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This thesis is concerned with a time evolution of a certain non-autonomous dynamical
model. In particular we are interested in a model of a charged massive particle moving
on a plane and influenced by a homogeneous magnetic field and a time-periodic singular
flux tube. Illustration of this setting is presented in Figure 1. We study this model
in the frameworks of non-relativistic classical and quantum mechanics. Although it is
not possible to solve the Hamiltonian equations of motion or the Schrödinger equation
analytically, it turns out that we are able to employ approximative methods of pertur-
bation theory to exhibit a curious acceleration effect. More precisely, for some particular
choices of values of parameters we claim that the particle gains energy during its time
evolution. Both in classical and quantum framework we are able to estimate the rate of
energy growth in those resonant situations. It turns out that the energy grows linearly
with time.

q2 q1

Φ

b

m

Figure 1: The description of the model: a massive charged particle moving on a plane
and influenced by a homogeneous magnetic field of magnitude b and a time-periodic
singular flux tube.

Without loss of generality we can assume that the singular flux Φ(t) pierces the plane
at the origin of Cartesian coordinate system. The Cartesian coordinates in the plane
are denoted by q = (q1, q2) ∈ R2

r {0}. We will see that the hole in the plane plays an
interesting role during the resonance. Note that the configuration space of this model is
not simply connected.

From the viewpoint of classical non-relativistic mechanics the model is described by
Hamilton’s function

H(q, p, t) = 1
2m

(
p− eA(q, t)

)2
, (q, p) ∈ P =

(
R

2
r {0}

)
×R2,

where
A(q, t) =

(
− b

2 + Φ(t)
2π|q|2

)
(−q2, q1)

is the vector potential. The dynamics of the system is then governed by the set of
Hamilton’s equations of motion

q′ = ∂H

∂p
, p′ = −∂H

∂q
, (q(0), p(0)) ∈ P.
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In our present case these equations constitute four non-autonomous coupled ordinary
differential equations. Due to the obvious rotational symmetry of the system we perform
our analysis in polar coordinates. However, in order to describe the resonant behavior
it is better to employ guiding-center coordinates [21]. This analysis and discussion is
carried out in Chapter 1, which essentially contains the results of [5]. The main result
of the cited article is that the energy E(t) of the particle grows with a rate

γacc = lim
t→∞

E(t)
t

= −eωc4π Φ′(c) > 0, (1)

where ωc is the cyclotron frequency and c is a constant which depends on initial condi-
tions.

In the framework of quantum mechanics the dynamics of the system is governed by
the Hamiltonian operator

H = 1
2m

(
− i~∇− eA(q, t)

)2

acting in the Hilbert space L2(R2
r{0}, dq). We circumvent the ambiguity of this formal

differential expression by taking our Hamiltonian to be the Friedrichs extension of the
corresponding minimal differential operator. This choice corresponds to the standard
Aharonov-Bohm Hamiltonian. Similarly to the classical case we work in polar coordi-
nates. Our main result, again, is a formula for the rate of energy growth. The main
dynamical object in this setting is the unitary propagator, an object that is out of reach
for a full analytical analysis. However, using the perturbation method analogous to that
employed in the classical model we are able to construct an approximation to the prop-
agator and study its dynamical properties. We find out that in the resonant situation
the mean value of energy of the system grows with rate

γacc = |ε|eωcΩ2

∫ π
0 sin(θ)|ρ(θ)| dθ∫ π

0 |ρ(θ)| dθ = eωc
4π

∫ π
0 Φ′(θ)|ρ(θ)| dθ∫ π

0 |ρ(θ)| dθ , (2)

where ρ is related to the initial radial function ψ ∈ L2(R+, r dr) and the flux function
is taken to be Φ(Ωt) = Φ0 − ε cos(Ωt). Note the similarity between Equation (1) and
Equation (2). This analysis of the quantum system is carried out in Chapter 2, which
is based on [17].

We remark, that our results could be of interest in accelerator physics. While the
betatron principle uses a linearly time dependent flux tube to accelerate particles on
cyclotron orbits around the flux [19], the resonance effect we observe in the present work
has the feature that acceleration can be achieved with arbitrarily small field strength.
A second aspect is that, in contrast to the case of a linearly increasing flux, cyclotron
orbits which do not encircle the flux tube are accelerated as well. In fact, for the linear
case it was shown in [6] that outside the flux tube one has the usual drift of the guiding
center, without acceleration, along the field lines of the averaged potential.

The text is organized into two Chapters and three Appendices. The first and second
Chapter contains the results of [5] and [17], respectively. Additional material closely
related to that in the Chapters is presented in Appendices.

Let me summarize the notation used throughout the text. Chapters are numbered
by Arabic numerals and appendices by capital Latin letters. Chapters and appendices

v



are further divided into Sections. Equations are numbered within Chapters, so (2.3)
denotes the equation number 3 in Chapter 2. Similar convention holds for Theorems,
Propositions and other environments. For the convenience of the reader we also present
a short List of Symbols at the beginning of the document.
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Chapter 1

Classical Mechanics
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Figure 1.1: The numerical solution q(t) of the equations of motion in the plane for
t ∈ [ 0, 150 ], with Φ(t) = 2πεf(Ωt), f(t) = sin(t) − (1/3) cos(2t), for the values of
parameters ε = 0.35, b = 1, Ω = 1, and with the initial conditions q(0) = (1, 0),
q′(0) = (0, 1.617).

Let us consider a classical point particle of mass m and charge e moving on the
punctured plane R2

r{0} in the presence of a homogeneous magnetic field of magnitude
b. Suppose further that a singular magnetic flux line whose strength Φ(t) is oscillating
with frequency Ω intersects the plane at the origin. The equations of motion in phase
space P = (R2

r {0})× R2 are generated by the time-dependent Hamiltonian

H(q, p, t) = 1
2m (p− eA(q, t))2 , with A(q, t) =

(
− b2 + Φ(t)

2π|q|2

)
q⊥, (1.1)

where (q, p) ∈ P, t ∈ R. Here and throughout this chapter we denote x⊥ = (−x2, x1)
for x = (x1, x2) ∈ R2. Our aim is to understand the dynamics of this system for large
times. Of particular interest is the growth of energy as well as the drift of the guiding
center.

1.1 Equations of motion
In view of the rotational symmetry of the system we prefer to work with polar coordinates
q = r(cos θ, sin θ), where (θ, r) ∈ S1× R+. Corresponding generalized momenta are

2
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Figure 1.2: The numerical solution q(t) of the equations of motion in the plane for
t ∈ [ 0, 150 ], with Φ(t) = 2πεf(Ωt), f(t) = sin(t) − (1/3) cos(2t), for the values of
parameters ε = 0.35, b = 1, Ω = 1, and with the initial conditions q(0) = (1, 0),
q′(0) = (−1,−1.617).

transformed in the following way

p1 = pr cos θ − pθ
r

sin θ, (1.2)

p2 = pr sin θ + pθ
r

cos θ. (1.3)

In fact, the coordinate transformation of the configuration space R2
r {0} → S1 × R+

induces a canonical transformation of the phase space which can be deduced from the
transformation of the canonical one-form

p1 dq1 + p2 dq2 =
(
p1 cos θ + p2 sin θ

)
dr + r

(
p2 cos θ − p1 sin θ

)
dθ

In order for the transformation to be canonical one has to require

pr = p1 cos θ + p2 sin θ and pθ = r
(
p2 cos θ − p1 sin θ

)
.

This gives (1.2) and (1.3) immediately. The Hamiltonian of the studied model in polar
coordinates (cf. (1.1)) then reads

H(r, θ, pr, pθ, t) = 1
2m

p2
r +

(
1
r

(
pθ −

eΦ(t)
2π

)
+ eb

2 r

)2
 . (1.4)

3



Since ∂θH = 0, the generalized momentum pθ is an integral of motion and thus the
analysis of the system effectively reduces to a one-dimensional radial motion with time-
dependent coefficients. Note that in the original coordinates this integral of motion is
the angular momentum (the third component)

pθ = q1p2 − q2p1.

In order to simplify many expressions let us fix values of various physical constants.
From now on we set e = m = 1, and so the cyclotron frequency equals b. We assume,
without loss of generality, that b is positive. Finally we set

a(t) = pθ −
1

2π Φ(t). (1.5)

In the polar Hamiltonian (1.4) one may omit the term ba(t)/2 not contributing to the
equations of motion and thus one arrives at the expression for the radial Hamiltonian

Hrad(r, pr, t) = p2
r

2 + a(t)2

2r2 + b2r2

8 . (1.6)

Transformation to action-angle coordinates
First, we introduce the action-angle coordinates for a frozen time. Assume for a moment
that a(t) = a is a time-independent constant and denote

V (r) = a2

2r2 + b2r2

8 .

Suppose a fixed energy level E is greater than the minimal value Vmin = b |a|/2, attained
at rmin =

√
b |a|/2. Then the motion is constrained to a bounded interval [r−, r+], and

one has
E − V (r) = b2

8r2 (r2
+ − r2)(r2 − r2

−), (1.7)

where
r2
± = 2

b2

(
2E − ab±

√
(2E − ab)2 − a2b2

)
. (1.8)

This situation is illuminated by Figure 1.3.
The action equals

I(E) = 1
π

∫ r+

r−

√
2(E − V (r)) dr = b

4π

∫ r2
+

r2
−

1
x

√
(r2

+ − x)(x− r2
−) dx =

= b

8(r+ − r−)2 = 1
b

(E − Vmin).

For more details concerning the construction of action-angle coordinates the reader is
advised to confer [2]. Hence expressing E in terms of a and I and using (1.8) we arrive
at

r± = 2√
b

(
I + |a|2 ±

√
I(I + |a|)

)1/2

=
√

2
b

(√
I + |a| ±

√
I
)
. (1.9)

4



r

V

√
2|a|
b

Vmin

E

r− r+

Figure 1.3: The potential V and a fixed energy level E. The motion in the radial
coordinate is constrained to the interval [r−, r+].

Using the generating function,

S(r, I) =
∫ r

r−

√
2(E − V (ρ))dρ = b

2

∫ r

r−

1
ρ

√
(r2

+ − ρ2)(ρ2 − r2
−)dρ,

one derives the canonical transformation of variables between (r, pr) and the action-angle
variables (ϕ, I). One has

∂S

∂I
= b

4

∫ r

r−

1
ρ


√√√√ρ2 − r2

−

r2
+ − ρ2

dr+(I)2

dI −

√√√√r2
+ − ρ2

ρ2 − r2
−

dr−(I)2

dI

 dρ

= π

2 − arctan
 r2

+ + r2
− − 2r2

2
√

(r2
+ − r2)(r2 − r2

−)

 .
For the angle variable ϕ = ∂S/∂I − π/2 one obtains

sin(ϕ) = 1√
I(I + |a|)

(
br2

4 − I −
|a|
2

)
.

Furthermore,

pr = ∂S

∂r
= b

2r
√

(r2
+ − r2)(r2 − r2

−) = 2
r

√
I(I + |a|) cos(ϕ).

5



Finally one arrives at the relations

r = 2√
b

(
I + |a|2 +

√
I(I + |a|) sin(ϕ)

)1/2

, (1.10)

pr =

√
bI(I + |a|) cos(ϕ)(

I + |a|
2 +

√
I(I + |a|) sin(ϕ)

)1/2 . (1.11)

Note that, conversely,

I = 1
2b

p2
r +

(
|a(t)|
r
− br

2

)2
 = 1

b
(Hrad(r, pr, t)− Vmin) . (1.12)

Let us now switch to the time-dependent case. The Hamiltonian transforms according
to the rule

Hc(ϕ, I, t) = Hrad
(
r(ϕ, I, t), pr(ϕ, I, t), t

)
+ ∂S(u, I, t)

∂t

∣∣∣∣∣∣
u=r(ϕ,I,t)

.

One computes

∂S(u, I, t)
∂t

∣∣∣∣∣∣
u=r(ϕ,I,t)

= b|a|′

4

∫ r(ϕ,I,t)

r−

1
ρ


√√√√ρ2 − r2

−

r2
+ − ρ2

∂r2
+

∂|a|
−

√√√√r2
+ − ρ2

ρ2 − r2
−

∂r2
−

∂|a|

 dρ

= −|a|
′

2 arctan

 2
(√

I(I + |a|) + I sin(ϕ)
)

cos(ϕ)

|a|+ 2
(√

I(I + |a|) + I sin(ϕ)
)

sin(ϕ)

 .
Simplifying the expression and dropping those terms which are independent of ϕ and I
one finally arrives at the equality

Hc(ϕ, I, t) = bI − |a(t)|′ arctan
 √

I cos(ϕ)√
I + |a(t)|+

√
I sin(ϕ)

 .
The Hamiltonian equations of motion take the form

ϕ′ = b− cos(ϕ)aa′

2
√
I(I + |a|)

(
2I + |a|+ 2

√
I(I + |a|) sin(ϕ)

) (1.13)

I ′ = −|a|
′

2

1− |a|
2I + |a|+ 2

√
I(I + |a|) sin(ϕ)

 . (1.14)

For the sake of definiteness we shall focus on the case when a(t) is a strictly positive
function. More precisely, the angular momentum pθ is supposed to be positive and
greater than the amplitude of Φ(t). Let us stress, however, that this restriction on
the sign of a(t) is not essential for the resonance effect. In fact, notice that the radial
Hamiltonian (1.6) depends on a(t)2 and thus the sign of a(t) is irrelevant for the motion

6



in the radial direction. On the other hand, as discussed in Section 1.4, the sign of a(t)
determines whether the orbit encircles the singular magnetic flux or not.

Throughout this chapter, the function Φ(t) is supposed to be of the form

Φ(t) = 2πεf(Ωt) (1.15)

where Ω > 0 and f is a 2π-periodic real function possibly obeying additional assump-
tions. Moreover, ε is supposed to be positive as well and playing the role of a small
parameter. Thus one has a(t) = pθ − εf(Ωt).

Basic properties of the radial dynamics
The Hamiltonian equations of motion for the radial Hamiltonian (1.6) have the form

r′ = pr, p′r = a(t)2

r3 −
b2r

4 (1.16)

This is equivalent to the nonlinear second-order differential equation

r′′ + b2

4 r = a(t)2

r3 . (1.17)

Let us now look at the problem of zeros of a(t) in more detail. If a(t) has no zeros
then the solutions of (1.16) are defined for all times t ∈ R. In particular we have the
following Proposition.
Proposition 1.1: Suppose a(t) is a real continuously differentiable function defined
on R having no zeros. Then for any initial condition r(t0) = r0, r′(t0) = r1, with
(t0, r0, r1) ∈ R× ]0,+∞[×R, there exists an unique solution of the differential equation
(1.17) defined on the whole real line R and satisfying this initial condition.

Proof. Suppose (r(t), pr(t)) is a solution of the Hamiltonian equations (1.16). Put
H(t) = Hrad(r(t), pr(t), t). Then∣∣∣∣∣ ddtH(t)

∣∣∣∣∣ = |a(t)a′(t)|
r(t)2 ≤

∣∣∣∣∣2a′(t)a(t)

∣∣∣∣∣H(t).

From here one readily concludes that if r(t) is a solution of (1.17) on a bounded interval
M ⊂ R, then there exists constants R1, R2, 0 < R1 ≤ R2 < +∞, such that R1 ≤
r(t) ≤ R2 for all t ∈ M . From the general theory of ordinary differential equations
it immediately follows that any solution r(t) of the differential equation (1.17) can be
continued to the whole real line.

On the other hand, if there are zeros of a(t), then it might happen that some solutions
of (1.16) are defined only on a half-line. In this case it is possible that the particle hits
the hole where the flux line pierces the plane.
Proposition 1.2: Let r1 > 0 and suppose that a(0) = 0 and∫ 1

0

a(s)2

s4 ds < +∞.

Then there is a solution of (1.17) defined on the interval [0, δ] for some δ > 0 and
satisfying initial condition r(0) = 0, r′(0) = r1.

7



Proof. Our proof relies on a well known fixed point argument. The initial value problem

r′′ + b2

4 = a(t)2

r3 , r(0) = 0, r′(0) = r1, (1.18)

is equivalent to the integral equation

r(t) = r1t+
∫ t

0
(t− s)

(
a(s)2

r(s)3 −
b2

4 r(s)
)

ds.

Let us fix α and β such that 0 < α < r1 < β and define

Dδ =
{
f : [0, δ]→ R ; f ∈ C

(
[0, δ]

)
, αt ≤ f(t) ≤ βt for all t ∈ [0, δ]

}
.

The set Dδ is a closed1 subspace of the Banach space2 C
(
[0, δ]

)
. For f ∈ Dδ we can

0 t

r

βt

αt

δ

f ∈ Dδ

Figure 1.4: The Dδ space.

define
(Kf)(t) = r1t+

∫ t

0
(t− s)

(
a(s)2

f(s)3 −
b2

4 f(s)
)

ds, t ∈ [0, δ].

First of all we have to choose δ so small, such that K maps Dδ into Dδ. More precisely,
for any f ∈ Dδ one has to show that

αt ≤ (Kf)(t) ≤ βt, t ∈ [0, δ]. (1.19)
1The word "closed" has the topological meaning here.
2Continuous functions f : [0, δ]→ R with supremum norm,

‖f‖∞ = sup
x∈[0,δ]

|f(x)|.
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Inequalities in (1.19) are implied by

1
α3

∫ t

0

a(s)2

s3 ds ≤ β − r1,

− 1
β3

∫ t

0

a(s)2

s3 ds+ b2

4 · β
t2

6 + 1
β3t

∫ t

0

a(s)2

s2 ds ≤ r1 − α, t ∈ [0, δ].

Since the left-hand-sides vanish as t→ 0+ and α < r1 < β it is clear that one can take
δ > 0 small enough and thus satisfy (1.19).

Furthermore, δ can be taken even smaller in order to make K a contraction on Dδ.
If f, g ∈ Dδ, then

∣∣∣(Kf −Kg)(t)
∣∣∣ ≤ ∣∣∣∣∣

∫ t

0
(t− s)

(
a(s)2

f(s)3 −
a(s)2

g(s)3 −
b2

4 f(s) + b2

4 g(s)
)

ds
∣∣∣∣∣ ≤

≤ δ2 · ‖f − g‖∞ + ‖f − g‖∞

×
∫ t

0
(t− s)a(s)2f(s)3 + f(s)g(s) + g(s)2

f(s)3g(s)3 ds ≤

≤
(
b2δ2

4 + 3δβ2

α6

∫ δ

0

a(s)2

s4 ds
)
· ‖f − g‖∞, t ∈ [0, δ].

This shows that one can find sufficiently small δ > 0 in such a way that the inequality

‖Kf −Kg‖∞ ≤ γ‖f − g‖∞, f, g ∈ Dδ,

is satisfied with 0 < γ < 1.
According to the fixed point theorem3 there is a function r ∈ Dδ such that Kr = r.

This function solves our initial value problem (1.18).

Let us conclude this Section with a preliminary qualitative characterization of tra-
jectories in the resonant case. From equations (1.10) and (1.9) we see that

r2 = 1
2(r2

+ + r2
−) + 1

2(r2
+ − r2

−) sin(ϕ).

Thus if the angle ϕ increases then r oscillates between r− and r+ (though r−, r+ them-
selves are also time-dependent). Moreover, if a(t) is bounded and I → ∞ as t → ∞
then r+(t)→∞ and

r−(t) = 2|a(t)|
br+(t) → 0, as t→∞.

Therefore in this case the trajectory in the q-plane periodically returns to the origin and
then again escapes far away from it while its extremal distances to the origin converge
respectively to zero and infinity. We refer again to Figure 1.1 for a typical trajectory
in the q-plane in the case of resonant frequencies. In this example pθ is positive and
so the orbit encircles the singular magnetic flux located in the origin of coordinates, as
discussed in Section 1.4. On the other hand, in Figure 1.2 pθ is negative and therefore
the trajectory does not encircle the singular magnetic flux.

3See [29], Theorem V.18.
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1.2 The Poincaré-von Zeipel elimination method

Notation and a summary of basic formulas
We first study the model with the aid of the Poincaré-von Zeipel elimination method
for this averaging method takes into account possible resonances, as explained in detail,
for instance, in [3]. The main result of the current Section is a demonstration of the
resonance effect for the dynamics generated by the first order averaged Hamiltonian.
We start from introducing notation and recalling basic formulas.

Let Td = (R/2πZ)d be the d-dimensional torus. For f(ϕ) ∈ C(Td) and k ∈ Zd we
denote the kth Fourier coefficient of f by the symbol

F [f(ϕ)]k = 1
(2π)d

∫
Td
f(ϕ)e−ik·ϕdϕ.

We introduce supp F [f(ϕ)] as the set of indices corresponding to non-zero Fourier co-
efficients of f(ϕ),

supp F [f(ϕ)] =
{
k ∈ Zd ; F [f(ϕ)]k 6= 0

}
.

For f ∈ C(Td) and L ⊂ Zd put〈
f(ϕ)

〉
L

=
∑
k∈L

F [f ]keik·ϕ. (1.20)

Note that for f ∈ C(T1) and ν ∈ N one has

〈
f(ϕ)

〉
Zν

= 1
ν

ν−1∑
j=0

f
(
ϕ+ 2π

ν
j
)
.

Indeed, for the proof it is sufficient to consider functions of the form f(ϕ) = ei`·ϕ for
some fixed ` ∈ Zd. Then from the very definition (1.20) one has

〈
f(ϕ)

〉
Zν

=

0, ` /∈ Zν,
ei`·ϕ, ` ∈ Zν.

On the other hand,

1
ν

ν−1∑
j=0

f
(
ϕ+ 2π

ν
j
)

= 1
ν

ν−1∑
j=0

exp
(
i` ·

(
ϕ+ 2π

ν
j
))

=


1
ν
ei`·ϕ 1−1

1−ei(`1+···+`d) 2π
ν

= 0, ` /∈ Zν,
ei`·ϕ, ` ∈ Zν.

Consider now a completely integrable Hamiltonian in action-angle coordinates,

K0(I) = ω · I,

where I runs over a domain in Rd, ϕ ∈ Td and ω ∈ R d
+ is a constant vector of frequencies.

One is interested in a perturbed system with a small Hamiltonian perturbation so that
the total Hamiltonian reads

K(ϕ, I, ε) = K0(I) + εK∗(ϕ, I, ε) = K0(I) + εK1(ϕ, I) + ε2K2(ϕ, I) + . . . (1.21)
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where ε is a small parameter. The function K∗(ϕ, I, ε) is assumed to be analytic in all
variables.

Let K be the lattice of indices in Zd corresponding to resonant frequencies and Kc

be its complement, i.e.
K = {ω}⊥ ∩ Zd, K

c = Z
d
rK. (1.22)

One applies a formal canonical transformation of variables, (I, ϕ) 7→ (J, ψ), so that
the Fourier series in the angle variables ψ of the resulting Hamiltonian K(ψ, J, ε) has
non-zero coefficients only for indices from the lattice K. The canonical transformation
is generated by a function S(ϕ, J, ε) regarded as a formal power series with coefficient
functions Sj(ϕ, J) and the absolute term S0(ϕ, J) = ϕ · J . Similarly, the new Hamilto-
nian K(ψ, J, ε) is sought in the form of a formal power series with coefficient functions
Kj(ψ, J). One arrives at the system of equations K0(J, ϕ) = K0(J) = ω · J and

Kj(ϕ, J) = ω · ∂Sj(ϕ, J)
∂ϕ

+ Pj(ϕ, J), j ≥ 1,

where P1(ϕ, J) = K1(ϕ, J) and the terms Pj for j ≥ 2 are determined recursively. The
formal von Zeipel Hamiltonian is defined by the equalities

Kj(ψ, J) = 〈Pj(ψ, J)〉K

for j ≥ 1. Coefficients Sj(ϕ, J) are then solutions of the first order differential equations

ω · ∂Sj(ϕ, J)
∂ϕ

= −〈Pj(ϕ, J)〉
Kc
, j ≥ 1.

In practice one truncates K(ψ, J, ε) at some order m ≥ 1 of the parameter ε. Let us
define the mth order averaged Hamiltonian

K(m)(ψ, J, ε) = K0(J) + εK1(ψ, J) + · · ·+ εmKm(ψ, J).

Similarly, let S(m)(ϕ, J, ε) be the truncated generating function. If (ψ(t), J(t)) is a
solution of the Hamiltonian equations for K(m)(ψ, J, ε), and if (ϕ(t), I(t)) is the same
solution after the inverted canonical transformation generated by S(m)(ϕ, J, ε), then
(ϕ(t), I(t)) is expected to approximate well the solution of the original system (governed
by the Hamiltonian K(ϕ, I, ε)) for times of order 1/εm (see [3] for a detailed discussion).

The first-order averaged Hamiltonian
In this section we assume that Φ(t) is given by (1.15) where ε > 0 is regarded as a small
parameter and the 2π-periodic real function f(ϕ) fulfills

∞∑
k=1

k
∣∣∣F [f(ϕ)]k

∣∣∣ <∞. (1.23)

This implies that f ∈ C1(T1).
In order to apply the von Zeipel method to our problem we first pass to the extended

phase space by introducing a new phase ϕ2 = Ωt and its conjugate momentum I2. The
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old variables ϕ, I are denoted as ϕ1, I1. The Hamiltonian on the extended phase space
is defined as

K(ϕ1, ϕ2, I1, I2) = ΩI2 +Hc(ϕ1, I1, ϕ2/Ω). (1.24)

The systems of Hamiltonian equations for Hc and K are equivalent provided the ini-
tial conditions are properly matched (if ϕ(0) = ϕ0 on the original phase space then
(ϕ1(0), ϕ2(0)) = (ϕ0, 0) on the extended phase space). This procedure is a standard
procedure how to pass from non-autonomous systems to autonomous. The price to be
paid is the increase of number of degrees of freedom. In fact, let us assume that a
non-autonomous classical system is described by a time-dependent Hamilton function
h(q, p, t), where (q, p) ∈ P are canonical coordinates in a phase space P and t ∈ R. The
corresponding Hamiltonian equations of motion read

q′ = ∂h

∂p
(q, p, t), p′ = −∂h

∂q
(q, p, t),

(
q(0), p(0)

)
= (q0, p0) ∈ P. (1.25)

Dashes denote the derivative with respect to the time t. Note that for the total time
derivative one has

d
dth(q, p, t) = ∂h

∂t
(q, p, t).

Let us treat the time t as a new coordinate and introduce the energy E as the corre-
sponding conjugate momentum and s as a new time parameter. The new Hamiltonian
reads

k(q, p, t, E) = E + h(q, p, t).

The Hamilton equations are then

q′ = ∂k

∂p
(q, p, t, E), p′ = −∂k

∂q
(q, p, t, E),

t′ = ∂k

∂E
(q, p, t, E) = 1, E ′ = −∂k

∂t
(q, p, t, E). (1.26)

with initial conditions(
q(0), p(0)

)
= (q0, p0) and

(
t(0), E(0)

)
=
(
t0, h(q0, p0, t0)

)
.

An analogous procedure is possible in quantum mechanics and we will employ this idea
in the next Chapter.

To adjust the notation to the general scheme, as introduced at the beginning of this
Section, we also set ω1 = b, ω2 = Ω. Thus one starts from the Hamiltonian on the
extended phase space

K(ϕ, I, ε) = ω1I1 + ω2I2 + εF (ϕ, I, ε) (1.27)

where (pθ > 0)

F (ϕ, I, ε) = ω2f
′(ϕ2) arctan

 √
I1 cos(ϕ1)√

I1 + pθ − εf(ϕ2) +
√
I1 sin(ϕ1)

 . (1.28)
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If the ratio ω2/ω1 is irrational then the lattice K is trivial, K = {0}, and the von
Zeipel method amounts to the ordinary averaging method in angle variables ϕ. Now we
focus on the complementary case when

λ := ω2

ω1
= µ

ν
, with µ, ν ∈ N coprime. (1.29)

As we shall see, a resonance effect is exhibited already for the first order averaged
Hamiltonian to which we restrict our discussion.

We have
K(ϕ, I, ε) = ω1I1 + ω2I2 + εK1(ϕ, I) + ε2K̃(ϕ, I, ε)

where K̃(ϕ, I, ε) is an analytic function in ε,

K1(ϕ, I) = ω2f
′(ϕ2)F1(ϕ1, I1), F1(ϕ1, I1) = arctan

( √
I1 cos(ϕ1)√

I1 + pθ +
√
I1 sin(ϕ1)

)
.

One finds (cf. Appendix A, in particular Corollary A.3) that

F [F1(ϕ1, I1)]k = ik−1

2k

(
I1

I1 + pθ

)|k|/2

for k 6= 0, F [F1(ϕ1, I1)]0 = 0.

Obviously, the Fourier image of K1(ϕ, I) takes non-zero values only for indices (k, `)
such that k ∈ Z r {0}, ` ∈ supp F [f ]r {0}, and

F [K1(ϕ, I)](k,`) = i`ω2 F [f(ϕ2)]` F [F1(ϕ1, I1)]k.

Next we proceed to the von Zeipel canonical transformation of the first order. Set

β(J1) =
√

J1

J1 + pθ
. (1.30)

The resonant lattice is given by K = Z (µ,−ν), and one has

K1(ψ, J) =
∑
m∈K

F [K1(ψ, J)]m eim·ψ

= −ω1

2
∑

n∈Zr{0}
F [f ]−nν inµβ(J1)|n|µ ein(µψ1−νψ2). (1.31)

S1(ϕ, J) is a solution to the differential equation

ω · ∂S1

∂ϕ
= −K1 +K1.

Seeking S1(ϕ, J) in the form

S1(ϕ, J) = 2 Re
( ∞∑
k=1

F [f ′]kGk(ϕ1, J1) eikϕ2

)
(1.32)

one finally arrives at the countable system of equations(
∂

∂ϕ1
+ ikλ

)
Gk(ϕ1, J1) = λ

∑
n∈Zr{0}
n 6=−kλ

in+1

2n β(J1)|n| einϕ1 , k ≥ 1.
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For the solution we choose

Gk(ϕ1, J1) = λ
∑

n∈Zr{0}
n 6=−kλ

in

2n(n+ kλ) β(J1)|n| einϕ1 . (1.33)

Of course, if kλ /∈ Z then the restriction n 6= −kλ is void. On the other hand, if kλ ∈ Z,
and this happens if and only if k ∈ Zν, then the solution Gk(ϕ1, J1) is not unique.

Thus one finds the averaged Hamiltonian of the first order

K(1)(ψ, J) = ω1

ν
(νJ1 + µJ2) + εK1(ψ, J), (1.34)

with K1(ψ, J) being given in (1.31).

The dynamics generated by the first-order Hamiltonian
Since µ and ν are coprime there exist µ̃, ν̃ ∈ Z such that µ̃µ+ ν̃ν = 1. Put

R =
(
µ −ν
ν̃ µ̃

)
(1.35)

and consider the canonical transformation χ = Rψ, J = RTL. In particular,

χ1 = µψ1 − νψ2, L2 = νJ1 + µJ2, J1 = µL1 + ν̃L2.

The momentum L2 is an integral of motion for the Hamiltonian K(1)(ψ, J). Let us define

Z(χ1, J1) = εµK1(R−1χ, J).

Then

χ′1(t) = ε
∂K1(ψ, J)

∂J1

∂J1

∂L1
= ∂Z(χ1, J1)

∂J1
,

J ′1(t) = −ε ∂K1(ψ, J)
∂ψ1

= − 1
µ

∂Z(χ1, J1)
∂χ1

∂χ1

∂ψ1
= −∂Z(χ1, J1)

∂χ1
.

Thus the time evolution in coordinates χ1, J1 is governed by the Hamiltonian Z(χ1, J1).
Set

h(z) = −εµω1

∞∑
n=1

F [f ]−nν inµ zn (1.36)

and

%(x) = β(x)µ =
(

x

x+ pθ

)µ/2

, x > 0.

Then, by assumption (1.23), h(z) is holomorphic on the open unit disk B1 ⊂ C and
h ∈ C1

(
B1
)
. One has Z(χ1, J1) = Re

[
h
(
%(J1)eiχ1

)]
. The Hamiltonian equations of

motion read

χ′1(t) = %′(J1)
%(J1) Re[z h′(z)], J ′1(t) = Im[z h′(z)], with z = %(J1)eiχ1 . (1.37)

Concerning the asymptotic behavior of Hamiltonian trajectories (χ1(t), J1(t)), as t →
+∞, one can formulate a proposition under somewhat more general circumstances.
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Theorem 1.3: Let h ∈ C1
(
B1
)
and suppose h(z) is a nonconstant holomorphic function

on the open unit disk B1. Let % : [0,+∞[ → [0, 1[ be a smooth function such that
%′(x) > 0 for x > 0, %(0) = 0 and lim

x→+∞
%(x) = 1. Let Z(χ1, J1) be the Hamilton

function on R× ]0,+∞[ defined by

Z(χ1, J1) = Re
[
h
(
%(J1)eiχ1

)]
.

Then for almost all initial conditions (χ1(0), J1(0)) the corresponding Hamiltonian tra-
jectory fulfills

lim
t→+∞

χ1(t) = χ1(∞) ∈ R, lim
t→+∞

J1(t) = +∞, (1.38)

and
lim
t→+∞

J ′1(t) = Im
[
eiχ1(∞) h′

(
eiχ1(∞)

)]
> 0. (1.39)

Proof. Set R(z) = Re[h(z)], z ∈ B1. Then dRz ≡ (Re[h′(z)],− Im[h′(z)]). Hence
dRz = 0 if and only if h′(z) = 0, and the set of critical points of R in B1 has no
accumulation points in B1 and is at most countable. By Sard’s theorem, almost all
y ∈ R are regular values of R|∂B1. If y is a regular value both of R and R|∂B1 then
the level set R−1(y) is a compact one-dimensional C1 submanifold with boundary in B1,
∂R−1(y) = R−1(y) ∩ ∂B1 and R−1(y) is not tangent to ∂B1 at any point. Moreover,
R−1(y) ∩ B1 is a smooth submanifold of B1 [12, 11]. By the classification of compact
connected one-dimensional manifolds [11], every component of R−1(y) is diffeomorphic
either to a circle or to a closed interval. But the first possibility is excluded because
R(z) is a harmonic function. In fact, if U ⊂ B1, U is an open set, ∂U ' S1 is a smooth
submanifold of B1 and R(z) is constant on ∂U then R(z) is constant on U and so is h(z).
Consequently, h(z) is constant on B1, a contradiction with our assumptions. Thus every
component Γ of R−1(y) is diffeomorphic to a closed interval, ∂Γ = {a, b} = Γ∩∂B1, and
Γ is tangent to ∂B1 neither at a nor at b.

Let z ∈ B1 be such that dRz 6= 0. By the local submersion theorem [11], R is
locally equivalent at z to the canonical submersion R

2 → R. Hence z possesses an
open neighborhood U such that R(U) is an open interval. We know that almost every
y ∈ R(U) is a regular value both of R and R|∂B1. By the Fubini theorem, for almost
every w ∈ U , R(w) is a regular value both of R and R|∂B1. The same claim is true for
almost all w ∈ B1 because the set of critical points of R in B1 is at most countable. It
follows that for almost all (χ1, J1) ∈ R× ]0,+∞[ , R(%(J1)eiχ1) 6= R(0) is a regular value
both of R and R|∂B1.

Suppose now that an initial condition (χ1(0), J1(0)) has been chosen so that

y = R
(
%(J1(0))eiχ1(0)

)
6= R(0)

is a regular value both of R and R|∂B1. Let Γ be the component of R−1(y) containing
the point %(J1(0))eiχ1(0). Since the Hamiltonian Z(χ1, J1) is an integral of motion the
Hamiltonian trajectory z(t) = %(J1(t))eiχ1(t) is constrained to the submanifold Γ ⊂ B1.
We have to show that z(t) reaches the boundary ∂B1 as t → +∞. The tangent vector
to the trajectory at the point z(t) equals

dz(t)
dt = i%(J1(t))%′(J1(t))h′(z(t)) .
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Since 0 /∈ Γ, %′(J1) > 0 for all J1 > 0 and h′(z) has no zeroes on Γ (because y is a regular
value) it follows that z(t) leaves any compact subset of B1 in a finite time. It remains to
show that z(t) does not reach ∂B1 in a finite time. But by equations of motion (1.37),
|J ′1(t)| ≤ maxz∈∂B1 |h′(z)| and so J1(t) cannot grow faster than linearly.

This reasoning shows (1.38). From (1.37) and (1.38) it follows (1.39); one has only
to justify the sign of the limit. Obviously, the limit must be nonnegative. Denote ∂R =
R|∂B1. Then ∂R can be regarded as a function of the angle variable, ∂R(x) = Re[h(eix)],
and one has

(∂R)′
(
χ1(∞)

)
= − Im

[
eiχ1(∞) h′

(
eiχ1(∞)

)]
6= 0

because y = ∂R(χ1(∞)) is a regular value of ∂R.

As a next step, one has to apply the inverted canonical transformation, from (ψ, J)
to (ϕ, I),

ψ = ϕ+ ε
∂S1(ϕ, J)

∂J
, I = J + ε

∂S1(ϕ, J)
∂ϕ

.

Using (1.33) one can estimate (recalling that λ = µ/ν)∣∣∣∣∣∂Gk(ϕ1, J1)
∂J1

∣∣∣∣∣ ≤ λ

2 β
′(J1)

∑
n∈Zr{0}
n6=−kλ

1
|n+ kλ|

β(J1)|n|−1 ≤ µβ′(J1)
1− β(J1) .

Hence, using (1.30), ∣∣∣∣∣∂Gk(ϕ1, J1)
∂J1

∣∣∣∣∣ ≤ C
1− β(J1)
β(J1) (1.40)

where the constant does not depend on k and ϕ1, J1. To estimate |∂Gk/∂ϕ1| we need
the following lemma.
Lemma 1.4: For all β, 0 ≤ β < 1, and all a ∈ Rr Z,

sup
j∈Z

∑
n∈Z

β|n+j|

|n− a|
≤ 1

dist(a,Z) + 2 + 6| log(1− β)|, (1.41)

and for all a ∈ Z,

sup
j∈Z

∑
n∈Z
n6=a

β|n+j|

|n− a|
≤ 1 + 3| log(1− β)|. (1.42)

Proof. Notice that inequality (1.41) is invariant if a is replaced either by −a or by k+a,
k ∈ Z. Thus we can restrict ourselves to the interval 0 < a ≤ 1/2. Then |a| = dist(a,Z)
and |n − a| ≥ |n|/2. This observation reduces (1.41) to (1.42) with a = 0. Similarly,
inequality (1.42) is invariant if a is replaced by k + a, k ∈ Z. It follows that, in both
cases, it suffices to show (1.42) for a = 0 and with j being restricted to the range j ≥ 0.

Splitting the range of summation in n into the subranges n ≤ −j − 1, −j ≤ n ≤ −1
and 1 ≤ n, one gets

∑
n∈Z
n6=0

β|n+j|

|n|
≤ 2| log(1− β)|+

j∑
m=1

βj−m

m
.
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Furthermore, ∑
1≤m≤j/2

βj−m

m
≤

∑
1≤m≤j/2

βm

m
≤ | log(1− β)|

and ∑
j/2<m≤j

βj−m

m
≤

∑
j/2<m≤j

1
m
≤ 1.

This shows the lemma.

Clearly, ∣∣∣∣∣∂Gk(ϕ1, J1)
∂ϕ1

∣∣∣∣∣ ≤ λ

2
∑

n∈Z\{0}
n6=−kλ

1
|n+ kλ|

β(J1)|n| .

Writing kλ = −j − a, with j ∈ Z and a = s/ν, s = 0, 1, . . . , ν − 1, one can apply
Lemma 1.4 to show that∣∣∣∣∣∂Gk(ϕ1, J1)

∂ϕ1

∣∣∣∣∣ ≤ c′ + c′′| log(1− β(J1)) | (1.43)

where the constants c′, c′′ do not depend on k and ϕ1, J1.
Let us discuss the resonant case when ω2/ω1 = µ/ν, µ and ν are coprime positive

integers and ν is such that

supp F [f ] ∩ (Zν \ {0}) 6= ∅, (1.44)

and this happens if and only if 〈f(ϕ)〉Zν is not a constant function. Then h(z) defined in
(1.36) obeys the assumptions of Proposition 1.3 and so for almost all initial conditions
(χ1(0), J1(0)), equalities (1.38) and (1.39) hold. In particular, Theorem 1.3 implies that

1− β(J1(t)) = O(t−1) as t→ +∞. (1.45)

Putting fν(ϕ) = 〈f(ϕ)〉Zν one also has

lim
t→+∞

J1(t)
t

= Im
[
eiχ1(∞) h′

(
eiχ1(∞)

)]
= −εω2

2 f ′ν

(
−χ1(∞)

ν
− πλ

2

)
> 0. (1.46)

From definitions (1.32), (1.33) and from assumption (1.23) one can readily see that
S(ϕ, J) is C1 in ϕ2 and C∞ in ϕ1, J1 (and does not depend on J2). Moreover, from
(1.40) and (1.45) it follows that

∂S1(ϕ(t), J(t))
∂J1

= O(t−1) as t→ +∞.

Similarly, estimate (1.43) implies

∂S1(ϕ(t), J(t))
∂ϕ1

= O(log(t)) as t→ +∞.

Now one can deduce the asymptotic behavior of ϕ1(t) and I1(t). Observe that ψ′2 =
ω2 and S1(ϕ, J) does not depend on J2, hence ψ2(t) = ϕ2(t) = ω2t. Furthermore,
ψ1 = (χ1 + νψ2)/µ and so

lim
t→+∞

(ψ1(t)− ω1t) = 1
µ
χ1(∞).
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Putting φ(∞) = χ1(∞)/µ and taking into account (1.46) we arrive at the following
conclusion.
Corollary 1.5: Suppose (1.29) is true. In the resonant case (1.44) and for almost all
initial conditions (ϕ1(0), I1(0)),

lim
t→+∞

(ϕ1(t)− ω1t) = φ(∞) ∈ R, lim
t→+∞

I1(t)
t

= C > 0, (1.47)

and
C = −εω2

2 f ′ν

(
−
(
φ(∞) + π

2

)
λ
)
, with fν(ϕ) = 〈f(ϕ)〉Zν . (1.48)

Discussion of the non-resonant case
Discussion of the non-resonant case supp F [f ]∩(Zν \ {0}) = ∅ is simple if one considers
only the first order approximation. One readily deduces that the first-order von Zeipel
solution I1(t) is bounded in the non-resonant case.

Let us finish this Section with a short note concerning the higher order approxima-
tions of the Hamiltonian. In general, for ν > 1 it is true that K1(ψ, J) = 0. Also for any
ν > 1 it is possible to compute the function S1:

S1(ϕ, J) = 1
2 Re

− 2i arctan β cosϕ1

1 + β sinϕ1

+ ω1

ω1 − ω2
iβeiϕ1

2F1

(
1, 1− ω2

ω1
, 2− ω2

ω1
, iβeiϕ1

)

+ ω1

ω1 + ω2
iβe−iϕ1

2F1

(
1, 1 + ω2

ω1
, 2 + ω2

ω1
,−iβe−iϕ1

) exp(−iϕ2)

The symbol 2F1 denotes the hypergeometric function. If ν = 2, then the second term of
the approximative Hamiltonian is quite nontrivial

K2(ϕ, J) = − ω2µ(−1)µ
24pθ(1 + µ/2)β

µ+2
( 1
β
− β

)2
2F1

(
1, 1 + µ

2 , 2 + µ

2 , β
2
)

cos(µψ1 − 2ψ2)

− µω2

25pθ

( 1
β
− β

)2
β2

×

 1
1− µ/2

2F1

(
1, 1− µ

2 , 2−
µ

2 , β
2
)

+ 1
1 + µ/2

2F1

(
1, 1 + µ

2 , 2 + µ

2 , β
2
).

Again, we have one integral of motion. Following the same steps as in the end of the
last subsection, but with the matrix

R =
(
µ −2

1−µ
2 1

)
,

it follows that P2 = 2J1 + µJ2 is conserved. The transformed Hamiltonian now reads

K(χ, P ) = ω1

2 P2 + ε2K2(χ, P ) +O(ε3). (1.49)

For the level curves in the χ1, P1-plane see Figure 1.5. It appears that in this case it is
not possible to have P1 →∞. Let me just present comparison between the level curves
obtained by von Zeipel’s method and the numerical solution of the original problem, see
Figure 1.6.
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Figure 1.5: Typical level curves of Hamiltonian (1.49).

1.3 Decoupled equations and asymptotic behavior:
action-angle variables

Formulation of the problem
Applying the substitution

F (t) = 2I(t) + |a(t)|, φ(t) = ϕ(t)− bt, (1.50)

to the original equations (1.13), (1.14) we obtain the system of differential equations

F ′(t) = a(t) a′(t)
F (t) +

√
F (t)2 − a(t)2 sin(bt+ φ(t))

, (1.51)

φ′(t) = − a(t) a′(t) cos(bt+ φ(t))√
F (t)2 − a(t)2

(
F (t) +

√
F (t)2 − a(t)2 sin(bt+ φ(t))

) , (1.52)

where a(t) = pθ − εf(Ωt) (see (1.5) and (1.15)). The real function f(t) is supposed to
be continuously differentiable and 2π-periodic. Originally, ε > 0 was a small parameter

19



Π
��������
3 Π

2

2 Π

20

22

24

26

28

30

32

Χ1

P
1

Figure 1.6: Comparison of the orbits of the second order approximation (blue) and the
numerical solution of the original system (red) for q = 2. Values of various constants
are pθ = Ω = 1, b = q = 2, ε = 1/2, I1(0) = 30 and ϕ1(0) = π/2.

but this assumption is not used any more in the current Section at all. The only thing
we assume is that ε is small enough so that the function a(t) has no zeroes and hence
it is everywhere of the same sign as pθ. Recall that for definiteness pθ is supposed to be
positive. Clearly, the functions a(t) and a′(t) are bounded on R.

Equations (1.51) and (1.52) are nonlinear and coupled together. To decouple them
we replace φ(t) on the RHS of (1.51) and F (t) on the RHS of (1.52) by the respective
leading asymptotic terms, as learned from the averaging method (see Corollary 1.5).
This is done under the assumption that the solution has already reached the domain
F (t) ≥ F0 � pθ where F (t) is sufficiently large and starts to grow. Let us point out
an essential difference between equations (1.51) and (1.52). Note that for all F, a, s ∈ R
such that F ≥ |a| > 0 one has∣∣∣∣∣ a cos(s)

F +
√
F 2 − a2 sin(s)

∣∣∣∣∣ ≤ 1,
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and, consequently, it follows from (1.52) that

|φ′(t)| ≤ |a′(t)|√
F (t)2 − a(t)2

. (1.53)

This means that the RHS of (1.52) is inversely proportional to F (t). Anything similar
cannot be claimed, however, for equation (1.51).

Thus, to formulate a problem with decoupled equations, we replace φ(t) in (1.51) by
the expected limiting value φ ≡ φ(∞) ∈ R, i.e. the simplified equation reads

F ′(t) = a(t) a′(t)
F (t) +

√
F (t)2 − a(t)2 sin(bt+ φ)

. (1.54)

We first analyze this equation in next Subsection. Equation (1.52) is then analyzed in
second Subsection under the assumption that F (t) grows linearly. In that case φ(t) is
actually shown to approach a constant value as t tends to infinity.

A resonance effect for Equation (1.54)
Analyzing equation (1.54) we prefer to work with a rescaled time (or one can choose the
units so that b = 1) and, simplifying the notation, we consider a differential equation of
the form

g′(t) = %(t)
g(t) +

√
g(t)2 − a(t)2 sin(t+ φ)

(1.55)

where %(t), a(t) are continuously differentiable real functions, a(t) is strictly positive
and φ is a real constant. In the resonant case the functions %(t), a(t) are supposed to
be 2π-periodic which means for the original data that Ω ∈ N.

In the first step we estimate the growth of a solution on an interval of length π/2.
Let ‖f‖ = max |f(t)| denote the norm in C([0, π/2]), and put

A = min
0≤t≤π/2

a(t) > 0. (1.56)

Consider for a moment the differential equation

h′(t) = %(t)
h(t)−

√
h(t)2 − a(t)2 cos(t)

(1.57)

on the interval [0, π/2] with an initial condition h(0) = h0 > ‖a‖. The goal is to show
that for large values of h0, an essential contribution to the growth of a solution h(t) on
this interval comes from a narrow neighborhood of the point t = 0.
Remark 1.6: If %(t) is nonnegative on the interval [0, π/2] then a solution h(t) to
(1.57) surely exists and is unique. In the general case the existence and uniqueness is
guaranteed provided the initial condition h0 is sufficiently large. From (1.57) one derives
that |h′(t)| ≤ 2‖%‖h(t)/A2 and so

exp
(
−2‖%‖t/A2

)
h0 ≤ h(t) ≤ exp

(
2‖%‖t/A2

)
h0 (1.58)

as long as h(t) makes sense. Consequently, a sufficient condition for existence of a
solution is h0 > exp(π‖%‖/A2).
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Figure 1.7: Illustration of the kicked behaviour of solutions of equation (1.57). Our
particular choice of parameters is h(0) = 50, a(t) = 5 + cos t+ 1

3 sin(2t)− 1
2 sin(3t), and

ρ(t) = cos(2t).

Lemma 1.7: Let %, a ∈ C1([0, π/2]) be real functions, %(0) 6= 0 and a(t) > 0 on [0, π/2].
Consider the set of solutions h(t) to the differential equation (1.57) on the interval [0, π/2]
with a variable initial condition h(0) = h0 for h0 sufficiently large. Then

h
(
π

2

)
= h0 + π%(0)

a(0) +O
(
h−1

0 log(h0)
)

as h0 → +∞.

Proof. Let us fix η, 0 < η ≤ π/2, so that |%(t)| > 0 on the interval [0, η [ , i.e. %(t) does
not change its sign on that interval. Thus any solution h(t) to (1.57) is strictly monotone
on [0, η]. For η ≤ t ≤ π/2 one can estimate |h′(t)| ≤ C/h(t) where C = ‖%‖/(1−cos(η)).
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In view of (1.58) it follows that

h(π/2)− h(η) = O
(
h −1

0

)
as h0 → +∞. (1.59)

Set
h1 = min{h(0), h(η)}, h2 = max{h(0), h(η)}, ∆ = h(η)− h0.

Then |∆| = h2 − h1. Set, for x ≥ a > 0,

Ψ(x, a, t) = 1
x−
√
x2 − a2 cos(t)

.

One has h′(t) = %(t) Ψ(h(t), a(t), t). If x ≥ 2u/
√

3>0 then
√
x2 − u2 ≥ x/2 and

∣∣∣∣∣ ∂∂xΨ(x, u, t)
∣∣∣∣∣ =

∣∣∣√x2 − u2 − x cos(t)
∣∣∣

√
x2 − u2

(
x−
√
x2 − u2 cos(t)

)2 ≤ 2
x

Ψ(x, u, t), (1.60)

∣∣∣∣∣ ∂∂uΨ(x, u, t)
∣∣∣∣∣ = u cos(t)

√
x2 − u2

(
x−
√
x2 − u2 cos(t)

)2 ≤ 3
u

Ψ(x, u, t). (1.61)

Observe also that, for x ≥ u > 0,
∫ π/2

0
Ψ(x, u, t) dt = 2

u
arctan

(
x+
√
x2 − u2

u

)
≤ π

u
. (1.62)

Assuming that h0 is sufficiently large and using (1.60), (1.62) one can estimate∣∣∣∣∆− ∫ η

0
%(t)Ψ(h0, a(t), t) dt

∣∣∣∣ ≤ ∫ η

0
|%(t)| |Ψ(h(t), a(t), t)−Ψ(h0, a(t), t)| dt

≤ 2‖%‖
h1

∫ π/2

0

(∫ h2

h1
Ψ(x,A, t) dx

)
dt

≤ 2π‖%‖
Ah1

|∆|.

In view of (1.58) it follows that

∆ =
(
1 +O(h−1

0 )
) ∫ η

0
%(t)Ψ(h0, a(t), t) dt.

Furthermore, with the aid of (1.61) one finds that

|%(t)Ψ(h0, a(t), t)− %(0)Ψ(h0, a(0), t)| ≤ C ′Ψ(h0, A, t)t

where

C ′ =
(

1 + 9‖%‖2

A2

)1/2√
‖%′‖2 + ‖a′‖2 .

Note that∫ η

0
Ψ(h0, A, t) t dt ≤

π

2

∫ π/2

0

sin(t)
h0 −

√
h 2

0 − A2 cos(t)
dt = O

(
h−1

0 log(h0)
)
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and ∫ η

0
%(0)Ψ(h0, a(0), t) dt = %(0)

∫ π/2

0
Ψ(h0, a(0), t) dt+O

(
h−1

0

)

= 2%(0)
a(0) arctan

h0 +
√
h 2

0 − a(0)2

a(0)

+O
(
h−1

0

)

= π%(0)
a(0) +O

(
h−1

0

)
.

Altogether this means that

h(η)− h0 = ∆ = π%(0)
a(0) +O

(
h−1

0 log(h0)
)
.

Recalling (1.59), the lemma follows.

Consider the mapping H : h(0) 7→ h(π/2), where h(t) runs over solutions to the
differential equation (1.57). From the general theory of ordinary differential equations
it is known that H is a C1 mapping well defined on a neighborhood of +∞. Lemma 1.7
claims that H(x) = x+ π%(0)/a(0) +O(x−1 log(x)). On the basis of similar arguments,
the inverse mapping H−1 : h(π/2) 7→ h(0) is also well defined and C1 on a neighborhood
of +∞. From the asymptotic behavior of H(x) one readily derives that H−1(y) =
y − π%(0)/a(0) + O(y−1 log(y)). These considerations make it possible to reverse the
roles of the boundary points 0 and π/2. Moreover, splitting the interval [0, 2π] into four
subintervals of length π/2 one arrives at the following lemma.
Lemma 1.8: Let %, a ∈ C1([0, 2π]) be real functions, %(π) 6= 0 and a(t) > 0 on [0, 2π].
Consider the set of solutions h(t) to the differential equation

h′(t) = %(t)
h(t) +

√
h(t)2 − a(t)2 cos(t)

on the interval [0, 2π] with a variable initial condition h(0) = h0 for h0 sufficiently large.
Then

h(2π) = h0 + 2π%(π)
a(π) +O

(
h−1

0 log(h0)
)

as h0 → +∞.

In the next step, applying repeatedly Lemma 1.8 one can show that solutions of the
simplified differential equation in the resonant case Ω ∈ N (with b = 1) are unbounded
and grow with time at least linearly provided the initial condition is sufficiently large
and the phase φ belongs to a certain interval.
Proposition 1.9: Suppose %(t), a(t) are continuously differentiable 2π-periodic real
functions, φ ∈ R, a(t) is everywhere positive and

%
(
−φ− π

2

)
> 0. (1.63)

Let g(t) be a solution of the differential equation (1.55) on the interval t ≥ 0 with the
initial condition g(0) = g0 ≥ 1. If g0 is sufficiently large then

g(t) =
%
(
−φ− π

2

)
a
(
−φ− π

2

) t+O
(
log(t)2

)
as t→ +∞.
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To return back to the original notation and equation (1.54) one can apply the sub-
stitution F (t) = g(bt), a(t) = ã(bt), %(t) = ã(t)ã′(t). Equation (1.54) transforms into
(1.55) (with a(t) being replaced by ã(t)), and Proposition 1.9 is directly applicable.
Corollary 1.10: Suppose f ∈ C2(R) is 2π-periodic and

Ω
b
∈ N, f ′

(
−Ω
b

(
φ+ π

2

))
< 0. (1.64)

Then any solution of (1.54) such that F (0) is sufficiently large fulfills

F (t) = εΩ
∣∣∣∣∣f ′
(
−Ω
b

(
φ+ π

2

))∣∣∣∣∣ t+O
(
log(t)2

)
as t→ +∞.

To conclude let us emphasize that the replacement of the phase φ(t) by a constant
φ was quite crucial for the estimates. In fact, suppose F (t) is sufficiently large. Then
in the case of the original equation (1.51), too, essential contributions to the growth of
F (t) are achieved at the moments of time when sin(bt + φ(t)) = −1. If φ(t) equals a
constant then these moments of time are well defined and the growth of F (t) can be
estimated. On the contrary, without a sufficiently precise information about φ(t) one
loses any control on the growth of F (t).

An analysis of equation (1.52)
On the contrary, here we wish to verify that if F (t) grows linearly, possibly with a
logarithmic correction, then any solution φ(t) to (1.52) approaches sufficiently rapidly a
constant value as t tends to infinity. At this moment, the periodicity of the functions a(t)
is not important. It suffices if one knows that it takes values from a bounded interval
separated from zero.
Proposition 1.11: Suppose a(t) ∈ C1(R) fulfills

0 < A1 ≤ a(t) ≤ A2, |a′(t)| ≤ A3,

for some positive constants A1, A2, A3. Furthermore, suppose F (t) ∈ C(R) has the
asymptotic behavior

F (t) = αt+O
(
log(t)2

)
as t→ +∞, (1.65)

with a positive constant α. Under these assumptions, if φ(t) obeys the differential
equation (1.52) on a neighborhood of +∞ then there exists a finite limit limt→+∞ φ(t) =
φ(∞) and

φ(t) = φ(∞) +O

(
log(t)
t

)
as t→ +∞. (1.66)

Proof. Put ζ(t) = bt− φ(t). Recall that φ′(t) obeys the estimate (1.53). Choose t∗ ∈ R
such that

|φ′(t)| ≤ b

2 , ∀t ≥ t∗,
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hence the function ζ(t) is strictly increasing and b/2 ≤ ζ ′(t) ≤ 3b/2. Moreover, we
choose t∗ sufficiently large so that

F (t+ s) ≤
√

2F (t) for 0 ≤ s ≤ 3πb, and F (t) ≥
√

2A2, ∀t ≥ t∗. (1.67)

Fix ` ∈ N such that ζ(2π(` + 1)) ≥ t∗. Put τk = ζ(2π(` + k)), k ∈ N. Note that
πb ≤ τk+1 − τk ≤ 3πb. For a given k ∈ N put

F1 = min
t∈[τk,τk+1]

F (t), F2 = max
t∈[τk,τk+1]

F (t).

One has ∫ τk+1

τk

|φ′(t)| dt ≤

≤ 2
b

∫ ζ(2π(`+k+1))

ζ(2π(`+k))
|φ′(t)|ζ ′(t) dt ≤ 2A2A3

b
√
F 2

1 − A2
2

∫ 2π(`+k+1)

2π(`+k)

| cos s|
F̃ (s) +

√
F̃ (s)2 − ã(s)2 sin s

ds

where F̃ = F ◦ ζ−1 and ã = a ◦ ζ−1. Put M+ = 2π(` + k) + [ 0, π ] and M− =
2π(`+ k) + [ π, 2π ]. One has∫

M+

| cos s|
F̃ (s) +

√
F̃ (s)2 − ã(s)2 sin s

ds ≤ 2
∫ π/2

0

cos s
F1 +

√
F 2

1 − A 2
2 sin s

ds ≤ 2 log 2√
F 2

1 − A 2
2

.

For s ∈M− one can estimate

1
F̃ (s) +

√
F̃ (s)2 − ã(s)2 sin s

≤
F2 +

√
F 2

2 − A 2
1 | sin s|

F 2
1 cos2 s+ A 2

1 sin2 s
<

2
F1 +

√
F 2

1 − A 2
1 sin s

where we have used that
F2√

F 2
2 − A 2

1

≤ F1√
F 2

1 − A 2
1

, F 2
2 − A 2

1 ≤ 2F 2
1 − A 2

1 ≤ 4F 2
1 − 5A 2

1 < 4(F 2
1 − A 2

1 ),

as it follows from (1.67). Thus one arrives at the estimates∫
M−

| cos s|
F̃ (s) +

√
F̃ (s)2 − ã(s)2 sin s

ds ≤ 4
∫ π/2

0

cos s
F1 −

√
F 2

1 − A 2
1 sin s

ds

≤ 4√
F 2

1 − A 2
1

log
(

2F 2
1

A 2
1

)

and ∫ τk+1

τk

|φ′(t)| dt ≤ 32A2A3

bF 2
1

log
(2F1

A1

)
.

Referring to the asymptotic behavior (1.65) one concludes that there exists a constant
C∗ > 0 such that∫ ∞

τ1
|φ′(t)| dt =

∞∑
k=1

∫ τk+1

τk

|φ′(t)| dt ≤ C∗
∞∑

j=`+1

log(j)
j2 <∞.

Hence the limit limt→+∞ φ(t) = φ(∞) ∈ R does exist and (1.66) follows.
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Asymptotic behavior of the original dynamical system
Corollary 1.10 and Proposition 1.11 can also be interpreted in the following way. Let us
pass from the differential equations (1.51), (1.52) to the integral equations

F (t)− F (0)−
∫ t

0

a(s) a′(s)
F (s) +

√
F (s)2 − a(s)2 sin(bs+ φ(s))

ds = 0,

φ(t)− φ(∞)−
∫ ∞
t

a(s) a′(s) cos(bs+ φ(s))√
F (s)2 − a(s)2

(
F (s) +

√
F (s)2 − a(s)2 sin(bs+ φ(s))

) ds = 0.

Suppose φ(∞) satisfies α = −εΩf ′(−(Ω/b)(φ(∞) + π/2)) > 0. If F (0) is sufficiently
large then the functions

F (t) = αt+ F (0), φ(t) = φ(∞), t > 0,

can be regraded as an approximate solution of this system of integral equations with
errors of order O(log(t)2) for the first equation and of order O(log(t)/t) for the second
one.

One has to admit, however, that this argument still does not represent a complete
mathematical proof of the asymptotic behavior of the action-angle variables I(t) =
(F (t)−|a(t)|)/2, ϕ(t) = bt+φ(t). Moreover, it should be emphasized that these relations
were derived under the essential assumption that the dynamical system had already
reached the regime characterized by an acceleration with an unlimited energy growth
(this is reflected by the assumption that F (0) is sufficiently large). Nevertheless, on the
basis of the above analysis as well as on the basis of numerous numerical experiments
we formulate the following conjecture.
Conjecture 1.12: If Ω/b ∈ N then the regime of acceleration for the original (true)
dynamical system is described by the asymptotic behavior

I(t) = Ct+O
(
log(t)2

)
, ϕ(t) = bt+ φ(∞) +O

(
log(t)
t

)
as t→ +∞, (1.68)

where φ(∞) is a real constant and

C = −1
2 εΩf

′(−ξ) > 0, with ξ = Ω
b

(
φ(∞) + π

2

)
. (1.69)

1.4 Asymptotic behavior: guiding center
coordinates

Given the asymptotic relations (1.68), (1.69) it is desirable to describe the accelerated
motion in terms of the original Cartesian coordinates q. The description becomes more
transparent if the motion is decomposed into a motion of the guiding center X and a
relative motion of the particle with respect to this center which is characterized by a
gyroradius vector R and a gyrophase ϑ [21]. Let v = p − A be the velocity. Thus we
write q = X +R where, by definition,

X = q + 1
b
v⊥, R = q −X = −1

b
v⊥. (1.70)
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We use the polar decompositions

q = r (cos θ, sin θ), X = |X|(cosχ, sinχ), R = |R|(cosϑ, sinϑ). (1.71)

q1

q2

X
χ

R
ϑ

Figure 1.8: The guiding center coordinates.

The quantitiesX, R were introduced (under different names) and studied in [6] where
one can also find several formulas given below, notably those given in (1.72). Note that
p · q⊥ = pθ, |p|2 = p 2

r + p 2
θ /r

2. A direct computation yields

|R|2 − |X|2 = 2a
b
,

|v|2 = p 2
r + b2r2

4 + a2

r2 + ba.

Using (1.10), (1.11) one derives the equalities

|X|2 = 1
b

(2I + |a| − a), |R|2 = 1
b

(2I + |a|+ a) (1.72)

and
r =

(
|X|2 + |R|2 + 2|X||R| sin(ϕ)

)1/2
, pr = b

r
|X||R| cos(ϕ). (1.73)

On the other hand, one has

r2 = |X|2 + |R|2 + 2X ·R = 2
b

(
2I + |a|+ 2

√
I(I + |a|) cos(ϑ− χ)

)
. (1.74)

By comparison of (1.74) with (1.73) one finds that

ϑ = ϕ+ χ− π

2 (mod 2π). (1.75)

Observe from (1.72) that if a(t) is an everywhere positive function then |R(t)| > |X(t)|
and so the center of coordinates always stays in the domain encircled by the spiral-like
trajectory. On the contrary, if a(t) is an everywhere negative function then the center
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of coordinates is never encircled by the trajectory. This can be nicely seen in Figures
1.1 and 1.2.

From (1.72) and (1.68) one deduces the asymptotic behavior

|X| =
√

2Ct
b

+O

(
log(t)2
√
t

)
,

|R| =
√

2Ct
b

+O

(
log(t)2
√
t

)
as t→ +∞. (1.76)

We still need some information about the asymptotic behavior of the phase χ(t). To
this end, let us compute the derivative χ′(t). This can be done by differentiating the
equality

r (cos θ, sin θ) = |X|(cosχ, sinχ) + |R|(cosϑ, sinϑ)
and then taking the scalar product with the vector (− sin θ, cos θ). One has

θ′ = ∂H

∂pθ
= a

r2 + b

2

where H is the Hamiltonian (1.4) expressed in polar coordinates. Furthermore, in view
of (1.75), ϑ′ = χ′ + ϕ′. After some straightforward manipulations one finally arrives at
the differential equation

χ′ = |R|a
′ cosϕ

|X|br2 . (1.77)

Equation (1.77) admits an asymptotic analysis with the aid of similar methods as
those used in Section 1.3. In order to spare some space we omit the details. We still
assume that Ω/b ∈ N. Recalling (1.68), (1.69) one observes that the main contribution
to the growth of χ(t) over a period T = 2π/b equals

χ((n+ 1)T )− χ(nT ) ∼ 1
4CnT lim

α→0

∫ T

0

a′(t) cos(bt+ φ(∞))
1 +
√

1− α2 sin(bt+ φ(∞))
dt.

Proceeding this way one finally concludes that

χ(t) = D log(t) + χ(∞) + o(1) as t→ +∞ (1.78)

where χ(∞) is a real constant and

D = 1
4πf ′(−ξ)

∫ π

0

(
f ′
(

Ω
b
t− ξ

)
− f ′

(
−Ω
b
t− ξ

))
sin(t)

1− cos(t) dt.

Given the Fourier series f ′(t) = ∑∞
k=1 (ak cos(kt) + bk sin(kt)) one can also express

D = 1
2

∞∑
k=1

(ak sin(kξ) + bk cos(kξ))
/ ∞∑

k=1
(ak cos(kξ)− bk sin(kξ)) .

Thus (1.68), (1.78) and (1.75) imply that

ϑ(t) = bt+D log(t) + φ(∞) + χ(∞)− π

2 + o(1) as t→ +∞. (1.79)
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Relations (1.76), (1.78) and (1.79) give a complete information about the asymptotic
behavior of the trajectory q(t) = X(t) +R(t). The length of the guiding center position
vector and that of the gyroradius vector are almost equal and grow with the square
root of t, and |X(t)|2 − |R(t)|2 = −2a(t)/b. The gyrophase ϑ(t) grows linearly with the
frequency b while the growth of the phase of the guiding center, χ(t), is only logarithmic
and so comparatively very slow.

Finally let us state a formula for the acceleration rate using now all physical constants
(including m and e). One has

γacc = − e

2π lim
T→∞

1
T

∫ T

0
Θ′(t)Φ′(t)dt, with Θ′(t) = ωc|a|

2
(
2I + |a|+ 2

√
I(I + |a|) sinϕ

) .
Applying Conjecture 1.12 we find (to lowest order in the flux amplitude) the positive
acceleration rate

γacc = −eωc4π Φ′
(
− 1
ωc

(
ϕ(∞) + π

2

))
> 0. (1.80)

Moreover, by equation (1.76) one has for the guiding center |X(t)|2 ∼ 2γacct/(mω 2
c ).
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Chapter 2

Quantum Mechanics
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2.1 Introduction
Now we consider a quantum point particle of mass m and charge e moving on the plane
in the presence of a homogeneous magnetic field of magnitude b; here all constants
m, e, b are supposed to be positive. Assume further that the particle is driven by an
Aharonov-Bohm magnetic flux concentrated along a line intersecting the plane in the
origin and whose strength Φ(t) is oscillating with frequency Ω. Let us study this model
in the framework of the non-relativistic quantum mechanics.

In the time-independent case, the Hamiltonian corresponding to a homogeneous mag-
netic field and a constant Aharonov-Bohm flux of magnitude Φ0 has the form

~
2

2m

−1
r
∂rr∂r + 1

r2

(
−i∂θ −

eΦ0

2π~c + eBr2

2~c

)2


where (r, θ) are polar coordinates on the plane. So the Hilbert space in question is
L2(R+× R, r dr dθ).

It is convenient to set ~ = m = e = 1.
Making use of the rotational symmetry of the model we restrict ourselves to a fixed

eigenspace of the angular momentum J3 = −i∂θ with an eigenvalue j3, j3 ∈ Z. Put
p := j3 − Φ0/(2π). Then this restriction leads to the radial Hamiltonian

H(p) = 1
2

−1
r
∂rr∂r + 1

r2

(
p+ br2

2

)2


in the Hilbert space H = L2(R+, r dr). Without loss of generality, we can assume
that p > 0 (note that H(−p) − H(p) is a constant). The boundary conditions at the
origin are chosen to be the regular ones (then H(p) is the so called Friedrichs self-adjoint
extension of the symmetric operator defined on smooth functions with compact support,
see Appendix B). If 0 < p < 1, then more general boundary conditions are admissible
[9], but here we confine ourselves to the above standard choice.

Note that the cyclotron frequency ωc is equal to b. The operator H(p) has a simple
discrete spectrum, the eigenvalues are

En(p) = b(n+ p+ 1/2), n = 0, 1, 2, . . . , (2.1)

with the corresponding normalized eigenfunctions

ψn(p; r) = cn(p) rp L(p)
n

(
br2

2

)
exp

(
−br

2

4

)
, n = 0, 1, 2, . . . ,

where

cn(p) =
(
b

2

)(p+1)/2 ( 2n!
Γ(n+ p+ 1)

)1/2

, n = 0, 1, 2, . . . ,

are the normalization constants and L(p)
n are the generalized Laguerre polynomials. The

set {ψn(p)}∞n=0 forms an orthonormal basis of L2(R, r dr). This information determines
the operator H(p) unambiguously.
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Next we consider the periodically time-dependent Hamiltonian H(a(t)) where a(t) =
p+εf(Ωt), f(t) is a 2π-periodic continuously differentiable function, Ω > 0 is a frequency
and ε is a small parameter. Thus the Aharonov-Bohm flux depends on time as

Φ(t) = Φ0 − 2πε f(Ωt). (2.2)

Without loss of generality one can assume that
∫ 2π
0 f(t)dt = 0. As discussed in [4],

the domain of H(a(t)) in principle depends on t which makes the discussion from the
mathematical point of view more delicate, particularly in the case 0 < a(t) < 1. But
here we ignore these mathematical subtleties.

This model has already been studied in the framework of classical mechanics in [5],
and Chapter 1 of this thesis. It turns out that in the resonant case, when Ω is an integer
multiple of ωc, the classical trajectory eventually reaches an asymptotic domain where it
resembles a spiral whose circles expand, as t approaches infinity, with the rate t1/2. As
the particle moves along the circles of the spiral-like orbit, approximately with frequency
ωc, the extremal distances to the origin converge to zero and to infinity, respectively. At
the same time, the energy of the particle grows linearly with time. If E(t) is the energy
of the particle depending on time, then the acceleration rate, as computed in Chapter 1
is given by the formula

γacc := lim
t→∞

E(t)
t

= ωc
4π |Φ

′(τ)|, (2.3)

where τ is a real number depending on asymptotic parameters of the trajectory.
The purpose of this Chapter is to show that in the framework of quantum mechanics

one can derive a formula analogous to (2.3). To this end and because of complexity of the
problem, we restrict ourselves to the case when f(t) is a sinusoidal function. Moreover,
we study in fact an approximate time evolution which we derive with the aid of the
quantum averaging method.

2.2 The Floquet operator and the quasienergy
Let U(t, t0) be the propagator (evolution operator) associated with H(a(t)). Without
going into details, we take its existence and natural properties for granted [4]. An
important characteristic of the dynamical properties of the system is the time evolution
over a period which is described by the Floquet (monodromy) operator U(T, 0), with
T = 2π/Ω. Our goal is to study the asymptotic behavior of the mean value of the energy〈

U(T, 0)Nψ,H(p)U(T, 0)Nψ
〉

for an initial condition ψ as N tends to infinity. We focus on the resonant case when
Ω = µωc for some natural number µ.

A basic tool in the study of time-dependent quantum systems is the quasienergy op-
erator K. It is nothing but the full Schrödinger operator (including the time derivative);
thus we put K = −i∂t +H(a(t)). It acts in the so called extended Hilbert space which
is in our case K = L2

(
(0, T )× R+, r dt dr

)
, and the time derivative is taken with the

periodic boundary conditions. In general, this is a way, very similar to the approach
usually applied in classical mechanics, how to pass from a time-dependent system to an
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autonomous one1. The price to be paid for it is that one has to work with more complex
operators in the extended Hilbert space.

An important property of the quasienergy consists in its close relationship to the
Floquet operator [13, 25]. In more detail, if ψ(t, r) ∈ K is an eigenfunction or a gener-
alized eigenfunction of K, Kψ = ηψ, which also implies that ψ(t+ T, r) = ψ(t, r), then
the wave function e−iηtψ(t, r) solves the Schrödinger equation with the initial condition
ψ0(r) = ψ(0, r). It follows that U(T, 0)ψ0 = e−iηTψ0. Thus from the spectral decom-
position of the quasienergy one can deduce the spectral decomposition of the Floquet
operator.

Let K0 = −i∂t +H(p) be the unperturbed quasienergy operator. Its complete set of
normalized eigenfunctions is{

T−1/2eimΩtψn(p; r); m ∈ Z, n ∈ N0
}

with the corresponding eigenvalues mΩ + En(p). Thus K0 has a pure point spectrum
which is in the resonant case (Ω = µωc) infinitely degenerated. To take into account these
degeneracies we perform the following transformation of indices. Denote by [x] and {x}
the integer and the fractional part of a real number x, respectively, i.e. x = [x] + {x},
[x] ∈ Z and 0 ≤ {x} < 1. Furthermore, let ρ(µ, k) = µ {k/µ} be the remainder in
division of an integer k by µ. The transformation of indices we wish to apply is a one-
to-one map of Z×N0 onto itself sending (m,n) to (k, `), with k = µm+n and ` = [n/µ],
and conversely,

m = m(k, `) := [k/µ]− `,
n = n(k, `) := µ`+ ρ(µ, k).

Using the new indices (k, `) we put

Ψk,`(p; t, r) = T−1/2 eim(k,`)Ωt ψn(k,`)(p; r).

Then the vectors Ψk,`, (k, `) ∈ Z × N0, form an orthonormal basis in the extended
Hilbert space K . For a fixed integer k ∈ Z let Pk be the orthogonal projection onto the
subspace in K spanned by the vectors Ψk,`, ` ∈ N0. Then

K0 =
∑
k∈Z

λkPk where λk = ωc(k + p+ 1/2).

Furthermore, using the basis {Ψk,`} one can identify K with the Hilbert space
`2(Z× N0). In particular, partial differential operators in the variables t and r like the
quasienergy are identified in this way with matrix operators. In the sequel we denote
matrix operators by bold uppercase letters.

2.3 The quantum averaging method
The full quasienergy operator K = K(ε) depends on the small parameter ε. Let us write
K(ε) as a formal power series, K(ε) = K0 + εK1 + ε2K2 + . . .. In our case,

K1 = f(Ωt)ωc
(

p

r2ωc
+ 1

2

)
, K2 = f(Ωt)2

2r2 ,

1We have already mentiond this classical approach in Chapter 1, Section 1.2.
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and K3 = K4 = . . . = 0. The ultimate goal of the quantum averaging method in the case
of resonances is a unitary transformation resulting in a partial (block-wise) diagonaliza-
tion of K(ε). Thus one seeks a skew-Hermitian operator W (ε) so that eW (ε)K(ε)e−W (ε)

commutes with K0 which is the same as saying that it commutes with all projections Pk.
This goal is achievable in principle through an infinite recurrence which in reality should
be interrupted at some step. Here we shall be content with the first order approximation.

Let us introduce the (block-wise) diagonal part of an operator A in K as diagA :=∑
k∈Z PkAPk. Thus diagA surely commutes with K0. The off-diagonal part is then

defined as offdiagA := A−diagA. Developing formally in ε one hasW (ε) = εW1+O(ε2)
and

eW (ε)K(ε)e−W (ε) = K0 + εK1 + ε [W1, K0] +O(ε2).

Choosing W1 as
W1 =

∑
k1, k2
k1 6=k2

(λk1 − λk2)−1Pk1K1Pk2

one has [W1, K0] = − offdiagK1 and

eW (ε)K(ε)e−W (ε) = K0 + ε diagK1 +O(ε2).

The solution W1 is also expressible in terms of an averaging integral, and this explains
the name of the method [23, 16].

After switching on the perturbation, any unperturbed eigenvalue λk gives rise to a
perturbed spectrum which, in the first order approximation, equals the spectrum of the
operator λk + εPkK1Pk in RanPk ⊂ K . If the degeneracy of λk is infinite then the
character of the perturbed spectrum may be arbitrary, depending on the properties of
PkK1Pk. The corresponding perturbed (generalized) eigenvectors span a subspace which
is the range of the orthogonal projection

Pk(ε) := e−W (ε)Pke
W (ε) = Pk − ε [W1, Pk] +O(ε2)

= Pk − ε (SkK1Pk + PkK1Sk) +O(ε2)

where Sk = ∑
`,` 6=k(λ` − λk)−1P` is the reduced resolvent of K0 taken at the isolated

eigenvalue λk. Thus the first order averaging method is in fact nothing but the stan-
dard quantum perturbation method in the first order but accomplished on the extended
Hilbert space simultaneously for all eigenvalues of K0 (compare to [18, Chp. II§2]).

Our strategy in the remainder of the chapter is based on replacing the true quasi-
energy K(ε) by its first order approximation K(1) := K0 + ε diagK1 and, consequently,
U(T, 0) will be replaced by an approximate Floquet operator U(1) associated with K(1).

2.4 The approximate Floquet operator
To determine the approximate Floquet operator U(1) one has to solve the spectral prob-
lem for K(1). To this end, as already pointed out above, one can employ the orthonor-
mal basis {Ψk`} in order to identify operators in K with infinite matrix operators in
`2(Z×N0). Let {e1

k; k ∈ Z} denote the standard basis in `2(Z), and {e2
` ; ` ∈ N0} denote

the standard basis in `2(N0). It is convenient to write `2(Z× N0) as the tensor product
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of Hilbert spaces `2(Z)⊗ `2(N0) which also means identification of the standard basis in
`2(Z× N0) with the set of vectors {e1

k ⊗ e2
` ; (k, `) ∈ Z× N0}.

Let P k be the orthogonal projector onto the one-dimensional subspace Ce1
k ⊂ `2(Z).

Then the matrix operator K(1) corresponding to K(1) takes the form

K(1) =
∑
k∈Z

P k ⊗ (λk + εAk)

where Ak is a matrix operator in `2(N0) with the entries

(Ak)`1,`2 = 〈Ψk,`1 , K1Ψk,`2〉 .

To compute the matrix entries one observes that

〈Ψk,`1 , K1Ψk,`2〉 = F [f ](`2 − `1)

×
〈
ψn(k,`1)(p), (∂H(p)/∂p)ψn(k,`2)(p)

〉
where F [f ](r) = (2π)−1 ∫ 2π

0 e−ir·sf(s) ds stands for the rth Fourier coefficient of f .
Recall that, by our assumptions, F [f ](0) = 0. Moreover, for `1 6= `2 one has〈

ψn(k,`1)(p), H(p)ψn(k,`2)(p)
〉

= 0.

Differentiating this identity with respect to p and using the explicit formulas for the
scalar products 〈ψn1(p), ∂ψn2(p)/∂p〉 derived in [4] one finally obtains the relation

(Ak)`1,`2 = ωc
2 F [f ](`2 − `1) min

{
γ(p;n(k, `2))
γ(p;n(k, `1)) ,

γ(p;n(k, `1))
γ(p;n(k, `2))

}

where γ(p;n) :=
(
Γ(n+ p+ 1)/n!

)1/2
.

Note that n(k, `) is µ–periodic in the integer variable k and so is the matrix Ak,
i.e. Ak+µ = Ak. Moreover, since µωc = 2π/T one also has e−iλk+µT/~ = e−iλkT/~.
For an integer s, 0 ≤ s < µ, let Hs be the closed subspace in the original Hilbert
space H = L2(R+, r dr) spanned by the vectors ψs+jµ(r), j = 0, 1, 2, . . .. Then H =
H0 ⊕H1 ⊕ . . . ⊕Hµ−1 and from the relationship between K(1) and U(1), as recalled
above, it follows that every subspace Hs is invariant with respect to U(1).

In the example which we study below in more detail (for a particular choice of f(t)),
the matrix operators As have purely absolutely continuous spectra. For the sake of
simplicity of the notation let us confine ourselves to this case. For a fixed index s as
above, suppose that all generalized eigenvectors and eigenvalues of As are parametrized
by a parameter θ ∈ (as, bs). Let us call them xs(θ) and ηs(θ), respectively, i.e. Asxs(θ) =
ηs(θ)xs(θ), and write xs(θ) = (ξs;0(θ), ξs;1(θ), ξs;2(θ), . . .). The generalized eigenvectors
xs(θ) are supposed to be normalized to the δ function, i.e. 〈xs(θ1),xs(θ2)〉 = δ(θ1− θ2),
which in fact means that ξs;`(θ) as a function in the variables ` ∈ N0 and θ ∈ (as, bs)
is a kernel of a unitary mapping between the Hilbert spaces `2(N0) and L2((as, bs), dθ).
Thus the spectral decomposition of As reads: ∀v ∈ `2(N0),

Asv =
∫ bs

as
ηs(θ)〈xs(θ),v〉xs(θ) dθ.
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Put
ϕs(θ, r) =

∞∑
j=0

ξs;j(θ)ψs+jµ(p; r). (2.4)

Then again, ∫ ∞
0

ϕs(θ1, r)ϕs(θ2, r) rdr = δ(θ1 − θ2)

and for all ψ(r) ∈Hs

U(1)ψ(r) = e−2πi(s+p+1/2)/µ

×
∫ bs

as
e−iε ηs(θ)T/~〈ϕs(θ, ·), ψ(·)〉ϕs(θ, r) dθ. (2.5)

2.5 Example: f (t) = cos(t)
We still assume that s ∈ {0, 1, . . . , µ − 1} is fixed. In the remainder of the paper we
discuss the example when f(t) = cos(t). In that case an immediate computation gives

(As)j1,j2 = ωc
4 δ|j1−j2|,1

( µ∏
ν=1

µj< + s+ ν

µj< + s+ p+ ν

)1/2

.

where j< = min{j1, j2}.
Thus As is a Jacobi (tridiagonal) matrix with zero diagonal, i.e. a matrix of the type

(ωc/4)J where

J =



0 α0 0 0 . . .
α0 0 α1 0 . . .
0 α1 0 α2 . . .
0 0 α2 0 . . .
... ... ... ... . . .

, (2.6)

with the matrix entries αj being positive for all j. This is an elementary fact that the
spectrum of J is simple since any eigenvector or generalized eigenvector is unambigu-
ously determined by its first entry. Moreover, one observes, while applying the unitary
transformation determined by the diagonal matrix with the diagonal {1,−1, 1,−1, . . .},
that the matrices J and −J are unitarily equivalent, and so the spectrum of J is sym-
metric with respect to the origin.

In our case, αj = 1 − p/(2j) + O(j−2) as j → ∞. Hence J is rather close to the
“free” Jacobi matrix J0 for which αj = 1 for all j. The spectral problem for J0 is
readily solvable explicitly (see below). It turns out that the spectral properties of J
are close to those of J0 as well [14], see also [24]. In particular, it is known that the
singular continuous spectrum of J is empty, the essential spectrum coincides with the
absolutely continuous spectrum and equals the interval [−2, 2 ]. Furthermore, there are
no embedded eigenvalues, i.e. if η is an eigenvalue of J then |η| ≥ 2.

Splitting J into the sum of the upper triangular and the lower triangular part,
one notes that ‖J‖ ≤ 2 sup{α0, α1, α2, . . .}. In our example, αj ≤ 1 for all j and so
‖J‖ ≤ 2 and, consequently, the spectrum of J is contained in the interval [−2, 2 ]. This
means that the only possible eigenvalues of J are ±2. But one can exclude even this
possibility. In fact, suppose that Ju = 2u, with u = (u0, u1, u2, . . .) and u0 = 1. Then
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αj−1uj−1 + αjuj+1 = 2uj for j = 0, 1, 2, . . . (while putting u−1 = 0). Summing this
equality for j = 0, 1, . . . , n, and using that αj ≤ 1, one finds that un+1 ≥ un + 1 for
n = 0, 1, 2, . . .. Hence uj ≥ j + 1 for all j, and so u is not square summable. Let us
summarize that the spectrum of J is simple and purely absolutely continuous and equals
[−2, 2 ].

Let us parametrize the spectrum of As = As(p) by a continuous parameter θ, 0 <
θ < π, so that η(θ) := (ωc/2) cos(θ) is a point from the spectrum and x(p; θ) is the cor-
responding normalized generalized eigenvector with components ξj(p; θ), j = 0, 1, 2, . . .
(here we drop the index s at x and ξ in order to simplify the notation). The asymptotic
behavior of the components ξj is known [15, 7]; one has

ξj(p; θ) ∼ A(p; θ) cos
(
jθ − (p/2) cot(θ) log(j + 1) + φ(p; θ)

)
(2.7)

for j � 0. Here A(p; θ) is a normalization constant and φ(p; θ) is a phase which depends
on the initial conditions imposed on the sequence {ξj} (i.e. ξ−1 = 0) but the asymptotic
methods employed in the cited articles do not provide an explicit value for it. In the
limit case p = 0 the generalized eigenvectors are known explicitly, namely ξj(0; θ) =√

2/π sin((j + 1)θ) for all j. Hence φ(0; θ) = θ − π/2.
The generalized eigenvectors are supposed to be normalized so that〈

x(p; θ1),x(p; θ2)
〉

= δ(θ1 − θ2).

For p = 0, one can use the equality
∞∑
n=1

einx = πδ(x)−P
1

1− e−ix (2.8)

which is valid for x = θ1 − θ2 ∈ (−π, π) and where the symbol P indicates the regular-
ization of a nonintegrable singularity in the sense of the principal value. It follows that∑∞
n=−∞ e

inx = 2πδ(x), and the normalization is an immediate consequence.

Proof of formula (2.8). Let ϕ ∈ D(−π, π) be a test function, that is a smooth function
with compact support in the interval (−π, π). The limit

lim
n→∞

(
n∑
k=1

eikx, ϕ

)
= lim

n→∞

n∑
k=1

∫ π

−π

−1
k2 e

ikxϕ′′(x) dx

exists for any test function a defines a generalized function which is denoted by
∞∑
k=1

eikx.

Splitting the domain of integration we get(
n∑
k=1

eikx, ϕ

)
= lim

δ→0+

(∫ δ

−δ

n∑
k=1

eikxϕ(x) dx+
(∫ −δ
−π

+
∫ π

δ

)
eix

1− einx
1− eix ϕ(x) dx

)
=

=
(
P

1
e−ix − 1 , ϕ

)
− lim

δ→0+

(∫ −δ
−π

+
∫ π

δ

)
einx

e−ix − 1ϕ(x) dx.

In order to simplify the second term on the right hand side we use the substitution and
obtain

lim
δ→0+

∫ π

δ

e−inx

eix − 1ϕ(−x) + einx

e−ix − 1ϕ(x) dx =
∫ π

0

e−inx

eix − 1ϕ(−x) + einx

e−ix − 1ϕ(x) dx. (2.9)

38



The last equality is correct since

lim
x→0

(
e−inx

eix − 1ϕ(−x) + einx

e−ix − 1ϕ(x)
)

= 2iϕ′(0)− (2n+ 1)ϕ(0).

The Equation (2.9) thus becomes

ϕ(0) ·
∫ π

0

(
e−inx

ix
+ einx

−ix

)
dx+

∫ π

0
e−inx

(
ϕ(−x)
eix − 1 −

ϕ(0)
ix

)
+

+einx
(

ϕ(x)
e−ix − 1 −

ϕ(0)
−ix

)
dx =

= −2ϕ(0)
∫ π

0

sinnx
x

dx+
∫ π

−π
einx

(
ϕ(x)

e−ix − 1 −
ϕ(0)
−ix

)
dx =

= −2ϕ(0)
∫ nπ

0

sin y
y

dy +
√

2πF

[
ϕ(x)

e−ix − 1 −
ϕ(0)
−ix

]
(−n)

Consequently

lim
n→∞

(
n∑
k=1

eikx, ϕ

)
= πϕ(0)−

(
P

1
1− e−ix , ϕ

)
.

This proves (2.8).

For general p, the contribution to the δ function should come from the most singular
and, at the same time, the leading term in the asymptotic expansion of ξj(p; θ), as
given in (2.7). This time, when investigating the singularity near the diagonal θ1 = θ2
in the scalar product of two generalized eigenvectors, one is lead to considering the
sum ∑∞

n=1 n
iaxeinx where a = p/(2 sin2 θ1) is a real constant. Using the Lerch function2

Φ(z, s, v) one has for |z| < 1,
∞∑
n=1

nszn = zΦ(z, s, 1) = Γ(1− s)
∞∑

n=−∞
(− log(z) + 2πni)−1+s. (2.10)

From here one deduces that, for any real a,
∞∑
n=1

niaxeinx = πδ(x) + iP 1
x

+ ga(x) (2.11)

where ga(x) is a regular distribution, i.e. a locally integrable function. Thus in the
general case, too, the normalization constant equals A(p; θ) =

√
2/π.

2 Lerch function is defined by

Φ(z, s, v) =
∞∑
n=0

(v + n)−szn, |z| < 1, v 6= 0,−1, . . . ,

and has a series expansion

Φ(z, s, v) = z−vΓ(1− s)
∞∑

n=−∞
(− log(z) + 2πni)s−1e2πnvi,

where 0 < v ≤ 1, Re s < 0,
∣∣ arg(− log(z)2πni)

∣∣ ≤ π, see [10, § 9.55].
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Proof of formula (2.11). Let ϕ ∈ D(−π, π) be a test function and note that

(
nε+iaxeinx−εn, ϕ

)
=
∫ π

−π
nεe−εn

eix(n+a lnn)(
i(n+ a lnn)

)2ϕ
′′(x) dx

holds for any sufficiently large integer n and ε ≥ 0. Hence∣∣∣∣(niax+εeinx−εn, ϕ
)∣∣∣∣ ≤ 2π‖ϕ′′‖∞

(n+ a lnn)2 . (2.12)

and

lim
N→∞

(
N∑
n=1

niaxeinx, ϕ

)
=
∞∑
n=1

(
niaxeinx, ϕ

)
= lim

ε→0+

∞∑
n=1

(
nε+iaxen(ix−ε), ϕ

)
=

= lim
ε→0+

( ∞∑
n=1

nε+iaxen(ix−ε), ϕ

)
=

= lim
ε→0+

(
eix−εΦ

(
eix−ε,−ε− iax, 1

)
, ϕ
)
.

Using the series expansion of Lerch function the last expression is equal to

lim
ε→0+

(
Γ(1 + ε+ iax)

∞∑
n=−∞

(
ε− ix+ 2nπi

)−ε−iax−1
, ϕ
)

=

= lim
ε→0+

(
i

x+ iε
, Γ(1 + ε+ iax)(−ix+ ε)−ε−iax, ϕ

)
+ (2.13)

+ lim
ε→0+

(
Γ(1 + ε+ iax)

∑
n6=0

(
− ix+ ε+ 2nπi

)−ε−iax−1
, ϕ
)

(2.14)

Recalling the well known Sokhotski formula,

lim
ε→0+

1
x+ iε

= −iπδ(x) + P
1
x
, in D ′(−π, π),

the limit in (2.13) is

(πδ, ϕ) +
(
iP

1
x
, ϕ
)

+
(
i
(
Γ(1 + iax)(−ix)−iax − 1

)1
x
, ϕ
)
.

Third term comes from a regular distribution as does the contribution from (2.14).
Altogether we have derived the equality

lim
N→∞

( ∞∑
n=1

niaxeinx, ϕ
)

=
(
πδ + iP

1
x

+ ga(x), ϕ
)
, ϕ ∈ D(−π, π),

where ga(x) is a regular generalized function. This completes the proof of (2.11)
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2.6 The phase φ(p; θ) near the spectral point 0
As already mentioned, the phase φ(p; θ) in the asymptotic solution (2.7) remains unde-
termined. Though in the sequel we shall not need this information, let us remark that
a bit more can be said about the behavior of the phase near the spectral point 0 (the
center of the spectrum) which corresponds to the value of the parameter θ = π/2.

First of all, 0 always belongs to the spectrum of the Jacobi matrix J . Putting
u = (u0, u1, u2, . . .), with u2j+1 = 0 and

u2j = (−1)j
j−1∏
k=0

α2k

α2k+1
(2.15)

for j = 0, 1, 2, . . ., one has Ju = 0 and u0 = 1. Recalling that, in our example,
αj = 1− p/(2j) +O(j−2) one derives that

u2j = (−1)ju∞
(
1 + p/(8j) +O(j−2)

)
as j →∞,

where u∞ = limj→∞(−1)ju2j is a finite constant (depending on p, however). Comparing
to (2.7), with A(p; θ) =

√
2/π and θ = π/2, one finds that x(p; π/2) = (

√
2/π/u∞)u.

Moreover, φ(p; π/2) = 0.
Differentiating the equality Jx(p; θ) = 2 cos(θ)x(p; θ) with respect to θ at the point

π/2 and using the substitution

∂x(p; π/2)/∂θ = −
(

2
√

2/π
/
u∞

)
v,

with v = (v0, v1, v2, . . .), one arrives at the equation Jv = u. From (2.7) one deduces
that

vj ∼
1
2 u∞ sin

(
j
π

2

)(
j + p

2 log(j + 1) + ∂φ(p; π/2)
∂θ

)
(2.16)

for j � 0. This suggests that one can seek a solution v such that v2j = 0 for all
j. This assumption on v is in fact necessary and makes the solution unambiguous
since otherwise one could add to v any nonzero multiple of u which would violate the
asymptotic behavior (2.16). Given that all odd elements of the vector u and all even
elements of v vanish the equation Jv = u effectively reduces to a linear system with
a lower triangular matrix which is explicitly solvable. Using (2.15) one can express the
solution as

v2j+1 = 1
α2ju2j

j∑
k=0

(u2k)2, j = 0, 1, 2, . . . . (2.17)

Noting that
j∑

k=0

(
1 + p

4k + 2

)
= j + 1 + p

4
(

log(4j + 4) + γ
)

+O(j−1),

where γ is the Euler constant, and that (u2k)2 = u 2
∞(1 + p/(4k) +O(k−2)) one derives

j∑
k=0

(
u2k

u∞

)2
= j + 1 + p

4
(

log(4j + 4) + γ
)

+
∞∑
k=0

((
u2k

u∞

)2
− 1− p

4k + 2

)
+O(j−1).
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Using (2.17) and comparing to (2.16) one finally arrives at the relation

∂φ(p; π/2)
∂θ

= 1 + p

2
(

log(2) + γ
)

+ 2
∞∑
k=0

((
u2k

u∞

)2
− 1− p

4k + 2

)
.

2.7 Acceleration
We again fix an integer s, 0 ≤ s < µ. Suppose one is given a test function %(θ) ∈
C∞0 ((0, π)). Recalling (2.4) we put

ψ(r) =
∫ π

0
ϕs(θ, r)%(θ) dθ.

In what follows, we drop the index s and, whenever convenient, write simply H instead
of H(p). Using (2.5), one has, for N ∈ N,

〈
U N

(1)ψ,HU
N

(1)ψ
〉

=
∫ π

0

∫ π

0
eiε(cos θ1−cos θ2)ωcTN/2

×〈ϕ(θ1, r), Hϕ(θ2, r)〉 %(θ1)%(θ2) dθ1dθ2

=
∞∑
j=0

E
s+jµ(p)

∣∣∣∣∫ π

0
e−iε cos(θ)ωcTN/2ξj(p; θ)%(θ) dθ

∣∣∣∣2.
Recall (2.1) and note that {ξj(p; θ)}∞j=0 is an orthonormal basis in L2((0, π), dθ) and so

∞∑
j=0

∣∣∣∣∫ π

0
e−iε cos(θ)ωcTN/2ξj(p; θ)%(θ) dθ

∣∣∣∣2 =
∫ π

0
|%(θ)|2 dθ.

Hence the leading contribution to the acceleration rate comes from the expression

µωc
∞∑
j=0

(j + 1)
∣∣∣∣∫ π

0
e−iε cos(θ)ωcTN/2ξj(p; θ)%(θ) dθ

∣∣∣∣2 .
Furthermore, restricting this sum to an arbitrarily large but finite number of summands
results in an expression which is uniformly bounded in N . This means that one can
replace ξj(p; θ) by the leading asymptotic term, as given in (2.7) (with A(p; θ) =

√
2/π).

Hence the leading contribution to the acceleration rate is expressible as

2Ω
π

∫ π

0

∫ π

0
h(θ1, θ2)eiε(cos θ1−cos θ2)ωcTN/2 %(θ1)%(θ2) dθ1dθ2

where

h(θ1, θ2) =
∞∑
j=0

(j + 1) cos
(
jθ1 −

p

2 cot(θ1) log(j + 1) + φ(p; θ1)
)

× cos
(
jθ2 −

p

2 cot(θ2) log(j + 1) + φ(p; θ2)
)
. (2.18)
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The singular part of the distribution h(θ1, θ2) is supported on the diagonal θ1 = θ2.
The sum in (2.18) can be evaluated analogously as in (2.11) with the result

h(θ1, θ2) = − 1
2

∂

∂θ2
P 1
θ1 − θ2

− π

2

(
∂φ(p; θ1)

∂θ
− 1

)
δ(θ1 − θ2)

+ a regular distribution.

Estimating the acceleration rate we can restrict ourselves to a sufficiently small but fixed
neighbourhood of the diagonal with a radius d > 0. Thus we arrive at the expression

Ω
π
P
∫ π

0

∫ π

0

|θ1−θ2|<d

1
θ1 − θ2

∂

∂θ2

(
e−iε sin(θ1)(θ1−θ2)ωcTN/2 %(θ1)%(θ2)

)
dθ1dθ2.

Further we carry out the differentiation, as indicated in the integrand, and get rid of the
terms which are not proportional to N or which are non singular. Moreover, we use the
substitution θ2 = θ1 + u. Thus we obtain

− iεΩωcTN
2π

∫ π

0
sin(θ1)|%(θ1)|2

(
P
∫ d

−d

1
u
eiε sin(θ1)ωcTNu/2 du

)
dθ1

= εΩωcTN
π

∫ π

0
sin(θ)|%(θ)|2

(∫ d

0

1
u

sin
(
ε

2 sin(θ)ωcTNu
)
du
)
dθ.

Finally note that, for any a real,

lim
N→∞

∫ d

0

1
u

sin(aNu) du = π

2 sign a.

We conclude that the formula for the acceleration rate in the first-order averaging
approximation reads

γacc := lim
N→∞

〈
U N

(1)ψ,H(p)U N
(1)ψ

〉/
(NT‖ψ‖2)

= |ε|ωcΩ
2

∫ π

0
sin(θ)|%(θ)|2 dθ

/∫ π

0
|%(θ)|2 dθ. (2.19)

Here we have used that ‖ψ‖2 =
∫ π

0 |%(θ)|2 dθ. Formula (2.19) can be compared to
formula (2.3), as derived for a classical particle, in the case when Φ(t) is given by (2.2)
and f(t) = cos(t). Then (2.3) gives the acceleration rate γacc = |ε|ωcΩ sin(ξ)/2 where
ξ ∈ (0, π) depends on some data which can be learned from the asymptotic behavior of
the classical trajectory. In addition, we note to this comparison that the classical case
suggests, as discussed in [5], that the first-order averaging approximation yields in fact
the correct acceleration rate (valid for the original system), and this is so even if the
parameter ε is not assumed to be very small.

2.8 Numerical analysis
Purpose of this Section is to present our numerical results that support the predicted
acceleration rate (2.19). For the sake of simplicity we take µ = 1 and s = 0. Let us fix
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a function ρ(θ),

ρ(θ) =
(

20
π

)1/4

exp
(
− 10(2− θ)2 + 8iθ

)
. (2.20)

For our numerical purposes it can be assumed to be in C∞0 ((0, π)). For this choice of
ρ(θ) we put

η0(r) =
∫ π

0
ϕ0(θ, r)ρ(θ)dθ.

In order to solve the time-dependent Schrödinger equation

i∂tη(t) = H(a(t))η(t), η(0) = η0,

we truncate the Fourier expansion of η(t),

η(t) =
∞∑
n=0

ηn(t)ψn(a(t)), ηn(t) = 〈ψn(a(t)), η(t)〉, n = 0, 1, . . . ,

at some fixed order nmax. In this way we obtain a system of ordinary differential equa-
tions for the Fourier coefficients

iη′n(t) = En(a(t))ηn(t)− ia′(t)
nmax∑
j=0
〈ψn(a(t)), ψ′j(a(t))〉ηj(t),

ηn(0) = 〈ψn(a(0)), η0〉, n = 0, 1, . . . , nmax,

where explicit formulas for the scalar products are known, see [4]. In order to approxi-
mately solve this system we employ explicit Runge-Kutta method of order 4 (RK4) with
fixed time stepsize h = 0.001. The mean value of energy at time t is then approximated
by 〈

η(t), H(a(t))η(t)
〉
≈

nmax∑
n=0

En(a(t))|ηn(t)|2.

We present the results of our numerical experiments in Figure 2.1 and Figure 2.2.
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γacc

0.3

0.6

0.9

40 120 200 280 360
t

E(t)
t

Figure 2.1: The numerical computation of the ratio of the energy mean value E(t) =∑nmax
n=0 En(t)|ηn(t)|2 and time t. Various parameters are set to be p = 2.5, b = 1, ε = 0.4,

Ω = 1, f(t) = ε sin(Ωt). The initial value is computed using (2.20), in this case the
predicted rate of acceleration is γacc ≈ 0.1796.
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Figure 2.2: The mean value of energy, E(t) = ∑nmax
n=0 En(t)|ηn(t)|2, computed numerically

according to the description in the present Section. Particular values of those constants
are p = 0.5, b = 2 = Ω, ε = 0.7, f(t) = ε sin(Ωt), and initial condition η0(r) =
exp

(
− (10− r)2 + ir

)
.
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Appendix A

Evaluation of Auxiliary Integrals
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This Section contains the proof and corollaries of the following
Lemma A.1: For n ∈ N0 and |β| < 1, β ∈ R it is true that∫ 2π

0

cosnt
1 + β sin t dt = 2π βn

√
1− β2

(
1 +
√

1− β2
)n cos πn2 , (A.1)

∫ 2π

0

sinnt
1 + β sin t dt = −2π βn

√
1− β2

(
1 +
√

1− β2
)n sin πn2 , (A.2)

∫ 2π

0

cosnt cos t
1 + β sin t dt = 2π βn−1(

1 +
√

1− β2
)n sin πn2 , (A.3)

and for1 n ∈ N one has∫ 2π

0

sinnt cos t
1 + β sin t dt = 2π βn−1(

1 +
√

1− β2
)n cos πn2 . (A.4)

Proof. We will prove the equality (A.1). The proof of the rest is analogous. For the sake
of brevity denote the LHS of (A.1) by the symbol L. Note that under our assumptions
it holds

sinnt =
n∑
k=0

(
n

k

)
cosk t sinn−k t sin π2 (n− k),

cosnt =
n∑
k=0

(
n

k

)
cosk t sinn−k t cos π2 (n− k),

1
1 + β sin t =

∞∑
m=0

(−β)m sinm t.

Plugging these relations into the left hand side of (A.1) and using the well known Beta
function

∫ 2π

0
cosk t sinn tdt =

(
1 + (−1)k

)(
1 + (−1)n

)
2 B

(1 + k

2 ,
1 + n

k

)
, n, k ∈ N0,

one obtains, after some minor adjustments,

L =
n∑
k=0

cos π2 (n− k)
∞∑
m=0

(−β)m(−1)k (1 + (−1)k)(1 + (−1)m+n)
2

×B
(1 + k

2 ,
1
2(1 +m+ n− k)

)
.

Summands with k or m + n odd are zero. Hence we can assume that k and m + n are
even. Furthermore if n is also odd then cos(π(n − k)/2) = 0 and therefore J = 0. We
must investigate the case of n = 2N where N ∈ N0. After re-notation of indices we
clearly have

J = 2
N∑
k=0

(
2N
2k

)
(−1)N−k

∞∑
m=0

β2mB
(1

2k,
1
2 +N +m− k

)
.

1For n = 0 this is obviously zero.
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Rewriting the Beta function in terms of Gamma function and using the Gauss hyperge-
ometric series

F (a, b, c, z) = Γ(c)
Γ(a)Γ(b)

∞∑
m=0

Γ(a+m)Γ(b+m)
Γ(c+m)

zm

m! ,

we arrive at

J = (−1)N 2π(2N)!
2N

N∑
k=0

(−1)k
(2N − 2k)!!(2k)!!F

reg(1, N − k + 1/2, N + 1, β2),

where F reg(a, b, c, z) = F (a, b, c, z)/Γ(c) is regularised hypergeometric function. Next
step is to take advantage of the symmetry in interchange of a, b and of the integral
representation of hypergeometric function

F (a, b, c, z) = Γ(c)
Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−a dt.

It turns out that

J = π
(−1)N+1

22N β2N+1F
(
N + 1, N + 3/2, 2N + 2, β2

)
,

where the binomial theorem was used. Final step is to look in [1] and find relation
15.1.14:

F (a, a+ 1/2, 2a, z) = 22a−1(1− z)−1/2
(
1 +
√

1− z
)1−2a

.

Hence
J = 2π(−1)N β2N

√
1− β2

(
1 +
√

1− β2
)2N .

Combining results for odd and even n one obtains the formula which was to be proved.
For the sake of completeness note, that in the computation of the two last integrals

one needs [1], 15.1.13

F (a, a+ 1/2, 2a+ 1, z) = 22a(1 +
√

1− z)−2a.

The Proposition just proved immediately implies
Corollary A.2: For n ∈ Z r {0} and β ∈ R, |β| < 1 it is true that

1
2π

∫ 2π

0

cos(ϕ) exp(−inϕ)
1 + β sin(ϕ) dϕ = 1

β

 β

1 +
√

1− β2

|n| exp
(
i
(
n− sign(n)

)π
2

)
.

Obviously, if n = 0 the integral is zero. Further, assuming that n ∈ Z and β as above,
the following equality

1
2π

∫ 2π

0

exp(−inϕ)
1 + β sin(ϕ)dϕ = 1√

1− β2

(
β

1 +
√

1− β2

)|n|
exp

(
in
π

2

)
.

holds.
And finally

49



Corollary A.3: Suppose that α > 1 and n ∈ Z r {0} then the following formula

1
2π

∫ 2π

0
arctan

 cosϕ
α + sinϕ

 exp(−inϕ)dϕ =
exp( inπ2 )

2in

(
1
α

)|n|
.

holds. The integral is zero if n = 0.

Proof. For n 6= 0 this is straightforward consequence of integration by parts and the
preceding Corollary. If n = 0, then denote

F (α) := 1
2π

∫ 2π

0
arctan

 cosϕ
α + sinϕ

dϕ

for α > 1 and observe that

F ′(α) = − 1
2π

∫ 2π

0

cosϕ
α2 + 2α sinϕ+ 1dϕ = 0.

Since lim
α→+∞

F (α) = 0 we have F (α) = 0 for all α > 1.

Let us note, that one can arrive at similar conclusion in an alternative way. For
α > 0 consider

f(ϕ) := arctan cosϕ
α + sinϕ, ϕ ∈ [0, 2π].

For any |z| < 1 we have the identity

arctan z =
∞∑
n=0

(−1)n
2n+ 1z

2n+1 = i

2

∞∑
n=1

(−i)n
n

zn − in

n
zn

 =

= i

2

(
− ln(1 + iz) + ln(1− iz)

)
= i

2 ln 1− iz
1 + iz

. (A.5)

Employing the identity

arctan z + arctan 1
z

= π

2 , z 6= 0

we conclude, that (A.5) is valid for any z ∈ R. Consequently

f(ϕ) = i

2 ln
1− i cosϕ

α+sinϕ

1 + i cosϕ
α+sinϕ

= i

2 ln
1− i

α
eiϕ

1 + i
α
e−iϕ

= − i2

∑
n=1

in

nαn
einϕ +

∞∑
n=1

i−n

−nαn
e−inϕ

 =

= − i2
∑
n6=0

in

nα|n|
einϕ.

From there it is easy to read out the Fourier coefficients of f .
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Appendix B

Friedrichs Extension

51



In this Appendix we would like to point out some of the properties of the Friedrichs
extension of the operator

H(p) = 1
2

− 1
r
∂rr∂r + v(r)

, where v(r) = 1
r2

p+ br2

2

2

, (B.1)

with the domain given by domH(p) = C∞0 (R+) acting in the Hilbert space H =
L2(R+, r dr). It is sufficient to assume that p ∈ R is nonzero and b ∈ R+. Let us
consider the corresponding quadratic form

t(p)(ϕ, ψ) = 1
2

∫ ∞
0

ϕ′ψ′ + 1
r2

p+ br2

2

2

ϕψ

 r dr,

where ϕ, ψ ∈ dom t = C∞0 (R+). We will further suppress the dependence on p because
it does not play any significant role in the following discussion. Our only assumption is
that p is nonzero.

The form t is a densely defined sesquilinear and bounded from below with lower
bound 0. According to [18, Corollary VI-1.28] the form t is closable and its closure t has
the same lower bound as t.

By virtue of [18, Theorem VI-2.6] there is an operator T associated with t. This
operator is self-adjoint and bounded from below by the same bound as t. In particular,
T enjoys the following properties

a) domT ⊂ dom t and
t(ϕ, ψ) = 〈ϕ, Tψ〉

for every ϕ ∈ dom t and ψ ∈ domT .

b) domT is a core of t.

c) If ϕ ∈ dom t, ψ ∈H and
t(η, ϕ) = 〈η, ψ〉

holds for any η belonging to a core of t, then ϕ ∈ domT and Tϕ = ψ.

The operator T is uniquely determined by the first property and is called the Friedrichs
extension of (B.1).

Observe, that t = s1 + s2, where

s1(ϕ, ψ) = 1
2

∫ ∞
0

ϕ′ψ′ r dr,

s2(ϕ, ψ) = 1
2

∫ ∞
0
v(r)ϕψ r dr,

where ϕ, ψ ∈ dom s1 = dom s2 = C∞0 (R+). Both s1 and s2 are of the form

si(ψ, ϕ) = 〈Siψ, Siϕ〉, i = 1, 2,

and the operators Si, i = 1, 2 act in H by

S1ϕ = 1√
2
ϕ′ and S2ϕ = 1√

2
v1/2ϕ, for any ϕ ∈ domSi = C∞0 (R+), i = 1, 2.
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It follows that si(ψ, ϕ) =
〈
Siψ, Siϕ

〉
for any ϕ, ψ ∈ dom si= domSi, i = 1, 2. In our case

one can show that1

domS1 =
{
ψ ∈H ; ψ is a.c. in R+, ψ

′ ∈H , lim
r→0+

ψηr = 0 for any η ∈ domS∗1
}
,

domS2 =
{
ψ ∈H ; v1/2ψ ∈H

}
,

where
domS∗1 =

{
ψ ∈H ; ψ is a.c. in R+, ψ

′ + 1
r
ψ ∈H

}
.

According to the [18, Theorem 1.31] we know that t ⊂ s1 + s2, in particular we have
the inclusion

dom t ⊂ D := dom s1 ∩ dom s2.

Note that if ψ ∈ D then ψ′ + ψ
r
∈ L2

(
]0, 1[, r dr

)
and

(
|ψ|2

)′
=
∣∣∣∣ψ′ + ψ

r

∣∣∣∣2r − |ψ′|2r − 1
r
|ψ|2 ∈ L1

(
]0, 1[, dr

)
.

Therefore there exist a finite limit lim
r→0+

|ψ(r)| ∈ R. Since ψ/r ∈ L2
(
]0, 1[, r dr

)
we

conclude that lim
r→0+

ψ(r) = 0. Similarly, for any η ∈ domS∗1 we have

(
|η|2r2

)′
=
(
η
(
η′ + r−1η

)
+
(
η′ + r−1η

)
η
)
r2 ∈ L1

(
(0, 1), dr

)
and so there is a finite limit lim

r→0+
r|η| ∈ R. This implies that the last condition of domS1

can be dropped in D.
The operator T indeed is an extension of the operator H(p) defined in (B.1). Suppose

that we have ψ ∈ domT and set ϕ := Tψ ∈H . For every η ∈ dom t it is true that

t(η, ψ) = 〈η, ϕ〉. (B.2)

In particular, ∫ ∞
0

η′
(
r

2ψ
′ + z

)
dr = 0, for all η ∈ C∞0 (R+),

where z is an absolutely continuous function satisfying z′ = ηr − r
2vψ ∈ L

1
loc(R+, dr).

Consequently r
2ψ
′ + z = const and ψ′ is an absolutely continuous function. It follows

that
Tψ = ϕ = 1

2

(
− ψ′′ − 1

r
ψ′ + v(r)ψ

)
= H .

Since ψ ∈ domT belongs also to dom t ⊂ D it follows that

lim
r→0+

ψ(r) = 0.

For a detailed discussion of a characterization of the Friedrichs extension one can consult
the reference [22].

1"a.c." is a shorthand for "absolutely continuous."
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Appendix C

Jacobi Matrix Operators and
Absolutely Continuous Spectrum
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In this Appendix we will review certain class of Jacobi operators and their spectral
properties. In the following it will be assumed that {λn}∞n=1 is a real positive sequence
such that there is a positive α, 0 < α < 1, for which the condition

1
α
< λn ≤ 1 (C.1)

holds for all n ∈ N. Moreover, we assume that the sequence satisfy

lim
n→∞

λn = 1.

In order to simplify some expressions it is convenient to set λ0 := −1. Keep in mind
that the condition (C.1) holds only for positive n, not for n = 0.

Let {en}∞n=1 denote the standard basis in `2 := `2(N,C). We are interested in the
analysis of the Jacobi matrix operator with matrix (with respect to the standard basis
of `2)

J =



0 λ1 0 0 · · ·
λ1 0 λ2 0 · · ·
0 λ2 0 λ3

0 0 λ3 0 . . .
... ... . . . . . .


Under our assumptions J is a well defined bounded self-adjoint operator in `2. In fact,
the operator

A =
∞∑
n=1

λn〈en, ·〉

is a bounded diagonal self-adjoint operator. Let S be the right shift operator, Sen :=
en+1 for all n ∈ N. The adjoint S∗ is then the left shift operator. Our J can be expressed
in the form J = SA + AS∗. Since ‖S‖ = ‖S∗‖ = 1 and ‖A‖ = sup

n∈N
|λn| we see that

‖J‖ ≤ 2 sup
n∈N
|λn|.

As an elementary consequence of this estimate we conclude that the spectrum of J
belongs to the interval [−2, 2], σ(J) ⊂ [−2, 2].

The article by Janas and Naboko, [15] is concerned with a similar problem. Their ap-
proach relies on the theory due to Gilbert and Pearson [26]. The idea is that if one shows
that all solutions of the (generalized) eigenfunction equation, with spectral parameter
λ ∈ (a, b) are bounded, then (a, b) ∈ σ(J) and the spectrum of J has absolutely con-
tinuous component filling (a, b). There is also an article by Simon, [30], which contains
a short proof of this interesting result (in his own words "All eigenfunctions bounded
implies purely a.c. spectrum."). This result is reproduced in Section C.2.

The material of this Appendix is organized into several parts. In Section C.1 we
summarize results concerning Weyl m-function and its relation to the spectrum of J .
Section C.2 reproduces the result of Simon, in particular [30]. Finally, in Section C.3 we
show that the spectrum if J is absolutely continuous in (−2, 2).
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C.1 Spectral measure and Weyl m-function
Note that e1 is a cyclic vector for J , this means that the set {Jne1 ; n = 0, 1, 2, . . .} is
dense in `2. Consequently (see [29], first volume, page 226), if one denotes

dρ(λ) = d〈e1, Pλe1〉,

where J =
∫
σ(J) λ dPλ, then J is unitarily equivalent to the operator of multiplication

by λ in the Hilbert space L2
(
σ(J), dρ(λ)

)
.

The measure dρ, also known as spectral measure of J , is a finite measure. More
precisely,

ρ(R) =
∫
R

1 dρ(λ) = ‖e1‖2 = 1.

Thus it makes sense to consider its Borel transform. The Borel transform of dρ is a
complex function m defined by the formula

m(z) =
∫
σ(J)

dρ(λ)
λ− z

=
〈
e1, (J − z)−1e1

〉
(C.2)

for any z ∈ C \ R. This function is also called Weyl m-function of J .
It is important to note that due to our choice of λ0 = −1 the vector ξ(z) = (J −

z)−1e1 ∈ `2 solves the recurrence relation

λn−1ξn−1(z) + λnξn+1(z) = zξn(z), n ∈ N (C.3)

with initial condition ξ0(z) = 1. Thus from the very definition (C.2) it follows that in
fact m(z) = ξ1(z).

From the recurrence relation (C.3) we conclude that the equality

(z̄ − z)|ξn(z)|2 =
∣∣∣∣∣ ξn(z) ξn(z)
λn−1ξn−1(z) + λn(z)ξn+1(z) λn−1ξn−1(z) + λnξn+1(z)

∣∣∣∣∣ =

= λn−1
(
ξn(z)ξn−1(z)− ξn(z)ξn−1(z)

)
+ λn

(
ξn(z)ξn+1(z)− ξn(z)ξn+1(z)

)
holds for any positive integer n. Summing over n = 1, 2, 3, . . . and manipulating with
the sum on right hand side one obtains the equality

(z̄ − z)
∞∑
n=1
|ξn(z)|2 = λ0

(
ξ1(z)ξ0(z)− ξ1(z)ξ0(z)

)
.

Recalling that λ0 = −1, ξ0(z) = 1, and ξ1(z) = m(z) we arrive at an important formula1

Im z ·
∞∑
n=1
|ξn(z)|2 = Imm(z). (C.4)

Since m(z) is the Borel transform of dρ, one can obtain dρ via the Stieltjes inversion
formula from m(z) (see [24], in particular page 301). More precisely, the following
proposition holds true.

1The symbol Im z denotes the imaginary part of a complex number z.
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Proposition C.1: The measure 1
π

Imm(λ+ iε)dλ (here dλ denotes the Lebesgue mea-
sure) converges weakly to dρ(λ) in the sense that the equality

lim
ε→0+

1
π

∫ ∞
−∞

f(λ) Im
(
m(λ+ iε)

)
dλ =

∫ ∞
−∞

f(λ)dρ(λ)

holds for any continuous f bounded by const/(1 + λ2).
A setM ⊂ R is called an essential support for dρ ifM is a support (i.e. ρ(R\M) =

0) and any subset M0 ⊂ M which does not support ρ (i.e. ρ(M0) = 0) has Lebesgue
measure zero. Let us denote (there is no danger of confusion, since we defined m(z) only
for z ∈ C \ R)

Imm(λ) := lim sup
ε→0+

Imm(λ+ iε)

and let L(ρ) be the set of all λ ∈ R for which

lim
ε→0+

Imm(λ+ iε)

exists, be it finite or infinite.
Recall the unique decomposition of the measure dρ with respect to the Lebesgue

measure,
dρ = dρac + dρs,

where ρac is absolutely continuous with respect to Lebesgue measure (i.e. every set
A ⊂ R of zero Lebesgue measure satisfies ρac(A) = 0) and ρs is singular with respect
Lebesgue measure (i.e. ρs is supported on a set of zero Lebesgue measure). The singular
part can be further decomposed into a singular continuous and pure point part,

dρs = dρsc + dρpp,

where ρsc is continuous on R and ρpp is a step function.
The following Lemma shows the relation between the Weyl m-function and essential

supports of various measures (see [24] page 303).
Lemma C.2: Essential supports M , Mac, Ms for ρ, ρac, ρs respectively are given by

M =
{
λ ∈ L(ρ) ; 0 < Imm(λ) ≤ ∞

}
,

Mac =
{
λ ∈ L(ρ) ; 0 < Imm(λ) <∞

}
,

Ms =
{
λ ∈ L(ρ) ; Imm(λ) =∞

}
.

An obvious corollary of this Lemma is a criterion for the absolute continuity. More
precisely, if Imm(λ) <∞ for all λ ∈ (a, b), then ρ is absolutely continuous in (a, b). In
the next Section we will show how to find a bound for the imaginary part of a Weyl
function.

C.2 A criterion for the absolute continuity
The main result of this Section is Theorem C.5 and the proof follows [30]. For each
z ∈ C let us denote by {u1(n, z)}n and {u2(n, z)}n solutions of

λn−1uj(n− 1, z) + λnuj(n+ 1, z) = zuj(n, z), n ∈ N, j = 1, 2, (C.5)
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with initial conditions

u1(0, z) = 0, u1(1, z) = 1,
u2(0, z) = 1, u2(1, z) = 0.

We are interested in the set

S =
{
x ∈ R ; u1(·, x) and u2(·, x) are bounded on N

}
.

For a given z ∈ C and n ∈ N0 set

T (z, n, 0) :=
(
u1(n+ 1, z) u2(n+ 1, z)
u1(n, z) u2(n, z)

)
.

This matrix is invertible. In fact, for n = 0 the very definition of sequences uj(z)
implies the equality detT (λ, 0, 0) = 1. On the other hand, taking n ∈ N and using
the recurrence relation (C.5) n times one obtains detT (λ, n, 0) = −1/λn. Taking into
account our convention for λ0 we see that this relation holds also for n = 0.

Thus it makes sense to define

T (z, n,m) := T (z, n, 0)T (z,m, 0)−1, n,m ∈ N0, z ∈ C.

Let us note some properties of these matrices.
Lemma C.3: The matrix T (z, n,m) defined above for n,m ∈ N0 and z ∈ C is invertible,

detT (z, n,m) = λm
λn
.

If one denotes the transfer matrix

A(z, n) =
(

z
λn
−λn−1

λn

1 0

)
, n ∈ N0,

then T (z, n, 0) = A(z, n)T (z, n− 1, 0) for any n ∈ N and

T (z, n,m− 1) = A(z, n)A(z, n− 1) · · ·A(z,m+ 1)A(z,m).

Proof. The first part of the Lemma should be clear from the discussion preceding this
Lemma. The rest follows again from the recurrence relation and T (z, 0, 0) =

(
1 0
0 1

)
Suppose now that {ηn} solves (C.3) (where ξ is replaced by η) with prescribed initial

conditions η0 and η1. Then using the uniqueness and linearity we get ηn = η0u2(n, z) +
η1u1(n, z) for any n ∈ N0. Thus, if we denote

Φ(n) =
(
ηn+1
ηn

)

then
Φ(n) = T (z, n, 0)

(
η1
η0

)
.
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Consequently
Φ(n) = T (z, n,m)Φ(m).

For any real x set2

c(x) := sup
n,m∈N0

∥∥∥T (x, n,m)
∥∥∥

2

Now we can estimate∥∥∥T (x, n,m)
∥∥∥

2
=
∥∥∥T (x, n, 0)T (x,m, 0)−1

∥∥∥
2
≤
∥∥∥T (x, n, 0)

∥∥∥
2

∥∥∥T (x,m, 0)−1
∥∥∥

2
=

= 1
λm

∥∥∥T (x, n, 0)
∥∥∥

2

∥∥∥T (x,m, 0)
∥∥∥

2
≤ α

2

(∥∥∥T (x, n, 0)
∥∥∥2

2
+
∥∥∥T (x,m, 0)

∥∥∥2

2

)
Therefore c(x) can be estimated as follows

c(x) ≤ α sup
n∈N0

‖T (x, n, 0)‖2
2.

The right hand side of the last inequality is finite if and only if λ ∈ S. We are ready to
prove the following
Lemma C.4: If x belongs to S, then

lim inf
ε→0+

Imm(x+ iε) ≥ 1(
αc(x)

)2 (C.6)

lim sup
ε→0+

|m(x+ iε)| ≤
(
αc(x)

)2
. (C.7)

Proof. Suppose that x ∈ R and ε > 0. Using Lemma C.3 and observing that

A(x+ iε, n) = iε

λn

(
1 0
0 0

)
+ A(x, n)

we arrive at the relation

T (x+ iε, n, 0) = T (x, n, 0) +
n−1∑
j=0

iε

λj
T (x, n, j + 1)

(
1 0
0 0

)
T (x+ iε, j, 0).

Consequently

∥∥∥T (x+ iε, n, 0)
∥∥∥

2
≤ c(x) + εαc(x)

n−1∑
j=0

∥∥∥T (x+ iε, j, 0)
∥∥∥

2

and then it follows that

‖T (x+ iε, n, 0)‖2 ≤
n∑
k=0

(
n

k

)
c(x)k+1(εα)k = c(x)

(
1 + εαc(x)

)n
≤ c(x)eεnαc(x). (C.8)

2Here we use the Hilbert-Schmidt norm, for A ∈ Mat(C, 2), A =
(
a b
c d

)
this is defined by

‖A‖2 =
√
|a2|+ |b|2 + |c|2 + |d|2.

Recall that the operator norm (‖ · ‖, the norm in B(C2) induced by the usual Euclidean norm of C2)
satisfies ‖A‖ ≤ ‖A‖2. If the matrix A is invertible, with α = detA 6= 0, then it immediately follows
from the definition and the explicit form of A−1 that ‖A−1‖2 = ‖A‖2/|α|.
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Indeed, suppose that we are given β, γ ≥ 0 and a sequence an ≥ 0, n ∈ N0 such that it
satisfies

an ≤ β + βγ
n−1∑
j=0

aj

for any n ∈ N and a0 ≤ β. Then it holds that

an ≤
n∑
j=0

(
n

j

)
βj+1γj.

Now recall the definition of ξ(z), in Equation (C.3). We have the equality(
ξn+1(x+ iε)
ξn(x+ iε)

)
= T (x+ iε, n, 0)

(
m(x+ iε)

1

)
.

And so ∥∥∥∥∥
(
m(x+ iε)

1

)∥∥∥∥∥ ≤ ∥∥∥T (x+ iε, n, 0)−1
∥∥∥

2
·
∥∥∥∥∥
(
ξn+1(x+ iε)
ξn(x+ iε)

)∥∥∥∥∥ ≤
≤ αc(x)eεnαc(x)

∥∥∥∥∥
(
ξn+1(x+ iε)
ξn(x+ iε)

)∥∥∥∥∥ .
where we have again used the relation between Hilbert-Schmidt norm of the matrix and
its inverse, and the estimate (C.8). We have arrived at∥∥∥∥∥

(
ξn+1(x+ iε)
ξn(x+ iε)

)∥∥∥∥∥ ≥ e−εnαc(x)

αc(x)
√

1 + |m(x+ iε)|2.

Squaring and then summing over n = 1, 3, 5, . . . we finally get
∞∑
n=1
|ξ(x+ iε)|2 ≥ 1

αc(x) ·
1

eεαc(x) − 1
(
1 + |m(x+ iε)|2

)
.

And using the formula (C.4)

Imm(x+ iε) ≥ 1(
αc(x)

)2 ·
εαc(x)

eεαc(x) − 1
(
1 + |m(x+ iε)|2

)
.

Consequently
lim inf
ε→0+

Imm(x+ iε)
1 +

∣∣∣m(x+ iε)
∣∣∣2 ≥

1(
αc(x)

)2 .

Since 1 + |m(x+ iε)|2 ≥ 1 this immediately implies (C.6). Because3

1 +
∣∣∣m(x+ iε)

∣∣∣2
Imm(x+ iε) ≥ |m(x+ iε)|

we also get (C.7). This completes the proof of the Theorem.
3For z ∈ C+ we have |z| ≤ |z| · |z|Im z ≤

1+|z|2
Im z . Since we assume ε > 0 and λ ∈ R it indeed holds

Imm(λ+ iε) > 0, cf. (C.4).
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Finally, we can state the main theorem of the present Section.
Theorem C.5 ([30]): On S, the spectral measure ρ for J is purely absolutely continuous
in the sense that

(i) ρac(T ) > 0 for any T ⊂ S with |T | > 0 (where | · | is the Lebesgue measure),

(ii) ρs(S) = 0.

Proof. Since for any λ ∈ S we have proved the estimate (C.7) the Lemma C.2 implies
that ρs(S) = 0.

Let T ⊂ S with nonzero Lebesgue measure. Take any sequence {fn}∞n=1 of continuous
functions with compact support such that |fn(x)| ≤ 1 and limn→∞ fn(x) = χT (x) for
almost all x ∈ R. Then using the Lebesgue theorem and Proposition C.1 and Equation
(C.6) we obtain

ρ(T ) =
∫
R

χT (x)dρ(x) = lim
n→∞

∫
R

fn(x)dρ(x) =

= 1
π

lim
n→∞

lim
ε→0+

∫
R

fn(x) Imm(x+ iε)dx ≥ 1
απ
· sup
x∈T

1
c(x)2 · |T |.

C.3 Application to our example
Let us now turn our attention to our particular example. We assume that the sequence
{λn}∞n=1 satisfies all conditions mentioned at the beginning of this Appendix.
Theorem C.6: Let λ ∈ (−2, 2) be fixed and denote by un the solution of recurrence
relation

λn−1un−1 + λnun+1 = λun, n ∈ N

with prescribed initial conditions u0, u1 ∈ C. If the series
∞∑
n=1
|λn+1 − λn|

converges, then {un}∞n=1 is bounded.

Proof. We have already seen how to express the solution using the transfer matrix
A(λ, n), in particular(

un+1
un

)
= A(λ, n)A(λ, n− 1) · · ·A(λ, 2)A(λ, 1)

(
u1
u0

)
, n ∈ N. (C.9)

Recall (Lemma C.3) that

A(λ, n) =
(

λ
λn
−λn−1

λn

1 0

)
.

In the rest of the proof I will suppress the dependence on λ. Looking at the discriminant
of the characteristic polynomial,

Dn = λ2

λ2
n

− 4λn−1

λn
→ λ2 − 4 < 0, as n→∞,
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we see that there exists n0 ∈ N (which depends only on the sequence {λn} and λ ∈
(−2, 2)) such that for all n > n0 we have Dn < 0, hence the transfer matrix A(λ, n) is
diagonalizable. Eigenvalues of A(λ, n), n > n0 are

η±(n) = 1
2

 λ

λn
± i

√√√√4λn−1

λn
− λ2

λ2
n

.
Note that since η−(n) = η+(n) both eigenvalues have the same modulus, in particular

|η±(n)| = 1
2

√√√√λ2

λ2
n

+ 4λn−1

λn
− λ2

λ2
n

=
√
λn−1

λn
.

Corresponding eigenvectors are

v+(n) =
(
η+(n)

1

)
and v−(n) =

(
η−(n)

1

)
.

Thus A(λ, n) = TnBnT
−1
n , where Bn = diag

(
η+(n), η−(n)

)
and Tn =

(
v+(n), v−(n)

)
.

Equation (C.9) implies∥∥∥∥∥
(
un+1
un

)∥∥∥∥∥ ≤ ‖TnBnT
−1
n Tn−1Bn−1T

−1
n−1 · · ·Tn0+1Bn0+1T

−1
n0+1‖

× ‖A(λ, n0) · · ·A(λ, 1)‖
√
u2

1 + u2
0 (C.10)

≤ ‖Tn‖

 n∏
k=n0+2

‖T−1
k Tk−1‖

 n∏
k=n0+1

‖Bk‖

 const(λ, n0, u0, u1) (C.11)

The second product behaves nicely,
n∏

k=n0+1
‖Bn‖ =

n∏
k=n0+1

√
λk−1

λk
=
√
λn0

λn
= O(1), n→∞.

The first one is a little bit more involved. First of all, observe that (recall detTn =
η+(n)− η−(n) = i

√
|Dn|)

T−1
n+1Tn = 1

i
√
|Dn+1|

(
η+(n)− η−(n+ 1) η−(n)− η−(n+ 1)
−η+(n) + η+(n+ 1) −η−(n) + η+(n+ 1)

)
.

This matrix converges to the identity matrix. We need to estimate the rate of this
convergence. So ∥∥∥T−1

n+1Tn
∥∥∥ ≤ 1 +

∥∥∥T−1
n+1Tn − I

∥∥∥
Note that the matrix T−1

n+1Tn − I is of the form
(
an bn
b̄n ān

)
. Its norm can be estimated by

its Hilbert-Schmidt norm
√

2
√
|an|2 + |bn|2. In our case we have

an = 1
i
√
|Dn|

(
η+(n)− η−(n+ 1)

)
− 1,

bn = 1
i
√
|Dn|

(
η−(n)− η−(n+ 1)

)
.
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It is straight forward to show that

an = O
(
|λn+1 − λn|+ |λn − λn−1|

)
,

bn = O
(
|λn+1 − λn|+ |λn − λn−1|

)
.

Hence ∥∥∥T−1
n+1Tn

∥∥∥ = 1 +O
(
|λn+1 − λn|+ |λn − λn−1|

)
.

The boundedness of (C.11) now follows from the convergence of (it is our assumption!)
the series ∑∞n=1 |λn+1 − λn|. In fact4,

∞∏
n=1

(
1 + γ|λn+1 − λn|

)
= exp

∞∑
n=1

ln
(
1 + γ|λn+1 − λn|

)
≤ exp

(
γ
∞∑
n=1
|λn+1 − λn|

)
,

with γ > 0.

Remark C.7: Theorem C.6 is in particular applicable to the case of λn =
√

n
n+α , α > 0.

In fact
λn+1 − λn = O(1/n2),

as n→∞. This example occurs in the Chapter 2.
Remark C.8: Also note that in our case we have 0 < λn ≤ 1 for all n ∈ N. This
implies that ±2 /∈ σpp(J) and hence we have complete information about the spectrum.

Indeed. Let u be a solution of the eigenvalue equation Ju = 2u with u1 = 1 (this is
no restriction, any other solution of this equation is a scalar multiple of this one). We
will prove by induction that un+1 ≥ un holds for any n ∈ N and thus u /∈ l2.

• In fact, since λ1u2 = 2u1 we have u2 ≥ u1.

• Suppose that un+1 ≥ un holds for n ∈ N. Then

un+2 = 1
λn+1

(
2un+1 − λnun

)
≥ un+1 +

( 2
λn+1

− 1
)
un+1 −

λn
λn+1

un.

Since 2/λn+1− 1 is positive we can use our induction assumption to conclude that

un+2 ≥ un+1 +
( 2
λn+1

− 1− λn
λn+1

)
un = un+1 + 2− λn − λn+1

λn+2
un ≥ un+1,

since we know that this un and the fraction are positive.

The case of λ = −2 can be dealt with similarly.
4ln(1 + x) < x for x > 0.
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C.4 Asymptotic analysis of the generalized
eigenvectors

According to previous Sections it is necessary to study the boundedness of generalized
eigenvectors of J . This Section is thus devoted to the asymptotic analysis of those
eigenvectors. This problem is of course interesting in its own right and the results of the
Chapter 2 are based on the information obtained in the current Section. Our exposition
roughly follows [27].

In accordance with [27] we introduce a number of useful notions. Suppose that
ξ = {ξn}∞n=1 is a sequence in a Banach space (X , ‖ · ‖). We shall say that ξ ∈ l1 if and
only if ∑∞n=1 ‖ξn‖ < ∞. Let ∆ be the forward difference operator, (∆ξ)n := ξn+1 − ξn
for each n ≥ 1. We shall say that sequence ξ belongs to the class D1 if and only if it is
bounded and ∆ξ ∈ l1.

Our interest in this section is the asymptotic behavior of solutions of the recurrence
equation

xn+1 = A(n)xn, n ≥ 1,
where A(n) = V (n) + R(n) is a complex 2 × 2 matrix, n ≥ 1, V ∈ D1, and R ∈ l1.
Furthemore, we assume that V (n) is a real matrix and that5

lim sup
n→∞

discrV (n) < 0 and lim
n→∞

V (n) = V∞.

Under these assumptions it follows that there is n0 ≥ 1 such that V (n) has two
distinct (complex conjugate) eigenvalues η±(n), η−(n) = η+(n). Thus |η+(n)| = |η−(n)|.
In the rest of these notes we will need the following Lemma (when we are dealing with our
particular example from the previous Section, we can check conclusions of this Lemma
directly, see the last Remark of this section).
Lemma C.9 ([27], Lemma 1.7): Let B = {B(n)}n≥n0 be a sequence of d × d complex
matrices, lim

n→∞
B(n) = B∞. If B ∈ D1 and B∞ has d different eigenvalues µ1, . . . , µd,

then there exist n1 ≥ n0, a sequence of diagonal matrices Λ = {Λ(n)}n≥n1 ∈ D1, and of
invertible matrices T = {T (n)}n≥n1 ∈ D1 such that

B(n) = T (n)Λ(n)T (n)−1, n ≥ n1,

lim
n→∞

Λ(n) = Λ∞ := diag(µ1, . . . , µd) and lim
n→∞

T (n) = T∞, where T∞ is invertible and
B∞ = T∞Λ∞T−1

∞ .
As a first step we will make a "change of variables" so that the new matrix is partially

diagonalized. According to the Lemma above there is some n1 ≥ n0 such that V (n) =
T (n)Λ(n)T (n)−1, n ≥ n1, where T (n) are invertible {T (n)}n≥n1 ∈ D1 and

Λ(n) = diag(η+(n), η−(n)).

Moreover lim
n→∞

Λ(n) = Λ∞, lim
n→∞

T (n) = T∞ and V∞ = T∞Λ∞T−1
∞ . We set

yn := T (n)−1xn, n ≥ n1.

5If A is a 2 × 2 complex matrix then, by discrA we denote the discriminant of the characteristic
polynomial of A.
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Thus the sequence y satisfies a new recurrence equation

yn+1 =
(
Λ(n) +R′(n)

)
yn, n ≥ n1,

where

R′(n) =
(
T (n+ 1)−1 − T (n)−1

)
A(n)T (n) + T (n+ 1)−1R(n)T (n), n ≥ n1,

is again of class l1, that is R′ ∈ l1.
Let us now denote

ϕ±(n,m) :=
n∏

j=m
η±(j), Φ(n,m) :=

n∏
j=m

Λ(j) = diag
(
ϕ+(n,m), ϕ−(n,m)

)
, n ≥ m,

and for n < m we set ϕ±(n,m) = 1 and Φ(n,m) = diag(1, 1). Note that the order of
multiplication in the matrix product is irrelevant because Λ’s commute. Let us fix a
sequence γ = {γ(n)}n≥n1 ⊂ C, γ(n) 6= 0, n ≥ n1, and set (N0 will be specified below)

Xγ =
{
ξ = {ξn}n≥N0 ⊂ C2 ; ‖ξ‖γ := sup

n≥N0

‖ξn‖
|γ(n)| <∞

}
.

Xγ is a linear space and together with the norm ‖ · ‖γ forms a Banach space. Our next
step is essentially contained in the following Lemma.
Lemma C.10: Denote6

β(n) := 1
|γ(n)|

∞∑
j=n

∣∣∣∣∣ γ(j)
ϕ+(n, j)

∣∣∣∣∣‖R′(j)‖ (C.12)

and suppose that there is N0 ≥ n1 such that

sup
n≥N0

β(n) = β∗ < 1. (C.13)

Then the linear operator L : Xγ →Xγ,

(Lξ)(n) :=
∞∑
j=n

Φ(n− 1, N0)Φ(j,N0)−1R′(j)ξ(j), ξ ∈Xγ, n ≥ N0, (C.14)

is well defined and
‖L‖γ ≤ β∗ < 1.

Proof. Let us first check the convergence of the series in (C.14). The norm (‖ · ‖ to
be precise) of the summand can be estimated by (recall that our eigenfunctions have
identical modulus)

≤
∣∣∣∣∣ϕ+(n− 1, N0)

ϕ+(j,N0)

∣∣∣∣∣ ‖R′(j)‖ ‖ξ(j)‖ ≤
∣∣∣∣∣ γ(j)
ϕ+(j, n)

∣∣∣∣∣‖R′(j)‖ ‖ξ‖γ.
6This definition is correct, β(n) is either finite or infinite.
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Using the assumption (C.13) one see that indeed the series in (C.14) converges. Conse-
quently

‖(Lξ)(n)‖
|γ(n)| ≤ β(n)‖ξ‖γ ≤ β∗‖ξ‖γ, n ≥ N0

and so Lξ ∈Xγ with
‖Lξ‖γ ≤ β∗‖ξ‖γ.

Hence for the induced operator norm we infer that ‖L‖γ ≤ β∗ < 1.

Suppose that the assumptions of the preceding Lemma are satisfied and moreover
that

sup
n≥N0

∣∣∣∣ϕ+(n− 1, N0)
γ(n)

∣∣∣∣ = α <∞. (C.15)

Then the vectors

b+(n) = ϕ+(n− 1, N0)e1, b−(n) = ϕ−(n− 1, N0)e2, n ≥ N0

belong to Xγ. According to the Lemma C.10 the equation

(L+ I)y± = b±

has a unique solution in Xγ. In fact, −1 /∈ σ(L). Moreover y± 6= 0 and

‖y±‖γ =
∥∥∥(L+ I)−1b±

∥∥∥
γ
≤
∥∥∥(L+ I)−1

∥∥∥
γ
‖b±‖γ ≤

α

1− β∗
.

In other words, there are unique sequences y± ∈Xγ such that

y±(n) = b±(n)− (Ly±)(n) = b±(n)−
∞∑
j=n

Φ(n− 1, N0)Φ(j,N0)−1R′(j)y±(j), n ≥ N0

(C.16)
and y± = O(γ), where O is with respect to the original norm ‖ · ‖.

Let us now show, that these sequences y± solve the equation

y±(n+ 1) =
(
Λ(n) +R′(n)

)
y±(n), n ≥ N0.

This can be verified by a direct computation. In fact,(
Λ(n) +R′(n)

)
y±(n) =

=
(
Λ(n) +R′(n)

)
b±(n)−

∞∑
j=n

Φ(n,N0)Φ(j,N0)−1R′(j)y±(j)−R′(n)
(
Ly±

)
(n)

= Λ(n)b±(n) +R′(n)
(
b±(n)− y±(n)− (Ly±)(n)

)
− (Ly±)(n+ 1)

= b±(n+ 1)− (Ly±)(n+ 1) = y±(n+ 1).

Let us apply this result to our particular example of the previous Section. In this
case we have |η±(n)| = 1 for n ≥ n1. Since R′ ∈ D1 we can choose γ ≡ 1 (then both
conditions (C.15) and (C.13) are satisfied) and from (C.16) we conclude that

y±(n)− b±(n) = O
( ∞∑
j=n
‖R′(j)‖

)
, as n→∞.
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Passing back to the original "coordinates" we get

x±(n) = ϕ±(n− 1, N0)T (n)e 1
2

+O
( ∞∑
j=n
‖R′(j)‖

)
, as n→∞.

This can be rewritten to the following form

x±(n) =
(

ϕ±(n,N0)
ϕ±(n− 1, N0)

)
+O

( ∞∑
j=n
‖R′(j)‖

)
.

Remark C.11: In our particular case of

A(n) =
(

λ
λn
−λn−1

λn

1 0

)
,

where λ ∈ (−2, 2) and 0 < λn < 1 for each n ≥ 1 and

lim
n→∞

λn = 1,
∞∑
n=1
|λn+1 − λn| <∞,

we take

V (n) :=
(

λ
λn
−1

1 0

)
R(n) :=

(
0 1− λn−1

λn

0 0

)

Surely we have V ∈ D1 and R ∈ l1. Moreover,

discrV (n) = λ2

λ2
n

− 4→ λ2 − 4 < 0, V∞ = lim
n→∞

V (n) =
(
λ −1
1 0

)
.

There exists n0 ≥ 1 such that the discrV (n) < 0 for any n ≥ n0 and V (n) has two
complex conjugate unimodular eigenvalues

η±(n) = 1
2

 λ

λn
± i

√√√√4− λ2

λ2
n

.
Corresponding eigenvectors are

v±(n) =
(
η±(n)

1

)
.

We conclude that there are two linearly independent solutions of the generalized eigen-
function equation with asymptotics

u±(n) = ϕ±(n− 1, N0) + o(1).

Taking

λn =
√

n

n+ α
, α > 0,
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we obtain

η±(n) = 1
2

(
λ± i

√
4− λ2

)
+ αλ

4n

(
1∓ iλ√

4− λ2

)
+O(1/n2)

as n→∞.
In order to somewhat simplify our equations let us use θ ∈ (0, π) to denote rescale

the parameter λ = 2 cos θ ∈ (−2, 2). With this choice we obtain

η±(n) = cos θ ± i sin θ + α cos θ
2n

(
1∓ i cos θ

sin θ

)
+O(1/n2) =

= e±iθ
(

1∓ iα

2n ctg θ
)

+O(1/n2), n→∞.

Consequently,

ϕ±(n, 1) =
n∏
k=1

η±(k) = exp
(
± inθ ∓ iα

2 ctg θ lnn+ f(θ)
)

+ o(1),

as n→∞
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