

4π2h̄2(t− t0)t0
ψ(x) =
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lim
t→0

∫ t

0

µ

2πh̄t0
exp(

iµ

2h̄

r2
0

t0
)×

(
∫ 2π

0

∫

R

exp( iµr2

2h̄(t−t0)
)

θ − π + i ln( (t−t0)r0

rt0
)

µ

2πh̄(t− t0)
ψ(r, ϕ)r dr dϕ) dt0

= lim
t→0

∫ t

0

µ

2πh̄t0
exp(

iµ

2h̄

r2
0

t0
)F (t− t0) dt0,

where F (t− t0) =
∫ 2π
0

∫
R

1

θ−π+i ln(
(t−t0)r0

rt0
)

µ
2πh̄(t−t0)

exp( iµr2

2h̄(t−t0)
))ψ(r, ϕ)r dr dϕ.

It is easy to see from the proposition 8 that F (t − t0) ∈ C0([0, 1]) and that
limt→t0 F (t− t0) = 0.

lim
t→0

∫ t

0

1

t0
cos(

i

t0
)F (t− t0) dt0 = lim

t→0

∫ +∞

1/t

1

s
cos(is)F (t− 1

s
) ds =

( lim
t→∞

∫ d 1
2πt

+ 1
4
e

1/t
+

∞∑

k=d 1
2πt

+ 1
4
e

∫ π
2
+2kπ

−π
2
+2kπ

+
∫ 3π

2
+2kπ

π
2
+2kπ

)
1

s
cos(is)F (t− 1

s
) ds =

lim
t→0

∫ d 1
2πt

+ 1
4
e

1/t

1

s
cos(is)F (t− 1

s
) ds +

lim
t→0

∞∑

k=d 1
2πt

+ 1
4
e

∫ π
2
+2kπ

−π
2
+2kπ

cos(is)

(
F (t− 1

s
)

s
− F (t− 1

s−π
)

s− π

)
ds = 0.(4.30)

Because

lim
t→0

∫ d 1
2π

+ 1
4
e

1
|1
s
F (t(1− 1

s
))| ds = 0,

because there exists integrable majorant and we can change the limit and
the integral.

lim
t→0

∞∑

k=d 1
2πt

+ 1
4
e

∫ π
2
+2kπ

−π
2
+2kπ

| cos(is)

(
F (t− 1

s
)− F (t− 1

s−π
)

s− π
− F (t− 1

s
)π

s(s− π)

)
| ≤

lim
t→0

∫ +∞

d 1
2πt

+ 1
4
e

C

s(s− π)2
+

C

s2(s− π)2
ds = 0,

where we have used that |F (t − 1
s
) − F (t − 1

s−π
)| ≤ C| 1

s(s−π)
|, because F ∈

C0([0, 1]).

4.1.2 Use of Schulman ansatz

The summation in Schulman ansatz is based on the formula
∞∑

n=−∞
exp(−2πiαn)

(
1

2Φ + 2πn− π + is
− 1

2Φ + 2π + π + is

)
=
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−sin(πα)
exp(−α(s− iΦ))

1 + exp(−s + iΦ)
, (4.31)

for α ∈ (0, 1), Φ, s ∈ R, s 6= 0. We obtain the propagator

KU
t (x, x0) = exp(−2πiαn)

µ

2πih̄t
exp(iµ|x− x0|2/2h̄t)−

sin(πα)

π

∫ ∞

−∞
ds

µ

2πih̄t
exp(iµR2(s)/2h̄t)

exp(−α(s− iΦ))

1 + exp(−s + iΦ)
, (4.32)

where n is such that Φ + 2πn ∈ (−π, π).
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Chapter 5

Models for More Anyons

Anyons are indistinguishable particles with the configuration space of one
particle R2. In this section, we will describe model for two and more anyons,
which enables us to use Schulman Ansatz (chapter 3).

Let δN ⊂ R2N be a diagonal (position of at least two points coincide) and
let SN be a group of permutations acting naturally on R2N . Configuration
space of N indistinguishable particles which cannot penetrate each other is

MN = (R2N − δN)/SN . (5.1)

Fundamental group π1(MN) of the manifold MN is a braid group denoted
as BN

1 and it becomes the structure group of its universal covering M̃N .
Different quantizations corresponds to different choices of a unitary rep-

resentation U of the group BN . Properties of the group BN imply that

U(σ1) = . . . = U(σN−1) = exp(2πiα).

Let us suppose that α ∈ (0, 1).

1The braid group BN is an infinite group with N − 1 generators σ1, . . . , σN−1 which
satisfy two following properties:

σiσi+1σi = σi+1σiσi+1,

for i = 1, 2, . . . , n− 2 and

σiσj = σjσi,

for |i− j| ≥ 2. In case of SN also the third property is valid:

σiσi = identity,

which is not valid for BN .

26



The free Hamiltonian is given by the structure of MN , resp. M̃N following
from the Euclidean geometry on R2N . Suppose we have a potential V defined
on MN and let Ṽ be its lift to M̃N . Hamiltonian

H̃U := ∆̃ + Ṽ , (5.2)

acts in the Hilbert space

HU = {ψ, quadratical integrable, ψ(g.x) = U(g)ψ(x)∀g ∈ BN}, (5.3)

The integration in the scalar product is over any fundamental domain2 of the
action of BN and ∆̃ is Laplce-Beltram operator on M̃N .

Next we cut the manifold MN to get a simply connected domain D. D
can also be taken as one sheet of universal covering M̃N . Let us define the
coordinates of a point x ∈ R2 by x = (x1, x2) and let Ejk be hyperplanes
determinated by the equations x2

j = x2
k, where x ≡ (x1, x2, . . . , xN) ∈ R2N .

Let E := ∪j<kEjk ⊃ δN , then R2N −E be a subset of open simply connected
domains. Fix one of them, D, defined by

x2
1 < x2

2 < . . . < x2
N .

D can be identified with a subset of MN . Split ∂D\δN to 2(N − 1) cells
Cj,ε, j = 1, . . . , N − 1, ε = ± given by the equations

x2
1 < . . . < x2

j = x2
j+1 < . . . < x2

N , ε(x1
j − x1

j+1) < 0. (5.4)

Then D is a fundamental domain of M̃N .
One unitary equivalent description of quantum mechanics can be obtained

by the restriction from M̃N to D (the inverse process is evident because the
Hilbert space on M̃N are U -equivariant functions). Hilbert space on D is
L2(D) with the following boundary conditions: Let x ∈ Cj,+, then from (5.3)
one obtains the boundary conditions

ψ(. . . , xj+1, xj, . . .) = exp(−2πiα sgn(x1
j+1 − x1

j))ψ(. . . , xj, xj+1, . . .),

in the limit (x2
j+1 − x2

j) ↓ 0. (5.5)

Hamiltonian is also obtained by restriction from M̃N to D.
It is useful to separate the center of mass by appropriate choice of coor-

dinates:

z =
1

N
(x1 + . . . + xN) a y1 = xj+1 − xj, j = 1, . . . , N − 1.

2Fundamental domain D ⊂ M̃ is a simply connected domain such that g.D are disjoin
(g ∈ π1(M)) and

⋃
g g.D is equal to M̃ up to zero set measure.
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Diagonal does not depend to the configuration space, so

yj + yj+1 + . . . + yk 6= 0, pro j ≤ k. (5.6)

Generators of the group SN act in the following way:

σj(y) = y′, with y′k = yk, pro |k − j| > 1

= yk + yj, |k − j| = 1

= −yj, k − j = 0. (5.7)

The action of SN on z is trivial.
Laplacian expressed in new coordinates is in the form:

∆x =
1

N
∆z + 2∆y − 2

N−2∑

j=1

∇yj
· ∇yj+1

. (5.8)

New coordinates can be also defined on D: D ∼= R2 × Dred, Dred ≡ R2
+ ×

. . .×R2
+, where R2

+ := R×R+ a R+ :=]0, +∞[, ∂D ∼= R2 × ∂Dred.
In the following we will consider only the non-trivial part. Coordinates

of Dred, (ξ, η) ≡ (ξ1, . . . , ξN−1, η1, . . . , ηN−1), ξj ∈ R, ηj > 0, ∀j, satisfy
boundary conditions

ψ(ξ′, η)|ηj=0+ = exp(−2πiαξj)ψ(ξ, η)|ηj=0+ , j = 1, . . . , N − 1, (5.9)

where

ξ′k = ξk, pro k 6= j − 1, j, j + 1,

ξj±1 = ξj±1 + ξj a ξ′j = −ξj.

5.1 Propagator for two free anyons

In this case M ∼= R2 ×M red with variables z := (x1 + x2)/2, y := x2 − x1.
Then ∇x = 1

2
∇z + 2∇y. M̃ red = R+ × R in the polar coordinates, Dred =

R+ × (0, π). The group Γ = π1(M) is an infinite group with one generator
h, h.(r, φ) = (r, φ− π), U(h) = exp(2πiα). Boundary condition (5.9) is

ψ(r, π−) = exp(−2πiα)ψ(r, 0+). (5.10)

We will focus only on the propagator in L2(Dred) with the previous bound-
ary condition, with the mass 1/4. Hamiltonian is given by the equation

H = −4h̄2

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2

)
, (5.11)
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where

ψ(r, φ− π) = exp(2πiα)ψ(r, φ). (5.12)

We try to find eigenfunction in the separated form

ψ(r, φ) = exp(imφ)β(r).

It means to solve the equation

−4h̄2

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2

)
exp(imφ)β(r) = 4h̄2k2β(r).

Finally we obtain the equation

(
∂2

∂r2
+

1

r

∂

∂r
− m2

r2
− k2

)
β(r) = 0.

The solutions are Bessel functions

β(r) = amJm(kr) + bmJ−m(kr). (5.13)

The boundary condition (5.12) implies that

exp(im(φ− π)) = exp(imφ + 2πiα). (5.14)

Solving this equation and eliminating functions with singularity in r = 0 we
obtain the complete set of generalized eigen-functions

{π−1/2J2|n+α|(pr) exp(−2i(n + α)φ), n ∈ Z, p > 0}. (5.15)

Consequently, as in the section 4.1,

KU
t (y, y0) =

1

π

∞∑

n=−∞

∫ ∞

0
exp(−2ip2t)J2|n+α|(pr)J2|n+α|(pr0) exp(−2i(n + α)(φ− φ0))p dp.

The same result may be obtained by using Schulman’s ansatz. The prop-
agator Kt(., .) on M̃ red is given by

Kt(x, x0) = χ(x, x0)
1

8πit
exp(idist2(x, x0)/8t) +

1

8πit

∫ ∞

−∞
ds

2π

(
1

Φ− π + is
− 1

Φ + π + is

)
exp(iR2(s)/8t).
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Applying the Schulman ansatz (chapter 3.3) we obtain

∞∑

n=−∞
exp(2πiα)Kt(g.x, x0) =

∞∑

n=−∞
exp(2πiα)(χ(g.x, x0)

1

8πit
exp(idist2(g.x, x0)/8t) +

1

8πit

∫ ∞

−∞
ds

2π

(
1

Φ− πn + π + is
− 1

Φ + πn + π + is

)
exp(iR2(s)/8t)),(5.16)

where R2(s) = r2 + r2
0 + 2rr0 cosh(s). Finally, using the identity

1

2

∞∑

n=−∞
exp(2πiαn)

(
1

Φ + πn− π + is
− 1

Φ + πn + π + is

)
=

−2 sin(2πα)
exp(2α(s− iΦ))

1− exp(2(s− iΦ))
, (5.17)

valid for α ∈ (0, 1), s 6= 0 we obtain KU
t . Restriction of KU

t on Dred (denoted
by KD

t , used only for simplification in notation) is in form

KD
t (y, y0) =

1

8πit
exp(i|y − y0|2/8t) + exp(∓2πiα)

1

8πit
exp(i|y + y0|2/8t)

−sin(2πα)

π

∫

−∞
∞ ds

1

4πit
exp(iR2(s)/8t)

2α(s− iΦ)

1− exp(2(s− iΦ))
,

where Φ ∈ (0, π), resp. Φ ∈ (−π, 0).
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Summary

One of the possibilities how to describe quantum mechanics on non-simply
connected manifold is to use the Hilbert space of U -equivariant functions.
In this paper, there is mainly investigated the proof of the Schulman ansatz,
which permits to derive the kernel of the propagator in this case. For this
purpose, the Schwartz kernel theorem was introduced and its reformulation
for U -equivariant was derived in case of continuous and locally linearly con-
tinuous manifolds (section 2.1). In the next section the properties of the
kernel are explored. Schulamn ansatz is then proved for identity operator in
chapter 3, where the idea of the rigorous proof is also formulated. We have
proved that the left hand side of the equality (3.4) is well-defined, it remains
to future investigation to proof the convergence of the sum on the right hand
side of this equality.

On the example of two anyons and Aharonov-Bohm effect with one solenoid
we can see the use of Schulman ansatz which brings the result very quickly in
case of knowledge of the kernel of the propagator defined on L2(M̃). Never-
theless this knowledge is the limitative factor for this method. For example in
case of tree anyons the kernel of the free propagator on L2(M̃) is not known
and we can conclude only the existence and uniqueness of the kernel for U -
equivariant functions. To find this kernel remains one of the open question
of quantum mechanics on non-simply connected manifold.
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[1] P. Šťov́ıček: Anyons Defined by Boundary Conditions, Proceeding of
the Workshop on Singular Schroedinger Operators, Triest (1994)
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