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1 A few notes on the history

History of the Hilbert matrix is briefly explained in [8, Chp. IX]. According to this
source, Hilbert proved his double series theorem in lectures on integral equations. The
theorem asserts that there exists a positive constant M such that for any real square
summable sequence {an} one has

0 ≤
∞∑
m=1

∞∑
n=1

aman
m+ n− 1

≤M
∞∑
m=1

a 2
m.

Hilbert’s proof was later published by Weyl in his Göttingen dissertation in 1908. The
optimal value of the constant, M = π, has been found by Schur in [15]. This way he
effectively determined the norm of the Hilbert matrix operator H = (Hj,k) in `2(N),
defined by

Hj,k =
1

j + k − 1
, j, k ∈ N. (1)

Hence 0 ≤ H and ‖H‖ = π.
In 1950, Magnus noted that the spectrum of H contains the whole interval [0, π]

and, moreover, there are no embedded eigenvalues [11]. So the spectrum is purely
continuous. Later on, in 1958, Rosenblum showed that H is unitarily equivalent to
a comparatively simple integral operator on L2((0,∞), dx) [13], and, in addition, he
found a Sturm-Liouville operator on the positive half-line commuting with that in-
tegral operator [14]. The spectral problem for the differential operator turned out
to be solvable. Consequently, this made it possible to explicitly diagonalize H. One
concluded that the Hilbert matrix operator is unitarily equivalent to the multiplica-
tion operator by the function π/ cosh(πτ) acting on L2((0,∞), dτ) [14]. Particularly,
specH is purely absolutely continuous.

Leading principal submatrices Hn of H are usually also called Hilbert matrices.
Despite of the mentioned complete solution of the spectral problem, the Hilbert matrix
continued to attract a good deal of attention from the numerical point of view because
the finite-dimensional Hilbert matrices Hn are canonical examples of ill-conditioned
matrices, making them difficult to use in numerical computation [16]. To overcome
certain computational problems Grünbaum constructed, in [7], a tridiagonal (Jacobi)
matrix Tn commuting with Hn.
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This fact inspired the author of these notes to consider the infinite-dimensional
case as well and use a Jacobi matrix T commuting with H in an alternative approach
leading to a diagonalization of the Hilbert matrix. This is possible, indeed, and this
approach is outlined in full detail in Sections 3, 4, 5 and 6. Section 2 contains a sketchy
summary of Rosenblum’s result. Afterwards the author realized that practically the
same approach, possibly differing in some details, had been carried out earlier by Otte,
with results presented at the conference CDESFA 2005, Munich, Germany. The slides
from the conference are currently available from Otte’s homepage [12].

2 A solution due to Rosenblum

Recall that the Laguerre polynomials {Ln(x); n ∈ Z+} form an orthonormal basis in
H = L2((0,∞), e−xdx). In [13], Rosenblum observed that the matrix with respect to
this basis of the integral operator K,

Kf(x) =

ˆ ∞
0

f(y)

x+ y
e−y dy, ∀f ∈H ,

coincides with the Hilbert matrix. This is to say that the Hilbert matrix operator H,
acting on `2(N), is unitarily equivalent to the integral operator K.

To see this one can employ the formula for the Laplace transform of a Laguerre
polynomial, ˆ ∞

0

e−ptLn(t) dt = (p− 1)np−n−1, Re p > 0,

see Eq. 7.414 ad 6 in [6]. Whence

〈Lm, KLn〉 =

ˆ ∞
0

ˆ ∞
0

Lm(x)Ln(y)

x+ y
e−x−y dxdy

=

ˆ ∞
0

(ˆ ∞
0

e−(t+1)xLm(x) dx

)(ˆ ∞
0

e−(t+1)yLn(y) dy

)
dt

=

ˆ ∞
0

tm+n(t+ 1)−m−n−2 dt =

ˆ 1

0

um+n du

=
1

m+ n+ 1
, m, n ∈ Z+.

As a matter of fact, the problem addressed in [13], as well as in the subsequent pa-
per [14], was somewhat more complex, involving a one-parameter family of generalized
Hilbert matrices.

For the analysis to follow it is convenient to apply the unitary transform

L2((0,∞), e−xdx)→ L2((0,∞), dx) : f(x) 7→ f̃(x) = e−x/2f(x).

The operator K is transformed correspondingly. Its image, K̃, is an integral operator
with the kernel

K̃(x, y) =
e−(x+y)/2

x+ y
.
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Following [14], consider the formal elliptic second-order differential operator

L = − d

dx
x2

d

dx
+
x2 − 1

4
.

It is straightforward to verify the identity

LxK̃(x, y)− LyK̃(x, y) = 0,

with indices indicating in which variable the differential operator is acting. This means
that L and K̃ formally commute. To make this observation precise let us introduce,
as usual, another operator, L̇, acting as L on the domain Dom L̇ which coincides with
the space of test function D

(
(0,∞)

)
. Then

〈K̃f, L̇g〉 − 〈L̇f, K̃g〉 = 0, ∀f, g ∈ Dom L̇. (2)

L̇ is obviously symmetric and even positive. The last statement is implied by the
inequality

1

4

ˆ ∞
0

f(x)2 dx ≤
ˆ ∞
0

x2f ′(x)2 dx

which is valid for all real-valued C1 functions on [0,∞) vanishing on a neighborhood
of infinity. In fact,

x2(f ′)2 − 1

4
f 2 =

(
xf ′ +

1

2
f

)2

− 1

2
(xf 2)′.

Let Lmin be the closure of L̇, and Lmax acts as L on

DomLmax = {f ∈ L2
(
(0,∞)

)
; Lf ∈ L2

(
(0,∞)

)
}

where Lf should be understood in the distributional sense. It turns out that L̇ is
essentially self-adjoint, i.e. L := Lmin = Lmax is self-adjoint. To see it, it suffices to
show, according to the general theory of self-adjoint extensions, that the differential
equation Lf = −f/4, i.e.

−(x2f ′)′ + x2f/4 = 0, (3)

has no square integrable solution on the positive half-line. This is the case, indeed,
since for two independent solutions to (3) one can take f±(x) = exp(±x)/x. Moreover,
from (2) it can be deduced that K̃ and L commute.

As one can readily check, the function

ψτ (x) =
(2τ sinh(πτ))1/2

π
√
x

Kiτ

(x
2

)
, τ > 0,

is a generalized eigenfunction of L corresponding to the eigenvalue τ 2. Here

Kν(z) =

ˆ ∞
0

e−z cosh(t) cosh(νt) dt
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is the Macdonald (modified Bessel) function. The family {ψτ ; τ > 0} even represents a
complete normalized set of generalized eigenfunction of L since the integral transform

L2
(
(0,∞), dx

)
→ L2

(
(0,∞), dτ

)
: f(x) 7→ f̂(τ) =

ˆ ∞
0

ψτ (x)f(x) dx

is a unitary operator. This is in fact nothing but the Kontorovich-Lebedev transform
[9]. The inverse transform has the form

f(x) =

ˆ ∞
0

ψτ (x)f̂(τ) dτ.

The differential operator L is diagonalized by this transform and becomes the multi-
plication operator by the function τ 2.

The image of K̃ by this transform commutes with this multiplication operator and
so it should be itself, too, a multiplication operator (see, for instance, Proposition 1.9
of Supplement 1 in [4]). Actually, ψτ turns out to be a generalized eigenfunction
of K̃ corresponding to the eigenvalue π/ cosh(πτ) as it follows from the formula [6,
Eq. 6.627]

ˆ ∞
0

e−s−t

(s+ t)
√
t
Kiτ (t) dt =

π

cosh(πτ)
√
s
Kiτ (s), s, τ > 0,

meaning that ˆ ∞
0

K̃(x, y)ψτ (y) dy =
π

cosh(πτ)
ψτ (x).

Thus an explicit diagonalization of the Hilbert matrix operator has been found.
In the remainder of these notes, an alternative approach to the diagonalization of

H is described. In this case we stick to the discrete level while working with matrices
only rather than with integral or differential operators.

3 A commuting Jacobi matrix and formal eigen-

vectors

Matrix entries in these notes are indexed by j, k = 1, 2, 3, . . .. Recall definition (1) of
the Hilbert matrix. Let T be a tridiagonal matrix with the entries

Tn,n = 2(n− 1)n+
3

4
, Tn,n+1 = Tn+1,n = −n2, Tm,n = 0 otherwise, m, n ∈ N.

Then TH = HT . This property has been observed in [7].
T is positive but the proof is not so straightforward and will be discussed later, in

Section 5. But it is rather easy to show that T̃ = T + 1/4I is positive and so T is
semibounded. In fact,

T̃n,n = 2

(
n− 1

2

)2

+
1

2
, T̃n,n+1 = T̃n+1,n = −n2, T̃m,n = 0 otherwise,
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and, for any real sequence {xn} with only finitely many nonzero members,

∞∑
m=1

∞∑
n=1

T̃m,nxmxn =
1

2
x1

2 +
∞∑
n=1

((
n− 1

2

)
xn −

(
n+

1

2

)
xn+1

)2

+
1

4

∞∑
n=1

(xn − xn+1)
2 ≥ 0.

For any x ∈ C there exists exactly one formal eigenvector v(x) of T corresponding
to the eigenvalue x and such that its first component equals 1. Any other formal
eigenvector with the same eigenvalue is its multiple. Write

v(x) =
(
P̂0(x), P̂1(x), P̂2(x), . . .

)
. (4)

Then P̂n(x) is a polynomial of degree n, n ∈ Z+. The sequence {P̂n(x)} is unambigu-
ously determined by the recurrence P̂0(x) = 1 and(

3

4
− x
)
P̂0(x)− P̂1(x) = 0, (5)

−n2 P̂n−1(x) +

(
2n(n+ 1) +

3

4
− x
)
P̂n(x)− (n+ 1)2P̂n+1(x) = 0 for n ≥ 1.

Put

P̂n(x) =
1

(n!)2
Pn(x), n ∈ Z+.

Then {(−1)nPn(x); n ∈ Z+} is a sequence of monic orthogonal polynomials obeying
the recurrence rule (P−1(x) = 0 by definition)

P0(x) = 1, Pn+1(x) =

(
2n(n+ 1) +

3

4
− x
)
Pn(x)− n4Pn−1(x), n = 0, 1, 2, . . . . (6)

4 The Wilson polynomials, the continuous Hahn

dual polynomials and an explicit form

The Wilson polynomials represent a very large and general four-parameter family of
orthogonal polynomials sitting at a top position of the Askey hierarchical scheme for
hypergeometric orthogonal polynomials, see [10]. Here is the definition

Wn (x2; a, b, c, d)

(a+ b)n(a+ c)n(a+ d)n
= 4F3(−n, n+a+b+c+d−1, a+ix, a−ix; a+b, a+c, a+d; 1),

n ∈ Z+. We shall need just a particular case. Put a = b = 1/4, c = d = 3/4, and
write for short

Wn(x2) = Wn

(
x2;

1

4
,
1

4
,
3

4
,
3

4

)
.
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The respective orthogonality relation takes the form (see Eq. (9.1.2) in [10]),

ˆ ∞
0

x sinh(2πx)

cosh2(2πx)
Wm(x2)Wn(x2) dx =

1

π
2−4n−3((2n)!)2 (n!)2 δm,n. (7)

Let

Pn(z) =
4nn!

(2n)!
Wn

(z
4

)
.

Then the sequence {Pn(x)} obeys (6), see Eq. (9.1.5) in [10]. Similarly, the sequence
{P̂n(x)}, with

P̂n(z) =
1

(n!)2
Pn(z) =

4n

n! (2n)!
Wn

(z
4

)
,

obeys (5). The orthogonality relation (7) rewritten in terms of P̂n(z) reads

ˆ ∞
0

P̂m(x2)P̂n(x2)ρ(x) dx = δm,n

where

ρ(x) =
2πx sinh(πx)

cosh2(πx)
. (8)

It turns out that the polynomials Pn(z) coincide with the continuous dual Hahn
polynomials representing a three-parameter subclass of the class of Wilson polynomi-
als. Here is the definition

Sn(x2; a, b, c)

(a+ b)n(a+ c)n
= 3F2(−n, a+ ix, a− ix; a+ b, a+ c; 1). (9)

We shall need just a particular case. Put a = b = c = 1/2, and write for short

Sn(x2) = Sn

(
x2;

1

2
,
1

2
,
1

2

)
.

From recurrence (9.3.5) in [10] it follows that Pn(z) = Sn(z) for all n, indeed. In view
of (9), we have the explicit formula

P̂n(z) =
1

(n!)2
Sn(z) = 3F2

(
−n, 1

2
+ i
√
z,

1

2
− i
√
z; 1, 1; 1

)
=

n∑
k=0

(−1)k

(k!)2

(
n

k

) k−1∏
j=0

((
j +

1

2

)2

+ z

)
. (10)

Remark. The results of [2] imply that the sequence of coefficients of the power series
expansion at z = 0 of the function

fa(z) = (1− z)a−1 2F1(a, a; 1; z) =
∞∑
n=0

An(a)zn.
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is a formal eigenvector of H and hence of T as well. Then A0(a) = 1, A1(a) = 1−a+a2,
. . .. Recall that P̂1(x) = 3

4
− x, see (5). Hence the sequence

(
A0(a), A1(a), A2(a), . . .

)
is a formal eigenvector of T corresponding to the eigenvalue −(1/2 − a)2, and so it
holds true

P̂n

(
−
(

1

2
− a
)2
)

= An(a), ∀n ∈ Z+.

Choosing a = 1
2

+ i
√
x one arrives at the following formula, valid for all n ∈ Z+,

P̂n(x) =
n∑
k=0

(
1
2
− i
√
x
)
n−k

(n− k)!

((
1
2

+ i
√
x
)
k

k!

)2

= 3F2

(
1

2
− i
√
x,

1

2
+ i
√
x,−n; 1, 1; 1

)
, (11)

in agreement with (10).
Let us recall that the Bateman orthogonal polynomials are defined as [3]

Fn(z) = 3F2

(
−n, n+ 1,

1 + z

2
; 1, 1; 1

)
, n ∈ Z+.

The Bateman polynomials are directly related to the Touchard polynomials Qn(x)
by a simple transformation of variable, see [5, 17]. On the other hand, the Bateman
polynomials are a special case of the symmetric continuous Hahn polynomials, see
[10]. By comparison with (11) one has, for any m ∈ Z+,

P̂n

(
−
(

1

2
+m

)2
)

= Fm(−2n− 1), ∀n ∈ Z+.

5 The matrix operator T is positive and essentially

self-adjoint

Proposition. T is positive on the linear hull of the canonical basis in `2(N).

Proof. In order to verify that the matrix T is positive on that domain it suffices to
show all its leading principal minors to be positive. For any N ∈ N denote by T (N)

the N × N truncation of T , i.e. the Nth leading principal submatrix of T , and put
∆N = detT (N). By definition, ∆0 = 1. One may make use of the fact that the sequence
v(0), with v(x) defined in (4), formally belongs to the kernel of T . Using Crammer’s
rule one obtains at once the recurrence rule

P̂N−1(0)∆N = N2P̂N(0)∆N−1, ∀N ∈ N.

Thus to show that all ∆N are positive it suffices to check that the values P̂N(0) are
all positive, and this is the same as saying that all values WN(0) are positive. But

7



this is obvious from formula (9.1.13) in [10] for a generating function of the Wilson
polynomials. In fact, in our particular case that formula claims that

2F1

(
1

4
,
3

4
; 1; t

)2

=
∞∑
n=0

Wn(0)tn

(n!)3
.

Of course, one notes that the coefficients of the hypergeometric power series on the
LHS are all positive.

Corollary. T is essentially self-adjoint.

Proof. One can show that T is essentially self-adjoint by verifying that for some and
hence any x > 0 the formal eigenvector v(−x), as defined in (4), is not a square
summable sequence. But from (10) it follows that P̂n(−1/4) = 1 for all n ∈ Z+.

6 The resulting unitary transform of the Hilbert

matrix

Let us denote H = L2((0,∞), ρ(x)dx) where ρ(x) is given in (8). Let {en; n ∈ N}
stand for the standard basis in `2(N). Then {P̂n(x2); n ∈ Z+} is an orthonormal
basis in H , and there exists a unique unitary mapping U : `2(N) → H such that
(Uen)(x) = P̂n−1(x

2), ∀n ∈ N. We wish to describe the operator UHU−1 explicitly.
We know that the matrix operator T on `2(N), with DomT = span {en; n ∈ N},

is essentially self-adjoint and formally commutes with H. This is to say that

〈Tu,Hv〉 = 〈u,HTv〉, ∀u, v ∈ DomT.

Hence the closure T = Tmax is self-adjoint, and one immediately deduces that

H Dom(T ) ⊂ Dom(T ) and THv = HTv, ∀v ∈ Dom(T ).

Moreover, T is positive and, consequently, the operator (T + 1)−1 is bounded and
commutes with H.

We know that, for any x > 0, the sequence v(x2) defined in (4) is a formal eigen-
vector of T with the eigenvalue x2. This fact implies at once that, ∀n ∈ Z+,

(UTU−1P̂n)(x2) = Tn,n+1P̂n−1(x
2) + Tn+1,n+1P̂n(x2) + Tn+2,n+1P̂n+1(x

2) = x2P̂n(x2).

Hence UTU−1 acts on H as a multiplication operator by the function x2. Moreover,
the bounded operator UHU−1 commutes with U(T + 1)−1U−1 which itself is a mul-
tiplication operator by (x2 + 1)−1. This is a general fact that in that case UHU−1 is
necessarily a multiplication operator by a measurable and almost everywhere bounded
function h(x) (see, for instance, Proposition 1.9 of Supplement 1 in [4] or, alternatively,
Lemma 6.4 in [18]). The function h(x) can be computed explicitly from the equation

h(x) = h(x)P̂0(x
2) = UHU−1P̂0(x

2) = (UHe1)(x
2) =

∞∑
n=0

1

n+ 1
P̂n(x2).
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The above sum converges in H and therefore almost everywhere on (0,+∞).
Rewriting the sum in terms of the continuous dual Hahn polynomials instead of the
polynomials P̂n(x2), one has

h(x) =
∞∑
n=0

Sn(x2)

(n+ 1)!n!
.

This sum can be evaluated with the aid of formula (9.3.12) from [10] for a generating
function, claiming that, in our particular case,

∞∑
n=0

Sn (x2)

(n!)2
tn = (1− t)−1/2+ix 2F1

(
1

2
+ ix,

1

2
+ ix; 1; t

)
.

One may carry out integration in t from 0 to 1 to obtain

h(x) =
∞∑
n=0

((
1
2

+ ix
)
n

n!

)2

B

(
1

2
+ ix, n+ 1

)
=

∞∑
n=0

(
1
2

+ ix
)
n(

n+ 1
2

+ ix
)
n!

=

(
1

2
+ ix

)−1
2F1

(
1

2
+ ix,

1

2
+ ix;

3

2
+ ix; 1

)
.

By Eq. (15.1.20) in [1] and the reflection formula for the gamma function,

2F1(z, z; 1 + z; 1) = Γ(1 + z)Γ(1− z) =
πz

sin(πz)
.

So we conclude that h(x) = π/ cosh(πx), i.e.

UHU−1ψ(x) =
π

cosh(πx)
ψ(x), ∀ψ ∈H .

This is to say that we have diagonalized the Hilbert matrix H regarded as a Hermitian
operator on `2(N).

Theorem. The Hilbert matrix operator H has a pure absolutely continuous spectrum,
and one has specH = [0, π].

Remark. It also follows that, ∀m,n ∈ Z+,

1

m+ n+ 1
= 〈em+1, Hen+1〉 =

ˆ ∞
0

h(x)P̂m(x2)P̂n(x2)ρ(x) dx.

Using explicit expressions one has, in terms of the continuous dual Hahn polynomials,

ˆ ∞
0

t sinh(t)

cosh3(t)
Sm

(
t2

π2

)
Sn

(
t2

π2

)
dt =

(m!n!)2

2(m+ n+ 1)
.
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