next up previous
Next: About this document ...

LIST OF CITATIONS ACCORDING TO
SCIENCE CITATION INDEX

PAVEL ŠŤOVÍČEK

Department of Mathematics, Faculty of Nuclear Science,
Czech Technical University, Trojanova 13, 120 00 Prague, Czech Republic

  1. P. Šťovíček, J. Tolar, Quantum mechanics in a discrete space-time,
    (A) preprint ICTP Trieste IC/79/147 (1979),
    [1] Jagannathan R., Santhanam T.S., Vasudevan R.: Finite-dimensional quantum-mechanics of a particle, Int. J. Theor. Phys. 20 (1981) 755-773
    [2] Jagannathan R., Santhanam T.S.: Finite-dimensional quantum-mechanics of a particle. 2., Int. J. Theor. Phys. 21 (1982) 351-362
    [3] Santhanam T.S.: Quantum-mechanics in a finite number of dimensions, Physica A 114 (1982) 445-447
    [4] Jagannathan R.: Finite-dimensional quantum-mechanics of a particle. 3. The Weylian quantum-mechanics of confined quarks, Int. J. Theor. Phys. 22 (1983) 1105-1121
    [5] Shupe M.A.: The Lorentz invariant vacuum medium, Amer. J. Phys. 53 (1985) 122-127
    [6] Barut A.O., Bracken A.J.: Compact quantum-systems - internal geometry of relativistic systems, J. Math. Phys. 26 (1985) 2515-2519
    [7] Kamupingene A.H., Palev T.D., Tsaneva S.P.: Wigner quantum-systems 2 particles interacting via a harmonic potential. 1. Two-dimensional space, J. Math. Phys. 27 (1986) 2067-2075
    (B) Rep. Math. Phys. 20 (1984) 157-170.
    [8] Fawcett R.J.B., Bracken A.J.: Simple orthogonal and unitary compact quantum-systems and the Inonu-Wigner contraction, J. Math. Phys. 29 (1988) 1521-1528
    [9] Sanchezruiz J.: States and minimal joint uncertainty for complementary observables in 3-dimensional Hilbert-space, J. Phys. A: Math. Gen. 27 (1994) L843-L846
    [10] Hajicek P.: Group quantitation of parametrized systems. 1. Time levels, J. Math. Phys. 36 (1995) 4612-4638
    [11] Opatrny T., Buzek V., Bajer J., Drobny G.: Propensities in discrete phase spaces - Q-function of a state in a finite-dimensional Hilbert-space, Phys. Rev. A 52 (1995) 2419-2428
    [12] Galetti D., Marchiolli M.A.: Discrete coherent states and probability distributions in finite-dimensional spaces, Ann. Phys. 249 (1996) 454-480
    [13] Opatrny T., Welsch D.G., Buzek V.: Parametrized discrete phase-space functions, Phys. Rev. A 53 (1996) 3822-3835
    [14] Torma P., Jex I., Stenholm S.: Beam splitter realizations of totally symmetrical mode couplers, J. Mod. Opt. 43 (1996) 245-251
    [15] Torma P., Jex I.: Plate beam splitters and symmetric multiports, J. Mod. Opt. 43 (1996) 2403-2408
    [16] Opatrny T.: Number phase uncertainty relations, J. Phys. A: Math. Gen. 28 (1995) 6961-6975
    [17] Leonhardt U.: Discrete Wigner function and quantum-state tomography, Phys. Rev. A 53 (1996) 2998-3013
    [18] Torma P., Jex I.: Two-mode entanglement in passive networks, J. Mod. Optics 44 (1997) 875-882
    [19] Varadarajan V.S.: Path integrals for a class of p-adic Schrödinger-equations, Lett. Math. Phys. 39 (1997) 97-106
    [20] Floratos E.G., Leontaris G.K.: Uncertainty relation and non-dispersive states in finite quantum mechanics, Phys. Lett. B 412 (1997) 35-41
    [21] Dobrev V.K., Doebner H.D., Twarock R.: Quantization of kinematics and dynamics on S-1 with difference operators and a related q-deformation of the Witt algebra, J. Phys. A-Math. Gen. 30 (1997) 6841-6859
    [22] Athanasiu G.G., Floratos E.G., Nicolis S.: Fast quantum maps, J. Phys. A: Math. Gen. 31 (1998) L655-662
    [23] Galetti D., Ruzzi M.: Dynamics in discrete phase spaces and time-interval operator, Physica A 264 (1999) 473-491
    [24] Digernes T., Husstad E., Varadarajan V.S.: Finite approximation of Weyl systems, Math. Scand. 84 (1999) 261-283
    [25] Bouda J., Buzek V.: Entanglement swapping between multi-qudit systems, J. Phys. A: Math. Gen. 34 (2001) 4301-4311
    [26] Braunstein S.L., Buzek V., Hillery M.: Quantum-information distributors: Quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit, Phys. Rev. A 6305 (2001) 2313
    [27] Lobo A.C., Nemes M.C.: A coordinate independent formulation of the Weyl-Wigner transform theory, Physica A 311 (2002) 111-129
    [28] Varadarajan V.S.: Some remarks on arithmetic physics, J. Stat. Plan. Infer. 103 (2002) 3-13
    [29] Neuhauser M.: An explicit construction of the metaplectic representation over a finite field, J. Lie Theory 12 (2002) 15-30
    [30] Schulte J.: Harmonic analysis on finite Heisenberg groups, Europ. J. Combinatorics 25 (2004) 327-338
    [31] Patera J., Pelantova E., Svobodova M.: Fine group gradings of the real forms of sl(4,C), sp(4,C), and o(4,C), J. Math. Phys. 48 (2007) art. no. 093503
    [32] Kibler M.R.: Variations on a theme of Heisenberg, Pauli and Weyl, J. Phys. A: Math. Theor. 41 (2008) art. no. 375302
    [33] Vourdas A.: Quantum mechanics on p-adic numbers, J. Phys. A: Math. Theor. 41 (2008) art. no. 455303
    [34] Kibler M.R.: An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, the unitary group and the Pauli group, J. Phys. A: Math. Theor. 42 (2009) art. no. 353001
    [35] Cotfas N., Gazeau J.P.: Finite tight frames and some applications, J. Phys. A: Math. Theor. 43 (2010) art. no. 193001
    [36] Santhanam T.S.: Clifford Algebra, its Generalizations, and Applications to Quantum Information and Computing , Adv. appl. Clifford alg. 20 (2010) 885–892
    [37] Cotfas N., Gazeau J.P., Vourdas A.: Finite-dimensional Hilbert space and frame quantization, J. Phys. A: Math. Theor. 44 (2011) art. no. 175303

  2. P. Šťovíček, Quantization and systems of imprimitivity for the group of diffeomorphisms, in ``XV DGM Conference'', eds. H.D. Doebner, J. Henning (World Scientific, 1987) 208-217.
    [1] Doebner H.D., Tolar J.: Infinite-dimensional symmetries, Annalen Phys. 47 (1990) 116-122
    [2] Albertin U.K.: The diffeomorphism group and flat principal bundles, J. Math. Phys. 32 (1991) 1975-1980

  3. P. Šťovíček, Systems of imprimitivity for the group of diffeomorphisms, Ann. Global Anal. Geom. 5 (1987) 89-95.
    [1] Doebner H.D., Tolar J.: Infinite-dimensional symmetries, Annalen Phys. 47 (1990) 116-122

  4. P. Šťovíček, Gell-Mann formula for simple complex Lie groups and geometric quantization, J. Math. Phys. 29 (1988) 1300-1307.
    [1] Havlicek M., Moylan P.: An embedding of the Poincaré Lie algebra into an extension of the Lie field of so0(1,4), J. Math. Phys. 34 (1993) 5320-5332
    [2] Moylan P.: Embedding Euclidean Lie algebras into quantum structure, Czech. J. Phys. 47 (1997) 1251-1258
    [3] Moylan P.: Representations of classical lie algebras from their quantum deformations, Group 24: Physical and Mathematical Aspects of Symmetries, eds. J.-P. Gazeau et al., Institue of Physics Conference Series Vol. 173, (Institue of Physics Publishing, Bristol and Philadelphia, 2002) pp. 683-686
    [4] Salom I., Sijacki D.: Generalization of the Gell-Mann formula for sl(5, R) and su(5) algebras, Int. J. Geom. Methods Mod. Phys. 7 (2010) 455-470
    [5] Salom I., Sijacki D.: Generalization of the Gell-Mann decontraction formula FOR sl(n, R) and su(n) algebras, Int. J. Geom. Methods Mod. Phys. 8 (2011) 395-410

  5. P. Exner, P. Šeba, P. Šťovíček, Quantum interference on graphs controlled by an external electric field, J. Phys. A: Math. Gen. 21 (1988) 4009-4019.
    [1] Washburn S., Webb R.A.: Quantum transport in small disordered samples from the diffusive to the ballistic regime, Rep. Progr. Phys. 55 (1992) 1311-1383
    [2] Kostrykin V., Schrader R.: Kirchhoff's rule for quantum wires, J. Phys. A: Math. Gen. 32 (1999) 595-630
    [3] Kuchment P.: Graph models for waves in thin structures, Waves Random Media 12 (2002) R1-R24
    [4] Dabaghian Y., Blumel R.: Explicit analytical solution for scaling quantum graphs, Phys. Rev. E 68 (2003) art. no. 055201
    [5] Harmer M.: Inverse scattering on matrices with boundary conditions, J. Phys. A: Math. Gen. 38 (2005) 4875-4885
    [6] Brown B.M., Weikard R.: A Borg-Levinson theorem for trees, Proc. R. Soc. A 461 (2005) 3231-3243
    [7] Currie S., Watson B.A.: The M-matrix inverse problem for the Sturm-Liouville equation on graphs, Proc. R. Soc. Edinb., Sect. A, Math. 139 (2009) 775-796

  6. P. Šťovíček, The Green function for the two-solenoid Aharonov-Bohm effect, Phys. Lett. 142A (1989) 5-10.
    [1] Deveigy A.D., Ouvry S.: Topological 2-dimensional quantum-mechanics, Phys. Lett. B 307 (1993) 91-99
    [2] Deveigy A.D., Ouvry S.: On the Aharonov-Bohm scattering, Comptes Rendus Acad. Sci. Serie II 318 (1994) 19-25
    [3] Zhang J.Z., Muller-Kirsten H.J.W., Rana J.M.S., Zimmerschied F.: Quantization of a particle in the field of an elliptic flux tube, J. Phys.  A: Math. Gen. 31 (1998) 7291-7299
    [4] Grosche C., Steiner F.: Handbook of Feynman Path Integrals - Introduction, Springer Tracts in Modern Physics 145 (1998) 1
    [5] Nambu Y.: The Aharonov-Bohm problem revisited, Nucl. Phys. B 579 (2000) 590-616
    [6] Hannay J.H., Thain A.: Exact scattering theory for any straight reflectors in two dimensions, J. Phys. A: Math. Gen. 36 (2003) 4063-4080
    [7] Giraud O.: Diffractive orbits in isospectral billiards, J. Phys. A: Math. Gen. 37 (2004) 2751-2764
    [8] Giraud O., Thain A., Hannay J.H.: Shrunk loop theorem for the topology probabilities of closed Brownian (or Feynman) paths on the twice punctured plane, J. Phys. A: Math. Gen. 37 (2004) 2913-2935
    [9] Mashkevich S., Myrheim J., Ouvry S.: Quantum mechanics of a particle with two magnetic impurities, Phys. Lett. A 330 (2004) 41-47
    [10] Mine T.: The Aharonov-Bohm solenoids in a constant magnetic field, Ann. Henri Poincaré 6 (2005) 125-154
    [11] Ouvry S.: Random Aharonov-Bohm vortices and some exactly solvable families of integrals, J. Stat. Mech. (2005) art. no. P09004
    [12] Bogomolny E., Mashkevich S., Ouvry S.: Scattering on two Aharonov-Bohm vortices with opposite fluxes, J. Phys. A: Math. Theor. 43 (2010) art. no. 354029

  7. P. Exner, P. Šeba, P. Šťovíček, On existence of a bound state in an L-shaped waweguide, Czech. J. Phys. B 39 (1989) 1181-1191.
    [1] Martorell J., Klarsfeld S., Sprung D.W.L., Wu H.: Analytical treatment of electron wave-propagation in 2-dimensional structures, Solid State Commun. 78 (1991) 13-18
    [2] Wu H., Sprung D.W.L., Martorell J.: Electronic-properties of a quantum wire with arbitrary bending angle, J. Appl. Phys. 72 (1992) 151-154
    [3] Goldstone J., Jaffe R.L.: Bound-states in twisting tubes, Phys. Rev. B 45 (1992) 14100-14107
    [4] Wu H., Sprung D.W.L., Martorell J.: Effective one-dimensional square-well for 2-dimensional quantum wires, Phys. Rev. B 45 (1992) 11960-11967
    [5] Washburn S., Webb R.A.: Quantum transport in small disordered samples from the diffusive to the ballistic regime, Rep. Progr. Phys. 55 (1992) 1311-1383
    [6] Wu H., Sprung D.W.L., Martorell J.: Periodic quantum wires and their quasi-one-dimensional nature, J. Phys. D 26 (1993) 798-803
    [7] Vacek K., Okiji A., Kasai H.: Multichannel ballistic magnetotransport through quantum wires with double circular bends, Phys. Rev. B 47 (1993) 3695-3705
    [8] Wu H., Sprung D.W.L.: Theoretical-study of multiple-bend quantum wires, Phys. Rev. B 47 (1993) 1500-1505
    [9] Yuan S.Q., Gu B.Y.: Characteristics of quantum conductance in a quasi-one-dimension quantum-wire containing cavity structures, Zeit. Phys. B - Condensed Matter 92 (1993) 47-53
    [10] Wu H., Sprung D.W.L.: Quantum probability flow patterns, Phys. Lett. A 183 (1993) 413-417
    [11] Wu H., Sprung D.W.L.: Inverse-square potential and the quantum vortex, Phys. Rev. A 49 (1994) 4305-4311
    [12] Renger W., Bulla W.: Existence of bound-states in quantum wave-guides under weak conditions, Lett. Math. Phys. 35 (1995) 1-12
    [13] Andrews M., Savage C.M.: Bound-states of 2-dimensional nonuniform wave-guides, Phys. Rev. A 50 (1994) 4535-4537
    [14] Whelan N.D.: Semiclassical quantization using diffractive orbits, Phys. Rev. Lett. 76 (1996) 2605-2608
    [15] Pichugin K.N., Sadreev A.F.: Irregular Aharonov-Bohm oscillations in finite width rings, Zhurnal Eksperimentalnoi Teor. Fiz. 109 (1996) 546-561
    [16] Bulla W., Gesztesy F., Renger W., Simon B.: Weakly coupled bound states in quantum waveguides, Proc. Amer. Math. Soc. 125 (1997) 1487-1495
    [17] Bulgakov E.N., Sadreev A.F.: Transport phenomena in a two-dimensional ring under the influence of radiation field, Phys. Low-Dimens. Struct. 1-2 (1997) 33-49
    [18] Razavy M.: Bound-states in three-dimensional quantum wires, Phys. Lett. A 228 (1997) 239-242
    [19] Razavy M.: Bound-states and propagating modes in quantum wires with sharp bends and/or constrictions, Phys. Rev. A 55 (1997) 4102-4108
    [20] Razavy M.: Reflection and transmission coefficients for two- and three-dimensional quantum wires, Int. J. Mod. Phys. B 11 (1997) 2777-2790
    [21] Bulgakov E.N., Sadreev A.F.: Mixing of bound-states with electron-transport by a radiation-field in waveguides, J. Exp. Theor. Phys. 87 (1998) 1058-1067
    [22] Razavy M.: Bound states in two-dimensional crossed or bent quantum wires, Int. J. Mod. Phys. B 12 (1998) 1907-1919
    [23] Duclos P.: Open quantum dots: Resonances from perturbed symmetry and bound states in strong magnetic fields, Rep. Math. Phys. 47 (2001) 253-267
    [24] Bulgakov E.N., Sadreev, A.F.: The effect of bound states in microwave waveguides on electromagnetic wave propagation, Tech. Phys. 46 (2001) 1281-1290
    [25] Olendski O., Mikhailovska L.: Bound-state evolution in curved waveguides and quantum wires, Phys. Rev. B 66 (2002) art. no. 035331
    [26] Kuchment P.: Graph models for waves in thin structures, Waves Random Media 12 (2002) R1-R24
    [27] Olendski O., Mikhailovska L.: Fano resonances of a curved waveguide with an embedded quantum dot, Phys. Rev. B 67 (2003) art. no. 035310
    [28] Olendski O., Mikhailovska L.: Localized-mode evolution in a curved planar waveguide with combined Dirichlet and Neumann boundary conditions, Phys. Rev. E 67 (2003) art. no. 056625
    [29] Levin D.: On the spectrum of the Dirichlet Laplacian on broken strips, J. Phys. A: Math. Gen. 37 (2004) L9-L11
    [30] Melgaard M.: Bound states for the three-dimensional Aharonov-Bohm quantum wire, Few-Body Systems 35 (2004) 77-97
    [31] Krejčiřík D., Kříž J.: On the spectrum of curved planar waveguides, Publications of the Research Institute for Mathematical Sciences 41 (2005) 757-791
    [32] Olendski O., Mikhailovska L.: Curved quantum waveguides in uniform magnetic fields, Phys. Rev. B 72 (2005) art. no. 235314
    [33] Maksimov D.N., Sadreev A.F.: Bound states in elastic waveguides, Phys. Rev. E 74 (2006) art. no. 016201
    [34] Duclos P., Hogreve H.: Hydrogenic systems confined by infinite tubes, J. Phys. A: Math. Theor. 43 (2010) art. no. 474018
    [35] Dell'Antonio G.F., Costa E.: Effective Schrödinger dynamics on epsilon-thin Dirichlet waveguides via quantum graphs: I. Star-shaped graphs, J. Phys. A: Math. Theor. 43 (2010) art. no. 474014
    [36] Vakhnenko O.O.: Bend-imitating models of abruptly bent electron waveguides, J. Math. Phys. 52 (2011) art. no. 073513
    [37] Amore P., Rodriguez M., Terrero-Escalante C.A.: Bound states in open-coupled asymmetrical waveguides and quantum wires, J. Phys. A: Math. Theor. 45 (2012) art. no. 105303

  8. P. Exner, P. Šeba, P. Šťovíček, Quantum waveguides, in LNP 324 : ``Applications of self-adjoint extensions in quantum physics'', eds. P. Exner, P. Šeba, (Springer-Verlag, Berlin-Heilderberg, 1989).
    [1] Popov I.Y., Popova S.L.: The extension theory and resonances for a quantum wave-guide, Phys. Lett. A 173 (1993) 484-488
    [2] Popov I.Y., Popova S.L.: Zero-width slit model and resonances in mesoscopic systems, Europh. Lett. 24 (1993) 373-377
    [3] Gagel F., Maschke K.: Dc magnetotransport and Hall-effect in multiply connected quantum-wire systems, Phys. Rev. B 49 (1994) 17170-17176
    [4] Popov I.Y., Popova S.L.: Model of zero width gaps and resonance effects in quantum wave-guide, Zh. Tekh. Fiz. 64 (1994) 23-31
    [5] Geyler V.A., Popov I.Y.: The spectrum of a magneto-Bloch electron in a periodic array of quantum dots - explicitly solvable model, Z. Phys. B Con. Mat. 93 (1994) 437-439
    [6] Popov I.Y.: Quantum point model as resonator with semitransparent boundary, Fiz. Tverd. Tel. 36 (1994) 1918-1922
    [7] Popov I.Y.: The extension theory, domains with semitransparent surface and the model of quantum dot, Proc. R. Soc. Lond. A 452 (1996) 1505-1515
    [8] Popova S.L.: Unlocking of quantum waveguides, Pisma Zh. Tekh. Fiz. 22 (1996) 55-57
    [9] Wan K.K., Fountain R.M.: Quantization by parts, self-adjoint extensions, and a novel derivation of the Josephson equation in superconductivity, Found. Phys. 26 (1996) 1165-1199
    [10] Harrison F.E., Wan K.K.: Macroscopic quantum systems as measuring devices: Dc SQUIDs and superselection rules, J. Phys. A: Math. Gen. 30 (1997) 4731-4755
    [11] Wan K.K., Fountain R.H.: Quantization by parts, maximal symmetrical operators, and quantum circuits, Int. J. Theor. Phys. 37 (1998) 2153-2186
    [12] Trueman C., Wan K.K.: Single point interactions, quantization by parts, and boundary conditions, J. Math. Phys. 41 (2000) 195-205

  9. P. Šťovíček, Green function for the Aharonov-Bohm effect with a non-Abelian gauge group, in ``Order, disorder and chaos in quantum mechanics'', Oper. Theory Adv. Appl. 46, eds. P. Exner, H. Neidhardt (Birkhäuser Verlag, Basel 1990) 183-193.
    [1] Mine T.: The Aharonov-Bohm solenoids in a constant magnetic field, Ann. Henri Poincaré 6 (2005) 125-154

  10. P. Exner, P. Šeba, P. Šťovíček, Semiconductor edges can bind electrons, Phys. Lett. 150A (1990) 179-182.
    [1] Takagi S., Tanzawa T.: Quantum-mechanics of a particle confined to a twisted ring, Prog. Theor. Phys. 87 (1992) 561-568
    [2] Ikegami M., Nagaoka Y.: Electron motion on a curved interface, Surface Science 263 (1992) 193-198
    [3] Goldstone J., Jaffe R.L.: Bound-states in twisting tubes, Phys. Rev. B 45 (1992) 14100-14107
    [4] Dunne G., Jaffe R.L.: Bound-states in twisted Aharonov-Bohm tubes, Ann. Phys.-New York 223 (1993) 180-196
    [5] Herbut I.F.: Resonances in bent quantum wires, J. Phys. - Condensed Matter 5 (1993) L607-L611
    [6] Maraner P.: A complete perturbative expansion for quantum-mechanics with constraints, J. Phys. A: Math. Gen. 28 (1995) 2939-2951
    [7] Andrews M., Savage C.M.: Bound-states of 2-dimensional nonuniform wave-guides, Phys. Rev. A 50 (1994) 4535-4537
    [8] Maraner P.: Monopole gauge fields and quantum potentials induced by the geometry in simple dynamical-systems, Ann. Phys. 246 (1996) 325-346
    [9] Yaman K., Pincus P., Solis F., Witten T.A.: Polymers in curved boxes, Macromolecules 30 (1997) 1173-1178
    [10] Fujii K., Ogawa N., Uchiyama S., Chepilko N.M.: Geometrically induced gauge structure on manifolds embedded in a higher-dimensional space, Int. J. Mod. Phys. A 12 (1997) 5235-5277
    [11] Olendski O., Mikhailovska L.: Bound-state evolution in curved waveguides and quantum wires, Phys. Rev. B 66 (2002) art. no. 035331
    [12] Kuchment P.: Graph models for waves in thin structures, Waves Random Media 12 (2002) R1-R24
    [13] Olendski O., Mikhailovska L.: Fano resonances of a curved waveguide with an embedded quantum dot, Phys. Rev. B 67 (2003) art. no. 035310
    [14] Olendski O., Mikhailovska L.: Localized-mode evolution in a curved planar waveguide with combined Dirichlet and Neumann boundary conditions, Phys. Rev. E 67 (2003) art. no. 056625
    [15] Olendski O., Mikhailovska L.: Curved quantum waveguides in uniform magnetic fields, Phys. Rev. B 72 (2005) art. no. 235314
    [16] Annino G., Yashiro H., Cassettari M., Martinelli M.: Properties of trapped electromagnetic modes in coupled waveguides, Phys. Rev. B 73 (2006) art. no. 125308
    [17] Annino G., Cassettari M., Martinelli M.: A New Concept of Open TE011 Cavity, IEEE Trans. Microwave Theory Techniques 57 (2009) 775-783

  11. P. Šťovíček, On the initial condition for instanton solutions, Commun. Math. Phys. 136 (1991) 53-82.
    [1] Chen H.Y., Eto M., Hashimoto K.: The shape of instantons: cross-section of supertubes and dyonic instantons, J. High Energy Phys. JHEP01 (2007) art. no. 017

  12. P. Šťovíček, Krein's formula approach to the multi-solenoid Aharonov-Bohm effect, J. Math. Phys. 32 (1991) 2114-2122.
    [1] Dell'Antonio G.: Schrödinger operators for Plektons, Int. J. Mod. Phys. B 10 (1996) 1649-1663
    [2] Albeverio S., Koshmanenko V.: On form-sum approximations of singularly perturbed positive self-adjoint operators, J. Func. Anal. 169 (1999) 32-51
    [3] Hannay J.H., Thain A.: Exact scattering theory for any straight reflectors in two dimensions, J. Phys. A: Math. Gen. 36 (2003) 4063-4080
    [4] Giraud O.: Diffractive orbits in isospectral billiards, J. Phys. A: Math. Gen. 37 (2004) 2751-2764
    [5] Mine T.: The Aharonov-Bohm solenoids in a constant magnetic field, Ann. Henri Poincaré 6 (2005) 125-154

  13. P. Šťovíček, Scattering matrix for the two-solenoid Aharonov-Bohm effect, Phys. Lett. 161A (1991) 13-20.
    [1] Gu Z.Y., Qian S.W.: Aharonov-Bohm scattering on 2 antiparallel flux lines of the same magnitude without return flux, J. Phys. A: Math. Gen. 26 (1993) 4441-4449
    [2] Ito H.T., Tamura H.: Aharonov-Bohm effect in scattering by a chain of point-like magnetic fields, Asymptotic Anal. 34 (2003) 199-240
    [3] Ito H.T., Tamura H.: Semiclassical analysis for magnetic scattering by two solenoidal fields, J. London Math. Soc. second series 74 (2006) 695-716
    [4] Tamura H.: Semiclassical analysis for magnetic scattering by two solenoidal fields: Total cross sections, Ann. Henri Poincaré 8 (2007) 1071-1114
    [5] Tamura H.: Semiclassical analysis for spectral shift functions in magnetic scattering by two solenoidal fields, Rev. Math. Phys. 20 (2008) 1249-1282
    [6] Bogomolny E., Mashkevich S., Ouvry S.: Scattering on two Aharonov-Bohm vortices with opposite fluxes, J. Phys. A: Math. Theor. 43 (2010) art. no. 354029

  14. P. Šťovíček, The instanton moduli spaces as algebraic sets, J. Geom. Phys. 9 (1992) 183-205.
    [1] Chen H.Y., Eto M., Hashimoto K.: The shape of instantons: cross-section of supertubes and dyonic instantons, J. High Energy Phys. JHEP01 (2007) art. no. 017

  15. B. Jurčo, P. Šťovíček, Quantum dressing orbits on compact groups,
    (A) preprint LMU-TPW-1992-3 (1992),
    [1] Soibelman Y.: Orbit method for the algebras of functions on quantum groups and coherent states. I., Duke Math. J. 70 (1993) A151-A163
    [2] Alekseev A.Y., Malkin A.Z.: Symplectic structures associated to Lie-Poisson groups, Commun. Math. Phys. 162 (1994) 147-173
    (B) Commun. Math. Phys. 152 (1993) 97-126.
    [3] Majid S.: The quantum double as quantum-mechanics, J. Geom. Phys. 13 (1994) 169-202
    [4] Olshanetsky M.A., Rogov V.B.K.: Liouville quantum-mechanics on a lattice from geometry of quantum Lorentz group, J. Phys. A: Math. Gen. 27 (1994) 4669-4683
    [5] Sheu A.J.L.: Leaf-preserving quantizations of Poisson SU(2) are not coalgebra homomorphisms, Commun. Math. Phys. 172 (1995) 287-292
    [6] Zabrodin A.V.: Quantum transfer matrices for discrete and continuous quasi-exactly solvable problems, Theor. Math. Phys. 104 (1995) 762-776
    [7] Sheu A.J.L.: Symplectic leaves and deformation quantization, Proc. Amer. Math. Soc. 124 (1996) 95-100
    [8] Sheu A.J.L.: Compact quantum groups and groupoid C*-algebras, J. Fun. Anal. 144 (1997) 371-393
    [9] Škoda Z.: Coherent states for Hopf algebras, Lett. Math. Phys. 81 (2007) 1-17
    [10] Bieliavsky P., Jego C., Troost J.: Open strings in Lie groups and associative products, Nucl. Phys. B 782 (2007) 94-133
    [11] Aizawa N., Chakrabarti R.: The coherent state on SUq(2) homogeneous space, J. Phys. A: Math. Theor. 42 (2009) art. no. 295208

  16. P. Šťovíček, Quantum line bundles on $S^2$ and method of orbits for $SU_q(2)$, J. Math. Phys. 34 (1993) 1606-1613.
    [1] Dabrowski L., Sobczyk J.: Left regular representation and contraction of SL(q)(2) to E(q)(2), Lett. Math. Phys. 32 (1994) 249-258
    [2] Chu C.S., Ho P.M., Zumino B.: The quantum 2-sphere as a complex quantum manifold, Z. Phys. C 70 (1996) 339-344
    [3] Aizawa N., Chakrabarti R.: The coherent state on SUq(2) homogeneous space, J. Phys. A: Math. Theor. 42 (2009) art. no. 295208

  17. P. Šťovíček, Quantum Grassmann manifolds, Commun. Math. Phys. 158 (1993) 135-153.
    [1] Jurco B., Schlieker M.: On Fock-space representations of quantized enveloping-algebras related to noncommutative differential geometry, J. Math. Phys. 36 (1995) 3814-3821
    [2] Chu C.S., Ho P.M., Zumino B.: Geometry of the quantum complex projective space CPq(N), Z. Phys. C 72 (1996) 163-170

  18. P. Šťovíček, Scattering on two solenoids, Phys. Rev. A 48 (1993) 3987-3990.
    [1] Ito H.T., Tamura H.: Aharonov-Bohm effect in scattering by a chain of point-like magnetic fields, Asymptotic Anal. 34 (2003) 199-240
    [2] Ito H.T., Tamura H.: Semiclassical analysis for magnetic scattering by two solenoidal fields, J. London Math. Soc. second series 74 (2006) 695-716
    [3] Tamura H.: Semiclassical analysis for magnetic scattering by two solenoidal fields: Total cross sections, Ann. Henri Poincaré 8 (2007) 1071-1114
    [4] Tamura H.: Semiclassical analysis for spectral shift functions in magnetic scattering by two solenoidal fields, Rev. Math. Phys. 20 (2008) 1249-1282
    [5] Bogomolny E., Mashkevich S., Ouvry S.: Scattering on two Aharonov-Bohm vortices with opposite fluxes, J. Phys. A: Math. Theor. 43 (2010) art. no. 354029

  19. P. Duclos, P. Exner, P. Šťovíček, Curvature-induced resonances in a two-dimensional Dirichlet tube, Ann. Inst. H. Poincaré 62 (1995) 81-101.
    [1] Nedelec L.: On the resonances of the Dirichlet operator in a tube, Commun. Partial Differ. Equ. 22 (1997) 143-163
    [2] Na K.S., Reichl L.E.: Electron conductance and lifetimes in a ballistic electron wave-guide, J. Stat. Phys. 92 (1998) 519-542
    [3] Croc E., Iftimie V.: Wave operators in a multistratified strip, Integr. Equ. Oper. Theory 33 (1999) 389-405
    [4] Poisson O.: Bound on the counting function for the eigenvalues of an infinite multistratified acoustic strip, Math. Meth. Appl. Sci. 22 (1999) 773-790
    [5] Matsutani S.: Dirac operator on a conformal surface immersed in R-4: A way to further generalized Weierstrass equation, Rev. Math. Phys. 12 (2000) 431-444
    [6] Kuchment P.: Graph models for waves in thin structures, Waves Random Media 12 (2002) R1-R24
    [7] Krejčiřík D., de Aldecoa R.T.: The nature of the essential spectrum in curved quantum waveguides, J. Phys. A: Math. Gen. 37 (2004) 5449-5466
    [8] de Aldecoa R.T.: Time delay and short-range scattering in quantum waveguides, Ann. Inst. H. Poincaré 7 (2006) 105-124
    [9] Melgaard M.: Strong asymptotic completeness for quantum wires, Proceedings of the International Conference Days on Diffraction 2006 (Russian Foundation Basic Research, St Petersburg, 2006) pp. 178-186
    [10] Melgaard M.: Confinement effects on scattering for a nanoparticle, Acta Phys. Polonica B 38 (2007) 197-214
    [11] Kovařík H., Sacchetti A.: Resonances in twisted quantum waveguides, J. Phys. A: Math. Theor. 40 (2007) 8371-8384
    [12] Melgaard M.: Quantum collisions in semi-constrained structures, Mod. Phys. Lett. B 21 (2007) 767-779
    [13] Melgaard M.: Confinement effects on scattering for a nanoparticle, APLIMAT 2007 - 6th International Conference (2007) pp. 225-233
    [14] Hein S., Koch W.: Acoustic resonances and trapped modes in pipes and tunnels, J. Fluid Mech. 605 (2008) 401-428
    [15] Cacciapuoti C., Carlone R., Figari R.: Resonances in models of spin-dependent point interactions, J. Phys. A: Math. Theor. 42 (2009) art. no. 035202
    [16] Olendski O., Mikhailovska L.: Theory of a curved planar waveguide with Robin boundary conditions, Phys. Rev. E 81 (2010) art. no. 036606
    [17] Molchanov S., Vainberg B.: Wave propagation in periodic networks of thin fibers, Waves Random Complex Media 20 (2010) 260-275
    [18] Cacciapuoti C., Carlone R., Figari R.: Perturbations of eigenvalues embedded at threshold: I. One- and three-dimensional solvable models, J. Phys. A: Math. Theor. 43 (2010) art. no. 474009
    [19] Borisov D., Cardone G.: Planar wave guide with "twisted" boundary conditions: Discrete spectrum, J. Math. Phys. 52 (2011) art. no. 123513
    [20] de Oliveira C.R.: Quantum singular operator limits of thin Dirichlet tubes via gamma-convergence, Rep. Math. Phys. 67 (2011) 1-32
    [21] Cacciapuoti C., Carlone R., Figari R.: Perturbations of eigenvalues embedded at threshold: Two-dimensional solvable models, J. Math. Phys. 52 (2011) art. no. 083515
    [22] Rabinovich V.S., Roch S.: Exponential estimates of solutions of pseudodifferential equations with operator-valued symbols: Applications to Schrödinger operators with operator-valued potentials, ``Complex Analysis and Dynamical Systems IV: Part 2. General Relativity, Geometry, and PDE'', Book Series: Contemporary Mathematics, Vol. 554, (AMS, Providence, 2011) pp. 147-163
    [23] Kalvin V.: Limiting Absorption Principle and Perfectly Matched Layer Method for Dirichlet Laplacians in Quasi-cylindrical Domains, SIAM J. Math. Anal. 44 (2012) 355-382

  20. P. Šťovíček, Scattering on a finite chain of vortices, Duke Math. J. 74 (1994) 763-776.
    [1] Dell'Antonio G., Figari R., Teta A.: Statistics in space dimension two, Lett. Math. Phys. 40 (1997) 235-256
    [2] Bentosela F., Exner P., Zagrebnov V.A.: Electron trapping by a current vortex, J. Phys. A: Math. Gen. 31 (1998), L305-L311
    [3] Hillairet L.: Spectral decomposition of square-tiled surfaces, Math. Z. 260 (2008) 393-408

  21. P. Duclos, P. Šťovíček, Quantum Fermi accelerators with pure point quasi-spectrum,
    (A) preprint Marseille CPT-94/3127 (1994),
    [1] Joye A.: Upper bounds for the energy expectation in time-dependent quantum mechanics, J. Stat. Phys. 85 (1996) 575-606
    (B) in "Partial Differential Equations", eds. M. Demuth et al., Operator Theory, Advances and Applications 78 (Birkhäuser Verlag, Basel, 1995) 109-118.

  22. P. Šťovíček, Anyons defined by boundary conditions, "Workshop on Singular Schrödinger Operators", SISSA Trieste, ILAS/FM-16/1995.
    [1] Dell'Antonio G., Figari R., Teta A.: Statistics in space dimension two, Lett. Math. Phys. 40 (1997) 235-256

  23. P. Duclos, P. Šťovíček, Floquet Hamiltonians with pure point spectrum,
    (A) preprint Marseille CPT-94/3128 (1994),
    [1] Joye A.: Upper bounds for the energy expectation in time-dependent quantum mechanics, J. Stat. Phys. 85 (1996) 575-606
    (B) Commun. Math. Phys. 177 (1996) 327-347.
    [2] Scherer W.: Quantum averaging. III. Time-dependent systems, J. Math. Phys. 39 (1998) 2597-2634
    [3] Monti F., Jauslin H.R.: Quantum Nekhoroshev theorem for quasi-periodic Floquet Hamiltonians, Rev. Math. Phys. 10 (1998) 393-428
    [4] Haba Z.: Stochastic correction to the semiclassical evolution of quantum wave packets, Lett. Math. Phys. 47 (1999) 321-328
    [5] Scherer W.: Existence of averaging integrals for self-adjoint operators, Proceedings of the QMath7 Conference, Eds. J. Dittrich, P. Exner, M. Tater, Series ``Mathematical Results in Quantum Mechanics'', Vol. 108 (Birkhäuser, Basel, 1999) pp. 359-364
    [6] Jauslin H.R., Guerin S., Thomas S.: Quantum averaging for driven systems with resonances, Physica A 279 (2000) 432-442
    [7] Graffi S., Yajima K.: Absolute continuity of the Floquet spectrum for a nonlinearly forced harmonic oscillator, Commun. Math. Phys. 215 (2000) 245-250
    [8] Bambusi D., Graffi S.: Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Commun. Math. Phys. 219 (2001) 465-480
    [9] Bourget O.: Singular continuous Floquet operator for systems with increasing gaps, J. Math. Anal. Appl. 276 (2002) 28-39
    [10] Bourget O., Howland J.S., Joye A.: Spectral analysis of unitary band matrices, Commun. Math. Phys. 234 (2003) 191-227
    [11] Daems D., Keller A., Guerin S., Jauslin H.R., Atabek O.: Unitary time-dependent superconvergent technique for pulse-driven quantum dynamics, Phys. Rev. A 67 (2003) art. no. 052505
    [12] Gentile G.: Quasi-periodic solutions for two-level systems, Commun. Math. Phys. 242 (2003) 221-250
    [13] Daems D., Guerin S., Jauslin H.R., Keller A., Atabek O.: Pulse-driven quantum dynamics beyond the impulsive regime, Phys. Rev. A 69 (2004) art. no. 033411
    [14] Joye A.: Density of states and Thouless formula for random unitary band matrices, Ann. Henri Poincaré 5 (2004) 347-379
    [15] Wang W.M.: Pure point spectrum of the floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbations, Commun. Math. Phys. 277 (2008) 459-496
    [16] de Oliveira C.R., Simsen M.S.: Quantum energy expectation in periodic time-dependent Hamiltonians via Green functions, Math. Problems Engineering (2009) art. no. 902506
    [17] Liu J.J., Yuan X.P.: Spectrum for quantum duffing oscillator and small-divisor equation with large-variable coefficient, Commun. Pure Appl. Math. 63 (2010) 1145-1172
    [18] Asch J., Meresse C.: A constant of quantum motion in two dimensions in crossed magnetic and electric fields, J. Phys. A: Math. Theor. 43 (2010) art. no. 474002

  24. Ch. Jagger, P. Šťovíček, A. Thomason, Multiplicities of subgraphs, Combinatorica 16 (1996) 123-141.
    [1] Gunderson D.S., Rodl V.: Extremal problems for affine cubes of integers, Comb. Probab. Comput. 7 (1998) 65-79
    [2] Alon N., Ruzsa I.Z.: Non-averaging subsets and non-vanishing transversals, J. Comb. Theor. A 86 (1999) 1-13
    [3] Franek F.: On Erdos's conjecture on multiplicities of complete subgraphs lower upper bound for cliques of size 6, Combinatorica 22 (2002) 451-454
    [4] Fox J.: There exist graphs with super-exponential Ramsey multiplicity constant, J. Graph Theory 57 (2008) 89-98
    [5] Conlon D., Fox J., Sudakov B.: An approximate version of Sidorenko's conjecture, Geom. Funct. Anal. 20 (2010) 1354-1366

  25. B. Jurčo, P. Šťovíček, Coherent states for quantum compact groups,
    (A) preprint CERN-TH.7201/94 (1994),
    [1] Damaskinsky E.V., Sokolov M.A.: Some remarks on the Gauss decomposition for quantum group GL(q)(N) with application to q-bosonization, J. Phys. A: Math. Gen. 28 (1995) 3725-3732
    [2] Dabrowski L., Parashar P.: Left regular representation of Slq(3) - reduction and intertwiners, J. Phys. A: Math. Gen. 28 (1995) 2833-2845
    [3] Kcharchev S.: Theor. Math. Phys. 104 (1995) 866
    (B) Commun. Math. Phys. 182 (1996) 221-251.
    [4] Stokman J.V., Dijkhuizen M.S.: Quantized flag manifolds and irreducible *-representations, Commun. Math. Phys. 203 (1999) 297-324
    [5] Gover A.R., Zhang P.B.: Geometry of quantum homogeneous vector bundles and representation theory of quantum groups I, Rev. Math. Phys. 11 (1999) 533-552
    [6] Elbeyli O., Sun J.Q.: A probabilistic theory of random maps, Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 1 (2005) pp. 1703-1712
    [7] Škoda Z.: Coherent states for Hopf algebras, Lett. Math. Phys. 81 (2007) 1-17
    [8] Bieliavsky P., Jego C., Troost J.: Open strings in Lie groups and associative products, Nucl. Phys. B 782 (2007) 94-133
    [9] Aizawa N., Chakrabarti R.: The coherent state on SUq(2) homogeneous space, J. Phys. A: Math. Theor. 42 (2009) art. no. 295208
    [10] Aizawa N., Chakrabarti R.: Noncommutative structure of quantum group coherent states, AIP Conference Proceedings, Frontiers in Physics, Vol. 1150 (AIP, Melville, 2009) pp. 122-125
    [11] Aizawa N., Chakrabarti R., Segar J.: Noncommutative complex manifolds via coherent states of quantum groups and supergroups, AIP Conference Proceedings, Lie Theory and its Applications in Physics, Vol. 1243 (AIP, Melville, 2009) pp. 254-264
    [12] Berrada K., El Baz M., Hassouni Y.: Generalized spin coherent states: construction and some physical properties, J. Stat. Phys. 142 (2011) 510-523

  26. P. Šťovíček, R. Twarock, Representations of $U_h(SU(N))$ derived from quantum flag manifolds, J. Math. Phys. 38 (1997) 1161-1182.
    [1] Ohn C.: "Classical" flag varieties for quantum groups: The standard quantum SL(n, C), Adv. Math. 171 (2002) 103-138

  27. L. Dąbrowski, P. Šťovíček, Aharonov-Bohm effect with $\delta$-type interaction,
    (A) preprint Trieste SISSA 171/96/FM (1996),
    [1] Adami R., Teta A.: On the Aharonov-Bohm Hamiltonian, Lett. Math. Phys. 43 (1998) 43-53
    (B) J. Math. Phys. 39 (1998) 47-62.
    [2] Adami R.: Anisotropic Aharonov-Bohm effect, Phys. Atom. Nuclei 61 (1998) 1954-59
    [3] Bentosela F., Exner P., Zagrebnov V.A.: Electron trapping by a current vortex, J. Phys. A: Math. Gen. 31 (1998), L305-L311
    [4] Korff C., Lang G., Schrader R.: Two-particle scattering theory for anyons, J. Math. Phys. 40 (1999) 1831-69
    [5] Tamura H.: Magnetic scattering at low energy in two dimensions, Nagoya Math. J. 155 (1999) 95-151
    [6] Ito H.T., Tamura H.: Aharonov-Bohm effect in scattering by point-like magnetic fields at large separation, Ann. Henri Poincaré 2 (2001) 309-359
    [7] Tamura H.: Norm resolvent convergence to magnetic Schrödinger operators with point interactions, Rev. Math. Phys. 13 (2001) 465-511
    [8] Ford C., Pawlowski J.M., Tok T., Wipf A.: ADHM construction of instantons on the torus, Nucl. Phys. B 596 (2001) 387-414
    [9] Giacconi P., Maltoni F., Soldati R.: Bose-Einstein condensation in the presence of an impurity, Phys. Lett. A 279 (2001) 12-16
    [10] Ito H.T., Tamura H.: Asymptotic behavior of scattering amplitudes in magnetic fields at large separation, J. Math. Soc. Jpn. 53 (2001) 645-668
    [11] Kowalski K., Podlaski K., Rembielinski J.: Quantum mechanics of a free particle on a plane with an extracted point, Phys. Rev. A 66 (2002) 032118
    [12] Tamura H.: Resolvent convergence in norm for Dirac operator with Aharonov-Bohm field, J. Math. Phys. 44 (2003) 2967-2993
    [13] Ito H.T., Tamura H.: Aharonov-Bohm effect in scattering by a chain of point-like magnetic fields, Asymptotic Anal. 34 (2003) 199-240
    [14] Borg J.L., Pule J.V.: Pauli approximations to the self-adjoint extensions of the Aharonov-Bohm Hamiltonian, J. Math. Phys. 44 (2003) 4385-4410
    [15] Kolokoltsov V.N.: Schrödinger operators with singular potentials and magnetic fields, Sbornik Math. 194 (2003) 897-917
    [16] Hounkonnou M.N.: Self-adjoint extensions of the Laplacian and Aharonov-Bohm operators with a potential supported on a circle, J. Phys. A: Math. Gen. 36 (2003) L523-L528
    [17] Exner P., Tater M.: Spectra of soft ring graphs, Waves Random Media 14 (2004) S47-S60
    [18] Tamura H.: Scattering of Dirac particles by electromagnetic fields with small support in two dimensions and effect from scalar potentials, Ann. Henri Poincaré 5 (2004) 75-118
    [19] Melgaard M., Ouhabaz E.M., Rozenblum G.: Negative discrete spectrum of perturbed multivortex Aharonov-Bohm Hamiltonians, Ann. Henri Poincaré 5 (2004) 979-1012
    [20] Melgaard M.: Bound states for the three-dimensional Aharonov-Bohm quantum wire, Few-Body Systems 35 (2004) 77-97
    [21] Honnouvo G., Hounkonnou M.N., Avossevou G.Y.H.: von Neumann quantization of Aharonov-Bohm operator with delta interaction: Scattering theory, spectral and resonance properties, J. Nonlin. Math. Phys. 11 Supplement (2004) 66-71
    [22] Borg J.L., Pule J.V.: Lifshits tails for random smooth magnetic vortices, J. Math. Phys. 45 (2004) 4493-4505
    [23] Mine T.: The Aharonov-Bohm solenoids in a constant magnetic field, Ann. Henri Poincaré 6 (2005) 125-154
    [24] Brasche J.F., Melgaard M.: The Friedrichs extension of the Aharonov-Bohm Hamiltonian on a disc, Integr. Equ. Oper. Theory 52 (2005) 419-436
    [25] Ito H.T., Tamura H.: Semiclassical analysis for magnetic scattering by two solenoidal fields, J. London Math. Soc. second series 74 (2006) 695-716
    [26] Lin Q.G., Hu X.J.: Finite correction to Aharonov-Bohm scattering by a contact potential, Eur. Phys. J. B 56 (2007) 235-241
    [27] Lisovyy O.: Aharonov-Bohm effect on the Poincare disk, J. Math. Phys. 48 (2007) art. no. 052112
    [28] Tamura H.: Semiclassical analysis for magnetic scattering by two solenoidal fields: Total cross sections, Ann. Henri Poincaré 8 (2007) 1071-1114
    [29] Tamura H.: Time delay in scattering by potentials and by magnetic fields with two supports at large separation, J. Func. Anal. 254 (2008) 1735-1775
    [30] de Oliveira C.R., Pereira M.: Mathematical Justification of the Aharonov-Bohm Hamiltonian, J. Stat. Phys. 133 (2008) 1175-1184
    [31] Richard S.: New formulae for the Aharonov-Bohm wave operators, Proceedings of the Conference on Spectral and Scattering Theory for Quantum Magnetic Systems, Eds. Briet P., Germinet F., Raikov G., Contemporary Mathematics, Vol. 500 (AMS, Providence, 2009) pp. 159-168
    [32] Kellendonk J., Richard S.: Weber-Schafheitlin-type integrals with exponent 1, Integral Transforms Spec. Funct. 20 (2009) 147-153
    [33] Sitenko Y.A., Vlasii N.D.: Induced vacuum current and magnetic field in the background of a cosmic string, Class. Quantum Grav. 26 (2009) art. no. 195009
    [34] Correa F., Falomir H., Jakubsky V., Plyushchay M.S.: Supersymmetries of the spin-1/2 particle in the field of magnetic vortex, and anyons, Ann. Phys. 325 (2010) 2653-2667
    [35] Correa F., Falomir H., Jakubsky V., Plyushchay M.S.: Hidden superconformal symmetry of the spinless Aharonov-Bohm system, J. Phys. A: Math. Theor. 43 (2010) art. no. 075202
    [36] de Oliveira C.R., Pereira M.: Scattering and self-adjoint extensions of the Aharonov-Bohm Hamiltonian, J. Phys. A: Math. Theor. 43 (2010) art. no. 354011
    [37] Pankrashkin K., Richard S.: Spectral and scattering theory for the Aharonov-Bohm operators, Rev. Math. Phys. 23 (2011) 53-81
    [38] Alexandrova I., Tamura H.: Resonance free regions in magnetic scattering by two solenoidal fields at large separation, J. Func. Anal. 260 (2011) 1836-1885
    [39] Alexandrova I., Tamura H.: Aharonov-Bohm effect in resonances of magnetic Schrödinger operators with potentials with supports at large separation, Ann. Henri Poincaré 12 (2011) 679-721
    [40] Kellendonk J., Pankrashkin K., Richard S.: Levinson's theorem and higher degree traces for Aharonov-Bohm operators, J. Math. Phys. 52 (2011) art. no. 052102
    [41] Andrade F.M., Silva E.O., Pereira M.: Physical regularization for the spin-1/2 Aharonov-Bohm problem in conical space, Phys. Rev. D 85 (2012) art. no. 041701

  28. P. Šťovíček, O. Váňa, Differential cross section for Aharonov-Bohm effect with non-standard boundary conditions, Europhys. Lett. 44 (1998) 403-408.
    [1] Moroz A.: Comments on differential cross-section for Aharonov-Bohm effect with nonstandard boundary-conditions, Europhys. Lett. 47 (1999) 273-274

  29. P. Duclos, P. Šťovíček, M. Vittot, Perturbation of an eigen-value from a dense point spectrum: an example, J. Phys. A: Math. Gen. 30 (1997) 7167-7185.
    [1] Jauslin H.R., Guerin S., Thomas S.: Quantum averaging for driven systems with resonances, Physica A 279 (2000) 432-442
    [2] Maioli M., Sacchetti A.: Gevrey formal power series of Wannier-Stark ladders, J. Phys. A: Math. Gen. 37 (2004) 2371-2383

  30. P. Duclos, P. Šťovíček, M. Vittot, Perturbation of an eigen-value from a dense point spectrum: A general Floquet Hamiltonian, Ann. Inst. H. Poincaré 71 (1999) 241-301.
    [1] Jauslin H.R., Guerin S., Thomas S.: Quantum averaging for driven systems with resonances, Physica A 279 (2000) 432-442
    [2] Bambusi D., Graffi S.: Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Commun. Math. Phys. 219 (2001) 465-480
    [3] Daems D., Guerin S., Jauslin H.R., Keller A., Atabek O.: Pulse-driven quantum dynamics beyond the impulsive regime, Phys. Rev. A 69 (2004) art. no. 033411
    [4] Ortigoso J., Rodriguez M., Santos J., Karpati A., Szalay V.: Long-lasting molecular alignment: Fact or fiction?, J. Chem. Phys. 132 (2010) art. no. 074105
    [5] Liu J.J., Yuan X.P.: Spectrum for quantum duffing oscillator and small-divisor equation with large-variable coefficient, Commun. Pure Appl. Math. 63 (2010) 1145-1172

  31. H.D. Doebner, P. Šťovíček, J. Tolar, Quantization of kinematics on configuration manifolds, Rev. Math. Phys. 13 (2001) 799-845.
    [1] Ali S.T., Englis M.: Quantization methods: A guide for physicists and analysts, Rev. Math. Phys. 17 (2005) 391-490
    [2] Brunetti R., Ruzzi G.: Quantum charges and spacetime topology: the emergence of new superselection sectors, Commun. Math. Phys. 287 (2009) 523-563
    [3] Goldin G.A.: Diffeomorphism groups and nonlinear quantum mechanics, Proceedings of ``the 7th International Conference on Quantum Theory and Symmetries (QTS)'', J. Phys.: Conf. Ser. 343 (2012) art. no. 012006

  32. P. Exner, P. Šťovíček, P. Vytřas, Generalised boundary conditions for the Aharonov-Bohm effect combined with a homogeneous magnetic field, J. Math. Phys. 43 (2002) 2151-2168.
    [1] Hounkonnou M.N.: Self-adjoint extensions of the Laplacian and Aharonov-Bohm operators with a potential supported on a circle, J. Phys. A: Math. Gen. 36 (2003) L523-L528
    [2] Gavrilov S.P., Gitman D.M., Smirnov A.A.: Green functions of the Dirac equation with magnetic-solenoid field, J. Math. Phys. 45 (2004) 1873-1886
    [3] Mine T.: The Aharonov-Bohm solenoids in a constant magnetic field, Ann. Henri Poincaré 6 (2005) 125-154
    [4] Brasche J.F., Melgaard M.: The Friedrichs extension of the Aharonov-Bohm Hamiltonian on a disc, Integr. Equ. Oper. Theory 52 (2005) 419-436
    [5] Iwai T., Yabu Y.: Aharonov-Bohm quantum systems on a punctured 2-torus, J. Phys. A: Math. Gen. 39 (2006) 739-777
    [6] Mine T., Nomura Y.: Periodic Aharonov-Bohm solenoids in a constant magnetic field, Rev. Math. Phys. 18 (2006) 913-934
    [7] Lisovyy O.: Aharonov-Bohm effect on the Poincare disk, J. Math. Phys. 48 (2007) art. no. 052112
    [8] Rozenblum G., Tashchiyan G.: On the spectral properties of the perturbed Landau Hamiltonian, Commun. Part. Diff. Eqs. 33 (2008) 1048-1081
    [9] Mine T., Nomura Y.: The spectrum of Schrödinger operators with random delta magnetic fields, Ann. Inst. Fourier 59 (2009) 659-689
    [10] Bagrov V.G., Gavrilov S.P., Gitman D.M., Meira D.P.: Coherent states of non-relativistic electron in the magnetic-solenoid field, J. Phys. A: Math. Theor. 43 (2010) art. no. 354016
    [11] Pankrashkin K., Richard S.: Spectral and scattering theory for the Aharonov-Bohm operators, Rev. Math. Phys. 23 (2011) 53-81
    [12] Bagrov V.G., Gavrilov S.P., Gitman D.M., Meira D.P.: Coherent and semiclassical states in a magnetic field in the presence of the Aharonov-Bohm solenoid, J. Phys. A: Math. Theor. 44 (2011) art. no. 055301

  33. P. Duclos, O. Lev, P. Šťovíček, M. Vittot, Weakly regular Floquet Hamiltonians with pure point spectrum, Rev. Math. Phys. 14 (2002) 531-568.
    [1] Bourget O., Howland J.S., Joye A.: Spectral analysis of unitary band matrices, Commun. Math. Phys. 234 (2003) 191-227
    [2] Gentile G.: Quasi-periodic solutions for two-level systems, Commun. Math. Phys. 242 (2003) 221-250
    [3] Joye A.: Density of states and Thouless formula for random unitary band matrices, Ann. Henri Poincaré 5 (2004) 347-379
    [4] Gentile G.: Pure point spectrum for two-level systems in a strong quasi-periodic field, J. Stat. Phys. 115 (2004) 1605-1620
    [5] de Oliveira C.R., Simsen M.S.: Almost periodic orbits and stability for quantum time-dependent Hamiltonians, Rep. Math. Phys. 60 (2007) 349-366
    [6] Ortigoso J., Rodriguez M., Santos J., Karpati A., Szalay V.: Long-lasting molecular alignment: Fact or fiction?, J. Chem. Phys. 132 (2010) art. no. 074105

  34. V.A. Geyler, P. Šťovíček, On the Pauli operator for the Aharonov-Bohm effect with two solenoids, J. Math. Phys. 45 (2004) 51-75.
    [1] Iwai T., Yabu Y.: Aharonov-Bohm quantum systems on a punctured 2-torus, J. Phys. A: Math. Gen. 39 (2006) 739-777
    [2] Persson M.: On the Dirac and Pauli operators with several Aharonov-Bohm solenoids, Lett. Math. Phys. 78 (2006) 139-156
    [3] Correa F., Falomir H., Jakubsky V., Plyushchay M.S.: Supersymmetries of the spin-1/2 particle in the field of magnetic vortex, and anyons, Ann. Phys. 325 (2010) 2653-2667

  35. V.A. Geyler, P. Šťovíček, Zero modes in a system of Aharonov-Bohm fluxes, Rev. Math. Phys. 16 (2004) 851-907.
    [1] Rozenblum G., Shirokov N.: Infiniteness of zero modes for the Pauli operator with singular magnetic field, J. Func. Anal. 233 (2006) 135-172
    [2] Mine T., Nomura Y.: Periodic Aharonov-Bohm solenoids in a constant magnetic field, Rev. Math. Phys. 18 (2006) 913-934
    [3] Franchini F., Goldhaber A.S.: Aharonov-Bohm effect with many vortices, Physica Scripta 78 (2008) art. no. 065002
    [4] Mine T., Nomura Y.: The spectrum of Schrödinger operators with random delta magnetic fields, Ann. Inst. Fourier 59 (2009) 659-689

  36. V.A. Geyler, P. Šťovíček, Zero modes in a system of Aharonov-Bohm solenoids on the Lobachevsky plane, J. Phys. A: Math. Gen. 39 (2006) 1375-1384.
    [1] Mine T., Nomura Y.: Periodic Aharonov-Bohm solenoids in a constant magnetic field, Rev. Math. Phys. 18 (2006) 913-934

  37. P. Šťovíček, M. Tušek, On the harmonic oscillator on the Lobachevsky plane, Russian J. Math. Phys. 14 (2007) 493-497.
    [1] Carinena J.F., Ranada M.F., Santander M.: The quantum free particle on spherical and hyperbolic spaces: A curvature dependent approach, J. Math. Phys. 52 (2011) art. no. 072104

  38. P. Duclos, O. Lev, P. Šťovíček, On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum, J. Stat. Phys. 130 (2008) 169-193.
    [1] Zhang Q., Fang D.: On growth of Sobolev norms in time dependent linear Schrödinger equations on spheres, J. Math. Anal. Appl. 390 (2012) 165–180

  39. P. Duclos, E. Soccorsi, P. Šťovíček, M. Vittot, On the stability of periodically time-dependent quantum systems, Rev. Math. Phys. 20 (2008) 725-764.
    [1] Aguer B., De Bievre S.: On (in)elastic non-dissipative Lorentz gases and the (in)stability of classical pulsed and kicked rotors, J. Phys. A: Math. Theor. 43 (2010) art. no. 474001

  40. P. Šťovíček, M. Tušek, On the spectrum of a quantum dot with impurity in the Lobachevsky plane, in ``Recent Advances in Operator Theory in Hilbert and Krein Spaces'', eds. J. Behrndt, K.-H. Förster, C. Trunk, Operator Theory: Advances and Applications, Vol. 198, (Birkhäuser Verlag, Basel, 2010) 291-304.
    [1] Carinena J.F., Ranada M.F., Santander M.: The quantum free particle on spherical and hyperbolic spaces: A curvature dependent approach, J. Math. Phys. 52 (2011) art. no. 072104

  41. P. Duclos, P. Šťovíček, M. Tušek, On the two-dimensional Coulomb-like potential with a central point interaction, J. Phys. A: Math. Theor. 43 (2010) art. no. 474020.
    [1] Nam P.T., Portmann F., Solovej J.P.: Asymptotics for Two-Dimensional Atoms, Ann. Henri Poincaré 13 (2012) 333-362




next up previous
Next: About this document ...
Pavel Stovicek 2012-06-06