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podklady (literaturu, projekty, SW atd.) uvedené v přiloženém seznamu.
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1.
Introduction

In this work we study time-dependent quantum systems, especially we are interested in char-
acterisation of bound states and propagating (or free, scattering) states. Mathematically,
quantum system is described by Hilbert space H and family of self-adjoint operators H(t),
t ∈ R acting in H . Each state of the system corresponds to some vector ψ in H . Time evo-
lution of the vector ψ is described by mapping t 7→ ψ(t) ∈ H with initial condition ψ(s) = ψ
for some time s ∈ R. This evolution is governed by Schrödinger equation

ı
dψ(t)

dt
= H(t)ψ(t).

This initial value problem can be reformulated using the notion of unitary propagator. Family
of unitary operators U(t, s) obeying

U(t, t) = I (1.1)
U(t, s) = U(t, r)U(r, s), ∀t, s, r ∈ R, (1.2)

and
ı∂tU(t, s) = H(t)U(t, s), (1.3)

where the meaning of the last equation is to be specified, is called unitary propagator. In
the particular situation we obtain H(t) by physical reasoning and we face the question of
existence of unitary propagator and validity of (1.3). This problem can be solved under some
additional assumptions interposed on H(t). As a example we cite here Theorem X.70 from
[RS75].

Theorem 1.1: Let H(t) be a self-adjoint operator-valued function of t ∈ R such that

(i) the domain D = domH(t) is independent of t,

(ii) the function
(t, s) 7→ (t− s)−1

[
(ı+H(t))(ı+H(s))−1 − I

]
extends to a jointly strongly continuous bounded operator-valued function on R2.

Then there exists a unique propagator U satisfying (1.1), (1.2) such that U(t, s)D ⊂ D and

ı∂tU(t, s)ψ = H(t)U(t, s)ψ, ∀ψ ∈ D .

In the last chapter of this document we present example when assumptions of this theorem
are not satisfied.

In this work we are especially intrested in T -periodic Hamiltonians, i.e. H(t) = H(t+T ).
If in this case the last theorem is applicable, then the uniqueness of propagator implies, that

U(t+ T, s+ T ) = U(t, s), ∀t, s ∈ R.
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1. Introduction

Such a unitary propagator is then called T -periodic. Operator U(s + T, s) is called the
monodromy operator, or Floquet operator. Obviously it is unitary equivalent to U(T, 0) for
any s ∈ R. Its importance is obvious from relation

U(t+ nT, s) = U(t, s) [U(s+ T, s)]n , n ∈ Z,

i.e. it is sufficient to know U(t, s) for one period [s, s+T ]. In particular the spectral properties
of the Floquet operator are important. Let us now make small detour.

It is useful to point out main aspects of time-independent case. The system is now
described by self-adjoint operator H with domain domH ⊂ H . Time evolution of vector
ψ ∈ H is given by Schrödinger equation, which takes form

ı
dψ(t)

dt
= Hψ(t), ψ(0) = ψ. (1.4)

This can be solved with aid of Stone’s theorem (cf. [RS72]). The unitary propagator in this
case is U(t, s) = exp(−ıH(t− s)), or shortly U(t) = exp(−ıHt). Stone’s theorem now states
that ψ(t) = U(t)ψ is solution of (1.4).

Bounded states and propagating states are related to spectral properties of Hamiltonian
H. More precisely, we define pure point respectively continuous part of Hilbert space H with
respect to H by

H pp(H) = span{eigenvectors of H},
H cont(H) = H pp(H)⊥.

These sets are directly related to the spectral properties of H. Equivalent definition of pure
point part and continuous part of Hilbert space is as follows. Denote Pλ the partition of unity
corresponding to H, i.e.

H =
∫
R

λdPλ.

Furthermore set µψ(λ) = 〈ψ, Pλψ〉. We say that ψ ∈ H pp(H) if µψ is pure point, ψ ∈ H ac(H)
if µψ is absolutely continuous with respect to Lebesgue measure and ψ ∈ H sc(H) if µψ is
singular continuous with respect to Lebesgue measure. Continuous subspace is H cont(H) =
H ac(H)⊕H sc(H). It holds, that

σpp(H) = σ(H � H pp(H)),
σcont(H) = σ(H � H cont(H)),
σac(H) = σ(H � H ac(H)),
σsc(H) = σ(H � H sc(H)).

There are many ways how to describe bound or free states. Mainly we are interested in
certain properties of trajectories U(t, 0)ψ. Two of these approaches are summarised in Chap-
ter 2. Briefly, the main result is (when we are considering time-independent Hamiltonians),
that the bound states are from H pp(H) and the free states are from H cont(H). Classical
result is due to Ruelle, Amrein, Georgescu and Enss (cf. [RS75]).

Theorem 1.2 (RAGE Theorem): Let H be self-adjoint operator on Hilbert space H and
C bounded operator which is relatively compact to H, i.e. the operator

C(H + ı)−1

is compact. Then it holds that

2



1. Introduction

(i) For all ψ in H cont(H)

lim
τ→∞

1
2τ

τ∫
−τ

‖Ce−ıtHψ‖2 dt = 0.

(ii) For all ψ in domH

1
2τ

τ∫
−τ

‖Ce−ıtHP contψ‖2 dt ≤ ε(τ)‖(H + ı)ψ‖2,

where P cont is orthogonal projector onto H cont(H) and ε(τ) → 0 as τ →∞.

In the Chapter 2 it will be shown that in the time-dependent case the role of H is trans-
ferred to the Floquet operator U(T, 0). Therefore we will be interested in decomposition

H = H pp(U(T, 0))⊕H cont(U(T, 0)) (1.5)

In particular, it will be shown that states from H pp(U(T, 0)) have precompact trajectories
and that states from H cont(U(T, 0)) leave any compact subset of H . I.e.1

H pp(U(T, 0)) = H p
± (U),

H cont(U(T, 0)) = H f
± (U).

We will study geometrically bounded and free states M f
±, M bd

± . There the distinction is made
using the probability of measurement of position.

1For exact definition see Chapter 2.
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2.
Bound states and propagating states in

quantum theory

In this Chapter we will review geometrical and topological approach to bound states and
scattering states. We mainly follow [EV83] and [dO95].

2.1 Topological approach

We will start with definition of states with precompact trajectories H p
± , and its complement

H f
± .

Definition 2.1: Vector ψ ∈ H belongs to the set H p
± , if and only if the set {U(t, 0)ψ|t ≷ 0}

is precompact.1

Definition 2.2: We say that vector ψ ∈ H belongs to the set H f
± , if and only if

lim
τ→±∞

1
τ

τ∫
0

‖KU(t, 0)ψ‖2 dt = 0 (2.1)

holds for any compact operator K.

The trajectory {ψ(t)|t ≷ 0} of the state ψ ∈ H p
± is precompact, thus approximately finite-

dimensional. On the other hand state from H f
± will leave any finite-dimensional set during

its time evolution. It follows that the set H p
± , respectively H f

± can be thought of as a set of
bounded and propagating states. If we want to emphasise that we work with propagator U
we will write H f

± (U) respectively H p
± (U). These two sets are closed linear subspaces of H ,

mutually orthogonal. This is contents of following Lemma and Theorem.

Lemma 2.3: Let the set M ⊂ H be precompact. Then for each positive ε there exists
finite-dimensional orthogonal projector C, such that (1 − C)M ⊂ Bε, where Bε is a ball of
radius ε and centre in origin.

Proof. For given ε > 0 there is finite ε
2 -net corresponding to the set M (we will denote it by

{xi}ni=1). Let C be orthogonal projector onto linear span of M . Choose y ∈ M arbitrarily.
We can find i ∈ n̂ obeying ‖xi − y‖ < ε

2 . Thus

‖Cy − y‖ ≤ ‖Cy − xi‖︸ ︷︷ ︸
=‖C(y−xi)‖≤ε/2

+‖xi − y‖ ≤ ε

2
≤ ε.

In other words (1− C)y ∈ Bε for any y ∈M .

1The sign + corresponds to > and − to <. Similar convention will be used throughout this work.
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2. Bound states and propagating states in quantum theory

Theorem 2.4: (i) For any ψ ∈ H f
± (U) and arbitrary compact operator K it holds

lim
τ→±∞

1
τ

τ∫
0

‖K U(t, 0)ψ‖ dt = 0.

(ii) H f
± (U) and H p

± (U) are closed orthogonal subspaces of H .

Proof. (i) Choose ψ ∈ H f
± (U), compact operator K and τ > 0. Schwartz inequality implies

that

1
τ

τ∫
0

‖K U(t, 0)ψ‖ dt ≤

1
τ

τ∫
0

‖KU(t, 0)ψ‖2 dt

1/2

.

This proofs case (i).

(ii) Both sets are obviously linear subspaces. We will now show closeness of H f
± (U). Let

φ ∈ H f
± (U), ε > 0 and K be compact operator. Then we can find ψ ∈ H f

± (U) fullfilling
‖ψ − φ‖ < ε. Thus

1
τ

τ∫
0

‖KU(t, 0)φ‖2 dt ≤ 1
τ

τ∫
0

(‖KU(t, 0)(φ− ψ)‖+ ‖KU(t, 0)ψ‖)2 dt

≤ 1
τ

τ∫
0

(‖K‖ · ‖φ− ψ‖+ ‖KU(t, 0)ψ‖)2 dt

≤ ‖K‖2‖φ− ψ‖2 +
1
τ

τ∫
0

‖KU(t, 0)ψ‖2 dt+ 2‖K‖2‖ψ‖ · ‖φ− ψ‖.

This expression can be made arbitrarily small by choosing τ sufficiently large and ε
small. Therefore φ ∈ H f

± (U). The closeness of H f
± (U) is proved.

The closeness of H p
± (U) can be treated by similar manner. Let φ ∈ H p

± (U) and ε > 0.
Then there is ψ ∈ H p

± (U) such as ‖ψ − φ‖ < ε. Therefore

{U(t, 0)φ|t ≷ 0} ⊂ {U(t, 0)(φ− ψ)|t ≷ 0}+ {U(t, 0)ψ|t ≷ 0}. (2.2)

The first set on the right hand side of (2.2) is arbitrarily small and the second is pre-
compact. Thus the set on the left hand side of (2.2) is also precompact. Indeed. If
N = {xi}ni=1 denotes finite ε-net of the set {U(t, 0)ψ|t ≷ 0}, then we can find i ∈ n̂ such
that

‖U(t, 0)ψ − xi‖ < ε

for any t ≷ 0. Therefore

‖U(t, 0)φ− xi‖ ≤ ‖φ− ψ‖+ ‖U(t, 0)ψ − xi‖ < 2ε.

We see that the set N is finite 2ε-net corresponding to the trajectory {U(t, 0)φ|t ≷ 0}.
This is therefore precompact and H p

± (U) is closed subspace.
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2. Bound states and propagating states in quantum theory

Let now ϕ ∈ H f
± (U) and η ∈ H p

± (U). To check the orthogonality we rewrite the inner
product as

|〈ϕ, η〉| = 1
τ

τ∫
0

|〈U(t, 0)ϕ,U(t, 0)η〉| dt.

For each ε > 0 there is a finite-dimensional projector Pε fullfilling (1−Pε)U(t, 0)η ∈ Bε
for any t ≷ 0 (cf. Lemma 2.3). According to (i) in Theorem 2.4 we can write, for
sufficiently large τ ,

|〈ϕ, η〉| ≤ 1
τ

τ∫
0

|〈PεU(t, 0)ϕ,U(t, 0)η〉| dt+
1
τ

τ∫
0

|〈U(t, 0)ϕ, (1− Pε)U(t, 0)η〉| dt

≤ ‖η‖1
τ

τ∫
0

‖PεU(t, 0)ϕ‖ dt+ ‖ϕ‖1
τ

τ∫
0

‖(1− Pε)U(t, 0)η‖ dt

≤ ‖η‖ε+ ‖ϕ‖ε.

Because ε > 0 was arbitrary the orthogonality was proved.

In this paragraph we will show that in case of T -periodic propagator the Hilbert space
decays to orthogonal sum H f

± ⊕H f
± and that this decay corresponds to (1.5). We will need

following Lemma.

Lemma 2.5: Let U(t, s) be T -periodic propagator and P cont orthogonal projector onto sub-
space H cont(U(T, 0)). Then for any compact operator C it holds that

lim
|τ |→∞

wwwwww1
τ

τ∫
0

U∗(t, 0)CU(t, 0)P cont dt

wwwwww = 0. (2.3)

Proof. Choose τ ∈ R, τ = σ + nT and σ ∈ [0, T ). Thenwwwwww1
τ

τ∫
0

U∗(t, 0)CU(t, 0)P cont dt

wwwwww ≤ σ

τ
‖C‖+

wwwwww 1
nT

nT∫
0

U∗(t, 0)CU(t, 0)P cont dt

wwwwww (2.4)

The first term in the last equation tends to zero as τ → ∞, because σ < T . The expression
in the norm on the right hand side can be recast in

1
n

n−1∑
j=0

1
T

(j+1)T∫
jT

U∗(t, 0)CU(t, 0)P cont dt =

=
1
n

n−1∑
j=0

1
T

T∫
0

U∗(t+ jT, 0)CU(t+ jT, 0) dt. (2.5)

Because U is T -periodic it holds true that

U(t+ jT, 0) = U(t, 0)[U(T, 0)]j ,

U(t+ jT, 0)∗ = [U(T, 0)∗]jU(t, 0)∗.

6



2. Bound states and propagating states in quantum theory

So (2.5) is equal to

1
n

n−1∑
j=0

U∗(T, 0)j

 1
T

T∫
0

U∗(t, 0)CU(t, 0) dt


︸ ︷︷ ︸

C′

U(T, 0)jP cont.

Operator C ′ is again compact2 and therefore it can be arbitrarily accurately approximated
by finitedimensional operator. More precisely, there exists operators C ′0 and D such as C ′0 is
finitedimensional and C ′ = C ′0 +D. ‖D‖ can be chosen as small as we please independently
on τ . Therefore the second term in (2.4) can be estimated bywwwwww 1

n

n−1∑
j=0

U∗(T, 0)jC ′0U(T, 0)jP cont

wwwwww+
1
n

n−1∑
j=0

‖D‖︸ ︷︷ ︸
< 1

τ

.

Without loss of generality it is sufficient to consider only one onedimensional operator C ′′.
We can find ψ, φ ∈ H , ‖ψ‖ = 1 such that

C ′′ = 〈φ, ·〉ψ and C ′′∗ = 〈ψ, ·〉φ.

Next, mind that if A is bounded operator then it holds true

‖AA∗‖ = sup
‖ϕ‖=1

〈ϕ,AA∗ϕ〉 = sup
‖ϕ‖=1

‖A∗ϕ‖2 = ‖A∗‖2 = ‖A‖2.

We will apply this equality to A = 1
n

∑n−1
j=0 U

∗(T, 0)jC ′′U(T, 0)jP cont. First observe, that for
any η ∈ H it holds that

A∗η =
1
n

n−1∑
j=0

P contU∗(T, 0)j〈ψ,U(T, 0)jη〉φ,

and

AA∗η =
1
n2

n−1∑
j,k=0

〈ψ,U(T, 0)kη〉〈φ,U(T, 0)jP contU∗(T, 0)kφ〉U∗(T, 0)jψ,

2Indeed, let A : [a, b] → B(H ) be norm continuous, then the integral

B =

bZ
a

A(t) dt

exists in Riemann sense. The operator B is given by relation

〈ϕ,Bψ〉 =

bZ
a

〈ϕ,A(t)ψ〉 dt, ∀ϕ,ψ ∈ H .

If moreover A(t) is compact for any t then B is compact too.

7



2. Bound states and propagating states in quantum theory

because U(T, 0) and P cont commute. The norm of the last expression can be estimated by

‖AA∗η‖ ≤ 1
n2

n−1∑
j,k=0

∣∣∣〈P contφ,U(T, 0)jU∗(T, 0)kP contφ〉
∣∣∣ ‖η‖.

And for the second term in equation (2.4) we finally have

‖A‖2 = ‖AA∗‖ ≤ 1
n2

n−1∑
j,k=0

∣∣∣〈P contφ,U(T, 0)j−kP contφ〉
∣∣∣ ≤ (2.6)

≤

 1
n2

n−1∑
j,k=0

∣∣∣〈P contφ,U(T, 0)j−k, P contφ〉
∣∣∣2


1/2

. (2.7)

Obviously it is sufficient to consider only φ ∈ H cont(U(T, 0)). We will use spectral
theorem for unitary operators. The monodromy operator is unitary and therefore there is
partition of unity (on unit circle in the complex plane) E(λ) such as

U(T, 0) =

2π∫
0

eıλdE(λ).

We will denote νφ(λ) := 〈φ,E(λ)φ〉. Than it holds true that

〈φ, f(U(T, 0))φ〉 =

2π∫
0

f(eıλ)dνφ(λ)

for measurable f .
Let us turn our attention to the last term in (2.6), using above note we can write

1
n2

n−1∑
j,k=0

∣∣∣〈φ,U(T, 0)j−kφ〉
∣∣∣2 =

2π∫
0

2π∫
0

∣∣∣∣∣∣ 1n
n−1∑
j=0

eıj(λ−µ)

∣∣∣∣∣∣
2

︸ ︷︷ ︸
fn(λ−µ)

dνφ(λ)dνφ(µ). (2.8)

The sum of geometric series is just

n−1∑
j=0

eıj(λ−µ) =
1− eın(λ−µ)

1− eı(λ−µ)
.

Therefore

fn(x) =
∣∣∣∣ 1n sin nx

2

sin x
2

∣∣∣∣2 .
Next observe, that for any natural n and real x it holds that∣∣∣∣ sinnxn sinx

∣∣∣∣ ≤ 1.

8



2. Bound states and propagating states in quantum theory

This means that fn(λ− µ) ≤ 1, moreover

fn(λ− µ) ≤ 1
n2 sin2 x

,

where λ, µ ∈ [0, 2π] and x = λ−µ
2 ∈ [−π, π]. Choose δ ∈ (0, π). Then for x which obeys

inequality |x2 − πk| > 1
2δ, k = 1, 0, 1 is sin2 x ≥ Cδ > 0. In other words

1
n2 sin2 x

≤ const(δ)
n2

, for x ∈
[
−π +

δ

2
,−δ

2

]
∪
[
δ

2
, π − δ

2

]
.

Thus for such λ, µ we have following inequality

|fn(λ− µ)| ≤ const(δ)
n2

.

And for (2.8) we have

2π∫
0

2π∫
0

fn(λ− µ)dνφ(λ)dνφ(µ) =
1∑

k=−1

{ ∫∫
|λ−µ−2kπ|<δ

fn(λ− µ)dνφ(λ)dνφ(µ)+ (2.9)

+
∫∫

|λ−µ−2kπ|>δ

fn(λ− µ)dνφ(λ)dνφ(µ)

︸ ︷︷ ︸
≤ const(δ)

n2

}
. (2.10)

We can naturally assume that E(λ) = 0 for λ < 0 and E(λ) = I for λ > 2π. The first term
in curly bracket is smaller then or equal to

∫∫
|λ−µ−2kπ|<δ

dνφ(λ)dνφ(µ) =
∫
R

dνφ(λ)

 ∫
|λ−µ−2kπ|<δ

dνφ(µ)

 =
∫
R

dνφ(λ)
[
νφ(µ)

]λ−2kπ+δ

λ−2kπ−δ
.

The second term in (2.9) tends to zero as n→∞. Recall that δ > 0 can by chosen arbitrarily
small. Because φ ∈ H cont(U(T, 0)) the function λ 7→ 〈φ,E(λ)φ〉 is continuous and therefore

lim
δ→0

[νφ(µ)]λ−2kπ+δ
λ−2kπ−δ = 0.

The Lemma is proved.

Corollary 2.6: Let C be compact operator and ψ ∈ H cont(U(T, 0)), then

1
τ

τ∫
0

‖CU(t, 0)ψ‖ dt ≤ f(τ)‖ψ‖, (2.11)

where f(τ) → 0 as |τ | → ∞.

9



2. Bound states and propagating states in quantum theory

Proof. Using Schwartz inequality3 it holds true that for ψ ∈ H cont(U(T, 0))1
τ

τ∫
0

‖CU(t, 0)ψ‖ dt

2

≤ 1
τ

τ∫
0

‖CU(t, 0)ψ‖2 dt =

=

〈
ψ,

1
τ

τ∫
0

U∗(t, 0)C∗CU(t, 0)P cont dtψ

〉
≤

≤

wwwwww1
τ

τ∫
0

U∗(t, 0)C∗CU(t, 0)P cont dt

wwwwww ‖ψ‖2 ≡ f2(τ)‖ψ‖2.

The operator C∗C is compact, so from the preceding Lemma it follows that lim|τ |→∞ f(τ) =
0.

Theorem 2.7: Let U be T -periodic unitary propagator, then

H p
± = H pp(U(T, 0)). (2.14)

Proof. We will show both inclusions.

• H pp(U(T, 0)) ⊂ H p
± : Let ψ be eigenvector of U(T, 0). I.e. there is α ∈ R such as

U(T, 0)ψ = e−ıαψ. Therefore the set{
U(t, 0)ψ

∣∣t ∈ R
}

=
{
e−ın(t)αU(σ, 0)ψ

∣∣∣t = σ + nT ∈ R, σ ∈ [0, T )
}

is subset of M = S1 · {U(t, 0)ψ|t ∈ [0, T ]}. The mapping t 7→ U(t, 0)ψ : [0, T ] → H is
continuous and the interval [0, T ] is comapact, consequently the set M is compact. This
also means that any finite linear combination of eigenvectors of Floquet operator lies in
H p
± , because any finite sum of compact sets is compact. And because H pp(U(T, 0)) is

closed subspace, the inclusion holds.

3It is true that

bZ
a

‖A(t)ψ‖2 dt =

bZ
a

〈ψ,A(t)∗A(t)ψ〉 dt = (2.12)

=

*
ψ,

bZ
a

A(t)∗A(t) dtψ

+
≤

wwwwww
bZ

a

A(t)∗A(t) dt

wwwwww ‖ψ‖2. (2.13)

If A =
R b

a
A(t) dt then for B ∈ B(H ) we have

BA =

bZ
a

BA(t) dt, AB =

bZ
a

A(t)B dt,

because for ψ, φ ∈ H we have

〈φ,
bZ

a

BA(t) dtψ〉 =

bZ
a

〈B∗φ,A(t)ψ〉 = 〈φ,BAψ〉.

The second equality can be shown similarly

10



2. Bound states and propagating states in quantum theory

• H p
± ⊂ H pp(U(T, 0)): Let φ ∈ H p

+ , ‖φ‖ = 1 and ε > 0. Then the set M = {U(t, 0)φ|t >
0} is precompact and by virtue of Lemma 2.3 there is a finite-dimensional orthogonal
projector C such as (C − 1)M ⊂ Bε. Thus

sup
t>0

‖(C − 1)U(t, 0)φ‖ < ε.

For ψ ∈ H cont(U(T, 0)), ‖ψ‖ = 1 there is τ > 0 such as4

1
τ

τ∫
0

‖CU(t, 0)ψ‖ dt < ε.

It follows that there is some tε < τ fullfilling

τ∫
0

‖CU(t, 0)ψ‖ dt = τ‖CU(tε, 0)ψ‖,

and therefore ‖CU(tε, 0)ψ‖ < ε. Finally

|〈φ, ψ〉| = |〈U(tε, 0)φ,U(tε, 0)ψ〉| =
= |〈(1− C)U(tε, 0)φ,U(tε, 0)ψ〉+ 〈U(tε, 0)φ,CU(tε, 0)ψ〉| ≤
≤ ‖(1− C)U(tε, 0)φ‖+ ‖CU(tε, 0)ψ‖ ≤ 2ε.

ε can be chosen as small as we please, thus

H p
± ⊥ H cont(U(T, 0)).

By the definition we have H = H pp(U(T, 0))⊕H cont(U(T, 0)), thus necessarily H p
± ⊂

H pp(U(T, 0)).

Theorem 2.8: Let U be T -periodic propagator on Hilbert space H . Then

H f
± (U) = H cont(U(T, 0)), (2.15)

in particular H = H p
± (U)⊕H f

± (U).

Proof. By Theorem 2.4 and Theorem 2.7 we showed, that H f
± (U) ⊂ H cont(U(T, 0)). The

opposite inclusion is to be proved. Choose ψ ∈ H cont(U(T, 0)) and K compact operator.
Then it holds

1
τ

τ∫
0

‖KU(t, 0)ψ‖2 dt =
1
τ

τ∫
0

〈U(t, 0)ψ,K∗KU(t, 0)ψ〉 dt ≤ ‖ψ‖1
τ

τ∫
0

‖K∗KU(t, 0)ψ‖ dt→ 0

as τ →∞, because K∗K is compact and we used Corollary 2.6..

4cf. Corollary 2.6, C is finite-dimensional, and therefore compact.
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2. Bound states and propagating states in quantum theory

2.2 Geometrical approach

We will now define geometrically bounded and propagating states, following [EV83]. Let
{Pr}r≥0 by family of bounded linear operators defined on separable Hilbert space H and
obeying following conditions

Pr = P ∗r , ‖Pr‖ ≤ 1 a s-lim
r→∞

Pr = I. (2.16)

In most cases we will have H = L2(Rn,dnx) and for {Pr} we will choose family of orthogonal
projectors5 {F (|Q| < R)}.

Definition 2.9: We say that ψ ∈ M bd
± (P ) if and only if

lim
r→∞

sup
t≷0

‖(1− Pr)U(t, 0)ψ‖ = 0. (2.17)

Set M bd
± (P ) is called the set of geometrically bounded states.

The definition obviously depends on our choice of family Pr. The motivation of previous
definition in the case when H is L2 space and PR = F (|Q| < R) is clear. The probability
to find element of M bd

± (P ) in some instant t located outside ball of radius R tends to zero
when the radius R is large. To simplify our notation we will write only M bd

± if L2 space and
F (|Q| < R) case is under consideration. Same note will hold true for set of geometrically
propagating states defined below. Let’s now start with examination of basic properties of
the set M bd

± (P ). Notice, that in the proof of the following theorem there is no need of
T -periodicity of propagator U(t, s)

Theorem 2.10: Set M bd
± (P ) is closed linear subspace of Hilbert space H and it holds that

H p
± ⊂ M bd

± (P ).

Proof. Obviously M bd
± (P ) are linear subspaces. Closeness is nontrivial. Let ψ ∈ M bd

± (P )
then for each ε > 0 there is φ ∈ M bd

± (P ) such that ‖ψ − φ‖ < ε. It holds

‖(1− Pr)U(t, 0)ψ‖ ≤ ‖(1− Pr)U(t, 0)(ψ − φ)‖︸ ︷︷ ︸
≤2ε

+‖(1− Pr)U(t, 0)φ‖.

Because ε > 0 can be chosen arbitrarily small and φ ∈ M bd
± (P ) it implies that also ψ ∈

M bd
± (P ).
Let now ψ ∈ H p

± than for ε > 0 there is finite ε-net N = {xi}ni=1 of the set {U(t, 0)ψ|t ≷
0}. Therefore for given t ∈ R there is i such that ‖xi −U(t, 0)ψ‖ < ε. On the other hand for
each i exists r0(i) such that ∀r > r0(i) we have ‖(1− Pr)xi‖ < ε, because of our assumption
that s-limr→∞ Pr = 1. Thus for any given t ∈ R it holds

‖(1− Pr)U(t, 0)ψ‖ ≤ ‖(1− Pr)xi‖+ ‖(1− Pr)(U(t, 0)ψ − xi)‖ ≤ ε+ 2ε.

Summarising we see that for any ε > 0 and ∀r > maxi r0(i) it is true that supt≷0 ‖(1 −
Pr)U(t, 0)ψ‖ < 3ε. This is equivalent to ψ ∈ M bd

± (P ).

The opposite inclusion can be proved if we put additional condition on propagator U .

5F (|Q| < R) is multiplication operator on L2(Rn,dnx) by open ball of radius R.

12



2. Bound states and propagating states in quantum theory

Definition 2.11: We will say that the family {Pr} is relatively compact with respect to U
at ±∞ (or shortly ±U -compact) if the set

{PrU(t, 0)ψ|t ≶ 0} (2.18)

is precompact in H for any r and all ψ ∈ H .

Theorem 2.12: Let U propagator on H and let family {Pr} be ±U -compact. Then

M bd
± (P ) = H p

± . (2.19)

Proof. It suffices to prove inclusion M bd
± (P ) ⊂ H p

± . Put ψ ∈ M bd
± (P ), then it holds

{U(t, 0)ψ|t ≷ 0} ⊂ {PrU(t, 0)ψ|t ≷ 0}+ {(1− Pr)U(t, 0)ψ|t ≷ 0}.

Due to our assumptions the first set on right hand side of the last equation is precompact.
The second one is arbitrarily small, because r can be chosen arbitrarily large. Thus the left
hand side is precompact (cf. proof of Theorem 2.4 (ii)).

We will now turn to propagating states.

Definition 2.13: We say that ψ ∈ M f
±(P ) if and only if

lim
τ→±∞

1
τ

τ∫
0

‖PrU(t, 0)ψ‖ dt = 0, ∀r ≥ 0. (2.20)

Set M f
±(P ) is called the set of geometrically unbounded states.

In case when PR = F (|Q| < R) this means that if ψ ∈ M f
± than the mean time value of

probability to find the system in open ball of any radius R is equal to zero. In other words
such a state will leave any geometrically bounded region of configuration space. In the rest
of this section we will describe the connection betwen M f

±(P ) and M bd
± (P ).

Theorem 2.14: Set M f
±(P ) is closed linear subspace, orthogonal to M bd

± (P ), i.e.

M f
±(P ) ⊥ M bd

± (P ) (2.21)

Proof. The linearity and closeness can be easily checked. Let now ψ ∈ M f
±(P ), φ ∈ M bd

± (P ),
‖ψ‖ = ‖φ‖ = 1 and ε > 0. Because

lim
τ→±∞

1
τ

τ∫
0

‖PrU(t, 0)ψ‖ dt = 0

there exists tε such that ‖PrU(tε, 0)ψ‖ < ε. It also holds supt≷0 ‖(1 − Pr)U(t, 0)φ‖ < ε for
some r > 0. Thus

|〈ψ, φ〉| ≤ ‖PrU(tε, 0)ψ‖+ sup
t≷0

‖(1− Pr)U(t, 0)φ‖ < 2ε.

Therefore (2.21) is true.

13



2. Bound states and propagating states in quantum theory

We are now ready to prove the main result of this section.

Theorem 2.15 (Abstract RAGE theorem): Let U be T -periodical propagator on separable
Hilbert space H . Let the family {Pr} be ±U -compact. Then it holds that

M f
±(P ) = H cont(U(T, 0)), (2.22)

M bd
± (P ) = H pp(U(T, 0)). (2.23)

In particular
M f

±(P )⊕M bd
± = H . (2.24)

Proof. Let ψ ∈ H cont(U(T, 0)), ε > 0 and r > 0. Due to our assumptions the set

{PrU(t, 0)ψ|t ≷ 0}

is precompact in H and thus by the Lemma 2.3 there is a finitedimensional projector Pε such
as

sup
t≷0

‖(1− Pε)PrU(t, 0)ψ‖ < ε.

Therefore

1
τ

τ∫
0

‖PrU(t, 0)ψ‖ dt ≤ 1
τ

τ∫
0

‖(1− Pε)PrU(t, 0)ψ‖︸ ︷︷ ︸
≤ε

dt+
1
τ

τ∫
0

‖PεPrU(t, 0)ψ‖ dt. (2.25)

Operator PεPr is compact and according to Corollary 2.6 the second term in the last equation
is smaller then ε for τ sufficiently large. Thus ψ ∈ M f

±(P ) and the inclusion H cont(U(T, 0)) ⊂
M f

±(P ) holds.
On the other hand, by virtue of Theorem 2.7 and Theorem 2.12 we have

H pp(U(T, 0)) 2.7= H p
±

2.12= M bd
± (P ) ⊥ M f

±(P )

so M f
±(P ) ⊂ H cont(U(T, 0)). We have proved (2.22).

Remark 2.16 (Time-independent case): Let us consider time-independent Hamiltonian H
and corresponding propagator U(t, s) = e−ıH(t−s). It holds that

H pp(H) = H pp(e−ıHT ),

H cont(H) = H cont(e−ıHT )

and therefore the Theorem 2.7 gives H pp(H) = H p
± .

Notice that the condition of relative compactness in time-independent case

Pr(H + ı)−1 is compact ∀r > 0,

where {Pr} satisfies (2.16), implies ±U -compactness (Definition 2.11). Indeed, take ψ ∈
domH, then

PrU(t, 0)ψ = Pr(H + ı)−1 e−ıHt(H + ı)ψ︸ ︷︷ ︸
bounded for t≷0

.

Therefore relative compactness implies decay of Hilbert space to subspaces of geometrically
bounded and free states.
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3.
Almost periodically perturbed harmonic

oscillator

In the Section 3 of this Chapter we work with almost periodic function, thus it is useful to
start with review of their basic properties.

3.1 Basic definitions and theorems

As the name suggests, almost periodic functions are generalisation of periodic functions. Main
definition is based on the notion of relatively dense sets.

Definition 3.1: Set M ⊂ R is called relatively dense in R, if and only if there exists L > 0
(so called inclusion length) such as each interval of length L contains at least one element of
M .

Definition 3.2: Let f : R → C be continuous. We say that f is almost periodic, if and only
if for each ε > 0 the set

M(ε, f) := {τ ∈ R| sup
x∈R

|fτ (x)− f(x)| < ε}, (3.1)

where fτ (x) = f(x+τ), is relatively dense in R. Elements M(ε, f) are called ε-almost periods
of almost periodic function f . The set of all almost periodic functions is denoted by AP .

We now state some basic results concerning almost periodic functions. Proofs and other
details can be found in [DS62, DS66, Bes54]. By definition we have AP ⊂ C(R).

Theorem 3.3: Almost periodic function is bounded.

Proof. Let f be almost periodic function. It suffices to choose ε = 1 and denote the maximum
of function |f(x)| on interval (0, L), where L is the inclusion length of the set M(1, f(x)), by
M . Let x be some real number, then we can find τ ∈M(1, f) such as x+ τ ∈ (0, L), so

|f(x)| ≤ |f(x+ τ)|+ |f(x+ τ)− f(x)| ≤M + 1.

Theorem 3.4: Almost periodic function is uniformly continuous.

Proof. Let f be almost periodic function, ε > 0 and Lε inclusion length of M(ε, f). Choose
0 < δ < 1 such that f(x1)− f(x2) < ε whenever x1, x2 ∈ (0, Lε + 1) and |x1 − x2| < δ. Take
x′, x′′ fullfilling |x′ − x′′| < δ. Than there is τ ∈ M(ε, f) such as x′ + τ, x′′ + τ ∈ (0, Lε + 1).
Thus

|f(x′ + τ)− f(x′′ + τ)| < ε

15



3. Almost periodically perturbed harmonic oscillator

and
|f(x+ τ)− f(x)| < ε, ∀x ∈ R.

Finally

|f(x′)− f(x′′)| ≤ |f(x′)− f(x′ + τ)|+ |f(x′ + τ)− f(x′′ + τ)|+ |f(x′′ + τ)− f(x′′)| < 3ε.

For further study of the structure of set AP is crucial following Bochner Theorem.

Theorem 3.5 (Bochner): Continuous function f ∈ C(R) is almost periodic if and only if
the set {fλ}λ is precompact in C(R).

Corollary 3.6: The set of all almost periodic functions AP forms vector space. When
equipped with supremum norm

‖f‖C = sup
x∈R

|f(x)| (3.2)

it forms Banach space.

Is the derivative of almost periodic function almost periodic? The following theorem gives
answer to this question.

Theorem 3.7: Let f be almost periodic function. If it’s derivative exists and is uniformly
continuous, then it is almost periodic.

And finally we present another way how to characterise almost periodic functions.

Theorem 3.8 (Bohr): Continuous function defined on R is almost periodic if and only if
it can by arbitrarily precisely uniformly approximated by trigonometric polynomials (i.e. by
finite linear combinations of eıλx, λ ∈ R). In other words

AP = span{eıλx|λ ∈ R}, (3.3)

where the closure is with respect to the supremum norm ‖ · ‖C .

3.2 Fourier series of almost periodic functions

The space of almost periodic functions AP can be equipped with inner product

〈f, g〉AP = lim
T→∞

1
T

T∫
0

f(x)g(x) dx. (3.4)

It can be easily shown, using Bohr’s theorem, that this limit exists for any almost periodic
functions f and g and satisfies all properties of inner product.

Lemma 3.9: The set {ea(x) := eiax|a ∈ R} is orthonormal total subset of AP .

Proof. Orthonormality is obvious. Let f ∈ AP such as 〈eλ, f〉AP = 0 for all λ ∈ R. For any
ε > 0 there exists trigonometric polynomial g(x) =

∑n
k=1 cke

iλkx obeying ‖f−g‖C < ε. Thus

|〈eλ, g〉AP | = |〈eλ, g − f〉AP | ≤ ‖eλ‖AP ‖g − f‖AP ≤ ‖g − f‖C < ε.

ε is arbitrarily small and therefore 〈eλ, g〉AP = 0 for any λ ∈ R. This means that ck = 0 for
k = 1, . . . , n and therefore g = 0. So for any ε > 0 we have ‖f‖C < ε, i.e. f = 0.
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3. Almost periodically perturbed harmonic oscillator

Lemma 3.10: Let f be almost periodic and λ1, . . . , λN N -tuple of arbitrary real numbers.
We will denote Fourier coefficients of almost periodic function f by symbol

a(λ) := 〈eλ, f〉AP .

Further let b1, . . . , bN be arbitrary complex numbers. Then it holds that

‖f −
N∑
n=1

bneλn‖2
AP = ‖f‖AP −

N∑
n=1

|a(λn)|2 +
N∑
n=1

|bn − a(λn)|2.

Proof. This can be checked by direct computation. See page 16 in [Bes54].

It follows that trigonometric polynomial
∑
bneλn is the best approximation to almost

periodic function f (with respect to norm ‖ · ‖AB induced by inner product 〈·, ·〉AB) if bn =
a(λn). In this case for any N -tuple λ1, . . . , λN is

N∑
n=1

|a(λn)|2 ≤ ‖f‖2
AP .

Therefore there exists at most countable set {λn} such as a(λn) 6= 0. We will denote these
λn by Λn and we will write a(Λn) = An. Λn are called Fourier exponents and An Fourier
coefficients corresponding to almost periodic function f . We have shown that the Bessel
inequality holds, i.e. ∑

n

|An|2 ≤ ‖f‖2
AP .

The formal series
∑

nAneΛn is called Fourier series of almost periodic function f . Next
theorem gives conditions under which the Fourier series is uniformly convergent. Notice also
that in the case when f is periodic these definitions coincide with usual one.

Theorem 3.11: If the almost periodic function f can be written as uniformly convergent
trigonometric series f =

∑∞
n=1 aneλn than it coincides with the Fourier series corresponding

to f .

Proof. For any λ ∈ R it holds

〈eλ, f〉AP =
∞∑
n=1

‖eλn−λ‖2
AP =

∞∑
n=1

anδλ,λn .

So 〈eλ, f〉AP = 0 for λ 6= λn and 〈eλn , f〉AP = an.

Theorem 3.12 (Parseval equality for almost periodic function): Let f be almost periodic
and {Ak} and {Λk} its Fourier coefficients and exponents respectively. Then the Parseval
equality holds

∞∑
k=1

|Ak|2 = ‖f‖.

Proof. Cf. [Bes54] Chapter I, section 4.

We now state one approximation theorem.

17



3. Almost periodically perturbed harmonic oscillator

Theorem 3.13 (Bochner-Fejér): Let f be almost periodic function with Fourier coefficients
and exponents Ak and Λk respectively. Then for any ε > 0 there exists Bochner-Fejér trigono-
metric polynomial

σ =
n∑
k=1

dkAkeΛk
,

where 0 ≤ dn ≤ 1, which obeys ‖f − σ‖C < ε.

Proof. Cf. [Bes54] Chapter I., Section 9.

3.3 Harmonic oscillator with almost periodic

perturbation

We consider one-dimensional harmonic oscillator with almost periodic perturbation. The
system is described by time-dependent Hamiltonian, formally given by

H(t) =
1
2
P 2 +

1
2
ωQ2 + f(t)Q, (3.5)

on Hilbert space H = L2(R, dx). Q a P are position and momentum operators, acting like

(Pψ)(x) = −ıdψ
dx

(x),

(Qψ)(x) = xψ(x).

We suppose that f is almost periodic. Unitary propagator exists and can be computed
exactly1

U(t, s) = exp (−ıϕ1(t, s)Q) exp
(
ıϕ2(t, s)

P

ω

)
exp (−ıHω(t− s) + ıψ(t, s)) , (3.6)

where

Hω =
1
2
P 2 +

1
2
ωQ2, (3.7)

ϕ1(t, s) =

t∫
s

f(τ) cosω(τ − t)dτ, (3.8)

ϕ2(t, s) = −
t∫
s

f(τ) sinω(τ − t)dτ, (3.9)

ψ(t, s) = −1
2

t∫
s

(
ϕ1(τ, s)2 − ϕ2(τ, s)2

)
dτ. (3.10)

Proposition 3.14: ϕ1(t, 0) a ϕ2(t, 0) are bounded if and only if H p
± = H .

1This holds for any continuous and bounded f , cf. [EV83].
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3. Almost periodically perturbed harmonic oscillator

Proof. Notice that boundedness of ϕ1(t, 0) is equivalent to boundedness of ϕ2(t, 0). Indeed,
it suffices to check following equality

ϕ2(t, 0) =−
t∫

0

f(τ) sinω(τ − t)︸ ︷︷ ︸
− cos(ω(τ−t)+π

2
)

dτ = +ϕ1

(
t− π

2ω
, 0
)
+

+

t∫
t− π

2ω

f(τ) cos
(
ω
(
τ − t+

π

2ω

))
dτ.

Because f is almost periodic it is also bounded, say |f | < K. Then

|ϕ2(t, 0)| ≤
∣∣∣ϕ1

(
t− π

2ω
, 0
)∣∣∣+K

π

2ω
.

Similar inequality for ϕ1 can be derived analogously.
With the aid of relation

etABe−tA = etadAB ≡
∞∑
k=0

tk

k!
adkAB, adAB ≡ [A,B] (3.11)

we derive

Q(t) ≡ U(0, t)QU(t, 0) = Q cosωt+
P

ω
sinωt− 1

ω
ϕ2(t, 0),

P (t) ≡ U(0, t)PU(t, 0) = −ωQ sinωt+ P cosωt− ϕ1(t, 0).

For ψ ∈ S it holds

‖PnU(t, 0)ψ‖2 = 〈ψ, P (t)2nψ〉, (3.12)

‖QnU(t, 0)ψ‖2 = 〈ψ,Q(t)2nψ〉, n ∈ N0. (3.13)

Thus ϕ1(t, 0) is bounded if and only if ‖PnU(t, 0)ψ‖2 is bounded and ϕ2(t, 0) is bounded if
and only if ‖QnU(t, 0)ψ‖2 is bounded.

For any t and ψ ∈ S it holds

‖U(t, 0)ψ−F (|Q| < R)F (|P | < R)U(t, 0)ψ‖ ≤ ‖(I − F (|Q| < R))U(t, 0)ψ‖+
+ ‖F (|Q| < R)(I − F (|P | < R))U(t, 0)ψ‖ ≤
≤ ‖F (|Q| ≥ R)U(t, 0)ψ‖+ ‖F (|P | ≥ R)U(t, 0)ψ‖. (3.14)

The rest of the proof is based on notion of time-bounded energy2. Choose f(λ) := λ2. We
have showed that ‖Q2U(t, 0)ψ‖ is bounded in t for any ψ from Schwartz space, i.e.

M := sup
t≷0

‖f(Q)U(t, 0)ψ‖ <∞, ∀ψ ∈ S .

2

Definition 3.15: We say that a propagator U has time-bounded energy H1 at ±∞, if there is a total set S
such as for all ψ ∈ S

lim
λ→∞

sup
t≷0

‖F (|H1| > λ)U(t, 0)ψ‖ = 0,

where H1 is some self-adjoint operator.

For proof of following Lemma 3.16 consult [EV83], Lemma 3.3.
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3. Almost periodically perturbed harmonic oscillator

Using Lemma 3.16 we deduce that U has time-bounded energy Q at ±∞, thus

lim
R→∞

sup
t≷0

‖F (|Q| ≥ R)U(t, 0)ψ‖ = 0.

Analogously for P we obtain

lim
R→∞

sup
t≷0

‖F (|P | ≥ R)U(t, 0)ψ‖ = 0.

According to (3.14) we see that for any ε > 0 and sufficiently large R > 0 it holds

‖U(t, 0)ψ − F (|Q| < R)F (|P | < R)U(t, 0)ψ‖ ≤ ε.

F (|Q| < R)F (|P | < R) is compact operator. Thus for any R > 0 the set {U(t, 0)ψ|t ≷ 0} is
arbitrarily precisely approximated by compact set and is therefore compact (for any ψ).

Lemma 3.17: Let f, g be bounded real functions of real variable and suppose that f is
continuous T -periodic and that in interval [0, T ] it has at most finite number of simple roots3.
Then

lim
s→∞

1
s

s∫
0

e−(|ϕ(t)|−R)2 dt = 0, ∀R > 0,

where ϕ(t) = tf(t) + g(t).

Proof. For any s ∈ R such that nT < s < (n+ 1)T holds

1
s

s∫
0

h(t) dt ≤ 1
nT

(n+1)T∫
0

h(t) dt =
n+ 1
n

1
(n+ 1)T

(n+1)T∫
0

h(t) dt.

It is therefore sufficient to check the convergence of the right hand side of the last equation.
Thus

1
nT

nT∫
0

e−(|ϕ(t)|−R)2 dt =
1
nT

n−1∑
j=0

T∫
0

e−(|ϕ(t+jT )|−R)2 dt ≤ C

nT

n−1∑
j=0

T∫
0

e−(jT |f(t)|−(G+R))2 dt,

where G is constant such that |tf(t) + g(t)| < G for any t ∈ [0, T ]. It is sufficient to study

1
n

n∫
0

dy

T∫
0

e−(y|f(t)|−A)2 dt,

Lemma 3.16: U has a time-bounded energy H1 if and only if

M := sup
t≷0

‖f(H1)U(t, 0)ψ‖ <∞

for all ψ in some total set S and real nonnegative function f , possibly depending on ψ, such that f(λ) → ∞
as λ→∞.

3i.e. 0 = f(x) 6= f ′(x)
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3. Almost periodically perturbed harmonic oscillator

where A > 0 and f is again bounded on [0, T ]. Let us denote {xi}Ni=1 ⊂ [0, T ] simple roots of
f , i.e. f(xi) = 0 6= f ′(xi). Let ε > 0, then there is K(ε) > 0 which satisfies |f(t)| > K(ε) for
any t ∈M := [0, T ] r

⋃N
i=1(xi − ε, xi + ε). Thus

1
n

n∫
0

dy

T∫
0

e−(y|f(t)|−A)2 dt =
1
n

n∫
0

dy
∫
M

e−(y|f(t)|−A)2 dt+
1
n

n∫
0

dy
∫

[0,T ]rM

e−(y|f(t)|−A)2 dt ≤

≤ 1
n

∫
M

dt

n|f(t)|∫
0

e−(y−A)2 1
|f(t)|︸ ︷︷ ︸
≤1/K(ε)

dy +
1
n

n∫
0

dy
∫

[0,T ]rM

dt ≤ T
√
π

nK(ε)
+ 2εN.

We have proved that for any ε > 0 there exists N(ε) = T
√
π

εK(ε) such as for all n > N(ε) it is
true that

1
n

n∫
0

dy

T∫
0

e−(y|f(t)|−A)2 dt < (1 + 2N)ε.

Lemma is therefore proved.

Remark 3.18: Notice that claims of Theorem 2.10 holds for any unitary propagator U . We
are especially interested in inclusion H p

± ⊂ M bd
± . Thus the system described by Hamiltonian

(3.5) and propagator (3.6) has only geometrically bounded states if the function

ϕ2(t, 0) = −
t∫

0

f(x) sinω(x− t) dx

is bounded.
On the other hand, take

T :=
{
ψa ∈ S

∣∣ψa(x) := exp
(
−ω

2
(x− a)2

)
, a ∈ R

}
.

It is well known that for ψa ∈ T it holds

| exp(−ıHωt)ψa(x)|2 = exp(−ω(x− a cosωt)2).

So

h(t) := ‖F (|Q| < R)U(t, 0)ψa‖2 =
∫
BR

exp

[
−ω

(
x+

ϕ2(t, 0)
ω

− a cosωt
)2
]

dx ≤

≤ const exp

[
−ω

(
|ϕ2(t, 0)

ω
− a cosωt| −R

)2
]
.

Thus, by Lemma 3.17 the considered system has only geometrically unbounded states in case
when the function ϕ2(t, 0) can be written in form tF (t) +G(t), where F is periodic, bounded
and in interval of period length has at most finite number if simple roots and G is bounded.
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3. Almost periodically perturbed harmonic oscillator

Theorem 3.19: Suppose that almost periodic function f has Fourier coefficients 0 6= Ak ∈ C
and exponents Λk satisfying

∞∑
k=1

1
Λ2
k

<∞. (3.15)

Than it holds

(i) If ω 6= Λk, ∀k ∈ N, then our system has only geometrically bounded states and each
trajectory is precompact.

(ii) Suppose in addition that f ′ is uniformly continuous on R. Then the Fourier series is
uniformly convergent.If ω = Λk for some k ∈ N, then the system has only geometrically
unbounded states.

Proof. (i): Let t ∈ R+. If ω 6= Λk, ∀k ∈ N then there exists Bochner-Fejér polynomial

σ(x) =
N∑
k=1

dkAke
iΛkx,

where 0 ≤ dk ≤ 1, satisfying ‖f − σ‖C < 1/t. So

ϕ2(t, 0) = −
t∫

0

(f(x)− σ(x)) sinω(x− t) dx−
t∫

0

σ(x) sinω(x− t) dx,

and using Schwartz inequality one obtains

|ϕ2(t, 0)| ≤ t‖f − σ‖C +
N∑
k=1

dk|Ak|
2ω + |Λk|
|Λ2
k − ω2|

≤

≤ 1 +

√√√√ ∞∑
k=1

|Ak|2

√√√√ ∞∑
k=1

4ω2 + 4ω|Λk|+ |Λk|2
Λ2
k − ω2

2

The first sum in the last expression is equal to ‖f‖AP < ∞ by Parseval equality. The
second one can be estimated by

∞∑
k=1

1
Λ4
k

4ω2 + 4ω|Λk|+ |Λk|2

(1− (ω/Λk)2)2
≤ const

∞∑
k=1

1
Λ2
k

<∞.

We conclude that ϕ2(t, 0) is bounded. The assertions of item (i) follow from Remark
3.18.

(ii): By Theorem 3.7 f ′ is almost periodic. We will show that under our assumptions the
Fourier series of function f is uniformly convergent. Integrating per partes one obtains

T∫
0

f(x)e−iΛkx dx =
[
f(x)

e−ıΛkx

−ıΛk

]T
0

+

T∫
0

f ′(x)
e−ıΛkx

ıλk
dx,

22



3. Almost periodically perturbed harmonic oscillator

thus4

Ak = lim
T→∞

1
T

T∫
0

f(x)e−iΛkx dx =
1
ıΛk

lim
T→∞

1
T

T∫
0

f ′(x)e−ıΛkx dx =
A′k
ıΛk

Parseval equality now implies

∞∑
k=1

|Ak| ≤

√√√√ ∞∑
k=1

1
Λ2
k

·
∞∑
k=1

|A′k|2 <∞

Thus the Fourier series
∑

k Ake
ıΛkx converges uniformly to f . We can therefore write

ϕ2(t, 0) = − ıAk
ω

(ωteıωt − sinωt)−
∞∑

n=1,n6=k
An

t∫
0

eıΛnx sinω(x− t) dx.

By the same argument as in item (i) it can be shown that the last term is bounded in t.
We conclude5 that ϕ2(t, 0) has exactly the form required by Remark 3.18 and therefore
the system has only geometrically unbounded states.

Theorem 3.20: Let f be almost periodic function with real positive Fourier coefficients,
Ak > 0, and exponents Λk ∈ R. Then the Fourier series is uniformly convergent and it holds

(i) If6 ±ω /∈ ({Λk}∞k=1)
′ and ω /∈ {Λk}∞k=1, then the system has only geometrically bounded

states and each trajectory is precompact.

(ii) If ω = Λk for some k ∈ N a ±ω /∈ ({Λk}∞k=1)
′ the the system has only geometrically

unbounded states.

Proof. If the Fourier coefficients of almost periodic function f are positive, then it can by
shown using Bochner-Fejér approximation that

∑
k Ak < ∞. And therefore the respective

Fourier series is uniformly convergent to f . For proof see [Bes54], Chapter I., Section 10.

(i): By direct computation

ϕ2(t, 0) =
∞∑
k=1

Ak
ω2 − Λ2

k

(ωeıΛkt − ω cosωt− ıΛk sinωt).

Thus

|ϕ2(t, 0)| ≤
∞∑
k=1

Ak
2ω + |Λk|
|Λ2
k − ω2|

.

Using our assumptions there is some constant K > 0 such that2ω+|Λk|
|Λ2

k−ω2| < K, so

|ϕ2(t, 0)| ≤ K

∞∑
k=1

Ak <∞.

4A′k are Fourier coefficients corresponding to f ′.
5Notice that ϕ2(t, 0) = <ϕ2(t, 0).
6M ′ denotes the set of all accumulation points of the set M .
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3. Almost periodically perturbed harmonic oscillator

(ii): Let us suppose that ω = Λj for some j and that ±ω is not an accumulation point of
the set of all Fourier exponents corresponding to function f . If this is the case then

ϕ2(t, 0) = −Aj
ı

ω
(ωteıωt − sinωt)−

∞∑
k=1,k 6=j

t∫
0

eıΛkx sinω(x− t) dx.

Again it can be shown, as in item (i), that the second term is bounded in t. And by
the Remark 3.18 we see, that the system has only geometrically unbounded states.
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4.
Periodically time-dependent

Aharonov-Bohm effect

4.1 Classical framework

In this chapter we will investigate motion of a charged classical particle in the plane under
influence of a homogeneous magnetic field and a periodically time-dependent Aharonov-Bohm
flux. Especially we will show that there is interesting resonant phenomenon depending on
the strength of the field and the frequency of flux. Our treatment is not completely rigorous.
Reader will be properly warned in the text.

4.2 Transformation to action-angle variables

Let’s consider charged massive classical particle in constant magnetic field and Aharonov-
Bohm flux. The configuration space is simply R2 − {0}. Vector potential is a sum of two
parts. For charged particle in homogeneous magnetic field ~AM and Aharonov-Bohm flux ~AAB
we have

~AM ≡ (AM 1, AM 2) =
−b
2

(−x2, x1),

~AAB =
Φ(t)

2π|~x|2
(−x2, x1),

~A = ~AM + ~AAB,

where, without loss of generality, we assume b > 0. It is very useful to use polar coordinates

x1 = r cos θ,
x2 = r sin θ.

Lagrangian for particle in electromagnetic field given by vector potential ~A reads1

L(~x, ~̇x) =
1
2
m~̇x2 + e ~A · ~̇x.

For now on we set m = e = 1. And in polar coordinates

L(θ, r, θ̇, ṙ) =
1
2
(ṙ2 + r2θ̇2) +

(
Φ(t)
2π

− b

2

)
θ̇.

1Dots will always denote time derivatives.

25



4. Periodically time-dependent Aharonov-Bohm effect

Corresponding Hamiltonian is obtained through Legendre transformation and reads

H(r, θ, pr, pθ, t) =
1
2

p2
r +

(
pθ − Φ(t)

2π

r
+
br

2

)2
 .

Coordinate θ is cyclic, thus pθ is integral of motion

ṗθ = −∂H
∂θ

= 0.

Our system is therefore reduced to one-dimensional problem. We will denote p = pr and set

V (r) =
1
2

(
a

r
+
br

2

)2

,

a(t) = pθ −
Φ(t)
2π

.

The Hamiltonian equations for the one-dimensional Hamiltonian are

ṙ = p, ṗ =
a(t)2

r3
− b2

4
r.

Equivalently

r̈ +
b2

4
r =

a(t)2

r3
. (4.1)

The minimum of V for r > 0 is

Vmin = min
r>0

V (r) =


V
(√

2a
b

)
= ab a > 0,

V

(√
2|a|
b

)
= 0 a < 0.

Now we will construct action-angle coordinates in case when a(t) = a is constant, i.e.
our Hamiltonian is independent of time2. For a fixed energy level E > Vmin the motion is
constrained to the interval [r+, r−]. These constraints are obtained as a solution of equation
V (r) = E. Thus we have

E − V (r) =
b2

8r2
(r2+ − r2)(r2 − r2−),

where
r2± =

2
b2

(
2E − ab±

√
(2E − ab)2 − a2b2

)
. (4.2)

It is useful to explicitly write out some combinations of r+ and r±

r2+ + r2− = 4
b2

(2E − ab), r2+r
2
− = 4a2

b2
,

r+r− = 2|a|
b (r+ − r−)2 = 8E

b2
− 8a

b ϑ(a),
(4.3)

2This is the case when there is now Aharonov-Bohm flux. Then every trajectory is circle.
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4. Periodically time-dependent Aharonov-Bohm effect

where ϑ(x) is Heavyside step function. The action is defined by integral3

I(E) =
1
π

r+∫
r−

√
2(E − V (r)) dρ =

b

2π

r+∫
r−

1
r

√
(r2+ − r2)(r2 − r2−) dρ = (4.4)

=
b

4π

r2+∫
r2−

1
x

√
(r2+ − x)(x− r2−) dx =

b

8
(r+ − r−)2 =

1
b
(E − ϑ(a)ab) =

1
b
(E − Vmin).

(4.5)

Integral involved with the above computation is explicitly evaluated in the following remark.

Remark 4.1: For 0 < r− < r < r+ it holds

r2∫
r2−

1
x

√
(r2+ − x)(x− r2−) dx =

π

4
(r+ − r−)2 +

√
(r2+ − r2)(r2 − r2−)−

1
2
(r2− + r2+) arctan

 1
2(r2− + r2+)− r2√
(r2+ − r2)(r2 − r2−)

+

+r−r+ arctan

 2r2−r
2
+ − (r2+ + r2−)r2

2r−r+
√

(r2+ − r2)(r2 − r2−)

 .

In particular

r2+∫
r2−

1
x

√
(r2+ − x)(x− r2−) dx =

π

2
(r2+ − r2−)

Generating function of the transformation reads

S(r, I) =

r∫
r−

√
2(E − V (ρ))dρ =

b

2

r∫
r−

1
ρ

√
(r2+ − ρ2)(ρ2 − r2−)dρ =

=
b

4

r2∫
r2−

1
x

√
(r2+ − x)(x− r2−) dx.

3For more details consult [Arn89].
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4. Periodically time-dependent Aharonov-Bohm effect

Again using Remark 4.1 this integral can be evaluated explicitly

S(r, I) =
b

4

[
π

4
(r+ − r−)2 +

√
(r2+ − r2)(r2 − r2−)− (4.6)

− 1
2
(r2+ + r2−) arctan

 1
2(r2+ + r2−)− r2√
(r2+ − r2)(r2 − r2−)

+

+ r−r+ arctan

 2r2−r
2
+ − (r2+ + r2−)r2

2r−r+
√

(r2+ − r2)(r2 − r2−)

].
From equation (4.4) we can express E by means of I and recast formulae (4.2) and (4.3) into

r± =
2√
b

√
I +

|a|
2
±
√
I(I + |a|), (4.7)

r2+ + r2− =
8
b

(
I +

|a|
2

)
, (4.8)

(r+ − r−)2 =
8I
a
, (4.9)

r+r− =
2|a|
b
. (4.10)

We will drop first term in (4.6), because it coresponds only to shift of angle variable ϕ by the
value π

2 . Further simplification is achieved by using the identity

arctanx− arctan y = arctan
(
x− y

1 + xy

)
.

So finally we have

S(r, I) =
1
4

√
8bIr2 − (br2 − 2|a|)2 − I arctan

(
4I − br2 + 2|a|√

8bIr2 − (br2 − 2|a|)2

)
− (4.11)

− |a|
2

arctan

(
(br2 + 2|a|)

√
8bIr2 − (br2 − 2|a|)2

b2r4 − 4bIr2 + 4|a|2

)
.

The induced transformation of variables (r, p) = Ψ(ϕ, I) is defined as follows: Ψ = F ◦G−1,
where the transformations (r, p) = F (u, v) and (ϕ, I) = G(u, v) are given respectively by the
relations

r = u, p =
∂S(u, v)
∂u

and ϕ =
∂S(u, v)
∂v

, I = v.

By direct computation we get

r =
2√
b

√
I +

|a|
2

+
√
I(I + |a|) sinϕ, (4.12)

p =

√
bI(I + |a|) cosϕ√

I + |a|
2 +

√
I(I + |a|) sinϕ

, (4.13)
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4. Periodically time-dependent Aharonov-Bohm effect

and conversely,

ϕ = − arctan
(

1
bpr

(
p2 +

a2

r2
− b2r2

4

))
, (4.14)

I =
1
b
(H − Vmin) =

1
2b

(
p2 +

(
|a|
r
− br

2

)2
)
. (4.15)

Let us switch to the time-dependent case with a Hamiltonian H(r, p, t). Seeking the action-
angle variables for the frozen Hamiltonian at each moment of time one in fact constructs a
time-dependent transformation of variables. Hence the generating function of the transfor-
mation, S(u, v, t), is time-dependent as well. One arrives again at a Hamiltonian system with
a Hamiltonian K(ϕ, I, t) and it holds

K(ϕ, I, t) = H(Ψ(ϕ, I, t), t) +
∂S(u, I, t)

∂t

∣∣∣∣∣
u=Ψr(ϕ,I,t)

,

where Ψr denotes component of Ψ belonging to r. Our Hamiltonian depends on time t only
through function a(t)

H(r, p, t) =
1
2

(
p2 +

(
a(t)
r

+
br

2

)2
)
.

New Hamiltonian now reads

K(ϕ, I, t) = bI +


a(t)b− arctan

( √
I cosϕ√

I+a(t)+
√
I sinϕ

)
ȧ(t), a(t) > 0,

arctan
( √

I cosϕ√
I−a(t)+

√
I sinϕ

)
ȧ(t), a(t) < 0.

(4.16)

And equations of motion are given by

ϕ̇(t) =
∂K(ϕ, I, t)

∂I
, İ(t) = −∂K(ϕ, I, t)

∂ϕ
.

This leads to

ϕ̇ = b− aȧ

2
cosϕ√
I(I + |a|)

1
2I + |a|+ 2

√
I(I + |a|) sinϕ

, (4.17)

İ = −sgn a
2

(
ȧ− |a|ȧ

2I + |a|+ 2
√
I(I + |a|) sinϕ

)
. (4.18)

From (4.12) and (4.7) we see, that

r2 =
1
2
(r2+ + r2−) +

1
2
(r2+ − r2−) sinϕ.

Thus if ϕ grows then r2 oscillates between r2− and r2+. Moreover if a(t) is bounded and I →∞
as t→∞ then obviously4 r+ →∞ and

r2− =
4
b2
a(t)2

r2+
→ 0,

as t → ∞. This means that, in this very case, during the time evolution the particle will be
located arbitrarily close to and arbitrarily far from origin. In the next part of this chapter we
will try to find out if this phenomenon can occur, i.e. if the action variable grows to infinity.

4c.f. (4.7)
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4. Periodically time-dependent Aharonov-Bohm effect

4.3 Simplification of equations of motion

As a first step we substitute

F = 2I + |a|, (4.19)
φ = ϕ− bt. (4.20)

Equations (4.17) convert to

Ḟ =
ȧa

F +
√
F 2 − a2 sin(bt+ φ)

, (4.21)

φ̇ = −cos(bt+ φ)√
F 2 − a2

ȧa

F +
√
F 2 − a2 sin(bt+ φ)

. (4.22)

Until now the flux function Φ was arbitrary. We consider time-periodic case

Φ(t) = 2πε sinΩt, (4.23)

where ε > 0 and Ω > 0. Thus a(t) = pθ − ε sinΩt. Let’s assume that ε is “small”. If this is
the case we will consider only first term in Taylor expansion of right sides of equations (4.21)
and (4.22). In this approximation equations of motion are

Ḟ = −pθεΩ
cos Ωt

F +
√
F 2 − p2

θ sin(bt+ φ)
+ o(ε2), (4.24)

φ̇ = pθεΩ
cos Ωt√
F 2 − p2

θ

cos(φ+ bt)

F +
√
F 2 − p2

θ sin(bt+ φ)
+ o(ε2). (4.25)

In this paragraph approximative solution of equations (4.24) and (4.25) will be found. We
start with the key idea formulated in following proposition.

Proposition 4.2: Let ψA(x) be real function of real variable given by

ψA(x) =
1

A+
√
A2 − C2 sin(x)

,

where A > |C| and C ∈ R are constants. Then

ψA −→ 2πδ 3π
2

whenever A→ +∞ in the space of generalised functions D ′((0, 2π)). The symbol δ 3π
2

denotes

Dirac delta function shifted to 3π
2 .

Proof. The function ψA is integrable on (0, 2π) for every A > |C| and therefore can be thought
of as a regular generalised function. It’s primitive function is given by

fA(x) =
∫
ψA(x) dx = 2arctan

(√
A2 − C2 +A tan

x

2

)
.
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4. Periodically time-dependent Aharonov-Bohm effect

Let ϕ ∈ D((0, 2π)) be arbitrary test function, then we are interested in

(ψA, ϕ) ≡
2π∫
0

ψA(x)ϕ(x) dx.

Substitution z = fA(x) leads to

(ψA, ϕ) =

π∫
−π

ϕ(f−1
A (z))dz,

where (mind the discontinuity of fA at π, for illustration5 there is Figure 4.1)

Π

�����

2
Π 3 Π

���������

2
2 Π
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-Π

Π

fA

-Π
-

Π
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2
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x

Π

2 Π
fA
-1

Figure 4.1: fA and it’s inversion f−1
A

f−1
A (z) =


2 arctan

(
1
A tan z

2 −
√

1− C2

A2

)
, z ∈

(
2 arctan

√
A2 − C2, π

)
,

2 arctan
(

1
A tan z

2 −
√

1− C2

A2

)
+ 2π, z ∈

(
−π, 2 arctan

√
A2 − C2

)
.

By the Lebesgue theorem (ϕ is smooth with compact support and therefore bounded) we get

lim
A→+∞

(ψA, ϕ) =

π∫
−π

ϕ
(
−π

2
+ 2π

)
dz = 2πϕ

(
3
2
π

)
=
(
2πδ 3

2
π, ϕ

)
.

Inspired by the previous proposition we will perform a bit heuristic step. Let’s consider
ordinary differential equation of the form

ġ(t) = ϕ(t)ψg(t)(t).

Then in region where g(t) � |C| the solution will behave like

g(t)− g(0) =

t∫
0

ġ(τ)dτ ∼ 2π
n(t)∑
k=0

ϕ

(
3
2
π + 2kπ

)
,

5All plots in this work were created using the Mathematica.
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4. Periodically time-dependent Aharonov-Bohm effect

where n(t) is integral part of t+π/2
2π .

We will apply this intuition to our system (4.24), (4.25). Using above argument we see
that the second equation (4.25) is reduced6 to φ(t)− φ(0) ∼ 0. Thus it is sufficient to study
equation

Ḟ =
−εpθΩ cos Ωt

F +
√
F 2 − p2

θ sin(bt+ φ0)
, (4.26)

where φ0 ∈ [0, 2π) is constant. More convenient is to use rescaled time τ(t) = bt + φ0, and
denoting G(τ) = F (t(τ)) we obtain

Ġ =
−εpθΩ
b

cos Ω
b (τ − φ0)

G+
√
G2 − ptheta2 sin τ

.

Thus

G(τ)−G(0) = −εpθΩ
b

τ∫
0

cos Ω
b (x− φ0)

G+
√
G2 − ptheta2 sin(x)

dx ∼

∼ −εpθΩ
b

n−1∑
k=0

2π cos
Ω
b

(
3
2
π + 2πk − φ0

)
,

where n = n(τ) is integral part of τ+π
2

2π . Using formulae

n∑
k=0

sin kx =
sin 1

2nx sin 1
2(n+ 1)x

sin 1
2x

, (4.27)

n∑
k=0

cos kx =
cos 1

2nx sin 1
2(n+ 1)x

sin 1
2x

, (4.28)

which are just imaginary and real part of sum of geometric series
∑n

k=0 e
ikx, we obtain

G(τ)−G(0) =


−2πεpθΩ

b

sin Ωπ
b
n

sin Ωπ
b

cos Ω
b (3

2π + π(n− 1)− φ0), Ω
b /∈ N,

−2πεpθΩ
b n cos Ω

b

(
3
2π − φ0

)
, Ω

b ∈ N.

The approximative solution of the original equation (4.26) is

F (t) = F (0) +


−2πεpθΩ

b

sin Ωπ
b
n

sin Ωπ
b

cos Ω
b (3

2π + π(n− 1)− φ0), Ω
b /∈ N,

−2πεpθΩ
b n cos Ω

b

(
3
2π − φ0

)
, Ω

b ∈ N,

(4.29)

where n = n(t) =
[
bt+φ0+π

2
2π

]
. This is valid for F (t) � |pθ|.

We are led to the following conclusion.

Conclusion 4.3: In the region where F � pθ equation (4.26) has approximative solution
given by (4.29). Qualitative behaviour depends on constants b, Ω and φ0:

6Mind the term cos(bt+ φ).
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4. Periodically time-dependent Aharonov-Bohm effect

(i) If Ω
b /∈ N or Ω

b ∈ N and cos Ω
b

(
3
2π − φ0

)
= 0 then the solution is bounded.

(ii) If Ω
b ∈ N and cos Ω

b

(
3
2π − φ0

)
< 0 then the solution is increasing.

(iii) If Ω
b ∈ N and cos Ω

b

(
3
2π − φ0

)
> 0 then the solution is decreasing.
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Figure 4.2: Red - numerical solution of (4.26) with initial condition F (0) = 200, Blue -
approximative solution (4.29)

Because of a bit vague formulation of condition F � |pθ| we present few plots. In Figure
4.2 we choose ε = 1

2 , F (0) = 200. Particular values of b, Ω and φ0 are depicted above each
plot. As a demonstration of behaviour of solution for smaller F there are two more plots in
Figure 4.3. Initial condition is set to 10.
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Figure 4.3: Red - numerical solution of (4.26) with initial condition F (0) = 10, Blue -
approximative solution (4.29)

4.4 Solution of the original system

Our treatment cannot be used for situations when F (or I) is approaching |pθ|. Numerical
analysis shows, that in the resonant case (Ω/b ∈ N) the system will end in the increasing
mode. In the Figure 4.4 there are numerical solutions of (4.24) and (4.25). Our choice of
initial conditions and other constants is depicted for each row. First row corresponds to case
(iii) in Conclusion 4.3 (i.e. there is no fall on origin) and the second to case (i). Of course
when Ω/b ∈ N. Again we choose ε = 1

2 .
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Figure 4.4: In the resonant case the action will grow to infinity.
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4. Periodically time-dependent Aharonov-Bohm effect

Radial motion of particle influenced by homogeneous magnetic field and time-periodic
Aharonov-Bohm flux is described by equation (4.1)

r̈ +
b2

4
r =

a(t)2

r3

and by specifying initial values r(0) = r0 and ṙ(0) = ṙ0. We have constructed approximative
solution

r(t) =
2√
b

(
I(t) +

|a(t)|
2

+
√
I(t)(I(t) + |a(t)|) sinϕ(t)

)1/2

, (4.30)

where ϕ(t) = bt+ φ0,

I(t) = I0 +
1
2
(|pθ| − |a(t)|) +


−πεpθΩ

b

sin Ωπ
b
n

sin Ωπ
b

cos Ω
b (3

2π + π(n− 1)− φ0), Ω
b /∈ N,

−πεpθΩ
b n cos Ω

b

(
3
2π − φ0

)
, Ω

b ∈ N,

and n = n(t) =
[
bt+φ0+π

2
2π

]
. Initial conditions I0, φ0 and r0, ṙ0 are related by

φ0 = − arctan
(

1
bṙ0r0

(
ṙ20 +

p2
θ

r20
− b2r20

4

))
,

I0 =
1
2b

(
ṙ20 +

(
|pθ|
r0

− br0
2

)2
)
.

We assumed that a(t) = pθ − ε sinΩt. In Figure 4.5 we compared numerical solution of (4.1)
and approximative solution (4.30). In the right column the difference of these two functions
is plotted. In our study of classical particle influenced by homogeneous magnetic field of
strength b and periodic time-dependent Aharonov-Bohm flux with frequency Ω we have come
to hypothesis that if Ω/b is natural number then the particle will get arbitrarily close to and
arbitrarily far from the origin. In other cases the trajectory will be bounded.

4.5 Quantum framework

We now turn back to the quantum case.

4.6 Propagators weakly associated to a family of

Hamiltonians

In [AHŠ05] the notion of propagator weakly associated to Hamiltonian was proposed. To
every unitary propagator U(t, s) on Hilbert space H one can relate a unique self-adjoint7

operator K in K = L2(R,H , dt) which is the generator of the one-parameter group of
unitary operators exp(−ıσK), σ ∈ R, defined by(

e−ıσKf
)
(t) = U(t, t− σ)f(t− σ).

K is called the quasienergy operator. Furthermore it holds that the relation between propa-
gators and quasienergy operators is one-to-one.8

7cf. [How74]
8See [How74] or [AHŠ05].
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Figure 4.5: Blue - numerical solution of (4.1) with indicated initial condition, Red - approxi-
mative solution (4.30)

Definition 4.4: We shall say that a propagator U(t, s) is weakly associated to H(t) if

K = −ı∂t + H, (4.31)

where9

H =

⊕∫
R

H(t) dt. (4.32)

The equality (4.31) is equivalent to the following two conditions:

(i) −ı∂t + H ⊂ K,

(ii) −ı∂t + H is essentially self-adjoint.

It is important to note that the definition still guarantees the uniqueness. If U(t, s) and Ũ(t, s)
are weakly associated to H(t) then by (4.31) it holds that K = K̃. But due to the one-to-one
correspondence between the propagators and quasienergy operators we have U(t, s) = Ũ(t, s).
In the analysis of current model we will need two Lemmas from [AHŠ05].

Lemma 4.5: Let A(t) be a family of bounded self-adjoint operators in H which is locally
bounded. Let C(t, s) be the propagator associated to A(t) via the Dyson formula. Let D ⊂ H

9f ∈ K is in domain of H if and only if f(t) ∈ domH(t) for almost all t ∈ R and t 7→ ‖H(t)f(t)‖ is
square integrable. Then (Hf)(t) = H(t)f(t).
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4. Periodically time-dependent Aharonov-Bohm effect

be a dense linear subspace and let T (t) be a strongly continuous family of unitary operators
in H obeying the following conditions

(i) ∀t ∈ R, T (t)D = D ,

(ii) ∀ψ ∈ D , T (t)ψ is continuously differentiable,

(iii) ∀t ∈ R, X(t) = ıṪ (t)T (t)−1, with domX(t) = D , is a self-adjoint operator.

Then tho propagator T (t)C(t, s)T (s)−1 is weakly associated to the family

X(t) + T (t)A(t)T (t)−1.

Lemma 4.6: Suppose that V (t), t ∈ R, is a family of unitary operators which is continuously
differentiable in the strong sense. Let H̃(t), t ∈ R, be a family of self-adjoint operators such
that dom H̃(t) = D for all t ∈ R. Set

H(t) = V (t)H̃(t)V (t)−1 + ıV̇ (t)V (t)−1.

If the propagator Ũ(t, s) is weakly associated to H̃(t) then the propagator

U(t, s) = V (t)Ũ(t, s)V (s)−1

is weakly associated to H(t).

We now show that a unitary operator weakly associated to T -periodic Hamiltonian H(t)
is also T -periodic.

Proposition 4.7: Let U(t, s) be unitary propagator weakly associated to T -periodic Hamil-
tonian H(t) = H(t+ T ). Then the propagator is T -periodic, in particular

U(t, s) = U(t+ T, s+ T ), ∀s, t ∈ R.

Proof. The proof is based on the uniqueness of weakly associated propagators. We will show
that the propagator

Ũ(t, s) := U(t+ T, s+ T )

is also weakly associated to H(t).
Denote by K̃ the quasienergy operator generated by Ũ(t, s) and the time translation

operator (Taf)(t) = f(t+ a). The evolution group generated by K̃ acts on K by(
e−ıσK̃f

)
(t) = Ũ(t, t− σ)f(t− σ) = U(t+ T, t+ T − σ)(T ∗

T f)(t+ T − σ) =

=
(
e−ıσKT ∗

T f
)
(t+ T ) =

(
TT e

−ıσKT ∗
T f
)
(t).

Thus
e−ıσK̃ = TT e

−ıσKT ∗
T . (4.33)

Stone’s theorem states, that f ∈ domK if and only if there exists

ı
d
dσ

1
σ

(
e−ıσKf

)
(t)
∣∣∣
σ=0

(4.34)
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4. Periodically time-dependent Aharonov-Bohm effect

and if this is the case then (Kf)(t) is equal to (4.34). From (4.33) it follows that f ∈ dom K̃
if and only if there exists

ı
d
dσ

1
σ

(
e−ıσK̃f

)
(t)
∣∣∣
σ=0

= ı
d
dσ

1
σ

(
e−ıσKT ∗

T f
)
(t+ T )

∣∣∣
σ=0

.

So, f belongs to domain of K̃ if and only if T ∗
T f is in domain of K and then it holds

K̃f = TTKT ∗
T f. (4.35)

Our hypothesis means that K = −ı∂t + H, where

H =

⊕∫
R

H(t) dt.

Notice that we have
T ∗
T ∂tTT = ∂t

and the T -periodicity of H(t) implies

H = T ∗
T HTT .

To simplify our equations we will denote K := −ı∂t + H. Therefore f ∈ dom K if and only if
T ∗
T f ∈ dom K. If one takes f ∈ dom K then also g = T ∗

T f ∈ dom K and using (4.35) and the
fact that K is extension of K we obtain

T ∗
T K̃TT g = Kg = Kg = T ∗

T KTT g.

This means
K̃f = −ı∂tf + Hf

for any f ∈ dom K. Because K is essentially self-adjoint it holds that K = K̃, which was to
be proved.

4.7 Landau Hamiltonian with a periodically

time-dependent Aharonov-Bohm flux

We consider charged particle in the homogeneous magnetic field of strength B > 0 under
the influence of periodically time-dependent Aharonov-Bohm flux Φ(t). Thus analogously to
Chapter 4.1 the model is described, in polar coordinates, by Hamiltonian acting in L2(R+ ×
[0, 2π), rdrdθ) given by differential expression

}2

2m

(
−1
r
∂rr∂r +

1
r2

(
−ı∂θ −

e

}c
Br2

2
− e

}c
Φ
)2
)
.

We fix angular momentum sector defined by −ı∂θeımθ = meımθ, m ∈ Z, and set all physical
parameters e, }, c, 2m equal to one. Let the period of Φ be T . Therefore we are interested in
the family of operators

Hζ(t) = H(ζ(t)) = −1
r
∂rr∂r +

1
r2

(
ζ(t) +

Br2

2

)2

,
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4. Periodically time-dependent Aharonov-Bohm effect

where ζ(t) = −m + Φ(t), acting in L2(R+, r dρ). The Hamiltonian H(t) is unambiguously
determined by specifying a complete set of eigenfunctions with corresponding eigenvalues

H(t)ϕn(t) = λn(t)ϕn(t), n ∈ N0, where
λn(t) = B(t+ t+ 2n+ 1),

ϕn(t; r) = cn(t)r|t|L(|t|)
n

(
Br2

2

)
exp(−Br

2

4
),

and

cn(t) =
(
B

2

)(|t|+1)/2( 2n!
Γ(n+ |t|+ 1)

)1/2

are normalisation constants and L(α)
n are generalised Laguerre polynomials. The dynamics of

the model should be defined by

ı∂tU(t, s)ψ = Hζ(t)U(t, s)ψ, U(s, s)ψ = ψ, (4.36)

where U is unitary and ψ is an initial condition from the domain of Hζ(s). However problems
arises from the fact that domain of Hζ(t) is not constant in t. See [AHŠ05] for discussion.

Consider unitary operator V (t) which takes all eigenfunctions at time 0 to eigenfunctions
at time ζ(t), i.e

V (t)ϕn(ζ(0)) = ϕn(ζ(t)), ∀n ∈ N0.

Denote the formal solution of (4.36) by ψ(t), ψ(0) = ψ and take ψ̃(t) = V (t)ψ(t). Then it
follows that ψ̃(t) should satisfy

ı∂tψ̃(t) =

V (t)Hζ(t)V (t)∗︸ ︷︷ ︸
Hd(t)

+ ıV (t)∗(∂tV (t))︸ ︷︷ ︸
Q(t)

 ψ̃(t). (4.37)

For simplicity we will write ϕn instead of ϕn(ζ(0)). The matrix entries of Hd(t) and Q(t) in
the basis ϕn are, respectively

〈ϕn,Hd(t)ϕk〉 = B(ζ(t) + |ζ(t)|2n+ 1)δnk,

〈ϕn, Q(t)ϕk〉 =


0, n = m,

ıζ ′(t)〈ϕn(ζ(t)), ϕ̇k(ζ(t))〉, n 6= m.
(4.38)

From Lemma 4 and Lemma 6 in [AHŠ05] it follows that for n 6= k

〈ϕn(ζ(t)), ϕ̇k(ζ(t))〉 =
sgn(ζ(t))
2(k − n)

min
{
γn(ζ(t))
γk(ζ(t))

,
γk(ζ(t))
γn(ζ(t))

}
, (4.39)

where

γn(t) =
(

Γ(n+ |t|+ 1)
n!

)1/2

and that Q(t) is bounded operator with

‖Q(t)‖ ≤ ζ ′(t)
(
π

2
+ 12|ζ(t)|+ 1

2
|ζ(t)|(1 + |ζ(t)|)(3+|ζ(t)|)/2

)
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4. Periodically time-dependent Aharonov-Bohm effect

Let Pn be orthogonal projector onto Cϕn. Furthermore set

W (t) =
∞∑
n=0

λn(ζ(t))Pn,

Ω(t) =

t∫
0

W (u)du.

From (4.37) it follows that we seek propagator related to the Hamiltonian Hd(t) + Q(t)
and because Q(t) is bounded we can pass to interaction picture of time evolution and use
Dyson formula. More precisely let C(t, t0) be unitary propagator related to the Hamiltonian
−Qζ(t) = − exp(ıΩ(t))Q(t) exp(−ıΩ(t)) via Dyson formula

C(t, t0) = I +
∞∑
n=1

ın
t∫

t0

dt1

t1∫
t0

dt2 · · ·
tn−1∫
t0

dtnQζ(t1)Qζ(t2) · · ·Q(tn). (4.40)

Then
U(t, t0) = V (t) exp(−ıΩ(t))C(t, t0) exp(ıΩ(t0))V (t0)∗, (4.41)

should be related to Hζ(t).

Proposition 4.8: The propagator U(t, t0) in (4.40) is weakly associated to Hζ(t).

Proof. Set A(t) = −Qζ(t), D = domH(ζ(0)), T (t) = exp(−ıΩ(t)) and

X(t) = ı
(
∂te

−ıΩ(t)
)
eıΩ(t) = W (t).

By applying Lemma 4.5 we conclude that the propagator exp(−ıΩ(t))C(t, t0) exp(ıΩ(t0)) is
weakly associated to

W (t)− e−ıΩ(t)Qζ(t)eıΩ(t) = W (t)−Q(t).

Now put H̃(t) = W (t) − Q(t) and Ũ(t, t0) = exp(−ıΩ(t))C(t, t0) exp(ıΩ(t0)). It follows
from Lemma 4.6, that U(t, t0) = V (t)Ũ(t, t0)V (t0)∗ is weakly associated to

V (t)W (t)V (t)∗ − V (t)Q(t)V (t)∗ + ı(∂tV (t))V (t)∗ = Hζ(t),

because Q(t) = ıV (t)∗(∂tV (t)).

We now choose Φ(t) = ε sinωt, ω, ε > 0, i.e. ζ(t) = −m + ε sinωt. The first term in
expansion (4.40) is related to case when ε = 0. We now consider first approximation to the
first order of ε. Thus we have T -periodic propagator, T = 2π

ω ,

U1(t, s) = V (t) exp (−ı(Ω(t)− Ω(s)))V (s)∗+

+ ıωεV (t) exp(−ıΩ(t))

t∫
s

cosωt1 exp(ıΩ(t1))Q̃(m) exp(−ıΩ(t1))dt1 exp(ıΩ(s))V (s)∗,
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4. Periodically time-dependent Aharonov-Bohm effect

where Q̃(m) is bounded operator given by (4.38) where we drop ζ ′(t) and put ζ(t) = −m.
For any n ∈ N0 we now have

U(t, 0)ϕn = e−ıΩn(t)ϕn(ζ(t))+

+ ıωε

∞∑
k=0

e−ıΩk(t)

 t∫
0

cosωt1e−ı(Ωn(t1)−Ωk(t1))dt1


︸ ︷︷ ︸

ξnk(t)

〈ϕk, Q̃(m)ϕn〉ϕk(ζ(t)),

where Ωn(t) =
∫ t
0 λn(ζ(u))du. Notice that Ωn(t) − Ωk(t) = 2B(n − k)t. If ω 6= 2Bj for all

j ∈ N then the integral in the last expression is equal to

ξnk(t) =
1

ω2 − 4B2(n− k)2
(
−2Bı(n− k) + eı(n−k)2Bt(2Bı(n− k) cosωt+ ω sinωt)

)
.

So

‖F (r > R)U1(t, 0)ϕn‖ ≤‖F (r > R)ϕn(ζ(t))‖+

+ εω
∞∑
k=0
k 6=n

Ξnk · |〈ϕk, Q̃(m)ϕn〉| · ‖F (r > R)ϕk(ζ(t))‖,

where
Ξnk =

1
|ω2 − 4B2(n− k)2|

(4B|n− k|+ ω)

and F (r > R) is multiplication operator by characteristic function of interval (R,∞). Notice
also that for any n ∈ N0

∞∑
k=0
k 6=n

Ξ2
nk <∞

and that for all t ∈ R and k ∈ N0 it holds that limR→∞ ‖F (r > R)ϕk(ζ(t))‖. Thus

lim
R→∞

sup
t≷0

‖F (r > R)U1(t, 0)ϕn‖ = 0.

We conclude that in the first approximation the system has only geometrically bound states
if ω 6= 2Bj for all j ∈ N.
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Conclusion

In this work we studied time-dependent quantum systems. The Chapter 2 reviewed basic
results concerning T -periodic quantum systems. We presented topological and geometrical
approach to bound and free states in quantum theory and showed their relation to spectral
properties of Floquet operator U(T, 0).

In the Chapter 3 we studied one-dimensional harmonic oscillator perturbed by external
almost periodic force. We showed that this system has either only geometrically bound states
or geometrically free states depending on the frequency of oscillator and Fourier coefficients
of almost periodic function (see Theorems 3.19 and 3.20).

Then we considered charged particle in the plane under influence of homogeneous mag-
netic field of strength b and T -periodic Aharonov-Bohm flux. In the first part of Chapter 4
we studied corresponding Hamiltonian in the framework of classical Hamiltonian mechanics.
Motivated by transformation to action-angle variables we constructed time-dependent canon-
ical transformation which simplified equations of motion. We considered flux function given
by Φ(t) = 2πε sinΩt. Using Proposition 4.2 and numerical simulation we concluded that the
trajectory is either bounded or it passes arbitrarily close to origin and infinity, depending on
the ratio of b and Ω. In the second part of Chapter 4 we turned to quantum case. We first
reviewed notion of unitary propagator weakly associated to family of self-adjoint operators
H(t). In Proposition 4.7 we proved that unitary propagator weakly associated to T -periodic
Hamiltonian is also T -periodic. Again we choose the flux function Φ(t) = ε sinωt. It was
then shown that in the first approximation the system has only geometrically bound states if
ω 6= 2Bj, j ∈ N.
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