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Introduction

The roots of the theory of orthogonal polynomials go back as far as to the end of
the 18th century. The field of orthogonal polynomials was developed to considerable
depths in the late 19th century from a study of continued fractions by P. L. Chebyshev,
T. J. Stieltjes and others.

Some of the mathematicians who have worked on orthogonal polynomials include
Hans Ludwig Hamburger, Rolf Herman Nevanlinna, Gábor Szegő, Naum Akhiezer,
Arthur Erdélyi, Wolfgang Hahn, Theodore Seio Chihara, Mourad Ismail, Waleed Al-
Salam, and Richard Askey.

The theory of orthogonal polynomials is connected with many other branches of
mathematics. Selecting a few examples one can mention continued fractions, operator
theory (Jacobi operators), moment problems, approximation theory and quadrature,
stochastic processes (birth and death processes) and special functions.

Some biographical data as well as various portraits of mathematicians are taken
from Wikipedia, the free encyclopedia, starting from the web page

• http://en.wikipedia.org/wiki/Orthogonal polynomials

Most of the theoretical material has been adopted from the fundamental mono-
graphs due to Akhiezer and Chihara (detailed references are given below in the text).

Classical orthogonal polynomials

A scheme of classical orthogonal polynomials

• the Hermite polynomials

• the Laguerre polynomials, the generalized (associated) Laguerre polynomials

• the Jacobi polynomials, their special cases:

– the Gegenbauer polynomials, particularly:

∗ the Chebyshev polynomials

∗ the Legendre polynomials
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Some common features
In each case, the respective sequence of orthogonal polynomials, {P̃n(x); n ≥ 0},
represents an orthogonal basis in a Hilbert space of the type H = L2(I, %(x)dx)
where I ⊂ R is an open interval, %(x) > 0 is a continuous function on I.

Any sequence of classical orthogonal polynomials {P̃n(x)}, after having been nor-
malized to a sequence of monic polynomials {Pn(x)}, obeys a recurrence relation of
the type

Pn+1(x) = (x− cn)Pn(x)− dnPn−1(x), n ≥ 0,

with P0(x) = 1 and where we conventionally put P−1(x) = 0. Moreover, the coef-
ficients cn, n ≥ 0, are all real and the coefficients dn, n ≥ 1, are all positive (d0 is
arbitrary).

The zeros of Pn(x) are real and simple and belong all to I, the zeros of Pn(x) and
Pn+1(x) interlace, the union of the zeros of Pn(x) for all n ≥ 0 is a dense subset in I.

I =


R for the Hermite polynomials

(0,+∞) for the generalized Laguerre polynomials

(−1, 1) for the Jacobi (and Gegenbauer, Chebyshev, Legendre) polynomials

Hermite polynomials

Charles Hermite: December 24, 1822 – January 14, 1901

References

• C. Hermite: Sur un nouveau développement en série de fonctions, Comptes Rendus
des Séances de l’Académie des Sciences. Paris 58 (1864) 93-100
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• P.L. Chebyshev: Sur le développement des fonctions à une seule variable, Bulletin
physico-mathématique de l’Académie Impériale des sciences de St.-Pétersbourgh I
(1859) 193-200
• P. Laplace: Mémoire sur les intégrales définies et leur application aux probabilités,
Mémoires de la Classe des sciences, mathématiques et physiques de l’Institut de France
58 (1810) 279-347

Definition (n = 0, 1, 2, . . .)

Hn(x) = n!

bn/2c∑
k=0

(−1)k

k! (n− 2k)!
(2x)n−2k

The Rodrigues formula

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

=

(
2x− d

dx

)n
· 1

Orthogonality ˆ ∞
−∞

Hm(x)Hn(x) e−x
2

dx =
√
π 2nn! δm,n

The Hermite polynomials form an orthogonal basis of H = L2(R, e−x2dx).

Recurrence relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x), n ≥ 0,

H0(x) = 1 and, by convention, H−1(x) = 0.

Differential equation
The Hermite polynomial Hn(x) is a solution of Hermite’s differential equation

y′′ − 2xy′ + 2ny = 0.

3



Laguerre polynomials and generalized (associated) Laguerre
polynomials

Edmond Laguerre: April 9, 1834 – August 14, 1886

References

• E. Laguerre: Sur l’intégrale
´∞
x

e−x

x
dx, Bulletin de la Société Mathématique de

France 7 (1879) 72-81
• N. Y. Sonine: Recherches sur les fonctions cylindriques et le développement des
fonctions continues en séries, Math. Ann. 16 (1880) 1-80

Definition (n = 0, 1, 2, . . .)

Ln(x) ≡ L
(0)
n (x),

Ln(x) =
n∑
k=0

(
n

k

)
(−1)k

k!
xk, L(α)

n (x) =
n∑
k=0

(−1)k
(
n+ α

n− k

)
xk

k!

The Rodrigues formula

Ln(x)=
ex

n!

dn

dxn
(
e−xxn

)
=

1

n!

(
d

dx
− 1

)n
xn

L(α)
n (x) =

x−αex

n!

dn

dxn
(
e−xxn+α

)
=
x−α

n!

(
d

dx
− 1

)n
xn+α

Orthogonality (α > −1)

ˆ ∞
0

Lm(x)Ln(x) e−x dx = δm,n

ˆ ∞
0

L(α)
m (x)L(α)

n (x)xαe−x dx =
Γ(n+ α + 1)

n!
δm,n
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The Laguerre polynomials form an orthonormal basis of H = L2((0,∞), e−xdx),
the generalized Laguerre polynomials form an orthogonal basis of
H = L2((0,∞), xαe−xdx).

Recurrence relation

(n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x)− nLn−1(x), n ≥ 0,

more generally,

(n+ 1)L
(α)
n+1(x) = (2n+ α + 1− x)L

(α)
n−1(x)− (n+ α)L

(α)
n−1(x), n ≥ 0,

L
(α)

0 (x) = 1 and, by convention, L
(α)

−1(x) = 0.

Differential equation
Ln(x) is a solution of Laguerre’s equation

x y′′ + (1− x) y′ + n y = 0,

more generally, L
(α)

n (x) is a solution of the second order differential equation

x y′′ + (α + 1− x) y′ + n y = 0.

Jacobi (hypergeometric) polynomials

Carl Gustav Jacob Jacobi: December 10, 1804 – 18 February 18, 1851
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References

• C.G.J. Jacobi: Untersuchungen über die Differentialgleichung der hypergeometrischen
Reihe, J. Reine Angew. Math. 56 (1859) 149-165

Definition (n = 0, 1, 2, . . .)

P (α,β)
n (z) =

Γ(α + n+ 1)

n! Γ(α + β + n+ 1)

n∑
m=0

(
n

m

)
Γ(α + β + n+m+ 1)

Γ(α +m+ 1)

(
z − 1

2

)m
The Rodrigues formula

P (α,β)
n (z) =

(−1)n

2nn!
(1− z)−α(1 + z)−β

dn

dzn
[
(1− z)α(1 + z)β(1− z2)n

]
Orthogonality (α, β > −1)

ˆ 1

−1
P (α,β)
m (x)P (α,β)

n (x) (1− x)α(1 + x)βdx =
2α+β+1Γ(n+ α + 1) Γ(n+ β + 1)

(2n+ α + β + 1) Γ(n+ α + β + 1)n!
δm,n

The Jacobi polynomials form an orthogonal basis of
H = L2((−1, 1), (1− x)α(1 + x)βdx).

Recurrence relation

2(n+ 1)(n+ α + β + 1)(2n+ α + β)P
(α,β)
n+1 (z)

= (2n+ α + β + 1)

(
(2n+ α + β + 2)(2n+ α + β) z + α2 − β2

)
P (α,β)
n (z)

−2(n+ α)(n+ β)(2n+ α + β + 2)P
(α,β)
n−1 (z) , n ≥ 0,

P
(α,β)
0 (z) = 1 and, by convention, P

(α,β)
−1 (z) = 0.

Differential equation
The Jacobi polynomial P

(α,β)
n is a solution of the second order differential equation

(1− x2)y′′ + (β − α− (α + β + 2)x)y′ + n(n+ α + β + 1)y = 0.
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Gegenbauer (ultraspherical) polynomials

Leopold Bernhard Gegenbauer: February 2, 1849 – June 3, 1903

References

• L. Gegenbauer: Über einige bestimmte Integrale, Sitzungsberichte der Kaiserlichen
Akademie der Wissenschaften. Mathematische-Naturwissenschaftliche Classe. Wien
70 (1875) 433-443

• L. Gegenbauer: Über einige bestimmte Integrale, Sitzungsberichte der Kaiserlichen
Akademie der Wissenschaften. Mathematische-Naturwissenschaftliche Classe. Wien
72 (1876) 343-354

• L. Gegenbauer: Über die Functionen C ν
n (x), Sitzungsberichte der Kaiserlichen Akademie

der Wissenschaften. Mathematische-Naturwissenschaftliche Classe. Wien 75 (1877)
891-905

Definition (n = 0, 1, 2, . . .)

C(α)
n (z) =

bn/2c∑
k=0

(−1)k
Γ(n− k + α)

Γ(α)k!(n− 2k)!
(2z)n−2k

The Gegenbauer polynomials are a particular case of the Jacobi polynomials

C(α)
n (z) =

Γ(α + 1/2)Γ(2α + n)

Γ(2α)Γ(n+ α + 1/2)
P (α−1/2,α−1/2)
n (z)

The Rodrigues formula

C(α)
n (z) =

(−2)n

n!

Γ(n+ α)Γ(n+ 2α)

Γ(α)Γ(2n+ 2α)
(1− x2)−α+1/2 dn

dxn
[
(1− x2)n+α−1/2

]
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Orthogonality (α, β > −1)

ˆ 1

−1
C(α)
m (x)C(α)

n (x) (1− x2)α−1/2 dx =
π21−2αΓ(n+ 2α)

(n+ α)n! Γ(α)2
δm,n

The Gegenbauer polynomials form an orthogonal basis of
H = L2((−1, 1), (1− x2)α−1/2dx).

Recurrence relation

(n+ 1)C
(α)
n+1(x) = 2x(n+ α)C(α)

n (x)− (n+ 2α− 1)C
(α)
n−1(x), n ≥ 0,

C
(α)
0 (x) = 1 and, by convention, C

(α)
−1 (x) = 0.

Differential equation
Gegenbauer polynomials are solutions of the Gegenbauer differential equation

(1− x2)y′′ − (2α + 1)xy′ + n(n+ 2α)y = 0.

Chebyshev polynomials of the first and second kind

Alternative transliterations: Tchebycheff, Tchebyshev, Tschebyschow

Pafnuty Lvovich Chebyshev: May 16, 1821 – December 8, 1894

References

• P. L. Chebyshev: Théorie des mécanismes connus sous le nom de parallélogrammes,
Mémoires des Savants étrangers présentés à l’Académie de Saint-Pétersbourg 7 (1854)
539–586
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Definition (n = 0, 1, 2, . . .)
T0(x) = 1, U0(x) = 1, and for n > 0,

Tn(x) =
n

2

bn/2c∑
k=0

(−1)k
(n− k − 1)!

k!(n− 2k)!
(2x)n−2k, Un(x) =

bn/2c∑
k=0

(−1)k
(
n− k
k

)
(2x)n−2k

Moreover, for all n ≥ 0,

Tn(cos(ϑ)) = cos(nϑ), Un(cos(ϑ)) =
sin((n+ 1)ϑ)

sinϑ

The Chebyshev polynomials are a particular case of the Gegenbauer polynomials

Tn(x) =
n

2α
C(α)
n (x)

∣∣∣
α=0

(for n ≥ 1), Un(x) = C(1)
n (x)

Orthogonality

ˆ 1

−1
Tm(x)Tn(x)

dx√
1− x2

=
π

2
(1 + δm,0)δm,n,

ˆ 1

−1
Um(x)Un(x)

√
1− x2 dx =

π

2
δm,n

The Chebyshev polynomials {Tn(x)} form an orthogonal basis of
H = L2((−1, 1), (1− x2)−1/2dx),
The Chebyshev polynomials {Un(x)} form an orthogonal basis of
H = L2((−1, 1), (1− x2)1/2dx).

Recurrence relation

Tn+1(x) = (2− δn,0)xTn(x)− Tn−1(x), Un+1(x) = 2xUn(x)− Un−1(x),

T0(x) = 1, U0(x) = 1 and, by convention, T−1(x) = 0, U−1(x) = 0.

Differential equation
The Chebyshev polynomial Tn(x) is a solution of the Chebyshev differential equation

(1− x2) y′′ − x y′ + n2 y = 0,

the Chebyshev polynomial Un(x) is a solution of the differential equation

(1− x2) y′′ − 3x y′ + n(n+ 2) y = 0.
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Legendre polynomials

Adrien-Marie Legendre: September 19, 1752 – January 10, 1833

References

• M. Le Gendre: Recherches sur l’attraction des sphéröıdes homogènes, Mémoires de
Mathématiques et de Physique, présentés à l’Académie Royale des Sciences, par divers
savans, et lus dans ses Assemblées 10 (1785) 411-435

Definition (n = 0, 1, 2, . . .)

Pn(x) = 2n
n∑
k=0

(
n

k

)(
(n+ k − 1)/2

n

)
xk

The Legendre polynomials are a particular case of the Gegenbauer polynomials

Pn(x) = C(1/2)
n (x)

The Rodrigues formula

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n

Orthogonality ˆ 1

−1
Pm(x)Pn(x) dx =

2

2n+ 1
δm,n

The Legendre polynomials form an orthogonal basis of H = L2((−1, 1), dx).

10



Recurrence relation

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), n ≥ 0,

P0(x) = 1 and, by convention, P−1(x) = 0.

Differential equation
Legendre polynomials are solutions to Legendre’s differential equation,(

(1− x2) y′
)′

+ n(n+ 1)y = 0.

Selected facts from the general theory

Basic monographs

• G. Szegő: Orthogonal Polynomials, AMS Colloquium Publications, vol. XXIII, 2nd
ed., (AMS, Rhode Island, 1958) [first edition 1939]
• J. A. Shohat, J. D. Tamarkin: The Problem of Moments, Math. Surveys, no. I, 2nd
ed., (AMS, New York, 1950) [first edition 1943]
• N. I. Akhiezer: The Classical Moment Problem and Some Related Questions in
Analysis, (Oliver & Boyd, Edinburgh, 1965)
• T. S. Chihara: An Introduction to Orthogonal Polynomials, (Gordon and Breach,
Science Publishers, New York, 1978)

The moment functional, an orthogonal polynomial sequence

Definition. A linear functional L on C[x] (the linear space of complex polynomials
in the variable x) is called a moment functional, the number

µn = L[xn], n = 0, 1, 2, . . . ,

is called a moment of order n.

Clearly, any sequence of moments {µn} determines unambiguously a moment func-
tional L.

Definition. A moment functional L is called positive-definite, if L[π(x)] > 0 for every
polynomial π(x) that is not identically zero and is non-negative for all real x.

Theorem. A moment functional L is positive-definite if and only if its moments µn
are all real and the determinants

∆n := det(µj+k)
n
j,k=0 =

∣∣∣∣∣∣∣∣∣
µ0 µ1 . . . µn
µ1 µ2 . . . µn+1
...

...
. . .

...
µn µn+1 . . . µ2n

∣∣∣∣∣∣∣∣∣
are all positive, n ≥ 0.
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Remark. A real sequence {µn; n ≥ 0} such that ∆n > 0, ∀n ≥ 0, is said to be positive.

Definition. Given a positive-definite moment functional L, a sequence {P̂n(x); n ≥ 0}
is called an orthonormal polynomial sequence with respect to the moment functional
L provided for all m,n ∈ Z+ (Z+ standing for non-negative integers),

(i) P̂n(x) is a polynomial of degree n,

(ii) L[P̂m(x)P̂n(x)] = δm,n.

Remark. Quite frequently, it is convenient to work with a sequence of orthogonal
monic polynomials, which we shall denote {Pn(x)}, rather than with the orthonormal
polynomial sequence {P̂n(x)}.

Theorem. For every positive-definite moment functional L there exists a unique
monic orthogonal polynomial sequence {Pn(x)}.

Remark. It can be shown that

L[Pn(x)2] =
∆n

∆n−1
, ∀n ≥ 0

(∆−1 := 1), and hence the polynomials

P̂n(x) =

√
∆n−1

∆n

Pn(x)

are normalized. An explicit expression is known for the monic polynomials,

Pn(x) =
1

∆n−1

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn
µ1 µ2 . . . µn+1
...

...
. . .

...
µn−1 µn . . . µ2n−1

1 x . . . xn

∣∣∣∣∣∣∣∣∣∣∣
.

The fundamental recurrence relation and Favard’s theorem

Let L be a positive-definite moment functional and let {P̂n(x)} be the corresponding
orthonormal polynomial sequence.

Obviously, {P̂0(x), P̂1(x), . . . , P̂n(x)} is an orthonormal basis in the subspace of
C[x] formed by polynomials of degree at most n. From the orthogonality it also
follows that

∀n ∈ N,∀π(x) ∈ C[x], deg π(x) < n =⇒ L[P̂n(x)π(x)] = 0.

Hence, for any n = 0, 1, 2, . . .,

xP̂n(x) =
n+1∑
k=0

an,kP̂k(x), an,k = L[xP̂n(x)P̂k(x)] (an,n+1 6= 0).
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But for k < n− 1, an,k = L[xP̂n(x)P̂k(x)] = L[P̂n(x)
(
xP̂k(x)

)
] = 0. Put

αn = L[xP̂n(x)P̂n+1(x)], βn = L[xP̂n(x)2].

Necessarily, the coefficients αn and βn are all real and αn = an,n+1 6= 0.

We have found that the sequence {P̂n(x)} fulfills the second-order difference rela-
tion

xP̂n(x) = αn−1P̂n−1(x) + βnP̂n(x) + αnP̂n+1(x), n ≥ 0,

P̂0(x) = 1, and we put P̂−1(x) = 0 (so α−1 plays no role).
This observation can be rephrased in terms of the monic orthogonal polynomials.

Let
cn = βn, dn = α 2

n−1

(d0 may be arbitrary).

Theorem. Let L be a positive-definite moment functional and let {Pn(x)} be the
corresponding monic orthogonal polynomial sequence. Then there exist real constants
cn, n ≥ 0, and positive constants dn, n ≥ 1, such that the sequence {Pn(x)} obeys the
three-term recurrence relation

Pn+1(x) = (x− cn)Pn(x)− dnPn−1(x), n ≥ 0,

with P0(x) = 1 and where we conventionally put P−1(x) = 0.

Remark. It is straightforward to see that

Pn(x) =

(
n−1∏
k=0

αk

)
P̂n(x), n ≥ 0.

The opposite of the above theorem is also true.

Remark. If desirable, any positive-definite moment functional can be renormalized so
that L[1] = 1.

Theorem (Favard’s Theorem). Let cn, n ≥ 0, and dn, n ≥ 1, be arbitrary sequences of
real and positive numbers, respectively, and let a sequence {Pn(x); n ∈ Z+} be defined
by the formula

Pn+1(x) = (x− cn)Pn(x)− dnPn−1(x), ∀n ≥ 0, P−1(x) = 0, P0(x) = 1.

Then there exists a unique positive-definite moment functional L such that

L[1] = 1, L[Pm(x)Pn(x)] = 0 for m 6= n, m, n = 0, 1, 2, . . . .
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The zeros of an orthogonal polynomial sequence

Definition. Let L be a positive-definite moment functional and E ⊂ R. The set E
is called a supporting set for L if L[π(x)] > 0 for every real polynomial π(x) which is
non-negative on E and does not vanish identically on E.

Theorem. Let L be a positive-definite moment functional, {Pn(x); n ≥ 0} be the
corresponding monic orthogonal polynomial sequence. For any n, the zeros of Pn(x)
are all real and simple, and the zeros of Pn(x) and Pn+1(x) interlace, i.e. between any
two subsequent zeros of Pn+1(x) there is exactly one zero of Pn(x).

On the contrary, if 2 ≤ m < n then between any two zeros of Pm(x) there is at
least one zero of Pn(x).

Moreover, if an interval I is a supporting set of L then the zeros of Pn(x) are all
located in the interior of I.

The Hamburger moment problem

Let {µn; n = 0, 1, 2, . . .} be a sequence of moments defining a positive-definite moment
functional L. Without loss of generality one can assume that µ0 = 1 meaning that L
is normalized, i.e. L[1] = 1.

One may ask whether L can be defined with the aid of a probability measure dσ(x)
on R where σ(x) is a (cumulative) probability distribution, meaning that

L[π(x)] =

ˆ +∞

−∞
π(x) dσ(x), ∀π(x) ∈ C[x].

Obviously, this requirement can be reduced to

ˆ +∞

−∞
xn dσ(x) = µn, n = 0, 1, 2, . . .

This problem is called the Hamburger moment problem. Provided one requires, in
addition, dσ(x) to be supported on the half-line [0,+∞) or on the closed unit interval
[0, 1] one speaks about the Stieltjes moment problem or the Hausdorff moment problem,
respectively. In what follows, we shall address the Hamburger moment problem only.
This is to say that speaking about a moment problem we always mean the Hamburger
moment problem.

The answer to the moment problem is always affirmative. On the other hand, the
probability measure can, but need not be, unique. The moment problem is said to
be determinate if there exists a unique probability measure solving the problem, and
indeterminate in the opposite case.

Let, as before, αn = L[xP̂n(x)P̂n+1(x)], βn = L[xP̂n(x)2]. Define a sequence of
polynomials {Qn(x)} by the recurrence relation

xQn(x) = αn−1Qn−1(x) + βnQn(x) + αnQn+1(x), n ≥ 1, Q0(x) = 0, Q1(x) = 1/α0.
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Remark. Qn(x) is called a polynomial of the second kind (Qn(x) is of degree n − 1)
while P̂n(x) is called a polynomial of the first kind. It is not difficult to verify that

Qn(x) = Lu

[
P̂n(x)− P̂n(u)

x− u

]

(the moment functional acts in the variable u).

Remark. The Hamburger moment problem is known to be determinate if the sequences
{αn} and {βn} are bounded.

Theorem. If for some z ∈ C \ R,

∞∑
n=0

|P̂n(z)|2 =∞,

then the Hamburger moment problem is determinate. Conversely, this equality holds
true for all z ∈ C \ R if the Hamburger moment problem is determinate.

Theorem. If for some z ∈ C,

∞∑
n=0

(
|P̂n(z)|2 + |Qn(z)|2

)
<∞,

then the Hamburger moment problem is indeterminate. Conversely, this inequality is
fulfilled for all z ∈ C if the Hamburger moment problem is indeterminate.

The Nevanlinna parametrization

Let us focus on the indeterminate case. Then a natural question arises how to describe
all solutions to the moment problem.

In case of the indeterminate moment problem, the following four series converge
for every z ∈ C, and, as one can show, the convergence is even locally uniform on C.
Hence these series define entire functions, the so called Nevanlinna functions A, B, C
and D:

A(z) = z

∞∑
n=0

Qn(0)Qn(z), B(z) = −1 + z

∞∑
n=0

Qn(0)P̂n(z),

C(z) = 1 + z

∞∑
n=0

P̂n(0)Qn(z), D(z) = z

∞∑
n=0

P̂n(0)P̂n(z).

It is known that
A(z)D(z)−B(z)C(z) = 1.
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Definition. Pick functions φ(z) are holomorphic functions on the open complex half-
plane Im z > 0, with values in the closed half-plane Im z ≥ 0. The set of Pick functions
will be denoted by P , and it is usually augmented by the constant function φ(z) =∞.
Any function φ(z) ∈ P is tacitly assumed to be extended to a holomorphic function
on C \ R by the formula

φ(z) = φ(z) for Im z < 0.

Theorem (Nevanlinna). Let A(z), B(z), C(z) and D(z) be the Nevanlinna functions
corresponding to an indeterminate moment problem. The following formula for the
Stieltjes transform of a (probability) measure dσ,

ˆ
R

dσ(x)

z − x
=
A(z)φ(z)− C(z)

B(z)φ(z)−D(z)
, z ∈ C \ R,

establishes a one-to-one correspondence between functions φ(z) ∈ P ∪ {∞} and solu-
tions σ = σφ of the moment problem in question.

Theorem (M. Riesz). Let σφ be a solution to an indeterminate moment problem

corresponding to a function φ(z) ∈ P ∪ {∞}. Then the orthonormal set {P̂n(x); n =
0, 1, 2, . . .} is total and hence an orthonormal basis in the Hilbert space L2(R, dσφ) if
and only if φ(z) = t is a constant function, with t ∈ R ∪ {∞}.

Remark. The solutions σt, t ∈ R∪{∞}, from the theorem due to M. Riesz are referred
to as N-extremal.

Proposition. The Nevanlinna extremal solutions σt of a moment problem, with t ∈
R ∪ {∞}, are all purely discrete and supported on the zero set

Zt = {x ∈ R; B(x)t−D(x) = 0}.

Hence
dσt =

∑
x∈Zt

ρ(x) δx

where δx is the Dirac measure supported on {x}, and one has

ρ(x) := σt({x}) =

(
∞∑
n=0

P̂n(x)2

)−1
=

1

B′(x)D(x)−B(x)D′(x)
.

The associated Jacobi matrix

The recurrence relation

xP̂n(x) = αn−1P̂n−1(x) + βnP̂n(x) + αnP̂n+1(x), n ≥ 0,

for an orthonormal polynomial sequence {P̂n(x)} can be reinterpreted in the following
way. Let M be an operator on C[x] acting via multiplication by x, i.e.

Mπ(x) = x π(x), ∀π(x) ∈ C[x].
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The matrix of M with respect to the basis {P̂n(x)} is a Jacobi (tridiagonal) matrix

J =


β0 α0

α0 β1 α1

α1 β2 α2

. . . . . . . . .

.
The matrix J clearly represents a well defined linear operator on the vector space of
all complex sequences that we denote, for simplicity, by the same letter. According to
the above recurrence relation, for every z ∈ C, the sequence

(P̂0(z), P̂1(z), P̂2(z), . . .)

represents a formal eigenvector of J corresponding to the eigenvalue z, i.e. a solution
of the formal eigenvalue equation J f = zf . Note that the formal eigenvector is
unambiguous up to a scalar multiplier.

Let D be the subspace formed by those complex sequences which have at most
finitely many nonzero elements. D is nothing but the linear hull of the canonical
(standard) basis in `2(Z+). Clearly, D is J -invariant. Denote by J̇ the restriction
J
∣∣
D . J̇ is a symmetric operator on `2(Z+), and let Jmin designate its closure. Fur-

thermore, Jmax is an operator on `2(Z+) defined as another restriction of J , this time
to the domain

Dom Jmax = {f ∈ `2(Z+); J f ∈ `2(Z+)}.
Clearly, J̇ ⊂ Jmax. Straightforward arguments based just on systematic application of
definitions show that

(J̇)∗ = (Jmin)∗ = Jmax, (Jmax)
∗ = Jmin.

Hence Jmax is closed and Jmin ⊂ Jmax.
Since J is real and all formal eigenspaces of J are one-dimensional, the deficiency

indices of Jmin are equal and can only take the values either (0, 0) or (1, 1). The latter
case happens if and only if for some and hence any z ∈ C \ R one has

∞∑
n=0

|P̂n(z)|2 <∞.

Remark. A real symmetric Jacobi matrix J can also be regarded as representing
a second-order difference operator on the discretized half-line. This point of view
suggests that one can adopt various approaches and terminology originally invented for
Sturm-Liouville differential operators. Following classical Weyl’s analysis of admissible
boundary conditions one says that J is limit point if the sequence {P̂n(z)} is not square
summable for some and hence any z ∈ C \ R, and J is limit circle in the opposite
case. In other words, saying that J is limit point means the same as saying J̇ is
essentially self-adjoint. A good reference for these aspects is Subsections 2.4-2.6 in

• G. Teschl: Jacobi Operators and Completely Integrable Nonlinear Lattices, (AMS,
Rhode Island, 2000)
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Theorem. The operator Jmin is self-adjoint, i.e. J̇ is essentially self-adjoint (equiv-
alently, Jmin = Jmax) if and only if the Hamburger moment problem is determinate.
In the indeterminate case, the self-adjoint extensions of Jmin are in one-to-one cor-
respondence with the N-extremal solutions of the Hamburger moment problem. If Jt
is a self-adjoint extension of Jmin for some t ∈ T1 (the unit circle in C) then the
corresponding probability measure (distribution) σ = σt solving the moment problem
is given by the formula

σt(x) = 〈e0, Et
(
(−∞, x ]

)
e0〉

where Et is the spectral projection-valued measure for Jt and e0 is the first vector of the
canonical basis in `2(Z+). In particular, the measure σt is supported on the spectrum
of Jt.

Remark. Let {en} be the canonical basis in `2(Z+). One readily verifies that P̂n(J )e0 =
en, ∀n. Whence

δm,n = 〈em, en〉 = 〈P̂m(Jt)e0, P̂n(Jt)e0〉 =

ˆ ∞
−∞

P̂m(x)P̂n(x) dσt(x).

Of course, the moments µn do not depend on t, and one has

µn = 〈e0, J n
t e0〉 =

(
J n
)
0,0
, n = 0, 1, 2, . . .

Remark. In the indeterminate case, one infers from the construction of the Green
function that the resolvent of any self-adjoint extension of Jmin is a Hilbert-Schmidt
operator.

Theorem. Suppose the Hamburger moment problem is indeterminate. The spectrum
of any self-adjoint extension Jt of Jmin is simple and discrete. Two different self-
adjoint extensions Jt have distinct spectra. Every real number is an eigenvalue of
exactly one self-adjoint extension Jt.

Continued fractions

Let {an} and {bn} be complex sequences. A generalized infinite continued fraction

f =
a1

b1 +
a2

b2 +
a3

b3 +
a4

b4 +
.. .

also frequently written in the form

f =
a1 |
| b1

+
a2 |
| b2

+
a3 |
| b3

+ · · · ,
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is understood here as a sequence of convergents

fn =
An
Bn

, n = 1, 2, 3, . . . ,

where the numerators and denominators, An and Bn, are given by the fundamental
Wallis recurrence formulas

An+1 = bn+1An + an+1An−1, Bn+1 = bn+1Bn + an+1Bn−1 ,

with
A−1 = 1, A0 = 0, B−1 = 0, B0 = 1.

One says that a continued fraction is convergent if this is true for the corresponding
sequence of convergents.

Definition. Let L be a positive-definite moment functional and

Pn+1(x) = (x− cn)Pn(x)− dnPn−1(x), n ≥ 0,

be the fundamental recurrence relation defining the corresponding monic orthogonal
polynomial sequence {Pn(x)}, with P−1(x) = 0 and P0(x) = 1. The monic polynomial

sequence {P (1)
n (x)} defined by the recurrence formula

P
(1)
n+1(x) = (x− cn+1)P

(1)
n (x)− dn+1P

(1)
n−1(x), n ≥ 0,

with P
(1)
−1 (x) = 0 and P

(1)
0 (x) = 1, is called the associated (monic) polynomial sequence.

Proposition. Let {cn; n = 0, 1, 2, . . .} and {dn; n = 1, 2, 3, . . .} be a real and positive

sequence, respectively. Let {Pn} and {P (1)
n } designate the corresponding monic orthog-

onal polynomial sequence and the associated monic polynomial sequence, respectively.
Then the convergents of the continued fraction

f =
1 |

| x− c0
− d1 |
| x− c1

− d2 |
| x− c2

− · · ·

are

fn =
P

(1)
n−1(x)

Pn(x)
, n = 1, 2, 3, . . . .

Remark. Recall that cn = βn and dn = α 2
n−1 where αn and βn occur as entries in the

associated Jacobi matrix. It is straightforward to verify that

P
(1)
n−1(x)

Pn(x)
=
Qn(x)

P̂n(x)
, n = 0, 1, 2, . . . .

Remark. It is worth of noting that the asymptotic expansion for large x of the con-
vergents can be expressed in terms of the moments (µ0 = 1),

fn =
1

x
+
µ1

x2
+ . . .+

µ2n−1

x2n
+O

(
1

x2n+1

)
, as x→∞, n ∈ N.
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Gauss quadrature

Theorem (Gauss quadrature). Let L be a positive-definite moment functional and
{Pn(x)} be the corresponding monic orthogonal polynomial sequence. Denote by xn1 <
xn2 < . . . < xnn the zeros of Pn(x) ordered increasingly, n ∈ N. Then for each
n ∈ N there exists a unique n-tuple of numbers Ank, 1 ≤ k ≤ n, such that for every
polynomial π(x) of degree at most 2n− 1,

L[π(x)] =
n∑
k=1

Ank π(xnk).

The numbers Ank are all positive.

Remark. Let {P (1)
n } designate the associated monic polynomial sequence. Then for

n, k ∈ N, k ≤ n,

Ank =
P

(1)
n−1(xnk)

P ′n(xnk)
=

(
n−1∑
j=0

P̂j(xnk)
2

)−1
.

One also has
Ank = L[lnk(x)2]

where

lnk(x) =
Pn(x)

(x− xnk)P ′n(xnk)
.

Lommel polynomials – orthogonal polynomials with

a discrete supporting set

The Lommel polynomials

The Lommel polynomials represent an example of an orthogonal polynomial sequence
whose members are not known as solutions of a distinguished differential equation. On
the other hand, the Lommel polynomials naturally arise within the theory of Bessel
functions. The corresponding measure of orthogonality is supported on a discrete
countable set rather than on an interval.

One of the fundamental properties of Bessel functions is the recurrence relation in
the order

Jν+1(x) =
2ν

x
Jν(x)− Jν−1(x).

As first observed by Lommel in 1871, this relation can be iterated which yields, for
n ∈ Z+, ν ∈ C, −ν /∈ Z+ and x ∈ C \ {0},

Jν+n(x) = Rn,ν(x)Jν(x)−Rn−1,ν+1(x)Jν−1(x)

where

Rn,ν(x) =

[n/2]∑
k=0

(−1)k
(
n− k
k

)
Γ(ν + n− k)

Γ(ν + k)

(
2

x

)n−2k
20



is the so called Lommel polynomial. But note that Rn,ν(x) is a polynomial in the
variable x−1 rather than in x.

• E. von Lommel: Zur Theorie der Bessel’schen Functionen, Mathematische Annalen
4 (1871) 103-116.

As is well known, the Lommel polynomials are directly related to Bessel functions,

Rn,ν(x) =
πx

2
(Y−1+ν(x)Jn+ν(x)− J−1+ν(x)Yn+ν(x))

=
πx

2 sin(πν)
(J1−ν(x)Jn+ν(x) + (−1)nJ−1+ν(x)J−n−ν(x)) .

Furthermore, the Lommel polynomials obey the recurrence

Rn+1,ν(x) =
2 (n+ ν)

x
Rn,ν(x)−Rn−1,ν(x), n ∈ Z+,

with the initial conditions R−1,ν(x) = 0, R0,ν(x) = 1.
The support of the measure of orthogonality for {Rn,ν+1(x); n ≥ 0} turns out to

coincide with the zero set of Jν(z). Remember that x−νJν(x) is an even function. Let
jk,ν stand for the k-th positive zero of Jν(x) and put j−k,ν = −jk,ν for k ∈ N. The
orthogonality relation reads∑

k∈Z\{0}

1

j 2
k,ν

Rn,ν+1(jk,ν)Rm,ν+1(jk,ν) =
1

2(n+ ν + 1)
δm,n,

and is valid for all ν > −1 and m,n ∈ Z+.
Let us also recall Hurwitz’ limit formula

lim
n→∞

(x/2)ν+n

Γ(ν + n+ 1)
Rn,ν+1(x) = Jν(x).

Lommel Polynomials in the variable ν

Lommel polynomials can also be addressed as polynomials in the parameter ν. Such
polynomials are orthogonal, too, with the measure of orthogonality supported on the
zero set of a Bessel function of the first kind regarded as a function of the order.

Let us consider a sequence of polynomials in the variable ν and depending on a
parameter u 6= 0, {Tn(u; ν)}∞n=0, determined by the recurrence

uTn−1(u; ν)− nTn(u; ν) + uTn+1(u; ν) = νTn(u; ν), n ∈ Z+,

with the initial conditions T−1(u; ν) = 0, T0(u; ν) = 1. It can be verified that

Tn(u; ν) = Rn,ν(2u), ∀n ∈ Z+.

The Bessel function Jν(x) regarded as a function of ν has infinitely many simple
real zeros which are all isolated provided x > 0. Below we denote the zeros of Jν−1(2u)
by θn = θn(u), n ∈ N, and restrict ourselves to the case u > 0 since θn(−u) = θn(u).
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The Jacobi matrix J(u; ν) corresponding to this case has the diagonal entries
βn = −n and the weights αn = u, n ∈ Z+, and represents an unbounded self-adjoint
operator with a discrete spectrum. The orthogonality measure for {Tn(u; ν)} is sup-
ported on the spectrum of J(u; ν), the orthogonality relation has the form

∞∑
k=1

Jθk(2u)

u
(
∂z
∣∣
z=θk

Jz−1(2u)
) Rn,θk(2u)Rm,θk(2u) = δm,n, m, n ∈ Z+.

Let us remark that initially this was Dickinson who formulated, in 1958, the prob-
lem of constructing the measure of orthogonality for the Lommel polynomials in the
variable ν. Ten years later, Maki described such a construction.

• D. Dickinson: On certain polynomials associated with orthogonal polynomials, Boll.
Un. Mat. Ital. 13 (1958) 116-124
• D. Maki: On constructing distribution functions with application to Lommel polyno-
mials and Bessel functions, Trans. Amer. Math. Soc. 130 (1968), 281-297
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