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Studujeme stabilitu ¢asové zavislych kvantovych systému. Zejména
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analyzujeme jednodimenzionalni harmonicky oscilator naruSeny skoro
periodickou vnéjsi silou. Zabyvame se nabitou castici v roviné a pod
vlivem homogenniho magnetického pole a periodicky ¢asové zavislého
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urovni kvantové tak klasické.
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Stability of time-dependent Quantum Systems

Tomas Kalvoda

We study stability of time-dependent quantum systems. Especially we
are interested in periodically time-dependent systems and relation be-
tween spectral properties of the Floquet operator and the bound and
free states. Two ways how to deal with bound and free states are con-
sidered. In particular we present geometrical and topological definitions
of bound and free states in quantum theory. Next we analyse one dimen-
sional harmonic oscillator perturbed by almost periodic external force.
Further we investigate charged particle in the plane under influence of
homogenneous magnetic field and time-periodic Aharonov-Bohm flux,
in both classical and quantum framework.

Mathematical physics, quantum stability, Floquet operator, almost pe-
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1.
INTRODUCTION

In this work we study time-dependent quantum systems, especially we are interested in char-
acterisation of bound states and propagating (or free, scattering) states. Mathematically,
quantum system is described by Hilbert space .7 and family of self-adjoint operators H(t),
t € R acting in 5. Each state of the system corresponds to some vector ¢ in 7. Time evo-
lution of the vector v is described by mapping t — (t) €  with initial condition ¢ (s) = ¥
for some time s € R. This evolution is governed by Schrodinger equation

dip(2)

1= = H{tp(t).

This initial value problem can be reformulated using the notion of unitary propagator. Family
of unitary operators U(t, s) obeying

Ut,t) =1 (1.1)
U(t,s) =U(t,r)U(r,s), Vt,s,r € R, (1.2)

and
10,U (t,s) = H(t)U(t, s), (1.3)

where the meaning of the last equation is to be specified, is called unitary propagator. In
the particular situation we obtain H(¢) by physical reasoning and we face the question of
existence of unitary propagator and validity of . This problem can be solved under some
additional assumptions interposed on H(t). As a example we cite here Theorem X.70 from
[RST5].

Theorem 1.1: Let H(t) be a self-adjoint operator-valued function of t € R such that
(i) the domain 9 = dom H (t) is independent of t,

(ii) the function
(t.s) = (t—s) " [(o+ H() o+ H(s)) ™t =1

extends to a jointly strongly continuous bounded operator-valued function on R2.
Then there exists a unique propagator U satisfying (L.1), (1.2]) such that U(t,s)2 C 2 and
10.U (t,s) = H()U(t, s), Y € 9.

In the last chapter of this document we present example when assumptions of this theorem
are not satisfied.

In this work we are especially intrested in T-periodic Hamiltonians, i.e. H(t) = H(t+T).
If in this case the last theorem is applicable, then the uniqueness of propagator implies, that

Ut+T,s+T)=U(ts), Vt,s € R.

1



1. INTRODUCTION

Such a unitary propagator is then called T-periodic. Operator U(s + T\, s) is called the
monodromy operator, or Floquet operator. Obviously it is unitary equivalent to U(T',0) for
any s € R. Its importance is obvious from relation

Ult+nT,s)=U(t,s)[U(s+T,s)", neZ,

i.e. it is sufficient to know U(t, s) for one period [s, s+ 7. In particular the spectral properties
of the Floquet operator are important. Let us now make small detour.

It is useful to point out main aspects of time-independent case. The system is now
described by self-adjoint operator H with domain dom H C 7. Time evolution of vector
1 € J is given by Schrodinger equation, which takes form

di(t)

ZT = Hy(t), ¥(0) = 1. (1.4)

This can be solved with aid of Stone’s theorem (cf. [RS72]). The unitary propagator in this
case is U(t,s) = exp(—1H (t — s)), or shortly U(t) = exp(—:Ht). Stone’s theorem now states
that ¢ (t) = U(t)¢ is solution of (1.4).

Bounded states and propagating states are related to spectral properties of Hamiltonian
H. More precisely, we define pure point respectively continuous part of Hilbert space 5 with
respect to H by

PP (H) = span{eigenvectors of H},
AN (H) = AP (H) .

These sets are directly related to the spectral properties of H. Equivalent definition of pure
point part and continuous part of Hilbert space is as follows. Denote Py the partition of unity

corresponding to H, i.e.
H = / AdPy.
R

Furthermore set f1,(X) = (¢, Pxy)). We say that ¢ € JPP(H) if puy, is pure point, ¢ € J#°(H)
if 1y is absolutely continuous with respect to Lebesgue measure and ¢ € #7°¢(H) if pu is
singular continuous with respect to Lebesgue measure. Continuous subspace is S (H) =
J(H) @ #°¢(H). It holds, that

opp(H) =0(H | PP (H)),
Ucont(H) = U(H I %cont(H))’
Uac(H) = U(H | ‘%ﬁac(H))a

osc(H)=0(H | °°(H)).

There are many ways how to describe bound or free states. Mainly we are interested in
certain properties of trajectories U(t,0)1). Two of these approaches are summarised in Chap-
ter [2l Briefly, the main result is (when we are considering time-independent Hamiltonians),
that the bound states are from #PP(H) and the free states are from 52" (H). Classical
result is due to Ruelle, Amrein, Georgescu and Enss (cf. [RS75]).

Theorem 1.2 (RAGE Theorem): Let H be self-adjoint operator on Hilbert space 5 and
C bounded operator which is relatively compact to H, i.e. the operator

C(H +2)7?
is compact. Then it holds that



1. INTRODUCTION

(i) For all ¢ in ™ (H)

T—00 2

1 T
lim T/||ce—“H¢||2 dt = 0.
(i) For all v in dom H
1 f —1 COMY
3 [ ICe P2 at < ()| + )l

where P is orthogonal projector onto ™ (H) and e(1) — 0 as T — oo.

In the Chapter |2] it will be shown that in the time-dependent case the role of H is trans-
ferred to the Floquet operator U(T,0). Therefore we will be interested in decomposition

H = APP(U(T,0)) @ A" (U(T,0)) (1.5)

In particular, it will be shown that states from J#PP(U(T,0)) have precompact trajectories
and that states from " (U(T,0)) leave any compact subset of J#. Le.!

HAPP(U(T,0)) = ALU),
AOMNU(T,0)) = 2 U).

We will study geometrically bounded and free states .. / , ///id. There the distinction is made
using the probability of measurement of position.

!For exact definition see Chapter



2.
BOUND STATES AND PROPAGATING STATES IN
QUANTUM THEORY

In this Chapter we will review geometrical and topological approach to bound states and
scattering states. We mainly follow [EV83] and [dO95].

2.1 TOPOLOGICAL APPROACH

We will start with definition of states with precompact trajectories .7, and its complement
A
Definition 2.1:  Vector i) € 5 belongs to the set AL, if and only if the set {U(t,0)y|t = 0}

is precompact.t

Definition 2.2: We say that vector 1 €  belongs to the set J“i”jf, if and only if

T—+00

1 T
lim T/||KU(t,O)1,Z)H2 dt =0 (2.1)
0

holds for any compact operator K.

The trajectory {1(t)|t = 0} of the state ¢ € S is precompact, thus approximately finite-
dimensional. On the other hand state from %”if will leave any finite-dimensional set during
its time evolution. It follows that the set 7, respectively J“fif can be thought of as a set of
bounded and propagating states. If we want to emphasise that we work with propagator U
we will write ffif (U) respectively s (U). These two sets are closed linear subspaces of J#,
mutually orthogonal. This is contents of following Lemma and Theorem.

Lemma 2.3: Let the set M C S be precompact. Then for each positive € there exists
finite-dimensional orthogonal projector C, such that (1 — C)M C B., where B is a ball of
radius € and centre in origin.

)

Proof. For given € > 0 there is finite §-net corresponding to the set M (we will denote it by
{z;}"_,). Let C be orthogonal projector onto linear span of M. Choose y € M arbitrarily.
We can find i € 7 obeying ||z; — y|| < 5. Thus

5
ICy =yl = |Cy—ai] +loi-yl=<;<e
—_———
=[|C(y—w:)l|<e/2
In other words (1 — C)y € B for any y € M. O

L The sign + corresponds to > and — to <. Similar convention will be used throughout this work.

4



2. BOUND STATES AND PROPAGATING STATES IN QUANTUM THEORY

Theorem 2.4: (i) For any ¢ € %ﬂ{(U) and arbitrary compact operator K it holds

T—+00

1 T
lim /HK Ut 0)0| dt = 0.
T
0

(ii) f%”f(U) and L (U) are closed orthogonal subspaces of H .

Proof. (i) Choose ¢ € J"fif (U), compact operator K and 7 > 0. Schwartz inequality implies

that
1/2

17 17
! / 1K U0l dt < | / KU, 002 dt
T T

0 0

This proofs case (i).

(ii) Both sets are obviously linear subspaces. We will now show closeness of %”if (U). Let

ONS %J(U), e > 0 and K be compact operator. Then we can find v € %J(U) fullfilling
|l — @] < e. Thus

» [ixve oo @< [ (xv@o - )+ KUl d
0

A
30—

0
J UKL -lo =0l + KU 0wl
0

IN

1 T
HKH2H¢—¢H2+T/HKU(LOWH2 dt + 2| K[l - [l6 = .
0

This expression can be made arbitrarily small by choosing 7 sufficiently large and e
small. Therefore ¢ € z%”if (U). The closeness of %”if (U) is proved.

The closeness of #F(U) can be treated by similar manner. Let ¢ € #F(U) and € > 0.
Then there is ¢ € #F(U) such as ||t — ¢|| < e. Therefore
{U(t,0)¢[t 2 0} € {U(¢,0)(¢ — )|t 2 0} + {U(¢,0)¥[t = 0}. (2.2)

The first set on the right hand side of is arbitrarily small and the second is pre-
compact. Thus the set on the left hand side of is also precompact. Indeed. If
N = {x;} ;| denotes finite e-net of the set {U(¢,0)y|t = 0}, then we can find i € n such
that

1U(t,0)¢ —zill <&

for any ¢ =2 0. Therefore
IUE,0)6 — zill < ¢ — &l + U2 0)¢ — 2if| < 2e.

We see that the set N is finite 2e-net corresponding to the trajectory {U(t,0)¢|t = 0}.
This is therefore precompact and J#F(U) is closed subspace.
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Let now ¢ € %ﬂif (U) and n € s (U). To check the orthogonality we rewrite the inner
product as

1 T
ol = [ 10, 000,U (0 at
0
For each € > 0 there is a finite-dimensional projector P, fullfilling (1 — P.)U(¢,0)n € B.

for any ¢t = 0 (cf. Lemma [2.3). According to (i) in Theorem we can write, for
sufficiently large 7,

ol <+ / (PO 0), U, 0)m) di + - / Ut 00, (1~ PAU(E, 0|

IN

IIUII/IIPU (+.0)l| dt + ||so||/| (1— PYU(t,0)n] dt

< H77|!€+ elle.

Because € > 0 was arbitrary the orthogonality was proved.
O

In this paragraph we will show that in case of T-periodic propagator the Hilbert space
decays to orthogonal sum %ﬂg &) jfif and that this decay corresponds to (1.5). We will need
following Lemma.

Lemma 2.5: Let U(t,s) be T-periodic propagator and P™ orthogonal projector onto sub-
space " (U(T,0)). Then for any compact operator C it holds that

T

1
|1|1m - / U*(t,0)CU(t,0) P dt|| = 0. (2.3)

0
Proof. Choose T € R, 7 =0 +nT and o € [0,T). Then

T nT

1 1

- / U*(t,0)CU(t,0) P dt|| < EHCII + |- / U*(t,0)CU (L, 0) P di (2.4)
0 0

The first term in the last equation tends to zero as 7 — oo, because 0 < T. The expression

in the norm on the right hand side can be recast in
13- 1 (]H)TU* t,0)CU(t,0) P« dt =
X | Z U 1,0)

n-1 ., L

1 1
-z /U* {4+ T, 0)CU(t + 4T, 0) dt. (2.5)
7=0

Because U is T-periodic it holds true that
U(t+4T,0) = U(t,0)[U(T,0)},
U(t + jT,0)* = [U(T,0)*JU(t,0)*.
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So ([2.5)) is equal to

T

1 .

—ZU* (T,0) T/U* (t,0)CU(t,0) dt | U(T,0)I peont,
0

C/

Operator C' is again compact? and therefore it can be arbitrarily accurately approximated
by finitedimensional operator. More precisely, there exists operators C{) and D such as C{) is
finitedimensional and C' = C) + D. ||D|| can be chosen as small as we please independently
on 7. Therefore the second term in can be estimated by

n—1

1
ZU* (T,0)7C4U (T, 0)7 P Z D]
] =0

1
<z

Without loss of generality it is sufficient to consider only one onedimensional operator C”.
We can find ¢, ¢ € 2, ||¢|| = 1 such that

= <¢7 WJ and C”* = <¢> >¢
Next, mind that if A is bounded operator then it holds true

IAA*[| = sup {p, AA*p) = sup [|A%p|® = [|A*|* = |||,
lell=1 lel=1

We will apply this equality to A = %Z;‘;& U*(T,0)C"U(T,0)7 P First observe, that for
any n € ¢ it holds that

1 n—1 ) .
= Z P U*(T,0) (, U(T, 0 n) o,
§=0

and

A== Z “n)(¢, U (T, 0)) P U*(T, 0)*$)U* (T, 0)’¢),

*Indeed, let A : [a,b] — B(H#) be norm continuous, then the integral

B:/A(t) dt

a
exists in Riemann sense. The operator B is given by relation

b

(. B0) = [ (0. AW®W) dt, Vipyv € 7.

a

If moreover A(t) is compact for any ¢ then B is compact too.
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because U(T,0) and P commute. The norm of the last expression can be estimated by

n—1
* 1 con | T 7% con
|44 < = 3 [(P"6,U(T, 07U (T,0)* Pt ) .
G k=0

And for the second term in equation (2.4) we finally have

n—1
* 1 con j— con
JA|? = |AA*|| < = (Peomte, U(T,0)1Fpeontg)| < (2.6)
n
7,k=0
. 1/2
1 < , 2
< Q=5 S |(Perte, U 0y ket (2.7)
4,k=0

Obviously it is sufficient to consider only ¢ € ™ (U(T,0)). We will use spectral
theorem for unitary operators. The monodromy operator is unitary and therefore there is
partition of unity (on unit circle in the complex plane) E()) such as

2w
U(T,0) = / eME(N).
0

We will denote v4(A) := (¢, E(N)¢). Than it holds true that

2

(6, F(U(T,0))6) = / F(eM)dvg(N)

0

for measurable f.
Let us turn our attention to the last term in (2.6]), using above note we can write

n—1 2m 27 n—1 2
1 o 2 1 i
2 2 eu@oy ol = [ [123 i) auydvg(). (2.8)
J,k=0 00 j=0
fn(A=p)

The sum of geometric series is just

S - _ 1= e r)
Zoe T ebem
]:

Therefore

conx |2
lsm 5

: X
n SlIlf

fu(z) =

Next observe, that for any natural n and real x it holds that

sin nx

nsinx| —
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This means that f,(A — 1) < 1, moreover
1

Aep)< -
Jar=—w) < n2sin? z’
where A\, € [0,27] and z = ’\%" SRS 7r ,m|. Choose 6 € (0,7). Then for x which obeys

=1,0,1 is sin?x > C5 > 0. In other words

inequality |% — k| > 36, k
! const(9) for z € —7r+é—§ U éﬂ'—é
n?sin’z = n? 27 2 2’0 2]
Thus for such A, 4 we have following inequality
const(d)
[fa(A = )] < 0
And for ([2.8)) we have

21 2w 1
[ [ 0= mavsyavst) = - { [ 50— wdsOydvgli+ (29)
00 k==1 % | x—pZ2kn|<s

" Falh = i) gV dvg (1) } (2.10)

[A—p—2km|>6

< const(4)

We can naturally assume that E()\) = 0 for A < 0 and E(\) = I for A > 27. The first term

A—2km+6

I aveavatn - / aw) | [ ) | = [aefnen]
A—p—2km|<§ R

IN—p2kn|<s
The second term in . tends to zero as n — 0o. Recall that § > 0 can by chosen arbitrarily
E(X\)¢) is continuous and therefore

in
small. Because ¢ € " (U(T,0)) the function \ — (g,
A— 2k7r+§ —0.

%13(1) [th(ﬂ)])\ 2hm—
O

in curly bracket is smaller then or equal to

The Lemma is proved.
Corollary 2.6: Let C be compact operator and ip € " (U(T,0)), then
(2.11)

[ lev ol d < fo)wl.

where f(1) — 0 as |T| — oo.
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Proof. Using Schwartz inequality?® it holds true that for ¢ € 2" (U(T,0))

2

1/ 1/
/MwmeMt s/wwmmwﬁaz
T T

0 0

:<%1/UWﬂWTW@®Wde>§
T

0

IN

i/mewwwmum%nHWPzﬂvmw?
0

The operator C*C' is compact, so from the preceding Lemma it follows that lim ;| f(7) =

0.
Theorem 2.7: Let U be T-periodic unitary propagator, then

HE = PP (U(T,0)). (2.14)
Proof. We will show both inclusions.

o JPP(U(T,0)) C H#F: Let ¢ be eigenvector of U(T,0). ILe. there is @ € R such as
U(T,0)1) = e "**1). Therefore the set

(U(t,0)9|t € R} = {e—m“)aU(a,o)w t—oc4+nTeR, o¢ [o,T)}

is subset of M = Sy - {U(t,0)9|t € [0,T]}. The mapping t — U(t,0)¢ : [0,T] — S is
continuous and the interval [0, T is comapact, consequently the set M is compact. This
also means that any finite linear combination of eigenvectors of Floquet operator lies in
HL | because any finite sum of compact sets is compact. And because S#PP(U(T,0)) is
closed subspace, the inclusion holds.

31t is true that

b b
/wwwww:/wAm%mww: (2.12)
—<w/mwmww»s [ Ay aw a ol (2.13)

If A= f; A(t) dt then for B € #(#) we have

b b
BA = /BA(t) dt, AB = /A(t)B dt,

because for ¥, ¢ € # we have

b b
0. [ BA® at) = [ (B0, A0)0) = (6. BAv),
The second equality can be shown similarly

10



2. BOUND STATES AND PROPAGATING STATES IN QUANTUM THEORY

o L C APP(U(T,0)): Let ¢ € AL, ||¢|| =1and e > 0. Then the set M = {U(t,0)p|t >
0} is precompact and by virtue of Lemma there is a finite-dimensional orthogonal
projector C such as (C' —1)M C B.. Thus

sup [[(C' = DU(¢,0)¢] < e.
t>0

For o € " (U(T,0)), ||2|| = 1 there is 7 > 0 such as*
1 T
T/HCU(t, 0yl dt < e.
0
It follows that there is some t. < 7 fullfilling
v a=rjcut. ol
0

and therefore |CU(t.,0)¢| < e. Finally

(6,8 = U (¢, 006, U (¢, 0)0)| =
— (1 = OYU(t,0)6, U (t, 04} + (U (£, 0), CU 1, 0)1))| <
< (1 = OV (te, 0)9]| + | CU e, 00| < 2.

€ can be chosen as small as we please, thus
AL L A(U(T,0)).

By the definition we have 5 = J#PP(U (T, 0))® " (U(T,0)), thus necessarily ¥ C
JCPP(U(T,0)).
O

Theorem 2.8: Let U be T-periodic propagator on Hilbert space 5. Then
AL (U) = 2" (U(T,0)), (2.15)
in particular 7 = APU) & AL (U).

Proof. By Theorem and Theorem we showed, that c%”if (U) c 2" (U(T,0)). The
opposite inclusion is to be proved. Choose v € " (U(T,0)) and K compact operator.
Then it holds

T

1 r 1 1 r
» [ IEv@oulP at = [ W0k KU@0w) de < ol [ 1K KU 06 dt -0
0 0 0

as T — 00, because K*K is compact and we used Corollary [2.6]. ]

4cf. Corollary C is finite-dimensional, and therefore compact.

11



2. BOUND STATES AND PROPAGATING STATES IN QUANTUM THEORY

2.2 GEOMETRICAL APPROACH

We will now define geometrically bounded and propagating states, following [EV83]. Let
{P,};>0 by family of bounded linear operators defined on separable Hilbert space .7 and
obeying following conditions

P, =P

> P <1 a slimP, =1 (2.16)
In most cases we will have # = L2(R", d"z) and for { P,} we will choose family of orthogonal
projectors® {F(|Q| < R)}.

Definition 2.9: We say that ¢ € .#2%(P) if and only if

lim sup [|(1 — P,)U(¢t,0)y|| = 0. (2.17)

r—00 t%o

Set .2 (P) is called the set of geometrically bounded states.

The definition obviously depends on our choice of family P,. The motivation of previous
definition in the case when J# is L? space and Pg = F(|Q| < R) is clear. The probability
to find element of .#Z%¢(P) in some instant ¢ located outside ball of radius R tends to zero
when the radius R is large. To simplify our notation we will write only ///id if L2 space and
F(]Q] < R) case is under consideration. Same note will hold true for set of geometrically
propagating states defined below. Let’s now start with examination of basic properties of
the set .#%¢(P). Notice, that in the proof of the following theorem there is no need of
T-periodicity of propagator U (t,s)

Theorem 2.10: Set .#%(P) is closed linear subspace of Hilbert space 7 and it holds that
AP C . (P).

Proof. Obviously .#%!(P) are linear subspaces. Closeness is nontrivial. Let 1) € .#¢(P)
then for each ¢ > 0 there is ¢ € .#%4(P) such that |[1) — ¢| < e. It holds

(1 = P)U(E, 0)9]| < [|(1 = P)U(#0) (¢ — d)I| +[[(1 = P )U(E, 0)o]].
<2e

Because € > 0 can be chosen arbitrarily small and ¢ € //{id(P) it implies that also ¢ €
M (P).

Let now ¢ € s} than for € > 0 there is finite e-net N = {z;}"_; of the set {U(t,0)y|t =
0}. Therefore for given ¢ € R there is i such that ||z; — U(¢,0)9|| < . On the other hand for
each i exists ro(i) such that Vr > r¢(i) we have ||(1 — P,)x;|| < €, because of our assumption
that s-lim, . P- = 1. Thus for any given ¢t € R it holds

(1= P)U 09 < [[(1 = Pr)ail| + [[(1 = B) (U 0)¢ — z3)|| <&+ 2e.

Summarising we see that for any ¢ > 0 and Vr > max;ro(i) it is true that sup;>o [|(1 —
P)U(t,0)%|| < 3e. This is equivalent to ¢ € .#4(P). O

The opposite inclusion can be proved if we put additional condition on propagator U.

®F(|Q| < R) is multiplication operator on L?*(R™,d"z) by open ball of radius R.

12



2. BOUND STATES AND PROPAGATING STATES IN QUANTUM THEORY

Definition 2.11: We will say that the family {P.} is relatively compact with respect to U
at +oo (or shortly £U-compact) if the set

{PU(,0)yt < 0} (2.18)
s precompact in € for any r and all ¢ € .
Theorem 2.12: Let U propagator on 7 and let family {P.} be +U-compact. Then
MUP) = AP, (2.19)
Proof. Tt suffices to prove inclusion .Z%(P) C A#F. Put ¢ € .4%(P), then it holds
{U(t,0)p)t 20} C {P.U(t,0)0[t =20} + {(1 — P)U(t,0)¢|t = 0}.

Due to our assumptions the first set on right hand side of the last equation is precompact.
The second one is arbitrarily small, because r can be chosen arbitrarily large. Thus the left
hand side is precompact (cf. proof of Theorem [2.4] (ii)). O

We will now turn to propagating states.

Definition 2.13: We say that ¢ € ///i(P) if and only if

T—+00

1 T
lim /HPTU(t, 0)|| dt = 0, ¥r > 0. (2.20)
T
0

Set ///jé(P) is called the set of geometrically unbounded states.

In case when Pp = F(|Q| < R) this means that if ¢ € .#{ than the mean time value of
probability to find the system in open ball of any radius R is equal to zero. In other words
such a state will leave any geometrically bounded region of configuration space. In the rest
of this section we will describe the connection betwen //lj;(P) and .Z}4(P).

Theorem 2.14: Set .#L(P) is closed linear subspace, orthogonal to A2 (P), i.c.
ML(P) L b (P) (2.21)

Proof. The linearity and closeness can be easily checked. Let now ¢ € .#. i( P), ¢ € ,///jfg_d( P),
Il = ||¢|l =1 and € > 0. Because

T—400

1 T
lim T/]PTU(t,O)wH dt =0
0

there exists t. such that [[PU(ts,0)9| < e. It also holds supy> [[(1 — P)U(¢,0)¢| < e for
some 7 > 0. Thus

(¥, 9)| < | P U (te, 0) | + sup (1 = P)U(t,0)¢] < 2e.

Therefore (2.21)) is true. O

13



2. BOUND STATES AND PROPAGATING STATES IN QUANTUM THEORY

We are now ready to prove the main result of this section.

Theorem 2.15 (Abstract RAGE theorem): Let U be T-periodical propagator on separable
Hilbert space 7. Let the family {P,} be £U-compact. Then it holds that

ML(P) = o (U(T,0)), (2.22)
M P) = PP (U(T,0)). (2.23)

In particular
ML(P)® MY = . (2.24)

Proof. Let ¢ € " (U(T,0)), € > 0 and r > 0. Due to our assumptions the set
{PU(t,0)¢[t = 0}

is precompact in 7# and thus by the Lemmal[2.3]there is a finitedimensional projector P. such
as
sup |[(1 = P)P.U(t,0)¢| <e.

£20
Therefore

T

1/ 1 1/
~ [ipucow s < [ja-rorvwou) a+ - [Ippucow) . (225)
0 0 <e 0

Operator P.P, is compact and according to Corollary the second term in the last equation
is smaller then ¢ for 7 sufficiently large. Thus ¢ € ///jé(P) and the inclusion 52" (U (T, 0)) C

.///i (P) holds.
On the other hand, by virtue of Theorem and Theorem we have

27T, 0) B r B2 Py 1l (P)
o ///i(P) C A#°"(U(T,0)). We have proved (2.22). O

Remark 2.16 (Time-independent case): Let us consider time-independent Hamiltonian H
and corresponding propagator U(t, s) = e~ H(t=s) Tt holds that
AP H) = A7 (T,
%Com<H) _ Jaipcont(e—zHT)

and therefore the Theorem [2.7| gives #PP(H) = .
Notice that the condition of relative compactness in time-independent case

P.(H + 1)~ is compact Vr > 0,

where {P,} satisfies (2.16]), implies +U-compactness (Definition [2.11]). Indeed, take ¢ €
dom H, then
P.U(t,0)¢ = Po(H +1) e ™ H(H + 1)1
—_——
bounded for 20

Therefore relative compactness implies decay of Hilbert space to subspaces of geometrically
bounded and free states.

14



3.
ALMOST PERIODICALLY PERTURBED HARMONIC
OSCILLATOR

In the Section 3 of this Chapter we work with almost periodic function, thus it is useful to
start with review of their basic properties.

3.1 BASIC DEFINITIONS AND THEOREMS

As the name suggests, almost periodic functions are generalisation of periodic functions. Main
definition is based on the notion of relatively dense sets.

Definition 3.1: Set M C R is called relatively dense in R, if and only if there exists L > 0
(so called inclusion length) such as each interval of length L contains at least one element of
M.

Definition 3.2: Let f: R — C be continuous. We say that f is almost periodic, if and only
if for each € > 0 the set

M(e, f) :==A{7 € R| sup [fr(z) = f(2)] <&}, (3.1)

where fr(x) = f(x+7), is relatively dense in R. Elements M (e, f) are called e-almost periods
of almost periodic function f. The set of all almost periodic functions is denoted by AP.

We now state some basic results concerning almost periodic functions. Proofs and other
details can be found in [DS62), [DS66, Bes54]. By definition we have AP C C(R).

Theorem 3.3:  Almost periodic function is bounded.

Proof. Let f be almost periodic function. It suffices to choose € = 1 and denote the maximum
of function |f(z)| on interval (0, L), where L is the inclusion length of the set M (1, f(x)), by
M. Let z be some real number, then we can find 7 € M (1, f) such as x + 7 € (0, L), so

[f@)] < [fle+D)+[f(e+7) - fl2)) <M+ 1.

Theorem 3.4: Almost periodic function is uniformly continuous.

Proof. Let f be almost periodic function, € > 0 and L. inclusion length of M (e, f). Choose
0 < < 1 such that f(z1) — f(z2) < € whenever x1, 22 € (0,L: + 1) and |z — z2| < 0. Take
o' 2" fullfilling |2’ — 2”| < 0. Than there is 7 € M (e, f) such as 2’ + 7,2” + 7 € (0, L. + 1).
Thus

G +7) — fa + 1) <

15



3. ALMOST PERIODICALLY PERTURBED HARMONIC OSCILLATOR

and
|flx+7)— f(x)] <e, VxeR.
Finally
f(z)) = f@@")] < 1f(@) = f@ + )+ |f (@ +7) = f@” + 1) + | f(@" +7) = fa”)] < 3e.

O]

For further study of the structure of set AP is crucial following Bochner Theorem.

Theorem 3.5 (Bochner): Continuous function f € C(R) is almost periodic if and only if
the set {fx}a is precompact in C(R).

Corollary 3.6: The set of all almost periodic functions AP forms wvector space. When
equipped with supremum norm

[flle = sup [ f ()] (3.2)
z€R
it forms Banach space.

Is the derivative of almost periodic function almost periodic? The following theorem gives
answer to this question.

Theorem 3.7: Let f be almost periodic function. If it’s derivative exists and is uniformly
continuous, then it is almost periodic.

And finally we present another way how to characterise almost periodic functions.

Theorem 3.8 (Bohr): Continuous function defined on R is almost periodic if and only if
it can by arbitrarily precisely uniformly approximated by trigonometric polynomials (i.e. by
finite linear combinations of €*, X € R). In other words

AP = span{e"?|\ € R}, (3.3)

where the closure is with respect to the supremum norm || - ||c.

3.2 FOURIER SERIES OF ALMOST PERIODIC FUNCTIONS

The space of almost periodic functions AP can be equipped with inner product

T
(Fg)ap = Jim 7 [ T@igla) da. (3.4)
0

It can be easily shown, using Bohr’s theorem, that this limit exists for any almost periodic
functions f and g and satisfies all properties of inner product.

Lemma 3.9:  The set {eq(z) := €%®|a € R} is orthonormal total subset of AP.

Proof. Orthonormality is obvious. Let f € AP such as (ey, f)ap = 0 for all A € R. For any
e > 0 there exists trigonometric polynomial g(z) = >_p_, cke™** obeying ||f —g|lc < . Thus

[{ex, g)ap| = [{ex,g — flapr| < llexllapllg — fllap < llg — flle <e.

e is arbitrarily small and therefore (ey, g)4p = 0 for any A € R. This means that ¢, = 0 for
k=1,...,n and therefore g = 0. So for any ¢ > 0 we have ||f|lc <e¢,ie f=0. O

16



3. ALMOST PERIODICALLY PERTURBED HARMONIC OSCILLATOR

Lemma 3.10: Let f be almost periodic and \1,...,\ny N-tuple of arbitrary real numbers.
We will denote Fourier coefficients of almost periodic function f by symbol

a(A) = (e, f)ap.

Further let by, ...,by be arbitrary complex numbers. Then it holds that

N N N
1f =D bnelfap = 1fllap = Y laOn)® + D 1ba — a(An)l”

Proof. This can be checked by direct computation. See page 16 in [Bes54]. O

It follows that trigonometric polynomial ) bye), is the best approximation to almost
periodic function f (with respect to norm || - ||4p induced by inner product (-,-)ap) if b, =
a(Ap). In this case for any N-tuple A\q,..., Ay is

N
> laa) P < (£ e
n=1

Therefore there exists at most countable set {\,} such as a(A,) # 0. We will denote these
An by A, and we will write a(A,,) = A,. A, are called Fourier exponents and A, Fourier
coefficients corresponding to almost periodic function f. We have shown that the Bessel

inequality holds, i.e.
D AP < If e
n

The formal series ) Apen, is called Fourier series of almost periodic function f. Next
theorem gives conditions under which the Fourier series is uniformly convergent. Notice also
that in the case when f is periodic these definitions coincide with usual one.

Theorem 3.11: [f the almost periodic function f can be written as uniformly convergent
trigonometric series f =Y >, apey, than it coincides with the Fourier series corresponding

to f.
Proof. For any A € R it holds

o0 o0
(exs £lap =D _lleas-alhip =D anbanr,-
n=1 n=1

So (ex, f)ap =0 for A # A\, and (ey,, f)ap = an. O

Theorem 3.12 (Parseval equality for almost periodic function): Let f be almost periodic
and {Ax} and {Ar} its Fourier coefficients and exponents respectively. Then the Parseval

equality holds
D 1A =117l
k=1

Proof. Cf. [Besb4] Chapter I, section 4. O

We now state one approximation theorem.

17



3. ALMOST PERIODICALLY PERTURBED HARMONIC OSCILLATOR

Theorem 3.13 (Bochner-Fejér):  Let f be almost periodic function with Fourier coefficients
and exponents Ay and Ay respectively. Then for any e > 0 there exists Bochner-Fejér trigono-
metric polynomial

n
g = E dkAkeAk,
k=1

where 0 < d,, < 1, which obeys ||f — o|lc < e.

Proof. Cf. [Besb4] Chapter I., Section 9. O

3.3 HARMONIC OSCILLATOR WITH ALMOST PERIODIC
PERTURBATION

We consider one-dimensional harmonic oscillator with almost periodic perturbation. The
system is described by time-dependent Hamiltonian, formally given by

H(t) = %PQ + %wQQ + f(H)Q, (3.5)

on Hilbert space . = L(R, dz). Q a P are position and momentum operators, acting like

(Po)(a) = 152 (@),

Q) (x) = ().

We suppose that f is almost periodic. Unitary propagator exists and can be computed

exactly!
P
Ul(t,s) = exp (—up1(t, s)Q) exp (l(pg(t, S)w> exp (—tH,(t — s) +(t, s)), (3.6)
where

H, = %PQ + %wQQ, (3.7)
p1(t,s) = /f(T) cosw(T — t)dr, (3.8)
pa(t,s) = —/f(T) sinw(r — t)dr, (3.9)
W(t,s) = —% / (301(7', 5)2 — a(T, 5)2) dr. (3.10)

S

Proposition 3.14: ©(t,0) a 2(t,0) are bounded if and only if Y = .

!This holds for any continuous and bounded f, cf. [EV&3].

18



3. ALMOST PERIODICALLY PERTURBED HARMONIC OSCILLATOR

Proof. Notice that boundedness of ¢1(t,0) is equivalent to boundedness of 3(¢,0). Indeed,
it suffices to check following equality

{

t

v
/f’]' sinw(r —t) dr = +¢1 (t—ﬂﬁ)—i—
0 —cos(w(T—t)+Z)

VB

t

+ / f(7) cos (w (7’ —t+ %)) dr.

i
t2w

Because f is almost periodic it is also bounded, say |f| < K. Then

e
£,0 <’ <t—— 0)‘ K -
la(t,0)] < |1 55 0)| +

2w
Similar inequality for ¢; can be derived analogously.
With the aid of relation
o
e Be Tt = efadap = Z ad kB, adsB = [A, B] (3.11)

we derive

QU) = U(0,)QUI(1,0) = Qeoswt + - sinwt — —pa(1,0).
P(t) = U(0,t)PU(t,0) = —wQsinwt + P coswt — @1 (t,0).
For 1) € .7 it holds
[P U, 0)¢)1* = (b, P(t)* ), (3.12)
1Q™U (¢, 0)¢]1* = (v, Q(t)*"¢), n € No. (3.13)

Thus ¢1(,0) is bounded if and only if ||P"U(t,0)1||? is bounded and ¢2(t,0) is bounded if
and only if ||Q"U(t,0)]|? is bounded.
For any t and i € .% it holds

U@ 0)p—F(Q < R)F(IP| < U, 0)¢[| < [(I — F(IQ] < R)U(t, 0)¢[|+
+IF(QI < R)(I = F(I[P| < R)U(t,0)p] <
< [[F(QI = R)UE,0)¢[ + [ F(|P| = R)U(#, 0)]]. (3.14)

The rest of the proof is based on notion of time-bounded energy?. Choose f(\) := A2, We
have showed that ||Q2U(¢,0)¢| is bounded in t for any 1 from Schwartz space, i.e.

M = Sup [f(QU(t,0)¢] < oo, Vi € 7.
<

2

Definition 3.15:  We say that a propagator U has time-bounded energy Hy at too, if there is a total set S
such as for all p € S
Jim SupllF(\H1| > NU(¢,0)y] =0,

where Hi is some self-adjoint operator.

For proof of following Lemma consult [EV83], Lemma 3.3.
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3. ALMOST PERIODICALLY PERTURBED HARMONIC OSCILLATOR

Using Lemma we deduce that U has time-bounded energy @) at +oo, thus

Jim SupllF(!Ql = R)U(t,0)¢ = 0.

—}OO t
Analogously for P we obtain

Jim sup |F(1P| > RU(,0)9]] = 0.

'*mt>0
According to (3.14]) we see that for any € > 0 and sufficiently large R > 0 it holds
[U(t,0)¢ = F(IQ| < R)F(|P| < R)U(t,0)¢ <e.

F(|Q|] < R)F(|P| < R) is compact operator. Thus for any R > 0 the set {U(¢t,0)y|t = 0} is
arbitrarily precisely approximated by compact set and is therefore compact (for any ). [

Lemma 3.17: Let f,g be bounded real functions of real variable and suppose that f is

continuous T-periodic and that in interval [0,T] it has at most finite number of simple roots>.
Then

S

1
lim = [ e~ (POI=B? 4t — 0, VR > 0,

§—00 8§

0
where (t) = tf(t) + g(t).

Proof. For any s € R such that nT < s < (n+ 1)T" holds

s (n+1)T (n+1)T
1 1 n+1 1
— [ h(t) dt < — h(t) dt = —_— h(t) dt.
frwars [ oama="t e [
0 0 0
It is therefore sufficient to check the convergence of the right hand side of the last equation.
Thus
nT ne1 T n—1 L
A [ —tewi-r2 g L ~(lelt+iD-R? gy « C o~ GTIFOI-(GHR)? gy
nT nT nT ’
0 7=07% 7=07%

where G is constant such that [tf(t) + g(t)| < G for any t € [0,T]. It is sufficient to study

n T
/dy/e WIO=A? g,
0 0

Lemma 3.16: U has a time-bounded energy Hi if and only if

S

M := Sup\lf(Hl) (,0)9[] < o0

<

for all ¢ in some total set S and real nonnegative function f, possibly depending on 1, such that f()\) — oo
as A — 00.

Yie. 0= f(x) # f'(z)
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where A > 0 and f is again bounded on [0, T]. Let us denote {x;}}¥, C [0,T] simple roots of
f,ie f(z;) =0# f'(x;). Let € > 0, then there is K(¢) > 0 which satisfies |f(¢)| > K(¢) for
any t € M = [0,T] ~ U, (z; — &, 2; + ¢). Thus

T

/ dy / (w7 (1) A2 / dy / WlfOl-4? g5 4 L / dy / e~ GIFO1-A7 g <
0 0 [0,7]~M
n|f(t)| n T\/>
T
t< —— .
/ dt / t / 0 + 2eN
0 0 0,7~

<1/K(5)

We have proved that for any ¢ > 0 there exists N(g) = ej;(\(C) such as for all n > N(e) it is
true that

n T
1
1 / dy / W47 4t < (1 4 2Nz,
n
0 0

Lemma, is therefore proved. O

Remark 3.18: Notice that claims of Theorem holds for any unitary propagator U. We
are especially interested in inclusion J#F C Y. Thus the system described by Hamiltonian
(3.5) and propagator (3.6) has only geometrically bounded states if the function

t
/f )sinw(z —t) dzx
0

is bounded.
On the other hand, take

T = {1/1a € L |tho(x) := exp (—%(w — a)2> , a € R} :
Tt is well known that for 4, € 7 it holds
| exp(—1Hut)a(w)]* = exp(—w(z — acoswt)?).
So

2
h(t) == ||F(|Q| < R)U(t,O)@Z)aH2 = /exp [—w <:E + ('02(::’0) — acoswt) ] dz <

Br

t,0 ?
< const exp [—w <\('02(’) — acoswt| — R)
w

Thus, by Lemma the considered system has only geometrically unbounded states in case
when the function ¢3(t,0) can be written in form ¢F'(t) + G(t), where F is periodic, bounded
and in interval of period length has at most finite number if simple roots and G is bounded.
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Theorem 3.19:  Suppose that almost periodic function f has Fourier coefficients 0 # Ay € C
and exponents Ay, satisfying
(o)
1
> = < (3.15)
k=1

Ed

Than it holds

(i) If w # Ag, Yk € N, then our system has only geometrically bounded states and each
trajectory is precompact.

1) Suppose in addition tha is uniformly continuous on R. en the Fourier series is

i) S n addition that f' i ] [ ti R. Then the Fouri es i
uniformly convergent.If w = Ay for some k € N, then the system has only geometrically
unbounded states.

Proof.  (i): Let t € Ry. If w # Ay, Vk € N then there exists Bochner-Fejér polynomial

N
i\
= Z dp Apet ™ "
k=1

where 0 < dj, < 1, satisfying || f — o|lc < 1/t. So

t ¢
/ )sinw(z —t) /O’ )sinw(z —t) de,
0 0

and using Schwartz inequality one obtains

2w + Ak
a(t,0)] < t]f — ollc + demkr*‘z' <
vy
[e'e) [e%e] 2
42 + 4w]Ak\ =+ ‘Ak|2
<1e [ |5 b,
k=1 k=1

The first sum in the last expression is equal to ||f||ap < oo by Parseval equality. The
second one can be estimated by

i 1 4w? + dw|Ag| + |Ag]?

<
1_ w/Ak)) constE:A2 < Q.
k=1

We conclude that ¢a(t,0) is bounded. The assertions of item (i) follow from Remark
B.18

(ii): By Theorem f’ is almost periodic. We will show that under our assumptions the
Fourier series of function f is uniformly convergent. Integrating per partes one obtains

L Ciha —zAkx —zAkx
[ 1@t o = [ f12) _ZAk] /f v,
0
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thus?

A/

T
1
Ak:fh_rgoT/f(x —ilg dx—— lim /f JetARE dx—ZAk
0

Ak T—oo T

Parseval equality now implies

o0 o0 1 o0
Dol < 1D g DAL < oo
k=1 k=1""F k=1

Thus the Fourier series ), Ape™® converges uniformly to f. We can therefore write

t
A oo

©a(t,0) = —Z—k(wte“"t — sinwt) — Z An/em"” sinw(z —t) dx.
w n=1,n#k 0

By the same argument as in item (i) it can be shown that the last term is bounded in ¢.
We conclude® that (o(t,0) has exactly the form required by Remark E and therefore
the system has only geometrically unbounded states.

O

Theorem 3.20: Let f be almost periodic function with real positive Fourier coefficients,
A > 0, and exponents A, € R. Then the Fourier series is uniformly convergent and it holds

() Iff Fw ¢ ({A}22,) and w & {A}22,, then the system has only geometrically bounded
states and each trajectory is precompact.

(ii) If w = Ay for some k € N a +w ¢ ({Ax}32,) the the system has only geometrically
unbounded states.

Proof. If the Fourier coefficients of almost periodic function f are positive, then it can by
shown using Bochner-Fejér approximation that ), Ay < co. And therefore the respective
Fourier series is uniformly convergent to f. For proof see [Bes54], Chapter I., Section 10.

(i): By direct computation

(o]
Ak
t,0) = E — P (we™ — weoswt — 1Ay sinwt).
?2(t,0) r w2—Ag( F )

Thus

2w + !Akl
(t, < A

2w+|Ag|
|A%7w2|

Using our assumptions there is some constant K > 0 such that < K, so

[o.¢]
|02(t,0)| < K> Ap < o0.
k=1

4 A}, are Fourier coefficients corresponding to f’.
®Notice that @2 (t,0) = Ripa(t, 0).
SM’' denotes the set of all accumulation points of the set M.
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(ii): Let us suppose that w = A; for some j and that +w is not an accumulation point of
the set of all Fourier exponents corresponding to function f. If this is the case then

t
o0
w2(t,0) = —Ajl(wte“"t —sinwt) — Z /e’A’“x sinw(z —t) dz.
w k=1k#j

Again it can be shown, as in item (i), that the second term is bounded in ¢. And by
the Remark [3.18 we see, that the system has only geometrically unbounded states.

O]
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4.
PERIODICALLY TIME-DEPENDENT
AHARONOV-BOHM EFFECT

4.1 CLASSICAL FRAMEWORK

In this chapter we will investigate motion of a charged classical particle in the plane under
influence of a homogeneous magnetic field and a periodically time-dependent Aharonov-Bohm
flux. Especially we will show that there is interesting resonant phenomenon depending on
the strength of the field and the frequency of flux. Our treatment is not completely rigorous.
Reader will be properly warned in the text.

4.2 TRANSFORMATION TO ACTION-ANGLE VARIABLES

Let’s consider charged massive classical particle in constant magnetic field and Aharonov-
Bohm flux. The configuration space is simply R? — {0}. Vector potential is a sum of two
parts. For charged particle in homogeneous magnetic field Ay; and Aharonov-Bohm flux Aap

we have
- —b
M = (AMlaAM2) = 7(—.%2,(1}1),
7 o(1)
Aun = _
A 2W‘f|2( $2>$1)a
A=Ay + Aug,

where, without loss of generality, we assume b > 0. It is very useful to use polar coordinates

x1 = rcosb,

To = rsinf.
Lagrangian for particle in electromagnetic field given by vector potential A reads!
IR S 75
L(Z, %) = oM +eA- 7.
For now on we set m = e = 1. And in polar coordinates

s, L. : O(t) b -
L(0,r,0,7) = 5(7“2 +726%) + (2(73 - 2) 0.

'Dots will always denote time derivatives.
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Corresponding Hamiltonian is obtained through Legendre transformation and reads

2
L[ 9 pa—% br
H(TaeapTap97t):§ pr+ f—i_?

Coordinate 6 is cyclic, thus py is integral of motion

OH

pg:—%_o.

Our system is therefore reduced to one-dimensional problem. We will denote p = p, and set

1/a br\°
W”—z(r+2>’

The Hamiltonian equations for the one-dimensional Hamiltonian are

. . a(t)? bv?
r = pj p = 7,3 —4
Equivalently
. b a(t)?
T+ 1 r= 3

The minimum of V for » > 0 is

. \% ( %) =ab a>0,
Vinin, = min V (r) = 2l
r>0 Vv %) =0 a<o.

Now we will construct action-angle coordinates in case when a(t) = a is constant, i.e.

our Hamiltonian is independent of time?

. For a fixed energy level £ > V,,;, the motion is

constrained to the interval [r;,r_]. These constraints are obtained as a solution of equation

V(r) = E. Thus we have

b2

(r} =r?)(r? —12),

where

2
N
It is useful to explicitly write out some combinations of r and ry

ri (QE —ab++/(2E — ab)? — a262> .

r2 +r2 = 5(2E — ab), rir? =42
rero = (ry — )% = 32 — 889(a),

2This is the case when there is now Aharonov-Bohm flux. Then every trajectory is circle.

(4.2)
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where 9(z) is Heavyside step function. The action is defined by integral®

IE) =~ [ VAE = V() dp = a [t =mer =) ao- (4.4)

= [V =02 = s ) = (B - d(@ab) = (B Vi)

(4.5)

Integral involved with the above computation is explicitly evaluated in the following remark.

Remark 4.1: For 0 < r_ < r < ry it holds

/1\/(7“3r —z)(z—7r?)dz = %(m ) \/(r%r —r2)(r2 —r2)—

%(r% + 7“3) — 72
Vi3 =2 —r2)
27“37“3_ — (r_%_ + 7’2_)7“2

2r,r+\/(r§r —r2)(r2 —y2)

+

1
5(7“2_ +r3) arctan

+r_r4 arctan

In particular

/i\/(ri —x)(x—7r?)dr = g(ri —r?)

Generating function of the transformation reads

T

S0 = [ VEE=V(oldp =3 [ 5/ = o) = 120 =

T2
b 1
= 4/:1:\/(7"3 —z)(z —r?) da.
r2

3For more details consult [Arn89).
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Again using Remark this integral can be evaluated explicitly

S(r,I) = Z [Z(m —r_ )%+ \/(ri —72)(r2 —r2)— (4.6)
1/.2 2V .2
%(r++r2_)arctan a(ry £75) 7 +

2 lal
r —\/ I+ =+ I+ |a]), 4.7
s = T+ 5 VITETa) (@)
8 lal
T_Q,_—FT'%:b(I‘f‘Q)a (4'8)
1
(ry—r =", (4.9)
2
rer_ = |ba]. (4.10)

We will drop first term in , because it coresponds only to shift of angle variable ¢ by the
value 7. Further 51mphﬁcat10n is achieved by using the identity

r—y
arctanx — arctany = arctan .
1+ 2y

So finally we have

(4.11)

AT — br? + 2
S(r,I) \/8bI7“2 (br? — 2]al)? — I arctan ( br” + 2la| ) -

\/8bIr2 — (br? — 2|al)?
2 2 _ 2 _ 2
- |a2|arctan ((br +2]al) /86112 — (br% — 2]a) ) |

b2r4 — 4bIr? + 4]al?

The induced transformation of variables (r, p) = ¥(ip, I) is defined as follows: ¥ = F o G~ 1,
where the transformations (r,p) = F(u,v) and (¢, ) = G(u,v) are given respectively by the
relations

0S(u,v) and o — 0S(u,v) I—w

ou ov

r=u, p=

By direct computation we get

= 55\/I+ g‘ + VI(I+|a])sing, (4.12)
bI(I + |al) cos ¢ (4.13)

\/I—i-'a‘—i- I+|a!)smg0
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and conversely,

1 a®>  b*r?
Y= — arctan <bp%" <p2 + 7"72 - 4>> 5 (414)

2
= L (H V) = o <p2 (%) ) . (4.15)

Let us switch to the time-dependent case with a Hamiltonian H(r,p,t). Seeking the action-
angle variables for the frozen Hamiltonian at each moment of time one in fact constructs a
time-dependent transformation of variables. Hence the generating function of the transfor-
mation, S(u,v,t), is time-dependent as well. One arrives again at a Hamiltonian system with
a Hamiltonian K (¢, I,t) and it holds

0S(u, 1,t)

K(p,I,t) = H(¥(p,1,1),t) + Y

)

u=",(p,1,t)

where W, denotes component of ¥ belonging to r. Our Hamiltonian depends on time t only

through function a(t)
1 a(t)  br\?
H t)y==[p? — + — .
(r,p,1t) 2(1? +< . +2>>

New Hamiltonian now reads

a(t)b — arctan ( \/HT“TESW) a(t), a(t) >0,

K(p,I,t) =0l + (4.16)
arctan (\/#Cj_)%sm@ a(t), a(t) < 0.
And equations of motion are given by
SO():(?K(:;I,I,t)’ i) = 8K((;p;0[ ,t)
This leads to
aa__Cosy (4.17)

. _p_ 98
v 2 \/I(I+ |a]) 2[—1—]@\—&—2\/ (I + |al)sing’

. sgna [ la|a
I =- a— . 4.18
2 ( 2]+|a]+2«/[([+|a|)sing0> (4.18)
From (4.12)) and (4.7) we see, that

1 1
r? = 5(7”3 +r?) + 5(7'1 —r2)sing.

Thus if ¢ grows then 2 oscillates between r2 and ri. Moreover if a(t) is bounded and I — oo
as t — oo then obviously* r, — oo and

2
2 = éa(t) -0,
v ori

as t — oo. This means that, in this very case, during the time evolution the particle will be
located arbitrarily close to and arbitrarily far from origin. In the next part of this chapter we
will try to find out if this phenomenon can occur, i.e. if the action variable grows to infinity.

it
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4. PERIODICALLY TIME-DEPENDENT AHARONOV-BOHM EFFECT

4.3 SIMPLIFICATION OF EQUATIONS OF MOTION

As a first step we substitute

Pl 4l (4.19)
¢ =@ —bt. (4.20)
Equations (4.17) convert to

aa
4.21
F+\/F2—a251n(bt+¢) (4.21)
b= _cos(bt + ¢) aa . (4.22)

VF? —a? F+VF? —a?sin(bt + ¢)

Until now the flux function ® was arbitrary. We consider time-periodic case
O(t) = 2mwesin 2, (4.23)

where e > 0 and Q > 0. Thus a(t) = py — esin Qt. Let’s assume that € is “small”. If this is
the case we will consider only first term in Taylor expansion of right sides of equations (4.21))
and (4.22)). In this approximation equations of motion are

. Qt
F = —ppeQ s +o(e?), (4.24)
F + /F? — pZsin(bt + ¢)
cos Qt cos(¢ + bt)

b = peeQ + o(?). (4.25)

\/F? —p3 F + \/F? — p2sin(bt + ¢)

In this paragraph approximative solution of equations (4.24)) and (4.25)) will be found. We
start with the key idea formulated in following proposition.

Proposition 4.2: Let ¢ a(x) be real function of real variable given by
1
A+VA? = C?sin(x)’

where A > |C| and C € R are constants. Then

Yalz) =

2

whenever A — +o0o in the space of generalised functions 2'((0,2x)). The symbol 537” denotes
Dirac delta function shifted to 37“

Proof. The function v 4 is integrable on (0, 27) for every A > |C| and therefore can be thought
of as a regular generalised function. It’s primitive function is given by

= /wA(:L’) dxz = 2arctan <\/m+ Atan g) .
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Let ¢ € 2((0,2m)) be arbitrary test function, then we are interested in

2

(a, @) = /wA(x)tp(:v) dz.

0
Substitution z = f4(x) leads to

™

(W, 0) = / o(f71(2))dz,

—Tr

where (mind the discontinuity of f4 at m, for illustration® there is Figure [4.1))

fA fA7
JT / 27 /
X /7'(
TT 7 3 2
2
X
-7t T T 7T
-7t 2 2
Figure 4.1: f4 and it’s inversion le
2 arctan %tan%— 1—%5 , z € (2arctan\/A2—CQ,7r>,
fa'(2) =

2 arctan %tan% — /1= %5 +27, z€ <—7r, 2arctan v A% — 02> .

By the Lebesgue theorem (¢ is smooth with compact support and therefore bounded) we get

AEIEOO(wA, p) = /ﬂgo (—g + 27r> dz = 2mp <§7r> = (27r5%7r,<p> )

O]

Inspired by the previous proposition we will perform a bit heuristic step. Let’s consider
ordinary differential equation of the form

9(t) = o) ¢g(r) (1)-

Then in region where g(t) > |C| the solution will behave like

o\“
Q
D.
\]
¢
o
3
AS)

/T\
3
+
o
NA
3
~

5All plots in this work were created using the Mathematica.

31
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t+7/2
2

where n(t) is integral part of
We will apply this intuition to our system (4.24)), (4.25)). Using above argument we see
that the second equation (4.25)) is reduced® to ¢(t) — ¢(0) ~ 0. Thus it is sufficient to study

equation
—epySlcos Ot

F +\/F? — pZsin(bt + ¢y)

where ¢g € [0,27) is constant. More convenient is to use rescaled time 7(t) = bt + ¢g, and
denoting G(7) = F(t(7)) we obtain

F:

(4.26)

G —epef2 cos %(7‘ — o)
b G+ +\/G? - pheta?sinT
Thus
0 . Q0
b G + /G? — ptheta? sin(x)

n—1
€ng Q73
~ kgo 27 cos 5 <27r + 27k — ¢o> ,

. Using formulae

where n = n(7) i

n 1

1
ZSinlm_sm2mcsml(n+ ) ’ (4.27)

=0 S11 51’

1
cossnrsinz(n+1
g coskx = 2 1( )z , (4.28)
k=0

sin 258

which are just imaginary and real part of sum of geometric series » ;' e’ we obtain

Qm
g cos f(3m b w(n = 1)~ do). § EN,

G(r) — G(0) =

_ 2mepef2
L eN.

Sake)

ncos (27r — ¢0)
The approximative solution of the original equation (4.26]) is

Qmn
%%cos LEr+7r(n—1)—¢o), ¥ &N,
b

F(t)=F(0)+ (4.29)

2mepp
—%ncos Z (37— o), €N,

Sk

ke

bt+§fr+%}. This is valid for F(t) > |pg|-.

We are led to the following conclusion.

where n = n(t) =

Conclusion 4.3: In the region where F >> pg equation (4.26) has approzimative solution
given by (4.29). Qualitative behaviour depends on constants b, Q and ¢q:

SMind the term cos(bt + ¢).
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(i) If% ¢ N or % e N and cos% (37 — ¢o) = 0 then the solution is bounded.
(ii) If% € N and cos% (%77 — gbo) < 0 then the solution is increasing.

(iii) If% € N and cos% (%77 — gbo) > 0 then the solution is decreasing.

F B=1, ¢0 =1
¢ F B-1 ¢0 =0
240
200. 025
230 200. 02
920 200. 015
200. 01
210 200. 005
¢ ] 00"
20 40 60 80 100
F B=1/4, ¢0 = 3 =
200
200. 6
190 200. 4
180 200. 2
170 S 199. 8

199.6

200. 4

sl Il e
g | TR

199. 4

NE—

Figure 4.2: Red - numerical solution of (4.26) with initial condition F'(0) = 200, Blue -
approximative solution ({4.29))

Because of a bit vague formulation of condition F' >> |py| we present few plots. In Figure
we choose ¢ = %, F(0) = 200. Particular values of b, Q and ¢q are depicted above each
plot. As a demonstration of behaviour of solution for smaller I’ there are two more plots in
Figure Initial condition is set to 10.

33



4. PERIODICALLY TIME-DEPENDENT AHARONOV-BOHM EFFECT

10.4
10. 2 VJT T}

Lrlj) 0 B( 4

|
i

o
-
[

Figure 4.3: Red - numerical solution of (4.26) with initial condition F'(0) = 10, Blue -
approximative solution ({4.29))

4.4 SOLUTION OF THE ORIGINAL SYSTEM

Our treatment cannot be used for situations when F' (or I) is approaching |pp|. Numerical
analysis shows, that in the resonant case (2/b € N) the system will end in the increasing
mode. In the Figure there are numerical solutions of and (4.25). Our choice of
initial conditions and other constants is depicted for each row. First row corresponds to case
(iii) in Conclusion (i.e. there is no fall on origin) and the second to case (i). Of course

when Q/b € N. Again we choose ¢ = 3.

b E 1, =1, pe=1, F(0)=40, $(0)=3.5 ®
3.5
40
3.4
35
3.3
30 3 >
25 3.1
20 t
100 200 0 400 500
15 5 9
100 200 300 400 500" 8
= 1, o=1, po=1, F(0)=40, ¢(0)=0 ®
500
.2
400 0
0.18
300 0.16
200 0.14
0.12
100 t
/ 1000 2000 3000 4000 5000
1000 2000 3000 4000 5000 0.08

Figure 4.4: In the resonant case the action will grow to infinity.
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Radial motion of particle influenced by homogeneous magnetic field and time-periodic
Aharonov-Bohm flux is described by equation (4.1))
b? a(t)?

T—I_ZT: 7’3

and by specifying initial values 7(0) = r¢ and 7(0) = 7o. We have constructed approximative
solution

r(t) = jg (1(

1/2
)+ |a(t)]) sin ga(t)) , (4.30)
where p(t) = bt + ¢,

Qn
_ meped sin =% n QO

—b sin 12 Cos b(27r—|—7r(n— 1) — ¢o), % ¢ N,

I(t)=1o+ 5 (|P9| la(t)]) +

TI'Eng

Sate

ncos 3 (5 ¢0) eN,

bt+po+75
21

and n =n(t) = { } Initial conditions Iy, ¢g and rg, 79 are related by

1 .2 pg bgrg
¢0:—arctan <b7‘07‘0 (7’0"‘7%—4 s
1 lpe|  bro 2
Iy=— .
07 2 ( ot < ro 2

We assumed that a(t) = pg — esin Qt. In Figure we compared numerical solution of
and approximative solution . In the right column the difference of these two functions
is plotted. In our study of classical particle influenced by homogeneous magnetic field of
strength b and periodic time-dependent Aharonov-Bohm flux with frequency {2 we have come
to hypothesis that if /b is natural number then the particle will get arbitrarily close to and
arbitrarily far from the origin. In other cases the trajectory will be bounded.

4.5 (QUANTUM FRAMEWORK

We now turn back to the quantum case.

4.6 PROPAGATORS WEAKLY ASSOCIATED TO A FAMILY OF
HAMILTONIANS

In [AHSOE)] the notion of propagator weakly associated to Hamiltonian was proposed. To
every unitary propagator U(t,s) on Hilbert space J# one can relate a unique self-adjoint”
operator K in # = L%(R,.#, dt) which is the generator of the one-parameter group of
unitary operators exp(—w0K), o € R, defined by

(K f)@#) =U(t,t — o) f(t — o).

K is called the quasienergy operator. Furthermore it holds that the relation between propa-
gators and quasienergy operators is one-to-one.?

ef. [How74)
8See [How74] or [AHSO5|.
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' b =1/2, Q=2, pe=1, ro=20, ro=10 Brr. b = 1/2, 0=2, po=1, ro=20, ro=10

60
0. 06
50

0.0

: M it lll

t -0.04

~

N

N

50 100 150 200 250 300

r b = 7, Q=1/2, pe=5, ro=5, ro=10

10 20 30 40 50

Figure 4.5: Blue - numerical solution of (4.1]) with indicated initial condition, Red - approxi-

mative solution (4.30)

Definition 4.4: We shall say that a propagator U(t,s) is weakly associated to H(t) if

K= —0,+ 9, (4.31)
where?

b
9= [ H®) dt. (4.32)
/

The equality (4.31]) is equivalent to the following two conditions:
(i) =0 +$H C K,
(ii) —0; + 9 is essentially self-adjoint.

It is important to note that the definition still guarantees the uniqueness. If U(t, s) and U (t,s)
are weakly associated to H () then by (4.31) it holds that K = K. But due to the one-to-one

correspondence between the propagators and quasienergy operators we have U(t, s) = U(t, s).
In the analysis of current model we will need two Lemmas from [AHS05].

Lemma 4.5: Let A(t) be a family of bounded self-adjoint operators in S which is locally
bounded. Let C(t,s) be the propagator associated to A(t) via the Dyson formula. Let 9 C A

Of € A is in domain of $ if and only if f(t) € dom H(t) for almost all t € R and t — ||[H(t)f(t)| is
square integrable. Then (f)(t) = H(t)f(t).
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be a dense linear subspace and let T'(t) be a strongly continuous family of unitary operators
i € obeying the following conditions

(i) Vt e R, T(t)2 = 2,
(i) Y € D, T(t)y is continuously differentiable,
(iii) Vt € R, X (t) = «T(t)T(t)~", with dom X (t) = 2, is a self-adjoint operator.
Then tho propagator T(t)C(t,s)T(s)~! is weakly associated to the family
X(t)+THATH) L.

Lemma 4.6: Suppose that V(t), t € R, is a family of unitary operators which is continuously
differentiable in the strong sense. Let H(t), t € R, be a family of self-adjoint operators such
that dom H(t) = 2 for allt € R. Set

H(t) =V HOV () + V)V ()~
If the propagator U(t, s) is weakly associated to H(t) then the propagator
Ut,s) =V()U(t,s)V(s)"!

is weakly associated to H(t).

We now show that a unitary operator weakly associated to T-periodic Hamiltonian H(t)
is also T-periodic.

Proposition 4.7: Let U(t,s) be unitary propagator weakly associated to T-periodic Hamil-
tonian H(t) = H(t +T). Then the propagator is T-periodic, in particular

Ut,s)=U({t+T,s+T), Vs, t €R.

Proof. The proof is based on the uniqueness of weakly associated propagators. We will show
that the propagator
Ult,s) =U(t+T,5s+T)
is also weakly associated to H(t).
Denote by K the quasienergy operator generated by U (t,s) and the time translation
operator (J,f)(t) = f(t + a). The evolution group generated by K acts on % by

(75 F) () = Uttt = 0)f(t = 0) = Ut + Tt +T = o)(FE)(E+T — o) =
= (K TR f) (t+T) = (Tre "N 71 f) (1)
Thus .
e ok = greo K g, (4.33)
Stone’s theorem states, that f € dom K if and only if there exists

S L (e gy 0

4.34
Zd(f o ( )

o=0
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and if this is the case then (K f)(t) is equal to (#.34). From (4.33) it follows that f € dom K
if and only if there exists

S (e p) 0

1
do o

= zil (e BTxf) (t+T)

=0 do o

o=0
So, f belongs to domain of K if and only if I f is in domain of K and then it holds
Kf= K7} (4.35)

Our hypothesis means that K = —id; + ), where

D
9= [ H(t) dt.
/

Notice that we have

T 0y I = 0y
and the T-periodicity of H(t) implies

9 =TI HIr.

To simplify our equations we will denote R := —19; + §). Therefore f € dom £ if and only if
Tp f € dom R. If one takes f € dom R then also g = 7 f € dom £ and using (4.35)) and the
fact that K is extension of R we obtain

T K Trg = Kg = Rg = TR Tryg.
This means )
Kf = —Zatf + ,‘7)f

for any f € dom K. Because R is essentially self-adjoint it holds that K = K , which was to
be proved. ]

4.7 LANDAU HAMILTONIAN WITH A PERIODICALLY
TIME-DEPENDENT AHARONOV-BOHM FLUX
We consider charged particle in the homogeneous magnetic field of strength B > 0 under
the influence of periodically time-dependent Aharonov-Bohm flux ®(¢). Thus analogously to

Chapter the model is described, in polar coordinates, by Hamiltonian acting in L2(R x
[0, 27), rdrdf) given by differential expression

12 1 1 e Br? e 2
— | —=0r0r + = | —10p — ——— — —P .
2m< ot +'r2< Y e 2 he ) >

We fix angular momentum sector defined by —:9pe”™? = me*™’ m € Z, and set all physical
parameters e, h, ¢, 2m equal to one. Let the period of ® be T. Therefore we are interested in
the family of operators

T2 2
H(t) = H(C0) = ~50m0.+ 5 (o) + - )
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where ((t) = —m + ®(t), acting in L2(R4,r dp). The Hamiltonian H(¢) is unambiguously
determined by specifying a complete set of eigenfunctions with corresponding eigenvalues

H(t)pn(t) = M(t)en(t), n € Ng, where
M(t) =Bt +t+2n+1),

2
nltir) = a2 (5 ) exn(= T,

(B ol 1/2
) ={3 T(n+ [t| + 1)

are normalisation constants and Lﬁf” are generalised Laguerre polynomials. The dynamics of

the model should be defined by

10U (t, s)p = He (W)U (t, s)v, Ul(s, ) =1, (4.36)

and

where U is unitary and 1 is an initial condition from the domain of H.(s). However problems
arises from the fact that domain of H(t) is not constant in ¢. See [AHS05] for discussion.
Consider unitary operator V' (¢) which takes all eigenfunctions at time 0 to eigenfunctions
at time ((t), i.e
V(H)pn(C(0)) = oa(C(1), Y0 € No.

Denote the formal solution of (4.36) by ¢ (t), 1(0) = ¢ and take Y(t) = V(t)y(t). Then it
follows that (t) should satisfy

Wid(t) = | V(O H(B)V (6)* +2V () 9V (1)) | D (2). (4.37)
Hy(t) Q)

For simplicity we will write ¢, instead of ¢, (¢(0)). The matrix entries of Hy(t) and Q(¢) in
the basis ,, are, respectively

(on, Ha(t)r) = B(C(E) + [C(£)[2n 4 1)dn,
0, n=m,
(on, Qt)pr) = (4.38)
ZC/(t)<90n(C(t))7 Spk(C(t)»v n 7é m.

From Lemma 4 and Lemma 6 in [AHS05| it follows that for n # k

_ sgn(¢(?)) W (C(#) m(C(D)) } 7

(o c(0). () = S min { 280, L (4.39)

where o
T'(n+ [t +1)\Y
n!

w0 =
and that Q(t) is bounded operator with

s

IR < ¢'(6) <2 +12[¢(8)| + %\g(m(l + g(t)|)(3+|<(t))/2>
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Let P, be orthogonal projector onto Cyp,,. Furthermore set

o)

W(t) = Z )‘n(C(t))Pm

n=0

t

Q) = / W (u)du.
0

From (4.37) it follows that we seek propagator related to the Hamiltonian Hy(t) + Q(¢)
and because Q(t) is bounded we can pass to interaction picture of time evolution and use

Dyson formula. More precisely let C(t,ty) be unitary propagator related to the Hamiltonian
—Q¢(t) = —exp(2Q(t))Q(t) exp(—282(t)) via Dyson formula

C(t,tg) =1+ 7 de dtg - - dt,Qc(t1)Qc(t2) - - - Q(ty). (4.40)
0 nZ::l to/ 1t0/ 2 to/ c(t1)&e(ta
Then

U(t,to) = V() exp(—12())C(t, to) exp(12(to))V (to)" (4.41)

should be related to H¢(t).
Proposition 4.8: The propagator U(t,ty) in (4.40)) is weakly associated to H¢(t).
Proof. Set A(t) = —Q¢(t), 2 = dom H(((0)), T'(t) = exp(—£2(t)) and

X(t) =1 (ate*m(t)) M — W (1).

By applying Lemma we conclude that the propagator exp(—2(¢))C(¢,t0) exp(:£2(to)) is
weakly associated to
W(t) = e Qe (t)e ™ = W(t) - Q(t).

Now put H(t) = W(t) — Q(t) and Ult,to) = exp(—12(t))C(t, to) exp(1Q(t)). It follows
from Lemma that U(t,t0) = V(¢)U(t,t0)V (to)* is weakly associated to

VW@V ()" = V)RV ()" + 18V (1)V(8)" = Hc(),
because Q(t) =V (t)*(0;V (1)). O

We now choose ®(t) = esinwt, w, € > 0, i.e. ((t) = —m + esinwt. The first term in
expansion (4.40) is related to case when ¢ = 0. We now consider first approximation to the
first order of €. Thus we have T-periodic propagator, T = %’T,

Ui(t,s) = V() exp (—2(2(t) — Q(s))) V(s)"+

¢
+ weV (t) exp(—2€2(t)) /COS wt1 exp(1Q(t1))Q(m) exp(—182(t1))dty exp(2Q(s))V (s)*,
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4. PERIODICALLY TIME-DEPENDENT AHARONOV-BOHM EFFECT

where Q(m) is bounded operator given by (#.38)) where we drop ¢'(t) and put ((t) = —m.
For any n € Ny we now have

U(t,0)pn = e O, (¢(1)+

00 t
+awey e W / coswtye ™ =% qg | (or, Q(m)pn)pr(C(H)),
= 0

-~

gnk (t)

where Q,( fo ))du. Notice that Q,(t) — Qx(t) = 2B(n — k)t. If w # 2Bj for all
jEN then the 1ntegral in the last expression is equal to

Enk(t) = —5— 4B;(n myAE (—QBz(n — k) 4 &R2B 2By (n — k) cos wt 4 w sin wt)) .
So
1E(r > R)UL(t, 0)on | <[|1F(r > R)son( @)+
+ew Z Enk - (e, Q(m)en)| - |F(r > R)on(C(2))lI,
k;én
where
1

Sk = 4BIn — k
k= T 2B — g B k)

and F(r > R) is multiplication operator by characteristic function of interval (R, c0). Notice
also that for any n € Ny
TR

k;én
and that for all ¢ € R and k € Ny it holds that limp_,o ||F'(r > R)pr(¢(t))||. Thus

lim sup ||F(r > R)Ui(t,0)p,| = 0.

R—o0 20

We conclude that in the first approximation the system has only geometrically bound states
if w# 2Bj for all j € N.
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CONCLUSION

In this work we studied time-dependent quantum systems. The Chapter [2| reviewed basic
results concerning 7T-periodic quantum systems. We presented topological and geometrical
approach to bound and free states in quantum theory and showed their relation to spectral
properties of Floquet operator U(T,0).

In the Chapter 3| we studied one-dimensional harmonic oscillator perturbed by external
almost periodic force. We showed that this system has either only geometrically bound states
or geometrically free states depending on the frequency of oscillator and Fourier coefficients
of almost periodic function (see Theorems and .

Then we considered charged particle in the plane under influence of homogeneous mag-
netic field of strength b and T-periodic Aharonov-Bohm flux. In the first part of Chapter [4]
we studied corresponding Hamiltonian in the framework of classical Hamiltonian mechanics.
Motivated by transformation to action-angle variables we constructed time-dependent canon-
ical transformation which simplified equations of motion. We considered flux function given
by ®(t) = 2mesin Qt. Using Proposition and numerical simulation we concluded that the
trajectory is either bounded or it passes arbitrarily close to origin and infinity, depending on
the ratio of b and Q. In the second part of Chapter [ we turned to quantum case. We first
reviewed notion of unitary propagator weakly associated to family of self-adjoint operators
H(t). In Proposition we proved that unitary propagator weakly associated to T-periodic
Hamiltonian is also T-periodic. Again we choose the flux function ®(¢) = esinwt. It was
then shown that in the first approximation the system has only geometrically bound states if
w#2Bj, 5 €N.
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