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Abstract: We present a general formulation of the stationary scattering on finite cylinder with
magnetic flux in two dimensions. By using partial wave decomposition we break up
the task into songle modes, then derive a solution of the corresponding Schrödinger.
Threating inside potential area and neighbour hood of infinity separately, we use WKB
method to find approximate solution inside cylinder potential, and in neoghbourhood
of infinity WKB method is used to find phase shift approximation, followed by taking
a look at large energy behaviour of the phase shift and numerical comparison with
exact expression. In the end, scattering amplitude is determined and consequently
given differential cross section.

Key words: scattering theory, WKB approximation



Contents

Introduction 5

1 Important relations 6

2 Scattering setup 9
2.1 Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Zero neigbourhood 10
3.1 Theorems and proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Exact solution and its asymptotic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Approximate solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 n 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 n = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Neighbourhood of infinity 19
4.1 Exact Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Asymptotic region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Phase shift approximation 21
5.1 Theorems and proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Large energy approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Error term behaviour for large energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Large energy behavior of phase shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5 Numerical comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Cross section 33
6.1 Scattering amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Differential cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Conclusion 36

4



Introduction

Main goal of this project is to investigate 2D quantum scattergin on the orthogonal finite cylinder potential
with magnetic flux contained inside and to apply WKB method in order to conveniently solve this task.

First chapter contains most important relations mainly of special functions which are extensively used
thorugout the rest of the document.

In second chapter is posed the task we are dealing with mathemathicly, giving us equation we are
interested in.

Chapter number three is dedicated to solving the equation inside the cylinder potential, especially in
the neoghbourhood of zero were comparison of exact and WKB based solution is given.

Fourth chapter deals with the asymptotic region in the neogbourhood of the infinity. Brief application
of general asymptotic scattering approach leads to exact expression of phase shift and realtions with
scattering amplitude, which will serve the determining of differential cross section later on.

In the fifth chapter WKB approximation of phase shift is made, followed by determining leading
terms for large energy behaviour of error term and phase shift itself. At the and of the chapter is also a
numerical comparison of approximation with exact expression.

Sisth chapter gives us desired approximate expressions of scattering amplitude based on previous
results followed by determining croos section.
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Chapter 1

Important relations

This chapter contans well known realtions and properties, mainly of Bessel functions, which are exten-
sively used throughout the whole document. Theorems will be given gradually in chapters where used.

Cν , Dν denote any of Bessel Functions Jν , Yν , ν ∈ R, for which following relations are taken from ([9],
Chp. 10).

Asymptotics

z → 0:

J0(z)→ 1, Jν(z) ∼
(z

2

)ν /
Γ(ν + 1), ν 6= −1,−2,−3, ...

Y0(z) ∼ 2

π
ln z, Yν(z) ∼ −

(z
2

)−ν Γ(ν)

π
, ν > 0 (1.0.1)

z →∞:

Jν(z) =

√
2

πz

[
sin
(
z − π

2
(ν − 1/2)

)
+ e|Imz|O(1)

]
Yν(z) =

√
2

πz

[
cos
(
z − π

2
(ν − 1/2)

)
+ e|Imz|O(1)

]
(1.0.2)

Recurencies

C−n(z) = (−1)nCn, n ∈ N, Cν−1(z) + Cν+1(z) =
2ν

z
Cν(z) (1.0.3)

Derivatives

C ′ν(z) = −Cν+1(z) +
ν

z
Cν(z)

= +Cν−1(z)− ν

z
Cν(z) (1.0.4)

2

πz
= Jν+1(z)Yν(z)− Jν(z)Yν+1(z)

= Jν(z)Y ′ν(z)− J ′ν(z)Yν(z) (1.0.5)
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Integrals

∫
zν+1Cν(z)dz = zν+1Cν+1(z) (1.0.6)∫

zCµ(az)Dµ(az)dz =
z2

4
[2Cµ(az)Dµ(az)− Cµ−1(az)Dµ+1(az)− Cµ+1(az)Dµ−1(az)] (1.0.7)∫

zµ+ν+1Cµ(az)Dν(az)dz =
zµ+ν+2

2(µ+ ν + 1)
[Cµ(az)Dν(az) + Cµ+1(az)Dν+1(az)] , µ+ ν 6= −1

(1.0.8)

+∞∫
x

J0(t)

t
dt = −γ − ln

(x
2

)
+

∞∑
k=1

(−1)k−1

2k(k!)2

(x
2

)2k

(1.0.9)

Series

cos(z cos θ) = J0(z) + 2

∞∑
n=1

(−1)nJ2n(z) cos(2nθ)

sin(z cos θ) = 2

∞∑
n=0

(−1)nJ2n+1(z) cos(2(n+ 1)θ) (1.0.10)

Graf’s addition theorem

Cν(w)
cos
sin

(νχ) =

∞∑
n=−∞

Cn+ν(u)Jn(v)
cos
sin

(nθ) ,
∣∣ve±iθ∣∣ < |u| , (1.0.11)

where w =
√
u2 + v2 − 2uv cos θ , u− v cos θ = w cosχ , v sin θ = w sinχ

in special case u = v:

Cν

(
2u sin

θ

2

)
eiν(π−θ)/2 =

∞∑
n=−∞

Cn+ν(u)Jn(u)einθ (1.0.12)

Jordan’s inequality

2

π
x ≤ sinx ≤ x, x ∈

[
0,
π

2

]
(1.0.13)

Proof. Simply prooven by the picture of unit circle, angle x and anoter circle of radius sinx.
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x

|DE| ≤ |D̂C| ≤ |D̂G| ⇔ sinx ≤ x ≤ π

2
x ⇒ 2

π
x ≤ sinx ≤ x
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Chapter 2

Scattering setup

General backgroung to scattering theory in this and following chapters is given in [2, 4, 6].

2.1 Equation

Problem of our interest is a stationary formulation of the scattering problem for a charged mass m particle
with a positive energy E = k2 on a finite cylindric potential potential V with embeded magnetix flux µ,
perpendicular to the trajectory of the particle. In order to simplify notation, m = 1

2 , ~ = 1. This setup
means solving Schrödinger equation, which in cylindrical coordinates (r, θ, z), where z-axis coincide with

axis of cylinder and vector of magnetic induction ~B = ∇× ~A, has a following form:

−
[
r2 ∂

2

∂r2
+ r

∂

∂r
+

(
∂

∂θ
− iAθ(r)

)2

− V (r)

]
ψ(r, θ) = k2ψ(r, θ), (2.1.1)

where

Aθ(r) = µ
r2

X2
, r < X,

= µ, r > X,

V (r) = V, r < X,

= 0, r > X.
(2.1.2)

Ar = 0

Az = 0
~B =

(
0, 0,

∂Aθ(r)

∂r

)
Introducing factorization and wave decomposition

ψ(r, θ) =
∑
n∈Z

R(r)einθ, (2.1.3)

(2.1.1) becomes

r2R′′(r) + rR′(r) +
[
r2
(
k2 − V (r)

)
−
(
n−Aθ(r)

)2]
R(r) = 0, r ∈ (0,+∞), n ∈ Z. (2.1.4)

From this expression should be clear that R(r) depends on n despite not being explicitely denoted in
(2.1.3) due to later convenience.

In analogy with classical scattering, we are looking for solution consisting of incident wave and scat-
tered outgoing wave

ψ(r, θ) =
∑
n∈Z

R(r)einθ
!
= eikr cos θ + f(θ)

eikr√
r
, (2.1.5)

so we can determine scattering amplitude f(θ) and afterwards derive formula for differential cross section

dσ(θ)

dθ
= |f(θ)|2 . (2.1.6)
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Chapter 3

Zero neigbourhood

3.1 Theorems and proofs

Theorem 1. ([3], Chp. 5 §4, 5) Differential equation

d2w

dz2
+ f(z)

dw

dz
+ g(z)w = 0 (3.1.1)

where for |z| < r exist convergent expansions

f(z) =
1

z

∞∑
s=0

fsz
s, g(z) =

1

z2

∞∑
s=0

gsz
s, (3.1.2)

in which at least one of the coefficients f0, g0, g1 is nonzero.
Let α be a root of the equation

Q(α) := α(α− 1) + f0α+ g0 = 0, (3.1.3)

given by solving (3.1.1) while restricting ourselves to the leading terms

d2w

dz2
+
f0

z

dw

dz
+
g0

z2
w = 0 ⇒ w = zα,

and substituing the solution back into (3.1.1).
Then series

w(z) = zα
∞∑
s=0

asz
s, (3.1.4)

converges and solve equation (3.1.1) for |z| < r, if the roots of (3.1.3) differs by a noninteger value.

Proof. Substituing (3.1.4) and (3.1.2) into (3.1.1) gives following:

∞∑
s=0

as(s+ α)(s+ α− 1)zs+α−2 +

∞∑
j=0

aj(j + α)zj+α−1
∞∑
s=0

fsz
s−1 +

∞∑
j=0

ajz
j+α

∞∑
s=0

gsz
s−2 = 0

∞∑
s=0

as(s+ α)(s+ α− 1)zs+α−2 +

∞∑
s=0

∞∑
j=0

fsaj(j + α)zj+s+α−2 +

∞∑
s=0

∞∑
j=0

gsajz
j+s+α−2 = 0

∞∑
s=0

as(s+ α)(s+ α− 1)zs+α−2 +

∞∑
s=0

∞∑
j=0

[fs(j + α) + gs] ajz
j+s+α−2 = 0
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∞∑
s=0

as(s+ α)(s+ α− 1)zs+α−2 +

∞∑
s=0

[f0(s+ α) + g0] as +

s−1∑
j=0

[fs−j(j + α) + gs−j ] aj

 zs+α−2 = 0

Whence for coefficients of power zs+α−2 we have

Q(α+ s)as = −
s−1∑
j=0

[fs−j(j + α) + gs−j ] aj , s ≥ 1. (3.1.5)

This equation recursively determines coefficients as, s ≥ 1 for given a0. Formula clearly doesn’t work if
Q(α+ s) = 0 for some positive integer s, giving condition on difference of roots of indicial equation.

To prove convergence we take arbitrary positive ρ < r and denote

K = max
|z|=ρ

{
|zf(z)|, |z2g(z)|

}
.

Cauchy’s integral formula then yealds

|fs| =
∣∣∣∣f (s−1)(0)

(s− 1)!

∣∣∣∣ =

∣∣∣∣∣∣ 1

2π

2π∫
0

f(ρeiϕ)

ρseisϕ
ρeiϕdϕ

∣∣∣∣∣∣ ≤ Kρ−s, |gs| ≤ Kρ−s.

Next, let β denotes the second root of (3.1.3), n := b|α− β|c, and define

bs = |as|, s = 0, 1, . . . , b|α− β|c, (3.1.6)

s (s− |α− β|) bs = K

s−1∑
j=0

(|α|+ j + 1) bjρ
j−s, s > b|α− β|c. (3.1.7)

Using (3.1.5) and identity given by factorization by roots

Q(α+ s) = [(α+ s)− α] [(α+ s)− β] = s(s+ α− β)

we show, using induction, that |as| ≤ |bs|:
s ≤ b|α− β|c: bs = |as|

s− 1→ s:

|s(s+ α− β)as| =

∣∣∣∣∣∣
s−1∑
j=0

[fs−j(j + α) + gs−j ] aj

∣∣∣∣∣∣
≤ K

s−1∑
j=0

[j + |α|+ 1] |aj |ρj−s

≤ K
s−1∑
j=0

[j + |α|+ 1] bjρ
j−s = s(s− |α− β|)bs

s+ (α− β)

s− |α− β|︸ ︷︷ ︸
≥1

|as| ≤ bs ⇒ |as| ≤ bs

Substracting (3.1.7) for s− 1 from the one for s multiplied by |ρ| gives simple recurent relation for bs.

ρs(s− |α− β|)bs − (s− 1)(s− 1− |α− β|)bs−1 = K(|α|+ s)bs−1

/
1

s2bs
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ρ

(
1− |α− β|

s

)
−
(

1− 1

s

)(
1− 1 + |α− β|

s

)
bs−1

bs
= K

(|α|+ s)

s2

bs−1

bs

s→+∞−−−−−→ ρ− bs−1

bs
= 0

This means that radius of covergence of the series
∑∞
s=0 bsz

s is ρ, and since this series is majorant to
(3.1.4), radius of convergence of (3.1.4) is at least ρ, and due to possibility to choose ρ arbitrary close
to r, radius of convergence is at least r. Thus, we verified that (3.1.4) solve (3.1.1) within the region
|z| < r.

Remark 1. Second linearly independent solution w2(z), when exponents differ by a nonnegative integer
n = α− β, is given by

w2(z) = w1(z)v(z), w1(z) = zα
∞∑
s=0

asz
s,

where w1(z) is solution from theorem 1. Substituing it into (3.1.1) leads to equation for v(z):

v′′(z) +

[
2
w′1(z)

w1(z)
+ f(z)

]
v′(z) = 0,

which can be asily solved.

v′(z) = exp

[
−
∫ [

2
w′1(z)

w1(z)
+ f(z)

]
dz

]
= exp

[
−2 lnw1(z)−

∫
f(z)dz

]
v(z) =

∫
1

[w1(z)]2
exp

[
−
∫
f(z)dz

]
Let’s see how does w2(z) behave in the neighbourhood of zero.

1

[w1(z)]2
exp

[
−
∫
f(z)dz

]
=

1

z2α (a0 + a1z +O(z2))
2 exp

[
−f0 ln z − f1z +O(z2)

]
From (3.1.3), when compared with factorization by roots, follows f0 = 1− α− β = 1 + n− 2α, whence

1

[w1(z)]2
exp

[
−
∫
f(z)dz

]
=

φ(z)

zn + 1
,

where φ(z) is analytic at z = 0, thus it can be expanded into series

φ(z) =

∞∑
s=0

φsz
s,

and φs can be expressed i terms of as, fs, particulary φ0 = a−2
0 . Consequently,

w2(z) = w1(z)

[
−
n−1∑
s=0

φs
(n− s)zn−s + φn ln z +

∞∑
s=n+1

φsz
s−n

s− n

]
.

When n = 0,

w2(z) = φ0w1(z) ln(z) + zα+1
∞∑
s=0

bsz
s,

∼ zα ln z

a0
, z → 0. (3.1.8)

When n > 0,

w2(z) = φnw1(z) ln(z) + zβ
∞∑
s=0

csz
s,

∼ − zβ

na0
, z → 0. (3.1.9)
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Theorem 2. ([3], Chp. 6 §2, 5) In a given interval (a1, a2), let f(x) be a positive, real, twice continuously
differentiable function, g(x) a continuous real or complex function, u large positive parameter, and

F (x) =

∫ [
f−1/4 d

2

dx2
f−1/4 − gf1/2

]
dx.

Then in this interval the differential equation

d2w

dx2
=
[
u2f(x) + g(x)

]
w (3.1.10)

has twice continuously differentiable solutions

wj(u, x) = u−1/2f−1/4(x) exp

[
(−1)j+1u

∫
f1/2(x)dx

]
[1 + εj(u, x)] , j = 1, 2, (3.1.11)

such that

|εj(u, x)|,
|ε′j(u, x)|
2uf1/2(x)

≤ exp

 1

2u

x∫
aj

|F ′(t)|dt

− 1, j = 1, 2,

provided that
∫ x
aj
|F ′(t)|dt <∞. If g(x) is real, then the solutions are real.

It suffices to establish the theorem for the case j = 1, corresponding result for j = 2 then follows on
replacing x in (3.1.10) by −x.

Proof. Due to observation above we proove only the case j = 1. Substitution

w(x) = f−1/4(x)W (ξ(x)), ξ(x) = u

x∫
a1

f1/2(t)dt,

modifies (3.1.10) as follows.

dW

dx
= uf1/2 dW

dξ
,

d2W

dx2
=
u

2
f−1/2 df

dx

dW

dξ
+ u2f

d2W

dξ2
,

[
u2f + g

]
f−1/4W = W

d2

dx2
f−1/4 + 2

(
dW

dx

)(
d

dx
f−1/4

)
+ f−1/4 d

2W

dx2
,

= W
d2

dx2
f−1/4 +

(((
((((

(((
((((

2

(
uf1/2 dW

dξ

)(
−1

4
f−5/4 df

dx

)
+
���

���
�u

2
f−3/4 df

dx

dW

dξ
+ u2f3/4 d

2W

dξ2
.

d2W

dξ2
=

[
1 + u−2

(
g

f
− f−3/4 d

2

dx2
f−1/4

)]
W = [1 + ψ(ξ(x))]W,

where we denoted

ψ(ξ(x)) := u−2

(
g(x)

f(x)
− f−3/4(x)

d2

dx2
f−1/4(x)

)
.

Introduction of another substitution

W (ξ) = eξ [1 + h(ξ)]

leads to equation

h′′(ξ) + 2h′(ξ) = ψ(ξ) [1 + h(ξ)]

13



which can be solved by variation of constants.

h′′(ξ) + 2h′(ξ) = 0 ⇒ h(ξ) = c1e
−2ξ + c2

h′(ξ) = −2c1e
−2ξ + c′1e

−2ξ + c′2, c′1e
−2ξ + c′2

!
= 0

h′′(ξ) + 2h′(ξ) = e−2ξ (4c1 − 2c′1) + 2
(
−2c1e

−2ξ
)

= −2c′1e
−2ξ = ψ(ξ) [1 + h(ξ)]

c′1 = −1

2
e2ξψ(ξ) [1 + h(ξ)] , c′2 =

1

2
ψ(ξ) [1 + h(ξ)]

c1 = −1

2

ξ∫
α1

e2tψ(t) [1 + h(t)] dt, c2 =
1

2

ξ∫
α1

ψ(t) [1 + h(t)] dt

h(ξ) =
1

2

ξ∫
α1

[
1− e2(t−ξ)

]
ψ(t) [1 + h(t)] dt (3.1.12)

Assuming |α1| <∞, ψ(ξ) continuous at α1, later equation can be solved by successive aproximations.

h0(ξ) := 0, hs(ξ) :=
1

2

ξ∫
α1

[
1− e2(t−ξ)

]
ψ(t) [1 + hs−1(t)] dt, s ≥ 1

To proove convergence of the series, we show by induction following inequality.

|hs(ξ)− hs−1(ξ)| ≤ Ψs(ξ)

s!2s
, Ψ(ξ) =

ξ∫
α1

|ψ(t)|dt.

s = 1 :

|h1(ξ)| =

∣∣∣∣∣∣12
ξ∫

α1

[
1− e2(t−ξ)

]
ψ(t)dt

∣∣∣∣∣∣ ≤ 1

2

ξ∫
α1

|ψ(t)|dt

s > 1 :

|hs+1(ξ)− hs(ξ)| =

∣∣∣∣∣∣12
ξ∫

α1

[
1− e2(t−ξ)

]
ψ(t) [hs(t)− hs−1(t)] dt

∣∣∣∣∣∣
≤ 1

2

ξ∫
α1

|ψ(t)| |hs(t)− hs−1(t)| dt

≤ 1

2

ξ∫
α1

|ψ(t)|Ψ
s(t)

s!2s
dt =

Ψs+1(ξ)

(s+ 1)!2s+1

|h(ξ)| ≤
∞∑
s=0

|hs+1(ξ)− hs(ξ)| ≤
∞∑
s=0

Ψs+1(ξ)

(s+ 1)!2s+1
= eΨ(ξ)/2 − 1

14



h′1(ξ) =

ξ∫
α1

[
1− e2(t−ξ)

]
ψ(t)dt = 2h1(ξ),

h′s+1(ξ)− h′s(ξ) =

ξ∫
α1

[
1− e2(t−ξ)

]
ψ(t) [hs(t)− hs−1(t)] dt = 2 [hs+1(ξ)− hs(ξ)]

|h′(ξ)| =
∣∣∣∣∣
∞∑
s=0

[
h′s(t)− h′s−1(t)

]∣∣∣∣∣ =

∣∣∣∣∣2
∞∑
s=0

[hs+1(ξ)− hs(ξ)]
∣∣∣∣∣ ≤ 2

(
eΨ(ξ)/2 − 1

)

|h(ξ)|, 1

2
|h′(ξ)| ≤ eΨ(ξ) − 1

w(x) = u−1/2f−1/4(x)W (ξ(x)) = u−1/2f−1/4(x)eξ(x) [1 + h(ξ(x))] =

= u−1/2f−1/4(x) exp

u x∫
a1

f1/2(t)dt

 [1 + h(ξ)]

Comparing with (3.1.11) it is clear that

ε1(u, x) = h(ξ(x)),

and using defining relations

Ψ(ξ(x)) =

ξ(x)∫
α1

u−2

∣∣∣∣ gf − f−3/4 d
2

dx2
f−1/4

∣∣∣∣ dt = u−1

ξ(x)∫
α1

∣∣∣u−1f−1/2
∣∣∣︸ ︷︷ ︸

( dξdt )
−1

|F ′(x)| dt =

= u−1

∫ x

a1

|F ′(x)| dt, ξ(a1) = α1,

ε′1(u, x) =
dh

dx
=
dh

dξ
(ξ(x))uf1/2(x),

what gives desired error bounds

|ε1(u, x)|, |ε
′
1(u, x)|

2uf1/2(x)
≤ exp

 1

2u

x∫
a1

|F ′(t)|dt

− 1.

In case of infinit α1 or discontinuity of ψ(ξ) at α1, convergence of
∫ ξ
α1
|ψ(t)|dt is sufficient to ensure

convergence of all integrals appearing in previous calculations.
It is also worthy to mention that if g(x) has a finite step discontinuity, it is carried into ψ(ξ) and

consequently also into Ψ(ξ) and h(ξ). Thus the solution has also finite step discontinuity at the same
point. However, except of that, validity of the theorem is not violated.

3.2 Exact solution and its asymptotic

In this case, we are dealing with (2.1.4) in region r < X:

r2R′′(r) + rR′(r) +

[
r2
(
k2 − V

)
−
(
n− µ r

2

X2

)2
]
R(r) = 0, n ∈ Z, (3.2.1)
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which can be, for convenience, treated under restriction of n ∈ N0 as follows:

r2R′′(r) + rR′(r) +

[
r2
(
k2 − V

)
−
(
n− r2(±µ)

X2

)2
]
R(r) = 0, n ∈ N0, (3.2.2)

where upper sign corresponds to originally positive, and lower sign to negative n. Introducing substitution

R(r) = 2
n+1
2 e−

r2(±µ)
2X2 rnG(z), z = r2 (±µ)

X2
,

(3.2.2) is transformed into confluent hypergeometrical equation ([9], Chp. 13 §2(i), 2(v))

zG′′(z) + (n+ 1− z)G′(z)− aG(z) = 0, n ∈ N0,

where

a = − (k2 − V )X2 − 2(±µ)

4(±µ)
.

Pair of indipendent solutions is

G1(z) = 1F1(a, n+ 1, z) = 1 +O(z),

G2(z) = U(a, n+ 1, z) =
Γ(n)

Γ(a)
z−n +O(z−n+1).

Whence pair of corresponding solutions in terms of R(r) is

R1(r) = 2
n+1
2 e−

r2(±µ)
2X2 rn 1F1

(
a, n+ 1, r2 (±µ)

X2

)
= 2

n+1
2 rn +O

(
rn+2

)
,

R2(r) = 2
n+1
2 e−

r2(±µ)
2X2 rnU

(
a, n+ 1, r2 (±µ)

X2

)
= 2

n+1
2

Γ(n)

Γ(a)

X2n

(±µ)n
r−n +O(r−n+2).

It is clear that only the first one of two is convergent, thus inside the cylinder of potential V we will be
interested only in solution of the form

R(r) = C2
n+1
2 e−

r2(±µ)
2X2 rn 1F1

(
a, n+ 1, r2 (±µ)

X2

)
= C2

n+1
2 rn +O

(
rn+2

)
. (3.2.3)

3.3 Approximate solution

Introducing transformation

R̃(r) =
√
rR(r),

(3.2.1) become

R̃′′(r) = k2

−1 +
V

k2
+

(
n− µ r2

X2

)2

− 1
4

k2r2


︸ ︷︷ ︸

f(r):=

R̃(r). (3.3.1)

In order to find small argument asymptotics of the solutions corresponding to n 6= 0, resp. n = 0, it is
favourable to treat these two cases separately in different ways.
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3.3.1 n 6= 0

For convenience we denote

f(r) = ar−2 + b+ cr2, a =
n2 − 1/4

k2
, b = (−1 +

V

k2
− 2µn

k2X2
), c =

µ2

k2X4
.

Furthermore, by setting

u =

√
k2 +

1

4a
,

(3.3.1) gains following form.

R̃′′(r) =
[
u2f(r) + g(r)

]
R̃(r), g(r) = −f(r)

4a
.

This equation has according to Theorem 2 convergent solution at vicinity of zero of the form

R̃(r) = u−1/2f−1.4 exp

u r∫
0

f1/2(x)dx

 (1 + ε(k, r)) ,

where

|ε(k, r)| ≤ exp

 1

2u

r∫
0

|F ′(x)|dx

− 1, F ′(x) = f−1/4(x)
d

dx
f−1/4(x)− g(x)f−1/2(x).

After biref look at our f(r) can be seen that for sufficiently small r will be f(r) indeed positive, as needed
to use Theorem 2.

Performing straightforward calculations one obtains

F ′(r) =
−3a2r

(
b+ 5cr2

)
+ ar3

(
3b2 + 4bcr2 + 6c2r4

)
+ r5

(
b+ cr2

)3
4a (a+ br2 + cr4)

5/2

= − 3b

4a3/2
r +O(r2).

Consequently

|ε(k, r)| ≤
[
1 +

3|b|
8ua3/2

r2 +O(r3)

]
− 1 =

3|b|
8ua3/2

r2 +O(r3),

R̃(r) = u−1/2
(
ar−2 + b+ cr2

)−1.4
exp

u r∫
0

(
ar−2 + b+ cr2

)1/2
(x)dx

 (1 + ε(k, r))

= u−1/2a−1/4r1/2
(
1 +O(r2)

)
exp

u r∫
0

a1/2r−1
(
1 +O(r2)

)
(x)dx

 (1 + ε(k, r))

=
r1/2

√
n

(
1 +O(r2)

)
exp

[
n ln r +O(r2)

]
(1 + ε(k, r))

=
rn+1/2

√
n

(
1 +O(r2)

)
and finally

R(r) =
rn√
n

(
1 +O(r2)

)
. (3.3.2)

Comparing this resul with (3.2.3) is obvious that both expressions agrees.
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3.3.2 n = 0

Previous procedure cannot be used in this case due to nonpositivity of previously chosen f(r). Instead
we will examine original equation (3.2.1), which can be now rewritten as

R′′(r) +
1

r︸︷︷︸
f(r):=

R′(r) +

[(
k2 − V

)
− µ2

X4
r2

]
︸ ︷︷ ︸

g(r):=

R(r) = 0, r ∈ (0,+∞), (3.3.3)

by applying Theorem 1. Whence denoting

g(r) = g0r
−2 + g2 + g4r

2, g0 = 0 g2 = k2 − V, g4 = − µ
2

X4

and considering only problematic leading terms of f(r), g(r) as r → 0 leads to

R′′(r) +
1

r
R′(r) = 0.

This equation has an exact solution of the form R(r) = zα, where α satisfies

α(α− 1) + α = 0 ⇒ α = 0.

Thus (3.3.3) has a analytic solution

R(r) = rα
+∞∑
s=0

asr
s =

+∞∑
s=0

asr
s,

where for given a0

as = − 1

s2

s−1∑
j=0

gs−jaj , s ∈ Z+.

This already quite simple form, compared to one of full generality of referenced theorem, can be due to
form of g(r) simplified even more

R(r) =

+∞∑
s=0

a2st
2s, a2 = −g2a0, a2s = − 1

(2s)2
(g4a2s−4 + g2a2s−2) , s ≥ 2. (3.3.4)

Whence

R(r) = a0 +O(r2), (3.3.5)

what, as well as in case n 6= 0, agrees with (3.2.3).
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Chapter 4

Neighbourhood of infinity

Analysis in this chapter is based on procedures given in [1, 5, 7, 8].

4.1 Exact Solution

In this case we are dealing with (2.1.4) in region r > X

r2R′′(r) + rR′(r) +
[
k2r2 −

(
n− (±µ)

)2]
R(r) = 0, r ∈ (0,+∞), n ∈ N0, (4.1.1)

where for later convenience as in previous chapter, restriction is put on n and plus, resp. minus sign
before µ coresponds to positive, resp. negative n. This is Bessel equation, therefore solution can be
written in terms of Bessel functions as

R(r) = B1Jn∓µ(kr) +B2Yn∓µ(kr), r > X, n ∈ N0, (4.1.2)

It is worth reminding that R(r) as well as constants B1, B2 depends on n, however in most of the
following calculations we are dealing with expressions with arbtrary fixed n, it is convenient not to write
it explicitely.

In order to determine B1, B2 we need to connect solutions at the boundary of the cylinder potential
V (r = X). Recalling (3.2.3) and (4.1.2)

R(r) = C2
n+1
2 e−

r2(±µ)
2X2 rn 1F1

(−k2X2 + V X2 + 2(±µ)

4(±µ)
, n+ 1,

r2(±µ)

X2

)
, r < X,

= B1Jn∓µ(kr) +B2Yn∓µ(kr), r > X,

n ∈ Z0, (4.1.3)

and substituing into bundary conditons

R(X+) = R(X−), R′(X+) = R′(X−),

gives after some straightforward algebra

B1 = − π

n+ 1
Ce∓µ/22

n−3
2 Xn×

×
[
k(n+ 1)X 1F1

(−k2X2 + V X2 + 2(±µ)

4(±µ)
;n+ 1;±µ

)
[Yn∓µ+1(kX)− Yn∓µ−1(kX)] +

+Yn∓µ(kX)

[
2(n+ 1)(n∓ µ) 1F1

(−k2X2 + V X2 + 2(±µ)

4(±µ)
;n+ 1;±µ

)
+

+
(
−k2X2 + V X2 + 2(±µ)

)
1F1

(−k2X2 + V X2 + 6(±µ)

4(±µ)
;n+ 2;±µ

)]]
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B2 =
π

n+ 1
Ce∓µ/22

n−3
2 Xn×

×
[
k(n+ 1)X 1F1

(−k2X2 + V X2 + 2(±µ)

4(±µ)
;n+ 1;±µ

)
[Jn∓µ+1(kX)− Jn∓µ−1(kX)] +

+Jn∓µ(kX)

[
2(n+ 1)(n∓ µ) 1F1

(−k2X2 + V X2 + 2(±µ)

4(±µ)
;n+ 1;±µ

)
+

−
(
k2X2 − V X2 − 2(±µ)

)
1F1

(−k2X2 + V X2 + 6(±µ)

4(±µ)
;n+ 2;±µ

)]]

4.2 Asymptotic region

Being intrested in asymptotic behavior for large r allow us to use large argument asymptotics of Bessel
functions (1.0.2) in (4.1.2) and some trigonometry afterwards gives

R(r) =

√
2

πkr

[
B1 sin

(
kr − π

2
(ν − 1/2)

)
−B2 cos

(
kr − π

2
(ν − 1/2)

)]
=

/
B1 = B cos δn, B2 = −B sin δn ⇒ tan δn = −B2

B1

/
(4.2.1)

=

√
2

πkr
B sin

(
kr − π

2
(ν − 1/2) + δn

)
=

√
2

πkr
B

1

2i

[
ei(kr−

π
2 (ν−1/2)+δn) − e−i(kr−π2 (ν−1/2)+δn)

]
.

At this point it is good to remind ourselves, that we are interested in solution consisting of incident and
outgoing wave and rewrite incident part in terms of Bessel functions using (1.0.10).

eikr cos θ =
∑
n∈Z

inJn(kr)einθ ∼ 1√
2πkr

∑
n∈Z

[
ei(kr−π/4) + e−i(kr−nπ−π/4)

]
einθ

Comparing two previous expressions one can see, that setting

B := ei(
nπ
2 +µπ

2 +δn) (4.2.2)

leads to desired form

ψ(r, θ) ∼
∑
n∈Z

1√
2πkr

[
ei(kr+µπ−

π
4 +2δn) + e−i(kr−nπ−

π
4 )
]
einθ

∼ eikr cos θ +
∑
n∈Z

1√
2πkr

[
ei(kr+µπ−

π
4 +2δn) − ei(kr−π4 )

]
einθ

∼ eikr cos θ +
eikr√
r

(
e−iπ/4√

2πk

∑
n∈Z

[
ei(µπ+2δn) − 1

]
einθ

)
︸ ︷︷ ︸

f(θ)

. (4.2.3)

Clearly to to determine scattering amplitude f(θ), we need to know phase shifts δn. HOwever those can
be easily derived from already found expressions of B1, B2 according to (4.2.1):

δn = arctg

(
−B2

B1

)
(4.2.4)
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Chapter 5

Phase shift approximation

5.1 Theorems and proofs

Theorem 3. ([3], Chp. 6 §2, 5) In a given interval (a1, a2), let f(x) be a positive, real, twice continuously
differentiable function, g(x) a continuous real or complex function, u large positive parameter, and

F (x) =

∫ [
f−1/4 d

2

dx2
f−1/4 − gf1/2

]
dx.

Then in this interval the differential equation

d2w

dx2
=
[
−u2f(x) + g(x)

]
w (5.1.1)

has twice continuously differentiable solutions

wj(u, x) = u−1/2f−1/4(x) exp

[
(−1)j+1iu

∫
f1/2(x)dx

]
[1 + εj(u, x)] , j = 1, 2, (5.1.2)

such that

|εj(u, x)|,
|ε′j(u, x)|
2uf1/2(x)

≤ exp

 1

u

x∫
aj

|F ′(t)|dt

− 1, j = 1, 2,

when
∫ x
aj
|F ′(t)|dt <∞. If g(x) is real, then the solutions are real.

Proof. Only difference compared to previous proof is absence of the coefficient 1
2 in bound of ε(u, x)

arising from from (3.1.12) due to bound given by |1− e2i(t−ξ)| ≤ 2.

Remark 2. ([3], Chp. 6 §5.4) Theorems 2 and 3 can be generalized to the case

d2w

dx2
=
[
+u2f(u, x) + g(u, x)

]
w, resp.

d2w

dx2
=
[
−u2f(u, x) + g(u, x)

]
w, (5.1.3)

when folowing conditions are fulfilled:

1. f(u, x) > 0,

2. ∂2f(u,x)
∂x2 and g(u, x) are continuous functions of x,

3.
a2∫
a1

|F ′(t)|dt = O(u) as u→∞.
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Theorem 4. ([3], Chp. 12 §6.2) If k > 0, n ≤ 0, g(r) continuous and for finite r satisfying

Gn(k, r) = π

Xn/k∫
0

t|Yn(kt)|Jn(kt)|g(t)|dt+
π

2

r∫
Xn/k

t
[
J2
n(kt) + Y 2

n (kt)
]
|g(t)|dt < +∞ (5.1.4)

where Xn > 0 is smallest root of Jn(r) + Yn(r) = 0, then equation

d2R̃

dr2
=

[
−k2 +

n2 − 1
4

r2
+ g(r)

]
R̃ , 0 < r < +∞ (5.1.5)

has a solution

R̃(k, r) = r1/2 (Jn(kr) + εn(k, r)) , (5.1.6)

where

|εn(k, r)| ≤
√

2|Jn(kr)| [exp (Gn(k, r))− 1] kr ≤ Xn,

≤
(
J2
n(kr) + Y 2

n (kr)
)1/2

[exp (Gn(k, r))− 1] kr ≥ Xn. (5.1.7)

Proof. Substituing (5.1.6) into (5.1.5) leads to differential equation for error term

r2ε′′n(k, r) + rε′n(k, r) =
[
−k2r2 + n2

]
εn(k, r) + g(r)r2 [Jn(kr) + εn(k, r)] , 0 < r < +∞, (5.1.8)

which is equivalent to

εn(k, r) =
π

2

r∫
0

K(r, t) [Jn(kt) + εn(k, t)] tg(t)dt, 0 < r < +∞, (5.1.9)

where

K(r, t) = Yn(kr)Jn(kt)− Jn(kr)Yn(kt).

Equivalence can be verified by differentiating integral expression and using basic relatons of Bessel func-
tions:

ε′n(k, r) =
π

2

r∫
0

∂K(r, t)

∂r
[Jn(kt) + εn(k, t)] tg(t)dt+

π

2
K(r, r)︸ ︷︷ ︸

=0

[Jn(kr) + εn(k, r)] rg(r),

ε′′n(k, r) =
π

2

r∫
0

∂2K(r, t)

∂r2
[Jn(kt) + εn(k, t)] tg(t)dt+

π

2

∂K(r, t)

∂r

∣∣∣∣
t=r︸ ︷︷ ︸

= 2
πr

[Jn(kr) + εn(k, r)] rg(r).

Altogether,

r2ε′′n(k, r) + rε′n(k, r) =
π

2

r∫
0

[
r2 ∂

2K(r, t)

∂r2
+ r

∂K(r, t)

∂r

]
[Jn(kt) + εn(k, t)] tg(t)dt

+ [Jn(kr) + εn(k, r)] r2g(r),

where

r2 ∂
2K(r, t)

∂r2
+ r

∂K(r, t)

∂r
=
[
r2k2Y ′′n (kr) + krY ′n(kr)

]︸ ︷︷ ︸
[−k2r2+n2]Yn(kr)

Jn(kt)−
[
r2k2J ′′n(kr) + krJ ′n(kr)

]︸ ︷︷ ︸
[−k2r2+n2]Jn(kr)

Yn(kt)

=
[
−k2r2 + n2

]
K(r, t),
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gives (5.1.8). Having integral equation (5.1.9), we use method of succesive approximations to solve it and
write its solution as a series:

εn(k, r) =

+∞∑
s=0

[
hs+1(r)− hs(r)

]
,

h0(r) = 0, h1(r) =
π

2

r∫
0

K(r, t)Jn(kt)tg(t)dt,

hs(r) =
π

2

r∫
0

K(r, t)
[
Jn(kt) + hs−1(t)

]
tg(t)dt, s ≥ 1. (5.1.10)

In order to show convergence of the series let us introduce auxiliary function

En(x) =

√
|Yn(x)|
Jn(x)

, 0 < x ≤ Xn,

= 1, x ≥ Xn,

and take a closer look at it. Let us denote jn, resp. yn smallest positive zero of Jn(x), resp. Yn(x), then
for every n ∈ N holds yn < jn. Thus, using small argument behavior of Bessel functions (1.0.1), it is
clear that Jn(x) + Yn(x) is negative as x→ 0+ and positive as x→ yn, what leaves no other option than
Yn(x) < 0, Jn(x) > 0 for 0 < x ≤ Xn. Furhermore(

E2
n(x)

)′
=

( |Yn(x)|
Jn(x)

)′
=

(
−Yn(x)

Jn(x)

)′
(1.0.5)

= − 2

πxJ2
n(x)

,

what means that En(x) is continuous, positive nonincreasing function of x. Having found key properties
of En(x), we introduve two more auxiliary functions Mn(x), θn(x) by setting

Jn(x) = E−1
n (x)Mn(x) cos θn(x), Yn(x) = En(x)Mn(x) sin θn(x),

wha gives us

Mn(x) =
√

2|Yn(x)|Jn(x), 0 < x ≤ Xn, θn(x) = −π
4
, 0 < x ≤ Xn,

=
√
J2
n(x) + Y 2

n (x), x ≥ Xn, = tan−1 Yn(x)

Jn(x)
, x ≥ Xn.

Having intorduced all auxiliary functions we need, getting desired bounds of Jn, Yn,K(r, t) follows.

E−1
n (kt)Mn(kt) =

√
2|Jn(kt)| ≥ |Jn(kt)|, 0 < x ≤ Xn,

=
√
J2
n(x) + Y 2

n (x) ≥ |Jn(k)t|, x ≥ Xn,

En(kt)Mn(kt) =
√

2|Yn(kt)| ≥ |Yn(kt)|, 0 < x ≤ Xn,

=
√
J2
n(x) + Y 2

n (x) ≥ |Yn(k)t|, x ≥ Xn.

|K(r, t)| =
∣∣Yn(kr)Jn(kt)− Jn(kr)Yn(kt)

∣∣
=
∣∣En(kr)E−1

n (kt) sin θn(kr) cos θn(kt)− E−1
n (kr)En(kt) cos θn(kr) sin θn(kt)

∣∣Mn(kr)Mn(kt)

=
∣∣En(kr)2E−2

n (kt)︸ ︷︷ ︸
<1

sin θn(kr) cos θn(kt)− cos θn(kr) sin θn(kt)
∣∣E−1

n (kr)En(kt)Mn(kr)Mn(kt)

≤ E−1
n (kr)En(kt)Mn(kr)Mn(kt)
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Now, in order to prove convergence of the series, we first use induction to show following inequality:

|hs(kr)− hs−1(kr)| ≤ E−1
n (kr)Mn(kr)

Gn(k, r)s

s!
, Gn(k, r) =

π

2

r∫
0

M2
n(kt)tg(t)dt

s = 1:

h1(r) =
π

2

r∫
0

K(r, t)Jn(kt)tg(t)dt

≤ E−1
n (kr)Mn(kr)

π

2

r∫
0

En(kt)Mn(kt)E−1
n (kt)Mn(kt)tg(t)dt

= E−1
n (kr)Mn(kr)

π

2

r∫
0

M2
n(kt)tg(t)dt

= E−1
n (kr)Mn(kr)Gn(k, r)

s− 1→ s:

hs(r)− hs−1(r) =
π

2

r∫
0

K(r, t)
[
hs(t)− hs−1(t)

]
tg(t)dt

≤ E−1
n (kr)Mn(kr)

π

2

r∫
0

En(kt)Mn(kt)

[
2E−1

n (kt)Mn(kt)
Gn(k, t)s

s!

]
tg(t)dt

= E−1
n (kr)Mn(kr)

π

2

r∫
0

Mn(kt)2Gn(k, t)s

s!
tg(t)dt

= E−1
n (kr)Mn(kr)

Gn(k, r)s+1

(s+ 1)!

Whence,

|εn(k, r)| ≤
+∞∑
s=0

∣∣hs+1(r)− hs(r)
∣∣ ≤ E−1

n (kr)Mn(kr)

+∞∑
s=0

Gn(k, r)s+1

(s+ 1)!
= E−1

n (kr)Mn(kr)
[
exp

(
Gn(k, r)

)
− 1
]
.

5.2 Large energy approximation

Original equation (2.1.4) can be, as before, transformed using substitution R̃ =
√
rR(r) into

d2R̃

dr2
=

[
−k2 +

n2 − 1/4

r2
+ g(r)

]
R̃ (5.2.1)

where

g(r) = µ2 r
2

X4
− 2nµ

X2
+ V, r < X,

=
µ2 − 2nµ

r2
, r > X. (5.2.2)
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It is clear that only discontinuity is a step at r = X and

+∞∫
0

|g(r)|dr < +∞.

Appllyinng (3) to (5.2.1) on interval (X,+∞) leads to pair of independent solutions

R̃j(k, r) = k−1/2e(−1)j+1ikr
[
1 + ε̃j(k, r)

]
, ε̃j(k, r) ≤ exp

[
1

k

∫ r

aj

|g(t)|dt
]
− 1, j = 1, 2,

where a1 = X, a2 = +∞. There is nothing preventing us from choosing another pair of independent
solutions taken as linear combinations of previous ones

eikr, e−ikr → sin(kr), cos(kr).

Consequently any solution of (5.2.1) can be written as

R̃(k, r) =

(
1

kπ

)1/2

(1 + αn) sin

(
kr − π

2

(
n− µ− 1

2

)
+ δn

)
+O(1), 1 + αn > 0, δn ∈ (−π, π].

Using Theorem 4 and large argument asymptotics of Jn(x) we get another similar equality

R̃(k, r) =

(
2

πk

)1/2 [
sin

(
kr − π

2

(
n− 1

2

))
+O

(
1

kr

)]
+ r1/2εn(k, r).

Substraction of last two expresions leads to

(1 + αn) sin

(
kr − π

2

(
n− µ− 1

2

)
+ δn

)
− sin

(
kr − π

2

(
n− 1

2

))
=

(
πkr

2

)1/2

εn(k, r) +O(1).

(5.2.3)

Here, instead of εn(k, r) we take only first term of its Liouville-Neumann Expansion (5.1.10) from Theorem
4:

εn(k, r) ' π

2
Yn(kr)

r∫
0

J2
n(kt)tg(t)dt− π

2
Jn(kr)

r∫
0

Jn(kt)Yn(kt)tg(t)dt

and using large argument asymptotics as r → +∞ we get

εn(k, r) ' −
( π

2kr

)1/2

cos

(
kr − π

2

(
n− 1

2

)) +∞∫
0

J2
n(kt)tg(t)dt+

−
( π

2kr

)1/2

sin

(
kr − π

2

(
n− 1

2

)) +∞∫
0

Jn(kt)Yn(kt)tg(t)dt.

Now comparing with (5.2.3) after convenient cosmetic adjustments

sin
(
· · ·+ δn +

µπ

2

)
= sin(. . . ) cos

(
δn +

µπ

2

)
+ cos(. . . ) sin

(
δn +

µπ

2

)
,

one has (
πkr

2

)1/2

εn(k, r) +O(1) = sin

(
kr − π

2

(
n− 1

2

))[
(1 + αn) cos

(
δn +

µπ

2

)
− 1
]

+

+ cos

(
kr − π

2

(
n− 1

2

))
(1 + αn) sin

(
δn +

µπ

2

)
.
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From this expression is apparent, that

(1 + αn) sin
(
δn +

µπ

2

)
= −π

2

+∞∫
0

J2
n(kt)tg(t)dt, (5.2.4)

thus we have expression of phase shift, however, we still need to ged rid of αn to obtain phase shift
explicitely. In order to deal wit this obsticle, let us start with bound of εn(k, r) (5.1.7) from Theorem 4,
where using asymptotic behavior of Bessel functions as r → +∞ (1.0.2) gives

|εn(k,+∞)| ≤
(

2

πkr

)1/2 (
exp(Gn(k,+∞))− 1

)
≤ exp(Gn(k,+∞))− 1

Thus from (5.2.3) follows∣∣∣∣(1 + αn) sin

(
kr − π

2

(
n− µ− 1

2

)
+ δn

)
− sin

(
kr − π

2

(
n− 1

2

))∣∣∣∣ ≤ exp(Gn(k,+∞))− 1 +O(1).

Using convenient substiution

σ cos η = (1 + αn) cos
(
δn +

µπ

2

)
, σ sin η = (1 + αn) sin

(
δn +

µπ

2

)
leads to

(1 + αn) sin
(
· · ·+ δn +

µπ

2

)
− sin (. . . ) = σ sin(· · ·+ η), (1 + αn)ei(δn+µπ

2 ) = σeiη,

what combined with previous inequality immediately gives

|σ| ≤ exp(Gn(k,+∞))− 1.

If σ ≤ 1, using Jordan’s inequality (1.0.13) we derive

|αn| ≤ σ,
∣∣∣δn +

µπ

2

∣∣∣ ≤ sin−1 σ ≤ πσ

2
,

what finally leads to

|αn|,
2

π

∣∣∣δn +
µπ

2

∣∣∣ ≤ exp(Gn(k,+∞))− 1.

Thus

Gn(k,+∞)
k→+∞−−−−−→ 0 ⇒ (1 + αn) sin

(
δn +

µπ

2

)
∼ δn +

µπ

2
+O(G2

n(k,+∞)) for large k

and comparing with (5.2.4) one obtains desired approximation of phase shift

δn +
µπ

2
= −π

2

+∞∫
0

J2
n(kt)tg(t)dt+O(G2

n(k,+∞)) for large k. (5.2.5)
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5.3 Error term behaviour for large energies

Let’s take a closer look at the error term of phase shift expression (5.2.5) that we just found. For suficently
large k we can suppose that Xn/k < X, thus

Gn(k,+∞) = π

Xn/k∫
0

t|Yn(kt)|Jn(kt)|g(t)|dt+
π

2

+∞∫
Xn/k

t
[
J2
n(kt) + Y 2

n (kt)
]
|g(t)|dt

(5.2.2)
= π

Xn/k∫
0

t|Yn(kt)|Jn(kt)

∣∣∣∣µ2t2

X4
− 2µn

X2
+ V

∣∣∣∣ dt+
+
π

2

X∫
Xn/k

t
[
J2
n(kt) + Y 2

n (kt)
] ∣∣∣∣µ2t2

X4
− 2µn

X2
+ V

∣∣∣∣ dt+
+
π

2

+∞∫
X

t
[
J2
n(kt) + Y 2

n (kt)
] ∣∣∣∣µ2 − 2µn

t2

∣∣∣∣ dt
=
/
y = kt

/
=

π

k2

Xn∫
0

y|Yn(y)|Jn(y)

∣∣∣∣ µ2y2

X4k2
− 2µn

X2
+ V

∣∣∣∣ dy+

+
π

2k2

kX∫
Xn

y
[
J2
n(y) + Y 2

n (y)
] ∣∣∣∣ µ2y2

X4k2
− 2µn

X2
+ V

∣∣∣∣ dy+

+
π

2

∣∣µ2 − 2µn
∣∣ +∞∫
kX

[
J2
n(y) + Y 2

n (y)
] dy
y

(5.3.1)

First term is clearly of order 1
k2 . Second term can be conveniently integrated, and using large argumetnt

asymptotics of Bessel functions (1.0.2) stripped of irelevant factors will lead to result we are looking for
(Cn stands for Jn, Yn):

Cn(kt) ∼ 1√
kt

1

k2

kX∫
Xn

yC2
n(y)dy

(1.0.7)
=

y2

2k2

[
Cn(y)2 − Cn−1(y)Cn+1(y)

]kX
Xn
∼ 1

k
(5.3.2)

1

k4

kX∫
Xn

y3C2
n(y)dy =

1

k4

kX∫
Xn

y2
[
yC2

n(y)
]
dy

p.p.
=

[
y4

2k4

[
C2
n(y)− Cn−1(y)Cn+1(y)

]]kX
Xn

+

− 1

k4

kX∫
Xn

y3
[
C2
n(y)− Cn−1(y)Cn+1(y)

]
dy (5.3.3)
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1

k4

kX∫
Xn

y3Cn−1(y)Cn+1(y)dy
(1.0.3)

=
(−1)n−1

k4

kX∫
Xn

y3C−n+1(y)Cn+1(y)dy =

(1.0.8)
= (−1)n−1 y

4

6k4

[
C−n+1(y)Cn+1(y) + C−n+2(y)Cn+2(y)

]kX
Xn

=

(1.0.3)
=

y4

6k4

[
Cn−1(y)Cn+1(y)− Cn−2(y)Cn+2(y)

]kX
Xn

(5.3.4)

⇒ 1

k4

kX∫
Xn

y3C2
n(y)dy =

[
y4

4k4

[
C2
n(y)− Cn−1(y)Cn+1(y)

]]kX
Xn

+

+
1

2k4

kX∫
Xn

y3Cn−1(y)Cn+1(y)dy

=

[
y4

4k4

[
C2
n(y)− Cn−1(y)Cn+1(y)

]]kX
Xn

+

+

[
y4

12k4
[Cn−1(y)Cn+1(y)− Cn−2(y)Cn+2(y)]

]kX
Xn

=

[
y4

4k4

[
C2
n(y)− 2

3
Cn−1(y)Cn+1(y)− 1

3
Cn−2(y)Cn+2(y)

]]kX
Xn

∼ 1

k
(5.3.5)

In the third term of Gn(k,+∞) exppression (5.3.1) is due to large lower bound of integration sufficient
to substitute asymptotics of Bessel functions (1.0.2) straight into integral:

+∞∫
kX

[
J2
n(y) + Y 2

n (y)
] dy
y
∼

+∞∫
kX

dy

y2
∼ 1

k
(5.3.6)

All in all

Gn(k,+∞) ∼ 1

k
. (5.3.7)
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5.4 Large energy behavior of phase shift

δn is also of order 1
k , as it consists of almost the same integrals, hence can be also integrated in terms of

Bessel fuctions up to first order in 1
k . Using previous calculations we have

δn +
µπ

2
= −π

2

+∞∫
0

J2
n(kt)tg(t)dt+O(G2

n(k,+∞))

(5.2.2)
(5.3.7)

= −π
2

X∫
0

J2
n(kt)t

[
µ2t2

X4
− 2µn

X2
+ V

]
dt− π

2

+∞∫
X

J2
n(kt)

µ2 − 2µn

t
dt+O

(
1

k2

)

=
/
y = kt

/
= − πµ2

2X4k4

kX∫
0

y3J2
n(y)dy − π

2k2

[
−2µn

X2
+ V

] kX∫
0

yJ2
n(y)dy+

− π

2

[
µ2 − 2µn

] +∞∫
kX

J2
n(y)

dy

y
+O

(
1

k2

)
(5.3.2)
(5.3.3)
(5.3.4)
(1.0.3)

= −πµ
2

8

[
J2
n(kX)− 2

3
Jn−1(kX)Jn+1(kX)− 1

3
Jn−2(kX)Jn+2(kX)

]
+

− πX2

4

[
−2µn

X2
+ V

] [
Jn(kX)2 − Jn−1(kX)Jn+1(kX)

]
+

− π

2

[
µ2 − 2µn

] +∞∫
kX

Jn(y)

[
−Jn+2(y) +

2(n+ 1)

y
Jn+1(y)

]
dy

y
+O

(
1

k2

)
(1.0.3)

= −πµ
2

8

[
J2
n(kX) +

2

3
J2
n+1(kX)− 1

3
J2
n(kX) +O

(
1

k2

)]
+

− πX2

4

[
−2µn

X2
+ V

] [
Jn(kX)2 + J2

n+1(kX) +O

(
1

k2

)]
+

− π

2

[
µ2 − 2µn

] +∞∫
kX

[
(−1)n+1Jn(y)J−n−2(y) +O

(
1

k2

)]
dy

y
+O

(
1

k2

)
(1.0.8)

= −πµ
2

12

[
J2
n(kX) + J2

n+1(kX)
]
− π

4

[
−2µn+ V X2

] [
Jn(kX)2 + J2

n+1(kX)
]
+

− π

2

[
µ2 − 2µn

] (−1)n+1

2

[
Jn(kX)J−n−2(kX) + Jn+1(kX)J−n−1(kX)

]
+O

(
1

k2

)
(1.0.3)

= −π
4

[
µ2

3
− 2µn+ V X2

] [
J2
n(kX) + J2

n+1(kX)
]
+

− π

4

[
µ2 − 2µn

] [
J2
n(kX) + J2

n+1(kX) +O

(
1

k2

)]
+O

(
1

k2

)
= −π

4

[
V X2 +

4

3
µ2 − 4µn

] [
J2
n(kX) + J2

n+1(kX)
]

+O

(
1

k2

)
. (5.4.1)

5.5 Numerical comparison

Following figures show graphical comparison of exact expression of phase shift (4.2.4) with approximation
(5.2.5) as a function of energy k, for a few values of n, when V = 2, X = 1, µ = 0.1, representing week
magnetic field.
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Figure 5.1: δ1(k)
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Figure 5.2: δ5(k)
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Figure 5.3: δ5(k) - detail

In case of stronger magnetic field µ = 1 accuracy for low energies is worse, however quickly improoves
as energy increases.
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Figure 5.4: δ10(k)
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Figure 5.5: δ10(k) - detail
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Figure 5.6: δ1(k) - detail
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Figure 5.7: δ5(k)
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Figure 5.8: δ10(k)

32



Chapter 6

Cross section

6.1 Scattering amplitude

Having phase shift expression we can calculate scattering amplitude from (4.2.3):

f(θ) =

(
e−iπ/4√

2πk

∑
n∈Z

[
ei(µπ+2δn) − 1

]
einθ

)

∼ e−iπ/4√
2πk

∑
n∈Z

i (µπ + 2δn) einθ

(5.2.5)
(5.3.7)∼

√
2

πk
eiπ/4

∑
n∈Z

−π
2

+∞∫
0

J2
n(kt)tg(t)dt

 einθ
∼ −

√
π

2k
eiπ/4

+∞∫
0

[∑
n∈Z

J2
n(kt)tg(t)einθ

]
dt,

where

+∞∫
0

[∑
n∈Z

J2
n(kt)tg(t)einθ

]
dt =

X∫
0

[∑
n∈Z

J2
n(kt)t

[
µ2t2

X4
− 2µn

X2
+ V

]
einθ

]
dt+

+

+∞∫
X

[∑
n∈Z

J2
n(kt)

µ2 − 2µn

t
einθ

]
dt. (6.1.1)

In order to perform sumation it is convenient to write down equalities given by Graf’s theorem:∑
n∈Z

J2
n(kt)einθ

(1.0.12)
= J0

(
2kt sin

(
θ

2

))
, (6.1.2)

∑
n∈Z

nJ2
n(kt)einθ = −i ∂

∂θ

∑
n∈Z

J2
n(kt)einθ = −i ∂

∂θ
J0

(
2kt sin

(
θ

2

))
, (6.1.3)
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which come handy in calculating (6.1.1) one term after another:

µ2

X4

X∫
0

[
t3
∑
n∈Z

J2
n(kt)einθ

]
dt

(6.1.2)
=

µ2

X4

X∫
0

t2
[
tJ0

(
2kt sin

(
θ

2

))]
dt

p.p.
=

µ2

X4

[
t3

2k sin
(
θ
2

)J1

(
2kt sin

(
θ

2

))]X
0

− µ2

X4k sin
(
θ
2

) X∫
0

t2J1

(
2kt sin

(
θ

2

))
dt

(1.0.6)
=

µ2

2kX sin
(
θ
2

)J1

(
2kX sin

(
θ

2

))
− 2µ2

X4

[
t2(

2k sin
(
θ
2

))2 J2

(
2kt sin

(
θ

2

))]X
0

=
µ2

2kX sin
(
θ
2

)J1

(
2kX sin

(
θ

2

))
− 2µ2(

2kX sin
(
θ
2

))2 J2

(
2kX sin

(
θ

2

))
=

µ2

2kX sin
(
θ
2

)J1

(
2kX sin

(
θ

2

))
+O

(
1

k5/2

)
,

− 2µ

X2

X∫
0

[
t
∑
n∈Z

nJ2
n(kt)einθ

]
dt

(6.1.3)
=

2iµ

X2

∂

∂θ

X∫
0

tJ0

(
2kt sin

(
θ

2

))
dt

(1.0.6)
=

2iµ

X2

∂

∂θ

[
X

2k sin
(
θ
2

)J1

(
2kX sin

(
θ

2

))]

= − iµ cos
(
θ
2

)
2kX sin2

(
θ
2

)J1

(
2kX sin

(
θ

2

))
+

+
iµ

kX sin
(
θ
2

)J ′1(2kX sin

(
θ

2

))
kX cos

(
θ

2

)
(1.0.4)

= − iµ cos
(
θ
2

)
kX sin2

(
θ
2

)J1

(
2kX sin

(
θ

2

))
+
iµ cos

(
θ
2

)
sin
(
θ
2

) J0

(
2kX sin

(
θ

2

))
,

V

X∫
0

[
t
∑
n∈Z

J2
n(kt)einθ

]
dt

(6.1.2)
= V

X∫
0

tJ0

(
2kt sin

(
θ

2

))
dt

(1.0.6)
=

V X

2k sin
(
θ
2

)J1

(
2kX sin

(
θ

2

))
,

µ2

+∞∫
X

[
1

t

∑
n∈Z

J2
n(kt)einθ

]
dt

(6.1.2)
= µ2

+∞∫
X

1

t
J0

(
2kt sin

(
θ

2

))
dt

(1.0.3)
= µ2

+∞∫
X

1

t

[
−J−2

(
2kt sin

(
θ

2

))
+O

(
1

k3/2

)]
dt

(1.0.6)
= − µ2

2kX sin
(
θ
2

)J1

(
2kX sin

(
θ

2

))
+O

(
1

k5/2

)
,
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−2µ

+∞∫
X

[
1

t

∑
n∈Z

nJ2
n(kt)einθ

]
dt

(6.1.3)
= 2iµ

+∞∫
X

1

t

∂

∂θ
J0

(
2kt sin

(
θ

2

))
dt

= 2iµ

+∞∫
X

1

t
J ′0

(
2kt sin

(
θ

2

))
kt cos

(
θ

2

)
dt

= iµ cos

(
θ

2

) +∞∫
X

2kJ ′0

(
2kt sin

(
θ

2

))
dt

= − iµ cos
(
θ
2

)
sin
(
θ
2

) J0

(
2kX sin

(
θ
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.

Putting all together results in

f(θ) ∼ −
√
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���

���
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(
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∼ −
√
π
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V Xeiπ/4

k3/2 sin
(
θ
2

)J1

(
2kX sin

(
θ

2

))[
1− 4iµ cos

(
θ
2

)
V X2 sin

(
θ
2

)] . (6.1.4)

6.2 Differential cross section

Scattering analysis would not be complete without determining cross section. It’s relation to the scattering
amplitude

dσ(θ)

dθ
= |f(θ)|2 σ =

2π∫
0

dσ(θ)

dθ
dθ, (6.2.1)

gives using (6.1.4) immediately

dσ(θ)

dθ
= |f(θ)|2 ∼ πV 2X2

8k3 sin2
(
θ
2

)J2
1

(
2kX sin

(
θ

2

))[
1 +

16µ2 cos2
(
θ
2

)
V 2X4 sin2

(
θ
2

)] . (6.2.2)

Clearly there is singularity at θ = 0. Hwever, this result shuld not surprise us, using (1.0.1) gives

dσ(θ)

dθ
∼ πV 2X4

8k

[
1 +

16µ2 cos2
(
θ
2

)
V 2X4 sin2

(
θ
2

)] ∼ 2πµ2

k sin2
(
θ
2

) , θ → 0. (6.2.3)

This result is in agreement with formula for differential cross section of scattering on a magnetic vortex
of infinitely small radius (see (21) in [1]).

Complete cross section is then given as

σ ∼
2π∫
0

πV 2X2

8k3 sin2
(
θ
2

)J2
1

(
2kX sin

(
θ

2

))[
1 +

16µ2 cos2
(
θ
2

)
V 2X4 sin2

(
θ
2

)] dθ. (6.2.4)
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Chapter 7

Conclusion

We dealt with 2D quantum scattering of a charged particle by finite cylinder potential containing magnetic
flux perpendicular to the plane where particle’s movement is considered. Using partial wave decomposi-
tion, we broke up the problem into solving Schrödinger equations for individual modes, for which exact
solutions were found for both nighbourhood of zero, inside the cylinder potential, and infinity, far outside
the potential area.

Inside the cylinder we used WKB approach to find convenient approimations of exact results, following
by their comparison with leading terms of exact ones in vicinity of zero.

In case of asymptotic region of infinity we again used WKB approach to determine convenient approx-
imation of phase shift, compared to quite obscure exact expressions, folowed by determinig qualitative
large energy behaviour and numerical comparison which showed great fit. Consequently we calculated
differential cross section which was found to be in great agreement with result of well known scattering
on magnetic vortex of infinitely small radius.

Approximation of total cross section can be considered little inconvenient and further investigation
may be apropriate as well as generalising problem to potentials of different shapes or multiple cylinders.
However, goal of this project was to investigate scattering on finite cylinder, which was fullfiled.
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